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Abstract

A substantial challenge in robotics is integration of complex software systems for real-
time performance. This thesis integrates the robust and generic mapping framework
Atlas, a feature-based local Simultaneous Localization and Mapping (SLAM) module,
and obstacle avoidance using information from mapped features. The resulting system
performs autonomous feature-relative Real-time Obstacle Avoidance and Mapping
(ROAM) with laser or sonar range sensors, and results are shown for wide-beam
sonar. This system will allow high-speed feature-relative obstacle and avoidance and
navigation on mobile robots with wide-beam sonar and/or laser sensors.
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Chapter 1

Introduction

This thesis demonstrates a system for real-time performance of simultaneous local-
ization, mapping, and obstacle avoidance using a feature-based representation of the
enviroment for a robot with laser and/or sonar range sensors. A Real-time Obstacle
Avoidance and Mapping (ROAM) implementation demonstrates the ability to use
obstacle avoidance algorithms for laser sensors on a robot using wide-beam sonar
sensors by simulation of a range scanning sensor with high angular resolution from
the mapped environment. Results using sonar for real-time feature-based obstacle

avoidance demonstrate real-time feature-based sonar navigation and mapping is pos-

sible.

1.1 Motivations

The primary questions motivating this thesis research are 1) Can an autonomous
vehicle perform SLAM and navigate relative to mapped features? and 2) Can feature-
relative obstacle avoidance and navigation be done in real-time at high speeds using
sonar sensing?

The first question involves making SLAM into a blueprint for action, and pro-
vides a basis for control feedback for closer inspection of uncertain features. The
second question involves addressing high-speed safety with cheap wide-beam sonars,

which have significant angular uncertainty and many outlier measurements from sen-
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sor crosstalk, mutliple reflections, and echos reflected away from the robot.
Compared to grid-based mapping, another popular mapping approach, feature-
based mapping avoids smearing data. Grid-based approaches often use spread range
measurements across regions of the map to accomodate uncertainty in both the mea-
surements themselves and the features. One should note the difference in those two
types of uncertainty; measurement noise is a constant and stipulated a priori, whereas
navigational uncertainty is a posterior, resulting from a history of measurement and
process noises. Coupling those two uncertainty sources prematurely leads to infor-
mation loss. Extraction of local features may still be acheived with accuracy despite
navigational uncertainty, and action relative to local features is still possible.
Another motivation for feature-based mapping is for interpretation. As stated
in [16], a feature-based representation of the environment can determine what mea-
surements come from rather than just where the measurements come from. For many
applications, goals are formulated around features. The robot is observing on behalf of
the human researcher, whose reasoning can relate more to features than a raw statis-
tical formulation. This allows continued development for more intelligent navigation
strategies. By demonstrating the simplest navigation strategy, obstacle avoidance,
using only information from features, other feature-relative navigation strategies may

operate cooperatively with SLAM.

1.2 Applications

Applications of the feature-based ROAM described in this thesis are numerous. In a
research context, feature-based ROAM provides a basis of support for more complex
path-planning algorithms and topological navigation. The accomdation of wide-beam
sonar permits operation in many environments.

For land-based robots this research provides a platform for further feature-relative
autonomous path-planning or missions in large environments, and fusion of laser and
sonar sensing permits functionality in a wide-range of environments. While laser

sensors are very accurate, they are costly, only reliably detect opaque objects, are
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sensitive lighting conditions, and work only in air. For marine robotics where laser
sensors are not applicable, this research provides the infrastructure for low-cost wide-

beam sonar based autonomous inspection of piers, ship hulls, etc.

1.3 Related Research

A review of research relevant to feature-based ROAM reveals issues that must be
tackled. ROAM inherents issues from both SLAM and obstacle avoidance in addition
to issues from integration constraints. The integration constraints narrow the choice

of valid representations for acheiving SLAM and obstacle avoidance.

1.3.1 Sonar SLAM

Previous work on mapping features with wide-beam sonar shows the difficulty of this
task. In [7] measurement models for several sonar feature types are presented, and
localization using sonar is demonstrated. The sonar measurement models presented in
[7] provide the basis for the models in this thesis and other works, such as [16] and [9].
A submap-based sonar SLAM with line and point features with impressive results was
shown in [16]. [16] presented robust data association for sonar returns using Random

Sampling and Consenus (RANSAC). This thesis adopts a similar approach.

1.3.2 Vector Field Histogram

Previous work on real-time obstacle avoidance with sonar has been deomonstrated
sucessfully with the Vector Field Histogram in [1]. The Vector Field Histogram (VFH)
extended the familiar virtual force field approach to obstacle avoidance with a repre-
sentation for accomdating sonar sensors. The VFH probabalistically smeared sonar
returns across cells in a global confidence grid for mapping. The grid is reduced
to a polar histogram, whose bins are finally reduced to a single value scoring the
occupancy for each sector.

The drawbacks of the VFH are it is not feature-based, limited to small environ-
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ments, and subject to various local minima behaviors. Addressing the limitation to
small environments requires localization for correction of accumulating odometry er-
rors. Concurrent localization would also allow increasing the scale of the map, which
would provide information that could be used to plan and avoid many of the local

minima behaviors.

1.4 System Overview

The feature-relative ROAM system may be described as the integration of real-time
SLAM and obstacle avoidance systems. The core technology for real-time mapping
derives from the framework Atlas [3], an efficient framework for localization and map-
ping in large-scale, cyclic environments. The Atlas framework manages a graph of
local submaps for the environment, and each submap performs localized SLAM. The
localized SLAM implementations for submaps are feature based supporting sonar
sensing for map building and localization. Obstacle avoidance and navigation mod-
ules interface the mapping framework, and iteration of mapping and navigation occur

synchronously.
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Chapter 2

Simultaneous Localization and

Mapping

The goal of Simultaneous Localization and Mapping (SLAM) may be stated as esti-
mate both the position of a robot and its environment by processing measurements
from its sensors. Real-time implementations must be causal, where estimates can

only use measurements already observed.

