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Abstract
Attacks on security systems within the past decade have revealed that security Ap-
plication Programming Interfaces (APIs) expose a large and real attack surface but
remain to be a relatively unexplored problem. In 2000, Bond et al. discovered API-
chaining and type-confusion attacks on hardware security modules used in large bank-
ing systems. While these first attacks were found through human inspection of the
API specifications, we take the approach of modeling these APIs formally and us-
ing an automated-reasoning tool to discover attacks. In particular, we discuss the
techniques we used to model the Trusted Platform Module (TPM) vl.2 API and how
we used OTTER, a theorem-prover, and ALLOY, a model-finder, to find both API-
chaining attacks and to manage API complexity. Using ALLOY, we also developed
techniques to capture attacks that weaken, but not fully compromise, a system's se-
curity. Finally, we demonstrate a number of real and "near-miss" vulnerabilities that
were discovered against the TPM.
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Chapter 1

Introduction

In this connected age, an information security system such as an online banking ap-

plication has to not only offer services to customers and clients but must also give

them assurance of privacy and security across various usage scenarios and threat

models. This complexity of this task often results in the system relying on a special-

ized hardware or software module for security services through a security Application

Programming Interface.

An Application Programming Interface (API) is a set of commands that pack-

age and expose complex functionality to external clients in a simple way. These

include commands that effect the features directly as well as any other initialization

and management commands. Clients can use these commands as building blocks for

software applications without having to worry about the underlying details, which

are abstracted from them. For example, a client can simply call the command

ConnectToHost(host) to establish a http connection without having to deal with

opening the network sockets and performing checksums on the received packets. A

good example of a software API is the Java Standard Development Kit API.

A security API has the same goal of abstraction, except that the commands in a

security API are mostly aimed at providing security services and come with multiple

implicitly or explicitly stated security policies. A security policy is a constraint on the

behaviour of the command that guarantees security. For example, an API command in

a banking system could be SecureTransfer(Integer x, Account accl, Account
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acc2), which transfers x dollars from accl to acc2. There is an implicit assumption

here that the data sent to the bank cannot be tampered with and the command may

achieve this by opening a Secure-Sockets Layer connection with the bank, although

this information is abstracted from the user. This assumption represents a security

policy of this command. A good example of a software security API is the Microsoft

Cryptographic API.

1.1 Problem with Security APIs

In the past decade, the increasing awareness of the importance of security not only

fueled the development of security modules but also encouraged better security en-

gineering - many security standards were established, the Trusted Computing [1]

initiative was started and Microsoft even made security its biggest concern.

As a result, cryptographic primitives, such as key generation and hashing algo-

rithms, encryption and decryption schemes, have undergone rigorous analysis and im-

provement. In fact, based on past lessons, security engineers know to use established

primitives like RSA. Protocols, sequences of steps that setup a working environment

such as a key exchange, have also undergone much scrutiny and development, espe-

cially after the famous attack on the Needham-Schroeder protocol in 1995 [15]. In

the same manner, system designers are careful to use established protocols such as

Kerberos or SSL.

Despite these efforts, information security systems reliant on security modules

are constantly being broken. We believe that this is often due to poor security API

design, which has not received a similar degree of attention as compared to crypto-

graphic primitives and protocols. In fact, Anderson in "Why Cryptosystems Fail" [2]

pointed out that many of the failures of retail banking systems were not caused by

cryptanalytic or technical weaknesses but by implementation errors and management

failures.

Our conviction began when Bond and Anderson found API level attacks on many

crypto-processors like the Visa Security Module (VSM) and the IBM 4758 Common
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Cryptographic Architecture (CCA) [17] in 2000. They exploited the VSM's key-typing

system, where key types were used to distinguish keys intended for different uses. By

manipulating the key-type information, they were able trick the system into accepting

an invalid key. They also found a similar attack on the IBM 4758 CCA, which is

used in bank networks. In this case, the 4758 XORed key-typing information into

key material. Using the XOR properties, they were able to tweak the key-typing

information to pass off an invalid key as a valid one for a particular operation. In

a short span of a few years, more attacks were found on the Crysalis and PRISM

systems [6], giving more evidence that the problem with security APIs was indeed a

real one.

The crux of the problem, it seemed, was that security policies could be subverted

when API commands were chained in a totally unexpected manner. For a system with

a handful of commands, protecting against these attacks would not be a problem.

But what about complex real systems that have 50-100 operations working across

4-5 modules? Another problem was that the security policies for the system were

not translated down to API-level requirements that could be checked easily by the

software developers. We believe that the addition of security statements at API-level

documentation is a good start to solving the security API problem.

Despite the likelihood of vulnerability, security APIs have not received due aca-

demic attention. This thesis explores this problem with formal automated analysis.

1.2 General Approach

Many of the earlier security API vulnerabilities were found through careful human

inspection and analysis, as Bond and Anderson did with the VSM. With larger sys-

tems containing more API operations, this requires thinking through an exponentially

large search space and verification becomes a tedious and unforgiving process. The

most obvious response is to employ mathematics and formal methods together with

automation.

But hasn't this already been done? Many ask if security API analysis is all that
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different from security protocol analysis. We argue that APIs present a tremendously

more complex problem since API operations could potentially use cryptographic prim-

itives, initiate security protocols, interact with the network and operating system and

even manipulate non-volatile storage. Furthermore, security APIs tend to have exten-

sive key management features, something that protocols generally do not. Therefore,

we argue that the analysis of APIs is necessarily more complex and will require greater

considerations than those of protocols.

Nevertheless, studying the analysis of security protocols gave us a wide variety

of techniques and tools to choose from. The formal methods used in analyzing secu-

rity protocols range from belief-based approaches like the BAN logic model [18], to

model-checking approaches that started with the Communicating Sequential Processes

(CSP) [11] and Dolev-Yao models [8], to proof-based approaches such as induction in

reasoning about sequences of steps. We needed a language that could describe API

commands and a tool that could search through chains of these operations, returning

the exact execution trace if an attack was found.

This led us to current choice of OTTER, a theorem-prover and ALLOY, a model-

finder. Theorem-provers find a series of logical statements (i.e. a proof), derived from

an initial set of axioms, that prove a particular statement. We model API commands

as logical implications and attacks as goal statements. The tool then searches for a

proof of the goal statement. If it terminates and finds one, the series of implications

will represent the sequence of API calls for the attack. Model-finders work very

differently; a model-finder takes a set of constraints as a model and attempts to find

an instance that satisfies it. We model the commands and the goal as constraints.

If the tool terminates and finds a satisfying instance, the objects in the instance will

reveal the sequence of API calls that constitute the attack.

However, all automated analysis can only be done within bounds. OTTER'S proof

search may terminate with no proof or may not even terminate at all. Likewise,

ALLOY requires a user-specified bound and not finding a satisfying instance within

those bounds does not preclude an attack. In either case, we can only state that

an attack is unlikely and nothing stronger - a fundamental shortcoming of bounded
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automated analysis. Despite this deficiency, we were able to model some previously

known attacks in OTTER. Then, we saw success with this approach when OTTER

found an extremely complicated "near-miss" attack on the IBM 4758 CCA that was

prevented only because the product did not fully conform to its advertised behaviour.

Later in this thesis, we will present other successes of this general approach.

1.3 Our Contributions

Our contribution to the Cryptographic API group is three-fold: exploring the ALLOY

model-finder, understanding the Trusted Platform Module (TPM) API and developing

new API formal analysis techniques.

* Alloy: This lightweight model-finder was designed to analyze small specifica-

tions of software systems. We used it to analyze feature level policies, manage

API complexity and even model information leakage, tasks that do not play to

the strengths of OTTER.

* Trusted Platform Module: The TPM is the Trusted Computing Group's

hardware security device, the answer to Trusted Platform Computing. This was

a worthwhile target since giants like National Semiconductor and Infineon had

already started producing TPM chips and IBM had already incorporated them

into their Thinkpad laptops. While we were unable to find attacks consisting

of long chains of commands, our analysis revealed some security flaws in the

design and documentation.

* New Techniques: With a new tool and a new target API, we were able to

develop a number of new approaches in analyzing security APIs. These include

an extension to the API chaining technique and techniques to model stateful

APIs, manage API complexity and model partial attacks - attacks that weaken,

but not fully compromise, the security of the system. Interestingly, we find that

in terms of finding attacks, the discipline of understanding an API sufficiently

to model it with a technique is often more effective than the technique itself.
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The rest of this thesis is structured as follows. Chapter 2 reviews previous modeling

work done by this research group. Chapter 3 describes the approaches we used in

our analyses. Chapters 4 and 5 describe the automated-reasoning tools OTTER and

ALLOY respectively. Chapter 6 introduces the TPM and chapter 7 presents our

analysis on the TPM's API, with some of our findings reported in chapter 8. Finally,

we conclude in chapter 9 with some discussion and suggestions for future work.
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Chapter 2

Previous Work

BAN logic, introduced by Burrows, Abadi and Needham in 1989 [18], started the

work of formal analysis on security protocols. Meadows further developed the notion

of automated verification with the NRL protocol analyzer [19]. Then in 1995, Lowe's

successful attack and fix on the Needham-Schroeder protocol [15] highlighted the ne-

cessity for protocol verification. Despite these efforts in analyzing security protocols,

because of the differences between protocols and APIs already noted, verification of

security APIs did not begin until Bond and Anderson attacked a number of security

APIs in retail banking crypto-processors in 2000, including the VISA hardware secu-

rity module (VSM) and the IBM 4758 Common Cryptographic Architecture (CCA)

[17]. The attacks were made possible through an unexpected chain of API calls. In

2004, research teams in both Cambridge University and MIT, jointly known as the

Cryptographic API group, began to direct research efforts towards analyzing security

APIs using automated reasoning tools.

2.1 A Taste of Security API vulnerabilities

For a flavour of the nature of security API vulnerabilities, let us take a look at the

attacks on the VISA Security Module and the IBM 4758 CCA, which were found by

Bond et al. [6].

We first consider the VSM, a cryptoprocessor with a concise API set designed to
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protect Personal Identification Numbers (PINs) transmitted over the banking network

supported by VISA. It employs a key-typing system, where key-types are used to dis-

tinguish keys meant for different uses. The VSM's EncryptCommuncationsKey com-

mand takes in a key and types it as a communication key. The TranslateCommunicationsKey

command takes a communication key and encrypts it under a terminal master key- a

master key of an Automated Teller Machine (ATM). The VSM's failure to distinguish

between a PIN derivation key and a terminal master key made it possible to type a

bank account number as a communications key using EncryptCommunicationsKey

and then encrypt it under the PIN derivation key using TranslateCommunicationsKey,

giving the attacker the bank account number encrypted under the PIN derivation key

- the PIN associated with that bank account!

Now we consider the IBM 4758 CCA, an API implemented by the majority of

IBM's banking products. It has 150 functions and supports a wide range of banking

operations. In particular, it uses a key-typing mechanism where keys are typed by

encrypting them under a key control vector XORed with the master key. A key

control vector is a simple string containing type information. At the same time, it

supports a KeyPartImport transaction that allows a module to combine partial

keys to form the final key, thereby allowing a policy of shared control. The problem

is that KeyPartImport also uses the XOR operation as part of its computation,

allowing adversaries to XOR cleverly chosen values with partial keys and then using

the KeyPartImport operation to re-type the key into a different role. Constructing

these keys formed the starting point for a number of attacks [6].

2.2 Automated Analysis with Otter

While the previous attacks were found by hand, effort in modeling API operations

in first-order logic (FOL) showed that attacks could be found more efficiently by ma-

chine. For example, the general decrypt operation could be stated as the implication

"If A knows the value of DATA encrypted under key K , A knows the value of the

key K, he can decrypt to get DATA", which can be subsequently written as the FOL
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clause:

-A(E(DATA, K)) I -A(K) I A(DATA)

where the predicate A(x) represents that x is a value known to the attacker and

E(x, y) represents to the value of x encrypted under y. Finally, we assert that some

values y are secret by writing -A(y). Then, the theorem-prover will try find a contra-

diction to -A(y), thereby producing an attack. This method proved to be extremely

valuable when we were able to verify known attacks on the IBM 4758 but the real

success came when OTTER discovered a variant of the powerful PIN derivation at-

tack on the IBM 4758. Again, the same weakness: that the XOR operation was used

both in key typing and secret sharing, was exploited. This variant required 12 steps

and involved 8 different commands, attesting to the importance of the role of auto-

mated verification in discovering intricate and complicated attacks. More detail on

this modeling approach, including techniques to reduce search space explosion, can

be found in chapter 4.
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Chapter 3

Techniques and Tools

Any practical automated reasoning approach consists of a technique and a tool that

effectively executes the technique. Our aim was to use established techniques, with a

few enhancements, in a less established field of research. These include representing

values symbolically and modeling the attacker's knowledge set. This way, we could

harness the power of techniques that had been proven to work. Next, we had to

find tools to execute these techniques. Our choice of OTTER, a theorem-prover, and

ALLOY, a rniodel-finder, allowed us to achieve success with our techniques, especially

since the tools complemented one another. This chapter summarizes these techniques

and the tools used to effect them.

3.1 Input/Output API Chaining

This technique stems from the work that Youn et al did on the IBM 4758 CCA [24],

where the first-order logic model of the 4758's API commands allowed the tool to

chain commands together in a many-to-many fashion. Basically, the model works by

defining a set of attacker knowledge, a set of possible actions and a set of desired goals.

The attacker is then allowed to feed any of his known values into the commands and

add any output values to his set of knowledge. This framework captures the attacker's

initial knowledge, his ability to use the system API methods, his ability to perform

typical primitive operations (e.g. XOR, concatenation, encrypt, decrypt) and the
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scenarios that constitute attacks. This way, an exploration of the entire search space

would yield any potential API-level vulnerabilities.

We extend this idea by noticing that APIs tend to re-use data structures for

various commands. For example, all encrypted blobs, be they encryptions of data

or keys, may be returned to the user in the same data structure. This can create

opportunities for input/output confusion: an API command expecting an encrypted

key could be passed an encryption meant for another command. Our new approach

captures these possibilities by under-constraining the inputs and outputs to each API

call.

3.2 Modeling Stateful APIs

Many systems maintain some kind of state in memory. The problem with modeling

state is that it greatly increases the search space of the automated tool. If there are k

bits of state, the search space could potentially increase by a 2k factor. On the other

hand, a stateless model of a stateful API gives the attacker more power; any real

attacks will still be found but the analysis may also yield attacks that are possible in

the model but impossible in the real system. Therefore, capturing state in our models

is important because it will constrain the attacker's abilities.

However, many systems retain a lot of state information. We propose that a

way of managing this complexity is to model state based on how it will constrain the

attacker's abilities. Firstly, we can do away with all state that is not security-sensitive,

state that does not have security related dependencies. A good example is statistical

data that is kept solely for performance benefits. However, it is important to note

that deciding whether state is security-sensitive requires an in-depth understanding

of the API's threat model. It is possible that a security-insensitive flag may affect

the operation of a security-sensitive command, thereby making it actually security-

sensitive. Secondly, we can partition all security-sensitive state objects into either

"loose" or "bound" state. In vague terms, the attacker can independently manipulate

any state that is not bound to the rest of the system - this state is described as "loose".
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All other state is considered "bound".

"Loose-state" objects are objects that can take on any value regardless of the

values in the remaining state objects. In other words, they are not bound to the rest

of the configuration and the attacker can independently manipulate their values. A

good example is a system flag that can be flipped at any time whatsoever. "Bound-

state" objects, on the other hand, take on values that are bound to the rest of the

configuration, values that the attacker cannot freely manipulate. Consider two flags

in the system bound by the following policy: the second can be set only if the first is

set. In this case, the first is "loose-state" while the second flag is "bound-state". It

is important to note that deciding whether state objects are "loose" or "bound" also

requires understanding the threat model of the API.

Later in this thesis, we present a method for modeling state effectively by grouping

types of state together and representing them in OTTER using multiple predicates.

Then, all the state is moved through each API command with an over-arching state

predicate that captures these multiple predicates. This way, commands affecting a

small portion of the state only need to be concerned with the one or two predicates.

This technique can be seen in section 7.1.

3.3 Managing API Complexity

A key component to analyzing a system and its API is managing complexity. Au-

tomated tools, however powerful, still suffer from search-space explosion. Although

some tools are intelligent enough to automatically prune their search-space (e.g. by

recognizing symmetries), the best solution is still for the user to manage complexity

at the level of the model - understanding what can be left out without compromising

the analysis.

The first strategy that we present is targeting. Based on experience analyzing

security systems, we find that vulnerabilities usually occur across:

* Trust; boundaries: Multiple systems functioning in the real world represent

different trust domains. In a company, for example, one system could belong
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to the legal department and another to the IT department, which has a very

different security policy. However, the two departments may need to share

sensitive information. Such functionality is a likely vulnerability since it is

always difficult for the sender to maintain control over information once it is in

the hands of the receiver.

* Module boundaries: Modules are a natural way to manage complex sys-

tems and many systems use some form of key-typing to bind key material to a

particular module. This is because an operation may need to know whether a

particular key is a master key, a communications key or a storage key. However,

key material that is passed between modules could be maliciously manipulated

to produce an attack. The VSM and IBM 4758 CCA attacks discussed in the

last chapter revealed such weaknesses.

* Version boundaries: A commercial system that rolls out upgrades or patches

must still support old versions for legacy reasons and it is not uncommon that

the development teams are different for two different versions. Poor documen-

tation and the necessary "shoe-horning" in new versions required to ensure

backward compatibility make it likely that security policies are overlooked in

the process.

