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Abstract

Support functions and samples of convex bodies in R' are studied with regard to conditions

for their validity or consistency. Necessary and sufficient conditions for a function to be a support

function are reviewed in a general setting. An apparently little known classical such result for

the planar case due to Rademacher and based on a determinantal inequality is presented and

a generalization to arbitrary dimensions is developed. These conditions are global in that they

involve values of the support function at all points. The corresponding discrete problem of

determining the validity of a set of samples of a support function is treated. Conditions similar

to the continuous inequality results are given for the consistency of a set of discrete support

observations. These conditions are in terms of a series of local inequality tests involving only

neighboring support samples. Our results serve to generalize existing planar conditions to

arbitrary dimensions by providing a generalization of the notion of nearest neighbor for plane

vectors which utilizes a simple positive cone condition on the respective support sample normals.

1 Introduction

This paper addresses the problem of identifying the validity or consistency of a support function

or its samples. Support samples result from measurements of the extent of an object or set in a
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Figure 1: Illustration of a support measurement.(v)

Figure 1: Illustration of a support measurement.

particular direction and provide samples of the support function of the object in the given direction,

as shown in Figure 1. The support function H(v) [1,2] of an object 0 C Rn is given by:

H(v) sup xTV (1)

where v C R n . The reduced support function h(v) is given by

h(v) _ H(v/llvll) (2)

and precisely represents the distance from the origin of the corresponding supporting hyperplane

to 0 in direction v. Thus, it is usually the reduced support function h(v) or its samples that is

actually obtained from physical measurements.

Due to the presence of noise, a group of discrete such observations will not, in general, be con-

sistent, i.e. there might be no object that could have all the observations as support measurements.

Such a situation is shown in Figure 2, where support measurements hi, h2 , and h3 are mutually

consistent (e.g. for the object shown) but h4 is not. No object could have all these lines as support

measurements. The possibility of such inconsistent observations leads to the examination of what

constraints are required on a set of support observations for consistency. This work is an extension

and generalization of the approach taken in [3-5], where the planar case was treated.

Support measurements, such as we consider in this work, arise in many ways in object re-
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Figure 2: Illustration of inconsistent, noisy support measurements.
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Figure 3: Applications of support measurements.

construction problems. A silhouette may be viewed as a set of support observations [6-8], where

the directions of observation v are confined to a particular subspace, as illustrated in Figure 3a.

One-dimensional shadows or projections correspond precisely to a pair of support observations in

opposite directions. In the realm of robotics, these support type measurements can arise from

repeated grasps or probes by a gripper, as shown in Figure 3b [9,10]. Finally, in low dose to-

mography the line integral observations may yield little more than shadow information [3,4,11],

thus fitting into the silhouette framework above. Even when this is not the case, a preliminary

step of projection support extraction coupled with object boundary estimation may be useful or

desirable [3,12]. This approach has proven particularly helpful in reflection tomography arising in
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laser range data [13].

These problems all share the common goal of set reconstruction from support measurements

[14-17]. Besides being of general interest to computational geometers, set reconstruction from

support data is also fundamental to geometric probing [18-20], robot vision [21] and chemical

component analysis [17,22-24]. The explicit statement of support consistency constraints which

we provide allows their use in estimation and optimization algorithms. For example, we may find

the set of consistent support values that is, in some sense, closest to the given observations, thus

projecting our noisy observations onto the set of consistent support observations.

Outline

Conditions for a function to be a support function are reviewed in a general setting, with a summary

of classical results in Section 2. An apparently little known result due to Rademacher [25] for the

planar case is given. This result, based on a determinantal inequality, is interpreted geometrically

as a set of global tests for consistency. An apparently new extension of this planar result to the

general dimensional case is presented. These classically based results and our interpretation of them

are used in Section 3 to guide our examination, interpretation, and treatment of the conditions for

discrete support sample consistency. Such sampling appears because of the inherently discrete

nature of support measurements in applications. Local tests for the consistency of such a set of

support samples in arbitrary dimensions are provided. These tests are simple linear inequality tests

and are thus simple to perform. In this framework, the local nature of the test is reflected in a

banded structure of a corresponding matrix-vector inequality, yielding an efficient test.

2 Support Functions: The Continuous Case

2.1 Characterization of Support Functions

The support function H(v) of a set, as defined in (1), is a scalar function of the vector v and hence

a map from Rn to R. A natural question is which functions H(v) could be support functions.

Indeed, the problem is classical and the answer is provided by the following result, again classical:
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Result 1 (Support Function Conditions) A function H(v) is the support function of a convex

object if and only if it is defined for all vectors v and has the following properties:

1. H(O) = O.

2. H(av) = all(v) for a > 0.

3. H(v + w) < H(v) + H(w), Vv, w E Rn.

A proof was given by Minkowski for the 3-dimensional case with other refinements and general-

izations provided by Rademacher and others (see e.g. [1]). Thus, only positively homogeneous,

convex functions are support functions and vice versa. It is condition 3 of subadditivity that is the

interesting one, as will be seen later. Note that these conditions are global, in the sense that they

must hold for all vectors v and w and thus combine values of the support function over its entire

range.

Note that the support function H(v) is easily obtained from the reduced support function h(v)

due to the positive homogeneity of H(v) (H(Av) = A H(v) for A > 0). In fact, the support function

H(v) is completely determined by its values on the unit sphere [lv[i = 1, and thus by the function

h(v). In particular, for v 4 O, H(v) = [IvJI h(v/llvlI), so that if u is a unit vector H(u) = h(u).

As a result, conditions on the support function are actually often phrased in terms of the more

physically based reduced support function, an approach we will take in what follows. If a valid

reduced support function can be found then it may easily be extended to yield a corresponding

(full) support function.

