
A Biological Simulator using a Stochastic

Approach for Synthetic Biology

by

Daniel D. Kim

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2005

© Daniel D. Kim, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part. '

A uthor

MfZkA~sCIETT INT E
OF TECHNOLOGY

JUL 18 2005

LIBRARIES
Department of Electrical Engineering and Computer Science

/ January 28, 2005

Certified by - .

Thomas F. Knight Jr.
Senior Research Scientist

-Thesis Supervisor

Accepted by.
Arthur C. Smith

Chairman, Department Committee on Graduate Students

BARKER

MT

A Biological Simulator using a Stochastic Approach for

Synthetic Biology

by

Daniel D. Kim

Submitted to the Department of Electrical Engineering and Computer Science
on January 28, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Synthetic Biology is a new engineering discipline created by the development of ge-
netic engineering technology. Part of a new engineering discipline is to create new
tools to build an integrated engineering environment. In this thesis, I designed and
implemented a biological system simulator that will enable synthetic biologists to
simulate their systems before they put time into building actual physical cells. Im-
provements to the current simulators in use include a design that enables extensions
in functionality, external input signals, and a GUI that allows user interaction. The
significance of the simulation results was tested by comparing them to actual live
cellular experiments. The results showed that the new simulator can successfully
simulate the trends of a simple synthetic cell.

Thesis Supervisor: Thomas F. Knight Jr.
Title: Senior Research Scientist

2

Acknowledgments

I would first like to thank my thesis advisor, Professor Thomas F. Knight Jr. for

piquing my interest in Synthetic Biology, giving me the opportunity to pursue what

I fancied, and being kind and understanding amidst my multiple disappearances.

I also thank Jonathan Goler for the time he spent helping me pick my topic and

eventually leading me to Sri Kosuri. Without Jonathan, I am sure I would still be

twiddling my thumbs wondering what to do. I also owe Sri a debt of gratitude for

giving up so much of his time and effort trying to get a clueless student going.

I survived this school with the camaraderie and encouragement of my friends and

roomates. Thanks to them for keeping me sane throughout my schooling. I am afraid

I have not given them nearly as much as they have given me.

Finally, I am deeply grateful to my family for being the anchor in my wandering

life. Without them I would undoubtedly be lost at sea.

3

Contents

1 Introduction 9

1.1 Overview . 9

1.2 Motivation . 10

1.3 Implementation . 10

1.4 Preview . 11

2 Background and Goals 12

2.1 Synthetic Biology . 12

2.2 BioJade . 13

2.3 Stochastic Kinetics . 13

2.3.1 Describing Chemical Processes 14

2.3.2 Markov Processes . 14

2.4 Related W ork . 16

2.4.1 Tabasco . 16

2.4.2 Stochastrator . 17

2.4.3 BioComp . 17

2.4.4 Dizzy . 17

2.5 Challenges . 18

2.6 Goals . 18

3 Architecture and Implementation 21

3.1 Design Overview . 21

3.2 Algorithm . 22

4

3.2.1 Direct Method .2

3.2.2 First Reaction Method

3.2.3 Next Reaction Method

3.3 M olecules

3.3.1 Proteins

3.3.2 DNA

3.3.3 RNA

3.4 Reactions

3.4.1 Protein-Protein Interactions . .

3.4.2 DNA-Protein Interactions . . .

3.4.3 RNA-Protein Interactions . . .

3.4.4 Possible Extensions

3.5 Input and Output

3.6 Implementation

4 Modeling Biology

4.1 Constructing a Genetic Toggle Switch .

4.2 Modeling a Genetic Toggle Switch . . .

4.3 Experimental Results

5 Discussion

5.1 Analysis of Modeling Results.

5.2 Assumptions

5.3 Rate of Reaction

5.4 Reflection on Architecture . . .

5.5 Summary

6 Future Work

6.1 Finding Rates

6.2 Adding Functionality

6.3 Ease of Access

5

. 2 4

. 2 5

. 2 6

. 2 7

. 2 7

. 2 7

. 2 7

. 2 8

. 2 8

. 2 8

. 2 9

. 2 9

. 3 0

34

34

36

37

41

41

42

43

44

45

47

47

48

48

.24

.

.

.

.

.

. .

. .

. .

7 Contributions 49

A Interfaces 50

A .1 M olecule.java . 50

A .2 Reaction.java . 52

B XML Input Format 55

C Text Output Sample 57

6

List of Figures

3-1 Dependency Diagram for T2. Outlines the architecture of the application. 23

3-2 All Molecules Panel displays the details of all Molecule objects involved. 30

3-3 All Reaction Panel displays the details of all Reaction objects involved. 31

3-4 Text Output Panel displays the state of the simulation across time as

text. 33

4-1 Toggle switch design. Repressor 1 inhibits transcription from Promoter

1 and is induced by Inducer 1. Repressor 2 inhibits transcription from

Promoter 2 and is induced by Inducer 2. 35

4-2 Geometric structure of the toggle equations. a, A bistable toggle net-

work with balanced promoter strengths. b, A monostable toggle net-

work with imbalanced promoter strengths. c, The bistable region.d

Reducing the cooperativity of repression. 36

4-3 Toggle switch plasmid. Promoters are marked by solid rectangles with

arrowheads. Genes are denoted with solid rectangles. Ribosome bind-

ing sites are and terminators (T1T2) are denoted by outlined boxes. 37

4-4 Demonstration of bistability. The grey shading indicates periods of

chemical induction. a, pTAK toggle plasmids and controls. b, pIKE

toggle plasmids and controls. c, Demonstration of the long-term sta-

bility of the separate expression states. 38

4-5 Demonstration of bistability. GFP levels go down, and stay down after

the transient input of aTc. 39

7

4-6 Demonstration of monostability. GFP levels go back up even after the

transient input of aTc. 40

8

Chapter 1

Introduction

1.1 Overview

If one were to say that the end of 20th century was defined by computers, one might

also say that the 21st century will be defined by advances in biology. Many of the

techniques that allowed computer technology to advance have been used to create

tools that allow biology to be studied in new ways, such as PCR machines, DNA

sequencing, and data mining. As engineering and biology disciplines merge, it has

created a renaissance in biological research, as indicated by the increase in grants

given for research related to the life sciences. MIT's new Computational and Systems

Biology degree is further evidence that a new discipline between engineering and

biology is here to stay and cannot be ignored.

The discipline combining engineering and biology is extremely broad. Some re-

search groups focus on analyzing signaling systems in cells as one would analyze

analog signals and systems in electrical devices while other groups use data mining

techniques to discover motifs and patterns in the current plethora of DNA sequences

available for analysis. Still, others desire to engineer synthetic cells in the hopes of

creating cells that behave according to our desires. Other research efforts, including

this thesis, try to simulate biological systems in order to aid the understanding of

complex behavior. All these efforts are done by those who one day hope to decipher

the systems that evolution has designed over millions of years.

9

1.2 Motivation

The area of biological simulation can be very broad. Simulation efforts range from

protein folding, to protein to protein interaction, to cellular systems, to multi-cellular

systems. This thesis focuses on simulation at the cellular, system level. I believe

that successful simulation of biological systems would be an incredible resource in the

attempt to understand these complex systems. Some of the advantages of an effective

systems simulator are as follows:

1. Predict the behavior of cellular systems without observing actual live cells.

2. Confirm the behavior of real cellular systems that have been observed.

3. Isolate and analyze subsystems that don't exist alone in nature.

4. Engineer cellular systems to behave a certain way.

Simulations may be the wrong way to approach the problem of understanding

cellular systems. They may be unable to account for extremely small but salient

interactions or the results may be useless or too complex to understand. Even still,

the only way to find out how effective a simulator is is to build one and see how

effective a simple simulator is in simulating real systems.

