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Abstract

This thesis models the rate-distortion characteristics of an H.264 video compression
encoder tc improve its mode decision performance. First, it provides a background to
the fundamentals of video compression. Then it describes the problem of estimating
rate and Jdistortion of a macroblock given limited computational resources. It derives
the macroblock rate and distortion as a function of the residual SAD and H.264
quantization parameter @P. From the resulting equations, this thesis implements
and verifies rate-distortion optimization on a resource-limited H.264 encoder. Finally,
it explores other avenues of improvement.
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Chapter 1

Introduction and Background

Digital video compression presents a number of challenges to both academia and in-
dustry. For academia, digital video represents the ultimate exercise in compression
theory. It requires massive amounts of raw data, yet much is redundant or irrelevant
to the human visual system. Video compression tries to eliminate such extraneous
information. For industry, consumers are demanding digital video everywhere: in
television, movies, telephony, and the Internet. Companies are responding as quickly
as possible, but as digital video spreads to new domains, it faces increasingly re-
strictive resource constraints, whether bandwidth, processing speed, memory size, or
power consumption. Cellular phones, for example, can offer very little in all four
categories.

In light of these limitations, what is the highest quality video achievable given
certain resource constraints? This thesis describes a possible approach by optimizing
the process of mode decision in an H.264 encoder using rate-distortion theory.

Chapter 1 provides a background primer to video compression and rate-distortion
theory. It also examines prior results established in the literature. Chapter 2 describes
the specific problem addressed in this thesis. Chapter 3 models the problem from its
parameters: rate, distortion, and A (Lagrange multiplier). Chapter 4 shows the final

solution based on the model.



1.1 Literature Review

The general problem of maximizing quality while minimizing cost is known as rate-
distortion theory [3]. The terminology originates from Shannon’s first formulation
of the problem [4], in which he demonstrated how much distortion to expect when
transmitting discrete symbols over a noisy channel at a given rate. He showed that at
rates below the channel capacity, distortion can be minimized to an arbitrarily small
value, whereas at rates above the channel capacity, distortion can never be avoided.

Since Shannon developed his theories of communication fifty years ago, technology
has witnessed a race between higher rates and higher channel capacities. Today,
video represents one of the most demanding applications in communications. Raw,
low-resolution video without audio requires more than 6 megabits per second for
accurate reproduction [5]. Few storage mediums, much less transmission channels,
can practically handle such large quantities of data.

Because of these resource limitations, it is necessary to compress video to reduce
its bit rate. Many application domains, such as file transfers over the Internet, require
“lossless” compression, such as by using the classical Lempel-Ziv algorithm [6]. These
lossless algorithms exploit statistical properties of the data source to reduce the bit
rate. For example, they assign few bits to represent symbols with high probabilities
of occurring and many bits for symbols with low probabilities of occurring. Unfortu-
nately, lossless compression algorithms cannot compress raw video {or even some still
images) enough for standalone use.

Furthermore, lossless compression, where every bit is reproducible, is unnecessary.
The human visual system simply cannot perceive some kinds of information. This in-
formation is irrelevant and can be eliminated without loss of quality when performing
vides compression. Also, certain visual properties are more important to the human
visual system than others [7]. Properties of greater importance need to be represented
accurately, usually by assigning more bits to them, while those of lesser importance
require fewer bits. As a simple example, consider an object with sharp edges in a

video sequence. When the object is stationary, any blurring of the edges caused by
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Figure 1-1: Complete video compression system

distortion is noticeable and undesirable. When the object is moving quickly, though,
blurred edges are practically expected. A video compression algorithm might take
advantage of this phenomenon by assigning less bits to edges during a sequence of

rapid motion.

1.2 Codecs

Video evidently contains a significant amount of compressible information. Commer-
cial demand for video applications has led to the development of several standards
for compression, known as codecs. Two especially important sets of codecs have
emerged: the MPEG-z series from the Motion Picture Experts Group (MPEG) and
the H.26z series from the International Telecommunications Union (ITU-T). Many of
these codecs have entered wide commercial use, such as MPEG-2 for high definition
television and H.263 for videoconferencing [1].

Each successive generation of codecs incorporates more advanced compression
techniques. The MPEG and ITU-T organizations are working jointly to develop the
next codec, known as both H.264 and MPEG-4 version 10. The complete specification
for H.264 [8] is extremely intricate, but a good overview can be found in [9].

