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Abstract

There have been a number of recent proposals for link and network-layer protocols in
the sensor networking literature, each of which claims to be superior to other
approaches. However, a proposal for a networking protocol at a given layer in the stack
is typically evaluated in the context of a single set of carefully selected protocols at other
layers, as well as a particular network topology and application workload. Because of
the limited data available about interactions between different protocols at various layers

of the stack, it is difficult for developers of sensor network applications to select from
amongst the range of alternative sensor networking protocols. This thesis attempts to
remedy this situation by evaluating the interaction between several protocols at the
MAC and network layers and measuring their performance in terms of end-to-end

throughput and loss on a large, real-world TinyOS and Mica2 mote-based testbed. We
report on different combinations of protocols using different application workloads and

power-management schemes. This thesis analyzes the effects of various services
provided by the different protocols, such as link-level retransmission, neighborhood
management, and link-quality estimation. Our analysis suggests some common sources
of poor performance that developers may experience during real-life deployments; based
on this experience, we propose a set of design principles and lessons for the designers of
future interfaces and services in TinyOS.

Thesis Supervisor: Samuel Madden
Title: Assistant Professor
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Chapter 1

Introduction

Sensor networks consist of collections of tiny sensing devices, commonly referred to as

"motes" (i.e., a speck of dust) - Figure 1-1 shows an example mote. Motes collect

information using application-specific sensors and

transmit data by means of a low-power radio. These

motes are built to be deployed in both indoor and outdoor

environments where sensing at a high level of granularity

is necessary. Motes are usually battery-powered devices

with very limited hardware resources to process or store

data. Data is gathered by using sensors that attach via a

daughter card and then transmitted to the base station. Figure 1-1: Crossbow

With the help of a multi-hop routing protocol, data Mica2 Mote

packets are forwarded from one node in the network to the next until they reach their

final destination. In order to save energy and be able to work on a single set of batteries

for several months at a time, motes must remain in a low-power state, turning off their

radios and processors when there is no other processing to be done.
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Sensor networks have already been deployed in several real-life scenarios. For

example, hundreds of wireless sensing devices were deployed on Great Duck Island, off

the coast of Maine, during the summer of 2004. The objective was to study the behavior

of the Leach's Storm Petrel (Figure 1-2), a rare bird that nests on the island every year

[12]. Other environmental monitoring projects involve monitoring volcanic eruptions in

central Ecuador [2], or measuring microclimatic variations in humidity, temperature and

pressure in botanical gardens [1] and vineyards [24].

Figure 1-2: Leach's Storm Petrel

Other applications of sensor networks involve industrial monitoring and supply

chain management. Tens or hundreds of sensors can be deployed in harsh industrial

environments to continuously monitor equipment and issue alerts in response to

malfunctions. For example, Intel is currently working with BP (British Petroleum) in a

pilot project to monitor vibrations on BP's oil tankers [25].

However, many of these recent field experiments have demonstrated that current

generations of sensor networks are still too immature to be easily deployed in many
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long-term real-world scenarios. In particular the deployment of sensor networks in field

studies requires the integration of several networking technologies. Current sensor

networking technology is such that this integration is very difficult, because protocols

have subtle incompatibilities with each other. To-date, many real-life deployments have

taken a monolithic approach to communication stack design, with all communications

protocols being developed by the same research team or organization. These monolithic

radio stacks typically lack features that can be obtained from elements of competing

stacks. In this thesis, I study the interaction between several communication protocols

developed by different research groups and the subtle and undocumented incompatibility

issues that make sensor network programming very difficult.

1.1 Motivation

The sensor network community has proposed a large number of different networking

protocols for routing [14, 21, 22], media access [4, 5, 8, 16, 17, 23], and power

management [6, 8, 16, 17]. Despite significant innovation in each of these areas, there

has been little work addressing the integration of protocols across areas into a single

application. Published papers typically propose changes in one abstraction (e.g., a new

MAC layer) while using some "default" implementation of the other abstractions (e.g.,

using the "standard" multi-hop routing protocol in TinyOS) and evaluating on a

particular topology and a particular workload. This approach has led to a large number

of competing protocol proposals which are difficult to compare with one another due to

varying choices made by authors about appropriate defaults, application workloads, and

network topologies. This makes it hard for an application designer to select the best set
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of protocols for his or her application and impossible for other researchers to understand

whether claimed differences between protocols are simply due to artifacts in one

experimenter's setup or are true differences between protocols.

This thesis focuses on the TinyOS [7] operating system, because source code for

many different protocol implementations is widely available and because it appears to be

the currently platform of choice for sensor network research. In TinyOS, problems

surrounding the interactions between protocols are aggravated by significant

disagreement in the community about how functionality should be spread across

different network 'layers'. Lines between layers are blurred, making innovation difficult

and mixing and matching of implementations tricky as interfaces are poorly specified.

As an example, consider per-link acknowledgements and retransmissions, which are

widely regarded as an important feature for reducing loss in sensor networks. Different

designers implement these features in different parts of the network stack. In some

cases (e.g., B-MAC [17]), acknowledgements are synchronous, meaning they are

transmitted by the receiver immediately after a packet is received, without re-acquiring

the channel; in other cases, they are asynchronous (e.g., S-MAC [8, 16]) and treated just

like regular network packets. In the synchronous case, acknowledgements must be

issued by the link/MAC (media access and contention) layer [8, 16, 17] which is

responsible for negotiating low-level access to the network channel. In the latter case,

they may be issued by the link layer or by a high-level network layer that is also

responsible for forwarding packets to some end-to-end destination [13, 14]. Similarly,

retransmissions due to negative or failed acknowledgements can be implemented at

either of these layers, as can duplicate suppression. Placement of these operations is not
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consistent across implementations; for example, the B-MAC [17] protocol implements

acknowledgements but assume that retransmissions and not duplicate suppression

should be implemented in the layers above, whereas the S-MAC protocol implements all

three. If a researcher wants to design a new 'network' layer, he must choose which of

ACKs, retransmissions, and duplicate suppression to implement. These choices will

invariably tie his implementation to a particular MAC layer and limit the generality and

impact of his work; worse yet, due to unstated assumptions in various implementations,

she may believe her protocol will work with a particular MAC layer only to find it does

not. If the abstraction boundaries between layers were more cleanly implemented and

specified, these issues would not arise.

