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Abstract

Conventional filter circuits suffer from a number of limitations, including performance degra-
dation due to capacitor parasitic inductance and the size and cost of magnetic elements.
Coupled-magnetic filters have been developed that provide increased filter order with a sin-
gle magnetic component, but also suffer from parasitic inductance in the filter shunt path
due to imperfectly-controlled coupling of the magnetics. This document proposes a new
approach to coupled-magnetic filters that overcomes these limitations. Filter sensitivity to
variations in coupling is overcome by adaptively tuning the coupling of the magnetic circuit
with feedback based on the sensed filter output ripple. This active coupling control enables
much greater robustness to manufacturing and environmental variations than is possible in
the conventional coupled-magnetic approach, while preserving its advantages. Moreover,
the proposed technique also adaptively cancels the deleterious effects of capacitor parasitic
inductance, thereby providing much higher filter performance than is achievable in con-
ventional designs. The new technique is experimentally demonstrated in a dc/dc power
converter application and is shown to provide high performance.

Thesis Supervisor: David J. Perreault
Title: Associate Professor of Electrical Engineering and Computer Science

3



4



Acknowledgements

There are many people to whom I am indebted for their help, guidance, support, love, and
inspiration. These are but a few of them. But, thank you, everyone unmentioned, who has
contributed to this work and to furthering my education in one way or another.

First, I would like to thank my thesis supervisor, Prof. David Perreault, for his insight,
support, guidance, and patience over the last two years. I could not have asked for a better
advisor, both as a mentor and a person. Thank you, for all your help and understanding,
and for allowing me the opportunity to complete this work.

Many thanks are owed to my colleague, Tim Neugebauer, for his contribution to chapters 2
and 3, and for his patience and help with getting me started on this work.

Thank you, Juan Rivas, for your help, insight, inspiration, support, and friendship; for
answering my every power electronics question over the last two years. I have learned a lot
from you. Thanks for the dirty jokes and making lab seem like a kindergarten playground.

The students, faculty, and staff of LEES - thanks for making it the best EE lab at MIT and
for providing a nice environment in which to work. Thanks to Prof. Kirtley, my academic
advisor, to Prof. Leeb, a source of engineering inspiration for me since the days of 6.115,
and to Vivian for the myriad things she does (and for the steady supply of candy).

A collective thanks to all my friends, who have helped to keep me sane during my 6 years at
MIT. Thanks for the support and the distractions you have provided. Thanks for listening.

Bill Corbett and Ed Barrett - you have been wonderful mentors and friends. Thanks for
nurturing my non-engineering talents and opening me up to a whole 'nother world, as they
say. Thank you, for the Grafton Street Fridays when they were most needed.

Fine makers of Paulaner, I dedicate any typos that may be present in this thesis to you.

Thank you, Dave Pooley, for your friendship, love, and support; for your advise, for always
being there for me in good times and bad, for helping me, and for providing a perspective
on life. You are a wonderful rarity. Thanks also for your LAITJIX help.

Finally, my deepest gratitude is owed to my parents, Elena and Sergei. Without their
unconditional love and support, I would not be where I am today - would not even have
the opportunity. They are an inspiration for me, and their characters are measures by which
I try to live. Thank you, for being the best parents in the world and for the scientific genes
with which you have blessed me.

- 5-



(Co



Contents

1 Introduction 17

1.1 B ackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Objectives and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Adaptive Coupling Control and Parasitic Inductance Cancellation 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Coupled-Magnetic Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Practical Limitations of Conventional Coupled-Magnetics Designs . . . . . . 23

2.4 Adaptive Coupling Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Prototype System 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Prototype Buck Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Output Filter Design Using a Coupled-Magnetic Device with Adaptive In-

ductance Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Buck Converter Output Voltage Regulation . . . . . . . . . . . . . . . . . . 30

4 Adaptive Control Methods 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Stability Analysis of the Control Method . . . . . . . . . . . . . . . . . . . . 39

4.4 Sim ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 Buck Converter State-Space Model . . . . . . . . . . . . . . . . . . . 40

4.4.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 42

-7-



Contents

4.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Controller Implementation 45

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Control Board Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Control Board Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Experimental Results 49

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Experimental Results for Adaptive Cancellation . . . . . . . . . . . . . . . . 49

6.2.1 Comparison of Output Ripple Using the Adaptive Coupled-Magnetic
Filter With Active Tuning Disabled and Enabled . . . . . . . . . . . 49

6.2.2 Transient Performance of the Adaptive Cancellation . . . . . . . . . 51

6.2.3 Load Transient Performance of the Buck Converter Having an Adap-
tive Coupled-Magnetic Output Filter . . . . . . . . . . . . . . . . . . 55

6.3 Comparison with Conventional Filter Designs . . . . . . . . . . . . . . . . . 57

6.3.1 Conventional Filter Designs . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.2 Performance of Filter Designs Across Varying Load Conditions . . . 62

7 Summary and Conclusions 65

7.1 Thesis Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 C onclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A Prototype Converter 67

A .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 Buck Converter Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.3 Block Diagram Model of the Buck Converter Control Circuitry . . . . . . . 72

A.4 MATLAB Model for the Buck Converter Control Circuitry . . . . . . . . . . 73

B SIMULINK Simulation 77

B .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

-8-



Contents

B.2 SIMULINK Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C Adaptive Inductance Cancellation Control Board 83

C .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C.2 Eagle Layout Editor Schematic . . . . . . . . . . . . . . . . . . . . . . . . . 83

C.3 PCB Layer Masks for the Adaptive Inductance Cancellation Control Board 88

Bibliography 95

-9-



10



List of Figures

1.1 Typical capacitor high-frequency model, (a), the impedance magnitude plot
for the high-frequency capacitor model, (b), and the measured impedance
magnitude for an X-type (safety) capacitor (Beyschlag Centrallab 2222 388
24 224, 0.22 1pF, 275 Vac), (c) . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Example of a multi-section filter. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Coupled magnetic windings in a center-tapped, (a), and end-tapped, (b),
connection. ......... .................................... 21

2.2 Equivalent circuit "T-model" for the magnetically-coupled windings of Fig. 2.1. 22

2.3 Structural diagram of a cross-field reactor. A single magnetic core is wound

with two orthogonal windings, a toroidal coil and annular coil, which are not

m agnetically coupled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Effects of varying control current on the cross-field reactor inductance. . . . 25

3.1 Circuit schematic of the buck converter and output filter. . . . . . . . . . . 27

3.2 Model of buck converter and coupled magnetic filter. . . . . . . . . . . . . . 28

3.3 Variable inductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Open-loop frequency response of the buck converter inner control loop prior

to the addition of the large electrolytic capacitor. . . . . . . . . . . . . . . . 31

3.5 Open-loop frequency response of the buck converter outer control loop prior

to the addition of the large electrolytic capacitor. . . . . . . . . . . . . . . . 32

3.6 Closed-Loop frequency response of the buck converter control loop prior to

the addition of the large electrolytic capacitor. . . . . . . . . . . . . . . . . 33

3.7 Open-loop frequency response of the buck converter inner control loop fol-

lowing the addition of the electrolytic capacitor damping leg. . . . . . . . . 34

3.8 Open-loop frequency response of the buck converter outer control loop fol-

lowing the addition of the electrolytic capacitor damping leg. . . . . . . . . 35

3.9 Closed-Loop frequency response of the buck converter control loop following

the addition of the electrolytic capacitor damping leg. . . . . . . . . . . . . 36

4.1 Simplified closed-loop adaptive inductance tuning model. . . . . . . . . . . 37

- 11 -



List of Figures

4.2 Scaled VRe as a function of the variable inductor control current for the
prototype system (as measured at the output of AD637 of Fig. 5.2) and its

4 th order polynom ial fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Simulink model of the proposed control control strategy. . . . . . . . . . . . 40

4.4 Simplified time-averaged model of the buck converter used to obtain the
state-space model of Eq. 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Simulated transient performance of the converter output ripple as active
tuning is enabled at time t = 0.1 seconds. . . . . . . . . . . . . . . . . . . . 43

4.6 Simulated transient performance of the RMS of the converter output ripple,
VRMS as active tuning is enabled at time t = 0.1 seconds. . . . . . . . . . 44ripple'1

4.7 Simulated transient performance of the variable inductor control current as
active tuning is enabled at time t = 0.1 seconds. . . . . . . . . . . . . . . . 44

5.1 Block diagram of the adaptive inductance cancellation control circuit. . . . 46

5.2 Schematic of the control board circuitry. . . . . . . . . . . . . . . . . . . . . 48

6.1 Measured converter output ripple using the adaptive coupled-magnetic fil-
ter with adaptive inductance cancellation disabled. Note the scale of 5
m V /division. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Measured converter output ripple using the adaptive coupled-magnetic filter
with adaptive inductance cancellation enabled. Note the scale of 5 mV/division. 50

6.3 Measured spectrum of the converter output ripple using the adaptive coupled-
magnetic filter with active tuning disabled. . . . . . . . . . . . . . . . . . . 51

6.4 Measured spectrum of the converter output ripple using the adaptive coupled-
magnetic filter with active tuning enabled. . . . . . . . . . . . . . . . . . . . 52

6.5 Measured transient response of the converter output ripple as active tuning
is enabled. The measured signal is highly undersampled. . . . . . . . . . . . 53

6.6 Measured transient response of the converter output ripple RMS as active
tuning is enabled. This signal was measured at the output of the AD637
RMS-DC converter of the control board of Chapter 5 and scaled by the gain
of the control board high-pass filter stage to reflect the VRP e seen at the
converter output........ .................................. 53

6.7 Measured transient response of the converter output ripple RMS as active
tuning is enabled. This signal was measured at the output of the AD637
RMS-DC converter of the control board of Chapter 5. . . . . . . . . . . . . 54

6.8 Measured transient response of the variable inductor control current as active
tuning is enabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

- 12 -



List of Figures

6.9 Measured converter output during a 35 - 70 % of maximum power load
transient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.10 Measured converter output ripple during a 35 - 70 % of maximum power
load transient. The ripple is measured by AC coupling of the output voltage
measurement. The measured signal is highly undersampled. . . . . . . . . . 56

6.11 Circuit schematic of the buck converter and output filter. . . . . . . . . . . 57

6.12 Model of buck converter and coupled magnetic filter. . . . . . . . . . . . . . 57

6.13 Measured converter output ripple using a conventional inductor filter. Note
the scale of 10 mV/division. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.14 Measured spectrum of the converter output ripple using a conventional in-
ductor filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.15 Measured converter output using a "zero-ripple" filter. Note the scale of 10
m V /division. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.16 Measured spectrum of the converter output ripple using a "zero-ripple" filter. 61