1.3 Implementation

The most important part in building a simulator is designing the algorithm. Fortu-

nately, there has been plenty of previous research on simulation algorithms. Plenty

of published papers wrestle with the correctness and efficiency of various algorithms

that simulate chemical reactions. The purpose of this thesis is not to devise new

algorithms, but rather to implement existing algorithms in a biological context in the

best way possible, and later to determine its effectiveness.

10

1.4 Preview

The rest of this thesis deals with the background, details, and results of creating a

biological simulator.

In Chapter 2, the background for this thesis is covered. First, the context and

purpose of the thesis is explained. Next, the general concept of stochastic simulation

is covered along with a description of related work. Finally, the challenges of creating

a simulator are talked about followed by a list goals of this thesis attempts to acheieve.

In Chapter 3, the design of the simulator is presented in detail, including various

design decisions and tradeoffs. Further, details of implementation are provided along

with examples of its use.

Chapter 4 explains how a simple synthetic cell was modeled using the simulator.

Both the details of the synthetic cell and the result of modeling are covered.

Chapter 5 provides a discussion on the results of modeling a cell using this simu-

lator. In addition, the successes and shortcomings of the design and implementation

of this thesis are also discussed.

Finally, Chapter 6 outlines several areas in which future work might be directed

while Chapter 7 summarizes the contributions of this thesis.

11

Chapter 2

Background and Goals

This chapter provides background on the building blocks that support and inspire my

thesis. The Synthetic Biology group along with BioJade gives context and purpose to

this thesis while Stochastic Kinetics provides the foundation for a efficient and correct

algorithm. Related work such as Tabasco gives the inspiration and help to implement

this thesis. Finally, the chapter ends with the challenges and goals associated with

this thesis.

2.1 Synthetic Biology

Synthetic Biology at the Computer Science and Artificial Intelligence Laboratory

(CSAIL) explores research in microbial engineering. This project combines research

in both biology and computation, and is a collaboration of groups at CSAIL, the

MIT Department of Biology, and the Biological Engineering Division. The Synthetic

Biology project is an attempt to create a new engineering discipline that modifies

simple living cells in as a way of computing and interfacing more effectively to the

real world. The approach to Synthetic Biology has 4 major components [11]:

1. Specify and populate a set of standard biological parts (genes) that have well-

defined performance characteristics that can be used and re-used to build bio-

logical systems.

12

2. Develop and incorporate design methods and tools into an integrated engineer-

ing environment.

3. Reverse engineer and re-design pre-existing biological parts and devices in order

to expand the set of functions that we can access and program.

4. Reverse engineer and re-design a simple natural bacterium.

Given these goals, Synthetic Biology is an ideal context in which to build programs

that simulate cellular systems.

2.2 BioJade

The Synthetic Biology group at CSAIL has been working on the second component,

developing an integrated engineering environment, by creating an online repository

of standard biological parts and by developing software tools that interface with the

repository to enable system design. Recently written by Jonathan Goler, a program

called BioJade provides such an integrated engineering environment [6]. BioJade

allows system design to be done at a logic gate level and then translates the logic into

biological parts in order to create cellular logic gates based on the online repository.

BioJade utilizes a Distributed, FLexible and User eXtensible protocol for simula-

tions (D-FLUX). D-FLUX is a plug-in type architecture that can wrap third-party

simulators. More importantly, D-FLUX can translate cell models designed in BioJade

into any format required by a simulator. By adhering to the D-FLUX protocol, any

simulation can be integrated into the engineering environment.

2.3 Stochastic Kinetics

Stochastic algorithms were developed in the late 1970's in an effort to improve the ac-

curacy in modeling smaller systems. This section gives a general overview on stochas-

tic processes and how they can be used to model biological systems.

13

2.3.1 Describing Chemical Processes

Chemical reactions are typically described in the form:

xXi + yX 2 - zX3 +... (2.1)

where x molecules of substance X 1 reacts with y molecules of substance X 2 to produce

z molecules of substance X 3 , and so forth. Most complex systems can be broken up

into elementary reaction of the form above.

A predictive, deterministic model of a system is typically created by solving a

set of differential equations where each equation represents the time evolution of the

concentration of a reaction species (Eq. 2.2). The reactions are usually assumed to

occur fast in comparison to the time scale of interest, and are often considered to have

reached equilibrium as in Equation 2.3, mostly because non-equilibrium assumptions

are often too complex or time consuming to solve. Such deterministic models require

certain key assumptions including: a sufficiently large number of molecules and no

fluctuations or correlations in concentration values. Unfortunately, such assumptions

do not hold in very small systems such as cells.

d[X 1] - f ([X 1], [X 2], [X 3]...)
dt

d =X2] - f2(X 1], [X 2], [X 3]...) (2.2)
dt

0 = fl([X 1], [X 2], [X 3]...)

0 = f 2 (X1], [X 2], [X 3]...) (2.3)

2.3.2 Markov Processes

In an attempt to improve the accuracy for modeling smaller systems, stochastic al-

gorithms were developed [101. Instead of considering species concentrations as con-

tinuous functions of time, the stochastic approach interprets molecular dynamics as

14

a jump Markov process with discrete states [5]. When modeling a system, discrete

states hold the number of each type of molecule while a jump from one state to an-

other represents the occurrence of a reaction which changes the number of molecules

in the next state. Markov processes jump from one state to another using a set of

probability density functions (PDF). These PDF's are created for each reaction and

determine the likelihood that a state jumps from one state to another.

For example, consider the following set of reactions:

A+BB)kl C

B+C) k2 D

D+E k' E+ B (2.4)

The different molecules are represented by A, B, C, D, and E while the propensities

of the reactions are given by k1, k2 , and k3 . The propensity of a reaction determines

how likely a reaction is to occur. More specifically, the probability that a reaction

p will occur in the next small time dt is adt + o(dt), where o(dt) represents terms

that are negligible for small dt. a, is independent of dt, but depends on the reaction

p, the number of molecules of each kind, and variables that may change with time

such as temperature and volume. k, is another reaction constant that is a function of

variable such as volume, temperature, electrolyte concentration, etc. If the molecules

are grouped together (the number of molecules of X expressed as #X), the relationship

between aA and k, can be described for the reaction involving molecules A and B as

follows:

ai = k, x #A x #B x d+ o(dt) (2.5)

It is important to realize that both aA and k,, are not the traditional deterministic

rate constants used when describing macroscopic systems. Instead, these rate con-

stants are mesoscopic rate constants which are not identical to, but may be related to,

macroscopic rate constants. For instance, macroscopic rate constants do not depend

15

on volume but the concentration of molecules do, while mesoscopic rate constants do

depend on volume but the concentration of molecules do not. The differences may

not seem significant, but in systems sensitive to reaction rates, such as biological ones,

these slight differences may become amplified during simulation [3].

Using stochastic formulation, the system is then analytically modeled by a master

equation, a single differential equation that gives the probability of finding the system

in its current state and time. However, when modeling complex systems, the master

equation become virtually intractable [4]. An alternative to solving stochastic for-

mulation was presented by D. T. Gillespie using Monte Carlo techniques. Gillespie's

algorithm has shown to be promising in delivering accurate, yet computationally

feasible modeling [4, 3]. It is therefore a derivative of Gillespie's algorithm that is

used for this simulator. More information on the Gillespie algorithm and how it was

implemented can be found in Section 3.2.

2.4 Related Work

There are many programs that offer different kinds of simulations. BioJade currently

uses D-FLUX to plug into Tabasco and Stochastrator. The Tabasco simulator is the

most relevant simulator to this thesis because it is a main source of reference and

inspiration. So much in fact, that the simulator created in this thesis will hereon be

referred to as T2.