All codec specifications share a single, narrow goal: to provide a universally de-
codable bitstream syntax [9]. As shown in Figure 1-1, the bitstream in fact represents

only part of a complete video compression system. The specification defines only the
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range of possible bitstreams, remaining silent about the actual implementation of the
encoder or decoder. An encoder can fail to compress a video sequence at all, yet
produce a standard-compliant bitstream.

As a result, engineers have wide latitude when designing a specific encoder. An
encoder’s design depends heavily upon its purpose. Some applications demand high
quality, such as HDTV. Others require real-time encoding, such as teleconferencing.
Still others must cope with unreliable channels, such as Internet streaming video. In
addition, the content of a given video sequence varies widely with time. An encoder
must dynamically decide how best to represent static images, scene changes, and
object movement. To do so, it must balance the competing goals of minimum rate
and minimum distortion.

In general, though, encoders for nearly any codec share a common structure, as
shown in Figure 1-2. First, they divide a video frame into smaller regions known as
macroblocks. Encoders may encode a macroblock in two ways: without motion com-
pensation (INTRA-coded) or with motion compensation (INTER-coded). INTRA-
coded macroblocks do not depend on any frame other than the current one. They
are first converted from their raw format (usually RGB) to YIQ format, where Y is
the luma component and I/Q are the chroma components. YIQ is a more suitable
basis for compression than RGB because the chroma components can be significantly
downsampled without much loss of visual quality.

The YIQ values are further processed with a transform such as the DCT or wavelet
transform. These transforms concentrate the macroblock’s energy into a small num-
ber of large coefficients. They also produce a much larger number of small coefficients.
This enables the next step, quantization of the transform coefficients. Quantization
is responsible for the “lossy” part of compression. It limits possible coefficient values
and eliminates small values. Because many small coefficients usually exist as a con-
sequence of the transform, quantization allows significant reduction of the bit rate.
Finally, the quantized coefficients are coded into a hitstream as efficiently as possible
and stored in a buffer for eventual output.

INTER-coded macroblocks rely on interframe temporal redundancy to reduce the

11
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bit rate. In many video sequences, adjacent frames differ only because of object
movement. Motion compensation captures the movement in motion vectors instead
of independently coding the final result. This technique produces significant compres-
sion because motion vectors require many fewer bits than complete images. Motion
compensation typically involves two steps. First, for each region in the macroblock,
the encoder determines the optimal motion vector by searching another frame for the
best matching reference region, a process called motion estimation. Then-the encoder
subtracts the current region from the best matching reference region, which yields a
residual difference. This residual undergoes the same transform, quantization, and
run-length coding as INTRA-coded macroblocks. The residual after transformation
usually contains an even greater number of small coefficients than INTRA-coded mac-
roblocks do. As a result, INTER-coded macroblocks can achieve significant bit rate

savings over INTRA-coded ones.

1.3 Mode Decision in H.264

Modern codecs such as H.264 have many more modes than simply INTRA or INTER.
The process of deciding among them is appropriately named mode decision. On
the frame level, a frame can be specified as an I-frame (INTRA-coded), a P-frame
(predictive-coded), or a B-frame (bipredictive-coded)!. I-frames may contain only
INTRA-coded macroblocks. P-frames may have INTER-coded macroblocks that use
previous frames as reference frames for motion compensation. B-frames can also use
future frames as reference frames.

On the macroblock level, the choices multiply significantly. A macroblock in H.264
consists of 16 x 16 luma samples and 8 x 8 samples of both chroma components.
Two INTRA macroblock modes exist: INTRA-4 x 4 and INTRA-16 x 16. INTRA
macroblocks in H.264 are independent of other frames. However, they can be spatially
predicted from adjoining macroblocks in the same frame. Spatial prediction can

reduce the bit rate because adjacent macroblocks are often similar to each other. With

1In H.264, slices, not frames, are coded as I, P, or B, but the idea is similar.
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INTRA-16 x 16 mode, the entire macroblock is predicted from another macroblock.
With INTRA-4 x 4 mode, each of the 16 4 x 4 blocks within a macroblock is predicted
from adjoining blocks.