This thesis presents a systematic study of the performance (in terms of network loss

rate) of different combinations of MAC, routing, forwarding, and power management

protocols that have been previously proposed in the literature. The aim of this work is to

provide measurements that will enable a first step towards fixing these problems with

the network protocols in TinyOS by:

1. Benchmarking several widely published protocols with the same application workload

and on the same network topology.

2. Highlighting the significant differences between different implementations protocols

that are ostensibly at the same 'layer'.

3. Illustrating a number of examples where interactions between different layers lead to

significant performance degradation.
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4. Recommending particular combinations of protocols for particular application

workloads.

5. Illustrating that no one protocol at any of these layers strictly dominates any other

protocol (despite claims to the contrary in the literature.).

The purpose of this thesis is not to proscribe a specific layering or to suggest that one

implementation is better than another. Rather, this thesis aims illustrate some of the

limitations of the current state of software in TinyOS so that the community can move

towards a cleaner set of interfaces that support greater protocol diversity and allow

application developers to make more informed choices about the appropriate selection of

networking protocols.

18



Chapter 2

Sensor Network Architecture

A common architecture and set of abstractions has emerged for the network stack for

wireless sensor networks. As in most network architectures, the basic abstraction is the

layer. However, the TinyOS network stack differs from the traditional Internet stack in

several ways:

" Layers make abundant use of cross-layering in order to increase throughput and

decrease power consumption [10].

- Power management is present in many different forms in several layers.

The network stack in TinyOS can be broken into four major layers: the physical layer,

the link/MAC layer (to keep consistent with the naming using in many publications, we

refer to this simply as the MAC layer in the remainder of this thesis), the

forwarding/routing layer (we refer to this as the routing layer in the remainder of this

text), and the application layer. Moreover, the network stack also performs other two

major services that are not present in Internet routing: power management and link-

quality estimation.
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This thesis mainly focuses on the analysis of the interaction between MAC layer,

routing layer, and power management taking into consideration the application-specific

requirements.

2.1 MAC Layer

As far as the Medium Access Control (MAC) protocol is concerned, the major

distinction is between the use of TDMA or CSMA to negotiate channel access. This

thesis focuses on CSMA-based implementations, because, although several TDMA

protocols have been proposed [4], they are not available in implementations that are

easily integrated with existing multi-hop forwarding and routing protocols.

The different MAC protocols developed for sensor network also differ in the

additional services that they provide. For example, some MAC protocols, such as S-

MAC [8, 16], also perform link level acknowledgment and retransmission and hidden-

terminal avoidance via RTS/CTS. Moreover many MAC protocols also take care of

power management for the entire network stack [8, 16, 17]. However, the needs of the

application layer are not always considered when the MAC protocol takes care of power

management. Often the application requires the mote to wake up and sense the

environment at specific times and rates that are not the same as the forwarding needs of

the communication stack.

2.1.1 Contention-based approaches

Contention-based approaches rely on protocols that detect and avoid packet-collisions.

Packet-collisions are detected by means of acknowledgment packets and can be partially

avoided using RTS/CTS (Request-To-Send/Clear-To-Send) packets as well as

20



exponential back-off on resend when a collision occurs. The major advantages of

contention-based MAC protocols are:

" No need for a very precise time-synchronization between the devices [8].

" Flexibility in terms of both changes in the network topology and changes in the data-

rates.

On the other hand, the major disadvantages of contention-based MAC protocols are

related to the possible contention for the medium and to the lack of innate energy

management mechanisms:

- In collision-detection based CSMA protocols (used in sensor networks), collisions

increase the number of retransmissions and decrease channel capacity.

" Use of RTS/CTS packets to avoid collisions or per-link acknowledgment packets to

determine if a collision occurred.

- Difficult power management. Inserting a duty cycle in CSMA-based protocols

requires both time-scheduling and time-synchronization. Without such mechanisms,

motes always listen to the channel, which tends to waste power receiving messages

directed to other motes [5].

Power management is often performed in the MAC layer and there are several

contention-based protocols designed for sensor networks that introduce duty-cycles in

order to save energy [5, 7, 8].
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2.1.2 TDMA-based approaches

Though this thesis does not experimentally evaluate TDMA, we briefly surveys its

merits because it has some attractive properties that potentially make it useful in sensor

networks. In TDMA, a single radio-frequency channel is divided into multiple time

slots. Each time slot is assigned to a different device (e.g. mote) that requires access to

the medium. The two main strengths of the TDMA-based approach are that it eliminates

packet collisions since every device transmits during a different time slot and that it

provides a built-in power management scheme since devices only need to be "on" in

slots when they are sending or receiving data [4].

The major disadvantages of TDMA-approaches in sensor networks are that it

requires precise time synchronization and provides a fixed, inflexible bandwidth

allocation to every node.

In addition to pure TDMA, Hohlt et al [6] propose a hybrid solution, where

transmission is scheduled using time slots, but medium contention and packet collisions

are still possible. This hybrid approach reduces medium contention by assigning

different time slots to different clusters of motes, while simultaneously avoiding

complexities in terms of time-synchronization that a full TDMA solution would require.

However, the current implementation only allows a one-way communication toward the

root of the routing tree and it therefore cannot be deployed with many data-collection

applications, such as TinyDB [9], that need broadcast and multicast communication as

well.
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2.2 Routing Layer

Multi-hop protocols are widely used in sensor networks because, by multi-hopping,

nodes are able to send data-packets beyond the transmission range of a single low-power

radio.