6.17 Comparison of measured peak-to-peak converter output ripple vs. load cur-
rent for four output filter designs: the adaptive coupled-magnetic with active
tuning enabled, with tuning disabled, the "zero-ripple" filter, and a conven-
tional inductor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.18 Comparison of measured converter output RMS vs. load current for four out-
put filter designs: the adaptive coupled-magnetic with active tuning enabled,
with tuning disabled, the "zero-ripple" filter, and a conventional inductor. . 63

A.1 Protel schematic of the prototype buck converter. . . . . . . . . . . . . . . . 68

A.2 Block diagram for the buck converter controller model. . . . . . . . . . . . . 72

B.1 SIMULINK model of the adaptive inductance cancellation control. . . . . . . 79

B.2 State-Space model for the buck converter, represented by the Icontrol to Vripple
block in Fig. B .1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.3 SIMULINK block diagram used to generate the inductance block of Fig. B.2. 81

B.4 SIMULINK block diagram that generates the RMS function used to obtain

riple from Vrippie, represented by the RMS block of Fig. B.1. . . . . . . . 81

C.1 Eagle schematic of the adaptive inductance cancellation control circuitry. . 84

C.2 Adaptive inductance cancellation controller PCB silkscreen layer. . . . . . . 89

C.3 Adaptive inductance cancellation controller PCB component side layer. . . 90

- 13 -



List of Figures

C.4 Adaptive inductance cancellation controller PCB ground layer. By conven-
tion, the ground layer is shown inverted, with the conductor depicted in white. 91

C.5 Adaptive inductance cancellation controller PCB layer 3 (shown inverted,
with the conductor depicted in white). . . . . . . . . . . . . . . . . . . . . . 92

C.6 Adaptive inductance cancellation controller PCB solder side layer. . . . . . 93

- 14 -



List of Tables

3.1 Device parameters for the buck converter of Fig. 3.2 (magnetics are detailed
in Section 3.3 and Table 3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Design parameters for the coupled-magnetic device. Inductances LA, LB, and
LC correspond to those in Fig. 3.2. . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Poles and zeros of the closed-loop buck converter control transfer function. . 30

4.1 Control model simulation parameters. . . . . . . . . . . . . . . . . . . . . . 42

6.1 Device parameters for the buck converter of Fig. 6.12 (magnetics are detailed
in T able 6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Device parameters for the comparison of the three filter topologies using the
buck converter of Fig. 6.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.1 Bill of materials for the buck converter of Fig. A.1. . . . . . . . . . . . . . . 71

C.1 Bill of materials for the control board of Fig. C.1. . . . . . . . . . . . . . . . 88

- 15 -



16



Chapter 1

Introduction

1.1 Background

Electrical filters are an integral part of most electronic systems, and are particularly im-

portant in power electronics. Control of switching ripple is the primary factor in sizing

the magnetics and filter components that comprise much of the size, mass, and cost of a

power converter. Design techniques that mitigate converter ripple are therefore valuable

for reducing the size of power electronics and the amount of electromagnetic interference

(EMI) that is generated.

The low-pass filters used in power electronics typically employ capacitors as shunt elements

and magnetics, such as inductors, as series-path elements. The attenuation of a filter

stage is determined by the amount of impedance mismatch between the series and shunt

paths. Minimizing shunt-path impedance and maximizing series-path impedance at high

frequencies are thus important design goals. An important limitation of conventional filters

is the effect of filter capacitor parasitic inductance, which increases shunt path impedance

at high frequencies [1-5], illustrated in Figure 1.1 (courtesy of T.C. Neugebauer).

a) b) c) CHI IZI T&B 10 9, 2No

.. .. .. .. .

dB Dj7zj

LESL

RES R .....

S.R.F. Log Frcq I DPER 0 deBM

Figure 1.1: Typical capacitor high-frequency model, (a), the impedance magnitude plot for

the high-frequency capacitor model, (b), and the measured impedance magnitude for an

X-type (safety) capacitor (Beyschlag Centrallab 2222 388 24 224, 0.22 IF, 275 Vac), (c).
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Introduction

Common methods for overcoming the deteriorated filter performance caused by capacitor

parasitic inductance include placing various types of capacitors in parallel to cover different

frequency ranges and increasing the order of the filter network. Both approaches increase

filter size and cost.

The size of magnetic components is also of importance, particularly in multi-section filters,

such as that illustrated in Figure 1.2. One technique that has been explored for reducing

magnetic component count and size is the use of coupled magnetics (e.g. by realizing induc-

tors LA and LB in Fig. 1.2 with a coupled magnetic circuit wound on a single core). Coupled

magnetics have been used with capacitors to achieve "notch" filtering [6-9], as well as so-

called "zero-ripple" filtering [10-14. Despite the name "zero-ripple," it has been shown

that the performance of of these coupled-magnetic filters is equivalent to filters without

magnetically-coupled windings [10, 11]. The advantage of coupled-magnetic filters is that

they enable a high-order filter structure to be realized with a single magnetic component.

However, they suffer from their dependence on very precise coupling within the magnetic

circuit. Any mismatch in this coupling, such as that induced by small material or manufac-

turing variations, temperature changes, or variations in operating point, can dramatically

reduce ripple attenuation. The sensitivity of this approach to magnetic coupling has limited

its value in many applications, despite its other advantages.

LA LB

C C2

Figure 1.2: Example of a multi-section filter.

1.2 Objectives and Motivation

The work of this thesis introduces a new approach to coupled-magnetic filters that overcomes

the limitations described above. Filter sensitivity to variations in coupling is overcome by

adaptively tuning the coupling of the magnetic circuit with feedback based on the sensed

filter output ripple. The major objectives of the work presented herein include:

" Design and implementation of an adaptive coupled-magnetic filter.

" Development of a control strategy for the proposed adaptive inductance cancellation

method.

- 18 -



1.3 Thesis Organization

* Implementation of the control method and its experimental validation.

As will be shown, the proposed active coupling control enables much greater robustness to

manufacturing and environmental variations than are possible in the conventional coupled-

magnetic approach, while preserving its advantages. Moreover, the proposed technique also

adaptively cancels the deleterious effects of capacitor parasitic inductance, thereby providing

much higher filter performance than is achievable in conventional designs.

1.3 Thesis Organization

This document is organized as follows: Chapter 2 describes the principles underlying the

proposed filters, including active coupling control and its use in capacitor-path inductance

cancellation. Chapter 3 presents the prototype coupled-magnetic filter in a dc/dc converter

application. The adaptive control technique used to maintain high performance across

operating conditions and simulation of the control methods are described in Chapter 4.

The implementation of the adaptive inductance cancellation control circuitry is detailed in

Chapter 5. Chapter 6 presents the experimental results illustrating the high performance

of the cancellation approach and the comparison of the adaptive coupled-magnetic filter to

conventional filter designs. Finally, Chapter 7 summarizes and concludes the work presented

herein.

- 19 -
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Chapter 2

Adaptive Coupling Control and Parasitic

Inductance Cancellation

2.1 Introduction

This chapter presents the principles of active coupling control and adaptive inductance

cancellation. Conventional coupled-magnetic filters are discussed in Section 2.2 and the

limitations of using such filters are described in Section 2.3. An overview of the principles

behind active coupling control and the proposed adaptive inductance cancellation approach

is presented in Section 2.4.

2.2 Coupled-Magnetic Filters

Coupled magnetic filters can be built using two windings on a single core. Two possible

implementations of such a coupled magnetic device are depicted in Figure 2.1. In both

configurations, each winding links flux with itself and mutually with the other winding.

The coupling is designed to yield the desired performance.

a) b) - * -

(M i-

(22
12

Figure 2.1: Coupled magnetic windings in a center-tapped, (a), and end-tapped, (b), con-
nection.
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Adaptive Coupling Control and Parasitic Inductance Cancellation

Electromagnetic analysis of

following description [2,3]:

[
the magnetic circuit of Fig. 2.1b, for example, leads to the

N+
R11

N1-N2
RM

2]

LM

N2

RM
Nj-N2

RM

+N2RM
N 2

R22

L:

L22 [
I[ii]

i2J

i

i2J

(2.1)

in which A, and A2 are flux linkages (the time integrals of individual coil voltage), il and

i 2 are individual coil currents, N and N2 are the number of turns in each coil, and R 11 ,

R 22 , and RM are the self and mutual magnetic reluctances. An equivalent circuit model

can be obtained from the two-port description, as illustrated in Figure 2.2. Details of the

mathematical analysis used to obtain the model may be found in [5].

Traditionally, coupled magnetic filters of this type are designed to make inductance LC of

Figure 2.2 ideally zero. The coupled magnetic element can then provide two inductances

in a multi-section filter such as that of Fig. 1.2, without contributing inductance to the

shunt path. However, zeroing of the shunt-path inductance, LC, requires very precisely-

controlled coupling between the two windings, which is difficult to achieve in practice.

Consequently, such circuits are sometimes designed to make the effective inductance, LC,
somewhat negative and an external trimming inductor is used to try to null the total shunt-

path inductance [12,13]. Even with such design tricks, inductance variations with operating

conditions and part-to-part variations make it impossible to completely null the shunt-path

inductance.

LA LB

L C

End-Tapped Center-Tapped
LA LM L11 + LM
LB L 2 2 - Lm L 2 2 + LM

LC L11 - Lm -LM

Figure 2.2: Equivalent circuit "T-model" for the magnetically-coupled windings of Fig. 2.1.
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2.3 Practical Limitations of Conventional Coupled-Magnetics Designs

To fully appreciate the notion of trimming the shunt-path inductance, it is useful to revisit

the magnetic circuit model (2.1). Energy conservation considerations dictate the following

condition:

LM < LIIL 22  (2.2)

which states that the mutual inductance between the windings must be less than or equal

to the geometric mean of the two self-inductances. However, the mutual inductance may

still be larger than one of the self-inductances, in which case one branch of the T-network

(the LC branch in the context of this document) appears to have a negative inductance.

It must be stressed that this does not violate any physical laws since the inductance seen

across any two terminals of the T-model is clearly positive. Thus, when LC of Fig. 2.2 is

made slightly negative, the trimming inductor can be used to bring the overall shunt-path

inductance to zero.

2.3 Practical Limitations of Conventional Coupled-Magnetics

Designs

Unfortunately, the coupled-magnetic strategy described in the previous section is not ro-

bust, as it is very sensitive to changes in operating conditions, such as small material or

manufacturing variations, temperature changes, and flux levels. Furthermore, even in the

ideal case of precise coupling, an additional limitation to high frequency filter performance

is the parasitic inductance of the shunt-path capacitor. While the effects of parasitic induc-

tance are significant, the value of this inductance is quite small - approximately 10 - 50 nH

for typical capacitors used in power electronics applications [2, 3]. Generally, these values

are well below the practical limits of trimming the shunt-path inductance.