Four INTER macroblock modes exist as well: INTER-16 x 16, INTER-16 x 8,
INTER-8x 16, and INTER-8 x8. The INTER-coded macroblocks have motion vectors
associated with them. The m x n notation refers to what size of luma samples each
motion vector represents. For example, an INTER-8 x 8 macroblock has 4 motion
vectors. In fact, 8 x 8 partitions can be even further subdivided into & x 4, 4 x 8, and
4 x 4 modes, so a macroblock can potentially have up to 16 motion vectors [9].

For each INTER-coded macroblock, the encoder needs to determine what motion
vectors most accurately capture the motion from one frame to another. The motion
vectors have quarter-sample granularity, meaning object movement can be represented
to an accuracy of one quarter of a luma sample. The more accurate the motion
vector is, the smaller the residual becomes. Fast motion estimation techniques such
as log search [2] can simplify the computation required to determine accurate motion
vectors.

Finally, all modes, whether INTRA or INTER, rely on a quantization parameter
@P, which determines how much information is lost during compression. In H.264,
QP ranges over 52 values [9]. It corresponds to the quantization step size @ in the

following manner [10, 8]:

Q = 2@F-/6 (1.1)

As QP increases, rate decreases and distortion increases.

1.4 Lagrangian Optimization

The multitude of options described in the previous section poses a significant challenge
to encoder design. Intuitively, the encoder should make an optimal mode decision by
minimizing distortion under a bit rate constraint. The problem can be formulated

in the following manner [11]. Consider a vector of source samples S (for example,
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macroblocks), and a vector of modes I such that Iy corresponds to the mode selected
for Si. Let D(S,I) be the distortion and R(S,I) be the bit rate. The goal, then, is
to find I such that D(S,I) is minimized, subject to a constraint R(S,I) < R..

Using the preceding formulation, the task of mode decision is reduced to a classic
budget constrained allocation problem. The usefulness of Lagrange multipliers from
undergraduate calculus is immediately apparent. However, Lagrange multipliers in
the context of undergraduate calculus apply only to differentiable functions, which
D(S,I) and R(S, 1) clearly are not. Fortunately, Everett proved that for the purposes
of min/max optimization, differentiability or even continuity is not required [12]. As
a result, the objective can be described as finding I such that the Lagrangian cost
function J(S,I) = D(S,I) + A - R(S,I) is minimized. The Lagrange multiplier X
replaces the rate constraint R, on the rate-distortion curve as shown in Figure 1-3.
In a way, A = —-‘fi—% Rer’ except that D(S, 1) is typically not differentiable. However,
the intuition holds.

Theoretically, the encoder can try every possible I to find the minimum J(8S,I).
However, such a method would require testing KV different Is, where K is the num-
ber of source samples and N is the number of possible modes. Given that the source
samples S usually consist of macroblocks, this is computationally unacceptable. Con-

sequently, independence among source samples is assumed so that:
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The independence assumption is not wholly realistic. Macroblocks often explicitly
depend on other macroblocks [3], either through spatial prediction for INTRA modes
or temporal prediction for INTER modes. Techniques that account for dependency
do exist [13], but for the purposes of this thesis independence is assumed, as it seems
to have little impact on the optimality of the solution [3].

The final formulation of the mode decision problem follows. For each source

sample S, choose a mode I such that

J(S,I) = D(S,I)+ X- R(S,I) (1.2)

is minimized, where D(S,I) is the distortion, R(S,I) is the rate, and X is the

Lagrange multiplier that specifies the rate constraint.

1.5 Practical Considerations in H.264

The set of possible modes is still very large, even when macroblocks are assumed
to be independent. No encoder can try every single quantization parameter, every
candidate motion vector, and every INTRA/INTER prediction option. A less com-
plex procedure, even if suboptimal, would be preferable. The ITU-T H.264 reference
software encoder provides one such procedure [14].

The reference encoder performs Lagrangian optimization in an iterative manner.
First, it assumes a quantization parameter @QP, usually based on the previous frame.
Then it finds the optimal motion vector(s) m for a macroblock .S by minimizing the
cost function Jyorron(S,m) = Dppp(S, m) + AyorronRuorion(S, m) for each
INTER mode (more on Ayorron later, DFD stands for displaced frame difference)
[5, 11, 15, 16]. Finally, it evaluates the cost function Jyopz(S,I) = Drrc(S, I) +
AmopeRrec(S, I) and determines the optimal mode I among all INTRA and INTER

16



modes.

