
DPAS: The Dynamic Project Assessment System

by

Birendro M. Roy

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005 £2-

® Birendro M. Roy, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.
MASSACHUSETTS INSTrTUTE

OF TECHNOLOGY

JUL 18 2005

Author LIBRARE....
Department of Electrical Engineering and Computer Science

May 19, 2005

Certified by...................
Jonathon Cummings

A csistant Professor
hesis Supervisor

Accepted by..........
AArthur C. Smith

Chairman, Department Committee on Graduate Students

BARKER

2

DPAS: The Dynamic Project Assessment System

by

Birendro M. Roy

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I designed and implemented the second iteration of a web-based system
that administers survey questions to users and aggregates responses. Several survey
system components were reimplemented according to an updated software architec-
ture, and several new system components were developed. Chief among these is a
web-based administration console that provides a unified access method for several
frequently used functions. Individual console functions are built around an object-
oriented framework that will serve as a basis for the next system design iteration.

Thesis Supervisor: Jonathon Cummings
Title: Assistant Professor

3

4

Acknowledgments

First and foremost, I would like to thank my project and thesis supervisor, Professor

Jonathon Cummings, for the opportunity to work on Project Assessment. He kept me

on task over the course of the project and was always willing to provide encouragement

and objective feedback.

I also would like to thank my academic advisor, Professor Patrick H. Winston,

for a few well-timed words of wisdom. Without his patient advice, I would not have

made it through my years at MIT.

Furthermore, I would like to acknowledge the many outstanding faculty at the

Institute, especially in the department of computer science. This project would not

have been as successful as it was if I had not received such an outstanding education.

I would like to thank my coworkers at the Initiative for Distributed Innovation for

their support, collaboration and positive feedback throughout the project.

Finally, I would like to thank my mother, father and sister for their love and for

always believing in me.

5

6

Contents

1 Introduction 13

1.1 Overview of Project Assessment . 13

1.2 Objectives of the Dynamic Project Assessment System 14

1.3 Evolution of the Online Project Assessment System 15

1.3.1 The O riginal. 15

1.3.2 Supporting Multiple Organizations 17

1.3.3 Multi-part Surveys . 20

1.4 Improvements made by the Dynamic Project Assessment System . . . 21

1.4.1 Offsite Installations . 21

1.4.2 Administrative Tools . 22

1.5 Technical Requirements . 23

1.5.1 Standards Compliance . 23

1.5.2 Backwards Compatibility . 23

1.5.3 Anticipating Future Needs . 24

2 Redesigning the Survey System 27

2.1 Guiding Principles . 27

2.2 Model-View-Control . 28

2.2.1 Introduction to Model-View-Control 29

2.2.2 Application to Survey Page Flow 31

2.2.3 Application to Survey Configuration 32

2.3 Rethinking Modularity . 34

2.3.1 Web Page Design . 34

7

2.3.2 OPAS Modules 35

3 Survey Construction 37

3.1 Overview . 37

3.2 Motivation . 37

3.3 The Survey Administration Console 38

3.3.1 Survey Questions . 38

3.3.2 Survey Sections . 41

3.3.3 Special Question Types . 46

3.3.4 Survey Periods . 47

3.3.5 Survey Settings . 49

3.4 Extending the Console . 51

4 Conclusion 55

4.1 Challenges Overcome . 55

4.2 Lessons Learned.... 57

4.2.1 Collaboration . 57

4.2.2 Time Management . 58

4.2.3 Development vs. Deployment 58

4.3 Future Directions . 58

4.3.1 Web Page Design . 59

4.3.2 Architectural Improvements 59

4.3.3 Open Source Release Work . 60

4.4 Final Words . 61

A Source Code Examples 63

8

35

List of Figures

1-1 Page flow in OPAS . 16

1-2 OPAS page flow with multiple organizations 18

1-3 Page flow in the Dynamic Project Assessment System 21

2-1 Model-View-Control component interactions 29

2-2 Raw access to the data tier vs. unified access via a data object 30

2-3 Hierarchy of View components . 31

2-4 Control flow in the Survey-Submit loop 31

2-5 Sample rows from the settings table. 33

3-1 Survey Administration Console login page 39

3-2 Survey Administration Console main menu 39

3-3 Survey Administration Console question list page 40

3-4 "Edit Question" page for questions not using the question-conf ig table 42

3-5 "Edit Question" page for questions that use the question-conf ig table 43

3-6 Survey Administration Console "Edit Survey" page 44

3-7 Survey Administration Console "Edit Section" page 45

3-8 Sample rows from the general-inf o-questions table. 46

3-9 Selecting a Survey Period . 48

3-10 The table editing GUI in action . 50

9

10

Listings

3.1 Javascript functions used by Table Editor. 52

A. 1 Settings class source code. 63

A.2 Strings table source code. 66

A.3 surveyadmin.AdminPage base class. 68

A.4 surveyadmin. TableEdit extension of surveyadmin.AdminPage. 72

A.5 Administrative page framework: admin-page . php. 78

A.6 Administrative page framework: admin-page-submit.php. 80

11

12

Chapter 1

Introduction

With each passing year, new advances in information technology bring people around

the world closer together. Businesses have embraced this shrinking of the globe with

open arms; multinational corporations provide the ultimate in economies of scale.

Scientific and academic communities have also benefited from more powerful com-

munication tools. As a result, more organizations are bringing together distributed

workgroups, or research and project teams that span multiple geographic locations. [6]

Management scientists have long studied effective organizational structures within

a company or division at a single location, but research on distributed workgroups is

still a relatively young field. One of the primary challenges of working in this space

is the difficulty of collecting raw data. Paper surveys were once the tool of choice

for researchers in this field, but the disadvantages of paper are apparent even when

collecting data on traditional workgroups; these disadvantages are multiplied when

workgroups are not constrained to a single location. The Project Assessment web-

based survey system was developed to address the needs of management scientists

studying distributed workgroups.

1.1 Overview of Project Assessment

The original survey system was developed by Fumiaki Shiraishi for the purpose of

distributing surveys to members of the Cambridge-MIT Institute (CMI). This system,

13

dubbed the Online Project Assessment System (OPAS), allowed Professor Jonathon

Cummings at the Sloan School of Management to design a survey, distribute it to

project members at CMI, aggregate responses, and export the resulting data for

further analysis. [10]

Surveys built using OPAS were intended to function in a manner similar to paper

surveys, but with considerably less hassle. Each page of the web survey corresponds

to a single survey question. Users are able to navigate through the survey pages in

any order, and revisit their answers as many times as necessary. Responses are saved

immediately upon submitting a survey page or when the user logs out. Users can fill

out a partial response, then log in later to complete the survey.

Survey administrators manage the users, projects and survey response data for

CMI using an administrative console written for OPAS. This console provides basic

administrative functions such as: adding and deleting users to and from projects,

sending reminder e-mail to users, and viewing response rates.

The survey web pages are written in PHP, one of the most popular web scripting

languages. All OPAS data are stored in a MySQL database; these data are made

available to the survey system web pages via PHP's built-in library of MySQL func-

tions. [3]

1.2 Objectives of the Dynamic Project Assessment

System

Although OPAS in its original form satisfied the needs of the Cambridge-MIT Insti-

tute, it required several extensions and patchwork fixes as more organizations with

diverse objectives were added to the mix. Over time, old functionality became obso-

lete and new features were added in a haphazard fashion. The primary objective of

the Dynamic Project Assessment System is to provide all of the functionality of the

previous survey system in a reengineered package. In addition, the Dynamic Project

Assessment System aims to achieve the following objectives:

14

1. Better support for web standards. The web pages generated by DPAS are

compliant with the W3C HTML 4.01 and CSS 2.1 standards.

2. A more flexible survey question structure. Survey questions use a more

intuitive and expressive method of configuration.

3. A more user-friendly survey management interface. DPAS provides a

completely redesigned administration console that allows uniform administra-

tion of all organizations participating in the survey.

4. More support for secondary administrators. There are more tools that

allow the offloading of administrative tasks onto managers or HR personnel at

the surveyed organizations.

5. Automated installation and initialization. Many DPAS web pages and

data components automatically initialize themselves to a default state when no

configuration information is found. This behavior provides a useful example

survey for new developers and administrators to build upon, while avoiding

mysterious error messages when the survey configuration is changed or deleted.

1.3 Evolution of the Online Project Assessment

System

The Project Assessment survey system has evolved considerably from its first incar-

nation into the system that is used today. I will first describe several key properties

of the original Project Assessment web application, then I will identify how these

properties have changed, sometimes breaking the assumptions of the original design.

1.3.1 The Original

The original OPAS supported a single, relatively fixed survey; once the content and

appearance of a survey was laid out, it was expected to require minimal maintenance.

15

Feec PjetI
Initializ e survey

Authenticate user Background Info Page

[username,
e

passwordJ] Project leader?

Project Progress

View Aggregate Overview Logout

Quetin fleSurvey Page Summary

Survey q uest io

yes

V Submit Responses More survey n

Figure 1-1: Page flow in OPAS

It was therefore acceptable for the initial setup of a survey to require a significant

amount of time and specialized knowledge of the survey system internals, since it was

not expected that this task would be performed frequently. Though the CMI survey

was expected to solicit responses for several survey periods, the number and types of

questions were not expected to change from one survey period to the next. Ideally

the survey would not change at all over time, so that responses from later periods

could be compared sensibly with data from prior periods to identify statistical trends

and interrelationships.

Although multiple surveys were not explicitly supported, the original Project As-

sessment system allowed for multiple "views" of a survey based on a survey respon-

16

dent's permission level. This was most useful when the survey designers wanted to

show certain classes of users only a subset of the full survey. For example, principal

investigators or project leaders would see the entire survey, project members would

see a slightly smaller subset, and minor contributors or project advisors would only

be asked a handful of questions. Because all survey responses (regardless of view)

were written to the same results table, multiple views as implemented in the original

survey system only made sense if there was a significant overlap between the questions

asked in the various views.

Originally, the Project Assessment software was designed to support only a single

organization: the Cambridge-MIT Institute. As with the survey creation process,

the steps to set up the software for a new organization were not streamlined, since

it was not expected to happen frequently. Modifying the look and feel of an orga-

nization required access to the filesystem of the web server so that new images and

stylesheets could be uploaded. Some per-organization settings were loaded from a

PHP configuration file; editing these settings also required filesystem access.