2.4 Adaptive Coupling Control

This section presents the use of adaptive magnetic coupling control to maintain low shunt-

path inductance under all operating conditions. Feedback control is used to maintain cou-

pling precisely at the point that optimizes attenuation performance, thereby overcoming

the limitations of conventional designs. In principle, coupling control may be achieved by

adding an auxiliary winding to the coupled magnetic device, which would serve to drive

part of the magnetic core a controlled amount into saturation, thereby controlling cou-
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pling [15-18]. However, for simplicity the experimental work here uses a small separate

electronically-controlled trimming inductor in the shunt path of the filter. Direct exten-

sions to a fully-integrated implementation realized on a single core are clearly possible.

This electronically-controlled trimming inductor is realized as a cross-field reactor consisting

of two magnetically-orthogonal sets of windings on the same core (Fig. 2.3). When the

windings are positioned in this way, there is no mutual magnetic coupling between them.

One of the windings carries the shunt-path ripple current, while the other carries a controlled

DC current. The control current is used to drive the magnetic core partly into saturation,
thereby changing the permeability of the core. Effectively, this changes the inductance seen

in the signal path, and the device acts as an electronically-controlled variable inductor.

The measured inductance vs. control current of the cross-field reactor used in the prototype

system (described in Chapters 3 and 5) is shown in Fig. 2.4.

The cross-field reactor then allows control of the overall shunt-path inductance of the filter.
In this way, it is possible to not only compensate for coupling mismatch of the coupled

magnetic device, but to also cancel the parasitic inductance of the capacitor. Moreover,
by measuring output ripple performance and placing the coupling under closed-loop con-

trol, attenuation can be maximized under all operating conditions. The control strategy

for the proposed active tuning approach is detailed in Chapter 4. Experimental results
demonstrating the high performance of this approach are presented in Chapter 6.

Annular Coil

Toroidal Coil

Figure 2.3: Structural diagram of a cross-field reactor. A single magnetic core is wound
with two orthogonal windings, a toroidal coil and annular coil, which are not magnetically
coupled.
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Variable Inductance vs. Yntrol
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Figure 2.4: Effects of varying control current on the cross-field reactor inductance.
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Chapter 3

Prototype System

3.1 Introduction

The control strategy proposed in Chapter 4 is presented in the context of a switching dc/dc

power converter. A buck converter was chosen to validate the proposed control strategy.

This chapter presents the prototype buck converter having a coupled-magnetic output fil-

ter, as illustrated in Figures 3.1 and 3.2 and Tables 3.1 and 3.2. Section 3.2 describes

the prototype buck converter, Section 3.3 presents the design guidelines for the adaptive

coupled-magnetic filter, and Section 3.4 describes the buck converter voltage regulation.

3.2 Prototype Buck Converter

The buck converter operates under averaged current-mode control at a switching frequency

of 400 kHz, and is designed to regulate the output at 14 volts (V) from a nominal input of

42 V. This conversion function is relevant to some emerging automotive applications, for

example [19]. The converter is designed to support a load range of 16 watts (W) to 65 W.

The complete buck converter schematic is presented in Appendix A.

In addition to the coupled-magnetic element (described in detail in Section 3.3), the output

filter comprises capacitors C1 and C2 . C1 is implemented as a 10 pF high-ripple, low-

Q

42 V +D

D NDC fto load

L NACI

Lvar C2

Ci

Figure 3.1: Circuit schematic of the buck converter and output filter.

- 27 -



Prototype System

LA LB
\/.f- . to load

Q1 Lc

42 V + D LT a 2

T~ Lva

Figure 3.2: Model of buck converter and coupled magnetic filter.

inductance film capacitor (ITW Paktron 106K050CS4). C2 is implemented as a parallel

combination of a 20 pF polypropylene capacitor (Cornell-Dubilier 935C1W20K), a 2200 pF
electrolytic capacitor (50V, RESR = 0.040Q), and a 0.1 pF ceramic capacitor. The large

electrolytic capacitor appears resistive at frequencies of several kHz, and it was added to

the output filter to provide additional damping to the inner and outer control loops at

these frequencies. The capacitance comprises the electrolytic capacitor DC model, while its

parasitic resistance, RESR comprises the AC model (Appendix A, Section A.4). Further-

more, the capacitor also helps to provide additional holdup capacitance at the output. The

non-magnetic output filter components are summarized in Table 3.1.

Additionally, a large 27 mF electrolytic capacitor was placed in parallel with the load

(physically away from the converter output). This was done to represent the behavior of

the battery that would be present in an automobile, for example, or the hold up capacitor

that appears in many applications. Because this capacitor is in parallel with the remote
load, away from the actual converter output, it does not have a significant impact on the

converter output switching ripple or serve to attenuate EMI. The capacitor does, however,
provide low-frequency voltage holdup during load transients.

3.3 Output Filter Design Using a Coupled-Magnetic Device
with Adaptive Inductance Cancellation

The end-tapped configuration of the coupled-magnetic device (Fig. 2.1b) was chosen and
implemented with the two windings separated on the bobbin in such a way as to minimize
the capacitance across them. One winding was wound on the top half, while the other was
wound on the bottom half of the bobbin. An RM1O/I A315 3F3 core was used to construct
the coupled-magnetic device. A turns ratio of 5:4 (NDC : NAC of Fig. 3.1) was used. For the
DC winding, AWG 12 wire was used, and for the AC winding, Litz 175/40 wire was used.
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3.3 Output Filter Design Using a Coupled-Magnetic Device with Adaptive

Inductance Cancellation

C1  10 pF ITW Paktron 106K050CS4
C2  20 pF Cornell-Dubilier 935C1W20K
(parallel combination) 100V, Polypropylene

2200 piF Electrolytic, 50 V

(RESR = 0.040Q)
0.1 pF Ceramic

Q IRF1010E N-Channel Power Mosfet

D MUR302OWT Common Cathode Diode

Table 3.1: Device parameters for the buck converter of Fig. 3.2 (magnetics are detailed in
Section 3.3 and Table 3.2).

The resulting coupled-magnetic device parameters are listed in Table 3.2. Experimental

measurements indicate that the windings appear inductive for frequencies up to -11 MHz.

The variable inductor was designed such that its tunable range captured the inductance to be

cancelled, namely the sum of the shunt-path inductance of the coupled-magnetic device and

the parasitic inductance of the shunt-path capacitor. Construction of the variable inductor

was as follows: two turns of the coupled-magnetic AC winding were wound conventionally

on the bobbin of a P14/8 A315 3F3 core. The smallest size core within the practical design

guidelines was desired. Thus, the smallest core that was able to handle the maximum ripple

current and provide the proper tunable inductance range was chosen.

The control winding was constructed using 77 turns of AWG 28 wire wound through the

center-post hole of the core (orthogonally to the inductance winding), as illustrated in

Fig. 3.3. In order to reduce the control current required to partially saturate the variable

inductor core, a high number of turns for the control winding was used. In principle, the

geometry of the core is the main constraint for the maximum number of windings that can

be added.

Magnetics Tuned Coupled Magnetic Filter

Construction RM10/I, A315, 3F3 Core
5:4 Turns

LA 6.13 /H
LB 1.67 pH

LC - 0.82 pH

Table 3.2: Design parameters for the coupled-magnetic device. Inductances LA, LB, and
LC correspond to those in Fig. 3.2.
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variable condrng
inductance
winding

Figure 3.3: Variable inductor.

3.4 Buck Converter Output Voltage Regulation

The buck converter is designed to regulate the output voltage at 14 V from a nominal input

of 42 V. Averaged current-mode control is used to achieve the desired regulation. The

following figures illustrate the dynamics of the buck converter control circuitry. The full

mathematical assessment of stability is presented in Appendix A. Figures 3.4 - 3.6 illustrate

the control behavior prior to the addition of the large electrolytic capacitor damping leg.

On the contrast, Figures 3.7 and 3.8 present the open loop dynamics of the converter inner

and outer control loops following the addition of the capacitor. It can be seen from the

open-loop Bode plots that both loops are now much better damped. The inner control loop

has a phase margin greater than 60 degrees and a gain margin greater than 20 dB, while

the outer loop has a gain margin greater than 40 dB and a phase margin greater than 90

degrees. Thus, as can be seen in Fig. 3.9, the overall closed-loop response is well-behaved.

The closed-loop poles and zeros of the buck converter control transfer function are shown

in Table 3.3. Without the damping provided by the electrolytic capacitor, the system was

stable, but small (~20 mV) ringing could typically be observed at the output, indicating

poor damping. The loop transfer functions and the mathematical analysis used to describe

the converter dynamics are presented in Appendix A.

Closed-Loop Poles [Hz] Closed-Loop Zeros [Hz]

- 8.55 - 8.54

- 71.21 - 2.12 1 i0 4

- 7.17 - 103 - 9.41 -104

- 4.47 ± 8.76 - 10 3 j - 4.32 ± 14.88 - 10 5 j
- 2.45 ± 48.55 - 10 3

- 2.09 - 10 4

- 9.40 - 10 4

Table 3.3: Poles and zeros of the closed-loop buck converter control transfer function.
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3.4 Buck Converter Output Voltage Regulation

Open-Loop Frequency Response for the Converter Inner Loop

-r -o ,

L G.M.: 8.85 dB
Freq: 4.89e+004 Hz
Stable loop

__j --- L iI _L_.jLL. _ __ _ _ __ _ _ __ _ _ __ _ _

10 1 10610 10

Frequency (Hz)

Figure 3.4: Open-loop frequency response of the buck converter
the addition of the large electrolytic capacitor.
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Open-Loop Frequency Response for the Converter Outer Loop

1 0 -- 7Jl 7 1 T1 1 - - T r r - 7 7 ' r rr - -7-

( -100-

C -200 -

300 G.M.: 48.3 dB
Freq: 6.06e+003 Hz
Stable loop

-400'

0

D-180--

-C -360K

P.M.: 35.1 deg
Freq: 297 Hz

-540
10 10 10 102 103 10, 10 10 10

Frequency (Hz)

Figure 3.5: Open-loop frequency response of the buck converter outer control loop prior to
the addition of the large electrolytic capacitor.
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3.4 Buck Converter Output Voltage Regulation

Closed-Loop Frequency Response of the Converter Control Loop

106103 104 10

Frequency (Hz)

Figure 3.6: Closed-Loop frequency response of the buck converter control loop prior to the
addition of the large electrolytic capacitor.
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Open-Loop Frequency Response for the Converter Inner Loop

100

50
co

-50

0) -100 .. ...
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Freq: 2.53e+004 Hz
Stable loop

-200

0-
(D -180 ---

P.M.: 63.8 deg
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Frequency (Hz)

Figure 3.7: Open-loop frequency response of the buck converter inner control loop following
the addition of the electrolytic capacitor damping leg.
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3.4 Buck Converter Output Voltage Regulation

Open-Loop Frequency Response for the Converter Outer Loop
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Figure 3.8: Open-loop frequency response of the buck converter outer control loop following
the addition of the electrolytic capacitor damping leg.
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Closed-Loop Frequency Response of the Converter Control Loop

-, , , -
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Figure 3.9: Closed-Loop frequency response of the buck
the addition of the electrolytic capacitor damping leg.
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Chapter .4

Adaptive Control Methods

4.1 Introduction

The proposed adaptive inductance cancellation method relies on feedback control. The

adaptive controller is presented here in the context of the buck converter described in

Chapter 3. Sections 4.2 and 4.3 describe the mathematical control model for the adaptive

tuning approach, while Section 4.4 describes the simulation used to verify the efficacy and

the stability of the approach and presents the simulation results.