The basic tool used for SLAM is the extended Kalman Filter (EKF). This thesis
uses an EKF to estimate the dynamic state parameters of the mobile robot’s state as

well as the static state parameters of the enviroment’s features.

The SLAM implementation used in this thesis may be described from the models
of the robot and the environment. The models dictate which states the EKF must
have, how those states are updated with new data, and how they are predicted.
Additionally, the enviroment model determines when to add additional states to the
EKF. The EKF states related to the robot paramterize the robot pose, and the
EKF states for the enviroment parameterize the features. In this implementation
synchronization of odometry measurements and range sensor readings occur prior
to updates, where observations are structured as views containing the timestamp,

observed odometry, range data, and features extracted in the view of raw data.
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2.1 Robot Model

The B21 mobile robot used for experiments uses a four wheel synchro-drive sys-
tem. The robot allows independent control of translational and rotational motion;
the dynamics are more like a tank than a car. Odometry measurements from the
driver are simple integrations of linear and angular path lengths converted into poses.
Measurement error increases with time as the wheels or turning base slip or skid.
Any concurrent translational and angular velocity also introduce some error into the
reported pose since the driver does not account for the position and heading depen-
dencies from path curvature. Modelling the B21’s four wheel synchro-drive system
is not necessary, and a two wheeled odometry is used for reasons of simplicity and
relatively high sensor frequency. Odometry measurements may be observed with pe-
riods as small as 30ms and sonar measurements as small as 180ms. The details of the

software driver written are discussed in section 77.

The robot pose has three parameters, x, = [z y 6], for the position and heading
of the robot. Propagation of the robot state follows a two-wheeled odometry model
with differential motion updates. The change in observed poses is converted into
translational and rotational velocities (v,w) to compute the differential update and

noise, which is velocity dependent.

Az = vAt(—sinwAt) (2.1)
Ay = vAt(coswAt) (2.2)
Al = wAt (2.3)

The noise model for odometry is velocity dependent. Noise source parameters for

wheel slippage (0sp) , wheel scale (0sete), and wheel base (o).
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or = Efg?lv V2 + w? (2.4)

oR = \/(1/2 +w?) o2, + (wop)* (2.5)
cosf§ —sinf 0

Jeobot = | sinf cosf O (2.6)
0 0 1

o2 0 O
Q = Jrobot 0 0'% 0 JrobotT (27)

2
0 O Ostip

2.2 Measurement Models

The measurement model depends on the sensor type. The implementation in this
thesis supports both laser and wide-beam sonar range sensors. The measurement
model for laser range sensors uses line features, and the sonar model uses both lines

and point features.

2.2.1 Laser Feature Model
Feature Extraction

Feature extraction with laser range sensors is limited to line segments. Line segments
are estimated with a split-and-fit algorithm for each laser scan. Lines are paramterized
by p, the perpendicular distance of the line from the map origin, and ¢, the angle
of the line’s normal. Endpoints do not have corresponding Kalman states, and thus
not used in updating the robot’s pose. However, endpoints are tracked and used for
data association with observed lines since overlap and coverage is used in matching

and extent of mapped lines may increase.

Line parameters p and ¢ are estimated from a set of N points in a laser scan
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according to the following equations:

1 X
1
b= ; 2.9
g N;y (2.9)
1 X
i=1
1 N
Cyy = NZ(%"@)? (2.11)
i=1
1
oy = 7 2 (@i = D)y~ ) (2.12)
=1
1 2Cqy Vs
p = Tcosp+ gysing (2.14)

Extracted line segments in the SLAM module require a minimum number of ob-
servations prior to becoming a feature. Due to the low noise of the SICK laser scanner
used and its angular precision of about .5 degrees, this number is very low at 2 ob-
servations. With a peroid of about .4s, extracted features are quickly incorporated

into the map.

Feature Prediction and Matching

Mapped features, which are in the local map coordinate frame, are transformed into
predicted features, which are in a robot centered coordinate frame, with a transfor-
mation derived from the robot’s pose relative to the map origin (see appendix A).
After transforming mapped features into the robot’s view, possible matches are
found using nearest neighbor gating based upon a Mahalanobis distance using the
feature parameters and covariances. Multiple matches between observed features a
mapped feature is allowed. For example separate portions of a line may be observed
due to a partial occlusion. However, mapping observed features to more than one

mapped feature is forbidden, because the measurements may not be used twice.
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For a predicted mapped feature L,, and an observed feature L,, the Mahalanobis
distance d is computed from the difference in feature paramaters and covariances from

both features:

Pz — Pm

L.w = (2.15)
¢z - (bm
d, = LT (Zp.+%1,) " Lom (2.16)

The distance d, is compared with two thresholds. A near threshold determines valid
matches. A far threshold is used to prune out gross mismatches and for preliminary
tracking of lines observed with laser, but not sonar. Observed features that have
distance exceeding the far threshold for all mapped features are considered new, and
begin the initialization process to be described shortly. For line features, an additional
two thresholds are used to determing near and far lines based upon percentage overlap.
Percentage overlap for nearly parallel lines in this implementation is defined to be the

length of the intersect divided by the length of the union.

Feature Updates

The parameter residuals of the matched features are used in the EKF update step. For
line features the endpoints do not have Kalman states, but the line feature object’s
endpoints may be extended when the observed lines project further than the extent

of the mapped line.