OPAS provided an administrative console written specifically to manage the CMI

survey. This console allowed CMI administrators to view project member information,

send reminder e-mails, add or delete users, and analyze response rates. New function-

ality was added on a regular basis by writing new modules according to the OPAS

administrative console template system. The various functionalities provided by the

console were implemented by administrative modules, which are written around an

OPAS-specific template system that was created to speed the development of new

survey components.

1.3.2 Supporting Multiple Organizations

The initial success of OPAS at collecting data from CMI project members allowed

Professor Cummings to recruit other organizations to participate as part of Project

Assessment. Distributing surveys to multiple organizations required a website that

could present different surveys with a distinct look and feel depending on which

organization a user belonged to. There were also privacy concerns; a participating

17

Select Proje

Add Project Mem

Authenticate us

[username
password]

Login page

h

tain

se
ntent

ation.

Figure 1-2: OPAS page flow with multiple organizations

organization might not want to be identifiable to Project Assessment users from other

organizations.

Each organization received its own subfolder on the web server. The name of

the subfolder usually reflected an "organization ID" derived from the name of the

organization. For example, the CMI survey is accessible via the URL:

http://www.projectassessment.org/cmi/. The survey for "Company A" might

be located in subfolder http: //projectassessment . org/ca/. In the original OPAS

implementation, this organization-specific subfolder contained the following items:

* images/ Subfolder containing images displayed on survey pages, including a

18

ct Initialize survey

Components whic

appear only in cet
surveys.

ers dynamic table questions

Components who
appearance or co
varies by organiz

or Background Info Page

yes *

17 Project leader? -

.- -- l Logout

Project Progress
... no

......... --- ---.

View Aggregate Overview Verify Responses
Responses ----------------

i RSummary

Question file Survey Page

Survey question yes

web page

i" ubitResonesMore
survey n

header image or company logo, left and right arrows, and a form submit button.

" stylesheet . css CSS stylesheet used to format the survey pages according to

the desires of the particular organization.

" settings.php PHP file containing various configuration options used by the

survey system.

" index.php The login page seen by a user who navigates to an organization-

specific URL.

Survey data for each organization, including the survey questions, user data and

survey responses, were stored in a MySQL database named with the "organization

ID." Certain tables were common to every database. The most important tables were:

* user: Contains information about each user, including username, password and

full name.

* projects: Contains information about each project, including project name,

project leader and start and end dates.

" people: Maps users to projects. A user may be on more than one project; in

this case he or she will have multiple records in this table.

" periods: Lists the start and end dates of survey response periods.

" question-sections: Defines sections of questions and specifies the permission

level required to view each section.

" questions: Defines individual survey questions. Each row corresponds to a

single question, and contains all information required to specify the behavior of

the question.

" results: Contains survey responses. Each row is identified by a user ID number

and a project ID number.

" strings: Defines values for survey text that changes based on the organization.

19

Survey settings are no longer loaded from a PHP file in DPAS; instead, they are

now loaded from a new settings database table. The migration of survey settings

from PHP to a database backend was driven by a desire to provide a unified access

method to all survey-related configuration options.

In the original OPAS, new organizations were not expected to be added often,

so there was no automated "New Organization" wizard provided. Typically, a new

organization was added by performing the following steps:

1. Create a subfolder for the new organization, copying files from an existing or-

ganization.

2. Edit the stylesheet to reflect the desired look and feel of the new organization.

3. Edit the settings file to enable or disable survey behavior according to the desires

of the surveying organization.

4. Copy database tables from an existing organization to a new database.

5. Edit the survey sections and survey questions to include the desired items.

6. Populate the user, projects, and people tables with data provided by the

new organization.

DPAS includes an organization management console that exposes the ability to

create new organizations and reconfigure existing ones via a convenient web interface.

1.3.3 Multi-part Surveys

Two-part survey support has only recently been added to the Project Assessment

system, at the request of one of the participating organizations. For this particular

organization, a second survey page sequence displays if the response for the first part

meets certain conditions. Because multi-part surveys were not part of the problem

domain for the original system, they were added only upon request and implemented

in this limited fashion. As the Project Assessment system gains in popularity, it is

20

Select Project Initialize survey Intermediate Page

Add Projec F Memberf dynamic table questions

Authenticate user Background Inoo Page

yes

/ [username, yes no

password] Projectsurders Multipartsurvey? Summary

Project Progress
na

Login page Logout

View Aggregate Overview Verit y Responses
Responses e i

Question file Survey Page.

Survey question yes

web page

- Submit Responses More survey

Figure 1-3: Page flow in the Dynamic Project Assessment System

more and more likely that there will be other organizations that require support for

multi-part surveys.

1.4 Improvements made by the Dynamic Project

Assessment System

1.4.1 Offsite Installations

Some participating institutions might decide to run a subset of the Project Assess-

ment software on internal servers for security or availability reasons. Because this

arrangement requires more expense in terms of manpower and equipment, we ex-

pect that in most cases organizations will want us to host and administer the survey.

21

In those situations where the Project Assessment system must be deployed offsite,

however, we must have the ability to do so quickly and easily.

Directly participating organizations are only one possible offsite scenario. Ever

since the origin of Project Assessment, Professor Cummings has had the intent to

release the survey system source code and database specifications as an open source

package. Before making the project available to the public, however, the system

required a step-by-step installation process and ancillary documentation. In the past,

there was no fixed, documented process; we simply archived the PHP source code

and exported the SQL database by hand whenever the need arose. DPAS provides

three major improvements upon the old system:

1. A standard README file listing system requirements and installation steps.

2. A survey packaging tool that administrators can use to create exported stan-

dalone versions of surveys they have authored using DPAS.

3. An automatic repackaging tool that generates a current snapshot of PHP source

code and exported SQL data from a MANIFEST file on demand.

1.4.2 Administrative Tools

Managing the multiple organizations participating in Project Assessment had be-

come a challenge in and of itself by the time development on DPAS began. Each

new organization comes with its own administrative overhead in the form of survey

configuration, management of users and projects, bug tracking and implementation

of feature requests. At the time, Project Assessment personnel performed most of

these functions by browsing and modifying MySQL database tables directly using

phpMyAdmin. This strategy required very little effort to implement; once installed,

phpMyAdmin could be used to browse or edit any database table. The primary dis-

advantage of this approach was that it required the ability to generate (or memorize)

several complex SQL statements to perform conceptually simple tasks, like setting a

user's status to "inactive" or changing the current survey period.

22

DPAS provides an administrative console that implements these features and

more. The Survey Administration Console was built in order to provide a single

interface for all of the functions an administrator might need to perform within the

scope of a single organization. The SAC is driven by an object-oriented framework

that is described in more detail in section 3.4. Since Project Assessment is continually

evolving, this framework is designed in a way that encourages the development of new

modules that inherit functionality from existing components.

1.5 Technical Requirements

1.5.1 Standards Compliance

As more and more organizations join Project Assessment, the user base of the sys-

tem will grow considerably. Experience has shown that the technology with which

survey respondents access the internet varies considerably. The best way to ensure

a consistent experience for all users of the survey system is to adhere to established

web standards. In this case, the most important documents are the World Wide Web

Consortium's specifications for HTML 4, CSS 1 and CSS 2.1. [12, 14, 13] Although

different browsers will occasionally render even fully standards-compliant web pages

differently, the W3C specifications provide an excellent target for web development.

1.5.2 Backwards Compatibility

As of May 2005, a total of nine organizations have committed to using the Project

Assessment system to distribute electronic surveys to their members. Although these

organizations publish surveys on their own schedules, at least one survey is active

at any given time. For this reason, active development of the survey system must

maintain continuity for existing organizations as much as possible. Unfortunately this

makes it difficult to enact broad changes or rewrites to the survey code base. Adding

new features rarely causes a problem; as long as they are optional, older surveys can

simply ignore them. Backwards compatibility causes the most difficulty when there

23

is a desire to rewrite the underlying code in order to realign the software architecture

of the system. Often this limitation required us to phase in an architectural change

gradually as manpower allowed. For example, when the new object-oriented table

access methods were developed, the old procedural access methods were left in place

until all dependent code could be updated.

The data architecture of the survey system is similarly resistant to change. Surveys

that have already completed one response cycle are especially tricky, since any changes

to the database structure carry the risk of accidental damage to data from prior

survey responses. Even if data are not damaged directly during an update, old survey

responses may become less useful if the assumptions under which survey data are

gathered have changed significantly.

1.5.3 Anticipating Future Needs

While inventing solutions to existing challenges, we must be sure not to build rigid

systems which will themselves become roadblocks to progress later on. One way to

avoid this pitfall is to use design patterns appropriate to the situation that have

stood the test of time. Another way is to plan carefully and have in mind specific

extensibility requirements from the start.

The Project Assessment surveys already use a modular framework for survey

questions and administrative modules, but that only guarantees a consistent user

experience when viewing questions or administrative pages. There are many other

pages, such as the Overview or Select Project pages, that are not able to be repre-

sented within the modular question framework. Survey pages in DPAS have been

refactored to decouple the PHP and HTML code to the greatest extent possible; this

reorganization should aid future efforts to bring the entire survey page flow into a

modular page hierarchy.

DPAS has also attempted to avoid assuming that an organization will only have

one active survey. It may be that in the future an organization will want to conduct

simultaneous surveys that target different departments, for example. New features

such as the multi-organization administration console and the new style of question

24

configuration have been designed to be adaptable if and when Project Assessment

must support multiple concurrent active surveys.

25

26

Chapter 2

Redesigning the Survey System

The design and implementation phases of the software development cycle are neces-

sarily more constrained on the second iteration than the first.

Section one delineates the guiding principles of the redesign effort.

Section two describes the Model-View-Control design pattern and how it applies

to our survey application.

Section three describes an improvement upon the existing module system for sur-

vey questions and administrator modules.

2.1 Guiding Principles

Less is more. In the world of engineering in general, it is desirable for the solution to

a problem to be of minimal complexity. A simple, streamlined solution is preferable

to a more complicated one for many reasons: it is easier to understand and maintain,

less likely to contain bugs and usually more efficient. Software engineers achieve

minimally complex solutions in a variety of ways, but one primary method is to reuse

components wherever possible. When redesigning the survey system, I attempted to

identify and eliminate instances of duplicated functionality.