4.2 Control Strategy

The proposed design approach uses feedback control based on sensed buck converter output

ripple to maintain good performance. The controller measures the root-mean-square (RMS)

of the converter output ripple voltage (VRp e) and electronically tunes the inductance of

the cross-field reactor to minimize the ripple seen at the filter output. A Lyapunov control

strategy similar to those described in (8,20-22] has been implemented. The block diagram

of Figure 4.1 illustrates the basic control strategy employed.

isin(wt)

f(Icontrol) = VRMS r

icntrl -kf

Figure 4.1: Simplified closed-loop adaptive inductance tuning model.
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The control method is integral in nature. The controller generates a small, exogenous,
low frequency sinusoidal variation in the cross-field reactor control current that controls

the shunt-path inductance. This consequently results in small variations in VRMS as the

shunt-path inductance varies. The controller then correlates the changes in VRMp with the

sinusoidal variation in Icontrol by multiplying the two and integrating the product. When

the average value of the product is negative, Icontrol is below the optimal operating point and

the integral is driven to increase Icontrol. Conversely, when the average value of the product

is positive, Icontrol is above the optimal operating point and the integral of the product

drives Icontrol down. At the optimal operating point, the average value of the integrator

input is ideally zero and the operating point is maintained.

The small sinusoidal signal is added to the negated output of the integrator and the sum

is used as the control current to the variable inductor. This control strategy drives the

DC component of the control current to the minimum of the VRM vs. Icontrol function,

where the integral output holds constant. The control method assumes that the RMS

value of the output ripple as a function of Icontrol is unimodal in the range of interest.

Experimental measurements confirm this assumption for the prototype system described in

Chapter 3 (Fig. 4.2). The close-fitting 4 th order polynomial helps to further demonstrate

the unimodal behavior of the function on the control current range of interest.

VRMSV.V RVSvs.l
1.8 ripple control

1.7 -.e- experimental data

1.6 4 order fit

1.5
1.4
1.3
1.2 -

> 0.9 - - -

2' 0.8--

>0.4
0.6
0.5 -.. -. ..

0 .4 -.. . -.. ... ..

0 .3 - ... -. --. . ... ......

0.2
0.1 -

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Icontrol [A]

Figure 4.2: Scaled VRMS as a function of the variable inductor control current for theripple

prototype system (as measured at the output of AD637 of Fig. 5.2) and its 4 th order
polynomial fit.
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4.3 Stability Analysis of the Control Method

The function of Fig. 4.2 was obtained by manually controlling the value of the cross-field

reactor control current and measuring VRMS A power supply was used to inject theripple, M

desired amount of DC control current into the control windings. VRMp i was measured

using the AD637 RMS-DC converter IC located on the adaptive cancellation controller

board (described fully in Chapter 5). The scaling factor of 148.3 at the switching frequency

reflects the gain of the high-pass filter stage at the input of the AD637 (Fig. 5.2).

4.3 Stability Analysis of the Control Method

The proposed control approach is inherently stable. Consider the local average dynamics [23]

of the system in Fig. 4.1 over an averaging period of the sinusoidal variation:

dzntrit) -k ft(Isin(wT) - f(Isin(WT) + icntrl(T) dT (4.1)
dt T Jt -

Observing the function f(Tcntri(t)) = VR M of Fig. 4.2 and the control function of Eq. 4.1,

it is evident that at the minimum of f, dictri(t) tends to zero. Thus, the minimum of theJ, dt

Vrpe vs. icntri(t) function, 1cntr, is an equilibrium point of the system.

On the region of the state-space that contains the equilibrium point, the requirements for

a Lyapunov function, V(Tcntri(t)), are the following [24]:

1. V must be continuous.

2. V must have a unique minimum at Icntri.

3. The value of V must not increase along any trajectory of icntri(t) on the state-space that

contains IcntrI-

Consider the function f(Tcntri(t)) = Vrip e as the Lyapunov function of the system. Fig-

ure 4.2 confirms that the function meets the first two requirements. To demonstrate that

the third requirement is also satisfied, consider the control strategy of Fig. 4.1 and Eq. 4.1.

Taking the local average output of the integrator as the state variable of interest, it is

observed that the trajectories of Tcntri(t) can only tend toward the minimum, forcing V to

decrease. Therefore, the function f(Tcntri(t)) = VRM of Fig. 4.2 is a Lyapunov function

of the system and icntri is a stable equilibrium point.
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4.4 Simulation

To validate the efficacy of the control strategy, a time domain simulation of the approach

was implemented in Simulink (Mathworks Inc., Cambridge, MA) as shown in Fig. 4.3. The

complete Simulink implementation of the control approach is illustrated in Appendix B. A

simplified average state-space model was developed for the buck converter (described more

fully in Section 4.4.1), and is represented by the Icontrol to Vrippie block. The effects of varying

the control current on the value of the variable inductance were determined empirically

and modeled with a close-fitting 5 th order polynomial (Fig. 2.4). Transfer function blocks

reflecting the dynamics and characteristics of circuit components to be used in the design

of the physical control circuitry (Chapter 5) were derived for the controller. The model was

then used to assess the dynamic performance of the controller.

1210. . control ripple 2

O.5sin(27r. 5001;___
Voltage to Current High-Pass RMS BLOCK IC Saturation
Conversion Gain Stage Gain

Voltage LimitingMutpirGn
Block Mu t plier Gain

7_ IC Saturation

F 9 VI 
+12V

I_~ L. -kf +- _f-- 1
1, Vz -12 VIF

Figure 4.3: Simulink model of the proposed control control strategy.

4.4.1 Buck Converter State-Space Model

The simplified model of the buck converter, shown in Fig. 4.4, was used to develop the
state-space model used in Simulink. An average state-space model was used to simulate the

dynamics of the converter. The buck converter input filter was ignored, as it was designed
in such a way as its dynamics did not interfere with those of the rest of the converter. Only
the essential components of the output filter were included, and the parasitics present in
the system were ignored for the purposes of the model. The average voltages across the two
capacitors, vcl and vc2, and the average currents through the inductances LA and LC were
chosen as the state variables.

The signal Vd represents the voltage seen at the diode cathode (Fig. 3.2). This signal is
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iA LA LB

1B

Vd ic LC v

VC, C,

2 C2 RL

Figure 4.4: Simplified time-averaged model of the buck converter
space model of Eq. 4.2.

used to obtain the state-

modeled as a square pulse with the frequency of 400 kHz, which corresponds to the converter

operating frequency, an amplitude of 42 V corresponding to the nominal converter input

voltage, and a duty ratio of -, which provides the 42 V to 14 V conversion function.

The passive components reflect the converter output filter, and their values are detailed in

Tables 3.1 and 3.2. It must be noted, however, that the output filter capacitor C2 does not

include the 2200 pIF electrolytic capacitor damping leg or the 0.1 /-F ceramic capacitor. The

value of 8 Q was used for RL, corresponding to 35% of converter maximum power. From

the model of Fig. 4.4, the following state-space description of the converter was obtained:

0 0 -LB
LALB+ LALC + LBLC

0 0 -(LA + LB)
LALB + LALC + LBLC

0 _L

1 -1
C2 C2

0

0

-LC
LALB + LALC + LBLC

LA
LALB + LALC + LBLC

0

-1
RC 2

LB + LC
LALB + LALC + LBLC

LB
LALB + LALC + LBLC

0

0
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The model of Eq. 4.2 assumes that the variable inductance of the cross-field reactor changes

slowly relative to the rest of the system. The slow time change of the variable inductance

was, in fact, taken as a requirement in the design of the adaptive cancellation control

circuitry. The use of the slow-varying (500 Hz) sinusoidal signal to sweep the VRMS vs.ripple

Icontrol function and the integrator in the feedback path (Fig. 4.3) forced the dynamics of

the control to be slow compared with the dynamics of the converter. This design strategy

ensured that the variable inductor included in the output filter of the buck converter could

indeed be treated as time-invariant for the purposes of the buck converter dynamics. Thus,
it was included in the overall shunt-path inductance, LC. The Simulink diagram of the

model in Eq. 4.2 is shown in Appendix B.

4.4.2 Simulation Parameters

The final simulation model of Appendix B was used to assess the dynamics and stability of

the control strategy, with the following simulation parameters:

Simulation Time 0 - 0.5 seconds

Fixed Step Size 2.5 - 10-8 seconds

Solver Method ode5 (Dormand-Prince)
Stored Data Decimation Rate 10000

Table 4.1: Control model simulation parameters.

The largest allowable step size was chosen for the simulation. The switching frequency of
the buck converter, reflected in the input variable Vd of Fig. 4.4 and the pulse of Fig. B.2
provided the upper boundary on the magnitude of the step size. The simulation data were
decimated by a factor of 10000 due to the large size of the files provided by simulation.
This forced signals such as the converter output ripple to appear undersampled. However,
since the dynamics of the adaptive cancellation control are on the time scale of hundreds
of milliseconds, the decimation did not prove detrimental to the simulation analysis. The
simulation time of 0.5 seconds ensured that the system had reached steady state.

4.4.3 Simulation Results

In order to view the effects of the adaptive inductance cancellation, the converter was first
allowed to reach steady state. The adaptive tuning was then enabled at time t = 0.1
seconds. This was performed by multiplying the control current by a step function with a
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4.4 Simulation

delay of 0.1 seconds (Fig. B.1). The simulated transient behavior of the control current,

the converter output ripple, and converter VRMS are depicted in Figs. 4.5 - 4.7.

Simulation results indicate that the proposed active tuning control method exhibits good

static and dynamic behavior. A factor of 20 reduction is predicted for the converter output

ripple (Fig. 4.5) and for VRMS (Fig. 4.6) when Icontrol reaches its DC steady state value of

0.53 amperes (A) (Fig. 4.7) after approximately 200 milliseconds (ms).