Feature Initialization

When using a laser sensor, the map feature initialization process requires a feature to
be tracked for a brief period before insertion into the map. Preliminary features are
those that are judged to be far from all mapped features using the thresholds men-
tioned in the section 2.2.1. In subsequent iterations, observed features unmatched
with mapped features are matched the prelimary feature set, and newer preliminary

lines are found from the remaining unmatched far observations. The prelimary fea-
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tures are propagated with the robot’s change in odometry, but there is no update step
to preliminary features. Preliminary features must be observed a minimum number
of times during this stage to be mapped and are otherwise deleted. Once a prelim-
inary feature is observed the minimum number of times, the latest observation for

that preliminary feature is inserted into the map.

2.2.2 Sonar Feature Model

Feature extraction with wide-beam sonar presents several challenges not seen with
laser range sensors. Unlike laser sensors, wide-beam sonar typically produces many
spurious readings and individual range measurements with wide-beam sonar have
significant angular uncertainty. This requires special processing of the raw sonar
data for feature extraction and multiple sonar echos for echolocation of objects. This
implementation assumes a 2D representation to dramatically simplify the model and

reduce computation time.

Multiple Vantage Points

The principle driving the measurement model of sonar features in this implementation
is mapping features from multiple vantage points due to partial observability [8]. This
principle provides the means to accomodate the angular uncertainty inherent to wide-
beam sonar sensors. Observation of an object from multiple vantage points provides
the information necessary to reduce angular uncertainty and differentiate between
feature types.

The EKF state maintains several previous robot poses sampled using a minimum
motion baseline to provide the multiple vantage points. These vantage points are
bounded in number, and once the maximum number of poses is reached, adding new
poses causes deletion of the oldest pose. The time of the oldest pose limits the history
of sonar returns to use in the feature extraction module that preprocesses the raw

sonar data for adjacencies.

The Kalman states for these saved poses are not propagated like the current robot
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pose state, but the saved poses are subject to change during the update step. The
changes from the update state are propagated into the feature extraction module as
well.

Two configurable parameters for the vantage points in the Kalman state affect
how the vantage points are chosen, which affects how new features are initalized
into the map. The maximum number of vantage points should be small enough to
maintain some locality around the current robot pose since measurements taken from
distant poses are less likely to have been from the same feature, especially in cluttered
enviroments where object occlusion restricts visibility. The distance between vantage
points should be large enough for sonar parallelax so observation of feature between
two vantage points can reasonably conclude that it is in fact a feature and not a

phantom feature due to multiple reflections or sensor crosstalk.

Feature Extraction

The basic model for wide-beam sonar range processing in this implementation uses
pair-wise consistency tests since sonar range measurements give the range to the
nearest surface in the beam but not the exact bearing. Each sonar range measurement
represents arc of width equal to the beam width. Pairwise consistency occurs when
the arcs of range measurements taken from multiple poses intersect and denote that
the measurements are likely to be reflections of the same object. A Random Sampling
and Consenus (RANSAC) approach is used to extract the best estimates of features
from sets of consistent range measurements.

The sonar RANSAC module keeps a short history of the robot’s position, and
the range and bearing of the sonar echo (z,y,8,r). This history is limited by the
time of the oldest saved pose, or vantage point, in the SLAM module’s state vector.
New sonar data is added when the robot has traveled a minimum distance (a move-
ment threshold) from the previous pose where sonar data was added. When adding
new sonar range data, each measurement is tested for compatability with existing
measurements. The compatability tests are binary constraints for adjacency of mea-

surements from point and line features. A feature may be extracted from a set of
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Figure 2-1: Example of multiple vantage points of a sonar point feature.

compatible measurements when that set reaches minimum count.

For point features, two sonar echos are adjacent only if the distance d between
the centers of their arcs is less than the average width of the arc. Also the arcs must
intersect, and a circle intersection test, where det as defined below is real, is used
when the previous test passes as well. The arc intersect is computed as follows given

two measurements (x1,y1,01,71), (T2, y2,02,72) :

d = \/(.’122 — .771)2 + (y2 - y1)2 (2.17)
det = /((r1 +7m2)? — d&)(d®— (r2 — r21)2) (2.18)
Tz = % (_(yl - 92)(idet) ;2(7'2 - 7"1)(:1"2 — xl) + (xl + x2)> (2.19)
y = _;_ (+(IL’1 — x9)(tdet) ;2(7‘2 — )Yz — ) + (y + y2)> (2.20)

Extraction of line features requires the arcs of two echos to intersect and to be
contangent to a line. When the circles of the arcs have possible cotangent lines, the

value of det computed as shown below will be real.

det = /(x2— 1)+ (2 — y1)? — (r2 — 1)? (2.21)
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Figure 2-2: Example of multiple vantage points of a sonar line feature.

Of the possible four cotangent lines of two circles, only the ones on the same side
of the two circles are considered, and one of those two will be on the portion of the

circle within the beam arc. The line parameters (p, ¢) are then computed as:

(1y2 — z2y1)(Edet) — (y2 — y1)(r1ye — rav1) — (22 — 1) (r1zs — Tﬂ]{& 22)

(T2 — 21)% + (y2 — 11)? N

~(zo — z1)(Edet) — (y2 — y1)(r2 — r1)>
(y2 — ) (Fdet) — (z2 — 1) (r2 — 11)

¢ = arctan( (2.23)

Feature Prediction and Matching

The data association step for sonar features is very similar to the procedure used with
laser features, and the key differences are discussed here. Unlike laser, data association
of sonar features is done in local map coordinate frame since multiple vantage points
are required to observe features. Matching observed sonar line features with mapped
line features is done with the procedure as laser line features, but a separate set of
thresholds are used. For sonar point features, the same matching procedure is used
for the point parameters (p, @), but there are no overlap conditions.

Far thresholds for sonar features simply prune out gross mismatches and determine

candidates for new features. Unlike laser lines, there is no tracking of preliminary
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sonar features because extraction of sonar features requires multiple vantage points
that is similar to tracking of laser lines through several poses although minimum

baseline between the vantage points is required with sonar.