In general, enforcing security policies across boundaries often requires a complex solu-

tion and complex solutions are often seen to break. Understanding these boundaries

will allow the user to first, breakdown the modeling problem into smaller problems

without the fear of excluding too many possible attacks and second, focus only on

subsections of an API.

The second strategy is one familiar to mathematicians: reductions. Many system

APIs are unnecessarily complex because they offer multiple ways to perform the

same task. While it is true that these multiple ways could potentially offer more

opportunities for vulnerabilities, it may also be the case that these multiple ways are

actually equivalent. In these cases, the model need only consider the simplest one.

A proof by hand of their equivalence may be sufficiently tedious and complicated to
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deter designers. In chapter 7, we demonstrate how an automated tool can help us

with these reductions.

3.4 Partial Attacks

Partial attacks can be described as the weakening of security, which differ significantly

from the attacks we were trying to model earlier, where security was completely

compromised. Partial attacks often lead the way for brute-force attacks to succeed

much more quickly.

Our work has been focused on attacks that discover "more-than-intended" infor-

mation about a secret, or what we term information leakage. Our general technique is

to create models of systems that operate on reduced-size secrets so that the automated

tool can reason about the secrets directly - examples include using 8-bit numbers in-

stead of 64--bit numbers, single-digit Personal Identification Numbers (PINs) instead

of 4-digit PINs. Within this technique, we have also developed two frameworks for

modeling systems in order to discover such weaknesses:

* Entropy Reduction: In this approach, the API of the system is modeled

such that the automated tool is able to reason about the input/output (I/O)

characteristics of each method. I/O characteristics can range from linearly-

dependent output to completely random output. Subsequently, systems that

use encryption to protect secrets can be analyzed for information leakage by

analyzing the I/O characteristics after a chain of operations. By describing I/O

properties that represent a reduction in entropy, we can then ask the tool to

find a sequence of events (i.e. an attack) that leads to such a characteristic. We

used this technique to analyze the ECB!ECBIOFB triple-mode block-cipher,

which will be described in greater detail in section 5.2.

* Possibility Sets: This involves modeling APIs using variables with values that

belong to a possibility sets, representing the attacker's possible guesses. Infor-

mation leakage can clearly be observed if the number of possibilities, say for a
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password, reduces more quickly than it should with a series of cleverly chosen

API calls. We employed this approach to model the discovery of PINs with

repeated API calls to the IBM 4758 cryptoprocessor, where each call leaked

enough information for the attacker to perform an efficient process of elimina-

tion. This is also detailed in section 5.2.

3.5 Tools- Otter and Alloy

Our tool suite now includes both a theorem-prover, OTTER, and a model-finder,

ALLOY. Both tools are based on first-order logic, so quantification is done only over

atoms. OTTER takes a set of logical statements and tries to prove a goal statement

based on them. Its first application was to produce the derivations and proofs of

mathematical theorems. ALLOY is a declarative model-finder, based on first-order

relational logic, designed to be a lightweight tool for reasoning about software and

safety-critical systems. It takes a set of constraints and attempts to find a model that

satisfies these constraints using a powerful SAT solver.

Before understanding in detail how OTTER and ALLOY work in sections 4 and 5,

let us first describe their relative strengths:

* State: State can be modeled in OTTER by tagging each clause with a state

predicate that changes with each operation. This can be cumbersome when

the amount of state increases. In ALLOY, state is modeled by adding an extra

dimension to all the relations. While this is a natural use of ALLOY, the model

requires an extra frame condition for each additional state object since all ob-

jects have to be explicitly constrained to stay the same across states when not

acted upon by any operation.

* Chaining: OTTER was naturally designed for derivation and thus is very well

suited to finding API-chaining attacks. Also, once an attack is found, OTTER's

proof trace will tell us exactly how the attack occurred. On the other hand,

when ALLOY finds an instance containing a violation of a policy, the instance
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only shows the objects that constitute the violation and not how the violation

arose. In most cases, however, discovering the attack trace is relatively easy.

* Composition: OTTER is excellent at API-chaining within a single system

but when an analysis is required against multiple systems, these systems have

to be explicitly created in the model. In ALLOY, however, the model-finding

approach ensures that all possible combinations of multiple systems (up to a

specified bound) are searched.

We will cover OTTER and ALLOY in greater detail, including examples and sample

code, in the next two chapters.
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Chapter 4

Otter - a Theorem Prover

4.1 Overview

The traditional theorem-prover uses a process that starts with a set of axioms, pro-

duces inferences rules using a set of deductive rules and constructs a proof based on a

traditional proof technique. OTTER (Organized Techniques for Theorem-proving and

Effective Research) is a resolution-style theorem-prover based on the set-of-support

strategy, designed to prove theorems written in first-order logic (FOL) by searching

for a contradiction. While the main application of OTTER is pure mathematical

research, we found its deduction system to be very suitable in modeling APIs and

searching through chains of API sequences. In this overview of OTTER, we will use a

simple model of encryption as an illustration of the modeling approach. We will also

describe some techniques for managing search-space explosion in OTTER.

4.1.1 First-Order Logic

At the core of OTTER lies FOL, resolution and the set-of-support strategy. We will

describe these concepts one at a time. To get a grasp of what FOL is, let us consider

where it falls in the three basic categorizations of logic: zeroth-order logic, first-order

logic and higher-order logic. Zeroth-order logic, also known as propositional logic, is

reasoning in terms of true or false statements. First-order logic augments it by adding
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three notions: terms, predicates and quantifiers. These allow us to reason about

quantified statements over individual atoms1. Higher-order logic further extends the

expressiveness of first-order logic by allowing quantification over atoms and sets of

atoms. The following terminology used in OTTER'S FOL language syntax will be

useful in understanding this chapter:

* constant - any symbol not starting with {u,v,w,x,y,z}

* variable - any symbol starting with {u,v,w,x,y,z}

* term - a term is either a variable, constant or a function symbol f(tl,.. , t)

applied to term(s).

* predicate - a predicate P expresses a property over term(s) and is either true

or false

* atom - an atom is a predicate applied to term(s) (e.g. P(x))

* literal - a literal is an atom or the negation of an atom (e.g. -P(x))

* clause - a clause is a disjunction of literals (e.g. -P(x) - Q(x) I R(x)). A

clause can have no literals, in which case it is the empty clause.

With this language, we can express many cryptographic operations in a symbolic way.

For example, in most of our OTTER models, we use the predicate U(x) to express that

the user knows value x and the binary predicate E(x, k) to represent the encryption

of x under key k. Now that we can read statements written in FOL, we can start to

describe OTTER's reasoning process.

4.1.2 Resolution

Resolution [21] was developed as a method for quickly finding a contradiction within

a set of clauses by searching to see if the empty clause can be derived. When this

happens, the set of clauses cannot be satisfied together (since the empty clause is

'Most of mathematics can be symbolized and reasoned about in FOL
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always false) and the set of clauses is termed unsatisfiable. The following algorithm

describes how resolution works:

1. find two clauses p = (Pi V V pn) and q = (qi V.. V qn) containing the same

predicate literal, negated in one but not in the other. Let us say predicates Pi

and qj are the same.

2. unify the two predicates, producing , the substitution that will make Pi equal

qj symbolically (e.g. f(x) and -f(v) unify with the substitution x/v).

3. perform a disjunction of the two clauses p, q and discard the two unified predi-

cates: (p V V i- V i+ V V Pn V q V V qj-1 V qj+l V V qn)

4. substitute any remaining variables using 0, producing the final resolvent

5. add the resolvent to the set of clauses

Resolution aims to derive the empty clause {}, which can only happen when two

completely complementary clauses are resolved (e.g. P(x) and -P(x)). It is easy to

see that when that happens, step 3 will produce a clause with no literals. It is also

important to note that resolution is a sound inference rule and resolution-refutation,

which proves a theorem by negating the goal statement to be proved and producing

a proof-by-contradiction on the goal statement, is also complete.

In OTTER'S FOL language, we write statements as clauses that contain a disjunc-

tion (OR) of literals. Consider the encryption operation written as a disjunction of

literals:

-U(x) I -U(KEY) I U(E(x,KEY))

where the predicate U(x) represents that the user knows value x and the term E(x, y)

represents the value of x encrypted under y. In OTTER'S syntax, there is an implicit

universal quantification over variables. Therefore, this says that if the user knows

any value x and the constant KEY, he can encrypt x with KEY. With all statements

written in this form, OTTER tries to prove that this set of clauses is unsatisfiable using
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resolution. When it does find a proof, OTTER prints out the trace of the conflicting

clauses.

OTTER supports a number of inference rules, including binary-resolution and

hyper-resolution. Binary-resolution is resolution performed on clauses with one posi-

tive and one negative literal (e.g. -P(x) I Q(x)). By clashing P(x) with -P(x), we

can resolve to obtain Q(x). Hyper-resolution generalizes this process to clauses with

multiple negative literals and one positive literal and is thus more efficient.

4.1.3 Set-of-support Strategy

OTTER'S basic deductive mechanism is the given-clause algorithm, a simple imple-

mentation of the set-of-support strategy [14]. OTTER maintains four lists for this

algorithm:

* usable - contains clauses that are available for making inferences

* sos - contains clauses that are waiting to participate in the search 2 (i.e. they

must be transferred into the usable list first).

* passive - contains clauses used for forward subsumption and contradiction.

* demodulators - contains equalities used to rewrite newly inferred clauses

The given-clause algorithm is basically a loop:

while (sos is not empty) AND (empty clause has not been derived)

1) select the best clause in sos to be the givenclause

2) move given_clause from sos to usable

3) infer all possible clauses using the givenclause

4) apply retention tests to each newly inferred clause

5) place the retained clauses in sos

In step (3), it is important to note that any inferences made must use the given-clause

as a parent. In step (4), the retention tests include demodulation and subsumption.

2sos stands for "set-of-support"
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Demodulation is the rewriting of newly inferred clauses into a canonical form (e.g.

rewriting add(add(1,2), 3) to add(1, add(2,3))) and subsumption is the discarding

of newly inferred clauses in favour of a more general clause (e.g. discarding P (1) since

P(x) had already been derived)

4.2 Attacks Modeled with Otter

This section describes previous work done on modeling the Visa Security Module

(VSM) and IBM 4758 Common Cryptographic Architecture (CCA) security APIs us-

ing OTTER [24]. The VSM and IBM 4758 CCA are hardware-based cryptoprocessors

used in bank Automated Teller Machine (ATM) networks to enable two important

secure-banking features: first, communication between the bank and the ATM and

second, Personal Identification Number (PIN) verification. Underlying these features

are a few building blocks: symmetric-key encryption, a unique master key, key-sharing

and key-typing. Key-sharing is the process of breaking a key into parts such that the

key can only be fully reconstructed when all parts are present. Key-typing is the pro-

cess of tagging on meta-data describing the key's intended use and usage domain. For

example, data keys are used for encrypting and decrypting data and communication

keys are used to protect session keys.

To authenticate the customer present at the ATM, banks issue a PIN to each cus-

tomer that is cryptographically derived from their Primary Account Number 3 (PAN)

by encrypting the customer's PAN with a PIN-derivation key . When customers

change their PIN numbers, the numerical difference (i.e. the offset) is stored in the

clear on the bank card. During authentication, the crypto-processor must then be

able to compute a customer's PIN, add the offset, and then compare this value with

the numbers keyed in by the customer. To prevent fraud, both the PIN and the

PIN-derivation key must be protected.

3the primary account number is also known as the bank account number
4there are other PIN generation and verification schemes
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General Technique

Both the VSM and the CCA were modeled using the same basic technique: API

calls were modeled as implication clauses in the usable list and the attacker's initial

knowledge was written as clauses in the sos list. The inputs to the API command were

written as negative literals and the output was written as the single positive literal. If

the API command produced more than one output, more implication clauses for the

same command were required. Then, OTTER was enabled with hyper-resolution to

enable the unification of the implication clause with multiple positive literals. It must

be noted that this technique was developed initially by Youn in 2004. The encryption

command is given below:

set(hyperres).
set(sos._queue).

list(usable).

-U(x) I -U(KEY) I U(E(x,KEY)).

end ofList.

list(sos).

U(DATA).

U(KEY).

end_of_List.

Here, set (hyperres) turns on the hyper-resolution inference rule and set (sosqueue)

instructs OTTER to pick clauses from the sos list in the order in which they were put

in. On the first iteration, OTTER will pick U(DATA) and place it in the usable list.

However, nothing new is inferred at this point. On the second iteration, OTTER

picks U(KEY) and this time, together with the two clauses in the usable list , it

is able to produce the resolvent U(E(x,KEY)) with the substitution DATA/x, giving

U(E(DATA,KEY)).
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4.2.1 VSM

The following attack on the VSM, briefly mentioned in 2.1, enables the attacker to

derive any customer's original PIN number. To demonstrate the attack, it suffices to

know that communication keys are only used to transfer data from module to module,

master keys are used only to encrypt other keys and the PIN derivation key is used

only to calculate the PIN from a PAN. The attack uses two API commands:

* CreateCommunicationsKey - creates keys of type "communication key" from

a user provided blob.

* TranslateCommunicationsKey - re-encrypts communication keys under a

user provided terminal master key.

The OTTER model is shown below, where the goal is to obtain the clause U(E(Acc,P)),

which represents the attacker obtaining the encryption of an arbitrary account num-

ber under the PIN derivation key, yielding the customer's PIN.

% Create_CommunicationsKey

-U(x) I U(E(x,TC)).

% Translate_CommunicationsKey

-U(E(x,TC)) I -U(E(y,TMK)) I U(E(x,y)).

% User knows the account number

U(Acc).

%. User knows the encrypted PIN-derviation key

U(E(P,TMK)).

% Negation of goal

-U(E(Acc,P)).

32



OTTER was able to derive the clause U(E(Acc,TC)) and then U(E(Acc,P)) to finally

produce a resolution refutation (i.e. the empty clause) with -U(E(Acc,P)), even with

many other extra commands added to the model, testifying to OTTER'S ability to

search large spaces quickly.

4.2.2 IBM 4758 CCA

The following attack on the IBM 4758 CCA, briefly mentioned in 2.1, also enables

the attacker to derive any customer's original PIN number. The attack uses three

API operations:

* KeyImport - uses an importer key to decrypt an encrypted key, thereby im-

porting it into the system.

* KeyPartImport - adds a key part (split during key sharing) to the already

existing key parts in the system, generating a full key.

* Encrypt - uses a data key to encrypt arbitrary data.

This attacks leveraged on key-typing, insufficient type-checks and XOR cancellation to

use a legitimate command (Key-Import) in an illegitimate way. Instead of describing

the attack in detail, we focus on the modeling techniques that were developed by

Youn [24] to control the exponential search space explosion in the model. For details

of the attack, please refer to [24].

* Knowledge Partitioning - the predicates UN(x) and UE(x) both refer to

the user knowledge of x but one refers to x as a plaintext value and the other

refers to x as an encryption. By having UE(x) representing encrypted values,

we prevent the repeated encryption of encrypted values since the encryption

command only takes in non-encrypted values UN(x). This kind of partitioning

can be very useful since it can dramatically reduce the branching factor.

* Demodulation - the use of XORs in this security API presented a rather

difficult problem: a clause containing XORs could be expressed in multiple
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different ways. With the list of demodulators, OTTER was able to rewrite every

XOR-containing clause to its canonical form.

* Intermediate Clauses - the inference rule for KeyImport was broken down

into two inference rules: the first produced an intermediate clause INTUE to be

used an input to the second inference rule. This was introduced to solve the

problem when the representation required for unification is not the canonical

form (and when paramodulation is not available).

* Lexicographic Weighting - OTTER'S given-clause algorithm picks a given-

clause from the sos list based on weight. By specifying a lexicographical ordering

over symbols, we can guide OTTER into picking certain clauses over others.

A portion of the OTTER model with these techniques in use is shown below:

list (usable).

%0 Key Import, INTUE() is the intermediate clause

-UN(x) I -UE(E(z,xor(IMP,KM))) I INTUE(E(y,xor(z,x)),xor(x,KP)).

-INTUE(E(y,x),xor(w,KP)) I -UE(E(y,x)) I UE(E(y,xor(w,KM))).

% Key Part Import

-UN(xor(x,KP)) I -UN(y) I -UE(E(z,xor(x,xor(KP,KM))))

UE(E(xor(z,y), xor(x,KM))).

% Encrypt

-UN(x) I -UE(E(y,xor(DATA,KM))) I UE(E(x,y)).

% Ability to XOR

-UN(x) I -UN(y) I UN(xor(x,y)).

end_of_list.

5 refer to the OTTER manual [14] for an explanation of paramodulation
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list(sos).

% User has the third key part

UN(K3).

% User knows the DATA key type

UN(DATA).

% User has the encrypted PIN-derivation key

UE(P,xor(KEK,PIN)).

% XOR demodulators (rewrite rules)

list(demodulators).

xor(x,y), = xor(y,x).

xor(x,xor(y,z)) = xor(y,xor(x,z)).

xor(x,x) = ID.

xor(ID,x) = x.

endof list.

Although these methods all help to reduce the search-space explosion, there is

the corresponding trade-off of OTTER not visiting certain search paths, potentially

missing certain attacks.
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Chapter 5

Alloy Analyzer - a Model Finder

5.1 Overview

ALLOY is a lightweight modeling language based on first-order relational logic [13],

designed primarily for software design. The ALLOY ANALYZER [10] is a model-finder

developed to analyze software models written in the ALLOY language. Hereafter,

we will use ALLOY to refer to both the language and the tool. As an automated

reasoning tool, ALLOY can be described neatly in three parts, each of which will be

described in greater detail later.