For example, in the planar case, a differential condition in terms of h(v) is often used in place of

Result 1. Since in the planar case h(v) is only a function of the direction of v we may parameterize

h(v) by the polar angle 0 of v. A twice differentiable function h(O) of 0 is then a (reduced) support

function if and only if hoe(O) + h(9) > 0, where hoe(0) is the second derivative of h(O) with respect

to 0. Note that this differential condition is a local constraint, in the sense that it only involves

value properties of the function at the point 0. In particular, hbo(0) + h(O) is equal to the reciprocal

of the curvature of the object. In Result 4 we will provide a similar such local result for the discrete

case in arbitrary dimensions. Finally, note that Result 1 is more fundamental than the commonly
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used planar differential inequality in that it does not require differentiability of h(O).

Determinantal Condition for the Planar Case

Rademacher has shown that it is possible in the planar case to replace the subadditivity condition 3

of Result 1 by a determinantal condition on h(u) over unit vectors u. In particular, he showed that

under conditions 1 and 2 of Result 1, condition 3 holds if and only if

h(ul) uT 1 uT

h(u2) U4 1 UT > 0 (3)

h(u3 ) UT 1 UT

for all unit vectors u1 , u2 , and u3, where [* , denotes the determinate of the argument [1,25]. Note

that there is no requirement on the differentiability of h(u). Thus we now have a condition directly

in terms of the physically measured quantity h(u). This condition is of interest for its geometric

interpretation. Assume that uL, u2 , and u3 are distinct and that u3 is in the positive or negative

cone of {ul, u2} (which may always be done for three vectors in the plane through relabeling).

Using a determinantal equality (see Appendix A) (3) may then be rewritten as

U U1T h(Ul)
O(Ul, U2, U3) U T h(U3

T Ul 0 (4)
[U h(f2) ]

where /3(Ul, U2, u3 ) is a scalar that depends on the ui. In particular, if u 3 is in the positive cone of

{ul, u 2 } then P(ul, u 2, u 3 ) > 0 and if u3 is in the negative cone of {u l ,u 2 } then P/(ul,u 2 , u 3 ) < 0

The term in parentheses in (4), which we call p, is the signed distance along the direction u3 from

the support line with normal u3 to the intersection point of the support lines with normals ul and

u2, as shown in Figure 4 for the positive cone case.

In the plane then, the determinantal condition (3), and thus condition 3 of Result 1, requires

that support functions satisfy an intuitive notion of consistency (as illustrated in Figure 2 or 4) for

all triples of values of the function. This intuition provides a fundamentally geometric condition

for a function to be a support function in the plane, but it is still a global condition, in the sense
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Figure 4: Illustration of 2-dimensional determinantal condition.
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Figure 5: Difference between 2- and 3-dimensional situation.

that all possible combinations of samples must be checked.

Higher Dimensions

We now turn our attention to finding an equivalent of the geometrically interpretable determinan-

tal inequality condition (3) for the higher dimensional case. Unfortunately, in three and higher

dimensions the exactly analogous condition (i.e. validity of such a determinant inequality for all

vectors ui) has been shown by Rademacher to be satisfied only by the support functions of balls [25].

We identify the difficulty in directly extending this result and present a natural generalization of

condition (3) that is valid for all dimensions. The result appears to be new.

The difference between the two and higher dimensional cases is that in the plane, given three

vectors, one of the vectors is always in the positive or negative cone of the remaining two, as

shown in Figure 5a where w is in the positive cone of u and v. In higher dimensions this is

not necessarily true, as illustrated by the combination of normals in Figure 5b. If we consider the
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geometric interpretation of the test, it seems reasonable to suppose that by restricting our attention

to groups of vectors for which this cone condition is satisfied, we might obtain the desired result.

This is precisely what we do, yielding the following result which is proved in Appendix B:

Result 2 (General Inequality Condition) A function H(v) is a support function if and only

if it is defined for all v and has the following properties:

1'. H(O) = O.

2'. H(,av) = ,aH(v) for Ca > 0.

3'. The following determinantal inequality is satisfied for all (n + I)-tuples of unit vectors ui with

one in the full positive cone of the others:

h(ul) uT 1 uT

h(u 2 ) uT 1 UT > (5)
2 2 >o 0(5)

h(u,+l) uT 1 U
U n+l n+l

Recall that for unit vectors u, H(u) = h(u). In a finite dimensional space a cone is said to be full if

it cannot be contained in a proper subspace (the implication being that the set {ui } is independent).

As before, there is no requirement on the differentiability of h(u). Note that the condition requires

testing of only positive cone n-tuples. This is a refinement of Rademacher's result for the planar

case. It is easy to also include tests of negative cone n-tuples in Result 2, since this simply adds

additional tests which are not really needed.

Now let us interpret this test. Assume u,+l is in the positive cone of the remaining {ui}. By

using Lemma 2 of Appendix A, we may rewrite (5) as

-UT h(ul)

Un+1 u2 h(u2 ) - h(un+1) > o (6)

UT hh(un)
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Figure 6: Illustration of 3-dimensional determinantal condition.

Similar to the planar case, the left hand side may be naturally interpreted as the signed distance

p, positive in the direction of u,+x, from the support hyperplane with normal u,+l to the point

determined by the intersection of the hyperplanes with normals given by ui, i = 1,..., n, as shown

for the n = 3 case in Figure 6.

Condition 3' of our Result 2 thus generalizes the intuition of the planar case to arbitrary

dimensions. As in the planar case, this condition is still a global one, in the sense that all (n + 1)-

tuples of vectors satisfying a positive cone condition must be checked. In the following sections

we use the intuitions obtained in the continuous case to develop conditions that characterize the

consistency of a given set of support samples. An equivalent local result is given in Result 4,

where only (n + 1)-tuples that are neighbors (defined in an appropriate way) need be checked for

consistency.