Feature Updates

When a valid match between an observed sonar feature and mapped sonar feature
is found, updates to the Kalman state of the feature are not based upon the feature
parameter residuals. Instead the residuals of the sonar echos from the mapped feature
are used since the noise is more easily and accurately modelled. The data associa-
tion step for features simply determines which the set of consistent echos associated
with the mapped feature to perform the updates. The residuals for the echos of the
observed feature from the predicted echos for the associated mapped feature update
the feature parameters according to the following computations.

The robot position in the map’s frame is (z,,y,,6,), the sensor location in the

robot’s frame is (x5, y,). Point prediction and updates are performed according to:

Az = (z,+xz5c080, —y,sinb,) — z, (2.24)
Ay = (Y + z,sin6; +y,cos6,) — yp (2.25)
d, = Az?+ Ay? (2.26)
—-Az —Ay
ST B o2
A
Vid, {—Ad—x _Eq 0] - J1 (¢, Xs) (2.28)

Line prediction and updates are performed according to:

ZTrs = Zy+ (xsc080, — yssinb,) (2.29)
Yrs = Yr+ (25500, + y, cosb,) (2.30)
d = pi— (Trscos ¢+ Yrssindy) (2.31)
Vidi = [1 (@rssin¢y — yrs cos ¢y)] (2.32)
Vi = [—cos¢; —singy 0] - Jo(x,Xs) (2.33)
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Feature Initialization

Candidate features for initialization into the map require visibility from more than
one saved vantage point in the Kalman state, so the set of sonar echos for that feature
must contain echos from more than one saved robot pose in the Kalman state. At
least three echos are required for initialization, and a configuration file parameter
allows this number to be increased. The echos from the oldest and newest vantage
points are used to initialize the feature. The remaining echos that occur at are used
to update the newly initialized feature in the same manner as echos from an observed

feature and an already mapped feature.

2.3 Large Scale Mapping

In large-scale environments a single EKF implementations may not be sufficient. As
the number of features grows, complexity grows Q(n?), and real-time performance may
be impossible with the computation resources. Furthermore, the system is not fault-
tolerant and EKF divergence from bad data association, spurious sensor readings, or
error propagation from distant an uncertain objects may cause system collapse. To
achieve a more fault-tolerant design with bounded complexity, this thesis uses a graph
local submaps with hypotheses and matching techniques to manage traversal in large,
complex environments. This design choice benefits from spatial locality of features
for localization and mapping within submaps, but sacrifices global map accuracy for
stability, bounded complexity, and scalability.

This thesis incorporates the mapping framework Atlas 3] for efficient SLAM in
large-scale envrionments to address several engineering issues with ROAM. Atlas
builds a graph of nodes consisting of local submaps performing SLAM and edges
between these submaps. Atlas performs uncertainty projection, submap genesis, map-
matching, cycle-verification, and traversal with competing hypotheses in a robust and
modular fashion. The advatanges of Atlas for a robust ROAM system are numerous.
Atlas’s use of submaps allows for substantial global error without failure by capturing

uncertainty in the graph edges. In a large-scale environment this property allows for
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continued operation with accurate local maps for obstacle avoidance without influence
of errors from distance submaps or loop closure failures. In essence this fault-tolerant
operation is possible at the expense of global error. Atlas bounds the complexity of
local maps for constant-time performance, allowing real-time obstacle avoidance and
path-planning control methods time to compute regardless of the environment. An-
other advantage of submaps for ROAM is locality of features for obstacle avoidance.
Since distant features are not relavant to obstacle avoidance, the locality and limited
complexity of the local submap bounds the computation required obstacle avoidance,
allowing real-time high-speed performance. However, features from all submaps may
be accessed should one want such information for global path-planning.

Atlas manages local submaps, or map-frames, through operations for genesis, un-
certainty projection, map-matching, traversal with competing hypotheses, and cycle
verification. Atlas abstracts the local maps’ SLAM implementation from the mapping
framework. For the purposes of this thesis, only a feature-based SLAM implementa-
tion accomodating laser and/or sonar range sensors is used, but other local SLAM
methods are possible, and 3] demonstrated Atlas with laser scan-matching and vision.
For use with Atlas, valid SLAM implementations provide functions for a performance

metric and map matching alignment error. The basic iteration steps of Atlas are:

1. Tterate the active local SLAM modules.
2. Update state of hypotheses.

3. Update graph using uncertainty projection and map matching .

2.3.1 Genesis

To acheive constant-time performance, Atlas limits the complexity of submaps, and
the genesis operation creates new submaps when a submap reaches capacity and the
robot leaves the current submap’s region. Each submap will have a performance
metric, which is high when the robot is near the current submap features, and low
when the robot is not in proximity of the mapped features or the submap is con-

strained from adding new features. The performance metric quantifies how well a
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map can explain the robot’s sensor measurements. When the performance metric
is too low with any existing submap, Atlas creates a new submap. Thus, submap
creation is not directly dictated by spatial extent, but environment complexity and
density of features. Other than at startup, submaps created through genesis are not
empty. Recently observed features from the previous submap are propagated into
new submap, so robot localization in the new submap will begin with lower initial
uncertainty growth.

During genesis of a new submap, Atlas adds the submap as a vertex in its graph
and an edge from the current submap to the new submap. The edge represents an
approximate coordinate transformation between the two submap origins and the un-
certainty in that transformation. The coordinate transform and uncertainty captured

by the edge is used with map matching in cycle verification and loop-closure.