Modular solutions allow more complex behaviors. When adding a feature to a

system that supports multiple instances, the developer has a choice as to whether to

27

add the feature to a specific instance or to the system as a whole. In the case of our

survey system, this translates to the choice between adding a feature to a particular

organization's survey, or to the base survey system. In general, the best approach is

to add the feature to the underlying system, and allow it to be turned on or off for

individual instances. There is a combinatorial motivation for this approach: consider

three features A, B and C. Rather than writing eight code paths that implement all

non-trivial combinations of the three features, it makes more sense to implement the

features as separate modules and call a module if and only if its corresponding switch

is "turned on." [7, pp. 163-165] Top-down design techniques can help a developer

achieve this kind of modularity. [4, pp. 143-144, 271-272]

Design for the target audience. Users, administrators and developers all have

different needs. An interface designed for a developer can assume more knowledge

of the underlying system than one designed for an end user. When building new

survey system components and updating existing ones, care was taken to consider

the skills and limitations of an average member of the target audience. In several

cases, Javascript was used to augment existing question types or OPAS pages to

make them more intuitively navigable. [8]

2.2 Model-View-Control

The Model-View-Control (MVC) design pattern was originally created as a logical

framework for developing graphical user interfaces alongside applications written in

the Smalltalk language. In the MVC paradigm, application data, logic and user

interface components are explicitly defined and distinguished. The clear division

of functionality made it easier for Smalltalk developers to build applications with

complex flows of control, multiple views and several data types. [5, 11, 9]

Early dynamic web applications were typically developed as monolithic collections

of documents written in the developer's choice of scripting language or template

system. As web applications grew in scope and complexity, they became harder

28

/

State
query

mL mView Control

Components Components

Request view
update

I

method
invocation Communicate
event user input
notification

Figure 2-1: Model-View-Control component interactions

to design, implement and maintain. A few insightful web developers realized that

providing a modular, open source development framework could simplify all three

tasks. In May 2000 they started the Apache Struts Project [2], which was the first

MVC framework for Java/JSP web applications. Web applications developed using

such a framework became known as "Model 2" applications, by way of contrast with

the more tightly coupled applications written prior to the advent of such frameworks,

which are referred to as "Model 1."

2.2.1 Introduction to Model-View-Control

In an MVC architecture, application data or state is maintained by Model compo-

nents. In an object-oriented language, these components often take the form of classes

29

Change
notification

Model
Components

State
change

Survey web pages Survey web pages

write read read/ write
write

Data object

Database table Database table

Figure 2-2: Raw access to the data tier vs. unified access via a data object

that wrap data representations like streams or arrays. If we apply this concept to

tiered web applications, it makes sense to wrap database queries, tables and records

in object classes. Access to and operations on data then occur over an interface that

abstracts away details of how the information is stored. If this interface is properly

defined, adding support for an additional data source should require at most one new

class. Furthermore, changes in the underlying representation of a data source affect

only the wrapper class.

View components are responsible for interacting directly with the user. This re-

quires displaying data provided by Model components as well as informing Control

components of user inputs. In a web environment, the single most complex component

of the user's interaction with the application is the web browser. The content devel-

oper does not have any direct control over the user's choice of browser, however, so

traditionally the set of View components is restricted to the application components

generating dynamic HTML, as well as CSS stylesheets and any other UI components

such as Java applets or Javascript code blocks. In the Project Assessment code base,

all dynamic HTML is generated by PHP pages.

Control components tie the Model and View components together. In complex web

applications with sets of pages that can be navigated in an arbitrary order, Control

components handle transitions between web pages. Form submission and related

30

Javascript CSS

HTML

Web browser

Figure 2-3: Hierarchy of View components

<question type>.php <question type>ph

request render request receive
question question input validation
HTML HTML validation response

receive control HM s ysT

from prior page FORM

No User input Ys
valid?

redisplay survey page pass control
to next page

Figure 2-4: Control flow in the Survey-Submit loop

updates to Model components might also be the responsibility of Control components.

In MVC frameworks like Struts, Control components describe how incoming HTTP

requests are processed and directed to View components.

2.2.2 Application to Survey Page Flow

In a web application built according to the principles of Model-View-Control, each

incoming request is handled by an Action object. These objects typically contain

parameters that determine how requests are handled and are usually defined in an

XML configuration file by the application developer. Action definitions also specify

where control is forwarded once the request processing code returns a success or

failure. In this way the flow of control through the web application is determined

externally by an explicit configuration, rather than within application components.

The flow of control through the Project Assessment survey system in both of its

31

incarnations (OPAS and DPAS) has been determined by static links between pages.

Inserting a new page after a particular page in the sequence requires modifying that

page's source code. Although DPAS does not fix this problem for survey pages,

the architecture of the Survey Administration Console as described in section 3.4

provides an intermediate step between a completely static control flow strategy and a

fully configurable one. Future work on DPAS as described in section 4.3.2 will include

improvements to the representation of control flow in the survey system.

2.2.3 Application to Survey Configuration

Settings Table

One of the primary goals for the redesigned survey system was to migrate the per-

organization survey settings from a PHP configuration file to a database table. This

would allow consistent access to all aspects of the survey; modifying survey settings

uses the same process as modifying survey pages.

In line with the Model 2 design philosophy, the new settings table is wrapped

with a Settings object. When a new object is instantiated, it checks the organization's

settings table against a built-in list of default (key, value) pairs. If any keys are

missing from the table, it creates a new entry based on the default value for each key.

This automatic repair functionality helps to avoid errors caused by missing survey

setting keys. Since survey settings are not expected to change once a survey has

launched and users are interacting with the system, the Settings object need only be

instantiated once per user session. This avoids unnecessary accesses to the database

and may improve the scalability of the survey system.

There are three access methods for survey settings, depending on whether the

client is requesting a string, a boolean value or a URL. Although all values are stored

in the database as strings, the boolean and URL access methods provide some pre-

processing before returning values from the database. Settings. getFlag ($key) re-

turns true if and only if the value stored in the database is string-equal to "true".

Settings. getURL ($key) returns the value from the database, prepended with the

32

key value description

orgname default The full name of the organization.

requires-verify false Whether this org requires users to verify their responses.

periodID I ID of the current period of the survey.

headerimage images/header.gif Image to use on the page header.

frontpageimage images/header.gif Image to use for the front page.

stylesheet stylesheet.css Stylesheet to use for this survey.

showoverview true Whether this org's surveys should display the Overview page.

show-project-members false Whether this org's surveys should display the Project Members
page.

allowinactiveusers false Allow inactive users via userinactives table.

comments with-summary false Whether the summary page should show comments for each page.

Figure 2-5: Sample rows from the settings table.

current organization ID. These specialized access methods allow the client of the Set-

tings object to look up a setting without having to interact with the settings table

via SQL statements, check for errors, and convert the resulting value.

The Settings object provides a mutator that allows the caller to provide the value

for a particular setting without worrying about whether that setting already exists in

the table. Settings. set ($key, $value) will automatically check for the existence

of an entry for $key, using an SQL INSERT if the value does not exist and an SQL

UPDATE if it does.

Strings Table

Due to the varying requirements of the organizations participating in the Project As-

sessment surveys, many strings displayed on survey pages must be configurable on a

per-organization basis. To provide for this functionality, there exists a strings table

for each organization that stores strings by key. In order to simplify access to this

table, it was wrapped in a Strings class similar in functionality to the Settings class

above. The Strings class, however, provides only a single access method and no mu-

tator. Modifications to the strings table are expected to be performed manually, so

no programmatic mutator is required. The single access method Strings . get ($key)

checks the value associated with $key for variable names (indicated with $) and in-

33

terpolates the string through an eval () if any are found.

2.3 Rethinking Modularity

The Model-View-Control pattern and its applicability to the design of web applica-

tions has demonstrated that modularity is an important tool when developing complex

systems. The following sections explore the application of modular design principles

to existing elements of the survey system.

2.3.1 Web Page Design

HTML and CSS are two basic standards that underpin all web sites, whether static

or dynamic. Although HTML was used to represent both form and content during

the early days of the World Wide Web, the World Wide Web Consortium (W3C),

an international standards organization, has since developed the Cascading Style

Sheet (CSS) specification as a richer, more flexible method of describing the aesthetic

attributes of a web page. Currently, the W3C recommends that to the fullest extent

possible, HTML be used to encapsulate a page's content, and CSS be used to describe

its appearance to the user.

Properly factoring a web site into mutually independent HTML and CSS docu-

ments is challenging, but has immediate benefits. As part of the Project Assessment

survey system, survey pages have a "Printer Friendly" view that disables form input

elements and converts the page into a portrait orientation for easy printing. In the

ideal case, switching between the "Printer View" and "Normal View" would require

nothing more than switching the CSS stylesheet used to style the page. The original

survey web site used HTML attributes as the primary method used to format survey

pages. As an intermediate step, nearly all HTML-based formatting has been replaced

by inline CSS via the STYLE attribute.

34

2.3.2 OPAS Modules

OPAS survey questions were initially implemented using a module system whereby

the PHP filename of a survey question was used to locate question-specific functions

within a global namespace. Questions supplied four primary methods:

<filename>_showo, <filename>_summary(, <fi1ename>_submit_tag() and

<f ilename>_handle (. OPAS administrator modules written for the CMI adminis-

tration console used a similar set of methods: <f ilename>-title 0,

<f ilename>_navigat ion(, <f ilename>-update () and <f ilename>_showo. These

module systems made it easy to write new question types and administrator modules,

but suffered a major pitfall: if a survey developer wanted two pages that displayed

slightly different behavior, there were two options. First, the original question type

could be copied to a new file, the function names changed, and the source code slightly

modified. This has the benefit of keeping both resulting question types relatively sim-

ple, but at the expense of considerable code duplication and double the maintenance.

Another option would be to add a switch to the original question type, allowing for

the selection of one behavior or the other. This solution avoids code duplication but

requires more effort to implement.

Those familiar with object-oriented languages will know that this problem has al-

ready been solved by object hierarchies. In an object-oriented system, the developer

would add a new question type by extending a base question type and writing new

code only for behavior that differs from the base. Each page in the Survey Adminis-

tration Console is implemented by a PHP subclass of surveyadmin.AdminPage, and

in the future survey pages will also be adapted to an object-oriented architecture.

35

36

Chapter 3

Survey Construction

3.1 Overview

This chapter describes a new web-based Survey Administration Console (SAC). The

goal of the SAC is to drastically reduce the time Project Assessment personnel spend

designing and configuring a survey.