3 Consistency of Support Samples

In the previous section, we dealt with continuous support functions defined for all directions. The

main condition for validity of a support function is a consistency check (the analytic condition 3'

of Result 2) on all positive cone (n + 1)-tuples. In this section the discrete case arising from the

sampling of a support function is treated. Due to the presence of noise, a group of such discrete

observations will not, in general, be consistent, i.e. there might be no object that could have all the
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observations as support measurements. An example of such a situation was given in Figure 2. To be

precise, we term a set of support samples consistent if there exists a valid support function whose

values at the sample points match the given values. Thus we have the problem of determining

when there exists a valid support function h(u) (equivalently H(u)) such that H(ui) = h(ui) = hi

for a given a set of m samples {hi} in (unit) directions {ui}.

One obvious approach we could take to identifying inconsistency is to attempt to explicitly find

offending hyperplanes, such as h4 in Figure 2. Essentially what we are doing when we say that h4 is

the "inconsistent" sample is implicitly intersecting the directed halfspaces provided by the (hi, ui)

pairs to obtain a convex polyhedral region and then attempting to identify those hyperplanes that

do not contribute to this region, i.e. that are active constraints. This problem is equivalent to finding

the non-binding constraints in a linear programming (LP) problem. This task is computationally

expensive, essentially necessitating the solution of a dual LP problem itself (details may be found

in [26,27]). Further, it is not really desirable. Such an approach assumes that all the error resides

in the inconsistent support measurements, such as h4 of the figure, while the rest are perfect. From

an estimation theoretic perspective, the corresponding noise model does not seem reasonable. It is

more realistic to assume that all the measurements are corrupted. Hence we instead develop tests

or constraints which simply tell of the existence of inconsistency. These constraints essentially serve

to define the set of all consistent support samples for a given fixed set of measurement directions

ui. This set will in fact be seen to define a polygonal cone in the space of support samples. We are

then free to use the conditions as a constraint in the reconstruction of a consistent set as we see

fit. For example, one could use these conditions to project onto the consistent support set.

Our first result shows that a set of samples is consistent if and only if a certain geometric

condition (essentially each sample hyperplane being an active constraint in the set definition)

is satisfied for all (n + 1)-tuples of sample normals. We then show that under a certain set of

assumptions (non-emptiness of intersection) we need only check the (n + l)-tuples satisfying a

positive cone condition. For such (n + 1)-tuples the geometric condition is identical to the analytic

determinantal condition (3' of Result 2) of the continuous case. Finally, under our assumption of

nonempty intersection, we do not even require consistency of all these positive cone (n + l)-tuples,
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but rather a particular subset corresponding to a natural notion of the (n + 1)-tuples being local

or neighbors of each other.

3.1 Identifying Consistency

First we present a general test for consistency of a set of support samples. This result states that

a set of support samples is (globally) consistent (i.e., there is a valid support function which agrees

with all the samples) if and only if every (n + 1)-tuple of the set is consistent.

Result 3 (Discrete Consistency) A set of support samples hi with associated (unit) direction

vectors ui is consistent if and only if every (n + 1)-tuple of samples satisfies the following geometric

condition:

For every sample in the (n + 1)-tuple the hyperplane corresponding to the sample has

nonempty intersection with the resulting intersection of all the corresponding (n + 1) (7)

halfspaces.

Result 3 is proved using Helly's theorem in Appendix C. Now consider the condition (7). For any

(n + 1)-tuple with associated unit direction vectors ui, one of the following situations must hold:

1) one ui is in the positive cone of the others, 2) one ui is in the negative cone of the others, or

3) none of the ui is in the positive or negative cone of the others. We will term (n + l)-tuples in

class 1) positive cone (n + 1)-tuples and those in class 2) negative cone (n + 1)-tuples. The (n + 1)-

tuples in class 3) (neither positive or negative cone) always satisfy condition (7), and therefore

are really unimportant in determining consistency. In addition, if we assume that the intersection

of all the support sample halfspaces corresponding to the (hi, ui) pairs is nonempty (a gross type

of consistency, since it is clearly a necessary condition for the consistency of samples of nontrivial

support functions), then the (n + 1)-tuples in class 2) comprising the negative cone tests also satisfy

condition (7). Thus, under a nonempty intersection assumption, it is actually sufficient to check

the condition (7) for just the (n + 1)-tuples satisfying 1) - i.e., the positive cone tests.

Now, if in such a positive cone (n + 1)-tuple the cone is full (i.e. nondegenerate), then the

geometrical condition (7) is equivalent to our determinantal one (5). This can be seen by considering

the geometrical interpretation of the condition (5) provided through Lemma 2 and comparing it to
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(7). Thus these conditions are interchangeable for full positive-cone tests (actually this equivalence

is true for full negative-cone tests also, though we will not use this fact in what follows since we

will assume nonempty intersection instead). We use these insights to obtain the following corollary

to Result 3 involving the determinantal condition (5).

Corollary 1 (Positive Cone Consistency) Given a set of support samples hi with associated

(unit) direction vectors ui in Rn, assume that the intersection of all the support sample halfspaces

is nonempty and assume that for every positive cone (n + 1)-tuple of samplc directions the cone is

full. The set of samples is then consistent if and only if condition 3' of Result 2 is satisfied by the

samples of the set, i.e. if and only if (5) or (7) is satisfied for every positive cone (n + 1)-tuple of

the set.