2.4.1 Tabasco

Tabasco is a simulator written by Sri Kosuri and Jason Kelly originally for the pur-

pose of simulating T7 bactiophage DNA entering bacterium [7]. Tabasco is written

in Java and is based on the modified Gillespie algorithm presented by Gibson et. al.,

called Next Reaction Method (Sec. 3.2.3) [3]. Although Tabasco can model some syn-

thetically designed cells, it is highly tailored for researching bacteriophage T7, which

allows for simplifications in the simulation. In addition, Kosuris version of Tabasco

lacks the some functionality that need to be modeled in more complex systems in

16

generic bacterium.

2.4.2 Stochastrator

Stochastrator is another simulator supported by D-FLUX [6]. Written by Eric Lyons

in C++, it is also uses the Gibson-Modified-Gillespie algorithm that Tabasco uses.

Like Tabasco, it deals with systems at the single molecule level. However, it does not

provide much interaction and does not model inputs to the system easily.

2.4.3 BioComp

A major project that is underway and headed by Darpa, BioComp is a huge under-

taking that attempts to model intracellular processes by accounting for every possible

known functionality [1]. Such an approach seemed from yielding useful results at the

onset of this thesis. However, BioComp recently released its first version of an open-

source application, BioSPICE, that models dynamic cellular network functions. Due

to the release occurring near the end of this thesis, it is unknown what algorithms are

used nor the effectiveness of the program. BioSPICE maintains a comprehensive en-

vironment that integrates a suite of analytical, simulation, and visualization services.

A worthwhile extension to this thesis would be to see if any of the implementation or

results would be of any value to the BioSPICE endeavor.

2.4.4 Dizzy

Dizzy is a chemical kinetics simulator authored by the Bolour group at the Institute

of Systems Biology [2]. Dizzy can model systems both deterministically with an

ODE solver or stochastically with various implementations of Gillespie's algorithm.

The various implementations include the Direct Method, Next Reaction Method, and

r-Leaping Method (Sec. 3.2).

17

2.5 Challenges

The greatest challenge in simulating extremely complex systems is determining which

features are important and which features can be black boxed. Events in cells such as

blocking, binding, and promoting, are due to intricate interactions between proteins.

If we truly want to know what is exactly going on in a cell, we need to simulate the

exact position of each protein, then account for the molecular interactions between

proteins, then account for the atomic interactions, digging deeper and deeper until all

of a sudden quantum physics is involved . Not only is such a simulator quite infeasible

to design, but given the immense computing power that is required to simulate one

protein folding, there is not enough computing power at the moment to perform such

complete simulations.

Another challenge is that new molecular interactions and regulatory pathways are

being found every year, especially at the level of mRNA transcription. The constantly

increasing number of known functionality in cells is what makes a comprehensive

project like BioComp so difficult. In addition, once a new functionality is found, it

takes even longer to understand how newly discovered functionality affects already

known functionality.

I believe the correct approach is from the top down. Model basic functionality first,

and then account for more complex ones. The key is to model the basic functionality in

such a way that it enables the addition of complex functionality later. This approach

is beneficial because although it may be crude, basic functionality may still be used to

effectively model a system. In addition, one might be able to discover which features

and functionality can be black boxed by observing how well basic functionality models

real systems.

2.6 Goals

An important step in creating an integrated engineering environment is to build

software tools that enable system simulation so that systems can be tested before

18

the tedious process of physically building the actual living cells. Although BioJade

already interfaces with several simulators, none have been built specifically tailored

to the needs of synthetic biology designers. Specifically, I see the the need as two-fold:

(1) provide an interactive application that can easily alter the simulation variables

and (2) design the architecture such that new features can be implemented as easily

as possible. Allowing external input signals is very important from both a biological

and a synthetic engineers point of view. All biological systems receive some kind of

external input, and such signals are critical in the design of synthetic systems.

The new simulator will be largely based upon Tabasco. A re-designed and re-

implemented version of Tabasco should be able to model generic bacterium in a

manner that is constructive to synthetic biologists. T2 should be implemented in such

a way that new functionality can be easily added when needed. The program needs

to be highly modular and well documented. T2 will still be an extremely rough and

crude estimation of the complexity of any real cell. Therefore, when new functionality

is desired, the program should enable the easiest way to add such functionality. Such

functionality includes different kinds of highly specialized gene regulation that are

not accounted for in basic gene regulation theory.

Another purpose of synthetic biology, beyond building biological systems through

computational methods, is to gain understanding about how cells work. Once the

program is finished, there must be a way to measure the significance of its results.

The results of a publication describing a synthetically engineered cell will be used to

compare to the results of a simulated model to see if the simulation created biologically

significant results. Only after I measure the significance of the simulations results can

synthetic biologists use the simulator with any confidence. Hopefully, T2 will become

useful enough to aid in the understanding of the living world.

In summary, the goals of my M.Eng research include:

1. Understanding the nuances of the Gillespie algorithm and affirm that it is indeed

a sufficient way to model the biological systems of interest;

2. Creating a modular, robust, and well documented program that can easily be

19

extended to add more functionality as more complexity is desired;

3. Providing a usable interface in which user can input and alter the variables of

their own custom systems.

4. Designing a new visualization method to communicate the data resulting from

the simulations.

5. Testing and verifying that the simulator creates biologically significant data by

cross checking results with actual experimental data.

20

Chapter 3

Architecture and Implementation

This chapter explains the architecture and the implementation of T2. The architec-

ture of T2 was designed in order to achieve as much modularity as possible. The

stochastic algorithm used in the simulator is also discussed in detail. Next, is a list of

the functionality the simulator provides, both the supported molecules and supported

reactions. Finally, the development of the GUI is explained along with examples of

the simulator is use.

3.1 Design Overview

The main goal when designing the architecture of the program was to separate the

algorithm from the data, the data being the reactions and the molecules involved. If

the algorithm can be can successfully isolated from the data, then functionality such

as more reactions and molecules can be added without altering the basic algorithm

that is run. The desire is to have the flexibility to add the largest range of functionality

while changing the least amount of code. With this architecture, the simulator can

easily be built from the top down, starting with basic functionality and adding more

complex interactions as needed.

The first step in isolating the algorithm from the data, is to commit upon an

algorithm. Once the algorithm is chosen, the requirements can be extracted and

interfaces can be created. As outlined by the dependency diagram (Fig. 3.1), the

21

simulator class, T2Simulator, depends on the interfaces Molecule and Reaction. The

requirements of the simulator and the details of the interfaces will be covered in

following sections.

The dependency diagram summarizes the overall structure of the application. The

format follows the guidelines set out by Liskov for module dependency diagrams [8].

Plain boxes represent regular classes while special boxes with lines represent either

static classes or interfaces. All classes that make up the GUI are lumped into one

box. The GUI mostly depends on T2Simulator, but also depends on the interfaces

Molecule and Reaction. There are additional weak dependencies that exist if the

GUI is programmed to display more information that is specific to a certain type of

Molecule or Reaction.

The XMLParser is a static class that parses the XML input to the simulation.

XMLParser uses the XMLObject class to transform the text XML into Java objects.

XMLParser can then access the information in the XML input without having to

parse through the whole file.

Underneath Molecule and Reaction are the classes that implement the interfaces.

When adding functionality to the simulator, new classes that implement the interfaces

can be created. Once the new classes programmed, T2Simulator can continue to run

without being affected. The details of these classes are found in Sections 3.3 and 3.4.

T2 is written in Java mainly due to its familiarity but also for its relatively easy

GUI programability. A program such as C/C++ would have been faster, but the

current speed requirements are not that rigorous. In the end, the desire for a quick

deployment of an interactive GUI outweighed the need for speed.