Section two describes the motivaton for designing and implementing the SAC.

Section three describes the capabilities of the console itself.

The final section describes the software architecture of the console, and explains

how additional functionality can be implemented by building on existing components.

3.2 Motivation

Ever since OPAS was developed, constructing a survey required in-depth knowledge of

the survey source code. Since each survey question type was implemented differently,

the format of an entry in the questions table depended heavily upon which question

type was being configured. Some question types required more configuration than

others, so the finite fields of the questions table were forced to don different meanings

when used with different questions. Adding a question to an existing survey by

inserting a questions table row required either reading the source code or finding an

example to build upon.

37

Building survey sections was slightly easier, since the names of fields in the

question-sections table closely reflect their actual meanings. Unfortunately the

process was still not very user-friendly, since the questions that belong to a par-

ticular section are specified by question number. Survey administrators editing the

question-sections table had to flip back and forth between it and the questions

table in order to resolve question number cross-references.

Although once surveys are finalized and launched they typically require only mini-

mal changes, experience with prior surveying organizations has shown empirically that

surveys undergo several revisions as we prepare them for the customer. If Project

Assessment ever added more than two new organizations at a time, the necessary cy-

cles of revision combined with omnipresent maintenance work would quickly become

too much for one person to handle. In short, we desperately needed a tool that made

the process of setting up a survey easy and intuitive.

3.3 The Survey Administration Console

Survey administrators begin using the SAC by logging in with a username, password,

and organization ID. The login page then searches for a record with the specified

username and password in the administrators table in the database named by the

organization ID. Different organizations can therefore have different administrators;

although for now all survey edits are performed by Project Assessment staff, this

functionality will be useful if any part of the survey design process is offloaded onto

external administrators.

Upon a successful login, the user is directed to the Main Menu. All SAC func-

tionality is available from this menu.

3.3.1 Survey Questions

Selecting "List and Configure Survey Questions" from the Main Menu will bring the

user to a page listing questions by question number, question title and question type.

This view is very similar to examining the questions database table directly, but

38

Survey Administration Login

Username: |-Password: [

Organization ID:

Login
pg

Figure 3-1: Survey Administration Console login page

Main Menu
admin [Logout]

Select an option below.

Figure 3-2: Survey Administration Console main menu

39

Test

View and Edit Survey Sections

List and Configure Survey Questions

Edit Background Information Questions

Edit General Information Questions

Edit Survey Settings

Test

List Questions

Click on a question to edit.

Question Title
General Information
Work Locations and Communication
Technologies
Contributors Within Project
Contributors Outside Project
Contributor Information
Interaction Network
Member Coordination
Communication Quality
Project Characteristics
Project Characteristics

Question Title
. .

Question Ty
generalinfo

allocation

mnypersonnel
my-personnel
selmultimatrix
multimatrix
multimatrix
multimatrix
radio
radio

Figure 3-3: Survey Administration Console question list page

40

1

3

100
101
701;
702
703
704:
801
802

pe
Delete

Delete

Delete

Delete

Delete

Delete

Delete

Delete

DeleteDelete

Question Type
Add

I -

with a less cluttered layout and the addition of user-friendly features. From this page

one can easily add a question by filling out the input fields at the bottom of the

page, or delete a question by clicking on the corresponding "Delete" button. Clicking

on a question title selects a question for editing and forwards the user to the "Edit

Question" page. Adding a question will create a new row in the questions table and

then forward the user to the "Edit Question" page.

The appearance of the "Edit Question" page differs depending on whether the

question being edited supports the new type of question configuration or not. If it

does not, the page shows editable fields corresponding to the Label, Message, extra,

question-title, f ilename, sql-extra and comment fields from the questions ta-

ble. Editing these fields is analogous to modifying the database table directly, but the

user is given the additional options of saving the modified values as a new question

number, or previewing the question page as it will appear to people taking the survey.

If the question type supports the new style of question configuration, the only di-

rectly editable fields from the questions table are Label, question-title, f ile-name

and comment. In lieu of the remaining fields, a table of configuration items and

their values is presented to the user. Configuration items are loaded by selecting all

rows from the question-config table corresponding to the current question num-

ber. The display format of each configuration item depends on its declared type in

the question-conf ig table. Boolean values are represented as a pair of True/False

radio buttons. Text values are rendered as a text area. Lists display as a vertical

column of text boxes. Table values appear as two-dimensional tables. By allowing for

an arbitrary number of configuration items per question, displaying values in intu-

itively understandable formats and showing the user a preview of the question page,

we simplify considerably the task of configuring a question according to the desired

specifications.

3.3.2 Survey Sections

Selecting "View and Edit Survey Sections" from the Main Menu brings the user to

a page listing survey sections. This page loads the fields sectionID, permission,

41

Test

Edit Survey

Question Title
Question type
(file namne)
Results row entry
Page comment

Message

Extra settings

Extra SQL

Editing question number 1
General Information

general-info

-geninformation

IPlease provide general information about your partici
lGeneral Information

Show/Hide Preview]

Figure 3-4: "Edit Question" page for questions not using the question-conf ig table

42

.... -.-

.......... .

Test

Edit Survey

Question Title
Question type
(file name)_
Results row entry
Page comment

Editing question number 3
Work Locations and Communication Technologies

allocation

jalocation

IPlease estimate the percentage of time, during the pr

Configuration Value
item

Eating these items A Riding these items

±aIJ Apples M11 Bicycle
I&1J Bananas i Tricycle

questions .I Other M Car
A Other

Add Delete Add Delete

Show/Hide Preview

Figure 3-5: "Edit Question" page for questions that use the question.conf ig table

43

Test

Edit Survey

Click on a section or question to edit.

Sections with permission level I

Section Title Questions
General Information

UN Project Contributors

MM Contributor Informatio

N Project Characteristics

1 General Information
100. Contributors Within Project
101 Contributors Outside Project

701 Contributor Information
702 Interaction Network
703, Member Coordination
704, Communication Quality
801 Project Characteristics

Sections with permission level 2

Section Title
Delete o General Information ...

Delete EM Project Contributors

Delete MM Contributor Information

Delete M Project Characteristics

Add Section I

Questions
1 General Information

100 Contributors Within Project
101 Contributors Outside Project

701 Contributor Information
702 Interaction Network
703 Member Coordination
7041 Communication Quality
801 Project Characteristics

44

Delete

Delete

Delete

Delete

Add Section

Figure 3-6: Survey Administration Console "Edit Survey" page

Test

Edit Survey

sectionn To what extent did contributors interact and coordinate work in the projec
Description

Title Type

M 701 Contributor Information selmultimatrix Delete

Q s n:702 Interaction Network multimatrix Delete
Questions

tAl 703 Member Coordination multimatrix Delete

704 Communication Quality multimatrix Delete

Add Select a question to add -

Save and Return to Edit Surveyj

Figure 3-7: Survey Administration Console "Edit Section" page

questions and sectionTitle from the question-sections table. The sections are

first grouped by permission, then ordered by sectionlD before being displayed to the

user. For each section, the page displays: the section title, the questions contained by

the section (question number and title), a delete button and reordering buttons. For

each permission level, there is an "Add Section" button that can be used to create

an empty survey section with the specified name.

Clicking on a question number or question title will bring the user to a question

editing page as described above. Clicking on the "Delete" button deletes the corre-

sponding table row from question-sections. Clicking on a reordering button will

move a section up or down by swapping its sectionlD with the section immediately

before or after it in the table. Because the sectionlD is used only for ordering and

never for selecting specific survey sections, we have hidden the actual sectionlD values

and rely instead on a visual ordering of the rows.

Clicking on a section title sends the user to the "Edit Section" page. This page

shows editable text boxes corresponding to the section title and section description.

Questions contained by the section are displayed in the order they appear in the

45

Editing Section 3

Contributor InformationSection Title
... 11.111- -- 11 -1-1- 1.

r pemssion typ-c tidle default value display resutf d reut-tabk required,

text $project['projectnamel $project['projectname'] $project['projectname'I projectname results false

Submission
2 1 text Date date("j F Y") date("j F Y) false

(Today)

1 text Project $project[MrTLeader' $project[MrTLeader'] $ojectUMfLeader'] MITLeader results false
Manager _____________ _________

Figure 3-8: Sample rows from the general-inf o-questions table.

survey. The question number, question title and type of question are displayed for

clarity. Questions can be reordered using iconic buttons in the same way as sur-

vey sections. A question can be removed from the section by using the appropriate

"Delete" button. A pulldown at the bottom of the table of questions allows the user

to add a question type from the list of available questions. When the user clicks on

"Save and Return to Edit Survey," the form values on the page are used to update

the corresponding row in the question-sections table.

3.3.3 Special Question Types

There are two survey pages that load their format from special database tables.

The "Background Information" page (person-inf o. php) and the "General Informa-

tion" question type (general-inf o.php) load from the person-inf o-questions and

general-inf o-questions tables, respectively. These two pages are special because

every item displayed by either page is configured by one table row. The function of

the various fields is described below:

" rank: Ordinal value. Items are ordered by rank before being displayed.

* permission: Item is shown only if permission of user is equal to this value.

" type: Determines the way the item is visualized. Valid values are: input, select,

text, blank, monthyear.

* title: This text is shown as a label to the left of the actual text or input

element.

46

" default: If no value is found with which to populate this text field or input

element, use this value by default.

" value: Use this value or sequence of values for the value attribute of the HTML

input element.

" display: Use this value or sequence of values to determine what the user sees.

* result-field: When this question is submitted, write the user-determined

value to this field.

" result-table: When this question is submitted, write the user-determined

value to this table.

* required: This boolean condition must evaluate to f alse in order to proceed

to the next page. If it is optional for users to provide a value for this question,

this field may simply contain false.

The values of these fields can be a mix of HTML, PHP and plain text. Due to

their complex format, these tables are only updated by Project Assessment adminis-

trators who are familiar with the source code used to render these pages. As a result,

the Survey Administration Console provides the "Special Question Types" page that

allows the editing of these tables directly, without any simplifications. This function-

ality is implemented by the surveyadmirn. TableEdit class, which exposes any database

table to the user in the form of an interactive spreadsheet. This class is described

further in section 3.3.5.

3.3.4 Survey Periods

Once a survey has been created, it can be distributed once or for multiple survey

periods. Our hope is that most organizations will choose to continue with a survey

over several periods so that IDI researchers can analyze time-varying data and discover

performance trends. By default, surveys are initialized with a single period. Once all

47

Survey Period

Choose a survey period.