2.3.2 Traversal with Competing Hypotheses

As the robot leaves the area of the current submap, either a new submap must be
created to explain the sensor measurements or the sensor measurements must be
matched to an existing submap. Atlas conservatively defers this decision until is has
enough information to form a conlusion. To do so, it allows instantiation of multiple
hypotheses. Hypotheses have one of four states: juvenile,mature,dominant,retired.
Retired hypothesis simply mark inactive submaps, but may be reactivated later as
a juvenile. The dominant hypothesis represents the best submap based upon its
performance metric. Juvenile hypothesis are instantiated from adjacent submaps to
check for feasible traversal of edges. A juvenile hypothesis may become mature if its
performance metric exceeds all other mature hypotheses after a short probationary
period, 5-10 measurement steps is typically adequate. Otherwise a juvenile hypothesis
is deleted. Of the mature hypotheses, the one with the highest performance metric
becomes the dominant hypothesis.

When the robot leaves a submap with an adjacent submap, two hypotheses are
instantiated. One hypothesis represents the genesis of a new submap, and the other

a return the adjacent submap. The adjecent submap has a juvenile hypothesis. The
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genesis hypothesis is mature, since it must begin mapping new features immediately.
The submap that becomes the dominant hypothesis depends on the performance
metrics of the current (dominant) submap, the genesis submap, and the adjacent
submap. If the genesis submap’s performance metric exceeds the dominant map’s
performance metric after the probationary period, it will become dominant and the
previously dominant submap will remain active until it’s metric falls low enough
to cause retirement. Otherwise the genesis map will be pruned, and the juvenile
hypothesis for the adjacent submap will mature and become dominant once it’s metric

exceeds that of the current submap.

2.3.3 Map Matching and Uncertainty Projection

Atlas finds the best estimate of relative coordinate transformations between submaps
based upon a quantitative measure of alignment for a given transformation provided
by the submap’s SLAM implementation. Specifically for this thesis, this measure
describes how well features of two maps align. Recall that submap genesis includes
propagation of some features, and adjacent maps will share some features and cover
overlapping regions.

The network of edges with their uncertainties in the Atlas graph is used in un-
certainty projection for global optimization and loop detection and closure. The
composite transformation and uncertainty of a sequence of edges determines candi-
dates for map matching. When multiple paths exist, the path used will be the one
with minimum uncertainty. When a possible loop is found through uncertainty pro-
jection, and the submaps at the loop ends sufficiently match, Atlas adds a new edge
to the graph. Since the new edge is likely to have a large uncertainty, Atlas attempts
to distribute some of the residual error among edges along the loop’s path.

The uncertainty projection and map matching steps are rooted at the current
submap. When a loop is detected and closed by a new edge, the effect on the graph
is not considered until later. Other loop possiblities might be created by the new
edge, but they won’t be detected until the robot enters a submap within the new

cycle. Deferring such computation keeps complexity bounded to maintain real-time
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performance.

Uncertainty projection is also used when spawning a juvenile hypothesis for the
robot moving into an adjacent submap. Although the submaps are independent,
the initial uncertainty of the robot’s pose is seeded from the composite projected
uncertainty of the robot in the current submap with the edge between the two maps.
The projected uncertainty provides a better initial guess for robot relocalization than

using infinite uncertainty due to statistically independent submaps.
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Chapter 3

Feature-relative Obstacle

Avoidance and Navigation

In the previous chapter, the problems of localizing and building a map of the en-
vironment were addressed, and this chapter focuses on how to use that knowledge
to command the robot. The first concern with control is the safety of the robot, to
be described next. The next concern of this chapter is the design for incorporating

feature-relative navigation.

3.1 Basic Obstacle Avoidance

3.1.1 Sensor Simulation

The basic principle for obstacle avoidance in this thesis is to use mapped and/or
observed features to provide a richer image of the environment than could be currently
observed. This idea takes some inspiration from the Vector Field Histogram (VFH)
[1] for fast obstacle avoidance using sonar. In [1] the VFH reduced the occupancy
grid-map to a score for each of n angular sectors around the robot. The VFH in
[1] used an occupancy grid-map accumulating sonar returns over a period of time
to account for the difficult nature of sonar. This thesis shows that a feature-based

representation is permissible for navigation in a static environment. In this thesis,
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the feature based map and observations are reduced to a minimum range for each
sector, effectively producing a ray-tracer scan for the environment like a laser scanner
that could see glass obstacles, be invariant of lighting conditions, etc. like sonar. The
generated range image is then used for basic obstacle avoidance and exploration.

For robots with laser alone, this method is not very useful, unless an obstacle
avoidance routine relied upon ranges to obstacles not within the angular bounds of
the laser sensor. For robots with laser and sonar, this method can merge information
about obstacles detected by the two sensors. For robots with sonar alone, this method
is crucial to overcome the difficulties of sonar: partial observability of objects, angular
uncertainty, and echos reflected away from the robot by objects. Addressing the first
two difficulties allow the robot to react more appropriate to the environment with
knowledge of obstacles that are not currently seen by the sonar. Sonar reflections
many times are not returned to the sensor, making unsafe regions appear safe until
the robot finally gets a normal reflection.

The choice of features to use for simulating scans is very important. The imple-
mentation used in this thesis is configurable to use observed features and/or mapped
features for sonar and/or laser features. Observed laser features provide a limited
view of the enviroment, but are not subject to errors from the SLAM module. For
sonar sensing, the mapped features provide the required ranging information with
least uncertainty. Observed sonar features may be spurious and slopes of observed
lines from the same object have significant variation due estimation model for a wide

beam sonar.

3.1.2 Scan Generation

A scan generator module provides a laser-like range scan image for use with basic
obstacle avoidance and exploration. Features are transformed into the robot’s coor-
dinate frame prior to calculation of the range values for each sector. For line features,
each sector is checked if a ray from the robot cast with the sector’s angle intersects
the line. Of the intersections found, the one with minimum range determines the

sector’s range value. Point features do not require an intersection calculation, since
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their angular extent is theoretically zero. Since these features typically denote an
object with volume, they are treated as arcs with a maximum length of 20cm and

maximum span of 15 degrees.