The simulated average steady state control current, icntrl, matches that predicted by the

manual tuning of Fig. 4.2 within the limits of the model. The converter output voltage

ripple, and VRMS , however, are predicted to be lower than experimental manual tuning

results suggest. These discrepancies may be attributed to the unmodeled parasitics of the

prototype system.

Converter Output Ripple
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5,
E
(D
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Time [s]
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Figure 4.5: Simulated transient performance of the converter output ripple as active tuning

is enabled at time t = 0.1 seconds.
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Converter Output Ripple RMS
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Figure 4.6: Simulated transient performance of the RMS of the converter output ripple,
VRMS as active tuning is enabled at time t = 0.1 seconds.
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Figure 4.7: Simulated transient performance of the variable inductor control current as

active tuning is enabled at time t = 0.1 seconds.
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Chapter 5

Controller Implementation

5.1 Introduction

The proposed control strategy of Chapter 4 was implemented on a printed circuit board

(PCB) using standard circuit components, as illustrated in Fig. 5.2. This chapter details the

design of the adaptive inductance cancellation control board circuitry. Section 5.2 outlines

the design guidelines for the control board and Section 5.3 describes the implementation of

the control board circuitry.

5.2 Control Board Design

The diagram of Fig. 5.1 illustrates the relevant blocks of the control circuitry and the ap-

proximate signals levels at the input and output of each block. The signal levels correspond

to a buck converter system having an adaptive coupled-magnetic output filter. The control

current for the variable inductor is assumed to be in the range of 0.05 - 0.95 A. These

conditions determine the range of the converter output ripple amplitude to be 5 - 40 mVpp.

The output of the buck converter constitutes the input to the system. The differential

high-pass filter serves to isolate the ripple from the converter output signal and to provide

additional gain. The gain is required by the AD637 RMS-DC converter in order to ensure

adequate bandwidth. The differential high-pass filter was implemented in two stages in

order to yield appropriate gain and bandwidth. The resulting gain of the high-pass stage

in the range of the first two harmonics of the switching frequency (400 kHz - 800 kHz) was

measured to be 148.3.

In order to increase the signal-to-noise ratio at the output of the AD633 multiplier a gain

of 4.73 was incorporated. A gain of -1000 (at 1 radian/sec.) was added to the integrator to

increase the response speed of the system, resulting in the following transfer function: -1000.

The 1 - 9 V voltage limiting circuitry was added to maintain the variable inductor control

current in the range of 0.05 - 0.95 amps, following the addition of the sinusoidal signal
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Controller Implementation

monolithic
function generator

XR2206

differential _ 0.5 - 0.5 V

high-pass
filter R MS-DC -0.5 - 0.5 V
gain =148.3 converter

5 -40 mVpp AD637 AD633 f

buck converter quadrature integrator voltage limiting adder
output multiplier gain = -1000 circuitry gain = 1

gain = 4.73 (at 1 rad/s)

0.05 - 0.95 A 0. .

Lvar 4= _0.5 - .

variable voltage to current
inductor converter

gain = 0.1

Figure 5.1: Block diagram of the adaptive inductance cancellation control circuit.

and the scaling of the resulting sum by 0.1 during the voltage to current conversion. The

variable inductor current was chosen to be in the aforementioned range because this range

was experimentally confirmed to contain the minimum of the VRIM vs. 'control functionrippleVS cnrlfnto

(Fig. 4.2).

Finally, the amplitude of the sine wave at the output of the XR2206 monolithic function

generator was chosen such that it produced enough variation in the variable inductor control

current signal to induce a change of -10 - 20 mV at the output of the AD637 near the

optimal operating point, cntr, of the VripMpe vs- Icontrol function. Thus, the value of 0.5 V

was chosen for the amplitude. However, in practice, a slightly smaller amplitude could also

have been chosen, without negatively affecting the control performance.

5.3 Control Board Circuitry

The blocks of Figures 4.3 and 5.1 are implemented as follows: the sinusoidal variation

is implemented using an XR2206 monolithic function generator. An AD637 RMS-to-DC

converter is used for the RMS block and an AD633 multiplier for the product block. Ad-
dition, integration, buffering, and voltage to current conversion are performed using the

LF347 quad operational amplifier. The variable inductor control current is provided using
a TIP29C NPN power bipolar transistor. A zener diode and the LM317 adjustable voltage

regulator serve to constrain the voltage at the output of the integrator in the range of 1 -
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5.3 Control Board Circuitry

9 volts. Finally, a differential high-pass stage is added using two LM6361 wide bandwidth

operational amplifiers to provide additional gain and to decouple the DC component of the

output from the control circuitry. The resulting control circuit schematic is illustrated in

Figure 5.2.

The circuit of Figure 5.2 was implemented on a printed circuit board using the Eagle

(CadSoft Computer GmbH) layout editor. A four layer, FR4 PCB was used for the control

board. The Eagle circuit schematic and the masks for each of the resulting layers of the

printed circuit board are included in Appendix C.
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Chapter 6

Experimental Results

6.1 Introduction

This chapter presents the experimental results for the adaptive inductance cancellation.
The prototype buck converter of Chapter 3 and the adaptive inductance cancellation con-

trol board described in Chapter 5 were used to experimentally demonstrate the control

strategy proposed in Chapter 4. Section 6.2 presents the experimental results for a buck

converter having an adaptive coupled-magnetic output filter (as detailed in Chapter 3),
while Section 6.3 presents the comparison of the adaptive cancellation method with con-

ventional filter designs.

6.2 Experimental Results for Adaptive Cancellation

The tuning method was implemented using the buck converter and the adaptive coupled-

magnetic device described in Chapter 3 and the control board of Chapter 5.

6.2.1 Comparison of Output Ripple Using the Adaptive Coupled-Magnetic
Filter With Active Tuning Disabled and Enabled

Time and frequency domain measurements were performed for the converter operating at

35% of maximum load (RL = 8 Q) both with adaptive inductance cancellation disabled

and enabled. All time domain experimental measurements were bandwidth limited to 20

MHz, though this was not seen to have a significant impact on the results. Figures 6.1
and 6.2 illustrate a reduction of greater than a factor of 5 in the peak-to-peak output ripple

amplitude when active tuning is enabled.
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Converter Output Ripple with Adapative Tuning Disabled
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Figure 6.1: Measured converter output ripple using the adaptive coupled-magnetic filter
with adaptive inductance cancellation disabled. Note the scale of 5 mV/division.

Converter Output Ripple with Adapative Tuning Enabled
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Figure 6.2: Measured converter output ripple using the adaptive coupled-magnetic filter
with adaptive inductance cancellation enabled. Note the scale of 5 mV/division.
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6.2 Experimental Results for Adaptive Cancellation

Spectrum

RBW# 10 kHz VBW 10 kHz
START 10 kilz

10 dB/ REF 104.q dBuV

ATN 20 dB SWP 160.1 msec
STOP 5 MHz

Figure 6.3: Measured spectrum of the converter output ripple using the

magnetic filter with active tuning disabled.

adaptive coupled-

Measurements of the spectra of the output ripple with adaptive cancellation disabled and

enabled were also made using an Agilent 4395A Network/Spectrum/Impedance Analyzer

with an Agilent 1141A AC-coupled differential probe. Results reflect an improvement of

approximately 16 dBuV for the first two harmonic components (Figs. 6.3 and 6.4). These

components are the main contributors to time-domain ripple, and the measured results are

consistent with the peak-to-peak values observed in the time domain.

6.2.2 Transient Performance of the Adaptive Cancellation

The transient performance of the adaptive inductance cancellation method was also ex-

perimentally assessed. To test the dynamic performance of the tuning, the output of the

converter was allowed to reach steady state. Once steady state was reached, adaptive

cancellation was enabled by turning on the power supply to the control circuitry, and ex-

perimental measurements for the variable inductor control current, the converter output

ripple, and the converter output ripple RMS were made. As illustrated by Figs. 6.5 - 6.8,

the maximum reduction in output ripple amplitude and output ripple RMS is achieved after

approximately 100 ms when the DC component of Icontrol reaches its steady state value of

0.49 A and remains stable. The experimental results illustrate that the adaptive control is

stable and effective at reducing the output ripple.

Two plots of the converter output ripple RMS are presented (Figs. 6.6 and 6.7). Both
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Experimental Results

CH2 R S pectrui 10 dB/ REF 10q0 dBuV 60 9 d8uV

96 .7 25 kHz

16Ih

CE4$ 10 H VBH l0 kH - TH 20 dE SWIP 10 .15m

Figure 6.4: Measured spectrum of the converter output ripple using the adaptive coupled-

magnetic filter with active tuning enabled.

measurements were taken at the output of the AD637 RMS-DC converter of the control
board of Figs. 5.1, 5.2, and C.1. Figure 6.6 shows the converter ripple RMS scaled by the
gain of 148.3 of the high-pass filter stage of the control board to reflect the RMS ripple at the
converter output, while Figure 6.7 presents the unscaled RMS measurement. Comparison
of Figure 6.7 to the manual tuning results of Figure 4.2 shows that the results of the active
tuning are consistent with those obtained by manually tuning the variable inductor to
achieve the greatest reduction in ripple amplitude.

The experimental results match the simulation predictions of Section 4.4.3 within the limits
of the model. The minor differences between the simulation predictions and experiment are
within the bounds expected due to modeling simplifications. For example, the optimal value
of Icontrol is reached faster than is predicted by simulation (Figs. 4.7 and 6.8). Likewise, the
predicted reduction in ripple, as well as the peak-to-peak and RMS ripple values predicted
by simulation are lower than those measured experimentally (Figs. 4.5, 4.6, 6.5, and 6.6).
This is due to the fact that the simplified state-space model that was used for the converter
contains only the essential components that influence the overall converter dynamics and
neglects some of the parasitics present in the system. Nevertheless, it can be seen from
the experimental results that the adaptive system is stable and effective at reducing power
converter output ripple.
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Converter Output Ripple

E

0.05 0.1 0.15
Time [s]

0.2 0.25 0.3

Figure 6.5: Measured transient response of the converter output ripple as active tuning is

enabled. The measured signal is highly undersampled.
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Figure 6.6: Measured transient response of the converter output ripple RMS as active tuning

is enabled. This signal was measured at the output of the AD637 RMS-DC converter of

the control board of Chapter 5 and scaled by the gain of the control board high-pass filter

stage to reflect the VRMS seen at the converter output.
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Experimental Results

Converter Output Ripple RMS

0 0.05 0.1 0.15

Time [s]
0.2 0.25 0.3

Figure 6.7: Measured transient response of the converter output ripple RMS as active tuning

is enabled. This signal was measured at the output of the AD637 RMS-DC converter of the

control board of Chapter 5.