* logic- ALLOY uses first-order relational logic, where reasoning is based on state-

ments written in terms of atoms and relations between atoms. Any property or

behaviour is expressed as a constraint using set, logical and relational operators.

* language - the ALLOY language supports typing, sub-typing and compile-time

type-checking, giving more expressive power on top of the logic. It also allows

for generically-described modules to be re-used in different contexts. Also very

useful is syntax support for three styles of writing ALLOY model specifications

that users can mix and vary at will: predicate-calculus style, relational-calculus

style and navigational-expression style . Navigational-expression style, where

expressions are sets and are addressed by "navigating" from quantified variables,

lrefer to the ALLOY manual [13] for explanations and examples of these styles of writing
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is the most common and natural.

* analysis - ALLOY a model-finder that tries either to find an instance of the

model or a counter-example to any property assertions specified in the model.

An instance is literally an instantiation of the atoms and relations in the model

specification. It performs a bounded-analysis by requiring a user-specified

bound on the number of atoms instantiated in the model. With this bound, it

translates the model into a boolean satisfiability (SAT) problem. Then, it hands

the SAT problem off to a commercial SAT solver such as Berkmin [9]. The re-

sulting solution is then interpreted under the scope of the model and presented

to the user in a graphical user-interface as show in Figure 5-1

5.1.:1 Relational Logic

All systems modeled in ALLOY are built from atoms, tuples and relations. An

atom is an indivisible entity, a tuple is an ordered sequence of atoms and a rela-

tion is a set of tuples. Because ALLOY'S relational logic is first-order, relations

can only contain tuples of atoms and not tuples of other relations.

A good way of thinking about relations is to view them as tables. A table has

multiple rows, where each row corresponds to a tuple and each column in a tuple

corresponds to an atom. Then, a unary relation is a table with one column, a

binary relation is a table with two columns and so on. Also, the number of rows

in a relation is its size and the number of columns is its arity. A scalar quantity

is represented by a singleton set containing exactly one tuple with one atom.

To express constraints and manipulate relations, we use operators. ALLOY's

operators fall into three classes: the standard set operators, the standard logical

operators and the relational operators. The standard set and logical operators

listed in Table 5.1.

The relational operators require a little more treatment. Let p be a relation

containing k tuples of the form {Pl,' ,pm} and q be a relation containing 
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symbol operator
+ union

difference
intersection

in subset
equality

!I negation

&& conjunction
disjunction

Table 5.1: Set and logical operators used in ALLOY

tuples of the form {ql, , qn}.

p -> q - the relational product of p and q gives a new relation r =

{Pi, ,Pm, q 1ql , qn} for every combination of a tuple from p and a

tuple for q (ki pairs).

* p .q - the relational join of p and q is the relation containing tuples of

the form {pl, ,m- , q2,' , qn} for each pair of tuples where the first

is a tuple from p and the second is a tuple from q and the last atom of the

first tuple matches the first atom of the second tuple.

* -p - the transitive closure of p is the smallest relation that contains p and

is transitive. Transitive means that if the relation contains (a, b) and (b, c),

it also contains (a, c). Note that p must a binary relation and that the

resulting relation is also a binary relation.

* *p - the reflexive-transitive closure of p is the smallest relation that con-

tains p and is both transitive and reflexive, meaning that all tuples of

the form (a, a) are present. Again, p must be a binary relation and the

resulting relation is also a binary relation.

* -p - the transpose of a binary relation r forms a new relation that has the

order of atoms in its tuples reversed. Therefore, if p contains (a, b) then r

will contain (b, a).

p <:q - the domain restriction of p and q is the relation r that contains
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those tuples from q that start with an atom in p. Here, p must be a set.

Therefore, a tuple {q1, , q7 } only appears in r if q1 is found in p.

* p >:q - the range restriction of p and q is the relation r that contain

those tuples from p that end with an atom in q. This time, q must a set.

Similarly, a tuple {p1,"' ,pm} only appears in r if pm is found in q.

* p++q - the relational override of p by q results in relation r that contains

all tuples in p except for those tuples whose first atom appears as the first

atom in some tuple in q. Those tuples are replaced by their corresponding

ones in q.

Now, let us explore a brief tutorial on writing model specifications in ALLOY.

5.1.2 Alloy Models

To illustrate the basic modeling techniques in ALLOY, we will consider a simple

model of encryption.

Defining object types

An Alloy model consists of a number of signatures (sig), or sets of atoms

that describe basic types in the model. Within these signatures, we can define

relations that relate these basic types to one another.

First, we define a set of Value and Key atoms. We also define a relation enc

that relates a Key to a (Value, Value) tuple, resulting in tuples of the form

(Key,Value, Value). Finally, we also define a singleton set K1 of type Key that

contains a single atom. All this is expressed with the following:

// define a set of Value objects

sig Value {}

// define a set of Key objects
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sig Key {

enc: Value one -> one Value

}

// singleton set K1

one sig K extends Key {}

We use the enc relation to represent the encryption function: a value, en-

crypted under a key, results in some value. The one -> one multiplicity con-

straint states that the encryption relation (Value,Value) for each key is a

one-to-one function (there are other multiplicity symbols that can be used to

describe injections and partial functions). In this relation, the tuple (kl, vl, 2 )

reads: v1 encrypted under k1 gives v2 and this generalizes to the representation

(key,plaintext, ciphertext) 2.

Specifying constraints

After defining object types, we want to be able to specify properties about their

behaviour by specifying constraints. Although the encryption relation has been

sufficiently defined, we may need to add certain constraints to prevent ALLOY

from producing trivial instances or counterexamples during its model-finding.

One reasonable constraint is that two different keys have different encryption

functions, which is not necessarily the case but is typically true. In other words,

the encryption relations for any two keys must differ in at least one tuple. This

can be written as a fact:

fact {

// for all distinct k, k' chosen from the set Key

all disj k , k' : Key I

some (k.enc - k'.enc)

}the encryption function can be expressed in other equivalent forms, such as (ValueKeyValue)
2 the encryption function can be expressed in other equivalent forms, such as (Value,, yValue)
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The expression k. enc is a relational join between the singleton relation k and

the enc relation, giving a binary relation (Value,Value) that represents the

encryption function of key k. The last statement "some (k.enc - k'.enc)"

says that there is at least one tuple in the difference of the encryption relations

of two different key atoms.

Running analyses

With the model in place, we can proceed to perform some analyses. We can

simulate the model by defining predicates on the model which can either be true

or false depending on the instance. These are different from factual constraints,

which are always required to be true in any instance. Simulation of a predicate

is the process of instructing ALLOY to find an instance for which the predicate

is true. To obtain an instance of the model without imposing any further

constraints, we instruct ALLOY to simulate the empty predicate show(), which

is effectively a non-constraint. In this case, ALLOY just has to find an instance

that satisfies the object definitions and their factual constraints. Since ALLOY

only performs bounded-analyses, we specify a maximum of 4 atoms in each

object type (i.e. each sig).

pred show() {}

run. show for 4

Figure 5-1 shows ALLOY'S graphical output for this model of encryption. We

added the constraint #Value = 4 to enforce that there be exactly 4 Value

objects in any instance. In the instance that was generated, ALLOY has chosen

one key (K1) and four values. The arrow labeled enc[Value2] from K10 to

Value3 means that Value2 encrypted under key K1 gives Value3.

Alternatively, we can also define assertions on properties of the model that we

believe to be true. Checking is the process of instructing ALLOY to find an

instance satisfying the model but not the assertion. For example, we might
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Figure 5-1: Alloy Analyzer - model of encryption

want to assert that the decryption functions of any two keys are different on at

least one value since we believe it follows from the constraint that we put on

encryption earlier. We write this as:

assert decryption {

// the transpose () represents the decryption relation

all disj k,k': Key I some ((k.enc) - (k'.enc))

}

check decryption for 4

ALLOY will then proceed to find an instance that satisfies the model but acts

as a counterexample to the assertion, an instance where two different keys have

the same decryption relation.

All of ALLOY'S analyses have to be run within a size bound on the number of

atoms in each object type. ALLOY will check all models within this bound until

a satisfying instance or counter-example is found. Given that the running time

of the analysis increases exponentially with size, we can only check small models
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3 in reasonable time. However, the philosophy behind ALLOY is that if there

are any inconsistencies with the model, they are extremely likely to appear even

in small models.

5.2 Attacks Modeled with Alloy

In this section, we describe how ALLOY was used to model the cryptanalytic attack

found against the DES triple-mode block-cipher ECBIECBIOFB [5] and the guessing

attack against the PIN-verification API in the IBM 4758 CCA [16]. This discussion

aims to draw out the strengths of ALLOY that make it an excellent complement to

OTTER.

5.2.1 Triple-mode DES

The block cipher Data Encryption Standard (DES) was developed by IBM in 1974 in

response to a U.S. government invitation for an encryption algorithm. A block-cipher

is basically an algorithm that encrypts data in blocks 4. However, DES's key strength

of 56 bits became a cause for concern as computing speed and technology evolved.

Subsequently, multiple modes of operation were developed as a way of improving the

strength of block-ciphers, in particular DES. A multiple-mode of operation is one that

consists of multiple modes of operation chained together, each having its own key.

There are many modes of operation but the ones we are concerned with are the

Electronic Code Book (ECB) and Output FeedBack (OFB) mode. The ECB mode of

operation is the simplest way to use a block cipher. The data is divided into blocks

and encrypted by the cipher one at a time. Therefore, two identical plaintext values

will give the same ciphertext. The OFB mode of operation creates a stream of values

by repeatedly encrypting a single initial value. This stream of values is then XORed

with the input plaintext to produce the ciphertext. In this case, two similar plaintext

values could yield different ciphertexts.

3 small models contain 8-12 atoms per object type
4usually 64-bits
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In 1994, Eli Biham showed that many multiple modes were much less secure than

expected [4] and in 1996, Biham extended these results to conclude that all the triple-

modes of operation were theoretically not much more secure than a single encryption

[5], except the ECBIECBIECB mode. We now focus on the ECB[ECB]OFB triple-

mode of operation and show how ALLOY managed to find the same cryptanalytic

attack that Biham did. In this triple-mode of operation, the plaintext is encrypted

with two ECB DES ciphers in series before it is fed into the OFB DES stream for a

third encryption. The ECBIECBIOFB triple-mode schematic is shown in Figure 5-2:

ciphertext ciphertext ciphertext

Figure 5-2: ECBIECBIOFB triple-mode

To model this triple-mode of operation in ALLOY, we had to model i) encryption,

ii) XOR, iii) the modes of operation and iv) the chaining of inputs to outputs between

the various components. We have already modeled encryption earlier so let us proceed

with the XOR operation. First, we defined a signature Value, a set of atoms with

type Value, within which we defined the xor relation containing triples of the form

(V1 , v 2 , v 3 ), where each v is of type Value and v 1 V2 = v 3 .

sig Value {

xor : Value one -> one Value

}
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Next, we had to define the three properties of XOR:

* all b : Value I xor.b -(xor.b)

the commutativity property states that vI ( v2 = 2 (d vl for any vl, v2. The

relation xor.b is a binary relation (vI,v 2) representing the pairs of values v1

and 2 that XOR to give b. By saying that xor.b is equal to its transpose, we

are enforcing the constraint that if (I, v2) exists in xor.b, then so must (v2, vI).

This succinctly captures the required property.

* all a, b, c : Value I xor.c.(xor.b.a) = xor.(xor.c.b).a

the associativity property states that (v1 a v2) e v3 = v1 O ( 2 e V3 ) for any

V1 , v2., V 3 . The expression xor. c. b evaluates to the Value a such that a e b = c.

By putting the parenthesis in the correct places in the expression, we state the

property as we would have done mathematically.

one identity : Value no identity.xor - iden

the identity is the special value such that identity · v = v for any v. The

expression identity.xor represents the XOR function for exactly one chosen

value "one identity". The iden constant represents the universal identity

relation, which is a binary relation containing tuples of the form (a, a) for any

atom a defined in the ALLOY model. Therefore, the identity statement says

that the identity's XOR relation with the all identity tuples removed is empty,

which translates to saying that the identity XOR relation only contains identity

tuples. Writing identity. xor = iden would be incorrect since this means that

the XOR function must contain the identity tuples over atoms not defined in

the xor relation.

Now, let us proceed to modeling the DES blocks and their input/output behaviour.

We defined a set of blocks sig Block, where each block contains a plaintext p, an

output feedback stream value of b and an output ciphertext c. Next, we imposed

an ordering on the blocks with the general util/ordering module packaged in AL-

LOY. The module also provides operations (first(), last(), next(x), prev(x))
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to help us navigate through the ordering: first() and last () return the first and

last elements of the ordering while next (x) and prev(x) return the element after or

before the element x.

open util/ordering[Block]

sig Block {

p: one Value,

ofb: one Value,

c: one Value

}

Next, we proceeded to describe the data flow within these blocks. Since we were only

attacking the ECBIOFB boundary, we used a single ECB encryption to represent

the two ECB encryptions in series. This is actually equivalent if the single ECB

encryption uses a key of twice the original length. The block's ciphertext is the result

of the encryption of its plaintext under K1, a Key atom, XORed with the OFB value

of the block. Also, the OFB value of the next block is the encryption of this block's

OFB value under the OFB key.

fact {

//the ciphertext is a function of the plaintext and the ofb value

all b: Block b.c = (Kl.enc[b.p]).xor[b.ofb]

// setting up the OFB sequence through the blocks

all b: Block-last() let b' = next(b) I

b'.ofb = OFB.enc[b.ofb]

Finally, let us consider the cryptanalytic attack on this triple-mode of operation, as

presented by Biham [5]. Assuming that the block size is 64-bits, providing the same

64-bit value v as plaintext 264 times will result in 264 ciphertext values of the form:

Ci = {{V}K1 K2 Oi
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where the braces {} represent encryption, oi is the OFB stream value such that

0i+1 = { o}KoFB and K1,K2 are the 2 ECB encryption keys. This basically allows us

to isolate the OFB layer of encryption since it is equivalent to having a complete OFB

stream XORed forward by a single value {{V}jK1 }K2. This means that it should only

take 264 amount of work to break the key used in the OFB layer. After peeling off

the OFB layer, we can then proceed to break the double ECB layer by the standard

meet-in-the-middle attack [23].

To break the OFB layer, we do the following:

1. choose an arbitrary value u.

2. encrypt u under all possible keys and get u1 = {U}k and u2 = {Ul}k.

3. then check that u ® ul = c cl and ul e U2 = C1 e c2 for a consecutive triple

of ciphertext c, c1, c2.

On average, we need to try about 26 4 /period times, where period is the expected

period of the OFB stream, which is expected to be small. To observe that the crypt-

analytic attack was successful, the sequence of ciphertexts must meet the following

property:

VCi, Oj (Ci e Ci+l = j 0 0j+l) V (Ci+1 Ci+2 = 0 j+l 0 Oj+2)

where (ci, c+l, ci+2) is a consecutive triple of ciphertexts and (, 0
i+1, oi+2) is a con-

secutive triple of OFB stream values. We write this in ALLOY as:

pred FindAttack() {

// the set contains the relevant properties that two sequential XORs

// of outputs match two sequential XORs of OFB encryptions

all b': Block - first() - last() I let b=prev(b'), b''=next(b') I

some :OFB.enc.Value I let d'=OFB.enc[d], d''=OFB.enc[d' I

b.c.xor[b'.c] = d.xor[d'] && b'.c.xor[b''.c] = d'.xor[d'']
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run FindAttack for 8 but exactly 2 Key

The full model can be found in the Appendix A.1. Using this model, ALLOY was able

to verify the attack with a scope of 8 atoms in 2 minutes and 25 seconds. However, it is

important to note that the ciphertext property in our model could have been achieved

with a few different sets of input plaintexts. Since ALLOY works non-deterministically,

it could have found any one of those sets.

While the attack on the triple-mode block-cipher showed ALLOY's native power

in dealing with mathematical properties in its relational logic, the following attack

on PIN guessing demonstrates ALLOY'S ability to work with sets.

5.2.2 PIN Decimalisation

To use Automated Teller Machines (ATMs), customers just have to swipe a debit card

and punch in a PIN. In 2003, Bond et al. found that some banking security modules

using decimalisation tables to generate PINs were susceptible to what they termed

the PIN-decimalisation attack [16] [7], allowing the attacker to guess the customer's

PIN in -15 tries, thereby subverting the primary security mechanism against debit

card fraud.

To understand the vulnerability, we must first understand a PIN generation algo-

rithm that uses decimalisation tables. The PIN-derivation algorithm used in IBM's

banking modules is as follows:

1. calculate the original PIN by encryption the account number with a secret "PIN

generation" DES key

2. convert the resulting ciphertext into hexadecimal

3. convert the hexademical into a PIN using a "decimalisation table". The actual

PIN is usually the first 4 or 6 numerals of the result.

The standard decimalisation table is shown below:
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0123456789ABCDEF

0123456789012345

During decimalisation, the hexadecimal values on the top line are converted to the

corresponding numerical digits on the second line. Some customers may choose to

change their PINs. In this case, the numerical offset between the changed PIN and

the real PIN is kept on the card and in the mainframe database. When the customer

enters a PIN, the ATM subtracts this offset before checking it against the decimalised

PIN.

The IBM Common Cryptographic Architecture (CCA) [12] is a financial API imple-

mented by the IBM 4758, a hardware security module used in banking ATM networks.