3.1.3 Shield

Collision avoidance is implemented with the Shield module. This module processes
range scan images, such as the generated scans, to determine to determine whether
the robot is in danger of an impending collision, and will either slow or stop the robot
if it is too close to an obstacle, and will issue steering controls to avoid the obstacle.
A benefit of this obstacle avoidance method is that it allows for easy integration of
feature-relative navigation modules because the module is passive when the robot
is not close enough to an obstacle to require avoidance. By using a scan generated
from features, the task of coordinating control between basic obstacle avoidance and
feature-relative control is much simpler, since the same features are being used.

Two elliptical shields protect the robot and are configured with half-lengths for
their principle axes. The major semiaxis of each ellipse is centered on the robot’s
current heading. The boundaries of two ellipses govern the classification of range
scan points into three zones: danger, caution, and safe. The safe zone includes
anything outside both ellipses, and the module ignores this zone. The danger zone
includes all points within the danger ellipse, and the caution zone include includes
all points within the caution ellipse. Although not a requirement, the caution ellipse
is typically configured to fully enclose the danger ellipse. Figure 3-1 shows a typical
configuration for the two zones.

After processing a range scan to find the points in the caution and danger zones,
the Shield module calculates controls as follows. When no caution or danger points
are found, no action is taken. Priority is given to the danger zone points, and if
any danger points are found, controls are calculated based upon those points. When
danger points are found, the robot’s translational velocity is set to zero. When caution
points but no danger points are found, the robot’s translational velocity is slowed to

a configurable creeping velocity.
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Danger

Figure 3-1: The caution and danger zones used for obstacle avoidance.

To steer the robot away from any obstacle, Shield uses the minimum range mea-
surement to determine the direction it should steer. It also compares the number of
points on its left and right sides and if this difference is larger than 2 and conflicts with
the direction of the minimum range measurement, the robot is steered in the other
direction. The magnitude of rotational velocity is typically configured to be larger

for avoiding points in the danger zone and smaller when avoiding caution points.

3.1.4 Simple Exploration

In the absence of more intelligent navigation control, a default exploration method is
used to keep the robot moving in the environment when the Shield is inactive. This
exploration method attempts to move the robot up to a maximum speed and steering
slightly to avoid aiming the robot directly at obstacles. The method uses a range
scan to find points within a small view angle ahead of the robot that are not too far
away. When no points are found in the region, then the robot’s rotational velocity is
set to zero. The steer controls are calculated from these points by taking the ratio of
mean distances between the points on the left and right. When no points are found

in one of the sides, the robot steers in that direction.

The relevant configuration parameters for this method are for the robot’s maxi-
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mum translational velocity, the distance it should look ahead, and angular span of
the view ahead it should look.

The controls from the simple exploration process are smoothed to prevent jerking.
Otherwise the robot may appear jerky when restarting exploration after a manual
(remote control) override or when the robot’s prior velocity was small because the

Shield module just relinquished control.

3.2 Feature-based control

This section describes a design for executing feature-relative navigation. Coordina-
tion of feature-relative control with basic obstacle avoidance follows a subsumption
architecture [5]. Two basic behavior types were designed for use with the two feature
types. A Tether controller operates relative to point features, and the goal behavior
is to approach and orbit the point feature. A Follow controller operates relative to
line features, and implements wall following.

The algorithm used for control would follow these basic steps:

1. Score features.

2. Initialize an appropriate controller for feature with maximum valid score.
3. Run controller until done, unsafe, or better scoring feature exists.

Scoring the features effectively determines the feature path the robot will follow.
Scores are updated each iteration. The scoring function ranks nearby and visible
features higher than features that are distant or not visible. The scoring function
uses a large coefficient for visibility and a smaller coefficient for distance squared.

Transistions between features occur for three reasons. If the robot encounters an
obstacle in its path, then the controller is aborted by setting its score to an invalid
value. The second reason for finding a new feature is when the controller for the
current feature has reached a done status. The Tether controller is considered done

when the robot has orbited the feature The Follow controller is done when the line
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feature can no longer be followed. The third reason for a transition to another feature
is when a better scoring feature is found. The Tether and Follow controllers both decay
the score of their current feature. Once the controller has approached the feature,

the score for that feature will decay linearly to zero based upon the percent coverage.
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Chapter 4

Infrastructure

This chapter describes the software platform used for development and experimenta-

tion. The software driver written for the B21 robot is also described here.

4.1 Software Platform

The software platform for implementing this research is MOOS : Mission Oriented
Operating Suite [11]. This system defines the structure and interface for implementa-
tion all the real-time software used in this research. This system allows for modular
development of software in C++ for multiple types of robots, data logging, wireless
communication and remote control (manual or automated) via TCP/IP, and sim-
ulation. Currently this system provides the support and interface to Autonomous
Underwater Vehicles AUVs, autonomous kayaks, ER1 land robots, and B21 land-
robots. This system has been used in the experiments in [10], [4], and [2]. .

The MOOS system consists of a distrubuted set of processes, and communi-
cation follows a star network model. The central process acting as the short-term
memory database is the MOOSDB. All inter-process communication must occur via
the MOOSDB. Drivers and processes publish data under a name, or key, to the
MOOSDB where other processes may access the data via a subscription to that
key. The MOOSDB is the server for all communications and other processes are

clients. Unlike the client processes, the MOOSDB does all processing in its com-
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munications thread asynchronously via the select command. Each MOOS process
uses at least two threads: one for communication and one for processing. The com-
munication thread manages incoming and outgoing messages. The communication
thread passes new incoming messages to the processing thread, and the processing
thread passes outgoing messages the communication thread. Each thread is given a
fundamental frequency. This frequency should be chosen carefully since MOOS uses
a data polling model. The frequencies should be set a rate high enough to prevent

latency in real-time control.