We actually believe that both the assumptions of the corollary are not truly essential. In particular,

we believe the first assumption of nonemptiness may actually be replaced by some type of sampling

rate constraint, i.e. that if we sample the support function densely enough the satisfaction of the

positive cone tests will imply satisfaction of the negative cone tests. Indeed, precisely such a

requirement was used in obtaining a similar result for the planar case in [3,4]. As it stands, the

negative cone tests evidently just assure nonemptiness, and under dense enough sampling we believe

that satisfaction of the positive cone tests will also assure this. The second assumption of fullness

of the positive cones of (n + 1)-tuples is is a degeneracy condition, assuring independence of the ui,

i = 1,..., n, which is necessary for (5) to be well defined. We could, alternatively define our tests

from this point forward solely in terms of the condition (7), which is insensitive to this degeneracy.

We prefer to work with condition (5) however, because of its connection to the continuous condition

(5) and its straightforward implementability.

While the inequality tests resulting from Corollary 1 are conveniently computable, in that they

are simple linear functions of the support measurements hi, the procedure is problematic in that

all positive cone combinations must be checked for consistency. The number of such tests grows

combinatorially with the number of observations. For example, in the planar case with support

values equally spaced in angle, if m is the number of observations then the number of tests grows

as m 2 /8. This growth becomes worse in higher dimensions because of the increased number of
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Figure 7: Graphical representation scheme for normal relationships.

degrees of freedom. As a result we seek a local test, utilizing only local support information in its

application. This local approach may be viewed as a discrete version of the curvature constraint

hee(8) + h(O) > 0 discussed in Section 2 (though our result will not require differentiability of the

underlying support function).

3.2 Local Tests

We now develop a general local test for consistency of a set of support samples. Such a test (but

without this interpretation) was given for the planar, equal angle case in [3-5], and our results serve

to generalize this work. Since we already have a global consistency result in Result 3 or Corollary 1

(in the sense that positive cone (n + 1)-tuples over the entire range of directions must be checked),

our work reduces to showing that local consistency implies global consistency.

To this end, a result is first given that allows satisfaction of the determinant test (5) over given

sub-domains of sample orientations to be extended to satisfaction over a larger domain. We term

this result a consistency merging result. Before presenting the result we provide a geometrical

description of it. Consider the situation shown in Figure 7 for the 3-dimensional case. The normals

to support planes are mapped to points representing their tips on the unit (Gaussian) sphere,

as shown. A spherical triangle connects these points on the sphere. We represent this spherical

triangle by a corresponding planar triangle. Any point in the positive cone of the vertex direction

normals is a point in the triangle and vice versa. For example, in Figure 7 u4 is in the positive cone

of U1, u2 , and us .

With this graphical scheme, our merging result is illustrated for the three-dimensional case in
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Figure 8: Illustration of meaning of Lemma 1.

Figure 8. Here u4 is in the positive cone of {Ul, U2 , US} and conversely u 5 is in the positive cone of

{u 2 , u3 , u4 }. The result states that, given the above inclusions, if {ul, u2, u4, u5 } form a consistent

(n+ 1)-tuple and {u 2, u, U4, u, s} form a consistent (n+ )-tuple then the enlarged set {ul, u2 , U3 , U4}

also forms a consistent (n + 1)-tuple (and by symmetry so does {ul, u 2 , u 3 , us}). Thus, consistency

over the smaller triangles (positive cone (n + l)-tuples) implies consistency over the larger triangle

(positive cone (n + 1)-tuple). In the higher-dimensional case the triangle of Figure 8 becomes an

(n - l)-dimensional simplex and the interior triangles sub-simplices. The full result is as follows:

Lemma 1 (Consistency Merging) Given a set of (n+2) support samples hi with associated unit

sample directions ui in Rn , suppose that un+l E cone+ ({u,. . ,) Un-l , n+2), Un+2 C cone + u2 ,. . , U,n, U,n+l ,

{(n+l, Un+2 E cone+{ul,... , un- 1 , un} and that these three cones are full. If both the sets of sup-

port samples (hi,..., hn_1, hn+l, hn+2} and {h2 , . ., hn, hn+l, hn+2 } are consistent then so are the

enlarged sets (hl,..., hn, hn+l} and (hl,... , h, hn+2 }.

In the above, cone + denotes the positive cone of a set and by consistency of a set we mean satis-

faction of the determinantal inequality (5) or, equivalently, the condition (7) by the set. The proof

of this result is in Appendix D.

A suitable notion of "local" now needs to be defined for the general case, or, in the context

of Lemma 1, we need to know the minimal domain over which consistency must be satisfied. For

the planar case, as studied in [3-5], this notion of locality is straightforward, depending on normal

ordering and adjacency. In higher dimensions, however, the situation is not so clear. Adjacent faces

do not necessarily correspond to nearest normals anymore. A natural notion of locality is suggested
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Figure 9: Illustration of a local family

both by condition 3' of Result 2 and by Lemma 1 with their emphasis on a positive cone condition

on the unit sample normals. Given a sample normal, we define what we mean to be "local" to that

sample normal in the following:

Definition 1 (Local Family) Given a set S of m distinct unit vectors in R n and a member from

this set uk, we define the local family corresponding to Uk to be the set of all distinct (n + 1)-tuples

of vectors from S such that uk is one element of the (n + 1)-tuple and the remaining n vectors of

the (n + 1)-tuple contain only themselves and uk from S in their full positive cone.

Thus, the local family corresponding to the element uk is a set of (n + 1)-tuples, each containing uk

and with the property that the only nontrivial element of the parent set contained in the positive

cone of the remaining n-tuple is the generating element uk. In terms of the paradigm of Figure 7,

a local family is defined by the set of all (spherical) triangles (simplices in higher dimensions)

containing the given normal uk but no others, as shown in Figure 9 for the n = 3 case. In contrast

to the planar case, where there is just a single local neighbor, this notion of locality implies a family

of tests associated to each normal, one for each (n + 1)-tuple in the corresponding local family.