At first glance, it appears there are three independent parameters in the algorithm
used by the H.264 reference software: QP, Ayope, and Aporron. However, this is
not the case, as shown in [5, 15]. The H.264 reference software uses the following

experimentally-obtained relationships [11, 14]:

Mgope = 0.85.2@QF12)/3 (1.3)

Amorion = A/ AmopE (1.4)

The existence of these relationships makes intuitive sense because a fixed quan-
tization parameter QP heavily influences which Lagrange parameters Ayopg and
Amorron are reasonable. For example, consider a low @P, meaning little quantiza-
tion. Then the rate will likely be high and the distortion low, indicating the objective
is to minimize distortion regardless of rate. A low Ay;opr would weight the distortion
heavily. The square root for Ayorron is present because the H.264 reference software
uses SAD as the distortion measure for motion estimation (Dprp) and SSD for mode
decision (Dgrgc). As a result of these relationships, the only independent parameter
is @P, which is either experimentally fixed or obtained through a rate control algo-
rithm to approximate the bit rate budget R.. Section 3.3 explains the derivation of

Equation 1.3 in more detail.
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Chapter 2

Problem setup

Accurately calculating rate and distortion requires encoding and decoding each source
sample for each mode. Unfortunately, some encoders cannot perform the entire se-
quence of operations in Figure 1-2 for each mode because it requires too many com-
putational resources. Only a subset is possible. As a result, rate and distortion must
be estimated from a limited amount of information. This chapter describes what

information is available.

2.1 Encoder description

The H.264 encoder in this thesis is limited by the availability of computational re-
sources, which in turn affects its architectural design and the mode decision process.
The encoder is part of a chipset used in embedded applications, particularly cellular
phones. Like many embedded chipsets, it is more economical to use several specific-
purpose chips instead of one general-purpose microprocessor. As a result, the encoder
functionality is split among three components: a proprietary digital signal processor
(DSP) core, video acceleration hardware, and an ARM macrocell. The DSP chip is
the most flexible and easily programmable component of the video encoder. It acts
mainly as a control unit by telling the hardware when to run. The hardware per-
forms computationally intensive and repetitive tasks, such as transforms and motion

estimation. The ARM macrocell does the final run-length encoding. Such a design

18



enables the encoder to compress a video sequence at 15 frames per second with a
frame size of 288 x 352 pixels, despite requiring less than 20,000 software instructions
to implement.

Because of the encoder’s architecture, the mode decision process is concentrated
in the hardware. The encoder only supports the following modes: INTRA-4 x 4,
INTRA-16 x 16, INTER-16 x 16, and INTER-8 x 8. For both INTER-16 x 16 and
INTER-8 x 8 modes, the hardware searches the previous frame for the best matching
motion vectors. Once the motion vectors are found, the hardware chooses between

INTER-16 x 16 and INTER-8 x 8 mode using the following pseudocode:

if (SAD(INTER-16x16) < SAD(INTER-8x8) + threshold)
choose INTER-16x16;
else

choose INTER-8x8;

SAD stands for the sum of absolute differences. It is the absolute sum of all
values in the residual, which is formed by subtracting the reference macroblock from
the current motion-compensated macroblock. The intuition is that smaller SADs are
better. A small SAD implies small values in the residual, which raise the chance they
will be quantized to 0 and lower the resulting bit rate.

Choosing on the basis of SAD alone, though, leads to incorrect results. The
INTER-8 x 8 SAD should never be greater than the INTER-16 x 16 SAD. INTER-
8 x 8 mode uses four motion vectors per macroblock as opposed to one motion vector
for INTER-16 x 16 mode. This can produce greater accuracy when estimating motion
because each 8 x & block is treated independently. In the worst case, the four motion
vectors can yield the exact same SAD as one motion vector by being arranged in a
square, as shown in Figure 2-1. However, INTER-8 x 8 mode comes at a cost not
captured by the SAD. It needs to encode four instead of one motion vector, which
increases the rate and hence the cost. The threshold estimates the additional cost of
selecting INTER-8 x 8 mode over INTER-16 x 16 mode.