The CCA PIN verification command, EncryptedPINVerify allows the user to enter

a decimalisation table, the primary account number (PAN), also known as the bank

account number, and an encrypted PIN. The encrypted PIN is first decrypted and

then compared to the PIN generated from the PAN using the generation algorithm

described earlier. The command returns true if the PINs match, false otherwise.

Although we do not have access to the PIN encryption key, any trial PIN can be

encrypted using the CCA command ClearPINEncrypt.

The attack, as presented in Bond et al. [16], can be broken down into two stages:

the first determines which digits are present in the PIN and the second determines

the true PIN by trying all possible digit combinations. The first stage hinges on

the vulnerability that CCA developers allowed clients to specify the decimalisation

table. Instead, they should have hard-coded the standard decimalisation table into

the commands.

We will present a simpler version of the attack against a single-digit PIN, thereby

eliminating the need for the second stage. To determine the digit present in the PIN,

we pass in the desired PAN, an encrypted trial PIN of 0 and a binary decimalisation

table, where all entries are 0 except the entry for hex-digit i, which is 1. The trial

PIN of 0 will fail to verify only if the encrypted PAN (before decimalisation) contains

hex-digit i. However, instead of engineering this attack into our model, we would

like for ALLOY to find this attack. Therefore, we set up the system by modeling the
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attacker's decimalisation and trial PIN inputs and his actions after getting an answer

from the EncryptedPINVerify command.

First, we defined a set of NUM (numbers) and HEX (hexadecimal) atoms, as well as a

singleton set TrueHEX representing the correct pre-decimalised PIN digit. Next, we de-

fined a set of State atoms, where in each state the user performs an EncryptedPINVerify

API call using the decimalisation table dectab, which is a mapping from HEX to NUM

and the trial PIN trialPIN. Here, we abstracted away the fact that the input PIN

was encrypted. Also, guess represents the set of possible hexadecimal guesses that

the attacker has to choose from in each state. As API calls are made, this set should

decrease in size until the attacker uncovers the real hexadecimal value. He can then

compare this value against the standard decimalisation table (shown earlier) to find

the real PIN.

open util/ordering[State]

// set of numbers

sig NUM{}

// set of hexadecimal digits

sig HEX{}

// one hex digit representing the

one sig TrueHEX extends HEX {}

// in each state, the attack picks a trialPIN, a decimalisation table

// and has a set of guesses of what the pre-decimalised PIN is

sig State {

trialPIN: one NUM,

dectab: HEX -> one NUM ,

guess: set HEX

}
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Next, we modeled the event of the attacker choosing a particular number as a trial

PIN. We used a predicate to constrain the possible guesses guess in two states s, s'

based on the choice of trial PINs in state s. If the trial PIN verifies, then the pre-

decimalised PIN must contain the hexadecimal values corresponding to the trial PIN

in the given decimalisation table, therefore, we intersect the attacker's current possi-

bility set with those values. Otherwise, we intersect the attacker's current possibility

set with the hexadecimal values corresponding to the numbers other than the trial

PIN in the decimalisation table. In either case, the attacker is gaining knowledge

about the value of the pre-decimalised PIN.

pred choose(s,s': State) {

// if trial PIN verifies
( (s.trialPIN = s.dectab[TrueHEX]) &&

(s'.guess = s.guess & s.dectab.(s.trialPIN)) )

II

// if trial PIN does not verify

( (s.trialPIN != s.dectab[TrueHEX]) &&

(s'.guess = s.guess & s.dectab.(NUM-(s.trialPIN))) )

Finally, we set up the attack by defining transition operations across the states.

Here, we defined a predicate init on a state to set the possibility set to that of all

the hexadecimal digits. The predicate Attack is meant to simulate the attack as the

attacker makes the API calls with different decimalisation tables and trial PIN choices.

'The predicate defines a transition relation between each state and the next and also

sets constraints on the last state that the correct value be found. Then, by running

this Attack predicate, ALLOY will find an instance satisfying all the constraints in

Attack which also means satisfying the init and choose predicates.

pred init(s:State) {

// in the first state s, the attacker has no information,

// so his set of guesses covers all the hexadecimal values
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s.guess = HEX

}

pred Attack () {

// initialize on the first state atom

init (first ())

// for all states other than the last, the attacker makes

// a choice after issuing an API call

all s:State-last() I let s'=next(s) I choose(s,s')

// in the last state, the attacker finds the correct HEX

#(last() .poss) = 1

ALLOY was able to find an instance of the attack for 6 State atoms, 16 HEX atoms

and 10 NUM atoms in 28 seconds. The last two constraints in the Attack predicate

demonstrate that some creative constraining is required to force ALLOY not to find

trivial instances. Without those constraints, ALLOY would have allowed the attacker

to discover the correct value on the very first try, a very "lucky" scenario that is

unlikely to happen. This is an instance of a more general difficulty with constraint

modeling - while it is easy for ALLOY to reason about the worst or best-case scenarios,

it is extremely challenging to model the notion of an "average" case. In this example,

ALLOY was able to find the attack but did not choose the decimalisation tables as

we did which would guarantee the best performance on average.
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Chapter 6

Trusted Platform Module

As software on computing platforms get increasingly complex, the number of security

bugs also increases. Subsequently, protecting sensitive data through a software-only

security mechanism suffers from two inherent weaknesses. First, large software will

have implementation bugs and therefore can potentially be attacked. Second, it may

be impossible to tell if software has been attacked. In fact, experts in information

security have concluded that some security problems are unsolvable without a boot-

strap to protected hardware [22]. The Trusted Platform Module (TPM) is the Trusted

Computing Group's (TCG) [1] answer to this problem. In this chapter, we present an

overview of the TPM.

6.1 History of Trusted Computing

Prior to 1999, although there were a number of secure coprocessors (separate shielded

computing units like the IBM 4758) that were able to attest to the integrity of their

software, there were no full "computing platform" security solutions that could do

the same. Subsequently, users were assured of security only by blindly trusting that

the platform was doing what it was supposed to do. In 1999, the Trusted Computing

Platform Alliance (TCPA) was formed to address this issue at two levels: increasing

the security of platforms and enabling trust mechanisms between platforms. This

led to the development of Trusted Platforms. Later in 2003 the TCPA became the
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Trusted Computing Group (TCG), which took on the necessary burden of encouraging

worldwide industry participation in such an endeavour.

6.1.1 Trusted Platforms

Under the TCG's definition of trust, Trusted Platforms are platforms that can be

expected to always behave in a certain manner for an intended purpose. Furthermore,

the users do not have to make this decision blindly but rather can request for the

platform to prove its trustworthiness by asking for certain metrics and certificates. A

Trusted Platform should provide at least these basic features:

* Protected Capabilities: the ability to perform computation and securely

store data in a trustworthy manner.

* Integrity Measurement: the ability to trustworthily measure metrics de-

scribing the platform's configuration.

* Attestation: the ability to vouch for information.

In essence, these features mean that a Trusted Platform should be protected against

tampering, be able to attest to the authenticity and integrity of platform code and

data, perform guarded execution of code and maintain the confidentiality of sensitive

information. To establish trust, a Trusted Platform can reliably measure any metric

about itself and attest to it. Some useful metrics include the software loaded on the

platform and any device firmware. The user will then need to verify these metrics

against trusted values obtained separately to decide if this platform is trustworthy.

Immediately, we can see that these abilities can enable a variety of new applications.

6.1.2 Use Scenarios

A solution enabling clients or servers to trust one another's software state gives hope

to many commercial applications. A Digital Rights Management (DRM) solution

is possible since servers can have confidence that client machines are not subverting

the media policies. Auctions and various fair-games like online poker could leverage
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on server-client trust relationships to execute fair game play. Massive computation

requiring confidentiality can be outsourced to computing grids, as long as the grid

attests that it will not reveal any secrets. The TCG's solution to turning regular com-

puting platforms into Trusted Platforms resulted in the development of a specification

known as the Trusted Platform Module.

6.2 TPM Design

The TCG specification for this single tamper-resistant chip comprises both informa-

tive comments and normative statements but does not come with an implementation.

Rather, it is up to the individual chip manufacturers to work with the specification

requirements.

6.2.1 Features

Conceptually, the TPM will create three Roots of Trust on its parent platform that

are used to effect trust and security mechanisms:

* Root of Trust for Measurement (RTM): reliably measures any user-defined

metric of the platform configuration. The RTM starts out as trusted code in the

motherboard's Boot ROM but extends its trust domain during system boot to

the entire platform through the process of "inductive trust". In this process, the

RTM measures the next piece of code to be loaded, checks that the measurement

is correct and then transfers control. This process of extending the trust domain

continues until the a trusted operating system is booted.

* Root of Trust for Reporting (RTR): allowed to access protected locations

for storage, including the Platform Configuration Registers (PCRs) and non-

volatile memory, and also attests to the authenticity of these stored values

using signing keys. PCRs are storage registers that not only store values but

also the order in which the values were put in.
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* Root of Trust of Storage (RTS): protects keys and sensitive data entrusted

to the TPM. The RTS basically refers to all the key management functionality,

including key generation, key management, encryption and guarded decryption.

Figure 6-1: Roots of trust in a TPM-enabled PC architecture

Figure 6-1 shows how the TPM fits into a regular PC architecture and where

the various roots of trust reside. These roots of trust provide the means of knowing

whether a platform can be trusted. It is up to the client to decide whether the

platform should be trusted. If the client trusts the credential certifying the correct

manufacturing of the platform, the RTM, RTR and the RTS, then he can trust the

values measured by the RTM, stored by the RTS and reported by the RTR. The

client must then compare these reported values against other credentials (e.g. those

issued by a trusted third party) to determine if the platform state is "trustable".

6.2.2 Trusted Platform Module API

In section, we will introduce the TPM's API by describing it in the order that a

typical user would encounter them when using a TPM-enabled platform. An owner

of a brand new TPM must first take ownership of the chip. This involves setting an

owner password and the TPM generating for itself a storage root key (SRK) and a

master secret (tpmProofj). These secrets enable much of the TPM's functionality. This
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module also contains operations that allow the owner to set operational flags, disable

and enable certain operations and reset or deactivate the TPM. All this functionality

can be described as the initialization module.

To start using the TPM, the user should generate a TPM identity key and some

encryption keys. The key management module provides methods to generate different

types of keys, assign and change passwords to keys and migrate keys to other entities

for backup purposes. The different key types include storage keys, signing keys,

identity keys and binding keys.

Some API calls and access to most TPM resources require password authorization.

Using the authorization module, users open a transport session to each resource (keys,

memory indices, etc) by providing the correct usage password. Since this session will

be used to manage all future API calls using that resource, it becomes a one-time

overhead that prevents replay attacks and relinquishes the need for multiple password

submission. Furthermore, these sessions can be securely cached onto disk if memory

in the TPM runs out.

The simple password-based model of authorization made it difficult to micro-

manage TPM functionality. If the TPM owner password is revealed to a trusted user

in order for him to perform a particular owner-authorized operation, all other owner

operations are effectively under this user's control. Therefore, in the second major

release of the TPM specifications (v 1.2), the delegation module was introduced to

allow the delegation of privileges to other users and/or system processes.

At this point, the user may desire the ability to make specific measurements of

platform characteristics. These measurements represent the software state of the

platform configuration and can be used to determined when certain secrets or code

should be released or executed. The integrity measurement module provides API

methods to "extend" the metrics stored in Platform Configuration Registers (PCRs)

with the following formula:

Extend(x): PCRnew = SHA1(PCRold I x)
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This means that the order in which metrics were recorded is also captured. This

module also manages functionality to read and write values in the TPM's non-volatile

memory. Subsequently, these measured metrics have to be communicated in a trust-

worthy manner, which is the job of the integrity reporting module. Reporting is

basically a signing operation that be performed on various keys, measurements and

audit logs recorded in the TPM.

Finally, the user may want to enable the TPM for applications in more than one

trust domain, meaning that sensitive information under these multiple trust bound-

aries has to be logically separated. The user can use the TPM's protected storage

module to bind and seal application secrets. Binding is the encryption of sensitive

data under a particular key while sealing is the binding of data to a particular platform

configuration. Sealed data is only released under a specific platform configuration,

enforced by checking the PCR values.

Although there are many other micro-modules in the TPM that deal with mainte-

nance, credential handling, general purpose I/O and the TPM's monotonic counters,

the modules described above represent the more important and useful ones. In chap-

ter 7, we will analyze some of the more interesting modules in greater detail.
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Chapter 7

Security Analysis of the TPM

This chapter covers the modeling and analysis of the Trusted Platform Module (TPM)

API version 1.2 specification [1]. The API exposed by the TPM covers a wide range

of functionality, including taking ownership of the TPM, initializing the chip, running

self-tests, generating different types of keys, establishing transport sessions, auditing,

encrypting and decrypting, delegating commands, migrating data to another TPM.

We break these operations down into five major areas of functionality and present

them individually, together with the techniques and tools used to analyze them.

7.1 Initialization

The initialization commands manage the operational state of the TPM - from taking

ownership of the TPM to disallowing certain API commands to resetting and clearing

the chip's memory. We focus on the commands that manipulate the TPMPERMANENTFLAGS,

a set of system flags that persist in non-volatile memory, and how we analyzed them

for inconsistencies. All the modeling in this section was done with OTTER'S first-order

language.

To find an attack within this section of the API would be to find an inconsistent

system state - a state where the permanent flags are set in a way that violates a

security policy. To do this, we first need a way of capturing the state of the system.

Secondly, we need a way of exploring all possible state configurations and thirdly, we
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need to understand the security policies around these API calls to understand what

constitutes an inconsistent state.

To capture the relevant permanent flags, we used a single predicate,

PermFlags(xl, x2,x3,x4, x5, x6)

that stores the values of the permanent flags during a state configuration. The flags

and what they signal are shown in Table 7.1. The owner is an entity that has special

privilege to perform certain restricted capabilities. The operator is an entity that only

has special privilege to manage the TPM's operational state. To explore all possible

flag description
xl set to 'T' to disable the TPM (commands that use resources fail)
x2 set to 'T' to allow installing the TPM owner
x3 set to 'T' to deactivated the TPM (all commands fail)
x4 set to 'T' to disable clearing of the TPM owner
x5 set to 'T' when the TPM has an owner
x6 set to 'T' when the TPM has an operator password

Table 7.1: TPM Permanent Flags

state configurations with the API calls in this section, each API call is modeled

as an implication rule that takes in a PermFlag clause and produces a modified

PermFlag clause. In strict OTTER jargon, each API FOL clause unifies with an

existing PermFlag clause before resolving to produce a modified PermFlag clause.

For example, we write the API call TPMSetOwnernstall, which sets the permanent

flag that allows the ability to insert an owner, as:

-Bool(y) I -U(physicalPresence) I -PermFlags(xl,x2,x3,x4,F,x6) I

PermFlags(xl,y,x3,x4,F,x6).

The predicate Bool (y) is used to represent the caller's choice of whether to set the

flag. -U(physicalPresence) says that the user must be asserting physical presence

for this command to succeed. To assert physical presence is to literally perform an

action on the chip itself (what the action is depends on the chip). In this case, the

API call requires x5 to be false, meaning that it requires that no owner be present.
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Some of the more important commands that manipulate these permanent flags are

listed below:

* TPMSetOwnerInstall - sets the permanent flag that allows inserting an owner.

Physical presence must be asserted for the command to succeed.

* TPMOwnerSetDisable - an owner-authorized command that sets the flag dis-

abling the TPM.

* TPMPhysicalEnable - sets the TPM disable flag to FALSE. Disabling the TPM

means that all commands that use resources will fail. Physical presence must

be asserted.

* TPMPhysicalDisable - sets the TPM disable flag to TRUE. Physical presence

must be asserted.

* TPMPhysicalSetDeactivated - sets the TPM deactivated flag. Deactivating

the TPM means that all commands fail.

* TPMSetOperatorAuth - installs the operator password

password flag to TRUE.

* TPMTakeOwnership - installs an owner into the TPM,

TRUE and stores the owner password.

* TPMOwnerClear - removes the owner, sets the owner

FALSE

and sets the operator

sets the owner flag to

and operator flags to

* TPMDisableOwnerClear - sets the flag that disables the clearing of the owner.

Security Policies

Although the documentation did not specify any security policies, there are certain

combinations of these TPMPERMANENTFLAGS that can subvert the operation of the

TPM. We call these "inconsistent states" and three of them are:
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1. there is no owner installed, the flag allowing the installation of an owner is set

to FALSE and the user cannot assert physical presence. In this case, an owner

can never be installed.

2. there is no owner nor operator installed and the flag allowing the installation

of an owner is disabled. Again, an owner cannot be installed in this case.

3. once an owner is installed, a user without physical access should not be able to

re-install a new owner.

Given the initial default permanent flag values, our initial state clause is

PermFlags(T,T,T,F,F,F)

From there, we want to see if we can reach any inconsistent PermFlag state clauses

using the API commands listed before.

Discussion and Results

OTTER'S analysis of the model terminated, showing that neither of these inconsistent

states could be reached. However, when the user in our model was given physical

access to the chip (by adding the clause U(physicalPresence) to the sos list), our

model found that almost all states were reachable. This behaviour is in line with the

intentions of the TPM designers, where asserting physical presence overrides all.

Our method of capturing all interesting state in a single predicate can lead itself to

modeling problems when there is an extremely large amount of state. In particular,

OTTER tends to slow down when dealing with large clauses (i.e. clauses with many

variables). Also, the readability and management of the model becomes tedious.