3.2 Algorithm

The stochastic formulation is modeled using Gillespie's algorithm based on Monte

Carlo techniques. Gillespie has come up with several algorithms, each different vari-

ants to solving stochastic formulation. Three methods will be discussed: Direct

Method, First Reaction Method, and Next Reaction Method.

22

XML T2 C2 GUI
Parser Simulator--------

XML

Rabtect

Molecule ---------------------- Reaction <- -

implements

i RN N

4Prote iRND

A

extends extendsT
extendsII

Polymerase mRNA Promoter RBS Terminator

implements

Polymerase Polymerase Protein mRNA DNA
Binding Free Interaction Transcription Transcription

KEY

Interface Static

Depends On

Weakly
Depends On

Figure 3-1: Dependency Diagram for T2. Outlines the architecture of the application.

23

3.2.1 Direct Method

The Direct Method attempts to find out which reaction, IL, occurs next, and when

that reaction occurs, -. The following is the probability that the next reaction is y

and occurs at time T as determined by Gillespie:

P(p, r)d-r = aexp(-r a)drT (3.1)

Integrating Equation 3.1 over all r from 0 to oo gives the probability distribution

for reactions:

Pr(Reaction = = a,/ aj (3.2)

Summing Equation 3.1 over all yu gives the probability distribution for times.

P(T)dT = (Za)exp(-T aj)d

j
(3.3)

j

Using both the probability distribution for reactions and times, the Direct Method

algorithm can be run:

Direct Method Algorithm

1. Initialize - set initial numbers of molecules and set t +- 0.

2. Calculate propensity function, ai for all i.

3. Choose y according to distribution in Eq. 3.2.

4. Choose r according to an exponential with parameter Tj aj as in Eq. 3.3.

5. Change the number of molecules to reflect execution of reaction /L. Set t +- t+T.

6. Go to Step 2.

3.2.2 First Reaction Method

The First Reaction Method is very similar to the Direct Method except that instead

of generating p and T directly, it generates a putative time, ri, which is a time the

24

reaction would occur if no other reaction occurred first. The putative time can be

derived by the following equation where r is a random number uniformly distributed

in the unit interval:

Tj = 1/(E a)log(1/r) (3.4)

The Direct Method and First Reaction Method algorithms are provably equivalent

[3]. Using Equation 3.4, the First Reaction Method algorithm can be run:

First Reaction Method Algorithm

1. Initialize - set initial numbers of molecules and set t +- 0.

2. Calculate propensity function, a, for all i.

3. For each i, generate a putative time, Ti, according to Eq. 3.4.

4. Let P be the reaction whose putative time, Ti, is least.

5. Let T be ri

6. Change the number of molecules to reflect execution of reaction ft. Set t <- t+T.

7. Go to Step 2.

3.2.3 Next Reaction Method

The Next Reaction Algorithm was developed by Gibson and Bruck as an extension

to the First Reaction Method as an attempt to increase the speed of the algorithm.

The main improvements are recalculating only when necessary, appropriate reuse of

-r values, absolute time scales, and organized data structures. The data structures

they use are a dependency graph, D, and priority queue P. These structures and the

reuse of generated random number allow this algorithm to outperform on systems

with larger number of species and reactions.

Next Reaction Algorithm

1. Initialize:

(a) set initial numbers of molecules, set T +- 0, generate a dependency graph
G;-

25

(b) calculate the propensity function, ai, for all i;

(c) for each i, generate a putative time, TF, according to an exponential distri-

bution with parameter ai;

(d) store the ri values in an indexed priority queue P.

2. Let /p be the reaction whose putative time, -r, stored in P, is least.

3. Let T be -r.

4. Change the number of molecules to reflect execution of reaction /-. Set t +- t+T.

5. For each edge (t, a) in the dependency graph G,

(a) update a,;

(b) if oz # y, set 7a - (aa,old/aa,new)(Ta - T) + t;

(c) if a= p, generate random number, p, according to Eq. 3.4 and set Ta-

p+t;

(d) replace the old T value in P with the new value.

6. Go to Step 2.

This thesis initially implemented the First Reaction Method and gradually added

the data structures that are used in the Next Reaction Method. After analyzing the

algorithms, it was found that all these algorithms need two basic objects: Reactions

to execute, and Molecules that comprise the Reactions.

3.3 Molecules

The Molecule Java Interface outlines the contract Molecule objects must make in

order to be run in the simulation. Molecule's are any species that are involved in

reactions such as proteins, DNA, RNA, and so forth. The most important information

a Molecule must keep track of is how many of those molecules are in the system,

otherwise known as the copy number.

The current supported molecule types include proteins, DNA, and RNA. Each

class is described in the following sections. The Molecule API can be found in Ap-

pendix A.1.

26

3.3.1 Proteins

The Protein implementation of Molecule is the most generic and simple. Molecules

like ribosomes and enzymes are currently modeled by this class. Polymerase are mod-

eled by a Polymerase class that extends Protein and includes additional information

such as how many polymerase are bound to a promoter.

3.3.2 DNA

The DNA implementation of Molecule contains additional information about the DNA

sequence. The sequences are divided into classes such as promoters and terminator

sequences, each with its own class extending from DNA. Additional information in-

cludes things such as sequence length, and sequence location on a DNA strand for

possible display purposes or more functionality later.

In the case of a promter, the Promoter class also keeps track of how many of

each polymerase are bound to it and also uses that information to tell how many

promoter sites are free to be bound. There are also ribosome binding sites (RBS) that

don't hold much information at the moment. T2 does not currently simulate mRNA

transcription regulation, thus the RBS class doesn't need to hold much information.

3.3.3 RNA

The RNA implementation of Molecule is currently very similar to that of the Protein

class. Again, since T2 does not model RNA regulation, RNA currently does not need

to hold any more information than is necessary to implement Molecule.

3.4 Reactions

The other Java Interface, the Reaction Interface outlines the contract Reaction objects

must make in order to be run in the simulation. The most important information

a Reaction must know is the next time the Reaction will be executed and how each

27

Molecule involved is affected by the reaction. A Reaction updates all Molecule objects

involved each time it is executed.

The current supported reactions are enzyme and molecule degradation, mRNA

transcription, polymerase binding and unbinding, and mRNA production. These

reactions can be categorized into three general classes: Protein-Protein Interaction,

DNA-Protein Interactions, and RNA-Protein Interactions. Each class of events are

further described below.

3.4.1 Protein-Protein Interactions

Events such as enzyme and molecule degradation constitute as Protein-Protein in-

teractions. Molecule degradation events model the natural degradation of molecules

while enzyme degradation events model degradation of one protein caused by another

protein. The execution of these events typically results in the copy number of the

molecules involved to be decreased.

3.4.2 DNA-Protein Interactions

DNA-Protein interactions include the polymerase binding/unbinding and mRNA

transcription events. Polymerase binding events take a polymerase and a promoter

and produce a bound polymerase and bound promoter. The polymerase unbinding

event does the opposite. The mRNA transcription events take a bound promoter

bound to the right polymerase, and create an mRNA while unbinding the polymerase

and the promoter.

3.4.3 RNA-Protein Interactions

RNA-Protein interactions currently only include the mRNA production event. The

event takes a ribosome and a mRNA molecule and produces a protein molecule.

28

3.4.4 Possible Extensions

The Reaction Interface can be used to create events that are quite different from

a traditional chemical reaction. For example, Tabasco was written to model T7

bacteriophage entering a bacterium. These events can be modeled by creating a new

T7DNA class that extends DNA. The T7DNA can be brought into the system by first

creating a new protein that pulls in the T7DNA. Then, a new event is created that

takes the new protein and the T7DNA and produces a more exposed T7DNA. All

sorts of more complex functionality can be modeled in a similar fashion, by creating

the necessary new Molecule's and Reaction's.