In tree-based multi-hop routing (Figure 2-1), every node in the network keeps a

neighborhood table containing the best neighbor nodes that it can use to route packets

toward the root of the tree. A node has a parent that it uses to route packets toward the

root; the routing protocol decides which neighbor node should play this role and when it

should switch parents. The most recent multi-hop protocols base routing decisions on

the number of hops and on the estimated link quality [14, 15, 21, 22].

A 1

Figure 2-1: Multi-hop tree-based routing topology

Some services such as link-level retransmission and link-quality estimation are

performed in the routing layer in some implementations and in the MAC layers in other

implementations. This irregularity regarding the placement of key services inside the

23



network stack makes designing a new, general-purpose implementation of a specific

network layer difficult, as the layer will have to make assumptions about the services

provided by other layers that will invariably tie it to one set of accompanying

implementations. For example, some routing protocols rely heavily on snooping packets

addressed to other nodes [14]. Therefore, power management schemes implemented in

the MAC layer that save energy by decreasing idle listening will break when used with

such routing protocols.

This tight and non-standardized correlation between the services required by the

routing protocol and the services provided by the underlying MAC layer make many

implementations difficult to reuse across multiple implementations; chapter 4 and

chapter 5 illustrate a number of such problems that exist in practice today. Chapter 6

discusses some design options for remedying these problems.

2.3 Power Management

Many sensor network applications require the network to survive several months or

years in the field without changing batteries. To achieve such lifetimes, it is necessary to

keep devices in a low-power ("sleeping") state most of the time. The devices wake up

only when they need to perform a particular task, such as sensing or receiving and

transmitting data. This duty cycling needs to adapt to different application-specific data

rates and to variable network sizes.

Power management is often performed in the MAC layer and there are several

contention-based protocols designed for sensor networks that introduce duty-cycles in

order to save energy [5, 8, 16, 17]. Some protocols, such as B-MAC, implement a power
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management scheme (called "low-power listening" by the B-MAC designers) that

increases packet preamble length (and hence transmission costs) but decreases idle-

listening costs by requiring nodes to listen for packet transmissions only once period

preamble period. Note, however, that this approach does not solve the "problem" of

nodes consuming power listening to packets addressed to other nodes.

Other protocols, such as S-MAC [8, 16] or T-MAC [5], employ a listen/sleep duty-

cycle, creating a cluster of neighboring nodes that share the same schedule and therefore

wake up and go to sleep all at the same time.

Another commonly used power management scheme for sensor nets, used in the

TASK/TinyDB system [1], works at the application layer and divides the time into two

frames; an active frame and a sleeping frame. In the active frame, motes transmit and

route the data-packets that were queued during the sleeping frame. Due to the large size

of the two frames, this approach does not need very precise time-synchronization.

However, it is not very flexible because the size of the frames is fixed and does not

adapt to either the network size or to the traffic characteristics.
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Chapter 3

Studied Implementations

This thesis focuses on routing, MAC and power management protocols that have been

implemented using the TinyOS platform. Unfortunately only a small percentage of all

the protocols that have been proposed in the literature have a mature and robust enough

implementation that can be integrated and used on a real test bed. Therefore, in this

thesis we had to limit the research to two different MAC protocols (B-MAC [17] and S-

MAC [8, 16]) and three different routing protocols (/lib/Route, MINTRoute and

ReliableRoute [14]). Both B-MAC and S-MAC implement a power management

scheme integrated with the MAC layer, therefore in all the experiments changing MAC

protocol meant also changing power management scheme. Within each protocol

variant, this thesis looks at performance differences with and without power

management.

3.1 MAC Protocols

B-MAC and S-MAC are the most mature and widely used MAC protocols within the

TinyOS project. They are both based on packet-collision avoidance schemes and they

both integrate a power management scheme within the MAC protocol. However, the
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greatly different in their architecture, in the additional services they provide, and in the

techniques they use to achieve energy-efficient operations.

3.1.1 B-MAC

The standard TinyOS MAC protocol is a contention-based protocol called B-MAC [17].

As discussed above, B-MAC provides power management via low-power listening; the

"recommended" preamble length in B-MAC is 100ms [17], which is the value used

here. B-MAC has been shown to outperform other MAC protocols in previous studies

[17], and has been carefully tuned for the radio used in Mica2 motes like those in our

deployment.

On Mica2s, B-MAC supports synchronous acknowledgments that require only a few

extra bit-times on the end of each packet to transmit. This depends on the ability of the

sender and receiver to quickly switch roles at the end of a packet transmission and

remain synchronized before any additional sender can sense an idle channel and begin

transmitting.

B-MAC does not perform link-level retransmission or hidden terminal avoidance

using RTS/CTS schemes. The designers assume that such protocols will be implemented

at higher layers if necessary.

In B-MAC, every mote overhears every packet transmitted; this allows high-layer

network protocols to employ snooping for link-quality estimation [14] and in-network

processing [9].

The designers of B-MAC do not assume that a single set of parameters will work

with every possible application and they do not try to make B-MAC agnostic of the

protocols that run above it. Instead, B-MAC offers control to the protocols that sit on top
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of it, allowing to the routing and application layers to change parameters like the low-

power listening duration or the number and type of retransmissions used. The idea is to

enable cross-layer optimization without imposing a particular API on end users.

Unfortunately, as far as we know, most implemented routing layers do not make use of

this cross-layer tuning API.

3.1.2 S-MAC

S-MAC [8, 16] is a contention based MAC protocol that adds into the MAC layer power

management, link-level retransmission, duplicate packet suppression, hidden terminal

avoidance using RTS/CTS, and link-quality estimation.

The power management scheme is based on shared schedules between

"neighborhoods" of small groups of motes. Some motes follow more than one schedule

simultaneously and therefore are able to forward packets from one neighborhood to

another.