$ Spring 2004 Nov 01, 2003 - Apr 30, 2004

r Fall 2004 May 01, 2004 - Oct 31, 2004

r Spring 2005 Nov 01, 2004 - Apr 30, 2005

Add Jan -01 1990j Jan7 j 01 1990#

Save and Continue

Figure 3-9: Selecting a Survey Period

results have been gathered from the first period, survey administrators can choose to

create a second period and select it as active.

In the past, Project Assessment personnel have had to perform the transition

from one period to the next by hand. There are several steps involved, and failing to

perform any of them can cause problems that range from subtle to catastrophic. The

"Survey Periods" page automates these steps as much as possible. This page loads

table rows from the periods table and allows the user to select an existing period or

create a new one. When creating a new period to use as the active one, the following

steps must be performed:

1. Create a new row in the periods table with a period ID, description, start date

and end date.

2. Append the new period ID to all rows in people that contain the current period

ID in the periods field.

3. Copy all rows in the projects table with periodID set to the current period

to new rows with periodID set to the new period.

4. Update all rows in the user table where periodID is equal to the current period;

set it to the new period.

48

5. Set the value of the periodID setting to the new period ID.

If instead of creating a new period, the user wants to revert to an existing period,

we can ignore all steps except the last two. Records in the people, projects and

periods table already exist, so only the user table and periodID setting need to be

changed.

3.3.5 Survey Settings

Survey settings in DPAS are stored in a settings database table as described in

section 2.2.3. Since the format of the settings table is relatively simple, and users

are only expected to need to edit one column (value), it makes sense to allow the

table to be edited directly. As with the Background Information and General In-

formation tables mentioned above, survey settings are edited by using the generic

surveyadmin. TableEdit class.

The surveyadmin. TableEdit class is an example of an extension to surveyad-

min.AdminPage that uses a combination of CSS and Javascript to create a more

powerful user interface. Upon page load, TableEdit uses the value of the table pa-

rameter from the HTTP GET request as the name of the database table to display. If

the start parameter is set, its value is used as the index of the first row to display (as

an argument to the SQL LIMIT command). Once the proper rows are loaded from the

database table, they are rendered as a two-dimensional table using standard HTML.

Values which overflow the visible table cell can be viewed by hovering the mouse over

the cell; the complete value will appear as a tooltip on modern web browsers.

When the user clicks on a table cell, a Javascript function doEdit (cellID) is

used to make visible an HTML text area and align it with the top left corner of the

selected cell. The text area is populated with the current value of the cell and selected

for input focus. Once the user moves focus away from the text area (either by using

the Tab key or by clicking outside of the area), the Javascript function doHide() is

called to hide the text area and write the edited value back to the table cell. Cells

whose values have been modified are highlighted to show that they differ from the

49

Test

Table Editor: settings

key

orgname
requires-verify
periodID
pagewidth
printerpage-width
departments
locations categorie

categorie r

headerim
frontpago

defau
false
1
839
639
dO;dl

I.11

styleshee
showovd.
showproject-members false

showprojectprogress false

allow_inactiveusers false
commentswithsummary false
visitedcolor #003
color-palette #E5E
imagemap
tutorial-link

value description

it The full name of the organi2
Whether this org requires u,
ID of the current period of t
Desired width of survey wet
Desired width of survey wet
Semicolon-separated list of

Semicolon-separated list of
Semicolon-separated list of

Image to use on the page h

Image to use for the front p
Stylesheet to use for this su
Whether this org's surveys
Whether this org's surveys
Whether this org's surveys
Allow inactive users via usei,
Whether the summary page

OfO This color is used for the tat

AF5 Colors used to render page
Per-organization image map
Link to the tutorial page (if i

View next 20 rows -- >

Commit changes Reset

Figure 3-10: The table editing GUI in action

50

s

values currently stored in the database. The user can click "Commit changes" to

write modified values back to the database, or "Reset" to discard changes and refresh

the table from the database.

3.4 Extending the Console

Each Survey Administration Console page is implemented as a single class that ex-

tends the surveyadmin.AdminPage base class. This base class provides two types of

methods that can be used by dependent classes: stub methods that subclasses should

implement in order to deliver specialized behavior, and basic AdminPage methods

that subclasses should have no reason to reimplement. First, let us examine the

methods that do not require implementation by subclasses. For the purpose of clar-

ity I will use a pseudo-PHP syntax that makes types explicit.

* AdminPage. initialize (NavTree $t) This method registers the current page

or class with the provided navigational tree object.

* AdminPage .getPageInf o (String $param) If $paran is specified, this method

examines the current object for an entry with key $param in the private pageinf o

array, and returns the value if found or the empty string if not. If $param is

not specified, it returns the entire pageinf o array.

" AdminPage . getUserBar () This method returns an HTML string that is shown

at the top of the page under the title bar. By default it displays the user's name

and a link that the user can click to log out of the console.

" AdminPage.showHeader(String $headerURL, String $returnlink)

Renders the header section of this page given a header image URL and a navi-

gational link allowing the user to return to the previous page. The page title is

loaded from the 'name' entry in the private pageinf o array.

" AdminPage. showFooter () Renders the footer section of this page. In its current

51

Listing 3.1: Javascript functions used by Table Editor.

function doEdit (iRow, sKey) {
/ retrieve table cell with ID = table_<iRow>_<sKey>
cellID = 'table-'+iRow+'-'+sKey;

cell = document . getElementByld(cellID)
// get reference to cell editor
editing = document.getElementById('editing');
editing . value = cellID ;

editor = document . getElementById ('editpad ')

// set value of cell editor to value of table cell
editor . value = cell . lastChild . value;

// make cell editor visible
editor. style. display = '';
7/ get abolute position of cell using getLeft() and getTop()

7/ position cell editor using CSS absolute positioning

editor. style. left = getLeft(cell);
editor.style.top = getTop(cell);

// set input focus to cell editor
editor . focus ()

}

function doHide() {
// get reference to cell editor
editor = document. getElementById ('editpad ')
editing document.getElementById('editing');
// determine the table cell currently being edited
cell = document. getElementById(editing. value);
// if value differs from original:
if (cell .lastChild .value != editor.value) {

// save value of editor back to table cell
cell . first Child . data = editor . value;

cell .lastChild .value = editor .value;

// highlight cell using CSS
cell . style . backgroundColor = '#E5EAF5'

// call doSetModified(cellID)
doSetModified (editing . value);

}
/ hide cell editor
editor. style. display = 'none';

}

52

incarnation, the Survey Administration Console does not use a footer section;

this method is a stub.

e AdminPage. linkParams (String $url, Array $value) This utility method as-

sumes that $value is an associative array. It iterates through the key-value

pairs, attaches them to the URL in the form of HTTP GET parameters and

returns the resulting string.

The above methods should very rarely require extension, in contrast with the

following stub methods that should always be implemented by subclasses:

* [Constructor] (String $orgID) Every subclass should provide a constructor

that calls parent: :AdminPage($orgID) and then sets appropriate values in

the associative array $this->pageinf o. Initialization that does not depend on

HTTP GET or POST parameters or PHP session variables should also occur

here.

* AdminPage.checkDisplay(Array $get, Array $post, Array $session)

This method should inspect the HTTP GET parameters, POST values and

PHP session associative array, and should return true if and only if the prereq-

uisite conditions for displaying this page are met.

" AdminPage. get Javascript (This function should return all of the Javascript

code required by this class as a string. The Javascript code should NOT be

enclosed by <script></script> tags.

" AdminPage. getCSS () This function should return any page-specific CSS styling.

This CSS should NOT be enclosed by <style></style> tags.

* AdminPage.showContent(Array $get, Array $post, Array $messages)

This method, in conjunction with getJavascript () and getCSS O, should per-

form most of the "heavy lifting" of the class. It should render HTML directly

(e.g. by using echo "<html>";) based on the HTTP GET and POST param-

eters provided.

53

* AdminPage.validate(Array $get, Array $post) This method should per-

form validation on the contents of any input elements generated by the

showContent () method. Failed validation should be indicated by returning

an array containing one or more messages to display to the user. Successful

validation should be indicated by returning an array with zero elements. If a

subclass does not need to perform any validation, it can simply rely on the

default AdminPage implementation.

" AdminPage. submit ($get, $post) This method can assume that input valida-

tion has succeeded. It should perform any updates to system state implied by

user input.

Each subclass of surveyadmin.AdminPage represents a web page, but we still need

some support logic to control page display and handle page transitions. For that

reason, the PHP pages admin-page. php and admin-page-submit. php implement a

basic event loop that displays an administrative page to the user, then handles user

input and forwards control to the next page.

54

Chapter 4

Conclusion

Working on the Project Assessment survey system was a unique and interesting chal-

lenge. As an undergraduate and graduate student of computer science at MIT, much

of my coursework has focused on the design and implementation of software systems

to solve well-defined problems. Most of the time the system in question is subject to

constraints in the form of environmental limitations (operating system, hardware ca-

pabilities) or user specifications. In this case, I was given an existing system to work

on, with its own assumptions and design decisions. At this point there are basically

two options for the developer. One is to design a new solution from scratch around

the current and anticipated set of requirements, and then reuse as much as possible

from the old system. The other, more realistic path is to consider the properties of

the existing system as restrictions in and of themselves, and redesign or reimplement

within those restrictions as well as possible. This second option is really the only op-

tion when the existing system is in daily use, as is the case with Project Assessment.

The following section describes some of the challenges I experienced over the course

of the project, and some of the solutions I applied.

4.1 Challenges Overcome

As with all engineering projects, there were both technical and non-technical chal-

lenges to overcome. The first challenge I encountered when I signed on to the project

55

was the task of overcoming the steep learning curve of the Project Assessment sys-

tem. When I joined the project, the most comprehensive documentation available

was Fumiaki's thesis. By the time I started working, however, it had been over half a

year since that document was written, and there had been several minor and major

changes in the interim. In addition, due to the rapid development cycle of the project,

the source code was rather sparsely commented. Finally, though I had had experience

with other scripting languages such as Perl, I had never performed any programming

in PHP. All of these factors made the first few weeks rather intimidating, but with

help and guidance from the other Project Assessment developers, I was able to get up

to speed fairly quickly. I have done my best to streamline the experience for the next

Project Assessment developer by adding inline comments where possible, external

documentation where necessary, and by pruning obsolete or extraneous source code

anywhere it appears.