Therefore, we suggest a technique for dealing with large amounts of state. If

the state can be separated into collections such that commands only work on one

collection at one time, then defining multiple predicates, one for each collection of

state, will help the model's readability and management. The technical advantage is

that most of the inference rules representing API calls need only be concerned with a

single state predicate. However, since the API calls only modify a single predicate at
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a time, we need a way to keep track of which clauses belong together. To accomplish

this, we use a single overarching state predicate. We illustrate this technique with

the TPM.

The TPM further contains some other flags - the TPMSTCLEARFLAGS - that are

reset on the command TPMStartup. To add these state flags into our model, we

define a separate predicate,

STClearFlags(xl,x2,x3,x4,x5)

for the five relevant volatile system flags and define a larger State predicate that

contains both the STClearFlags and PermFlags predicates:

State(PermFlags (...),STClearFlags (...))

The TPMSetOwnerInstall command, which only deals with the permanent flags, is

modeled as:

-Bool(ybool) I -U(physical presence) ]

State(PermFlags(xl,x2,x3,x4,F,x6),y) I

State(PermFlags(xl,y,x3,x4,F,x6),y)

The TPMStartup command, which only deals with the volatile flags, is modeled as:

-Bool(ybool) -State(x,STClearFlags(xl,x2,x3,x4,x5)) 

State(x,STClearFlags(xl,T,F,F,xPCR)).

and the command TPMSetTempDeactivated, which uses both volatile and permanent

flags, is modeled as:

-U(physicalpresence) I

-State(PermFlags(xl,x2,x3,x4,x5,T),STClearFlags(xl,x2,x3,x4,x5))

State(PermFlags(xl,x2,x3,x4,x5,T),STClearFlags(T,x2,x3,x4,x5)).

We find that most API calls are concerned with only one state predicate and therefore

this technique will help make the model much more readable and also prevent OTTER

from reasoning about too many useless variables and constants.
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7.2 Key Management

At the crux of the TPM's security features is the key management module. This

module provides functionality that handles the generation, protection and control of

key material, all of which are integral to the protection of sensitive data.

Subsequently, it is also the key management modules in security systems that are

most likely to be vulnerable as demonstrated by Bond and Youn after they found

attacks on the key-typing mechanisms in both the IBM 4758 CCA and VSM [6][24].

Following in their footsteps, we modeled the key management API commands in

OTTER SO as to leverage on OTTER'S ability to perform extensive API-chaining easily.

There are seven different types of keys used in the TPM as shown in Table 7.2.

In this section, we focus on storage keys. These keys have a number of control

key type intended usage
signing used for signing operations
identity used to certify TPM knowledge of data

authchange used in transport session encryption
bind used to encrypt data

legacy keys in older versions of the TPM are typed
as legacy keys

storage keys used to protect and store sensitive
data, including key material

Table 7.2: TPM Key Types

parameters. First, there are fields that describe various characteristics of the key, such

as the key size, the generation algorithm and the intended usage schemes. Second,

each key comes with two passwords - a usage password and a migration password. The

usage password authorizes usage of the key for encryption and decryption operations

but does not allow the discovery of the actual key value. The migration password

authorizes the user to export a key under a specified public key.

The two most basic operations in the key management module are the generation

and loading of key material:

* TPMCreateWrapKey enables the user to request for the generation of an asym-
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metric key from the TPM. This key can either be a migratable or a non-

migratable key, where migratability refers to the property of being transferrable

to another TPM. This is usually done for backup or storage purposes. Further-

more, the user is allowed to provide the usage and migration passwords for the

new key. However, in the case of non-migratable keys, the TPM will set the new

key's migration password to be a special value known as tpmProof, which is the

TPM's master secret. Every key is generated under a parent key, except the

storage root key, which is generated as part of the TPM initialization process.

A diagrammatic representation of the TPM storage key hierarchy is shown in

Figure 7-1. The newly generated key is then encrypted under the parent key

and the resulting blob is returned to the user in a special data structure.

* TPMLoadKey enables the user to load a key blob into the TPM's protected

memory by specifying the correct parent key for decryption. At the same time,

the TPM also performs some checks to ensure that the key is well-formed and

that it adheres to the security requirements (e.g. key strength).

Figure 7-1: TPM Storage key hierarchy

For migratable keys, the TPM also provides functionality to manage the transfer

and control of these keys:

* TPMAuthorizeMigrationKey is an owner-authorized command for specifying

the migration-key, meaning that the caller must present the owner password to

use the command. The migration-key is the key that wraps and protects the
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migrating key. It is also the key at the destination TPM that will be used to

receive the migrating key.

* TPMCreateMigrationBlob creates a special migration-blob data structure that

contains the migrating key encrypted under the migration-key and OAEP en-

coded [3].

* TPMConvertMigrationBlob allows the receiving TPM to convert the migration-

blob data structure back into a key-blob. To use the imported key, the key-blob

must then be loaded into the TPM using TPMLoadKey.

The commands just described make up the key management functionality in ver-

sion 1.1 of the TPM. However, after receiving feedback from numerous industry part-

ners, the TPM designers felt that having only migratable and non-migratable keys

was insufficient. They wanted to a new type of migratability that would bridge the

two extremes. Therefore, in version 1.2 of the design, they introduced the concept of

certifiable migration- migration that was controlled and therefore could be certified

against.

With certifiable-migration, users would have the ability to specify trusted third-

parties as migration authorities (MAs) and ensure that a key is not migrated to a

particular destination without the permission of the MA. In the TPM version 1.2,

three new certifiable-migration key (CMK) commands were introduced:

* TPMCMKCreateKey is an owner-authorized command that creates keys whose

migration is controlled by a migration authority (MA) entity. The migration

authority is identified by a public key specified by the owner. This command is

very similar to TPMCreateWrapKey except that it only creates certified migrat-

able keys that can only be migrated by TPM_CMK_CreateBlob

* TPMCMKCreateTicket is an owner-authorized command producing a hash (known

as a sig-ticket) certifying that a public key verifies a particular signature on some

data. Its intended use is for migration authorities to specify the migration-key

for a CMK by signing off on the migration-key's hash.
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* TPM_CMK_CreateBlob is used to migrate certifiable-migration keys. There are

two migration mechanisms - direct migration to a migration selection authority

(MSA) key, hereafter known as the destination-key, and indirect migration via

a migration authority (MA) key. To perform direct certifiable migration:

- authorize DESTpub (public half of the destination key) as the migration-

key using TPMAuthorizeMigrationKey.

- create a key with DESTpub as the destination key using TPMCMK_CreateKey.

- use TPMCMKCreateBlob to create a CMK migration-blob with the output

of the two previous commands.

- use DESTpriv to receive the key at the destination.

To perform indirect certifiable migration:

- authorize MApub as the migration key using TPMAuthorizeMigrationKey.

- create a key with MApub as the MA using TPM_CMK_CreateKey.

- request that the MA certify the destination key DESTpub by signing a

blob containing digests of MApub, DESTpub and CMKpub. Then obtain a

sig-ticket from TPMCreateTicket using the signature.

- create the migration-blob using TPM_CMK_CreateBlob which performs the

relevant checks to ensure that the MA did approve the migration to the

destination key.

- use DESTpjiv to receive the key at the destination

In general, it is either the owner of the CMK or the migration authority who

picks the destination key. The owner picks it at CMK creation time while

the migration authority specifies it by providing a signature on the intended

destination key.
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Security Policies

In the specifications for these API commands, the designers mention a number of

security policies under the "informative comments" sections. We list the more crucial

ones here:

1. keys must meet certain security requirements, depending on their type, before

they will be loaded into the TPM. (e.g. a storage key must be 2048 bits long).

2. only keys with a parent key of type storage can be loaded using TPMLoadKey

3. a non-migratable key can only be loaded if its migration password is tpmProof

However, the designers did not specify the higher level security policies that when

compromised would result in serious attacks against the key management module.

Nevertheless, we list some of them here

1. the master secret tpmProof should never be discovered

2. non-migratable keys cannot be created under migratable parent keys

3. non-migratable keys cannot be injected into a TPM

Model and Results

Our OTTER model of the key management module consisted of 7 API commands and

a number of other attacker abilities such as the ability to hash, generate raw key ma-

terial and encrypt arbitrary data. The APIs were modeled as described in section 4.2,

where the API command is written as a clause containing both positive and negative

literals, the negative literals representing inputs or requirements for the command and

the positive literals representing the effects and return values of the command. To give

an example, we show the OTTER description for the TPMCreateWrapKey command

for generating non-migratable keys. The lines starting with "" are comments.

% TPM(x) = TPM has loaded x

% U(x) = User knows x
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% TPMKEY(x): the TPM generated this key x

% KEY(x,xuauth,xmauth,xtype,xmig) represents a key

% x = key identifier

% xuauth = usage password

% xmauth = migration password

% xtype = STORAGE, IDENTITY, etc

% xmig = MIG, NMIG (migratability)

% priv(x) identifies the private half of key x

% pub(x) identifies the public half of key x

% ASYM(priv(x),xuauth,xmauth,pub(y)) represents a key-blob

% priv(x) = private key of x

% xuauth = usage password

% xmauth = migration password

% pub(y) = encrypted under public key of y

% TPMCreateWrapKey for a non-migratable key (next four lines)

% putting in key generation parameters

-KEY(x,xuauth,xmauth,xtype,NMIG) I -TPMKEY(x) I

% parent key of correct type, flag and user presents correct password

-KEY(y,yuauth,ymauth,STORAGE,NMIG) I -U(yuauth) I

% TPM has loaded the parent key

-TPM(y) I

% returns TPM_STORE_ASYMKEY blob

ASYM(priv(x),xuauth,xmauth, pub(y))
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Although we do want to model the attacker being able to pass in any value as input

to these API commands, such a model would be exploring too many search paths

unlikely to yield results, thereby polluting the analysis. Therefore, our model uses

the idea of data partitioning that was first introduced by Youn et al [24]. We created

the predicates ASYM and MIGBLOB to represent asymmetric key blobs and migration

blobs respectively. This way, the attacker in our model would never be able to pass

off a migration blob as input to a command expecting an asymmetric key blob. The

real command would probably throw an exception since the data structures are so

different. However, we did not go so far as to define separate predicates for regular

asymmetric keys and certifiable-migration keys because these keys, although different

in content, utilize the same data structure. By using the same predicate, we are

allowing for blob-confusion, where a certifiable-migration key can be passed off as a

regular asymmetric key and vice versa.

Although we did not find any "real" attacks on TPM vl.2 specification, we found

two "near-miss" attacks that are only possible in a slightly flawed implementation of

the TPM. Those attacks are covered in chapter 8.

7.3 Protected Storage

In this section, we describe the commands that allow TPM users to protect sensitive

data under two security measures - a cryptographic key and the software state of the

platform. Only with the correct key and the platform in the specified software state

will the TPM reveal the secret.

The first measure is accomplished via encryption and the second is accomplished

by specifying Platform Configuration Register (PCR) values. Recall from chapter 6

that the PCR are registers that contain hashes of software that were loaded onto the

platform. As more software is loaded, the PCR is extended by setting the new PCR

value to be the hash of the old PCR value concatenated with a digest of the loaded

software. Using this extension operation, a register can capture what software was

loaded and the order in which the software was loaded in a single value. Therefore,
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by specifying values for each register (i.e. a PCR constraint), the user can select the

desired software state for secret release. The three commands that effect this feature

are:

* TPMExtend extends a specified PCR with a specified value.

* TPMSeal allows software to seal a secret to both a key and a "trusted" platform

configuration. It does this by encrypting the secret with the specified key and

appending the required PCR values to the encrypted blob in a tamper-proof

data structure

* TPMUnseal decrypts and reveals a secret sealed by TPMSeal if the user pro-

vides authorization to use the correct key and the platform configuration state

matches.

Since there were only three commands in this module, we decided to analyze the

commands together with other modules in the API. In the process, we had to take into

consideration that the TPM design specifications require a minimum of 16 registers

in the chip. However, if we proved that a single-register system could provide the

functionality and power of a multi-register system, our models would only need to

consider a single register.

To show that a multi-register system is equivalent to a single-register system, we

employed the idea of a simulation. A simulation is an algorithm describing how one

system mimics the functionality of another system; to show equivalence between the

two systems, we have to define simulations in both directions. It is easy to see how

a multi-register system can simulate a single-register system - it simply uses only

one of its registers. As for the other direction, we were unable to find a satisfactory

solution but nevertheless we will describe one of our incorrect approaches.

The single-register system can simulate the multi-register system by extending

its register every time a piece of software is hashed into any register in the multi-

register system. This way, the single register captures all the software as well as the

order that the software was hashed. However, this gives rise to problems when multi-

register PCR constraints are re-written for this single-register system. Recall once
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again that a secret is released only when the values in the registers match those in

the PCR constraints specified in the secret. Consider a secret that is released only if

the "secure network manager" is loaded after the "secure kernel" and that its multi-

register PCR constraint consists of a value for just one register. Although the single-

register system could have recorded the "secure kernel" before the "secure network

manager", it could have recorded with many other software modules in between. To

rewrite the multi-register PCR constraint for the single-register system, the user would

have to consider all possible interleavings of other software between the kernel and the

network manager and provide multiple PCR constraints such that the secret would

be released as long as one was satisfied. Considering that some unknown software

module (e.g. a kernel extension) might be loaded as well, this becomes absolutely

impractical, if not impossible for the user. Nevertheless, we will present the ALLOY

model for the above simulation.

Model

We defined an ALLOY model containing PCR atoms. One of these atoms, sPCR,

represents the single-register system and the other atoms collectively represent the

PCRs in the multi-register system. Software programs loaded into the system are

identified by Code atoms. At the same time, they also represent the software digests

used to extend the registers. The extension operations done to each PCR object were

ordered with a one-to-one mapping to a set of ordered Extend atoms.

open util/ordering[Extend]

sig Extend {}

// set of software objects

sig Code {}

abstract sig PCR {

sequence: Extend lone -> lone Code
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}

// set of registers for the multi-register system

sig mPCR extends PCR {}

// a single register for the single-register system

one sig sPCR extends PCR {}

fact {

// all software loaded is recorded

mPCR.sequence[Extend] = Code

sPCR.sequence[Extend] = Code

// extensions are contiguous

all m: mPCR let exts = m.sequence.Code, mx = max(exts) 

all e: Extend-exts e in nexts(mx)

// software is loaded one at a time

// but can be extended into one or more mPCR registers

all disj c,c':Code I let pcrs = (sequence.c.Extend &

sequence.c'.Extend) I

!(some (pcrs.sequence.c & prevs(pcrs.sequence.c'))

&&

some (pcrs.sequence.c & nexts(pcrs.sequence.c')))

We also defined a set of Secret atoms that represent secrets that are only revealed if

a particular platform configuration state is met. The required platform configuration

state for the release of a particular secret is represented as pairs of (Code, Code)

constraints, where (cl, c2) means that the secret requires c1 to have been loaded

before c2. The secret may also require some software to be present before release

but this software has no temporal constraints on other pieces of software. Such
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information is not captured because that piece of software, if unloaded, can be loaded

unconditionally to allow the release of the secret. The PCR constraints were expressed

as:

sig Secret {

constraints: Code -> Code

}

Next, we had to model the simulation described earlier by defining a predicate on the

system:

pred Simulateo(){

// for any register that was extended with c,c'

all disj c,c':Code I some p : sequence.c.Extend & sequence.c'.Extend I

{

// if c was recorded before c' in p

// then let it be the same for the single register

p.sequence.c in prevs(p.sequence.c')

sPCR.sequence.c in prevs(sPCR.sequence.c')

// if c was recorded after c' in p

// let it be the same for the single register

p.sequence.c in nexts(p.sequence.c')

=>

sPCR.sequence.c in nexts(sPCR.sequence.c')

ALLOY was able to find an instance of this simulation in 32 seconds.
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7.4 Delegation

In the TPM version 1.1 design, the TPM-owner was responsible for many managerial

and administrative tasks. In version 1.2, the concept of delegation was introduced

to give the owner the ability to release some of these responsibilities in a controlled

fashion, thereby shifting towards a role-based administration based on the principle

of least privilege.

The idea was to to enable the owner to delegate specific owner privileges to specific

entities, rather than reveal the owner password, which would give the entity all owner

privileges. The entity can either be an actual user, in which case the owner will have

to hand him the delegated password, or a process identified by PCR values.

The TPM delegation design consists of delegations assigning an entity to the

delegated task and delegation families representing groups of delegations. The families

are there largely for administrative purposes and can be thought of as security groups.

The TPM owner can create and manage delegation families. The owner can also create

delegations by choosing a new password, the target tasks, the target entity and the

target delegation family. Every delegation and delegation family has a verification

count that is used to determine if a delegation is still valid. To invalidate existing

delegations, the owner must increment the verification count of the delegation family,

thereby invalidating all delegations belonging to that family, and then proceed to

update the verification counts for each of the desired delegations.

All delegation information is stored within the TPM in the family and delegation

tables but because the number of delegations is variable and possibly large, some

delegations exist as tamper-proof blobs externally. Tables 7.3 and 7.4 show the data

fields in delegation and delegation family tables respectively.

The following API commands make up the delegation section of the TPM:

* TPMDelegateManage is an owner-authorized command that manages the fam-

ily row. It can create, remove, disable or enable use of a delegation family.

* TPMDelegateCreateKeyDelegation creates a delegation to use a particular

key. Only one who knows the key's usage password can authorize this operation.
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Field Description
ASCII Label delegation name

Family ID the family that this delegation belongs to
Verification Count 32-bit number

Capabilities the task that is being delegated and the
entity that it is delegated to

Table 7.3: Delegation Table fields

Field Description
Family ID 32-bit number
Row Label the family name

Verification Count 32-bit number for invalidating delegations
belong to this family

Family Flags enable/disable/admin flags

Table 7.4: Family Table fields

* TPMDelegateCreateOwnerDelegation is an owner-authorized command that

creates a delegation to perform a particular owner-authorized task.