3.5 Input and Output

Input to the simulation is through an XML file. The XML format is based off the stan-

dards set by Systems Biology Markup Language (SBML) [9]. Although the general

format of XML input for T2 is the same as Tabasco, there are several differences. The

simulator is loaded by first parsing the XML and inputing all the relevant Molecule

objects. The XML is then parsed again, and the relevant Reaction objects are added.

All information on the Molecule's and Reaction's involved and how they interact are

in the XML.

The XML is parsed by a static class, XMLTabasco. When new functionality

is desired, not only must the necessary Molecule's and Reaction's be created, but

XMLTabasco and the XML file format must be modified as well. An example of an

XML input file can be seen in Appendix B.

At any point in the simulation, a text version of the simulation can be exported.

The format of the simulation is such that the state of the simulation is recorded in

each row while columns hold the values of each Molecule object. Such a format can

be easily imported into spreadsheet programs where the data can be analyzed and

graphed. The format is also consistent with a visualization program written alongside

Tabasco. An example of a text output can be seen in Appendix C.

29

3.6 Implementation

Both the back end and the front end GUI was implemented in Java. The back

end implementation follows the architecture and algorithm detailed in the previous

sections. The goal for the GUI was to give the user intuitive interaction with the

simulation and effectively display the necessary information. The GUI is organized

into three general areas: the menu bar, the control panel, and the display area.

The menu bar contains File options: Load, Close, and Quit. The options New and

Save are not implemented because models are created outside T2. The only Export

option is to save the contents of the Text Output pane to a text file. The text file can

be named and saved to a location desired by the user.

Figure 3-2: All Molecules Panel displays the details of all Molecule objects involved.

Right below the menu bar is a set of buttons and text fields that control and allow

interaction with the simulation:

30

Initialize initializes the data once loaded before simulation begins. A Reaction de-

pendency map is created and all the initial r values are calculated.

TextPanel indicates the number of iteration the algorithm is to be run when the

run button is clicked.

Run iterates through the simulation algorithm for the specified number of times.

Reset sets all molecule copy numbers to their original values.

Update Molecules assigns the copy number value in the All Molecules pane to each

of the Molecules.

Figure 3-3: All Reaction Panel displays the details of all Reaction objects involved.

In order to maximize the information in the viewing area, a tabbed pane was used.

Each pane shows a different set of information. If more detailed information such as

31

a DNA graphic is desired, additional panes can be

four panes:

Text Input pane displays the all the Molecule's

system in a text format.

easily added. There are currently

and Reaction's inputed into the

All Molecules pane displays the name, copy number, and additional information

for each Molecule. The copy number is displayed in a TextPanel. Changing the

value and clicking the Update Molecule button will have the simulation use the

new values when run again (Fig. 3.6).

All Reactions pane displays the name, reactants, products, and rate for each Re-

action (Fig. 3.6).

Text Output pane displays the state of each output after each reaction (Fig. 3.6).

32

Figure 3-4: Text Output Panel displays the state of the simulation across time as
text.

33

Chapter 4

Modeling Biology

In order to gain an understanding of how effective the simulator is at modeling real

systems, real observations from a synthetic cell are compared to the results of simu-

lating the same cell system. This chapter presents a paper that constructed a genetic

toggle switch in Escherichia coli, how the cell was modeled in the simulator, and the

results of that simulation.

4.1 Constructing a Genetic Toggle Switch

In 2000, Gardner, Cantor, and Collins announced that they had constructed a genetic

toggle switch in Escherichia coli, marking one of the first times a synthetic, bistable

gene-regulatory network was successfully created [12]. The implications of the po-

tential practical uses of a toggle switch are quite significant, as the toggle switch is

effectively a synthetic addressable cellular memory unit, a cellular bit.

The toggle switch design used by Gardner et. al. is composed of two repressors

and two promoters, where each promoter is inhibited by the repressor that is tran-

scribed by the other promoter (Fig. 4.1)1. This particular design was chosen for its

simplicity and robustness. If Promoter 1 is transcribing Repressor 2 then Promoter

2 is most likely not transcribing Repressor 1 and the Reporter. Therefore, there are

two distinct states; one where Promoter 1 is transcribing Repressor 2, and the other

'Figures 4.1, 4.2, 4.3, 4.4 taken from Gardner(2000) [12].

34

where Promoter 2 is transcribing Repressor 1 and the Reporter.

Inducer 2

Promoter 1 Repressor 2 Reporter
ReFrepsrter

T Promoter 2

T
Inducer 1

Figure 4-1: Toggle switch design. Repressor 1 inhibits transcription from Promoter 1
and is induced by Inducer 1. Repressor 2 inhibits transcription from Promoter 2 and
is induced by Inducer 2.

The cell is flipped between stable states by either chemical or thermal induction. A

chemical or temperature breaks down a certain Repressor, preventing it from repress-

ing a promoter. For example, by introducing a chemical that breaks down Inducer 2

in Figure 4.1, more polymerase are likely to bind to Promoter 2 and transcribe Re-

pressor 1 and Reporter. This, in turn creates more Inducer 1 and prevents Promoter

1 from being transcribed.

In order to tell which state a cell is in, the Reporter eventually transcribes green

fluorescent protein, (GFP)mut3, which can be optically measured in a cell. By mea-

suring the degree of fluorescence, one can determine which state a group of cells is

in.

The behavior of the toggle switch can be expressed in the following equations:

du = - (4.1)
dt 1+v 3

dv a2 -V (4.2)
dt 1+ u

where u and v are the concentrations of Repressor 1 and 2 while a, and a 2 are

parameters that describe the effective rate of synthesis of Repressor 1 and 2. #

and y are parameters that describe the how well the promoter gets repressed, the

cooperativity of the promoter.

35

The rates, a1 , a 2 , 3 and -y, must be balanced in order for bistability to exist.

Figure 4.2 geometrically shows the relationship between the rates. Both repressors

must be transcribed at a similar rate, otherwise, a mono-stable system occurs. For

example, if Repressor 1 barely gets transcribed, even if Repressor 2 is broken down

temporarily, once the transient chemical is removed, Repressor 2 will get transcribed

again, and block Repressor 1. Since proteins continuously break down, it is important

to have positive similar rates of transcription.

a

-State ,
(high state)

duldt =0 , Separatrix
dv/dt =0 -'

V
State 2

(ow state)

steady-state

U
C
Mono-
stable Bistable
state 2 Bsal

Monostable
statel

log(02)

b

duldt =0

dv/dt =0 State 2
(low state)

d

1 3=9=3

lo9(a2)

Figure 4-2: Geometric structure of the toggle equations. a, A bistable toggle network

with balanced promoter strengths. b, A monostable toggle network with imbalanced

promoter strengths. c, The bistable region.d Reducing the cooperativity of repression.

4.2 Modeling a Genetic Toggle Switch

Gardner created several different plasmids using different combinations of promoters

and repressors. There are two major different types, pTAK, which is toggled by a

chemical and heat, and pIKE, which is toggled by only chemicals. Since T2 does

not simulate fluctuation in temperature, the pIKE plasmid was modeled. In Figure

4.3, the pIKE plasmid uses PLtetO-1 for P1 and tetR for RI. The strength of how

36

well a gene was transcribed was regulated by switching in and out different ribosome

binding sites.

P1 Ptrc-2
RBS1 rbs E

lac R1

T1T Type IV Irbs B

GFPmut3

T1 T2

Figure 4-3: Toggle switch plasmid. Promoters are marked by solid rectangles with
arrowheads. Genes are denoted with solid rectangles. Ribosome binding sites are and
terminators (T1T2) are denoted by outlined boxes.

On the DNA level, the pIKE plasmid was modeled by creating two sets of DNA

SYSTEMS, each with a Promoter, one more more RBS sites, and a Terminator. The

RNA was modeled by creating mRNA whenever certain RBS sites were transcribed.