PHP is a unique language to use for web development because it resembles both

a traditional programming language as well as a templated HTML generation lan-

guage. For example, arbitrary external documents can be included using the PHP

include() or include-once() functions to provide additional functionality or to

generate content directly. This increased flexibility comes at the cost of code not

knowing the context in which it is being executed; relative pathnames become a

problem if included source code resides in a different directory, for example. This

was particularly a problem when writing object-oriented code, since PHP class files

must be included by filename rather than by class name. I solved this problem by

unifying access to classes via class-utils.php, which was at a fixed path relative

to all class source code files. Object-oriented source code now only needs to know

the path to class-utils.php rather than to each individual class file. Classes can

then be included by using the provided method include-class (String $classname,

where $classname is a period-delimited class name like surveyadmin.AdminPage.

Class name segments denote packages, which are mapped directly onto filesystem

directories. For example, the definition of surveyadmin.AdminPage is located in

/classes/surveyadmin/AdminPage.php in the root directory of the Project Assess-

56

ment web server.

Object-oriented design principles were used to build persistent data objects that

simplify access to system state. By abstracting away the details of how survey settings

and text strings are stored and retrieved, I have managed to simplify survey code that

requires knowledge of the survey settings and strings. A second consequence is that it

is now possible to write a drop-in replacement for the survey settings implementation

that uses a different storage medium. If we ever wanted to revert to a file-based

settings repository, the Settings class can be rewritten without affecting the rest of

the survey code at all.

I also succeeded at writing an object-oriented page framework for the Survey

Administration Console. It is my hope that this model can be applied to the existing

survey pages as well. By relying on base classes to provide common code and requiring

subclasses to implement only specific functionality, the size of the overall code base

can be reduced, and the code for each individual page can be much simpler.

4.2 Lessons Learned

Over the course of the project, I have learned several important lessons about software

development in a cooperative environment. These lessons are recorded here so that

future Project Assessment developers may glean some benefit from my experiences.

4.2.1 Collaboration

One of the most exciting aspects of working on the Dynamic Project Assessment

System was the fact that it was part of a much larger picture; DPAS is merely one

component of the overall Initiative for Distributed Innovation. Professor Cummings

held IDI lunch meetings every two weeks over the course of the spring semester

so that all of the participants could see how our individual pieces interdepend and

interact. These meetings were crucial because they allowed us to brainstorm together

and rectify mismatched expectations or assumptions. They were also a source of

motivation, since I was able to see how my work played a role in the larger system.

57

4.2.2 Time Management

Considering the busy schedule of the project and the limited time available, I learned

very quickly how to manage my time effectively. On average, I would spend about

two-thirds of each day on features, bug fixes or modifications directly or indirectly

related to active surveying organizations. I spent the remainder of the time cleaning

up the project source code, designing the Survey Administration Console, writing

documentation or redesigning survey system components.

4.2.3 Development vs. Deployment

When working on a system that is deployed in a production environment, it is very

important that the system remain stable and available from the perspective of its

users. To that end, it is most desirable for changes to the codebase to propagate

atomically and invisibly to the production environment. Although there is currently

no way for us to guarantee atomic, transactional updates to the server, committing

changes to any particular file typically takes only a few seconds. In spite of the very

limited impact of any single update on the availability of the Project Assessment

server, most updates occur when the primary users of the survey system (researchers

in the United States and United Kingdom) are least likely to be using it. Large,

complex or fundamental updates are performed over the weekend, since in these

cases the likelihood of error is higher and bugs can be fixed performed before they

negatively affect the experience of any users.

4.3 Future Directions

Project Assessment continues to evolve on a daily basis. At the time of writing, we are

preparing to launch an offsite installation of the survey system at a new organization.

There are several new features in the pipeline that will need to be implemented before

the final launch; these new features will in turn make the system more powerful and

(hopefully) attract additional organizations. The sections below describe a few of the

58

short- and long-term goals for the Project Assessment system.

4.3.1 Web Page Design

Although significant progress has been made in migrating web page style information

to CSS, there is more to be done. In the eventual ideal case, in-line styling via the

STYLE attribute would be eliminated completely. This is unlikely due to the constantly

evolving look of the site, but it should be possible to enable multiple media-dependent

views via stylesheets. Once this has been accomplished for one medium, others should

follow with a minimum of effort. The first media-specific stylesheet developed should

be the one that implements the "Printer Mode" view of the survey pages.

4.3.2 Architectural Improvements

I envision several architectural enhancements to the Project Assessment system that

will make the system much easier to maintain and extend. First, survey pages should

be rewritten according to an object-oriented framework similar to the one used by

the Survey Administration Console. This will immediately reduce the amount of

work required to maintain the survey pages, since in the current system functionality

is duplicated from page to page. Changing the behavior of one item common to

multiple survey pages currently requires changing all copies of the item. Bugs can

arise when a copy slips through the cracks.

The benefits derived from an object hierarchy will be magnified if HTML genera-

tion is performed using PHP's implementation of the W3C Document Object Model

specification. Currently, subclasses in the object hierarchy of the Survey Adminis-

tration Console that want to reimplement HTML-generating methods must provide

HTML that completely replaces that generated by the parent methods. If DOM

trees were used to represent HTML, subclass methods could retrieve HTML from the

parent class in mutable form, perform minor changes and then return the resulting

HTML for display. Utilizing PHP's DOM implementation in a portable manner will

require upgrading to PHP 5.

59

Although survey settings and strings have been encapsulated in data objects, most

other operations on survey data are performed with raw SQL queries. In some cases

the SQL syntax is very intuitive, but when selecting from multiple tables or using

multiple conditions, SQL can quickly become unreadable. Using SQL queries directly

also creates a strong dependence on the existing database schema. This can make

redesigning the data architecture very painful, even if the goals of the system are no

longer reflected by the current structure of the database. Limiting the number of

code paths that access the database directly by encapsulating those functions in data

objects will therefore make the overall system more amenable to change.

In the current implementation, the flow of control from one survey page to the

next is internalized in the source code of the survey pages themselves. Although this

is convenient from the perspective of the programmer of a particular survey page,

it makes the overall page flow more difficult to discern. The Project Assessment

survey flow has become complex enough that it would be better represented in a form

external to the survey page source code. By no small coincidence, an external page

flow definition is one property common among all web development frameworks based

on the Model-View-Control paradigm. As the Project Assessment system becomes

more and more complex, the logical compartmentalization of model, view and control

components provided (and required) by a MVC framework becomes more and more

enticing. In the long term, the Project Assessment system should be adapted to run

on top of a framework like Mojavi, php.MVC or Studs [1].

4.3.3 Open Source Release Work

In order for the Project Assessment system to be usable as an open-source survey

distribution platform, much more documentation needs to be written. In particular,

we need:

1. A step-by-step guide to writing new survey question types. I learned by studying

examples, but I could have saved considerable time had there existed adequate

documentation.

60

2. A guide to configuring a survey's look and feel. This primarily involves writing

a CSS stylesheet, writing the HTML for a page header, and choosing a logo

image.

3. A document listing design decisions and the reasoning behind them. This thesis

should suffice for the case of the Dynamic Project Assessment System, but the

primary document should be kept up to date as the project moves forward.

I anticipate that I will write draft versions of all three docments before I hand

development over to the next Project Assessment development lead.

4.4 Final Words

This project, in a sense, has been a microcosm of everything I've ever learned about

software engineering. All of the classic programming obstacles and system design

impediments were present, but I have found that my education here has equipped me

well to handle the challenges involved. In the end, I feel fortunate to have had the

opportunity to work on a system that will not languish in electronic limbo, but will

be actively used for some time to come.

61

62

Appendix A

Source Code Examples

Listing A. 1: Settings class source code.

/* Settings.php

Created 03/07/05 by birenroy

Loads settings from the "settings" table in this org database.

*7

Settings {
$org = ""
$ary = array);
$connection ;

// Constructor

function Settings($orgID) {
$this->org = $orgID;
$this ->connection = mysql-connect('localhost
mysql-selectdb ($this ->org, $this ->connection
$this ->loadSettings ()

}

// Returns an array of default values. These va

/7 a value does not already exist in the 'setti

/7 this organization. See checkSettings() for m
function getDefaults () {

$defaults = array(
// key => array(default value, description)

'root', '');

lues

ngs

ore

return $defaults

63

class
var

var

var

ifare used

table for

details.

I

// Returns the value of the

function get ($key) {
if (array-key-exists($key,

return $this ->ary [$key]

else

return "";

}

setting '$key

$this->ary))

// Returns the boolean value of the setting '$key

function getFlag($key) {
if (array -key-exists ($key, $this->ary))

return !strcmp(strtolower ($this ->ary [$key]) , "true");

else
return false

I

// Returns a setting as an URL with base "$SESSION['org '1/"
function getURL($key) {

return $this->org "/" $this->get($key);

I

/7 Sets the value for a particular key, with an optional

description.

function set ($key, $value $description="") {
$c = $this ->connection ;

if (array-key.exists ($key, $this->ary)) {
$dsql = !empty($description) ? ", description='{

$description } " : "" ;

$sql = "UPDATE settings SET value='{$value}' {$dsql} WHERE

'key'='{$key}

} else {
$sql = "INSERT INTO settings VALUES ('{$key}', '{$value}',

'{ $description }') ;"
}
mysqLquery ($s ql ,$c);

}

/7 Checks for the existence of a 'settings ' table for

/7 organization. Creates one if it doesn 't exist yet.

/7 is no row corresponding to a particular key, one is

7/ from the default values provided by getDefaults).

function checkSettings () {
$c = $this ->connection ;

this
If there
created

64

$sql = "CREATE TABLE IF NOT EXISTS 'settings ' (
'key' varchar (64) NOT NULL,
' value ' text NOT NULL,
'description ' text NOT NULL,

KEY 'key' ('key')
) TYPE-MyISAM COMVENT='Survey set t in gs.'";
mysql-query($sql , $c)

or die("Unable to create settings table!: ".$sql."\n".

mysql-error ($c)) ;
$sql = "SELECT 'key' FROM settings";

$res mysql-query($sql , $c)

or die("Query failed !: ". $sql);

$shouldexist $this ->getDefaults () ;
while ($row mysql-fetch-assoc($res)) {

unset($shouldexist [$row['key'1])

}
foreach ($shouldexist as $key => $row) {

$value = addslashes ($row [0]) ;
$description = addslashes($row[1])

$sql = "INSERT INTO settings SET 'key'=

$value } ',
description='{ $description}

mysql-query($sql , $c)

or die (" Insert failed !: ". $sql)

}
}

// Loads settings from the database after r7

().
function loadSettings() {

$this ->checkSettings ()
$c = $this ->connection;

$sql = "SELECT * FROM settings"

$res = mysql-query($sql , $c)

or die("Query failed !: " . $sql)

while ($row = mysql-fetch-assoc($res)) {
$this->ary [$row['key']] = $row['value'];

}
}

'{$key}', value='{

nning checkSettings

}

65

Listing A.2: Strings table source code.