* TPMDelegateLoadOwnerDelegation loads an owner delegation. Key delega-

tions are not loaded; instead, they are presented when the user attempts to use

a key.

* TPMDelegateUpdateVerification is an owner-authorized command that up-

dates a delegation's verification count to that of the delegation family's.

Model and Discussion

Our previous ALLOY models were static models - models that describe a single snap-

shot of the system. For the delegation module, we decided to use a dynamic model

- one that models state transitions - since it could capture the changes in verifica-

tion counts and delegation or family table changes. Describing a dynamic model is

more challenging, especially in ALLOY, because of the "Frame Problem" - a famous

artificial intelligence problem regarding the issue of retaining state information state

across transitions [20]. Because ALLOY assumes that anything can happen unless
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constrained otherwise, it is necessary to write two constraints for each API com-

mand: a constraint expressing the state changes if the command was made and a

second constraint expressing that the state does not change if the command was not

made. For example, we describe the TPMUpdateVerificationCount command with

two predicates:

pred UpdateVcount(s,s': State, d:Del){

cnt.s' = cnt.s ++ d -> (dels.s.d).vcnt.s

}

pred NoUpdateVcount(s,s': State){

cnt.s' = cnt.s

}

Next, we also included the Authorize predicate that is true only when the user is

authorized to perform a particular command in a particular state. In our model,

the user is not the TPM owner and therefore must receive delegations to perform

owner-authorized tasks. Next, we had to organize these constraints across states

by constraining that between any two states, either the user is authorized and the

command succeeds or nothing happens:

pred Trace() {

// for all states

all s: State - SOrd/last() I let s' = SOrd/next(s) I

{

// for some delegation family that hasn't been created

// either the user is authorized and it is created

// or it isn't created

some f:vcnt.s'.Count I

Authorize(s,Manage) and CreateFRow(s,s' ,f) or NoCreateFRow(s,s')

some f: vcnt.s'.Count I

77



Authorize(s,Manage) and IncFamily(s,s',f) or NoIncFamily(s,s')

some d:task.s'.Cmd, c:Cmd, f:vcnt.s'.Count I

Authorize(s,Create) and CreateDel(s,s' ,d,f,c) or NoCreateDel(s,s')

some drow: DRow I some d:task.s.Cmd I

Authorize(s,Load) and LoadDel(s,s' ,drow,d) or NoLoadDel(s,s')

some d:task.s.Cmd I

Authorize(s, Update) and UpdateVcount(s,s' ,d) or NoUpdateVcount(s,s')

Although a cleaner model would enforce that only a single operation can occur be-

tween any two states, this model actually allows for any number of operations to

occur simultaneously, as long as they do not act on the same objects. Finally, we

performed an analysis on the delegation commands by writing a few assertions:

* a user without a certain privilege and without a delegation to that privilege

can never exercise the privilege. This is the fundamental security policy of the

delegation module.

* the verification count of any delegation blob is never higher than the value of its

family's. If this were true, the delegation would remain valid in the future even

though the family count was incremented to invalidate it, thereby representing

a breach in temporal security.

ALLOY found these assertions to be valid under a scope of 6 atoms in 34 and 44

seconds respectively.
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7.5 Authorization

The authorization model surrounding the use of TPM resources is quite straight-

forward. The first step to gaining access to any TPM resource (e.g. key, counter,

non-volatile memory index) is to create either an Object Independent Access Pro-

tocol (IAP), Object Specific Access Protocol (OSAP) or Delegation Specific Access

Protocol (DSAP) transport session to the entity. The transport sessions manage all

commands to the resource by creating a storage area for authorization information,

creating an authorization handle and providing protective nonces to guard against

replay attacks. On top of the transport session, access to any resource is further

guarded by the resource's 160-bit usage password.

In this section, we focus on modeling the underlying mechanism of password au-

thorization for the two object-specific transport protocols OSAP and DSAP. By object

specific, we mean that these transport sessions are opened for a particular resource

and not for a generic resource, which is the case for OIAP. When a OSAP transport

session is created, the TPM creates a session-store and records the handle to that

store. It then calculates the shared-secret based on the resource's usage password

and records it in the session-store. Subsequently, when a command is made through

this session, the TPM retrieves the shared-secret from the session-store and verifies

that it was correctly generated from the target resource's usage password. If that

verifies, the shared-secret is used to calculate the HMAC of the input parameters.

The resulting digest is checked against the input-parameter digest provided by the

user. If the digests match, the command proceeds. This process is repeated every

time a command is issued.

On the other hand, when a DSAP transport session is established, the TPM first

checks the delegation for validity before creating the session-store and generating the

shared-secret from the delegated password. Subsequently, when a command is made

through this DSAP session, the shared-secret is retrieved, checked to be generated

from the delegated password and then used to HMAC the input parameters. If

the resulting digest matches the input-parameter digest provided by the user, the
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command proceeds. Similarly, this process is repeated every time a command is

issued.

Model and Results

We used ALLOY to model the authorization procedure since we needed a tool to

automatically reason about an arbitrary number of sessions and resources. In OTTER,

these objects would have had to be hard-coded into the model.

We defined a set of Resource objects, a set of Del objects representing key dele-

gations and a set of Session objects representing transport sessions. Each Session

object points to a target resource and contains a shared-secret of type Value. The

Value atoms are split into two subsets: Known atoms representing known values and

Secret atoms representing unknown secrets.

// abstract means that Value objects do not actually exist

abstract sig Value {}

sig Known, Secret extends Value {}

sig Resource {

password: one Value

}

one sig Del {

// each delegation has exactly one (resource, value) pair,

// where Value is the delegated password

map: one (Resource -> Value)

}

We also defined a set of Command objects consisting of a transport session, a password

and a target resource. The commands would succeed only if the transport session

logic successfully verified the command input-parameter digest:
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sig Command {

session: one Session,

password: one Known,

target: one Resource

}

To analyze the security of the OSAP and DSAP transport session logic, we asserted

that the user knows the target resource's usage password for all OSAP authorized

commands that succeeded. We did the same for the DSAP transport sessions:

assert I)SAPisSafe {

// for all commands, either the user knows the password

// or he received a delegation for it

all c::Command I

c.target.password in Known II c.target in Del.map.Value

Our model found that the DSAP transport session was susceptible to a key-handle

switching attack by producing a counterexample within a scope of 10 atoms in 18

seconds (the full model can be found in Appendix B.1). In ALLOY'S counterexample,

the attacker was able to successfully issue a command using a resource for which he

did not know the usage password and did not receive a delegation for.

The DSAP session command does not check that the target resource in the input

parameters matches the resource specified in delegation because the usage password

of the target resource was not used to generate the session shared-secret. Rather, it

is the delegation password that was used. Therefore, it is possible for an adversary

to specify a completely arbitrary resource handle while still providing the delegated

password. The command would still validate and the user would be given usage access

to the resource. This is illustrated in Figure 7-2.
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TPM state 1 TPM state 2

password: secret User issues comrn
DSAP (delegatior

key #1S
password: secret

delegation
key: #17
password: known

F( is the shared-secret
generating function

no check done on resource handle

Figure 7-2: Key-handle switching attack

7.6 Model Integration

After analyzing each section of the API individually, we decided to assemble the

pieces incrementally to build a model of the full API. Our main vehicle for this

task was OTTER since our main goal was to derive serious API-chaining attacks.

For those API commands that were modeled in OTTER, we merged them into a

single file. For those that were modeled in ALLOY, we took the results from their

analyses and incorporated them into the existing OTTER file. We first started by

assembling the key management and protected storage modules since both dealt with

key material and secret data. The model consisted of 36 implication rules including

the ones describing the attacker's primitive abilities of encryption, decryption, key

generation and hashing. However, it proved too large for OTTER to handle and we

were unfortunately unable to proceed with integrating the other modules, which we

leave for future work. In this section, we will describe the issues faced and some

possible solutions.

We chose to run our search in breadth-first mode by forcing OTTER'S given-

clause algorithm to select clauses from the sos list based on the order they were

inserted. With this model, OTTER'S search-space began to explode by the third

level. At this level, OTTER was simply generating too many clauses that were being

forward subsumed by already existing clauses, leading to an extreme slow-down in

productivity. This integrated model can be found in Appendix B.2 and Table 7.5
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shows the statistics of OTTER'S analysis of the model.

clauses given 3675
clauses generated 354310

clauses kept 6034
clauses forward subsumed 348370

clauses back subsumed 6
user CPU time 657.85

system CPU time 4.16
wall-clock time 698

Table 7.5: OTTER statistics for the integrated model

There are a number of possible approaches to this problem but all require some

kind of trade-off:

* We could try to reduce the number of kept clauses by introducing weighting and

change OTTER'S given-clause algorithm to pick clauses based on their weight

instead of their order in sos. Then, by defining a maxweight constant and

putting extremely heavy weights on certain clauses, we can instruct OTTER to

discard those clauses. The clauses we would want to discard are those that

would seem meaningless or nonsensical within the system being considered. For

example, secrets that have undergone too many layers of encryption or hashing

would have lost their semantic value, so they become worthless. To model

this, we use OTTER'S weighting templates to define the weights of clauses. For

example, to discard blobs that contain hashes of hashes of hashes, we can use

the $dots function. If $dots(t) occurs in a weight template, it matches any

term that contains t:

assign(maxweight,1000).

weightlist(pickandpurge).

% let hashes of hashes of hashes have a weight higher than max_weight

weight(SHA($dots(SHA($dots(SHA(t))))), 1001)

end_of_list.
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Although this may help in reducing the number of kept-clauses, it seems that

the real problem is that OTTER is consuming time generating clauses that are

only being subsumed.

* To control the generation of clauses, we could further partition the model's data

by creating new predicates for each kind of data blob. This would control the

search-space explosion by reducing the branching factor of the search. At the

same time, however, it would limit the attacker's ability in trying to provide

illegal input to a command. In fact, this approach was tried and did not greatly

improve the situation.

* The most ideal way of controlling this blow-up is to remove the branching factor

at the source. OTTER was producing so many similar clauses that were being

subsumed because there were many paths to the same conclusion, indicating

that many of our implication rules were giving similar results. We should remove

these "redundant" implication rules from the model. These decisions, however,

represent an extremely difficult problem that we leave for future work.
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Chapter 8

Insecure TPM Implementations

The level of detail, clarity and coherence of the TPM vl.2 specification leaves many

details open to individual interpretation. In this chapter, we intend to highlight the

vulnerabilities that could arise from real TPM implementations as a result of fol-

lowing the TPM specifications. We consider three types of implementations of the

TPM specification - InsecureImplementationX, Y and Z - each with a successively

increasing amount of variance from the specified design and highlight the vulnerabil-

ities that could result. In particular, the complete break in security as a result of a

long chain of commands in InsecureImplementationZ gives a flavour of the attacks

we hope to find with our techniques and tools.

8.1 InsecureJmplementationX

InsecureImplementationX represents an implementation where ambiguities are re-

solved blindly. This could very well happen if an entry-level developer without much

security engineering experience was asked to implement the API simply based on the

original TPM specification. To see an example of the possible effects, we consider the

TPMDelegateUpdateVerif ication command.

This command sets the verification count of a delegation blob to that of the

family's, thereby validating the delegation. The instructions for this command, as

taken from pg 147 and 148 of the TPM Main PartS: Commands [1] specification, are:
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1 Verify the TPM Owner authorizes the command and parameters, on

error return TPM_AUTHFAIL

2 Determine the type of input data (TPM_DELEGATE_ROW or

TPM_DELEGATE_BLOB or TPM_TAG_DELB_OWNER_BLOB)

and map D1 to that structure

3 Locate (D1 -> pub -> familyID) in the TPM_FAMILYTABLE and set

familyRow to indicate row, return TPM_BADINDEX if not found

4 Set FR to TPM_FAMILY-TABLE.FamTableRow[familyRow]

5 If delegated, verify that the current delegation family

(FR -> familyID) == (D1 -> pub -> familyID); otherwise

return error TPM_DELEGATE_FAMILY

6 If delegated and (FR -> flags TPMFAMFLAG_ENABLED) is FALSE,

return TPMDISABLEDCMD

7 Set D -> verificationCount to FR -> verificationCount

8 If D1 is a blob, recreate the blob and return it.

The misleading step is step 8; it says to recreate the blob and return it. This com-

mand, if implemented incorrectly, will give the attacker basically a way of creating

arbitrary valid delegations. A valid delegation blob is one that has a correct HMAC

digest keyed with the special value tpmProof, a secret known only to the TPM. There-

fore, an adversary cannot normally create rogue delegation blobs without knowing this

secret. However, the above command does not check the validity of the input dele-

gation blob before recreating the blob with the new verification count in step 8. An

invalid delegation blob can be passed in and the command will return an updated

and valid version. The fact that this command is owner-authorized (in step 1) makes

the attack a little weaker since the owner is allowed to create arbitrary delegations

anyway. However, the owner is not allowed to create arbitrary key delegations which

he can do so by using this command.
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8.2 InsecureJmplementationY

Next, we move on to InsecureImplementationY, an implementation where arbitrary

design decisions are overridden by the developer for a reasonable purpose (e.g. saving

programming and testing resources). Let us consider the TPMCMKCreateTicket

command that is used in certifiable-migration by migration authorities to certify

the intended migration key (destination key). Recall that certifiable-migration is

migration only to parties either specified by the key owner or the migration authority

(MA). The command creates a special sigTicket structure:

SHA1(tpmProof SHA1(verification public key) II signed data)

Firstly, this data structure is not tagged with any meta-data describing what kind

of data it contains. Secondly, the placement of all three items in the hash seems

completely arbitrary. By switching the order of the last two items:

SHAl(tpmProof signed data SHAl(verification public key))

we were able to perform a blob-confusion attack on the the TPMCMKCreateKey com-

mand, which requires a hash the form:

SHAl(tpmProof SHA1(MA public key) SHAl(this public key) )

as the migration password of the certifiable-migration key (CMK). Through a series of

API commands involving TPMSign, TPMAuthorizeMigrationKey, TPMCMKCreateKey

and this altered version of TPMCreateTicket, we were able to migrate an MA-

controlled certifiable-migration key to an arbitrary key other than the one specified

by the MA. Although this attack was found through inspection, it was quickly verified

by OTTER and the model can be found in Appendix B.2.

8.3 Insecure mplementationZ

Finally, we move to InsecureImplementationZ, which is an implementation that

strays from the given specification in a single serious way. In this section, we intend
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to demonstrate how a single flaw in a fragile design can lead to a complete break

in security. In the TPM v.2 specifications, TPMLoad checks that the migration

password is tpmProof (the TPM master secret) for any non-migratable key before

loading the key into memory. We consider a different version, TPMLoad2, that leaves

out this check for tpmProof, allowing us to create a series of very serious attacks.

Injection Attack

The first in this series of attacks is the injection attack. This attack relies on the

failure of the conventional migration process to provide two-way authentication. An

honest source TPM can ensure that keys are migrated to only honest destination

TPMs but an honest destination TPM has no way of verifying that an incoming key

originated from an honest TPM. Therefore, the obvious attack would be to spoof an

incoming migration-blob by doing the following:

1. use TPMCreateWrapKey to create a key, K1

2. load the key into the TPM with TPMLoadKey

3. generate an asymmetric key, K2, manually and create a migration-blob struc-

ture containing K2 with a non-migratable flag. This can be done by encryp-

tion K2priv with Klpub and then OAEP encoding the result as specified in

TPMCreateMigrationBlob

4. load the above migration-blob into the victim TPM using TPMConvertMigrationBlob,

which does not perform a check on the key's migratability flag and subsequently

TPMLoadKey2, which does not check for the correct migration password given

a non-migratable key.

This attack gives the adversary knowledge of the private half of a non-migratable key

that is loaded in the TPM.
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Discovering tpmProof

The next attack aims to discover the TPM master secret tpmProof by leveraging on the

attacker's previous injection attack. Every non-migratable key created by the TPM

has its migration password set to the master secret tpmProof. Non-migratability is

ensured since no user can ever provide this secret value. However, since we now know

the private half of a non-migratable key loaded in the TPM, we can do the following:

1. create a non-migratable key (K1) with TPMCreateWrapKey and designate K2

as the parent key. The command returns an asymmetric key blob encrypted

under K2pub with tpmProof as the migration password.

2. decrypt the key blob using K2pmv to obtain tpmProof

Knowledge of this master secret is disastrous since it is used (indirectly or directly)

in almost all the important commands in the TPM. As an example, we show how to

extract any non-migratable key from the TPM once we have knowledge of tpmProof.

Extracting any key

This attack exploits the vulnerability that although there are three measures to pro-

tect against; illegal migration of non-migratable key, only two are enforced and both

are bootstrapped to a single security assumption that tpmProof is kept secret. The

three measures are:

1. migration-key structures are authenticated since they contain a hashed tpmProof.

2. every TPM key contains a migratability flag.

3. every TPM key has the migrate password bound to the private key, which is

checked against the user provided password

During the migration process, (2) is never checked and (1) and (3) rely on tpmProof

being secret. Since our previous attack allows an adversary to discover tpmProof,

all non-migratable keys can now be extracted by doing the following:
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1. Construct the following blob:

[KPUB, HMAC(KpuB, tpmProof )]

authorizing K to be a migration key. Ordinarily, this can only be done through

TPMAuthorizeMigrationKey since only the TPM knows tpmProof. However,

the knowledge of tpmProof allows the adversary to make ANY public key a

migration key.