The mRNA transcription was modeled with the presence ribosome molecules. In

addition, two proteins were introduced to the system as enzymes to break down

certain polymerase. IPTG was a chemical used to break down the repressor lacI and

aTc was a chemical used to break down the repressor tetR.

4.3 Experimental Results

In order to test the bistability of the engineered cell, Gardner grew the cells in several

different environments. First, to induce the cells to produce GFP, Gardner grew

the cells in a medium filled with IPTG, which degrades the polymerase lac. This

forced the majority of the cells to produce large amounts of GFP. After some time,

the IPTG was removed from the medium. Those cells that were bistable continued

to produce GFP at a high level, while the cells that were monostable dropped their

GFP expression. Once stabilized, aTc was introduced to the medium which degrades

37

tetR, allowing more lacI to be transcribed resulting in the reduction of tetR and

GFP expression. Figure 4.4 summarizes the data from a cell displaying bistability.

The GFP expression is measure on the y axis while periods of chemical or thermal

induction are shown in grey shading.

a

1 0 pTAK10'I)

0
0 pTAK1

0

L1 0 5 10 15 20

b Hours

TpK106

1pTAK1020
C,'

(ntr.l)

(control)

Ca,

E

0D 0

0 5 10 15 20

b Hours

0 10 Hors 2E 0

Figure 4-4: Demonstration of bistability. The grey shading indicates periods of chem-
ical induction, a, pTAK toggle plasmids and controls. b, pIKE toggle plasmids and
controls. c, Demonstration of the long-term stability of the separate expression states.

The same chemical inductions were simulated in T2 by introducing new molecules

using the buttons in the control panel. Figure 4.5 shows 20 IPTG molecules induced

in the system at the beginning of the simulation for 5000 steps. During the first

5000 steps, tetR and GFP levels shoot up while ladI levels remain stagnant. IPTG is

removed for the next 5000 steps and the tetR and GFP levels remain high while the

ladI levels remain low. Then, 20 aTc molecules are induced in the system for the next

10000 steps. During this transition period, the tetR molecules are being degraded

38

by the aTc resulting in a sharp decline in the number of tetR molecules. The sharp

decline results in an increase of lac molecules and then a decrease in GFP levels.

After 10000 steps, aTc is removed and the simulation is run for another 10000 steps.

During this last period, the lacI levels remain high while the tetR and GFP levels

remain low. Chemical induction has successfully switched the state of the cell.

200

150

100

-V

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298

--- IPTG - - aTc ----- tetR ---- lad - GFPmut3

Figure 4-5: Demonstration of bistability. GFP levels go down, and stay down after
the transient input of aTc.

In order to demonstrate a state of monostability, the rates of transcription and

promoter repression (ai1, a 2 , 13, and y in Eq. 4.1) are changed such that the system

becomes a monostable system as graphically seen in Figure 4.2. Once the system

rates are changed, the same chemical induction is induced. The results are the same

until the aTc is removed in the final period. Instead of lac levels staying high

and GFP levels staying low, lacI levels decrease while tetR and GFP levels increase

again. The system with unbalanced rates refuses to remain in a state of low GFP

expression (Fig. 4.6).

39

A

_I ' I A.

41 1AA

/23u

ILI

I jw

-

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339

- -- IPTG - - aTc ------ tetR ---- lad - GFPmut3

Figure 4-6: Demonstration of monostability.

transient input of aTc.
GFP levels go back up even after the

40

200

180

160

140

120

100

80

60

40

20

0

Chapter 5

Discussion

This chapter discusses the results of modeling a real synthetic cell and analyzes the

design and implementation of the simulator. First, is an analysis of how well T2

modeled the cellular toggle switch built by Gardner. Then, there is a discussion on

the assumptions that were made and how they affect the model. Next is a discussion

on the rates of reactions used in the simulation. Finally, there is a discussion about

the choices in architecture design.

5.1 Analysis of Modeling Results

T2 correctly modeled the general behavior and trends of a simple cellular toggle

switch. In this sense, T2 was successful. The simulation demonstrated bistability

given balanced rates and showed monostability when those rates were changed, just

like the synthetic cellular toggles. Although the trends were correct, the actual num-

ber of molecules are probably far off. One indication that the quantities are inaccurate

is that the change in GFP levels were more extreme in the simulation than in the real

cell, most likely due to missing regulatory features and inaccurate reaction rates. In

order to achieve better results, realistic reaction rates as well as possible additional

modeling of more functionality must be used.

Initial attempts at modeling the system resulted in unreasonable molecule levels

due to the model having unlimited resources. The model was then given additional

41

functionality to simulate limited resources and some reaction rates were adjusted.

In order to model a limited number of amino acids, the cell was given a protein

production limit. Resources such as amino acids were all lumped into one category

where a uniform use of amino acids were assumed, both in type and quantity. Each

time a mRNA is transcribed, it decreases the resource while each time a protein

is degraded, the resources increase. This modification resulted in more reasonable

protein levels.

The ability of T2 to model a simple system gives us an idea of that what func-

tionality is needed to simulate a cell. In other words, this experiment reveals what is

the minimum functionality that must be used to effectively simulate a simple system.

General trends and cellular responses can be modeled by simulating simple polymerase

binding, DNA transcription, mRNA transcription, protein degradation, resource lim-

itations, and a DNA system. System trends and behavior can be simulated without

modeling extremely complex interactions. Even the relationships between reaction

rates can be analyzed and simulated. The results give support to the top down ap-

proach which proposes that more can be learned by gradually adding functionality

rather than trying to account for as much detail as possible.

5.2 Assumptions

Stochastic algorithms are not without their own assumptions. In particular, with

biological systems, stochastic algorithms assume:

" Molecules obey the laws of quantum mechanics.

* Molecules obey Newton's laws of motion.

" Solution is well mixed: nonreactive collisions occur more often than reactive

collisions.

All three assumptions are needed if one wants to represent a system simply by the

number of each molecule [3]. However, the first two assumptions do not hold when

42

dealing with complex macromolecules such as biological proteins, long time scales,

or interactions between several different types of molecules. Only when dealing with

simple systems and molecules

The third assumption is certainly not held in eukaryotes, where the nucleus, or-

ganelles, and intracellular transport system create highly location specific concentra-

tions. Mixed solutions cannot be assumed for prokaryotes either. Many prokaryotes

respond to gradients of concentration. Such gradients that enable chemotaxis may

cause the third assumption to break down.

It is unknown to what extent bacterium fit the assumptions needed for stochastic

modeling. Bacterium may or may not be well mixed with simple enough molecules.

Simple systems such as toggle switches do seem to be simple enough. However,

stochastic modeling beyond yeast or simple bacterium will most likely prove to be

unsuccessful. One possible hack would be divide large complex systems into smaller

simpler systems where assumptions are maintained. Using such a strategy, even

complex eukaryotes might be simulated by separating the nucleus and organelles into

subsystems that can be modeled stochastically.

5.3 Rate of Reaction

The rate of stochastic reactions are related to, but different from macroscopic or

deterministic rate constants (Sec. 2.3.2). Therefore, determining the stochastic rate

of reaction is a large part of modeling a system. It was shown that the rates are very

important in determining system behavior. Unbalanced rates can cause a bistable

system to become monostable (Sec. 4.3). Some rates are completely unreasonable

and results in model behavior that is unrealistic.

The degree of sensitivity to rate constants is unknown, although after changing

several rates, it seems that the simulations are quite sensitive. Some values are

probably easier to determine than others. Rates such as molecule degradation are

most likely to be within a small range of possible values whereas other rates may be

from wider range of values. It must also be questioned whether or not the rates are

43

constant. Certainly, with the presence of complex molecules, there will be changes in

reaction rates. However, these changes are the result of additional interactions that

are unaccounted for, such as temperature changes, pH level changes, and molecules or

proteins that somehow affect the reaction. Identifying these underlying interactions

will enable varying reaction rate to become more predictable. Hopefully, most reaction

rate variations can be accounted for by modeling the interactions that cause the

change.