/* Strings.php
Created 03/07/05 by birenroy

Loads strings from the "strings" table in this org database.

class Strings {
var $org =

var $ary array()
var $connection;

/ Constructor
function Strings($orgID) {

$this->org = $orgID;
$this ->connection = mysql-connect ('localhost ', 'root ', '

mysql-select-db ($this ->org , $this ->connection);
$this ->checkStrings ()
$this ->loadStrings ()

}

function getDefaults () {
$defaults = array(

77 label => array(default string, description)

return $defaults

}

/7 Returns the value of the setting '$key
function get($key) {

$str = "";
if (array-key-exists($key, $this->ary))

$str = $this->ary[$key];

if (strpos($str , "$))
$str = eval("return \"{$str}\";");

return $str

}

/7 Loads strings from the DB
function loadStrings() {

$c= $this ->connection

$sql = "SELECT * FROM strings";

$res = mysql-query($sql , $c)

or die("Query failed !: ".$sql);
while ($row = mysql-fetch-assoc($res)) {

66

$this->ary[$row['label']] = $row['string '];

function checkStrings () {
$c = $this ->connection ;
$sql = "CREATE TABLE IF NOT EXISTS 'strings ' (

'stringID ' int (11) NOT NULL auto-increment

'label ' varchar (64) NOT NULL,
'string ' text NOT NULL,
'description ' text NOT NULL,

KEY 'stringID ' ('stringlD ')
) TYPE-MyISAM COMNENT='Strings used throughout

system. '" ;
mysql-query($sql , $c)

or die("Unable to create strings table!: {$sql
mysql-error($c)) ;

$sql = "SELECT label FROM strings";
$res = mysql-query($sql , $c)

or die("Query failed !: ". $sql)

$shouldexist = $this->getDefaults ();
while ($row = mysql-fetch-assoc ($res))

unset($shouldexist [$row['label']]);

I

the survey

{

foreach ($shouldexist as $label => $row) {
$str = addslashes($row [0]) ;

$description = addslashes ($row [1])

$sql = "INSERT INTO strings SET label='{$label}', string='{
$str } ',

description='{$description }'"
mysql-query($sql , $c)

or die(" Insert failed !: ".$sql)

}

}

67

I
I

I

}\n"

Listing A.3: surveyadmin.AdminPage base class.

/* AdminPage.php
Created 04/25/05 by birenroy

Class used to display/update a surveyadmin console page. *7

class AdminPage {
var $org;
var $connection;
var $pageinfo ;

// Constructor. Subclasses should extend this method by calling

77 "parent ::AdminPage($orgID)" and then setting their own

77 $pageinfo keys.
function AdminPage($orgID) {

$this->org = $orgID;
$this ->connection = mysqLconnect('localhost ', 'root ', '

mysql-select-db ($this ->org, $this ->connection)
$this->pageinfo = array(

'name' => "Generic Admin Page",
'id ' => " surveyadmin . AdminPage"

'errortarget ' => "surveyadmin.AdminPage"

'failed-display-check ' => "surveyadmin.AdminPage"

}

77 Base class methods that DO NOT need to be implemented by
77 subclasses.

77 Initializes this page for display.
function initialize ($navtree) {

$navtree->register -page ($this ->getPagelnfo ('name') , $this->
getPagelnfo ('id '))

}

/7 Returns the value of a pageinfo parameter given the

parameter
7/ name. Returns the entire associative array if the parameter

77 name is blank.
function getPageInfo ($param="") {

if (!empty($param))
if (isset ($this ->pageinfo [$param])

return $this ->pageinfo [$param];
else

68

return ""

else
return $this ->pageinfo;

}

// Subclasses should only implement if they want to use a

different

// user display bar.

function getUserbar () {
return "<tr><td class ='userdisplay ' align ='center'>

{$_SESSION['admin ']['username']}&

nbsp;

<a class ='returnlink ' style='color inherit ; ' href='logout
php'>[Logout]

</td></tr>"

// This function should render the header H7ML directly .
Subclasses

// should not have to implement this method.

function showHeader ($headerURL="" , $returnlink="") {
$imagefile realpath(" . ./" . $headerURL)

$imageinfo = getimagesize ($imagefile) ;
$height = $imageinfo [1] > 50 ? $imageinfo [1] 50;
$messages = isset ($.SESSION ['messages ']) ? $_SESSION[

messages '] : array () ;
unset ($-SESSION ['messages '])

?>
<div class='header '>
<table cellpadding='0' cellspacing='0'>

<!-- Display header line on top of the page ->
<tr><td align='center ' style='height : <?= $height ?>;

background-repeat : no-repeat ; background-image: url

("../<?= $headerURL ?>") ; '>

<?= $this->getPagelnfo('name
') ?>

</td></tr>
<?= $this ->getUserbar () ?>
<tr><td class=' userdisplay ' align='center '>

<?= $returnlink ?>
</td></tr>
<tr><td class=' subtitle '><?= $this ->getPageInfo('subtitle')

?></td></tr>
<tr><td class=' errors ' style=' color : #ffO00O ; font-weight:

bold; '><?= implode ("
" , $messages) ?></td></tr>

69

</table>

</div>

<?php

}

/ This function should render footer HTML directly. Subclasses

/ should not have to implement this

function showFooter() {
echo

}

function linkParams($url , $params) {
if (empty($params))

return $url;

$first = true;
$str = $url ;
foreach ($params as $key => $value) {

$str ($first ? "?" . $key

$first false;

}
return $str

}

" .$value

//
// Base class methods that SHOULD be overridden by subclasses .

// Subclasses should return

/ conditions for this page

function checkDisplay ($get
return true;

I

'false ' if the prerequisite

to display have not been met.

$post , $session) {

// Subclasses should return a string containing all

// javascript required by this administrator page.

function getJavascript () {
return "";

I

of the

7/ Subclasses should return a string containing all of the CSS

/7 required by this administrator page.

function getCSS() {
return ""

}

// This function should render content HTNIL directly .

70

function showContent ($get , $post , $messages) {

<div class='content '>
<?= implode("
" , $messages) ?>

</div>
<div class='content '>
<table>

<tr><td>Here is some sample content !</td></tr>
</table>
</div>
<div class='content '>

<table>
<t r ><th>Keys</th><th>Values </th></t r>
<tr><td>name</td><td><?= $this ->getPagelnfo ('name') ?></td></

t r >
<tr><td>ID/classname</td><td><?= $this ->getPageInfo ('id ')

?></t d></tr >
</table>
</div>

}

77 Subclasses should implement this method to perform form
/7 validation . The function should return an array of messages
77 that will be displayed to the user. If the array contains
77 zero elements , validation is assumed to have succeeded .
77 This method SHOULD NOT modify $-GET, $POST, $SESSION.
function validate ($get , $post) {

return array()

}

7/ Subclasses should implement this method to handle form
77 submissions. This method can assume that the validation
77 method has succeeded.

function submit ($get , $post) {
}

}

71

-j

Listing A.4: surveyadmin. TableEdit extension of surveyadmin.AdminPage.

* TableEdit.php
Created 04/25/05 by birenroy

Implements the Table Editor for the Administrative Console. */

include-class ("surveyadmin. AdminPage");

class TableEdit extends AdminPage {
var $rowsPerPage = 20;

function TableEdit ($orgID) {
parent :: AdminPage($orgID);
$this->pageinfo = array(

'name' => "Table Editor" ,
'id ' => " surveyadmin. TableEdit"
'subtitle' => "Click on a table cell to edit it."
'error-target ' => "surveyadmin. TableEdit" ,
'failed display-check' => "surveyadmin.MainPage"

}

// Returns 'false ' if the prerequisite conditions for this page

to display
// have not been met.
function checkDisplay ($get , $post $session) {

$tablename = "" ;
if (!empty($get ['table '))

$tablename = $get ['table '];
else if (!empty($post ['table']))

$tablename = $post ['table'];
$sql = "SELECT * FROM {$tablename} LIMIT 1";

$res = mysql-query($sql) ;

// return true iff table exists for this database
return ($res !== false)

}

/7 Returns a string containing all of the javascript required

for this page.
function getJavascript () {

return "
function doEdit (iRow, sKey) {

cellID = 'table -'+iRow+'_'+sKey;
cell = document. getElementByld(cellID)
editing = document . getElementById (' editing ')

72

editing. value = cellID ;
editor = document . getElementById ('editpad ')
editor . value = cell . last Child . value;
editor . style . display = '';
editor. style. left getLeft (cell);

editor. style. top getTop (cell);
editor . focus ();

}
function doHide() {

editor document . getElementById ('editpad ')
editing = document . getElementById ('editing ')
cell = document. getElementById(editing. value);
if (cell . lastChild . value != editor . value) {

cell. firstChild .data = editor.value;
cell . lastChild . value = editor . value;
cell . style .backgroundColor = '#E5EAF5';
doSetModified (editing . value);

}
editor. style . display = 'none

}
function doSetModified (cellID) {

key = cellID.split('_);
key = key[1];
modified = document . getElementById ('modified ');

if (modified. value. search (', '+key+',') = -1) {
modified. value = modified . value + key + ', ';

}
}
function getLeft(oNode) {

var iLeft = 0;
while (oNode . tagName. toLowerCase () != 'body') {

iLeft += oNode. offsetLeft ;
oNode = oNode.offsetParent

}
return iLeft

}
function getTop(oNode) {

var iTop = 0;
while (oNode.tagName. toLowerCase() != 'body') {

iTop += oNode. offsetTop;

oNode = oNode.offsetParent

}
return iTop;

}

73

Returns a string containing

page.

function getCSS() {
return "
div.main {

width: 85%;
max-width: 85%;

}
table . content {

table-layout: fixed;