Local Constraint

With these ideas of locality defined we are prepared to present our main result showing that local

consistency and global consistency are equivalent.

Result 4 (Local Consistency 4 Global Consistency) Given a set of support samples hi

with associated (unit) direction vectors ui in R n, assume that the intersection of all the support

sample halfspaces is nonempty and assume that for every positive cone (n + 1)-tuple of sample

directions the cone is full. Then the overall set of samples is consistent if and only if for each
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sample normal uk, all elements of the corresponding local family are consistent.

In other words, the overall set is consistent if and only if all elements of all local families are

consistent. Again, consistency of a (n + 1)-tuple means satisfaction of (5) or (equivalently) (7).

Thus, we have that a set is globally consistent if and only if it is locally consistent, where locality is

defined in the sense of the local family of a sample normal. The proof of the result is in Appendix E.

Note that each of the tests (5) required in Result 4 is linear in the support samples hi. As a

result, given a set of m samples and t such tests (where t is the total number tests to be performed),

we may write the corresponding set of tests as

Qh > O (8)

where h = [hl, h2 , ,h] T is the vector of support samples (termed the support vector), Q is

a t x m sparse matrix guaranteed to have only n + 1 non-zero entries in each row, and 0 is a t

vector of zeros. Since the definition of the local families depends only on the sample normals ui

and not on the support samples themselves, the matrix Q also depends only on the normals ui.

Consequently, once these directions are fixed the matrix Q may be precomputed and then applied

to many different sets of measurements. Note, since the inequality constraints are linear and finite,

the set of all consistent support samples is defined by a polygonal cone in the m-dimensional space

of support samples with fixed direction.

This form of constraint is particularly convenient for constrained support reconstruction. For

example, suppose that we are given a set of noisy support observations in the vector y taken in

corresponding known directions ui and that we wish to reconstruct the least square error estimate

of h from these observations subject to consistency. The resulting problem combines (8) with a

least squares criteria to yield the following linear inequality constrained least squares problem,

which is straightforward to solve:

h =argmin fJh - Y112 (9)
Qh>O

This model of known ui but noisy hi is reasonable for many problems, particularly medical and

non-destructive evaluation tomography problems, where the user may exercise great control over
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the geometry of the data acquisition. The situation is obviously more complicated if we consider

the, perhaps more realistic, situation of noisy measurements hi coupled with imperfectly known

geometry ui. Such situations arise in geophysical problems and target tracking [13, 28].

As an example of the potential savings involved in using a local test instead of the general

global result of Corollary 1, we consider the situation resulting from 20 regularly spaced support

samples in R3. This is the largest number of normals possible with completely regular spacing,

corresponding to the face normals of an icosahedron. Applying Corollary 1 to this case with 20

uniformly spaced normals would yield a total of 1620 tests of the type (5). In other words, the

support vector would have 20 elements and the corresponding matrix Q of the matrix inequality (8)

would be 1620 x 20. In contrast, using the local test given by Result 4 results in only 320 inequality

tests, or a 320 x 20 matrix Q. This is still large, but over a factor of 5 better than before. And we

would expect this ratio to increase as we increase dimension.

Identifying the local families in practice is laborious but straightforward. For each sample

normal uk one may exhaustively test all possible remaining n-tuples to see if uk is in the resulting

positive cone. We may test if uk is in the positive cone of a given n-tuple by checking the coefficients

of the vector [ull u21 ... Iun]-luk, for positivity, where the columns of the matrix [ull u2 1 . . IUn] are

composed of the sample vectors of the n-tuple. As discussed above, this need only be done once

for a given set of sample directions.

3.3 The Two-Dimensional Case

Since working with the three-dimensional case is notationally cumbersome, let us consider the two-

dimensional case (n = 2) shown in Figure 10 for illustration. In the plane we may parameterize the

unit direction vectors ui by their angle Oi so that ui = [cos(Oi), sin(Oi)]T. Suppose the m sample

angles Oi are arranged in increasing order so that Oi+l > Oi and are chosen so that 0 i+2 - Oi < 7r/2

(this is the sampling rate constraint alluded to in the discussion following Corollary 1). This

sampling condition will ensure that no local family is empty. Applying Result 4 to this planar case,

we obtain the following consistency condition for a planar set of support samples which must hold
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Figure 10: Two-dimensional case.

for all 1 < i < m:

[ sin(A0 i+) -sin(A0i + A0i+l) sin(Ai) ] hi > (10)

hi+l

where AOi = Oi - Oi-1 is the angular difference between normal i and normal i - 1, 00 - 0m

0m+1 -- 01, and similarly for hi. Note that under the conditions above, the normal associated with

Oi is always in the positive cone of the adjacent two normals.

In terms of the support vector h = [hi, h2 .. , hm]T we may write this condition as the vector-

matrix inequality Qh > 0, as we did in (8), where the matrix Q is now given by:

- sin(A0 1 + A0 2) sin(A9 ) 0 sin(A0 2)

sin(A03 ) - sin(A82 + a8 3 ) sin(A02 ) . -. 0

0 sin(A04) - sin(AOa + A04)

0 sin(A05) ... 0

0 : sin(AOm-l)

sin(A0,+m) 0 0 *.. -sin(AOm + AOm+l)

Note in this planar case that Q is square. Such a test was given in [3-5] for this planar case,

but restricted to the equal-angle situation where AOi = A0 and its significance as a local test (all

positive cone 4-tuples are not tested) was not brought out. The planar test (10) for non-uniformly

spaced angles may also be found in [13].

18



///////// 2 ph...

Figure 11: Illustration of non-specificity of local tests.