The S-MAC power management scheme tries to minimize energy consumption by

decreasing the overhearing of other motes' transmissions. Motes sleep when they detect

a transmission not addressed to them, and neighborhoods deactivate during times when

they are not actively scheduled.

Unlike B-MAC, S-MAC does not provide any way for the higher layers to change its

MAC parameters but assumes, as it happen for Internet routing, that every layer can be

completely separated and independent from the others.
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3.2 Routing Protocols

The three different routing protocols tested differ in terms of routing algorithm, metrics

and services provided. /lib/Route seeks to minimize the number of hops that each packet

traverses. On the other hand, MINTRoute and ReliableRoute route packets based on

link-quality estimates that seek to maximize the probability of a packet being delivered.

3.2.1/ lib/Route

Route was the standard routing protocol in TinyOS 1.1.0; it has been supplanted by

MINTRoute. Route performs link-quality estimates but bases routing decisions mainly

on hop count, using link-quality estimates simply as a threshold to prune very low

quality links.

3.2.2 MINTRoute

MINTRoute is the new standard routing protocol for TinyOS. Unlike /lib/Route,

MINTRoute bases its routing decisions mainly on link-quality estimates rather than

minimum hop count. The quality estimates for sending and receiving are used to select a

parent that will minimize the expected number of transmissions to reach the root of the

network. The literature [1, 14, 15, 21] reports better performance using link quality

estimates rather than minimum hop count. Moreover, MINTRoute add to /lib/Route a

topology stabilization mechanism in order to avoid frequent parent switching.

MINTRoute's design and implementation involves several hidden assumption that

makes it inappropriate under certain conditions. For example, MINTRoute assumes the

capability to snoop every neighbor's packets. This makes using MINTRoute with a
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MAC that doesn't conform to this specification (such as S-MAC) problematic; we

discuss this issue further in chapter 5.

3.2.3 ReliableRoute

ReliableRoute uses the same routing algorithm as MINTRoute but implements link-level

retransmissions. However, it does not implement duplicate suppression; to provide valid

end-to-end throughput results, I implemented a duplicate suppression algorithm for

purposes of our experiments. By default ReliableRoute performs up to 5 link-level

retransmissions. In the experiments we decreased the maximum number of

retransmissions to 3 in order to achieve consistency with S-MAC which also performs

up to 3 retransmissions by default.

ReliableRoute performs packet retransmissions based on acknowledgement

information that it expects the MAC layer to provide and therefore does not work with

any MAC protocol, such as S-MAC, that does not conform to this specification.

3.3 Application Workload

All the experiments use a workload similar to that of many environmental monitoring

applications like TinyDB [9] or Surge (a simple TinyOS application designed to collect

readings from all motes in a network at a fixed rate).

Environmental monitoring applications, broadly speaking, have the following

characteristics and requirements:

- Data rate: Low and Fixed

" Longevity of the networks: Long
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" Data-delivery reliability: Low

- Topology: Mostly static and many-to-one (Tree)

= Acceptable latency: high

As this thesis is mainly focused on sensor networks for data collection, we use simply a

workload of this type. In particular, we use different routing and MAC layers under the

Surge application.
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Chapter 4

Evaluations and Experiments

In this chapter, we study the performance of the different MAC and routing protocols

under different application workloads. All our results are based on experiments run on

the 61-node Mica2 (Figure 1-1) [18] and Cricket [19] test bed at MIT CSAIL. The test

bed (Figure 4-1) is installed on the 9t floor of the Gates Building in the MIT Stata

Center and spans an area of 16,076 square feet. Although both types of motes are able to

run the same executables, in order to ensure consistent results, we run only on the Mica2

motes, therefore using only 46 out of 61 motes. Each Mica2 mote has an Atmel

ATmegaI28L microcontroller with 4 KB of RAM, 128 KB of flash, and a CC 1000 radio

running at 433 MHz that modulates at 38.4 symbols per second using Manchester

encoding. Moreover, each mote was attached to a Crossbow MIB6000 Ethernet interface

board. The board provides power to the mote and allows remote reprogramming and

data collection via Ethernet. We managed and controlled the entire test-bed though a

Motelab [3]-based web interface.

In all experiments, each mote was running the same version of Surge (TinyOS 1.1.0

release [7]). Surge transmits sensor readings at a fixed rate. We run the experiments at

several different data rates; this thesis reports here results where we send one packet
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every 10 seconds and one packet every 60 seconds, representing a high-load and a low-

load scenario.

One packet every 10 seconds creates a high-contention situation even with no

power-management scheme enabled. Polastre et al. [17] show that a 20-node Mica2

network can deliver (in aggregate) about 16 packets per second when running B-MAC.

With 46 nodes each sending 1 packet every 10 seconds, with an average of node-depth

of 3, the entire network sends 13.5 packets per second, which is close B-MAC

maximum throughput capabilities. Following the trends shown by Polastre et al. [17],

we expect our 46 node network to have somewhat less throughput than a 20 node

network.

At a rate of 60 seconds per packet, we generate 2.25 packets per seconds on the

network, clearly below the B-MAC throughput limits.
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4.1 B-MAC

In our experiments with B-MAC we varied three different parameters: the routing

protocol, the transmission rate and the preamble duration. We tested the latest version of

B-MAC [17] using three different routing protocols: /lib/Route, MINTRoute, and

ReliableRoute. We performed experiments at both high and low data rate. We used two

variants of power management: in "always-on" mode and using low-power listening

with the default preamble length of 100 ins. Each experiment ran for 60 minutes and was

repeated 5-8 times.