This thesis models how to choose the correct threshold in order to increase the

19
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encoder’s rate-distortion performance. Originally, the threshold was a hard-coded
number, typically 200. To improve the threshold, it is necessary to describe how the
SAD and other available information, especially QP, affect each stage of the encoding

process.

2.2 Preliminary experimental results

As an initial experiment, four video sequences were encoded repeatedly. For each of
them, the threshold was varied among a range of values and while all other variables
remained constant. This process was repeated for different @)Ps. Using Equation
1.2, the Lagrangian cost for each encoded sequence was calculated. The aggregate
size in bits of all the INTER frames was used as the rate. The sum of squared
differences (SSD) between every original and compressed INTER frame was used as
the distortion. Equation 1.3 was used for Ay;opg. Figure 2-2 shows an example plot

of threshold versus cost for QP = 15 when encoding Foreman.
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Figure 2-2: Varying INTER-8 x 8 threshold verszus resulting cost (Foreman, QP = 15)

Other sequences and @Ps yield similar plots as Figure 2-2. For low thresholds,
the cost is high because only INTER-8 x 8 modes are being selected, which increases
the rate. As the threshold rises, the cost falls but then rises again as INTER-16 x 16
blocks introduce more distortion.

For each @P, the threshold yielding the lowest Lagrangian cost was determined.
The results, depicted in Figure 2-3, were in line with expectations. As QP increased,
the optimal threshold increased. The intuition behind it made sense: as the distortion
caused by QP increased, the Lagrangian cost formula placed more and more emphasis
on the rate. In fact, at the highest (JPs that render the video sequence almost
unwatchable, the distortion is largely constant, so only rate matters, and in such
cases INTER-16 x 16 mode is the logical choice. At low QPs, rate is always high,
and distortion takes greater importance.

Judging from Figure 2-3, the relationship between the optimal threshold and QP
is exponential. Figure 2-4 graphs the same data with a logarithmic y-axis. Linear

regressions were performed on each sequence. From the graph, it appears that the
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appropriate slope and intercept are highly content-dependent but still consistent with
an exponential relationship.

To explain Figure 2-4, this thesis builds a theoretical framework to account for
the effects of SAD on the Lagrangian cost function. The SAD affects both the rate
and distortion components of the cost function, so they are examined separately and

combined later.
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Chapter 3

Cost equation parameter models

The cost function in Equation 1.2 involves three components: rate (R), distortion
(D), and the Lagrangian multiplier ()\). Each of these components is modeled in this

chapter.

3.1 Rate

The relationship between SAD and rate is examined first. Rate is intuitively a func-
tion of SAD, because smaller SADs imply that more values in the residual can be
eliminated with quantization. The encoder calculates the residual SAD after motion
compensation. Then it transforms the residual values, quantizes the transform coeffi-
cients using QF, and performs run-length coding on the quantized coefficients. Each
step affects the final rate and is modeled here.

First, we explain the relationship between the SAD and the resulting transform
coefficients. The H.264 codec uses an integer transform similar to the DCT with
energy-preserving properties. In other words, the relationship in Equation 3.1 holds

between the space domain and DCT domain.

Ni1—1 Ng-1 N;—1 Na—1
Z Z |z(n1,m2)]? = Z Z ICz(k1,k2)|2 (3.1)
n1=0 n2=0 k1=0 ks=0

Equation 3.1 says that the energy of the original residual values equals the energy
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SAD of residual before DCT versus standard deviation of residual after DCT
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Figure 3-1: SAD of residual error vs standard deviation of DCT coefficients

of their DCT coefficients. The encoder gives only the absolute sum of the residual
values, not the energy. However, we can test whether a relationship exists between the
SAD and energy. Figure 3-1 graphs the SAD of some macroblock residuals with the
standard deviation of their DCT coefficients, calculated after quantization at QP = 0.
The standard deviation is the square root of the variance, which in turn is the energy
divided by the number of macroblock values (256). The graph shows a fairly strong
linear relationship between the two metrics.

To explain this relationship, we model the luma coefficients of the residual prior
to transformation with a zero-mean Gaussian distribution, whose probability distri-

bution is shown in Equation 3.2.