Note that these types of tests do not identify which constraints are inconsistent. To see this,

consider the situation shown in Figure 11, where the intersections of the adjacent support lines

used in the local tests are shown as the points pi and the object is assumed contained in the darker,

shaded region at the bottom. The support measurements with normals U2 , us3 , u4 , would fail the

local test at point P2, since the line associated with us3 is behind P2 (in the direction given by

u3 ). While this failure does confirm the existence of inconsistency, note that the set of samples

associated with ul, u2, and u 3 , would pass their local test at pi. The distance from the u2 support

line to P, is positive in the direction given by u2 so the local test is satisfied. Thus, while the sample

with normal u2 is also inconsistent, it is not identified by the local tests.

4 Conclusions

In this work we have presented a unified and general treatment of the consistency requirements for

both a support function and a set of support samples corresponding to a fixed set of directions. We

extended a classical determinantal condition for the existence and uniqueness of a support function

and then used the resulting insights to develop a general dimensional inequality test for consistency

of a set of support samples. We subsequently developed local test for sample consistency, in the

sense that each inequality only involved local support information. Such a result may be viewed as
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the general dimensional, discrete equivalent of the well known planar support curvature constraint.

A Derivation of Geometric Lemma

In this appendix we prove a result we repeatedly use, and which we state as the lemma:

Lemma 2 Suppose the unit vectors {ui}, i = 1,...,n are independent and that the unit vector

Un+l is in the (full) positive or negative cone of the set {ui}, i = 1,...,n. Then the following

equality holds for some 3(ul,..., Un+l), with 3 _> 0 if un+l is in the positive cone and P < 0 if

u,+l is in the negative cone, and p = 0 if and only if Un+l = ui for some i = 1,...,n:

H(ul) uT 1 uT T H(ul)

H(u2) UT I UT T uT H(u 2 )

U~~~n+1 H ~)+11u)

Note that if the ui are not independent the determinantal condition is trivially zero and our ex-

pression is not well defined since the matrix of the ui is not invertible. Also, note that if one of the

ui is in a cone formed by the others and it happens not to be un+l, we need only interchange rows

and relabel. Such operations do not change the sign of the result because the row exchanges will

take place in both the determinant terms on the left hand side of (11).

Proof of lemma: First note that since un+l is in the cone formed by the set {ui}, i = 1,..., n,

we may write it as the following linear combination:

a,

n(12)

with ai > 0 for the positive cone case and ai < 0 for the negative cone case.
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Now apply the following determinantal identity to each term of the left hand side of (11):

A B
= IAIID - CA -1 B

C D

Doing this to the first term yields:

~H(ui ) unl J UT H(ul)
=lT UTH(ul) ul UT H(U2 )

H(un+l) UTU

1 U2= (_1)n+1 UTT -H(u,+)
2 I1 1 -1

UT uT HU
21)n+l UT 2 - H(u ) (14)

n+

UT ,T H(un)

Similarly applying the determinantal identity to the second term yields for it:

1 uf1 u1

1 u(1)n+ 2 U 2 -1 (15)

Now combining the two expressions and equating terms with the expression on the right hand side
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of the lemma shows that the scalar 3 is given by:

2--1
T i T

U1 U1

UT T T

,(U1, ... Un+)= 2) U+l - (16)
U 1 , Un+.

iT IT 1Un

uT 1 UT

i 1 
= (-) n + l u T 2 U(17)

T U

Substituting the expression (12) for ui+l into the second term shows that it is equal to (fi=l ai- 1)

thus: 2

U 2

O(Ul,..., Un+l) = . *i -I (18)

Un

To show p is of the appropriate sign, let us separately consider the two cases of Un+l contained

in the positive or negative cone of the remaining ui. Note that the first term of /3 in (18) is

clearly positive for either case, since the ui, i = 1, . . ., n are independent (they form a full cone) by

assumption.

Case 1: Positive Cone For this case we have that aci > 0, for each i. Since un+l is a unit vector

and uiTuj < 1 for all i, j we have:

n n n n n 2

=I -un+11 2 = uE _aiajUU< o Ej < icj = i (19)
i=1 j=l i=t j=t i=l

Since cai > O this implies that E ai > 1 so that the second term in (18) is nonnegative. This shows

that __ O.
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Now from (18)/3 = 0 if and only if E=x a'ti = 1. From (19) this implies that /3 = 0 if and only

if:
n n n n

E aE iaj UTUja = EEij (20)
i=l j=l i=l j=l

Each term on the left hand side of (20) is less than or equal to the corresponding term on the right

hand side. In particular, equality for a term is achieved if and only if either uTuj = 1 or aj = 0.

Since uTuj < 1 if i 5$ j, we can have equality in (20) (equivalently, 3 = 0) if and only if

caiaj = 0, Vi, j, i Z j (21)

Since ai=l cti = 1 this can only be if ai = 1 for some i and aj = 0 for all j such that j / i, so that

u,+l = ui for some i = 1,..., n. Thus/3 = 0 if and only if un+l = ui for some i = 1,..., n, and the

positive cone case is shown.

For a more geometrical understanding of the case when 3 = 0, note that the condition that

E=l ai = 1 coupled with (12) implies that /3 = 0 if and only if u,+l is in the hyperplane defined

by {ul,...,u,} (we can also arrive at this conclusion by considering that /3 = 0 implies that

the last term in (17) is identically zero, which can only be if all the vectors {ul,..., u,+ 1 } lie in

a hyperplane). Since the ui are unit vectors, this hyperplane intersects the unit sphereoid in an

(n- 1)-dimensional hypersphere containing the vectors {u1,..., un}, as shown by the circle through

ul, u 2, and u3 for the 3-dimensional case in Figure 12. Now since u,+l itself is a unit vector, it must

lie somewhere in this intersection hypersphere. The only points on this intersection hypersphere

that are also in the positive cone of the {ul,..., un} (denoted by the triangle in Figure 12) are the

ui themselves.