We measured throughput by calculating the percentage of messages sent by the

motes that were actually collected by the root node. Table 4-1 shows the results using

different power-management schemes and traffic conditions. In the overall average

throughput measurements, we omit any nodes that were not able to reach the root node

with any packet; these are the "dead" nodes listed in Table 4-1. Here, avg. and a

represent the average throughput and the standard deviation of all trials; min and max

represent the best and worst trial in the set.

From the results reported in Table 1-1 and Figures 4-4 and 4-5, we observe:

-In always-on mode and under high data rate conditions, there is no significant

difference in performance among the different routing protocols. We believe this is

due to frequent packets collisions that void the benefits that any particular routing

metric provides.
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B-MAC Always On

High Data Rate (10 seconds period)

Routing Protocol

MINT Route

/lib/Route

Reliable Route

Routing Protocol

MINT Route

/lib/Route

Reliable Route

Routing Protocol

MINT Route

/lib/Route

Routing Protocol

MINT Route

/lib/Route

Avg.

56%

48%

47%

Low Data

Avg.

49%

61%

55%

Throughput

a Max.

12% 72%

2% 51%

6% 54%

Rate (60 seconds

Throughput

o Max.

5% 54%

14% 82%

10% 71%

Dead Nodes

Min.

45%

46%

41%

period)

Dead Nodes

Min.

43%

47%

45%

B-MAC LPL 100 ms

High Data Rate (10 seconds period)

Throughput

Avg.

37%

24%

Low Data

Avg.

40%

24%

a Max.

3% 41%

7% 33%

Rate (60 seconds

Throughput

a Max.

2% 43%

11% 34%

Dead Nodes

Min.

33%

17%

period)

Dead Nodes

Min.

39%

8%

Table 4-1: Performance using B-MAC and various routing protocols. "Dead

nodes" refers to the number of nodes that reported 0% throughput.
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" In always-on mode and under low-traffic conditions, /lib/Route performs better than

MINTRoute and ReliableRoute. However, in always-on mode the throughput of the

various protocols is not dramatically different; our results in Section 5.2 suggest that

B-MAC may not be well suited to the particular application workload generated by

Surge.

- Link-level retransmissions slightly improve throughput when medium contention is

low, but decrease throughput when medium contention is high. Link-level

retransmissions create a trade-off: on one hand they increase the probability that a

particular packet is successfully received; on the other hand, they increase medium

contention by increasing the average number of packets that need to be transmitted.

" With low-power listening, MINTRoute consistently performs better than /lib/Route.

Figures 4-2 and 4-3 show the distribution of parents for each node during a single

run with MINTRoute and Route (respectively). Notice that MINTRoute and Route

are both fairly stable in their choice of parent, but that they differ in their selection of

the best parent.
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Figure 4-2: Parent distribution based on child's node ID using B-MAC with Low

Power Listening, MINTRoute and 60 sec. data rate. Circle size is proportional to

the number of times a given node routed data via a given parent.
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Figure 4-3: Parent distribution based on child's node ID using B-MAC with Low

Power Listening, Route and 60 sec. data rate.
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Figure 4-4: CDF of the average throughput using various configurations of B-MAC

and 60 sec data rate. Here, steeper, more convex curves indicate worse

performance (as fewer nodes achieve high throughput), whereas more concave

curves indicate better performance.
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Figure 4-5: CDF of the average throughput using various configurations of B-MAC

and 10 sec data rate.

42

P- -A



4.2 S-MAC

As with B-MAC, in our experiments with S-MAC we varied the routing protocol, the

transmission rate and the duty cycle. we tested the latest version of S-MAC (version 1.2)

using: /lib/Route and MINTRoute (we did not try ReliableRoute because S-MAC

implements retransmissions at the link layer).

We use the same high-rate and low-rate workloads as in the previous section. We

tested S-MAC using two duty cycles: 90% and 10%. The latter is the default value for S-

MAC and we picked 90% because is close to always-on mode but it still involves

schedules and neighbors management. We ran 60 minute experiments and every

experiment was run between 5 and 8 times.

Tables 4-2 and 4-3 show the results under different duty cycles and traffic

conditions, with S-MAC with and without link-level retransmissions.

From the results in Table 4-2 and 4-3 and from figure 4-6, we observe:

- As in the case of B-MAC, link-level retransmissions do not always improve end-to-

end throughput. At 90% duty cycle retransmissions tend to slightly improve end-to-

end throughput at both rates. However, at 10% duty cycle, when medium contention

is higher, retransmissions consistently harm end-to-end throughput.

" At 90% duty cycle, MINTRoute performs slightly better than /lib/Route. However,

at 10% duty cycle /lib/Route substantially outperforms MINTRoute.
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60 sec data rate.
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Routing Protocol

MINT Route

/lib/Route

Routing Protocol

MINT Route

/lib/Route

Routing Protocol

MINT Route

/lib/Route

Routing Protocol

MINT Route

/lib/Route

S-MAC 90% duty cycle

High Data Rate (10 seconds period)

Throughput

Avg. a Max. Min

44% 13% 61% 26%

31% 10% 40% 20%

Low Data Rate (60 seconds period)

Throughput

Avg. a Max. Min

90% 3% 92% 85%

89% 2% 91% 87%

S-MAC 90% duty cycle with no retransmissions

High Data Rate (10 seconds period)

Throughput

Avg. a Max. Min

32% 15% 45% 6%

26% 7% 36% 19%

Low Data Rate (60 seconds period)

Throughput

Avg. a Max. Min

90% 1% 91% 88%

85% 3% 87% 80%

Table 4-2: Performance using S-MAC at 90% duty cycle and various routing

protocols. "Dead nodes" refer to the number of nodes that reported 0%

throughput.
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" By studying the nodes routing tables, we determined that nodes using MINTRoute

had difficulty finding a parent and tended to lose their parent once they found one.

We believe this is because MINTRoute takes advantage of snooping to perform link-

quality estimation and it is unable to cope with a MAC layer that saves energy by

turning off the radio to reduce idle-listening. On the other hand, the /lib/Route

algorithm is based mainly on minimum hop count and is much more robust under

low duty cycle operations.