Variable Inductor Control Current

0 0.05 0.1 0.15
Time [s]

0.2 0.25 0.3

Figure 6.8: Measured transient response of the variable inductor control

tuning is enabled.
current as active
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6.2 Experimental Results for Adaptive Cancellation

6.2.3 Load Transient Performance of the Buck Converter Having an Adap-
tive Coupled-Magnetic Output Filter

The performance of the adaptive tuning method was also assessed in the presence of a

slow-varying load. The converter load consists of a parallel combination of a resistor and

a 27 mF electrolytic capacitor, physically distant from the converter output. The large

capacitor was added to represent the behavior of the battery that would be present in

an automobile, for example, or the hold-up capacitor that appears in many applications.

Because this capacitor is in parallel with the remote load, away from the actual converter

output, it does not have a significant impact on the converter output switching ripple or

serve to attenuate EMI. The capacitor does, however, provide low-frequency voltage holdup

during load transients.

The load transient measurements shown in Figures 6.9 and 6.10 were performed for a

load step corresponding to 35 - 70% of maximum output power. A 3% fluctuation in the

converter output voltage is observed for this load transient. Additionally, experimental

results under maximum load step conditions (25 - 100% step in power) show a less than

5% transient in output voltage.

Buck Converter Load Transient Response
15

14

1 3 --. ... -.. ..- ........ ....

10- 0..11..22..33..4 4.

E --

5 ..... .5 1 ... 2 2..3 3..4 4.

Time [sI

Figure 6.9: Measured converter output during a 35 - 70 % of maximum power load transient.
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Observing the (undersampled) switching ripple during the transient by AC coupling the

output voltage measurement (Fig. 6.10), it is seen that the adaptive control is able to pro-

vide the desired ripple cancellation without undesired interactions with the output voltage

control.

Converter Output Ripple Load Transient Response
75

65 ----- -

55 - - -- --

4 5- - -- - - - - --

3 5

25

E -15

S-5

-35 ...... . . .. .. . . . ......

-45 - - .-- - - -

-55 - - . - -

-65 - --- - -

-75 L
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

Figure 6.10: Measured converter output ripple during a 35 - 70 % of maximum power load
transient. The ripple is measured by AC coupling of the output voltage measurement. The
measured signal is highly undersampled.
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6.3 Comparison with Conventional Filter Designs

6.3 Comparison with Conventional Filter Designs

For comparison purposes, two conventional output filter designs have also been imple-

mented. The conventional designs include a standard buck converter inductor and a "zero-

ripple" filter. Simplified schematics for the converter and its equivalent model, Figs. 3.1, 3.2,
and Table 3.1, are repeated here for convenience (Figs. 6.11, 6.12, and Table 6.1).

Q

42 V + D I

-, ~ ~ \ D-ND to load

I NAC

Lvar 02

c,

Figure 6.11: Circuit schematic of the buck converter and output filter.

LA LB
to load

Lc

~Lvar C2

TC,

Figure 6.12: Model of buck converter and coupled magnetic filter.
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Experimental Results

C1  10 pF ITW Paktron 106K050CS4

C2  20 pF Cornell-Dubilier 935C1W20K
(parallel combination) 100V, Polypropylene

2200 pF Electrolytic, 50 V
(RESR = 0.040Q)

0.1 pF Ceramic

Q IRF1010E N-Channel Power Mosfet

D MUR3020WT Common Cathode Diode

Table 6.1: Device parameters for
Table 6.2).

the buck converter of Fig. 6.12 (magnetics are detailed in

6.3.1 Conventional Filter Designs

To provide an even comparison, the same magnetic core type was utilized in each case with
similar values for the total series-path inductance (LA + LB in Fig. 6.12). In each of the
comparison cases, the non-magnetic buck converter output filter components are the same
as those described in Section 3.2 and summarized in Table 6.1. The characteristics of all
three magnetic component designs are shown in Table 6.2.

Magnetics Inductor "Zero-Ripple" Tuned Coupled

Filter Filter Magnetic Filter

Construction RM10/I, A315 RM10/I, A315 RM10/I, A315
3F3 Core 3F3 Core 3F3 Core

5 Turns 5:5 Turns 5:4 Turns

LA 8.04 /tH 7.70 pH 6.13 pH

LB 0 jH 0.34 pH 1.67 pH

LC 0 pH 0.17 pH - 0.82 pH

Table 6.2: Device parameters for the comparison of the three filter topologies using the
buck converter of Fig. 6.12
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6.3 Comparison with Conventional Filter Designs

The first conventional design is a standard buck converter inductor without coupled mag-

netics. In this implementation, capacitor C1 appears in parallel with C2 (reducing the order

of the filter), but there is no coupling sensitivity in the design. The second conventional

design utilizes a "zero-ripple" coupled-magnetic device in which the shunt-path inductance

(Lc in Fig. 6.12) is designed to be as close to zero as possible without external trimming. It

was found that a 5:5 turns ratio (NDC : NAc) provided an effective shunt-path inductance

of approximately 170 nH under low flux conditions, yielding the best approximation to a

"zero-ripple" design within the overall design requirements. The capacitors C1 and C2 are

realized in the same manner as in the adaptive design described in Chapter 3.

Figures 6.13 and 6.14 show the time and frequency domain ripple measurements for the

buck converter using a conventional inductor. Comparing these results to those of Figs. 6.2

and 6.4, it can be seen that the coupled-magnetic filter with adaptive inductance cancellation

provides more than a factor of 10 (> 20 dB) improvement in output ripple performance as

compared to a buck converter with the same passive component size.

Converter Output Ripple Using Conventional Inductor
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Figure 6.13: Measured converter output ripple using a conventional

the scale of 10 mV/division.

inductor filter. Note
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CH2

Avg
16

I Spectrum

RBW# 10 kHz VBW 10 kHz
START 10 kHz

81.181 dBuV

ATN 20 dB SIP 180.1 msec
STOP 5 MHz

Figure 6.14: Measured spectrum of the converter output ripple using a conventional inductor
filter.

It is also interesting to compare these results to the "best designed" "zero-ripple" filter,
in which "shunt-path" inductance is minimized. Results from this design are shown in

Figs. 6.15 and 6.16. It can be seen that the performance of this design is substantially

better than that of the converter without coupled magnetics, but falls far short of those

achieved with the adaptive inductance cancellation. In fact, performance of this filter (with

minimized shunt-path inductance) is slightly worse than the performance of the coupled

magnetics design with adaptive cancellation disabled. This is attributed to the fact that

despite having a higher shunt-path impedance (without active cancellation), inductance LB
of Fig. 3.2 is higher in the design for active cancellation, thereby providing a better second

filter stage. Ultimately, it may be concluded that the ripple performance of the coupled-

magnetic filter with inductance cancellation is a factor of more than five better than any of

the other options explored, and provides a much higher robustness to manufacturing and

operating point variations owing to its use of closed-loop control.
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6.3 Comparison with Conventional Filter Designs

Converter Output Ripple Using "Zero-Ripple" Filter
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-50----
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Figure 6.15: Measured converter output using a "zero-ripple"
mV/division.

filter. Note the scale of 10

10 dB/ REF 104.A d8uV

:402.96 53 kHz

....... ..... ............ .. . . .

P61-O 1 kI1z ./6-J 0 kH RI 20 dB I- 16 ........

CH2 R Spectrum

16

RB#10 k Hz VBW 10 kHz ATN 20 dB SWP 1601 mec
STRT 10 k of tTOP Mae

Figure 6.16: Measured spectrum of the converter output ripple using a "zero-ripple" filter.
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Experimental Results

6.3.2 Performance of Filter Designs Across Varying Load Conditions

Finally, the performance of the two conventional designs and of the coupled-magnetic filter

with adaptive inductance cancellation enabled and disabled is compared across varying load

conditions. Figures 6.17 and 6.18 illustrate the converter output ripple and output ripple

RMS for each type of filter as the load current is increased from minimum to maximum. It

can be seen that the coupled-magnetic filter with adaptive inductance cancellation provides

the greatest ripple attenuation across the specified prototype buck converter load range.

At the maximum output power, the adaptive coupled-magnetic filter demonstrates more

than a factor of three improvement over the coupled-magnetic filter with tuning disabled,
a factor of five improvement over the "zero-ripple" filter, and more than a factor of eight

improvement over the conventional inductor, both in the peak-to-peak converter output

ripple and the output ripple RMS.

Peak-to-Peak Converter Output Ripple vs. Load Current
140

E3- canc. dev. tuning enabled
130 -e- canc. dev. tuning disabled

+ "zero-ripple" filter
120 -A- conventional inductor .....

5
E 1 1 0 ....... .... ... .........

C,

0

(1)
CL
0

C,

100

90

80

70

60
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40

30

20

10

0
1.5 2 2.5 3 3.5

Load Current [A]
4 4.5 5

Figure 6.17: Comparison of measured peak-to-peak converter output ripple vs. load current
for four output filter designs: the adaptive coupled-magnetic with active tuning enabled,
with tuning disabled, the "zero-ripple" filter, and a conventional inductor.
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6.3 Comparison with Conventional Filter Designs

Converter Output Ripple RMS vs. Load Current
40

-a- canc. dev. tuning enabled
37.5 -0- canc. dev. tuning disabled - - - - .--

+ "zero-ripple" filter
35 -A- conventional inductor

32.5 -. -.

30 -

27.5 - - - - -- -
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E 22.5-

20 - - -- --

~% 7.5 -1 5 --- - - -.- -

0
1 1.5 2 2.5 3 3.5 4 4.5 5

Load Current [A]

Figure 6.18: Comparison of measured converter output RMS vs. load current for four
output filter designs: the adaptive coupled-magnetic with active tuning enabled, with tuning
disabled, the "zero-ripple" filter, and a conventional inductor.

It can be seen in Figs. 6.17 and 6.18 that in each filter type the peak-to-peak and RMS ripple

increases with load current. This change can be attributed to a reduction in the permeabil-

ity of the main filter magnetics as flux levels increase, which reduces filter attenuation. This

effect is smallest in absolute terms, but largest in percentage terms, for the coupled-magnetic

filter with adaptive inductance cancellation. Further increase in load current rapidly de-

grades the performance of the filter with active cancellation, as the small cross-field reactor

used to adapt the filter begins to saturate for high ripple currents. Nonetheless, the adap-

tive coupled-magnetic filter provides the best ripple attenuation over the entire rated load

range. Changes in performance of all the filters with the load can in principle be amended

by designing the output filter magnetics to present smaller changes in inductance over the

load range.
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Chapter 7

Summary and Conclusions

7.1 Thesis Summary and Contributions

Conventional filter circuits suffer from a number of limitations, including performance degra-

dation due to capacitor parasitic inductance and the size and cost of magnetic elements.

Coupled-magnetic filters have been developed that provide increased filter order with a

single magnetic component, but also suffer from parasitic inductance in the filter shunt

path due to imperfectly-controlled coupling of the magnetics. This thesis presents a novel

inductance cancellation method that overcomes the problems associated with traditional

inductor and coupled-magnetics filter designs.