Case 2: Negative Cone For this case we have that ai < 0, for each i. From (18) clearly , < 0.

B Proof of Result 2

To prove the result we need only show that condition 3' of Result 2 implies and is implied by

condition 3 of Result 1. First, we show that condition 3 implies 3'. Consider an arbitrary (n + 1)-
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\ 3

Figure 12: Illustration of 2-dimensional intersection.

tuple of unit direction vectors ui with u,+l in the positive cone of the remaining vectors. If

u,,+l = ui for any i = 1,...,n then 3' of Result 2 is trivially satisfied. Suppose such is not the

case. Using Lemma 2 of Appendix A together with the fact that we may write u,+l as in (12) we

obtain:

H(ul) uf 1 uf

~H(u) ~ 2 1 u2 = (u,.. .,un+1) [ aiH(2i) -H Cni) (22)

H(un+1) u 1 1 UT

-(u...,ui+) [ H(au*) - H aiU (23)

with P(u 1 ,... ,un+l) > 0. Now by the subadditivity condition 3 of Result 1, H(aiui + cajuj) <

H(aiui) + H(ajuj) for any act, aj, ui, uj. It follows that:

H(caiui)- H aiui > 0 (24)
i=l i=l

Thus (22) must be nonnegative. Since the vectors ui of the positive cone (n+l)-tuple were arbitrary

this shows that condition 3 implies condition 3'.

Now we show that condition 3' implies condition 3. Given arbitrary vectors v and w, we will
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show that if 3' is satisfied then H(v+w) < H(v)+ H(w). If v is a scalar multiple of w this is trivially

true from condition 2 or 2'. Assume such is not the case. In condition 3' let ul = v/1IvII, u2 = w/]wl[l

and choose the remaining ui, i = 3,..., n arbitrarily to span the subspace perpendicular to v and

w. Let u,+l = (v + w)/llv + wll, so that un+l is a unit vector in the full positive cone of the ui. In

particular, we have that:

AJL

Un+1 =[ul u2 Un 0 ° (25)

Now by assumption condition 3' is satisfied and, using Lemma 2, it follows that:

-1

UT -1 H(ul)

TU 2+1 H(Un+l) > 0 (26)

nUT H(un)

for any n + 1 unit vectors ui, with u,+l in the positive cone of the remaining ones but not equal

to any of them. Substituting the expressions above for ul, u2, and un+l we obtain

-T U T H(ul)

0 . o]°T *u H(u2) _ H (v+ W

T UnT (Un) )

lv~wll -H Ivul nJ _o.H ( + H wl_ -H )v+ > 0.
11 + W VIVI lv + wl V + 

25



Equivalently, using condition 2,

+ (H(v) + H(w) - H(v + w))> 0.11v + w11

Thus

H(v + w) < H(v)+ H(w)

and the converse is shown. Together these implications prove the result.

C Proof of Result 3

To prove Result 3 we will make use of the following well known theorem:

Theorem 1 (Helly's Theorem) A collection of convex sets in R n has nonempty intersection if

and only if every collection of n + 1 sets at a time has nonempty intersection.

Given a set of m support samples one can always form a polyhedron (which may possibly-

be empty) by intersecting the m half-spaces corresponding to the support samples. Call this

polyhedron P. That global consistency of a support sample set implies satisfaction of the condition

(7) for every (n + 1)-tuple (i.e. local consistency) is obvious. To show the other direction, we need

to show that if every (n + 1)-tuple of samples satisfies the condition (7), then there exists a valid

support function agreeing with the samples or, equivalently, that the intersection of the hyperplane

corresponding to each sample with the polygon P is nonempty.

To this end, suppose that every (n + 1)-tuple of samples satifies the condition (7) (i.e. is locally

consistent) and consider the i-th sample. We need to show that the hyperplane corresponding to

this sample has nonempty intersection with P. The hyperplane corresponding to the i-th sample

consists of the intersection of two halfspaces. The intersection of this hyperplane with P thus

consists of the intersection of m + 1 halfspaces - 2 for the hyperplane of the i-th sample and m - 1

for the halfspaces of the other m - 1 samples. Since by assumption every (n + 1)-tuple of samples

satisfies (7), it follows that the intersection of every (n + 1)-tuple of these halfspaces is nonempty.

Hence, by Helly's theorem it follows that the intersection of all m + 1 halfspaces is nonempty, so
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that the i-th hyperplane has nonempty intersection with P. Since this is true for each i = 1,. .. , m,

the m samples are (globally) consistent, with the support function of P giving one valid support

function.

D Proof of Lemma 1

We show that under the hypotheses of the lemma the enlarged set {hi,..., h,, h,+l} is con-

sistent. Consistency of the set {hl,...,h,,h 7n+2} then follows by symmetry. We know that

un+l E cone+{ul,...,Un,_l,Un+2} and un+2 C cone+{u2 ,..., u,un+l}, thus we may write u,+l

and u,+2 as the following linear combinations:

al

Ca2

Un+ -- U[ 2 Un-1 n] + an+2Un+2 (27)

an-1

+ (8)

Un+2 - | U2 U3 .. *Un ]· a+ ,n+l Un+1 (28)

where 0 < ai and 0 < ai. Note that ax, and al are 0. We may eliminate un+2 from the above two

expressions to obtain the following equivalent expression for un+l:

are

a2 + 22can+2

1n= _u | u1lz u2 un·un·. · · (29)Un ln+lCfn+2 

n-1 + an-lan+2

nanCn+2
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This expression provides the representation of u,+l with respect to the cone defined by {ul,..., u,}.