2. Export any non-migratable key K' under K by providing the correct migration

password tpmProof

3. Decrypt the migration-blob obtained from (2) to obtain the private key value

of K'.

This allows an adversary to extract keys generated by other applications sharing the

TPM.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, we have shown the continued application of formal methods and au-

tomated reasoning tools to the analysis of security APIs, in particular, the Trusted

Platform Module. Using OTTER and ALLOY, we were able to capture many types

of API attacks, including a genre of attacks we had never considered before - partial

attacks. Also, we have managed to demonstrate techniques for dealing with system

state and API complexity. Nevertheless, although we have understood various APIs

and discovered attacks, it is interesting to note that the practice of modeling an API

often produces results faster than the automated analysis itself, as was the case for

the attacks described in this thesis.

9.1.1 Tool Comparison

OTTER'S resolution-style theorem-proving is excellent for API-chaining attacks and

blob-confusion attacks. Also, the ability to perform optimizations within the given-

clause algorithm to guide the search is extremely useful. Furthermore, if the system

state could be captured within a single predicate, the traditional "frame-problem"

becomes less of a hassle since a single predicate represents a snapshot of the entire

system. Lastly, the ability of OTTER to handle user-interaction during the proof-
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search is an enticing bonus that may come in helpful. On the other hand, OTTER'S

main disadvantage is at automatically reasoning about an arbitrary number of objects.

All initial information has to be present in the system before OTTER begins reasoning

and it is unable to increase, for instance, the number of resources, users and machines

in the model during its analysis.

ALLOY is much better at reasoning about arbitrary sets of objects. Given a bound,

ALLOY can search all models corresponding to all combinations of users, machines and

resources. It is extremely powerful at reasoning about properties and data structures

since these can often be precisely and concisely expressed in ALLOY'S set, logical and

relational notations. We have seen great success at using ALLOY to model previously

found information leakage attacks and guessing attacks - notions that are less natural

to OTTER. One avenue that has not been explored is ALLOY's power in generating

lower-level API security policies based on higher-level ones. Despite these strengths,

ALLOY, being constraint-based, is unable to deal with too much detail when it comes

to API modeling. An extra detail locally can result in an extra dimension to every

constraint globally, resulting in an extremely heavyweight model. Nevertheless, both

OTTER and ALLOY are excellent tools and complement each other when it comes to

API modeling.

9.1.2 TPM security

The TPM was designed to be the cornerstone for all future "trusted" applications.

Although we were unable to find any long sequences of commands yielding attacks

on the original specification (i.e. attacks unlikely to be found by hand), we have

demonstrated serious one or two step vulnerabilities allowing the attacker to create

arbitrary valid delegations and use arbitrary resources. Furthermore, we have shown

design weaknesses in the API that compromise its robustness, such as the over-reliance

on a single master secret tpmProof. These design weaknesses can result in serious

vulnerability in a poor implementation of the TPM's ambiguous specification, which

is highly likely considering the number of TPM chip manufacturers. It is therefore

our recommendation that the TPM specification, as well as other security product
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design specifications, come with security policies at the feature and API levels. This

way, security engineers can quickly analyze and reason about the design at the feature

level while software developers can do the same as they implement the API.

9.2 Future Work

With this work, we have further developed the group's tools, techniques and experi-

ence in dealing with security APIs. This leaves us with a number of future directions:

* Key Typing Language - we are currently working on trying to classify key-

typing meta-data into multiple subcategories like form, role and control. Form

describes the mathematical properties of the key, role describes the intended use

of the key and control describes the ownership and responsibility of the key. By

creating a language for defining keys, security API designers can better commu-

nicate their intentions about various keys and engineers can better analyze their

systems with these concepts in mind. Furthermore, it is possible that analyzing

an AiI while only considering certain aspects of key-typing information may

help to manage complexity while still yielding results.

* Europay-Mastercard-Visa - EMVCo is an organization started in Europe

tasked with replacing all credit and debit cards with new chip-and-pin smart-

cards. With these more intelligent devices, ATMs and point-of-sale machines

require extra API commands to make banking transactions. This would be an

extremely rich area for future API research.

* Modeling Partial Attacks - after witnessing ALLOY'S strength in reason-

ing about information leakage and guessing attacks, there is great interest in

modeling partial attacks that do not compromise the security policy fully but

compromise them sufficiently enough to allow brute-force attacks. We foresee

this to be a difficult but important area of research as the personal computer

becomes more and more powerful.
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It is our hope that this research will spark off more academic attention in the area of

security API analysis and help achieve higher industry security standards.
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Appendix A

Partial Attacks

This section contains the ALLOY model verifying the cryptanalytic attack that Biham

[5] found on the ECBIECBIOFB triple-mode block-cipher, described in section 5.2.

Biham's attack allowed the attacker to discover the key used in the OFB layer. It is

important to note that this model only describes the end goal of the attack - finding a

series of ciphertexts representing encryptions under only the OFB key. Since ALLOY

is non-deterministic, it may find different attacks (that yield the same result) other

than the one described by Biham when run on different platforms.

A.1 Triple-mode DES

/* This Alloy model captures the cryptanalytic attack on the

ECBIECBIOFB triple-mode block cipher. In this model, we combine

the first two ECBs to form a single ECB operation

*/

module ECBOFB

open util/ordering[Block]

sig Value {

xor : Value one -> one Value

}
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fact XORfacts {

// associativity

all a, b, c : Value I xor.c.(xor.b.a) = xor.(xor.c.b).a

// commutativity

all b : Value I xor.b = (xor.b)

// identity

one identity Value I no identity.xor - iden

sig Key{

enc: Value one -> one Value

}

fact EncFacts {

all disj k,k':Key I some (k.enc - k'.enc)

}

one sig OFB, K1 extends Key {}

sig Block {

p: one Value,

ofb: one Value,

c: one Value

}

fact BlockFacts {

//the ciphertext is a function of the plaintext and the ofb value

all b: Block I b.c = (Kl.enc[b.p]).xor[b.ofb]
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// setting up the OFB sequence through the blocks

all b: Block-last() let b' = next(b) I

b'.ofb = OFB.enc[b.ofb]

}

pred size() {

#Value > 5

some xor

}

pred FindAttack() {

size()

// the set contains the relevant properties that two sequential XORs

// of outputs match two sequential XORs of OFB encryptions

all b':Block-first()-last() let b=prev(b'), b''=next(b')

some d:OFB.enc.Value let d'=OFB.enc[d], d''=OFB.enc[d'] 

b.c.xor[b'.c] = d.xor[d'] && b'.c.xor[b''.c] = d'.xor[d'']

run size for 8 but exactly 2 Key

run FindAttack for 8 but exactly 2 Key

On a 1 GHz PowerPC G4 Apple powerbook with 768 MB of RAM, "run size for

8 but exactly 2 Key" completed in 1 minute 10 seconds and "run FindAttack

for 8 but exactly 2 Key" completed in 2 minutes 25 seconds yielding an instance

containing the attack that Biham had described.
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Appendix B

TPM Models

B.1 Authorization

This section contains the ALLOY model of the authorization framework used in the

TPM. In this model, all three transport sessions (IAP, OSAP and DSAP) are mod-

eled, together with a set of arbitrary resources and values. This model is able to

find an instance where the attacker is able to issue a command for a particular re-

source without knowing the resource usage password or receiving a delegation for the

resource.

/* This Alloy model demonstrates the key-handle

switching attack on the TPM's DSAP transport session

*/

module authorization

abstract sig Value {}

sig Known, Secret extends Value {}

// a set of TPM resources (keys, memory locations, etc)

sig Resource {

password: one Value
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}

fact ResourceFacts{

// we want a model where no two resources have the same password

all disj r,r': Resource I r.password != r.password

}

// a set of delegations

one sig Del {

map: one (Resource -> Value)

}

fact DelFacts{

// all delegations delegate the use of a resource for which

// the password is Secret and the new password is Known

all d:Del I let delegated = d.map.Value, newpass = d.map[Resource] I

delegated.password not in Known && newpass in Known

}

// a set of transport sessions

abstract sig Session {

resource: one Resource,

sharedsecret: one Value

}

sig IAP, SAP extends Session {}

sig DSAP extends Session {

del: one I)el

}

fact Sessionfacts{

// OIAP sessions do not have resources

all s:OIAP I no (s.resource)
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// for all OSAP session, the sharedsecret is derived from the resource

all s:OSAP I s.sharedsecret = s.resource.password

// we want a model where each sessions is opened for a different resource

all disj s,s': Session I s.resource != s'.resource

// all DSAP sessions get their resource and new password

// from the delegation-blob

all s:DSAP I s.resource = s.del.map.Value

&& s.sharedsecret = s.del.map[Resource]

I

// when a command atom exists, that means it was authorized

// succesfully

sig Command {

session: one Session,

password: one Known,

target: one Resource

}

fact CommandFacts{

// for OIAP sessions, the password given during command

// must match the password of the resource

all c:Command I

c.session in OIAP => c.password = c.target.password

// for all OSAP authorized commands, the TPM checks the target

// resource and the password provided to make sure they match

all c: Command I

c.session in OSAP => c.password = c.session.sharedsecret &&

c.target = c.session.resource
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// for all DSAP authorized commands, the TPM checks only the

// password, not the target resource

all c:Command 

c.session in DSAP => c.password = c.session.sharedsecret

}

pred size(){}

// Does OSAP allow unauthorized use of resources?

assert OSAPisSafe {

// for all OSAP commands succesfully authorized, the user

// knows the password for the target resource

all c: Command I c.session in OSAP => c.target.password in Known

// Does DSAP allow unauthorized use of resources?

assert DSAPisSafe {

// user cannot use any target for which the password is unknown

// and he did not receive a delegation for it

all c:Command I

c.target.password in Known I1 c.target in Del.map.Value

}

run size for 10

check OSAPisSafe for 10

check DSAPisSafe for 10

On a 1 GHz PowerPC G4 Apple powerbook with 768 MB of RAM, "run size for

10" completed in 21 seconds, "check OSAPisSafe for 10" completed in 25 seconds

and "check DSAPIsSafe for 10" completed in 18 seconds yielding a counterexam-
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ple.

B.2 Key Management and Protected Storage

This section contains the OTTER model for the key management and protected stor-

age commands in the TPM. The first section of the model is documentation describing

the different predicates used and what they mean. The second section of the model

lists the commands, the third section of the model sets up the environment by listing

the initial knowledge and the fourth section lists the goals of the attacker. Further-

more, by turning on/off the relevant commands (which will be indicated in the code),

this model will find the InsecureImplementationY and Z attacks as described in

chapter 8.

% TPM Specification Version 1.2

%0 this model captures the Key management and protected storage

%0 API commands and attacker abilities in an attempt to find an

% API-chaining attack on the system.

set(processinput).

set(sosqueue).

clear(printkept).

clear(printbackdemod).

clear(printbacksub).

set(hyperres).

assign(maxmem, 500000).

assign(maxseconds, 900 ).

assign(statslevel,l1).
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assign(max_proofs, 10).

,______________________________________________________________________
~~~% ~Function Definitions

% TPM(x) = TPM has loaded x

% U(x) = User knows x

% TPMKEY(x): the TPM generated this key x

% UKEY(x): user generated this key x

% KEY(x,xupass,xmpass,xtype,xmig) = logical representation of a key

% x = key identifier

% xupass = usage password

% xmpass = migration password

% xtype = STORAGE, IDENTITY, etc

% xmig = MIG (migratable), NMIG (non-migratable)

% priv(x) identifies the private half of key x

% pub(x) identifies the public half of key x

% ASYM(priv(x),xupass,xmpass,pub(y)) = user has this TPM_ASYM_KEY struct

% priv(x) = private key of x

% xupass = usage password

% xmpass = migration password

% pub(y) = encrypted under public half of key y

% produced by: CreateKey, CMKCreateKey, ConvertMigrationBlob
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% E(x,y) = encryption of x under y

% MIGBLOB(priv(x),xupass,xmpass,pub(y)) = user has this OAEP encoded

% TPM_MIGRATE_ASYMKEY struct

% necessary to model separately because it has payload = TPM_PT_MIGRATE

% priv(x) = private key

% xupass = usage password

% xmpass = migration password

% pub(y) = encrypted under public key y

% produced by: CreateMigrationBlob, CMK_CreateBlob

% keylnfo(x,y) = x, y are parameters describing the key to be modelled

% SHA(x) = SHA lof x

% SHA(xl,x2,x3) = SHA1 of the concatenation of three components

% H(x,y) = hash done with a key, done with SHA1

% x is the key type data

%'y is the key flag data.

% SIG(x,y) = user has this signature of data x using private key y

% Sealed(tpmProof,xencpass,xdata,xpcr,pub(key))

% xencpass = usage password for this SEALED blob

% xdata = data that is encrypted

% xpcr =pcr values

% pub(key) = public key used to encrypt data

% Bound(xpayload,xdata,pub(key))

% xpayload = tag meta-data for this BOUND blob
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% xdata = data that is encrypted

% pub(key) = public key used to encrypt data

% ----- START OF USABLE --------

list(usable).

~~~~% ~Attacker Abilities

%**********************************************************************

% Command: Create restrictTickets

% may need to constrain this a bit more if Otter blows up

-U(SHA(x)) -U(SHA(y)) I -U(SHA(z)) I U(RTICKET(SHA(x),SHA(y),SHA(z))).

%***********************************************************************

% Command: Generate Signatures, but only on RTICKETS to control blow-up

-U(RTICKET(w,x,y)) -U(priv(z)) I SIG(RTICKET(w,x,y),priv(z)).

%**********************************************************************

% Command: forging CMKCreateKey ASYM structures

-U(priv(w)) I -U(SHA(y)) I -U(pub(z)) I

ASYM(priv(w),PASS,SHA(y),pub(z)).

-U(priv(w)) -U(tpmProof) -U(pub(z)) 

ASYM(priv(w),PASS,tpmProof,pub(z)).

-U(priv(w)) I -U(pub(z)) 

ASYM(priv(w),PASS,MPASS,pub(z)).
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% Command: forging MIGBLOB structures

-U(priv(w)) I -U(SHA(y)) I -U(pub(z))

MIGBLOB(priv(w),PASS,SHA(y),pub(z)).

-U(priv(w)) I -U(pub(z)) I

MIGBLOB(priv(w),PASS,MPASS,pub(z)).

% Command: Decrypt Blobs

-MIGBLOB(w,x,y,pub(z)) I -U(priv(z)) I U(dec(MIGBLOB(w,x,y,pub(z)))).

-U(dec(MIGBLOB(w,x,y,pub(z)))) I U(w).

-U(dec(MIGBLOB(w,x,y,pub(z)))) I U(x).

-U(dec(MIGBLOB(w,x,y,pub(z)))) I U(y).

-ASYM(w,x,y,pub(z)) I -U(priv(z)) I U(dec(ASYM(w,x,y,pub(z)))).

-U(dec(ASYM(w,x,y,pub(z)))) I U(w).

-U(dec(ASYM(w,x,y,pub(z)))) I U(x).

-U(dec(ASYM(w,x,y,pub(z)))) I U(y).

-SEALED(v,w,x,y,pub(z)) I -U(priv(z)) I U(dec(SEALED(v,w,x,y,pub(z)))).

-U(dec(SEALED(v,w,x,y,pub(z)))) I U(v).

-U(dec(SEALED(v,w,x,y,pub(z)))) I U(w).

-U(dec(SEALED(v,w,x,y,pub(z)))) I U(x).

-U(dec(SEALED(v,w,x,y,pub(z)))) I U(y).

% Command: Implicit Knowledge of Blobs

-MIGBLOB(w,x,y,z) I U(MIGBLOB(w,x,y,z)).
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-ASYM(w,x,y,z) I U(ASYM(w,x,y,z)).

-SEALED(v,w,x,y,z) I U(SEALED(v,w,x,y,z)).

-SIG(x,y) I U(SIG(x,y)).

% Command: SHA1

% limit SHA-ing to: public keys

-U(pub(x)) I U(SHA(pub(x))).

%-U(RTICKET(x,y,z)) I U(SHA(RTICKET(x,y,z))). disallowed to prevent blowup

% TPM Transaction Set

% All commands here are separated by a line of **********

%*********************************************************************

% Command: TPM_CreateWrapKey (non-migratable key)

-CreateKey 

% key generation parameters, specify that key is generated by the TPM

-KEY(x,xupass,xmpass,xtype,NMIG) I -TPMKEY(x) I

% parent key of correct type, flag and user presents correct password

-KEY(y,yupass,ympass,STORAGE,NMIG) I -U(yupass) I

% TPM has loaded the parent key y

-TPM(y) I

107



% returns TPM_STORE_ASYMKEY blob with tpmProof as migration password

ASYM(priv(x),xupass,tpmProof,pub(y)) 

%0 Command: TPM_CreateWrapKey (migratable key)

-CreateKey I

% key generation parameters, specify that key is generated by the TPM

-KEY(x,xupass,xmpass,xtype,MIG) I -TPMKEY(x) I

user presents usage password

-KEY(y,yupass,ympass,STORAGE,ymig) I -U(yupass)

% TPM has loaded the parent key y

-TPM(y) I

% returns TPM_STORE_ASYMKEY blob

ASYM(priv(x),xupass,xmpass,pub(y)).

%**********************************************************************

% Command: TPM_LoadKey (non-migratable key)

-LoadKey I

% if key is non-migratable, it must have tpmProof

-KEY(x,xupass,tpmProof,xtype,NMIG) I

% providing blob and TPM has loaded parent key

-ASYM(priv(x),xupass,tpmProof,pub(y)) I -TPM(y) I
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% user provides the correct auth

-KEY(y,yupass,ympass,STORAGE,NMIG) I -U(yupass)

% TPM loads the key

TPM(x).