1 2 2

— —2%/(202)
x(x) = 3.2
Px (@) 0\/27r€ ( )

The expected absolute value of a Gaussian random variable is shown in Equa-
tion 3.3. The calculation is similar to finding the expected value of a half-normal

distribution and may be found in Appendix A.1.
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Bix) = [ lelpx(@)ds

(3.3)

Il
q
|

A macroblock consists of 256 luma coefficients. Equation 3.4 expresses the SAD

as a sum of random variables.

255
SAD = > | X (3.4)
=0
where the X;s are i.i.d. Gaussian random variables with zero mean and common
variance o?. The goal is to estimate o2 given the SAD. Rearranging Equations 3.3

and 3.4 yields Equation 3.5.

o] = % g (3.5)

Because of the energy-preserving properties of the DCT in Equation 3.1, the
standard deviations of the residual before and after transformation are both equal
to 0. However, instead of a Gaussian distribution, the statistics of the transformed
coefficients resemble that of a Laplace distribution [17, 18], which has the pdf shown
in Equation 3.6. Appendix A.2 shows that b equals o/v/2.

1
_ 1 e
() 25¢ (3.6)

Figure 3-2 graphs the pdf of the Laplace distribution. The integral of p(z) gives
the cdf of Equation 3.7, which is easier to use because of the discrete nature of the

DCT coefhicients.

Lez/b z <0
P(z)={ * (3.7)
1—Le= >0

To verify the accuracy of modeling the DCT coefficients as a Laplace distribution,
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Figure 3-2: Laplace distribution

Figure 3-3 graphs the cdf of an experimental set of such coefficients with Laplace and
Gaussian cdfs. Each set of coeflicients was normalized to unit variance. It can be seen
that the Laplace model is fairly accurate, and it is more accurate than a Gaussian
model.

Now the effects of quantization are examined. H.264 uses a scalar quantizer so
each quantization interval has the same length, known as the quantization step size
@. Quantization takes all the coefficients within a given step size and represents them
with a single value. The quantization operation @(-) may be represented as a function
with the graph in Figure 3-4. Every value between —Q/2 and +@Q/2 is quantized to
0 and so forth. H.264 does not specify ) directly but rather uses a quantization
parameter P, whose relationship to @ is expressed in Equation 1.1.

From [17] and Figure 3-4, we can determine the probability that a quantized
coefficient appears in the output. It is the same as the probability that an unquantized
coefficient falls in the range of a given quantization interval. Consider an infinite range
of discrete intervals i@ with step size (). The probability of a value being quantized

to i@ is shown in Equation 3.8. Its derivation may be found in Appendix A.3.
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Figure 3-4: Effect of quantization
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p(iQ) = /(,("”Lﬁ)Qp(:c)dx

l—e™  i=0
= . (3.8)
e~ ginhr, is#£0

where 7 = Q/(2b). Notice that r is the ratio of the quantization step size to the
standard deviation of the residual values, multiplied by a constant.

Finally, run-length encoding produces the final bitstream output. A lossless op-
eration, it aims to make the bit rate as close to the entropy of the quantized DCT
coefficients as possible. The entropy of a probabilistic distribution is defined as the
average amount of information it contains. For example, a degenerate distribution
that is a constant value with probability 1 contains no information. A distribution
that has a 99% chance of being a certain value contains only a little more information.
However, a random variable with a 50-50 chance of being different values contains a
great deal of information. Information theory states that no statistical distribution
may be losslessly compressed into fewer bits than its entropy. Consequently, we can
approximate the bit rate per coefficient using the entropy of the quantized Laplace
distribution. The result is Equation 3.9, whose derivation is shown in Appendix A 4.

A similar expression may be found in [19].

+00
H = — 3 p(iQ)log; p(iQ)
1
= = (_(1 —e ) In(l—e") + sir:hr — e " In(sinh r)) (3.9)

The actual macroblock bit rate for the luma coefficients may be estimated by
multiplying the entropy by 256, the number of DCT coefficients in a macroblock.