}
table . content th {

font-size : 90%;

overflow : hidden;

}

all of the CSS required

table.content td.cell {
font-size : 90%;

padding: ipx 5px;

border: ipx solid #aOaOaO;

border-width: ipx Opx Opx 1px;

white-space: nowrap;

overflow : hidden;

}
table . content td. cell : first -child {

border-left -width: Opx;

}

//
fu

This function should render content HTML directly.

nction showContent($get , $post , $messages) {
$tablename = $get ['table '];

$sql = "SELECT * FROM {$tablename} ";

$startrow = !empty($get ['start ']) ? $get ['start ']

$endrow = $startrow + $this->rowsPerPage;

$sql .= "LIMIT {$startrow}, {$endrow}";
$res = mysql_query($sql, $this->connection);

$rows array();

if (false !== $res) {
while (false !== ($row = mysql-fetchassoc($res)))

$rows [] = $row;

}
if (count($rows) 0) {

if ($startrow 0) {

74

0;

for this

}

echo "<div class='content ' style='text -align : center;'><
span style='font-weight : bold;'>No database rows found

in table {$tablename}!</div>"
return

} else {
$_GET['start' = ($startrow < $this ->rowsPerPage) ? 0

$-GET['start '] - $this ->rowsPerPage;

$params = $this ->join ($_GET) ;
echo "<div class='content ' style='text -align : center;'>

No additional rows. <a href='adminpage.php?{$params

}'>Return to previous rows.</div>";
return

}

<textarea id='editpad ' style=' display: none; position: absolute
; ' cols='30 ' rows='4 ' onblur='doHide() ; return false ;
textarea>

<input type='hidden' name-'table ' value='<?= $tablename ?>'>
<input type='hidden' id='editing ' value=' '>
<input type='hidden' id='modified ' name='modified ' value=', '>

<input type='hidden' name='keys ' value='<?- implode(" ,"

array-keys ($rows [0])) ?>'>

<div class='content '>
<table class='content ' cellspacing='0' cellpadding='0' width=

'100% '>
<?php

echo "<tr><th>" . implode("</th><th>" array-keys ($rows [0]))

. "</th></t r>\n" ;
foreach ($rows as $i => $row) {

echo "<tr>";
foreach ($row as $key => $value)

echo $this ->renderCell ($i+$startrow , $key, $value)
echo "</tr>\n";

}
?>

</table>
</div>
<div style='padding-top: 10px; ' width='100%'>

<?php
$start = $GET['start '];

$GET['start'] = $start - $this ->rowsPerPage;

$backparams = $this ->join ($GET) ;
$GET['start '] = $start + $this->rowsPerPage;

$params = $this ->join ($GET) ;

75

if ($startrow > 0)

echo "

< ; View previous

$this ->rowsPerPage . " rows"

?>
<a href='adminpage.php?<?= $params ?>'>View next <?= $this->

rowsPerPage ?> rows -- gt;

</div>
<div style='padding: 10px; ' width='100%'>

<input type='submit' value='Commit changes '>

<input type='button' value='Reset ' onclick='window. location .

reload () ; return false ;

</div>

}

7/ Form validation . Returns an array of messages that will be

displayed to the

7/ user. If the array contains zero elements , validation is

assumed to have

/7 succeeded. This method SHOULD NOT modify $-GET, $POST,
$SESSION.

function validate ($get , $post) {
return array();

}

/7 Handle form submissions . This method can assume that the

validation method

7/ has succeeded.

function submit($get , $post) {
if (!strcmp($post ['modified'], "

return;

$table = $post ['table ';
$modified = explode (" ," , $post ['modified '])
$modified = array _slice ($modified , 1, count($modified) -2);

$keys = explode(" ,", $post ['keys']);

foreach ($modified as $row) {
$set = array();

$where = array(;

foreach ($keys as $key) {
$set [] = "'" . $key " "''" . mysql-real-escape-string(

stripslashes ($post [" table_{$row}_{$key}"])) . "'"

$where[] = "'". $key . "'=' . mysql-real-escape-string(
stripslashes ($post[" table_{$row} _$key}-previous"]))

76

}
$sql = "UPDATE '{ $table }' SET " implode(" , " , $set)

WHERE " . implode(" AND " , $where);
$SESSION ['messages '] [] = $s ql ;
mysql-query($sql , $this ->connection)

or die("Error: {$sql}
" mysql-error());
}
$myclass = $this ->getPageInfo ('id ')
header(" location : admin-page. php?page={$myclass}&table={

$table}")

exit;

}

function renderCell ($rowindex , $key , $value) {
$value = htmlentities ($value , ENT-QUOTES);
$valstring = $value ;
if (strlen (trim($valstring)) 0)

$valstring = " ";

$output = "<td class='cell' id='table_{$rowindex}_{$key}'
onclick=\"doEdit ('{ $rowindex }', '{ $key }') ; return false ;\"
t it le ='{$value }'>" ;

$output .= $valst ring;

$output "<input type='hidden' name='table_{$rowindex}{
$key} -previous ' value='{$value}'>" ;

$output .= "<input type='hidden' name='table_{$rowindex} {
$key}' value='{ $value}'></td>";

return $output;

}

function join($ary) {
$str = ""

foreach ($ary as $key => $val)
$str .= "&" . $key "=" $val;

return substr($str , 1);

}
}

77

Listing A.5: Administrative page framework: admin-page. php.

adminrpage. php

Created 04/25/05 by birenroy

Part of the framework used to display a surveyadmin console

page. */

include-once(" .. / class-utils .php")

include-class ("Settings");
include-class (" QuestionConfig")

includeclass ("surveyadmin. NavTree")

session start ();

include(" checklogin . php");

if (empty($-GET['page'])) {
header(" location: login .php");

exit

}

$pageclass = $_GET['page'];

include-class ($pageclass)

$classparts explode(" .", $pageclass)

$classname array-pop ($classparts) ;
$page = new $classname ($-SESSION['org'])

$page->i nit i aliz e ($_SESSION['navtree ']);

if (!$page->checkDisplay ($-GET, $POST, $-SESSION)) {
header(" location: admin-page.php?page=" $page->getPagelnfo('

failed-display-check '))

exit

}

if (!empty($_GET['referrer '1)) {
$_SESSION['navtree ']->handle-refer ($_GET['referrer ' $page->

getPagelnfo ('id '))

}
$returnlink = $-SESSION['navtree ']->returnlink ($page->getPagelnfo

('id ')) ;

$messages = isset ($_SESSION['messages ']) ? $-SESSION ['messages ']
: array() ;

unset ($_SESSION ['messages '1);

<html>

78

<head>
<title>Project Assessment</title>

<link rel=' stylesheet ' type='text/css ' href=" .. /<?= $SESSION[
settings']->getURL('stylesheet ') ?>">

<link rel=' stylesheet ' type='text /css ' href=" ./admin. css">
<meta http-equiv="Pragma" content=" no-cache">

<meta http-equiv="Expires" content="-1">

<script type='text/javascript '>
<!-- // Protect old browsers

<?= $page->getJavascript() ?>
//7->
</script >
<style type='text/css '>

<?= $page->getCSS() ?>
</style>

</head>
<body>

<form name='mainform' act ion='admin.pagesubmit . php' method='

POST'>
<input type='hidden ' name-'page ' value-"<?= $page->getPagelnfo

('id ') ?>">
<div class='main '>
<?= $page->showHeader ($-SESSION [" set t ings "]->getURL ("

headerimage"), $returnlink) ?>
<?= $page->showContent ($_GET, $_POST, $messages) ?>
<?= $page-->showFooter () ?>
</div>
</form>

</body>
</html>

79

Listing A.6: Administrative page framework: admin-page-submit . php.

adminrpage-submit . php

Created 04/25/05 by birenroy

Part of the framework used to update a surveyadmin console

page. */

include-once(" .. / class-utils .php")

include-class ("Settings");

include -class (" QuestionConfig")

include-class ("surveyadmin . NavTree")

session start () ;

include (" checklogin . php");

if (empty($YPOST [' page'3)) {
header(" location: login .php");
exit

}

$pageclass = $-POST['page'];
include-class ($pageclass)

$classparts = explode(" ." , $pageclass)

$classname array-pop($classparts);

$page = new $classname ($_SESSION['org '1)

$page->in i t i a li z e ($-SESSION ['navtree ']);

$messages = $page->validate ($_GET, $POST);

if (count($messages) = 0)

$page->submit ($-GET, $POST);

else

$-SESSION ['messages '] = $messages;

header(" location: admin-page.php?page=" . $page->getPageInfo('id'

exit;

80

Bibliography

[1] Dan Allen. Studs mvc framework+, 2005.

projects/studs/.

http: //moj avelinux. com/

[2] Apache Software Foundation. The Struts User's Guide,

http://struts.apache.org/userGuide/.

[3] Bakken, Stig Saether. Introduction to PHP. Zend Technologies,

http://www.zend.com/zend/art/intro.php.

2005.

2000.

[4] Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software Engi-

neering. Addison-Wesley, Boston, 1995 edition, 1995.

[5] Steve Burbeck. Applications programming in smalltalk-80a: How to use model-

view-controller (mvc). Unpublished, 1992.

[6] Jonathan Cummings. Leading groups from a distance: How to mitigate conse-

quences of geographic dispersion. In S. Weisband & L. Atwater, editor, Leader-

ship at a distance. Lawrence Erlbaum Publishers, Mahwah, 2004.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston,

1995.

[8] IBM. Web design guidelines.

http://www-3.ibm.com/ibm/easy/eou-ext.nsf/publish/572.

[9] Alan Knight and Naci Dai. Objects and the web. IEEE Software, March/April

2002.

81

System for the online assessment of distributed projects.

Master's thesis, Massachusetts Institute of Technology, 2004.

[11] Sun Microsystems, Inc. Java BluePrints: Model- View- Controller,

http://java.sun.com/blueprints/patterns/MVC-detailed.html.

[12] World Wide Web Consortium. Cascading Style Sheets, level 1, 1999.

http://www.w3.org/TR/CSS1.

[13] World Wide Web Consortium.

http://www.w3.org/TR/html4/.

[14] World Wide Web Consortium.

HTML 4.01 Specification, 1999.

Cascading Style Sheets, level 2 revision 1: CSS

2.1 Specification, 2004. http://www.w3.org/TR/CSS21/.

82

2002.

[10] Fumiaki Shiraishi.