The major contributions of the work of this thesis include the design of an adaptive coupled

magnetic filter; the development of an active inductance cancellation strategy and cancella-

tion control methods; and the implementation and experimental validation of the adaptive

inductance cancellation approach.

7.2 Conclusions

This thesis introduces coupled-magnetic filters with adaptive inductance cancellation con-

trol. The proposed approach provides a robust method of increasing filter order and can-

celing the effects of parasitic inductance without a substantial increase in filter size and

cost. Simulation and experimental results confirm the high performance of the proposed

approach in a dc/dc power converter application. It may be concluded that the proposed

approach offers greatly improved ripple attenuation and robustness in circuits employing

coupled-magnetic filters, and has merit where these advantages justify the needed control

circuitry.
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Appendix A

Prototype Converter

A.1 Introduction

This appendix presents the details of the buck converter of Chapter 3 that was used to
present the results of the adaptive inductance cancellation approach. In particular, Sec-

tion A.2 shows the complete buck converter circuit schematic, while Sections A.3 and A.4

detail the analysis of the buck converter control circuitry.

A.2 Buck Converter Circuit

The prototype buck converter was designed using Protel 99 SE (Altium Ltd., Sydney, Aus-

tralia) PCB layout software. A four-layer, FR4 board, having a ground and a power plane,

was used for the converter layout. The final buck converter Protel schematic is shown in

Fig. A.1. The printed circuit board that was used in the prototype contained four of the con-

verter modules of Fig. A.1, which were once used in a four-stage buck converter design [25].

Only a single module was used for the testing of the adaptive inductance cancellation meth-

ods. Components, C3 ', C3 ", CIO, C21 , R 17 , R 7 , R8, R 9 , and U1 were added following the

manufacture of the board. Additionally, although space was provided on the board for the

damping resistors R 3 and R 4 , these resistors were not used. The bill of materials used in

the assembly of the buck converter is shown in Table A.1.
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Num.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Part Type
.68 uF
0.1 uF, 100 V
0.1 uF
0.1 uF
0.1 uF
0.1 uF
0.1 uF
0.1 uF
0.1 uF
0.1 uF
0.1 uF
0.1 uF
0.1 uF
0.1 uF
ZVN3310A
0.01
1 K
1N4148
1N4148
1N4746
1k
1 k
1 k
1 k
1k
1n4739
1 nF
1 uF
1 uF
1 uF
1 uF
2.2 n
2.5 k
3.6 k
3.6 k
3.9 k
3 k
4.7 k
5.1 k
5.6k
6.2 k
6.2k

Designator
C14
C34
C3'
C8
C9
C20
C17
C16
C19
C18
C6
C7
C4
C5
Q2
R6
R29
D8
D7
D10
R8
R16
R14
R15
R7
D11
C27
C15
C29
C33
C32
C30
R9
R21
R22
R17
R26
1W
R18
R30
R10
R20

Footprint

CAP100/28/50
CAP200/28/150
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
CAP200/28/150
CAP200/28/150
CAP200/28/150
CAP200/28/150
TO-92A
R1100/60
POTI
D350/40
D350/40
D350/40
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
D350/40
AXIAL-0.3
CAP100/28/50
CAP100/28/50
CAP100/28/50
CAP100/28/50
CAN
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
R19
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3

Description
Capacitor
Capacitor
Ceramic Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Diode
Resistor
Potentiometer
Diode
Diode
Schottky Diode
Resistor
Resistor
Resistor
Resistor
Resistor
Schottky Diode
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Resistor
Resistor
Resistor
Resistor
Resistor
R_2W Resistor
Resistor
Resistor
Resistor
Resistor
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43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68

69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84

6.2 k
6.8 uF
9.1 k
10 k
10 uF
10 uF
10 uF
10 uF
10 uF
10 uF
10 uF
10 uF
20 uF
20 uF
20 uF
33 k
47
180
180
220
220
330
470 pF
470 pF
200 1W
2200 uF, 50 V

3303
Closed=On
FET-DIODE
HEATSINK
0.61 uH
INDUCTOR3
IR2125
LM317
LM6142
LM7805
LM7815
LT431
MBR0540T1
MBR0540T1
MBR0540T1
MBR054OT1
MBR054OT1

R11
C21
R12
R28
C31
C12
C13
C24
C25
C28
C26
CIO

C2

C1
C3
R27
R23
R24
R25
R5
R13
R31
C22
C23
R1
C3"

U2
J3
Q1

LI
L2
U6
U4
U3
U8
U5
U1
D3
D6
D2

D4
D5

AXIAL-0.3
CAP150/50/150
AXIAL-0.3
AXIAL-0.3
CAP100/28/50
CAP150/50/150
CAP150/50/150
CAP150/50/150
CAP150/50/150
CAP150/50/150
CAP150/50/150
DIP-10
935C1W20K
935C1W20K
935C1W20K
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
AXIAL-0.3
Axial-0.3
R_2W
AXIAL-0.3
CAN
CN
R_2W
AXIAL-0.3

DIP-14
CON2A
FETDIODE
HEATSINK
L800
LVAR
DIP8
TO-220
DIP-8
TO-220
TO-220
TO-92A
DIODE1
DIODEl
DIODEl
DIODEl
DIODEI
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Resistor
Capacitor
Resistor
Resistor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Resistor
Capacitor
Capacitor
Capacitor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Capacitor
Capacitor
Resistor
Electrolytic Capac-
itor
Resistor
Connector
Heatsink

Inductor
Inductor
IC
IC
IC
IC
IC
IC
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode
Schottky Diode



A.2 Buck Converter Circuit

85
86
87
88
89
90
91
92
93

Pow In
Pow Out
not used
not used
0.3
TRANSI
UC3823A
UG06B
IRF1010E

Ji
J2
R3
R4
R2
T1
U7
D9
Q3

94 MUR302OWT Q4

CON2D
CON2D
AXIAL-0.3
AXIAL-0.3
R_2W
RM1O
DIP16
D350/40
TO-220

TO-247

Connector
Connector
Resistor
Resistor
Resistor
Resistor
Resistor
Diode
N-Channel Power
Mosfet
Common Cathode
Diode

Table A.1: Bill of materials for the buck converter of Fig. A.1.
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A.3 Block Diagram Model of the Buck Converter Control
Circuitry

The following block diagram shows the buck converter control model that was used to assess
the stability and the performance of the converter. A regulated voltage of 5 V was used as
the reference for the converter. The output voltage was appropriately scaled by the output
sensor transfer function, H0 I, and compared to the reference. The difference was input to
the outer loop compensator, C01, the output of which produced the reference current, Iref
used in the inner control loop. The inner loop compensator then forced the sensed current
at the output of the buck converter output filter inductor (or coupled-magnetic device) to
the reference value. The corresponding MATLAB (Mathworks Inc., Cambridge, MA) code
used to analyze the model and the transfer functions of Fig. A.2 are presented Section A.4.

Outer Loop Inner Loop Transfer Function Transfer Function
Compensator Compensator from Vd to Isense from Isense to Vout

\/ref + o iref the bu c H2 - -

Inner Loop
Sensor

Outer Loop
Sensor H - - -

Figure A.2: Block diagram for the buck converter controller model.

- 72 -



A.4 MATLAB Model for the Buck Converter Control Circuitry

A.4 MATLAB Model for the Buck Converter Control Cir-
cuitry

function Control()

% This function determines and plots the inner and outer control loops of

% the buck converter. The input filter is assumed to be designed such that
% its effects on the control transfer functions is negligible.

% This code does not assume that the inductance is zero in the current path

. of the variable inductor. Added inductance is L3, which constitutes the

% sum of the variable inductance when the control current is zero and

% the inductance Lc of the T model of the coupled-magnetic device.

%constants

Vin = 42;

C1 = 10e-6;

C2 = 20e-6;

C3 = 2200e-6;

Rc = 0.4;

Rl = 8;

Li = 6.13e-6;

L2 = 1.67e-6;

L3 = 44e-9;

% R1=8 is 35% of max. power; 3 is full power - 65W; 12 is min. power - 16 W;

% DC model for the capacitor C3 is the capacitance and its Resr in series

% Isense/Vd - Inner loop plant (essentially the output filter)

num4 = Rc*Rl*C1*C2*C3*L3;
num3 = Vin*(Rc*C1*C3*L3+Rl*C1*C2*L3+Rl*C1*C3*L3);
num2 = Vin*(C1*L3+Rc*Rl*C2*C3);
numi = Vin*(Rc*C3+Rl*C2+Rl*C3);
numO = Vin;

den5 = Rc*Rl*C1*C2*C3*(L1*L2+L1*L3+L2*L3);
den4 = Rl*C1*C3*(L1*L2+L1*L3+L2*L3)+Rc*C1*C3*(L1*L2+L1*L3+L2*L3)+
Rl*C1*C2*(L1*L2+L1*L3+L2*L3);

den3 = L1*L2*C1+C1*L1*L3+C1*L2*L3+Rl*Rc*(C1*C3*L1+C2*C3*L1+C2*C3*L2+
C1*C3*L3);

den2 = (C1*Rl*L1+C2*Rl*L1+C2*Rl*L2+C1*Rl*L3+Rc*C3*L1+Rc*C3*L2+Rl*C3*L1+

Rl*C3*L2);

deni = (L1+L2+Rc*Rl*C3);
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denO = Ri;

numH1 = [num4 num3 num2 numn num0];

denH1 = [den5 den4 den3 den2 deni denO];

% Isense/Vd
H1 = tf(numHl,denHl);

Rsi = 180;

Rs2 = 3.6e3;

Rs3 = 0.010;

Csl = 470e-12;

Lsl = 23e-9;

numS = Rs2*[Lsl Rs3];

denS = Rsi*[Rs2*Csi 1];

% I/Isense - current sensor transfer function

Hsen = tf(numS, denS);

Cil = tf(1500,[1 0]);

rltool(H1,Cil);

% Add Hsen to the feedback loop

sisotool(Hi,Cil,Hsen);

sysi = H1*Cil;
IL = feedback(sysi,Hsen);

% Outer loop plant

% AC model for the capacitor C3 is Rc -- its Resr
num0=Rl+Rc;

denO=Rc+Rl;

deni=Rl*C2*Rc;

numH2=[num0];

denH2=[deni denO];

o Vo/I-sense

H2 = tf(numH2,denH2);
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Col = tf (234, [1 37.7]);

Hol = tf (5/14);
rltool(H2*IL,Col);

% Add Hol to the feedback path

sisotool(H2*IL,Col,Hol);
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Appendix B

SIMULINK Simulation

B.1 Introduction

This appendix includes the SIMULINK block diagrams that were used to model the adaptive
inductance cancellation control method. Figures B.1 - B.4 show the overall control block
diagram and the contents of its masked blocks.