- From Figures 4-8 and 4-9 we can clearly see how increasing the S-MAC duty cycle

creates instability in the parent selection algorithm. Figure 8 shows stable parent

selection when a 90% duty cycle is used. On the other hand, Figure 9 shows how

parent selection becomes unstable and parent switching more frequent when a 10%

duty cycle is employed.

" By looking at Figure 4-7, we deduce that S-MAC duty cycling is able to spread in

time packets that are simultaneously transmitted by all nodes and therefore take

advantage of additional medium capacity.
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Routing Protocol

MINT Route

/lib/Route

Routing Protocol

MINT Route

/lib/Route

Routing Protocol

MINT Route

/lib/Route

S-MAC 10% duty cycle

High Data Rate (10 seconds period)

Throughput

Avg. o Max. Min

13% 7% 19% 2%

20% 9% 36% 14%

Low Data Rate (60 seconds period)

Throughput

Avg. a Max. Min

36% 7% 45% 28%

63% 10% 74% 50%

S-MAC 10% duty cycle with no retransmissions

High Data Rate (10 seconds period)

Throughput

Avg.

16%

26%

Low Data

Routing Protocol

MINT Route

/lib/Route

Avg.

37%

84%

o Max. Min

4% 21% 10%

7% 36% 19%

Rate (60 seconds period)

Throughput

o Max. Min

4% 42% 31%

3% 88% 81%

Dead Nodes

19

3

Dead Nodes

14

8

Dead Nodes

2

2

Dead Nodes

24

2

Table 4-3: Performance using S-MAC at 10% duty cycle and various

routing protocols. "Dead nodes" refer to the number of nodes that reported

48



58 -
&0

48

38 -

0 0

38

0 
G

8S

- 8 18 28 38 48 58

Node ID
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duty cycle, Route and 60 sec. data rate. Circle size is proportional to the number of

times a given node routed data via a given parent.
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Chapter 5

Overall Performance

In this chapter, this thesis compares the performance results from S-MAC and B-MAC

to further study the source of many of the differences that we observed. Table 5-1 and

Figures 5-1 and 5-2 summarize our results.

In the low-contention scenario with a data rate of 1 packet per minute (Figure 5-2),

S-MAC with Route clearly outperforms all the other combinations of MAC and routing

protocols. S-MAC at 10% duty cycle with Route reaches a throughput nearly equivalent

to S-MAC at 90% duty cycle and much higher than B-MAC in any configuration.

In the high data rate scenario (Figure 5-1), the best configuration was B-MAC in

always-on mode with MINTRoute.
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POWER MANAGEMENT

Enabled

0

Disabled

Table 5-1: Best protocol combinations matrix with respective average throughput.

52

MINTRoute MINTRoute

B-MAC B-MAC

37% 56%

Route MINTRoute
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Throughput

O B-MAC Always-On
* S-MAC 90% duty
* B-MAC LPL 1 OOms
M S-MAC 10% duty

60% 70% 80% 90% 100%

Figure 5-1: Average throughput comparison between S-MAC and B-MAC using

different routing protocols and energy-management scheme and high data rate (10

sec).
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Figure 5-2: Average throughput comparison between S-MAC and B-MAC using

different routing protocols and energy-management scheme and low data rate (60

sec).
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5.1 Power Management

Looking at the results for low-power configurations at low data rate in Figure 5-2 and

Figure 5-4, S-MAC with an appropriately tuned network stack clearly outperforms B-

MAC. However, at high-rate, no configuration using a power management scheme was

able to exceed a 50% throughput (even with retransmissions), making all the studied

protocols inappropriate for the majority of real-life applications.

Figure 5-4 shows the CDF of the throughput for the experiments at 60 sec. data rate

with power management enabled. Notice that the curve corresponding to S-MAC with

Route is much more convex than the others, suggesting that a large fraction of nodes is

able to achieve relatively high throughputs, whereas other approaches performed quite

poorly in this setting.
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Figure 5-3: CDF of throughput at high data rate (10 sec) using Low Power

Listening with B-MAC or 10% duty cycle with S-MAC.
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Figure 5-4: CDF of throughput using Low Power Listening with B-MAC or 10%

duty cycle with S-MAC at low data rate (60 sec).
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5.2 Inter-arrival time of send requests

The application layer strongly influences the performance of the entire network. We

varied the pattern of send requests across different nodes and studied how this variation

impacts the performance of both B-MAC and S-MAC. In the standard case, nodes in

Surge transmit data at the beginning of every time period with no randomization; since

nodes begin running at about the same time, this leads many send requests occurring at

the same time across many nodes (Figure 5-6). To study the effect of eliminating this

bursty behavior, we forced nodes to be out of phase by having them delay by a time

proportional to their node ID (Figure 5-7). Using B-MAC, the average throughput

increased from 49% to 93% transmitting at a rate of 60 sec. per packet and from 56% to

91% transmitting at a rate of 10 sec. per packet (Figure 5-5). With S-MAC, we see no

benefits from using this technique, since S-MAC already spreads results in time (as

shown in Figure 4-7).
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Figure 5-5: Average throughput per node. B-MAC/MINTRoute combination at

data rate of 10 sec data rate with and without application-level delays between

sending at different nodes ("spreading").
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sec data rate having the application performing shifted transmissions based on the

node ID.

61



5.3 Scaling issues

Figure 5-8 shows the performance of S-MAC and B-MAC with networks of different

sizes. From these experiments, it is clear that B-MAC does not scale as well as S-MAC

since the end-to-end average throughput decreases as we increase the number of

transmitting nodes in the network. Using B-MAC Always-on and MINTRoute and a

data rate of 60 seconds per packet, we measured an average throughput of 78% when we

had only 15 nodes operational and of 49% when we had 46 nodes operational. On the

other hand, because S-MAC partitions the network into different schedules and spreads

sending over time, it is able to scale much better - in fact, we did not see any

performance degradation as we increased the network size using 90% duty cycle. With

S-MAC we noticed degradation of performance only when using 10% duty cycle and

more than 15 nodes in the network. We believe this effect is due to the fact that the

offered load is approaching the channel capacity.