A logger process recorded data for the experiments. The logger pLogger2 reg-
istered for the keys of relevant data, and wrote their values to a log file. pLogger2
polled the MOOSDB for data at 40Hz, a rate much higher than the frequency of
any sensor or process producing data to log. This logger is capable of producing

synchronous logs and asynchrounous logs.

4.2 B21 Software Driver

This thesis used a B21 robot for all experiments with sonar, and a new driver irFlex
was written to interface the hardware. During startup of the robot, irFlex reads a
configuration file for parameter settings. The relevant parameters discussed here are

for the robot’s radius and the minimum sonar period.

As a MOOS application process, irFlex has both a processing frequency and
communications frequency. Since irFlex simply reformats messages between the
hardware and other processes, the communications and processing frequencies are
identical. The frequency chosen is chosen to at least prevent buffering of outgoing
messages, so other processes see little latency between the timestamp and receipt of
data. With a minimum sonar period configured to .180s and odometry data period
of roughly .035s, the frequency was set to 30Hz. This frequency is higher than the
frequency for the process performing SLAM and obstacle avoidance pROAM.
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4.2.1 Odometry

The B21 robot’s hardware provided odometry is reported as a cumulative distance
traversed for translational and angular motion. Translational motion is simply the net
distance the wheels have traveled forward, and rotational distance is an unwrapped
angular value. To put the robot’s odometry into a coordinate frame such that the
translational movement will depend on the heading state, the linear and angular
values the B21 provides are processed in the following manner.

When the system starts or when the driver receives a request to reset the odometry,
the odometry state is reset to zero. The linear and angular values reported by the
hardware are corrected to be in units of meters and radians and used to determine
differential motion for the robot’s odometry. The difference between the linear and
angular values reported and the previously reported values (Ap, A¢) are converted
to the state change [Axz Ay A#] using the current heading state and assuming that

a heading of zero has the robot facing the +y direction.

Ax = Ap(—sinb) (4.1)
Ay = Ap(cosh) (4.2)
Ag = A (4.3)

The odometry is updated with the differential change and the heading wrapped before
being published.

4.2.2 Sonar Data

The B21 robot has a ring of 24 polaroid ultrasonic sensors, each having a beam width
of 30 degrees. Updates of sonar range data occur asynchronously for each of the
B21’s six panels of four sensors. The typical period between updates of two of the
panels was measured at 33ms, and occasional checksum errors for a panel resulted in

doubling this period. Sensors that do not detect a return report a maximum range
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value, roughly 22.664 meters.

The interface for sonar range data provided by the irFlex driver provides sonar
data for all 24 sensors and does not report data for each of the panels independently.
The range data for each sensor is held in an array, and another array holds the times-
tamps for that range reading. When the newest timestamp exceeds the timestamp
of the last published set of ranges, all ranges are published. The ranges not updated
within this period are set to the maximum range value prior to being published to
prevent subscribing processes from double counting measurements.

irFlex also publishes the geometry of the sonar sensors on the B21 robot at
startup and whenever it receives a request from another process. The geometry of
the sensors is based upon the robot radius and the mean angular difference between
sensors. Although the name of the B21 robot refers to a diameter of 21 inches, this
is the diameter of the robot’s base. The top portion of the robot with the ring of 24
sonars has a slightly smaller diameter, measured at 19.5 inches. Each sensor is given
an index from 0 to 23, beginning at the sensor just to right of the robot’s heading
and going clockwise. The angular separation of sensors is approximated at 2m/24
with the initial angular offset being half the separation. Figure 4-1 shows the robot’s
sensor geometry and its six panels.

On the particular B21 robot used during experimentation, the sonars were not all
working. Several of sonar sensors would fail on occasion and only report a maximum
range value. The sonar at index 11 as shown in 4-1 was definitely broken. These
problems were not critical; the other sonars provided more than sufficient data to

conduct the experiments.
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Figure 4-1: The sonar sensor geometry for the B21 robot when facing in the +y direction.
The inner numbers and red lines denote the six panels, and the outer numbers and black
circles represent the sonar sensors.
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Chapter 5

Results

5.1 Tank Experiments

A series of experiments using a B21 mobile robot were conducted in a controlled
environment testing the mapping and obstacle avoidance using only sonar sensors.
The robot was placed in large drained tank, approximately 13 x 30 feet. To provide
point features for obstacle avoidance, cylindrical PVC pipes of varying diameter,
an elliptical metallic pipe (semiaxis radii are approximately 10cm and 5cm), and
broomsticks were placed around the tank. The placement of objects for point features
varied between experiments to provide slightly different environments for testing.

Figure 5-1 shows the experimental setup with one configuration of obstacles.

Figure 5-1: View of a sample experimental setup.
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Figure 5-2: Mapped and observed features during an experiment.

Figure 5-2 shows a screenshot of the robot, the mapped features, and the observed
features. In this experiment the robot demonstrated reliable obstacle avoidance based
solely upon mapped sonar features. The maximum translational velocity was .3m/s,
but typical velocities were around .2m/s since the environment was cluttered. The

experiment was terminated after approximately 560 seconds.

In another experiment using a different configuration of obstacles, the robot ex-
hibited successful obstacle avoidance. The duration was approximately 480 seconds.
The following figures show screenshots of the mapping process working as the robot
was avoiding obstacles. The robot is shown in blue, mapped features in light blue,

observed features in red, and vantage points (previous poses) are shown in purple.
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Figure 5-3: Mapped and observed features from multiple vantage points.

Green dots show raw sonar data for the last 1000 valid echos (less than the maximum
range value).

Figure 5-3 shows how the robot’s map compares to the currently observed features.
The figure on the right shows how the raw sonar data for comparison. Figure 5-4
shows again the same instant in time. Arcs are shown in this figure for the sonar
returns found in the RANSAC data association engine for sonar returns at vantage
points that have at least one adjacent return. The small clusters of spurious sonar
data in front of the robot with no associated features (or real object). Such clusters
would not be rejected by grid-based approaches to obstacle avoidance, and would

incorrectly affect behavior.