5.4 Reflection on Architecture

The main goals in designing the application was modularity and usability. These goals

were met with various levels of success. As good as the initial design for modularity

was thought to be, flaws and room for improvement were found during implementa-

tion. Some of these flaws were improved upon as decisions were made, while others

were found only after much of the implementation was finished.

One of the first design decisions was to determine if Molecule objects were al-

lowed to keep track of states. For example, a promoter is either free or bound to a

polymerase. Likewise, a polymerase is either floating about or bound to DNA. Many

reaction rates depend not on the total number of molecules available, but the number

of molecules that are bound to certain other molecules. Allowing tracking of states

would complicate the interfaces and might result in greater difficulty when expanding

functionality. However, if states are not kept, then a new Molecule must be created

for each possible bound combination. For example, if 3 different promoters and 3

different polymerase all interact with each other, than there are 9 different promoter-

polymerase combinations that can exist assuming that only single polymerase binding

are being modeled. It was decided that the added complexity of allowing state track-

ing was better than having the number of Molecule objects baloon.

Another decision was whether or not to limit the number of reactants to two.

Almost all real systems can be reduced to elementary reactions that have at most two

reactants. Since the reaction rates are calculated using the number of reactants, it is

44

beneficial to always have two reactants in order to keep the reaction rate consistent.

However, allowing various numbers of reactants gives the user much greater flexibility.

The user may not want to break up a reaction and instead lump the reaction together

for convenience. It is important though, that the user be careful in choosing reaction

rates that take into account the number of reactants.

During implementation, it was found that some processes that should have been

done in T2Simulator were being implemented in the classes implementing Reaction.

For example, all Reaction's were required to keep track of which other Reaction's they

affected, creating a dependency graph for the simulator. However, the dependency

graph was used only by the simulator in order to speed up the algorithm by decreasing

the number of reactions that needed to be updated for each execution. Therefore, a

map was created in T2Simulator that kept track of the dependency graph instead of

the Reaction subclasses. Moving that implementation allowed a more simple Reaction

interface which is important because the contract that the interface outlines should

be as simple as possible so that the interface can be easily implemented.

When using T2, it was found that creating and modifying models required more

effort than expected. Adding functionality such as limited cell resources could not

be done without programming new Reaction's. Although most functionality will

require coding, it was hoped that the user would have enough flexibility to create

some functionality by just using the XML input. Unfortunately, much of the design

was focussed on allowing a programmer to expand functionality and little attention

was paid to giving a user as much modularity as a programmer. Only after much of

the implementation was finished, was it realized that more specification of the XML

input should have been done. By no means is the XML input totally unmodifiable,

but more attention to its format would have given the application significantly greater

usability.

5.5 Summary

The most salient observations made and lessons learned can be summarized as follows:

45

" Complex functionality is not necessary to model trends in simple systems. Ba-

sic functionality is the minimum requirement for effective simulation of simple

systems.

* Rates of reaction are extremely important to a system. So much so, that instead

of designing an overall system, synthetic biologist may need to spend the bulk

of their effort trying to determine the correct reaction rates.

" The best way to enhance functionality is to put as much control as possible into

the hands of the user. Creating a modular program does not necessarily result

in improved usability or functionality. More transparency in the inputs gives

users more control.

46

Chapter 6

Future Work

This chapter outlines possible future projects related to this thesis. The underlying

theme is making this thesis work more useful to researchers. Greater usefulness can

come from improvements such as a more accurate simulation, ease of use, and ease

of access.

6.1 Finding Rates

Finding the true rates of reactions is one of the most important tasks in simulating

cellular systems. Even the behavior of a simple cellular system was found to be heavily

dependent on the rates of the reactions. Since stochastic reaction rates are different

from deterministic reaction rates, the rates to be used are difficult to determine.

Although many projects have attempted to model systems, few if any have attempted

to find the true rates of reaction.

Projects designed to find stochastic reaction rates would be extremely useful for

users of all stochastic simulators. The most likely way to approach the problem

would be to take several different simple cellular systems and create the corresponding

simulating models. The next step would be to find the reaction rates that best fit the

models to the real systems. A possible method in finding the rates might be to use

machine learning.

One would hope that the reaction rates are constant and consistent across different

47

models. This way, the stochastic reaction rates found from one system can be applied

to another system. If the reaction rates don't seem to be constant, then one would

need to find the underlying reason for the variation. In either case, finding stochastic

reaction rates is still a crucial part in modeling.

6.2 Adding Functionality

There are an innumerable amount of choices to consider when adding more function-

ality. However, in order to create a program that is tailored for synthetic biologists, it

is important to add functionality that increases the flexibility of the simulator. One

feature would be to create a more robust XML input format. The current format

is extremely specific and cannot be altered without changing underlying code. A

format that is more simple and modular would give the the user more choices in the

simulations. The key is to provide good tools to the user so that the user can create

simulations as complex or simple as they want.

6.3 Ease of Access

The usefulness of a program is often measured by the number of people who use

it. Programs like the DARPA headed BioSPICE has the potential to be used by

many researchers. Future work might prove to more useful if done within a large

initiative. Such work would have exposure to a larger number of users and hope-

fully make a greater impact on the synthetic biology community. If the XML input

format is consistent with the Systems Biology Markup Language (SMBL) defini-

tions, then the application may be eligible to be linked to from the SBML website,

http://www.sbml.org, which lists over 75 software systems that support SBML.

48

Chapter 7

Contributions

In this thesis, I have:

" designed an architecture that is expandable and modular by separating code

that performs stochastic algorithms from code that represents the data.

* allowed the simulation that the user can use interactively, allowing the user

to pause a simulation to add or remove transient or permanent inputs to the

system.

" created an GUI that displays the state and history of the simulation and also

allows loading and interaction. The GUI is easily expandable to show more

detailed information.

" demonstrated that the simulator is successful at modeling simple synthetically

engineered cells, in particular a cell toggle switch design.

In addition to the contributions above, I have found a range of stochastic reaction

rates that are effective in modeling a simple toggle switch. I argue that finding the

correct stochastic rates are important to any future work because the simulations are

highly dependent upon the rates of reaction. Finally, I claim that the best design for

a simulator is to place as much functionality as possible in hands of the user with the

fewest number of tools.

49

Appendix A

Interfaces

A.1 Molecule.java

* Created on Jan 4, 2005
*

* TODO To change the template for this generated file go to

* Window - Preferences - Java - Code Generation - Code and Comments

*p
package tabasco2;

* author dankim 10
*

* Reaction Interface defines the contract that a reaction must meet in order to be
* simulated by the simulator.

public interface Molecule {

*

* return unique ID of Molecule

public int getID(;

* used to display the Molecule in the GUI
* return the name of the Molecule. i.e. PolymeraseA.

public String getName(;

* used by the GUI to display the molecule.