62



5 15

I
I

100.0%-

90.0% -

80.0% -

70.0% -

60.0% -

50.0% -

40.0% -

30.0% -

20.0% -

10.0% -

0.0%

30 46
Number of Active Nodes
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Chapter 6

Discussion

Here this thesis briefly relates some observations that are clear from our performance

analysis of the state of networking in TinyOS:

- Some power management schemes (and MAC layers) prohibit snooping on non-

local radio traffic while some applications and routing layers rely on snooping for

proper functioning. This is a fundamental issue that limits the ability to intermix

different layer implementations. We discuss this issue in Section 6.1 in more

details.

" Tuning power management settings (e.g., LPL preamble length and S-MAC sleep

percentage) as well as other constants (e.g., link quality thresholds) is very hard for

application designers, and making appropriate choices can dramatically affect

application performance. For example, we saw that large, high-rate, power-managed

networks with default power management settings in TinyOS perform poorly with

any combination of MAC/routing layer, while small networks can perform quite well

with default power management settings. Even when interfaces for tuning
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parameters are provided (as in B-MAC), it is often unclear how adjusting these

settings will affect network performance.

- Application workload and type of traffic dramatically affect network throughput.

For example, we saw how introducing delays at the application can increase network

average throughput in B-MAC from 50% to 90%, but that such changes have little

effect on S-MAC. Such hidden dependencies make it very difficult for application

designers to switch from one network stack to another and can be quite frustrating

when deploying an application.

- No MAC/routing combination wins in every possible situation. The choice of MAC

layer, in particular, can dramatically affect the effective channel utilization of

applications in unexpected ways.

" Aside from issues where MINTRoute and S-MAC's power management scheme

interacted very badly, we observed surprisingly little sensitivity to routing protocol

in any of our experiments. Switching from Route to MINTRoute increases overall

throughput by about 5% (u=3.1%) (excluding the S-MAC at 10% duty-cycle case).

In contrast, choosing the appropriate MAC for a given workload affects the overall

throughput by about 16% on average.

" Link-level retransmissions do not always help and sometimes they hurt end-to-end

throughput by increasing overall network contention. We discuss this issue in more

detail in Section 6.2.
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" Some protocols do not scale properly when run on larger networks. For example, B-

MAC's performance with 46 transmitting nodes is 30% lower than with only 15

transmitting nodes. This effect is much less pronounced with S-MAC.

- When an energy-saving scheme is used, the literature often assumes that the root

node will not follow the energy-saving scheme and will remain always on [17].

Although this assumption is probably valid in many real-life scenarios [20], from our

experiments we observed that leaving the root node always on does not make any

statistically-significant difference as far as the overall throughput of the network is

concerned.

6.1 The idle listening vs. snooping trade-off

Our experiments suggest that there is a fundamental tradeoff between reducing idle-

listening and utilizing overhearing in sensor networks.

There appear to be two primary uses for overhearing: in in-network processing, with

applications such as TinyDB [9] or monitoring diffusion phenomena [11], and in

network protocols, such as MINTRoute, that use it to collect statistics about network

performance. In the former case, overheard messages are used to improve performance

but are not necessary for correctness; in the latter case, as in MINTRoute, overhearing is

necessary for acceptable network performance. In cases when the ability to overhear is

impaired (as when S-MAC shuts off the radio channel), very bad behavior can result.

In the literature there are several examples of successful link-quality estimation

techniques that do not involve overhearing of unicast packets addressed to other nodes

[15, 21, 22]. Therefore, we believe that link-quality estimation can be performed without
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the need for overhearing, which suggests that building routing protocols that depend on

it is probably a bad idea (since any power conscious application is likely to want to turn

off the radio at least some of the time).

6.2 Link-level retransmissions

Several proposals have claimed that link-level retransmissions substantially increase

reliability of wireless sensor networks [13, 14, 17].

Our results show that this is not always the case. Link-level retransmissions present a

trade-off between increasing the probability of end-to-end transmission success and

decreasing overall medium-contention. From our results, we noticed that if the network

is not congested, link-level retransmissions tend to benefit the overall end-to-end

throughput. However, in cases where the network is already congested, link-level

retransmissions actually decrease overall throughput, as illustrated in Figure 6-1.

This figure illustrates that at high duty cycles when medium-contention is low, link-

level retransmissions improve throughput; on the other hand, at low duty cycle when

medium-contention is high, link-level retransmissions decrease performance.

These observations suggest that network protocols need some facility to determine

whether losses are due to contention or simply transient external interference.
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Figure 6-1: Throughput CDF using S-MAC and varying the maximum number of

link-level retransmissions and the data rate.
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6.3 Cross-layering

Others have noted the porosity of network layers and the extent of cross-layering

optimization in sensor networks [10]. We observed this as well; for example, different

components of the routing layer choose to implement different parts of link-layer

retransmissions in different layers. In the case of B-MAC, for example, the application

implements duplicate suppression, the network layer implements retransmissions, and

the MAC layer implements acknowledgements. This makes the job of application

designers very difficult. Our experience suggests that this cross-layering is a source of

incompatibility among protocols, since, as with the routing and link layers in B-MAC, it

tends to create coupled sets of layers that depend on specific, non-standard cross-layer

APIs. Though this coupling may help increase performance of a single application or

network stack in the short-term, careless cross-layering limits the ability of protocol

designers to innovate at different layers and will ultimately make developing solid

implementations of sensor network protocols very hard. A pressing need in the sensor

network community is to converge on standard APIs and agree to abide by them.