B.2 SIMULINK Block Diagrams

The gain blocks shown in Fig. B.1 correspond to the gains of the individual stages of the
control circuit, discussed in detail in Chapter 5. Similarly, the saturation blocks represent
the voltage saturation limits of the integrated circuits used on the controller board. The
1 V - 9 V saturation block represents the voltage limiting that was used to ensure that the
control current remained between 0.05 and 0.95 A. The constant block subtracted from the
output of the Vrippie block represents the AC coupling present in the system to isolate the
ripple from the converter output (implemented as a differential high-pass filter of Fig. 5.2).
Finally, a step function of amplitude 1 and a delay of 0.1 seconds multiplied by the control
current was used to demonstrate the effects of the adaptive cancellation by first allowing the
converter to reach steady state with Icontrol maintained at zero. Then at t = 0.1 seconds,
the control current was enabled.

The state-space block diagram describes the buck converter averaged state-space model of
Eq. 4.2. The pulse block represents the voltage Vd of Fig. 4.4, which is a square wave with
the buck converter switching frequency of 400 kHz, an amplitude of 42 V, corresponding to
the nominal buck converter input voltage, and a duty ratio of 1, corresponding to the 42 V
to 14 V conversion function. The inductance block is shown in Fig. B.3, and represents the
block diagram used to generate the following gain:

1

LALB + LALC + LBLC

which constitutes a scaling factor for many elements of the gain matrices of Eq. 4.2.
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SIMULINK Simulation

The block diagram of Fig. B.4 represents the mathematical model used to generate VRIMSripple
from Vrippie, and is depicted by the RMS block in Fig. B.1. The time constant for the
RMS function was chosen to be 0.0001 seconds, corresponding to a cutoff frequency of 10
kHz. This cutoff frequency was chosen to be high enough such as not to include the RMS
of the low frequency (500 Hz) sinusoidal oscillation, but to calculate only the RMS of the
converter output ripple. The resulting low-pass transfer function is: . 1 shown as

the block in Fig. B.4.
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Figure B.1: SIMULINK model of the adaptive inductance cancellation control.
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B.2 SIMULINK Block Diagrams

VC1
signall

signa2
Vc2

Vd
signal3

Constant1Product1
Product3

x+

Product IMath
Function

Constant

Lb I-, Product2

Constant3

Figure B.3: SIMULINK block diagram used to generate the inductance block of Fig. B.2.

u2dern(s) I sqr
Vripple MaVripple RMS

Function Function1

Figure B.4: SIMULINK block diagram that generates the RMS function used to obtain VRMSripple
from Vrippie, represented by the RMS block of Fig. B.1.
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Appendix C

Adaptive Inductance Cancellation
Control Board

C.1 Introduction

This appendix presents the schematic, the bill of materials, and the printed circuit board
masks for the adaptive inductance cancellation control board of Chapter 5.

C.2 Eagle Layout Editor Schematic

The circuit of Figure 5.2 was implemented on a printed circuit board using the Eagle
(CadSoft Computer GmbH) layout editor. The resulting Eagle schematic is presented in
Figure C.1. Table C.1 details the materials used in the assembly of the board. It must be
noted that the following components were added after the manufacture of the board: D 3 ,
R 23, R 2 4, R 25 , and R 27 . The components added across the variable inductor (D3 and R 23 )
were soldered across the inductor control current leads, while the resistors added for the
AD633 multiplier offset circuitry (R 24 , R 25 , and R 27 ) were soldered onto the protoboard
space in the corner of the control board (Figs. C.3 - C.6). Thus, the footprints for these
components are not present on the masks for the PCB layers.
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C. 2 Eagle Layout Editor Schematic

Part

AD633
AD637
ADDOUT
C1
C2
C3
C4
C5

Value Device Package
AD633
AD637
PTR1
C2,5-3
C2.5/4
C2.5/4
C2.5/4
C2.5/4

Num.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33

34
35

36
37
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C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
CADJ
D1
D2

D3
GND-1
GND-2
GND-3
GND-4
GND-5
HP-FILTER
OUT
LF347
LM317

LM6361-1
LM6361_2

AD633
AD637
PTR1
lu
0.lu
0.01u
0.01u
0.01u
0.068u
0.1u
0.lu
0.1u
0.lu
0.lu
0.1u
0. lu
0.1u
0.lu
.00068u
0.lu
0.lu
0.lu
0.lu
C2.5/5
1N4001
9.1

1N4001
PTR1
PTR1
PTR1
PTR1
PTR1
PTR1

LF347N
317

LM741P
LM741P

C2.5/5
C2.5/4
C2.5/4
C2.5/4
C2.5/4
C2.5/4
C2.5/4
C2.5/4
C2.5/4
C2.5/4
C2.5/4
C2.5/4
C2.5/4
C2.5/4
C2.5/4
C2.5-5
1N4001
V

1N4001
PTR1
PTR1
PTR1
PTR1
PTR1
PTR1

LF347N
317

LM741P
LM741P

DIL08
DIL14
TESTPT
C2.5-3
C2.5-4
C2.5-4
C2.5-4
C2.5-4
C2.5-5
C2.5-4
C2.5-4
C2.5-4
C2.5-4
C2.5-4
C2.5-4
C2.5-4
C2.5-4
C2.5-4
C2.5-4
C2.5-4
C2.5-4
C2.5-4
C2.5-4
CAPACITOR
D041-10
ZENER-
DIODE
D041-10
TEST-PT
TEST-PT
TEST-PT
TESTPT
TEST-PT
TESTPT

DIL14
T0220V

DIL08
DIL08

Description

AD633
AD637
TEST PIN
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR
CAPACITOR

DIODE
DO41Z1O
Zener Diode
DIODE
TEST PIN
TEST PIN
TEST PIN
TEST PIN
TEST PIN
TEST PIN

OP AMP
Positive
VOLTAGE
REGULA-
TOR
OP AMP
OP AMP
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38 LVAR1

39 MULTOUT
40 R1

41 R2

42 R3

43 R4

44 R5

45 R6

46 R7

47 R8

48 R9

49 RIO

50 R11

51 R12

52 R13

LVAR

PTR1
200

1k

20k

16k

10k

10k

10k

10k

9.1k

1k

1

100

100

LVAR

PTR1
R- 1
US_0207/10

R-
US-0207/10

R- 7
US_0207/10

R-
US-0207/10

R-
US-0207/10

R-
US-0207/10

R- /
US_0207/10

R- 1
US-0207/10

R-
US_0207/10

R-
US_0207/10

R-
US-0414/15

R-
US-0207/10

R-
US_0207/10

P14/8-CORE

TESTPT
0207/10

0207/10

0207/10

0207/10

0207/10

0207/10

0207/10

0207/10

0207/10

0207/10

0414/15

0207/10

0207/10

Cross-Field
Reactor
TEST PIN
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
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53 R14

54 R15

55 R16

56 R17

57 R18

58 R19

59 R20

60 R21

61 R22

62 R23

63 R24

64 R25

65 R27

66
67
68
69

RMSOUT
SAT-OUT
SINE-OUT
TIP29C

70 VREG-OUT

1.5k

1.5k

100

1.5k

1k

47k

15k

91

240

390

300k

15k

50k

PTR1
PTR1
PTR1
TIP29C
VERTICAL
PTR1

US_0207/10

R-0
US_0207/10

R-
US_0207/10

R-
US-0207/10

R-
US-0207/10

R-
US_0207/10

R-
US.0207/10

R-
US-0207/10

R-
US-0207/10

R-
US_0414/15

R-
US-0207/10

R-1
US-0207/10

TRIM-US-
RS31
PTR1
PTR1
PTR1
TIP29C
VERTICAL
PTR1

0207/10

0207/10

0207/10

0207/10

0207/10

0207/10

0207/10

0207/10

0207/10

0414/15

0207/10

0207/10

RS3

TEST-PT
TESTPT
TEST-PT
T0220V

TESTPT

RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
RESISTOR,
American
symbol
POTENTIO-
METER
TEST PIN
TEST PIN
TEST PIN
NPN Transis-
tor
TEST PIN
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VEMITTER
X1
X3
X4
XR2206

PTR1
MPT2
MPT2
MPT2
XR-2206

PTR1
2POL254
2POL254
2POL254
DIL16

TEST-PT
PHOENIX
PHOENIX
PHOENIX
Monolithic

TEST PIN
CONNECTOR
CONNECTOR
CONNECTOR
FUNCTION
GENERA-
TOR

Table C.A: Bill of materials for the control board of Fig. C.l.

C.3 PCB Layer Masks for the Adaptive Inductance Cancel-
lation Control Board

Figures C.2 - C.6 show the silkscreen, component side, ground, layer 3, and solder side
layer masks, respectively, for the printed circuit board of the controller of Fig. C.1. The
"dimension" layer is included on every mask to designate the board edges. Pads and vias are
also shown on the component and solder side masks. The masks are shown in their actual
physical dimensions. It must be noted that layer 3 does not contain signal connections.
Additionally, although space was allotted on the board for the 10 AF high-ripple, low-
inductance film capacitor (ITW Paktron 106K050CS4) located in the variable inductor
path, the capacitor was placed on the buck converter printed circuit board instead. This
was done to minimize the parasitic inductance in the ground path of the capacitor.
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Figure C.2: Adaptive inductance cancellation controller PCB silkscreen layer.
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Figure C.3: Adaptive inductance cancellation controller PCB component side layer.
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Figure C.4: Adaptive inductance cancellation controller PCB ground layer. By convention,

the ground layer is shown inverted, with the conductor depicted in white.
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- 92 -

0
*

0
0 0

0 0 0 0

0

0
0

0
* 0
* 0



C.3 PCB Layer Masks for the Adaptive Inductance Cancellation Control
Board

g~s
, 0

9 4
. 9

9 .

* 99
* 99

* 99

* 9,

* 99

* 99
.9
99

.9
99

9,
99
99

9 99
.9

9,
9,

.9

9 9

9
9* * m w

9 -
9,
9,

9

9

99,,,
9,9,,
.99,9

9,999

99,99

.9999
9,9,,
99999
9,999
9,999

9,999

.9,99
999.,

9,9,9

9,,,,
9,9,9
999,9

9,999

99
.9

9,

9.

9,
9,
99

99

9,
9,

99
99
99

9,
9,
9,

9,
9,

9

9

.

- 0 - 0 as- .: -*

E 
-e - 0so 4

0 so so g

,99,,,,,,99,,e9,99 9

999999999*99999*99 9

9
9
9
9

9

9
9

9
9
9

9
9
9
9

9

9,,,.

9,,,,
99,,.
9,999

99999

Figure C.6: Adaptive inductance cancellation controller PCB solder side layer.
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