Figures 5-3 and 5-4 both show a substantial 'gap’ in the robot’s track, as seen
from the covariance ellipses for the saved vantage points. The reason for this ‘gap’
is due to a temporary hardware failure. For unknown reason, the driver for the B21

robot will have temporary periods of time where the odometry values reported by
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Figure 5-4: A snapshot of ROAM.
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Figure 5-5: ROAM action snapshot at time 1.

the hardware fail their Cyclic Redundancy Check (CRC), so odometry data is absent
for a brief period of time. The end of the gap in the figures represents the robot
relocalizing once odometry data was again available.

The sequence of figures 5-5, 5-6, 5-7, and 5-8 show a sequence of screenshots taken
during an experiment. The trail of covariance ellipses following the robot show both
the localized uncertainty of the robot’s pose as well as a short path history. The
screenshots on the right hide the map to show the simulated range scan sensor used

for obstacle avoidance.
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Figure 5-7: ROAM action snapshot at time 3
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Figure 5-8: ROAM action snapshot at time 4
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Chapter 6

Conclusion

6.1 Summary

This thesis presented an implementation of feature-relative Real-time Obstacle Avoid-
ance and Mapping and demonstrated operation using wide-beam sonar sensors. This
thesis integerated previous research by Bosse [3] for mapping in large scale, cyclic
environments and a method for obstacle avoidance that simulates a high angular

resolution range sensor using mapped features.

6.2 Future Work

This thesis presented a simple implementation of ROAM. Several key issues are de-

scribed in this section that could improve performance.

6.2.1 Environment Model

A substantial limitation of the implementation in this thesis is the representation of
the environment with only static lines and points. A richer set of feature types could
model more environments with better accuracy, and feature-based obstacle avoidance
could be applied reliably in more environments.

Expansion of the current sonar feature set to include lines, cylinders, edges, and
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corners could be accomplished with the models described in [7]. The measurement
models are similar in form to those used in this thesis, only slightly more complex.
Using these features could help optimize a robot for indoor enviroments.

One possibility for further research would be to incorporate a feature extractor
using Trajectory Sonar Perception [13},{14]. Trajectory Sonar Perception allows rep-
resentation of objects with any constant radius of curvature. Line objects would have
an infinite radius of curvature, and point objects would have zero radisu of curvature,
but most 2-D point objects are actually cylinders with a small radius. The curva-
ture parameter would become another feature parameter requiring estimation and a
Kalman state.

Another limitating factor of the implementation in this thesis is that the obsta-
cle avoidance assumes a static environment, since the sonar feature-based obstacle
avoidance relies upon mapped features. One extension for this implementation is to
add mobile object tracking, and add those objects to the mapped features prior to

generating scans.

6.2.2 Path Planning

The basic obstacle avoidance and exploration used in the experiments was rather
crude. Incorporation of other algorithms for more intelligent exploration need to
be explored. At the time of this thesis, several partial implementations for feature
relative navigation behaviors remained to be finished and integrated.

One possible extension for smoother control of the robot would be to incorporate
a Curvature-Velocity Method (CVM) [15],[6], [12]. Using CVM could replace the
existing obstacle avoidance and exploration by controlling the robot’s trajectory based

upon time to collision with obstacles.

6.2.3 Data Latency

The MOOS platform provides a very convenient and modular environment for de-

veloping and testing robot software, as pROAM and irFlex were developed inde-
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pendently. For most purposes, MOOS’s limitations do not affect performance. The
most relevant limitation for the research in this thesis is the communication latency
between the hardware and the obstacle avoidance and mapping process. At higher
velocities it may become important to have combine irFlex and pROAM into a
single process so odometry and sensor data are processed immediately. This single
process should still have a MOOS interface for purposes of remote control/manual

override and data logging.
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Appendix A

2-D Coordinate Transforms

Object poses in two dimensions may be represented with a vector of three dimensions

containing the Cartesion coordinates and the heading relative to some base.

T
Xpase' = | ¥ (A1)
0

The operators for inversion © and composition @ provide the basis the transforma-
tions for conversion between coordinate frames. For an object A in the coordinate
base B, x4 defines the location. The inversion operator provides the relative location

of the base from the object x§:

xk = oxp (A.2)
[ _ cosly, —sinf, O
= sinfy, —cosby, O |XB (A.3)
I 0 0 -1
[ —Zpg COS Opg — Ybe SIN Oy
= Tpa SIN Opg + Yba COS Opg (A4)
I —bba

a7



Given two objects A and C, the relative pose of A in base B, and the relative pose

of C to A, composition provides the relative pose of C' to A :

x§ = xpoxf (A.5)

cosb, —sinf, O

= XQ + | sinf,, cosb, O Xg (A.8)
0 0 1
Tpg + Tae COS Opg — Yae SiN Gy
= Yba + Tac sin eba + Yac COS gba (A7)

Gba + Bac

These two basic operators provide the basis for other transformations of relative poses
between bases. Given the relative pose of A from B and the pose of A from C, the

pose of C from B is as follows:
xS = xA @ (oxd) (A8)

For uncertain poses, the operators have associated Jacobians for transforming the
covariances. There are two Jacobians for composition, the first with respect to the

first argument pose and the second with respect to the second argument pose.

—cosbhy, —Sinbpy  (Tpo Sin Opy — Ypa COS Opg)
Jo(x8) = | sinfa —cosfhs (TbaCOSbha + Yoo Sin Opa) (A.9)

0 0 -1

1 0 — (@8N bpy + Yoo cOS Gy)
Jie(xB,x%) = 0 1 (24 COS0bq — YacSinby,) (A.10)

00 1

cosfy, —siné,, O
Jzea(xﬁ, Xg) = sinf,, cosf, O (A.11)

0 0 1
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