6.4 Towards an efficiency-oriented architecture

The quest for energy-efficiency will clearly be among the principal drivers for the

success of any architecture for sensor networks. Furthermore, since energy-efficiency

was never a goal or a design constraint on the Internet [26], it is not clear that the strict

layering that characterizes the Internet architecture fits the needs of sensor networks.

Because most sensor network deployments are homogeneous in terms of goals and

objectives [10], sensor network designers are able to trade flexibility in terms of
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applications and types of traffic for energy-efficiency. Sensor networks do not need to

be able to carry every type of traffic over the same network stack or using the same

forwarding algorithm. Sensor networks designers can restrict the possible applications to

better tailor a particular implementation and achieve a greater level of optimization and

energy-efficiency. For example, the nodes of a network deployed in Central Ecuador to

perform volcanic eruption monitoring do not have to be necessarily interoperable with

the nodes deployed on an oil tanker to measure vibrations in the engine. Therefore, no

common protocol (the so-called "narrow waist" of the Internet architecture) is required.

Every protocol can be changed in order to best fit the application requirements.

Our experiments clearly show that approaches like S-MAC that try to apply strict

layering to sensor networks do not achieve particularly good results in terms of

throughput or energy-efficiency. For example, like the IP layer in the Internet, S-MAC

was designed to be agnostic to the protocols running above it. However, some routing

protocols perform poorly using S-MAC because they conflict with its attempts to

provide link-level retransmissions and power scheduling.

Every node in a sensor network tends to be, at the same time, a source of packets and

a router for other nodes' packets. Furthermore, it is often the case that applications want

all of the nodes in the network to perform a certain level of in-network processing to

avoid wasting energy forwarding packets that can be combined or filtered in-network.

Exposing every packet to the application layer violates some of the layering principles

that are fundamental to the Internet architecture [27]. The routers in a sensor network

must be application-aware in order to be more efficient in their routing decisions.

However, being application-aware does not mean violating the end-to-end argument or
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developing software that is not based on modular and interchangeable components.

Saltzer et al. [26] describe how performance requirements may require moving some

functions into the communication stack.
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Figure 6-3: Trade-off energy-efficiency versus flexibility of running multiple
applications and types of traffic on the same network implementation.

So far the approach of the research community has been to increase energy-

efficiency and manage complexity by creating a layered communication stack with

additional interconnections between layers. As we described in Section 6.3, this

approach of using cross-layering has not been able to create the desired modular and

interchangeable implementations because we lack a standardized API for the various
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layers. However, some recent work has been done in this direction, describing new

layered architectures with the goals of sensor networks in mind [28].

Moreover, other researchers have proposed non-layered abstractions, such as the

neighborhood [29, 30] or the protocol heap [20]. The neighborhood is clearly an

important concept in wireless ad-hoc networks and many layered protocols are based on

it. However, no working implementation is able to prove that the neighborhood

abstraction can capture all the communication tasks present in a network stack or that

that neighborhoods are sufficient to supplant layering. Moreover, some of the proposed

abstractions [29] are not designed with power-efficiency in mind, leaving the application

running on top the neighborhood abstraction with no control over communication

resources.

By proposing a non-hierarchical and highly interconnected abstraction called a

"role", Braden et al. solve some of the limitations in terms of flexibility and efficiency

that layering presents [20]. The limited services and the homogeneity of sensor networks

might be easily represented using this highly interconnected "role" abstraction that

might allow achieving the energy-efficiency required in sensor networks operations.

However, it is not clear how much overhead and complexity the "role" abstraction might

generate compared to a layered architecture because of the variable size of the heap-

based header.

6.4.1 Recommendations

Without ignoring innovative and promising abstractions such as the neighborhood and

the role, the sensor network community should improve the current cross-layered

architecture as embodied by the current TinyOS radio stack [17]. We believe that this
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approach has the most promise for the development of a usable and working

implementation in the short term. By establishing a set of standardized interfaces

between the various layers and agreeing on the functions that every layer should

perform, the developers will be able to overcome the current interoperability drawbacks

of the cross-layered architecture. At the same time, the architects should go beyond the

standard Internet hour-glass architecture acknowledging the following peculiarities of

sensor networks:

- Full interoperability across all applications is not a requirement for sensor

networks. Additional efficiency might be gained by allowing the substitution of

every layer in the network stack (no "narrow waist").

- The rapid changes happening in hardware development require fast software

development based on code reuse and modular design. For this reason,

standardized and agreed-upon interfaces between layers are required.

- In-network processing is an important means to achieve energy-efficiency;

therefore nodes in a sensor network need to perform application-aware intelligent

forwarding.

Hence, we advocate a layered but highly interconnected architecture for sensor

networks, with no common layer across all the implementations (no "narrow waist") but

with standardized interfaces that allow interchanging protocols to best suite the

application-specific requirements. Moreover, a sensor network won't be a "stupid"

network with only "smart" hosts. Every node will perform intelligent application-aware

routing to minimize energy and bandwidth waste.
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Chapter 7

Conclusion

By studying how different combinations of MAC, routing, and power management

schemes interact with each other under several different application workloads, this

thesis has illustrated several issues with the current state of protocol implementations in

TinyOS. First, and somewhat to our surprise, we found that no combination of MAC

and routing protocols dominates all others, and that some combinations of MAC and

routing protocols are particularly incompatible with one another. Second, we observed

that some issues that we thought would dramatically affect performance (routing

protocols, retransmissions) had little effect. Third, we observed (as others have), that

cross-layer optimizations tend to blur lines between layers in sensor networks, and that

this blurring makes the design of modular, interchangeable software components very

difficult. We believe these lessons are an important step towards understanding the

source of performance problems in sensor networks and that they will prove invaluable

in our own and other's future work designing next generation protocol architectures for

sensor networks.
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