Since u,+l is in the full positive cone of these direction vectors by assumption and this represen-

tation is unique, the coefficients of the ui, i = 1,..., n in the expansion (29) must be nonnegative

and finite. In particular, since ai and ai, i = 1,..., n + 2 are nonnegative and not all zero, we must

have that (1 - ,n+lan+2) > 0.

Now consistency of the set {hl,..., hn-_, h,+l, hn+2} implies through (5) and Lemma 2 that

the following inequality is satisfied:

hi

h2
T

Un+ 1 U1 U2 .. Un- Un+ 2 -hn+l > 0

hn-1l

hn+2

Substitution of (27) for un+l into this inequality and rearrangement yields

[ a a2 - n-l 0 -1 tn+2 h > (30)

where h = [hl, h 2 ,. .,h,+2] T is termed the support vector. Similarly, consistency of the set

{h2 ,..., h,, hn+l, hn+2} together with (28) yields the following inequality, through use of (5) and

Lemma 2:

[0 2 3 - n n+ -1 h > O (31)

Thus, (30) and (31) are true by assumption.

To show consistency of the samples {hl,..., h,,hn+l} we have to show that the following

expression is nonnegative

hi uT 1 UT

P h2 (32)

hn+l Un+ 1 unl
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Applying Lemma 2 again and substituting for u,+l from (29) shows that the expression (32) is

equivalent to:

(u .... unl+ ) [
P 1 - -n+lan+2 L ' (

1 , + 52an+2)' ( a3 +
3a.+2), ...

(an -l + n-lan+2)i, ,nan+2, (an+a1,+2-1), 0 ]h (33)

where p is a nonnegative scalar depending on the ul,..., u,+l. We may equivalently write this as

al 0

au2 4a2

a3

,8(ul,..., U,+1) hT + a.I2 (34)
I - dn+1Otn+2n-1

a-1I +n+l

can4 -1

which will be recognized as a linear combination of the left hand sides of (30) and (31). Now

the terms P/(1 - nl+1Ca,+2) and an+2 are nonnegative so (33) is equal to a nonnegative linear

combination of (30) and (31), which are also nonnegative. Consequently, (33) and thus (32) must

also be nonnegative and we have demonstrated consistency of the set {hi,..., hn, h,+l}. The

lemma is thus shown.

E Proof of Result 4

That global consistency implies local consistency follows easily, for if a set is globally consistent

then by definition the inequality (5) is satisfied for all unit vectors in the full positive cone of an

n-tuple of other sample normals.

Thus, we need to show that local sample consistency implies global sample consistency. First

note that under the assumptions of the result, global consistency is assured if (5) or (7) are satisfied

for every positive cone (n + 1)-tuple due to Corollary 1. Now let us assume that the (n + 1)-tuples
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Figure 13: Illustration of geometry on unit (Gaussian) sphere.

corresponding to the local families are consistent and show how this implies that any positive cone

(n + 1)-tuple will then be consistent. To this end, consider an arbitrary support sample hj and

its associated unit direction normal uj, in the positive cone of some (possibility non-local) n-tuple

of other sample normals, i.e. an arbitrary positive cone (n + 1)-tuple. On the surface of the n-

dimensional unit (Gaussian) spheroid the unit direction vector uj (in the positive cone of the n

other unit vectors) is a point inside an (n - l)-dimensional spherical simplex (generalization of a

spherical triangle), as described in association with Figure 7 for the 3-dimensional case. Points in

this simplex are points in the positive cone of the vectors at the vertices of the simplex, as is u4 in

Figure 7.

If the point associated with uj is isolated in the simplex it is consistent by hypothesis, since it

is the only vector in the positive cone of the normal directions at the vertex, and hence part of a

local family. Suppose instead that there is another point in the simplex with it, say uk as shown in

the leftmost illustration of Figure 13 for the 3-dimensional case. Each of these two interior points

(corresponding to direction vectors uj and uk) in combination with the n original bounding points

(corresponding to an n-tuple of direction vectors) tessellates the original simplex into n disjoint

subsimplicies whose union is the original simplex. The two interior points corresponding to uj and

uk are thus each contained in a subsimplex formed from the other interior point and n - 1 of the

original boundary points. This geometry is shown in the leftmost frame of Figure 13 as two dotted
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triangles.

Now by the merging result, Lemma 1, if we can show that the samples uj and uk are consistent

on these smaller subregions then we have shown that they are consistent on the entire region, as

desired. Thus we have reduced the problem from showing consistency over the original region to

showing consistency over two smaller subregions. This process is shown in the middle illustration

of the figure, where we have split the original test into two subtests. We may now repeat the above

arguments on each of the subregions, attempting to show the consistency of each. We thus have

the following finitely terminating recursive construction:

Show an arbitrary positive cone (n + 1)-tuple is consistent:

1. If it is isolated in its cone, consistency is shown by hypothesis.

2. If it is not isolated:

(a) Pick another point in the cone.

(b) Form two smaller subregions.

(c) Attempt to show consistency of each subregion.

We keep proceeding in this way until a subregion is found where the interior point is isolated

(corresponding to the normal being the only vector in the positive cone of its bounding set) and

consistency is satisfied by hypothesis. In Figure 13 we show the next step of this procedure on the

right, where we have assumed that the subregion containing uj is isolated (so that we have reached

a leaf of the tree) but the one containing uk contains another point, uq and hence must itself be

broken into two subregions.

Since at each stage of this procedure another point (sample normal) is removed from the original

finite set and since the subregions are nonincreasing at each stage, we must eventually reach the

situation where a sample normal is isolated in its simplex and therefore consistent. Using Lemma 1

we may then travel back up the tree we have implicitly created to show consistency of the original

sample with respect to the original boundary points. Since the original positive-cone (n + l)-tuple

we chose was arbitrary, we have shown the result.
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