% Command: TPM_LoadKey (migratable key)

-LoadKey I

% if key is non-migratable, it must have tpmProof

-KEY(x,xupass,xmpass,xtype,MIG) 

% providing blob and TPM has loaded parent key

-ASYM(priv(x),xupass,xmpass,pub(y)) I -TPM(y) I

% parent key is of proper type,flag and user provides correct password

-KEY(y,yupass,ympass,STORAGE,ymig) I -U(yupass)

% TPM loads the key

TPM(x).

% Command: TPM_LoadKey2 flawed implementation

-LoadKey2 I

% tpmProof is not need even if key is non-migratable (FLAW)

-KEY(x,xupass,xmpass,xtype,NMIG) I

% providing blob and TPM has loaded parent key
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-ASYM(priv(x),xupass,xmpass,pub(y)) I -TPM(y) I

% user provides the correct auth

-KEY(y,yupass,ympass,STORAGE,NMIG) I -U(yupass) 

% TPM loads the key

TPM(x).

% Command: TPM_Seal

-Seal I

% sealing key is a non-migratable storage key

-KEY(x,xupass,xmpass,xtype,xmig) I -U(xupass) I

% user provides an encrpytion auth value and PCR values

-TPM(x) I -U(xencpass) I -U(xdata) I -U(xpcr) I

% TPM seals the data

SEALED(tpmProof,xencpass,xdata,xpcr,pub(x)).

% Command: TPM_Unseal

-Unseal I

% unsealing key is a non-migratable storage key

-KEY(x,xupass,xmpass,STORAGE,NMIG) I -U(xupass) I

% user provides the sealed blob
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-SEALED(tpmProof,xencpass,xdata,xpcr,pub(x)) I -U(xencpass) I

% returns the data

U(xdata).

% Command: TPM_Unbind

-Unbind I

% unbinding key must be of type BIND or LEGACY

-KEY(x,xupass,xmpass,BIND,xmig) I -U(xupass) I

% input is a TPM_BOUND_DATA structure, user gets decrypted value

-BOUND(PT.BIND,xdata,pub(x)) U(xdata).

% Command: TPM_Unbind

-Unbind I

% unbinding key must be of type BIND or LEGACY

-KEY(x,xupass,xmpass,LEGACY,xmig) I -U(xupass) 

% input is a TPM_BOUND_DATA structure, user gets decrypted value

-BOUND(PT_BIND,xdata,pub(x)) I U(xdata).

% Command: TPM_Sign

--Sign I
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% parent key is of proper type, flag and user provides correct password

-KEY(y,yupass,ympass,SIGN,ymig) I -U(yupass) I

% signs the blob

-U(SHA(x)) I SIG(SHA(x),priv(y)).

% Command: TPM_AuthorizeMigrationKey (MIGRATE)

% Migration Schemes = MIGRATE, REWRAP, RESTRICT-MIGRATE, APPROVE,

% APPROVE_DOUBLE

-AuthorizeMigrationKey 

% showing TPM owner password and present migration key

-U(TPMowner) I -Trust(x) 

% return a TPM_MIGRATIONKEYAUTH structure

U(SHA(pub(x),MIGRATE,tpmProof)).

%*****************************************************************

% Command: TPM_AuthorizeMigrationKey (other variants)

-U(TPMowner) I -Trust(x) I U(SHA(pub(x),REWRAP,tpmProof)).

-U(TPMowner) I -Trust(x) I U(SHA(pub(x),RESTRICTMIGRATE,tpmProof)).

-U(TPMowner) I -Trust(x) I U(SHA(pub(x),APPROVE,tpmProof)).

-U(TPMowner) I -Trust(x) I U(SHA(pub(x),APPROVE_DOUBLE,tpmProof)).

% Command: TPMCreateMigrationBlob (MIGRATE)*******************************************************************)
%. Command: TPM_CreateMigrationBlob (MIGRATE)
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-CreateMigrationBlob I

% provide TPM_MIGRATIONKEYAUTH containing migration key (z)

-U(SHA(pub(z),MIGRATE,tpmProof)) I

% present TPM_STORE_ASYMKEY containing key to be migrated (x)

-ASYM(priv(x),xupass,xmpass,pub(y)) I -U(xmpass) I

% no restrictions on parent key, flag and user presents correct password

-KEY(y,yupass,ympass,ytype,ymig) I -U(yupass) I

% returns the OAEP encoded TPM_MIGRATE_ASYMKEY structure

MIGBLOB(priv(x),xupass,xmpass,pub(z)).

% Command: TPM_CreateMigrationBlob (REWRAP)

-CreateMigrationBlob I

% provide TPM_MIGRATIONKEYAUTH containing migration key (z)

-U(SHA(pub(z),REWRAP,tpmProof)) I

% present TPM_STORE_ASYMKEY containing key to be migrated (x)

-ASYM(priv(x),xupass,xmpass,pub(y)) I -U(xmpass) I

% no restrictions no parent key, flag and user presents correct password

-KEY(y,yupass,ympass,ytype,ymig) I -U(yupass) I

% returns the TPM_STORE_ASYMKEY rewrapped under migration key z

ASYM(priv(x),xupass,xmpass,pub(z)).

113



% Command: TPM_ConvertMigrationBlob (MIGRATE only)

-ConvertMigrationBlob I

% present the TPM_MIGRATE_ASYMKEY structure

-MIGBLOB(priv(x),xupass,xmpass,pub(z)) I

% parent key must have type STORAGE, user presents correct password

-KEY(z,zupass,zmpass,STORAGE,zmig) I -U(zupass) I

% converts TPM_MIGRATE_ASYMKEY to TPM_STORE_ASYM and returns it

ASYM(priv(x),xupass,xmpass,pub(z)).

% Command: TPM_CMK_CreateKey (part I)

-CMK_CreateKey I

% specify the Migration Selection Authority / Migration Authority (z)

-CMKEY(x,xupass,NULL,xtype,MIG) I -U(z) I

% parent key must have type STORAGE, user presents correct password

-KEY(y,yupass,tpmProof,STORAGE,NMIG) I -U(yupass) I

% returns a TPM_KEY12 with TPM_STORE_ASYM inside

ASYM(priv(x),xupass,SHA(tpmProof,z,SHA(pub(x))), pub(y)).

% Command: TPM_CMK_CreateKey (part II)

-CMK_CreateKey I
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% specify the Migration Selection Authority / Migration Authority (z)

-CMKEY(x,xupass,NULL,xtype,MIG) I -U(z) I

% parent key must have type STORAGE, user presents correct password

-KEY(y,yupass,tpmProof,STORAGE,NMIG) I -U(yupass) I

% must also change the migration password for key x

KEY(x,xupass,SHA(tpmProof,z,SHA(pub(x))),xtype,MIG).

% Command: TPM_CMKCreateTicket

-CMKCreateTicket I

% user presents signed data (x), signature, verification key (y)

-U(x) I -SIG(x,priv(y)) I -U(pub(y)) I

% returns the sigTicket

U(SHA(tpmProof,SHA(pub(y)),x)).

%Y. Command: TPM_CMKCreateTicket2 (flawed implementation)

% same as CMK_CreateTicket except order of components is switched

-CMKCreateTicket2 I -U(x) I -SIG(x,priv(y)) I -U(pub(y)) I

U(SHA(tpmProof,x,SHA(pub(y)))).

% Command: TPMCMKCreateBlob (RESTRICTMIGRATE)

'l also documented as migration directly to a MSA

-CMK_CreateBlob_Restrict_Migrate I
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% output from TPM_AuthorizeMigrationKey, zmsa = MSA key = destination key

-U(SHA(zmsa,RESTRICTMIGRATE,tpmProof)) 

user inputs digest of the source key

-U(SHA(zsrc)) 

% TPMKEY12 structure from CMK_CreateKey

-ASYM(priv(x),xupass,SHA(tpmProof,SHA(zmsa),SHA(zsrc)), pub(y)) 

% parent key must non-migratable, user presents correct password

-KEY(y,yupass,tpmProof,ytype,NMIG) -U(yupass) 

% returns OAEP encoded TPM_MIGRATE_ASYMKEY structure

MIGBLOB(priv(x),xupass,SHA(tpmProof,SHA(zmsa),SHA(zsrc)),zmsa).

% Command: TPMCMKCreateBlob (APPROVE)

A indirect migration that requires MA(zma) approval

-CMKCreateBlobApprove 

% proper TPM_MIGRATIONKEYAUTH from TPM_AuthorizeMigrationKey

-U(SHA(zdest,APPROVE,tpmProof)) 

% user-input restrictTicket, broken into three pieces

-U(SHA(zma)) I -U(SHA(zdest)) -U(SHA(zsrc)) I

% TPMKEY12 structure from CMK_CreateKey

-ASYM(priv(x),xupass,SHA(tpmProof,SHA(zma),SHA(zsrc)), pub(y)) 
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% parent key must non-migratable, user presents correct password

-KEY(y,yupass,tpmProof,ytype,NMIG) I -U(yupass) I

% sigTicket from CMK_CreateTicket

-U(SHA(tpmProof,SHA(zma),RTICKET(SHA(zma),SHA(zdest),SHA(zsrc)))) 

% rewraps the TPM_KEY12 structure under zdest

ASYM(priv(x),xupass,SHA(tpmProof,SHA(zma),SHA(zsrc)), zdest).

% Command: TPM_CMK_CreateBlob (APPROVE_DOUBLE)

% requires MA(zma) approval

-CMK_CreateBlobApprove_Double I

% proper TPM_MIGRATIONKEYAUTH from TPM_AuthorizeMigrationKey

-U(SHA(zdest,APPROVEDOUBLE,tpmProof)) 

% user-input restrictTicket, broken into three pieces

-U(SHA(zma)) -U(SHA(zdest)) -U(SHA(zsrc)) I

% TPMKEY12 structure from CMKCreateKey

-ASYM(privr(x),xupass,SHA(tpmProof,SHA(zma),SHA(zsrc)), pub(y)) I

% parent key must non-migratable, user presents correct password

-KEY(y,yupass,tpmProof,ytype,NMIG) -U(yupass) 

% sigTicket from CMKCreateTicket

-U(SHA(tpmProof,SHA(zma),RTICKET(SHA(zma),SHA(zdest),SHA(zsrc)))) 

% does the OAEP encoding

117



MIGBLOB(priv(x),xupass,SHA(tpmProof,SHA(zma),SHA(zsrc)), zdest).

% Command: TPM_CertifyKey

-CertifyKey I

% certifying key and authorization

-KEY(y,yupass,ympass,ytype,ymig) I -U(yupass) I -TPM(y)

% key-to-be-certified and authorization

-KEY(x,xupass,xmpass,xtype,xmig) I -U(xupass) I -TPM(x) 

%/ creating the signature

SIG(SHA(pub(x)),priv(y)).

0

% Command: TPM_CertifyKey2

-CertifyKey2 I

%0 migrationPubDigest

-U(xmigpubdigest) I

% certifying key and authorization

-KEY(y,yupass,ympass,ytype,ymig) I -U(yupass) I -TPM(y)

% key-to-be-certified and authorization

-KEY(x,xupass,xmpass,xtype,SHA(tpmProof,SHA(xmigpubdigest),SHA(pub(x))))

-U(xupass) I -TPM(x) I

% creating the signature
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SIG(SHA(pub(x)), priv(y)).

end_of_list.

% --- END OF USABLE ---

% ---- START OF SOS ___

list(sos).

% Command Enabling: put a "-" in front to turn off the command

% by default, we turn off the flawed commands

CreateKey.

LoadKey.

-LoadKey2.

Sign.

Seal.

Unseal.

Unbind.

AuthorizeMigrationKey.

CreateMigrationBlob.

ConvertMigrationBlob.

CMK_CreateKey.

CMK_CreateTicket.

-CMK_CreateTicket2.

CMK_CreateBlob_RestrictMigrate.

CMK_CreateBlob_Approve.

CMK_CreateBlob_ApproveDouble.

CertifyKey.

CertifyKey2.
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User Knowledge

user generated key

UKEY(KEY1).

KEY(KEY1,PASS,MPASS,STORAGE,NMIG).

U(pub(KEY1)).

U(priv(KEY1)).

user generated key

UKEY(KEY2).

KEY(KEY2,PASS,MPASS,STORAGE,MIG).

U(pub(KEY2)).

U(priv(KEY2)).

% TPM Storage Root Key

TPMKEY(SRK).

KEY(SRK,SRKPASS,tpmProof,STORAGE,NMIG).

TPM(SRK).

U(pub(SRK)).

% STORAGE1 = non-migratable storage

TPMKEY(STORAGE1).

KEY(STORAGE1,PASS,tpmProof,STORAGE,NMIG).

U(pub(STORAGE1)).

% STORAGE2 = migratable storage

TPMKEY(STORAGE2).
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KEY(STORAGE2,PASS,MPASS , STORAGE,MIG).

U(pub(STORAGE2)).

% TPM generated Certifiable-Migration Key

CMKEY(CMK, PASS, NULL, SIGN, MIG).

U(pub(CMK)).

% One Migration Authority (MA) key:

% this predicate is commented out because we do not want the

% MA key to be generated. rather, it just exists

% KEY(MA,NULL,NULL,STORAGE,NMIG).

U(pub(MA)).

% One Migration Selection Authority (MA) or destination key

U(pub(TPM2)).

% MA certifies TPM2 with a signature

SIG(RTICKET(SHA(pub(MA)), SHA(pub(TPM2)), SHA(pub(CMK))), priv(MA)).

'Y. User-known passwords

U(PASS).

U(MPASS).

U(SRKPASS).

A make user the TPM owner

U(TPMowner).

A keys that the TPMOwner trusts (for migration)

Trust(TPM2).

Trust(KEY1).
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end_of_list.

% --- END OF SOS ----

~~~~~% ~Goals

list(passive).

% InsecureImplementation_Y

% Turn on CMK_CreateTicket2

% the CMK should only be migrated to TPM2 (as certified by the MA)

-MIGBLOB(priv(CMK),PASS,SHA(tpmProof,SHA(pub(MA)),SHA(pub(CMK))),pub(KEY1)).

% InsecureImplementation_Z

% Turn on TPM_LoadKey2

0% Loading a user-generated non-migratable key into the TPM

-TPM(KEY1).

% Cannot extract private halves of non-migratable keys

-U(priv(MA)).

-U(priv(STORAGE1)).

-U(priv(SRK)).

% Ultimate goal

-U(tpmProof).

end_of_list.

122



Bibliography

[1] Trusted Computing Group Architecture Overview Revision 1.2.
http://www.trustedcomputinggroup.org.

[2] R.J. Anderson. Why cryptosystems fail. Communications of the ACM, November
1994.

[3] Mihir Bellare and Phil Rogaway. Optimal assymetric encryption. Advances in
Cryptology - Eurocrypt, pages 92-111, 1994.

[4] Eli Biham. Cryptanalysis of multiple modes of operation. Technical Report,
Computer Science Department, Technion, (CS0833), 1994.

[5] Eli Bihlam. Cryptanalysis of triple-modes of operation. Technical Report, Com-
puter Science Department, Technion, (CS0885), 1996.

[6] M. Bond. Attacks on cryptoprocessor transaction sets. Workshop on Crypto-
graphic Hardware and Embedded Systems, 2001.

[7] Jolyon Clulow. The design and analysis of cryptographic APIs for security de-
vices. Master's thesis, University of Natal, 2003.

[8] A.C. Yao D. Dolev. On the security of public key protocols. IEEE Transactions
on Information Theory, 29, 1983.

[9] Y. Novilov E. Goldberg. Berkmin: A fast and robust SAT-solver, 2002.

[10] Software Design Group. http://alloy.mit.edu/beta/, 2004.

[11] T. Hoare. Communicating sequential processes. Communications of the ACM,
1978.

[12] IBM Inc. IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services Refer-
ence and Guide for the IBM 4758-001, Release 1.31, 1999.

[13] Daniel Jackson. Alloy 3.0 Reference Manual. Software Design Group, May 2004.

14] John Arnold Kalman. Automated Reasoning with Otter. Rinton-Press, 2001.

[15] Gavin Lowe. An attack on the Needham-Schroder public-key authentication
protocol. Information Processing Letters, 56(3):131-133, 1995.

123



[16] P. Zielinski M. Bond. Decimalisation table attacks for PIN cracking. Technical
Report, University of Cambridge, (560), 2003.

[17] R.J. Anderson M. Bond. API-level attacks on embedded systems. IEEE Com-
puter, 34:67-75, 2001.

[18] R. Needham M. Burrows, M Abadi. A logic of authentication. ACM Transactions
in Computer Systems, 8:18-36, February 1990.

[19] C. Meadows. A model of computation for the NRL protocol analyzer. Proceedings
of the Computer Security Foundations Workshop VII, pages 84-89, 1994.

[20] Nilsson Nils Michael Genesereth. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann Publishers, 1987.

[21] J.A. Robinson. A machine-oriented logic based on the resolution principle. Jour-
nal of the ACM, 12:23-41, 1965.

[22] Sean Smith. TrustedWorthy Computing and Applications. Springer, 2005.

[23] M.E. Hellman W. Diffie. Exhaustive cryptanalysis of the NBS data encryption
standard. Computer, 10(6):74-84, June 1977.

[24] Paul Youn. The analysis of cryptographic APIs using the theorem prover otter.
Master's thesis, Massachusetts Institute of Technology, 2004.

124