20

50

* return type of the Molecule, usually an abbreviated form of the class name. 30

public String getType(;

* used by the reset function

* return number of molecules the simulation was initialized with

public int getlnitCopyNumbero;

40

*

* return number of molecules

public int getCopyNumber(;

*
* return the organism ID number

public int getOrganism(; 50

*

* param inc the number you want to increase or decrease the number of molecules

public void updateCopyNumber(int inc);

*

* param num the number you want to set the number of molecules 60

public void setCopyNumber(int num);

* Reset copyNumber to the original copyNumber and unbind all proteins.
*

public void resetO;

70

*

* return String version of Molecule.

public String toString(;

51

*/

*7

}

A.2 Reaction.java

* Created on Jan 8, 2005
*

* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Generation - Code and Comments

package tabasco2;

import java.util.List;
10

* author dankim
*

* Reaction Interface defines the contract that a reaction must meet in order to be
* simulated by the simulator.

public interface Reaction {

* returns the unique integer ID of the reaction. 20

public int getID(;

* used to display the reaction in the GUI
* return the name of the reaction. i.e. PolymeraseAtoPromoterX.

public String getNameo;

30

* used to cast objects in order to call more specific methods in the GUI only.
* return type of the reaction, usually an abbreviated form of the class name.

public String getType(;

* used by the GUI to display the rate of the reaction.
* return reaction rate of the reaction.

public double getRCO; 40

52

* sets the reaction rate of the reaction.
* used when changing or updating the reaction rate from the GUL

public void setRC(double rc);

* used only by the simulator.
* return tau at which the reaction will occur next. 50

public double getTauO;

* calculates the the new 'a' value, usually by multiplying the reactants
* and the reaction rate.

public void calculateAO;

60

* calculates the tau at which the reaction will occur next by using the 'a' value.

public void calculateTau(double random, double t);

* executes the reaction and updates the Copy Number of each Molecule involved
* or blocks certain reactions from occuring or moves molecules along DNA

public void executeO;
70

*

* return List of Reactions that this reaction depends on.

public List dependsOn(;

* currently returns a union of reactants and products.
* doesn't take into account of catalytic reactions because
* it is difficult to tell which reactions are catalytic 80

* the extra molecule shouldn't be a problem (both time and correctness wise)
* return a list Molecules that are affected by reaction

public List affects(;

53

* prints the reaction using System. out.println()
*

public void printExecutedRxno;

*
* return a String version of the reaction.

public String toString(;
}

54

90

Appendix B

XML Input Format

<REQUEST><EXECUTE-SIMULATION random_seed="69077" interval_foroutput=" 10">

<CELL organismid="1">

<RIBOSOME name="Ribosome" organismid="1" n="40" footprint="10" speed="40"

id="1" />

<POLYMERASE name="Polymerase A" organism-id="1" speed="40" n="20" id="2"

polydeg="3.3e-3"/>

<POLYMERASE ID="3" name="tetR" organism-id="1" speed="O" protein=" tetR"

n="O" id="3" polydeg=".99"/>
<POLYMERASE ID="4" name="lacI" organismjid="1" speed="O" protein="lacI"

n="O" id="4" polydeg=".99"/>

<POLYMERASE ID="5" name="GFPmut3" organismid="1" speed="O"
protein="GFPmut3" n="O" id="5" polydeg=".99"/>

<PROTEIN id="13" name="IPTG" organismid="1" n="O" deg="3.3e-3"/>

<PROTEIN id="14" name="aTc" organismid="1" n="O" deg="3.3e-3"/>

<DNASYSTEM n="20" entry-offsite="2990" genome length="2990"

entry-rateconstant="50000">

<PROMOTER startsite="49" name="Ptrc-2" stop="55" organism-id="1"

protein="Ptrc-2" start="1" id="6">

<POLYMERASE runoff percent=".75" aelong="10" aoff=".2" polymeraseID="2"

aon=".3" ainiton=".7" />

<POLYMERASE runoff -percent=" .75" aelong="10" aoff=" .27" polymeraseID="4"

aon=".3" ainiton=".7" />

</PROMOTER>
<RBS name="RBSE" start="55" organism-id="1" strength=".2" mrnadeg=".35"

elongstepsize="1000" stopsite="689" startsite="73" stop="69" protid="3"

initstepsize="8" id="7"/>
<RBS name="RBSB" start="55" organismid="1" strength=".2" mrnadeg=".35"

elongstepsize="1000" stopsite="689" startsite="73" stop=" 69" protid="5"
initstepsize="8" id="8"/>

55

<TERMINATOR name="Terminator" stopsite="735" stop="810" organism-id="1"

start="730" id="9">

<POLYMERASE ID="2" efficiency="0.90" />
</TERMINATOR>

</DNASYSTEM>

<DNASYSTEM n="20" entry-offsite="2990" genome length="2990"

entry-rate-constant="50000">

<PROMOTER startsite="853" name="PLtet0-1" stop="859" organismjid="1"
protein="PLtetO-1" start="810" id="10">

<POLYMERASE runoff -percent=".75" aelong="10" aoff=".2" polymeraseID="2"

aon=" .3" ainiton=" .7" />
<POLYMERASE runoff -percent=".75" aelong="10" aoff=".27" polymeraseID="3"
aon=".3" ainiton=".7" />

</PROMOTER>
<RBS name="RBS1" start="859" organism-id="1" strength=".2" mrnadeg=".35"
elongstepsize=" 1000" stopsite="2001" startsite="874" stop="873" protid="4"
initstepsize="8" id="11"/>

<TERMINATOR name= "Terminator" stopsite="2007" stop="2082" organismjid="1"

start="2002" id="12">

<POLYMERASE ID="2" efficiency="0.90" />
</TERMINATOR>

</DNASYSTEM>

<ENZYMEDEGRADATION name="lacIDegradation" organism-id="1" id="20" a="0.1">

<REACT id="4"/>

<REACT id="13"/>

<PROD id="13"/>

</ENZYME_- DEGRADATION>

<ENZYMEDEGRADATION name="tetRDegradation" organism-id="1" id="21" a="0.1">

<REACT id="3"/>

<REACT id="14"/>

<PROD id="14"/>

</ENZYMEDEGRADATION>

</CELL>

</EXECUTE-SIMULATION>

</REQUEST>

56

Appendix C

Text Output Sample

time ProtB ProtD ProtF ProtA ProtC ProtG ProtE

2.86773024527065E-6 299 350 399 250 101 150 200

3.650849612313323E-5 298 350 398 250 102 150 200

4.0357732359552756E-5 298 351 398 249 102 150 200

4.8411533498438075E-5 297 351 397 249 103 150 200

6.770170148229226E-5 296 351 396 249 104 150 200

9.082914766622707E-5 296 351 396 250 104 149 199

1.019184710457921E-4 295 351 395 250 105 149 199

1.0865218791877851E-4 294 351 394 250 106 149 199

1.1234092380618677E-4 294 352 394 249 106 149 199

1.2315464846324176E-4 293 352 393 249 107 149 199

57

Bibliography

[1] Darpa biocomp. http://www.darpa.mil/ipto/programs/biocomp/, 2005.

[2] Dizzy. http://labs.systembiology.net/bolouri/Dizzy/, 2005.

[3] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical

systems with many species and many channels. Journal of Physical Chemistry,

104(9):1876-1889, 2000.

[4] D. T. Gillespie. A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. Journal of Computational Physics,

(22):403-434, 1976.

[5] D. T. Gillespie. Markov Process: An Introduction for Physical Scientists. Aca-

demic Press, San Diego, CA, 1992.

[6] Jonathan A. Goler. Biojade: A design and simulation tool for synthetic biological

systems. Master's thesis, Massachusetts Institute of Technology, Department of

Electrical Engineering and Computer Science, May 2004.

[7] S. Kosuri J. Kelly, D. Endy. Tabasco simulation system, 2001.

[8] Barbara Liskov. Program Devolopment in Java. Addison-Wesley, 2001.

[9] Systems biology markup language. http://sbml.org/index.psp, 2005.

[10] Earl P. Solis. Stochastic kinetics in biological systems. Chemical Engineering

Report on Stochastic Kinetics, 2005.

58

[11] Synthetic biology. http://www.syntheticbiology.org/, 2004.

[12] C. R. Cantor T. S. Gardner and J. J. Collins. Construction of a genetic toggle

switch in escherichia coli. Nature, 403:339-342, 2000.

59