This results in the final rate expression of Equation 3.10.

r

o 256

=1 (—(1 —e ) In(l —e™) +

— -r 1
i In(sinh r)) (3.10)
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Figure 3-5 graphs the experimental and predicted rate as a function of r. From
this graph, Equation 3.10 does indeed appear to model the rate well given QP and
the SAD. Figures 3-6 and 3-7 graph the predicted value of R for different values of
QP and SAD. Notice that R appears to be more sensitive to QP than to SAD, which

is especially reflected in the change of scale of the y-axes in Figure 3-7.
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Figure 3-7: Predicted rate as a function of SAD for different QPs
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3.2 Distortion

Using the framework developed for rate, a similar mathematical model for distortion
can be derived from the SAD and QP. Distortion arises as a result of quantization,
which discards some precision to reduce the bit rate. For a given quantization interval
1@, all values in the range from (z - —é-) Qto (z + %) @ are reduced to iQ). Any value z
in that range produces a squared error of (z —iQ)2. Recall the statistical distribution
of the unquantized DCT residual coefficients from Equation 3.6.

1
_ L
p(z) 53¢

where

b__c_f__SADﬁ
V2 B12

Distortion, as measured by squared error, can be expressed as Equation 3.11.

.(t%?(x —iQ)*p(z)dz (3.11)

1—

D = 256 Jrf/(

i=—00

As shown in Appendix A.5, we find that

D = 256 - 26> (1 - Sinrhr) (3.12)

This formula makes intuitive sense. When @ = 0, distortion is zero. When @
goes to oo, all coefficients are quantized to zero. As a result, distortion becomes 2b%,
which is actually the variance (02) of the coefficients. Figures 3-8 and 3-9 graph D
for different values of QP and SAD.

Unfortunately, Figure 3-10 shows that the SAD is only marginally correlated with
distortion. Figure 3-11, meanwhile, shows that the distortion model is more accurate
as a function of QP. Section 5.3 speculates on possible improvements to the distortion

model.
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3.3 Lambda

Equation 1.3 expresses Ayope as a function of @QP, but it is only an experimental
approximation. A theoretical justification is available in [11, 14]. However, the jus-
tification only applies to H.263, which uses a different quantization parameter than
H.264. Fortunately, it is simple to repeat the analysis here for H.264.

The following analysis is based on [15]. First, we know that

dD
AMODE = IR

At high bit rates, we can approximate R(D) as

R(D) = alog, (%) (3.13)

where a and b are functional parameters. At high rates, distortion can be modelzd

as a uniform distribution within each quantization interval, meaning

Q2
D=—=

12
Substituting Equation 1.1,

2(QP-4)/3
D="
12

The total differentials of rate and distortion are

OR a
dR = —6QPdQP =-3 (3.14)
D dD  In2
= — - ——  _ "% (QP-10)/3 K
dD 5 QPdQP 0P = 3 2 dQP (3.15)

As a result, we can see that
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AMODE = —%l}—; = ¢ 2(@P-10/3
where c is experimentally determined to be 0.85. The change of 10 to 12 in the
exponent probably reflects the fact that In2 ~ 2-2/3,
Figure 3-12 shows an empirical graph of frame rate versus distortion for every
value of QP. Figure 3-13 graphs the negative slope of Figure 3-12 along with X as
described in Equation 1.3. For small QPs, the two curves are similar, but they begin

to diverge later. Section 5.4 discusses some possible reasons for the discrepency.
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Chapter 4

Cost model and implementation

Now all three parameters of the Lagrangian cost function have been determined in

terms of SAD and QP.

C = D+ )R
256 —r — T r .
R = m(—(l—e Yn(l1-—e )+sinhr e ln(smhr))
+ MV cost
D = 256-2b2(1— T )
sinh r
A = 0.85.2(0P-12)/3
b — o _ SADy7
V2 512
Q = 9(QP-4)/6
2(QP~4)/6
P— Q=256.£_
2b SAD/m

We may use these equations to determine the proper threshold when deciding
between INTER-16 x 16 and INTER-8 x 8 modes. Because of the complexity of
the cost model, we will gain intuition into the problem by starting with a simple
hypothetical situation.

Let us pretend the cost functions were actually linear with respeét to an indepen-

dent variable z. However, they have different additive constants, as the actual cost
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Figure 4-1: QP versus theoretical threshold as derived from cost model

furctions do because of their different motion vector rate requirements.

Cl(ZII) = G$+b1
Cg(x) = al‘+b2

Now we are given two different inputs to each function: z; for ¢ and z, for
Ca. We want to find the threshold ¢ such that zo — z; + ¢t has the same sign as
Ca(z2) — Ci(z1). Notice that Cy(zs) — Ci(21) = a(zz — 1) + (b2 — by). Assuming a
is positive, t = (by — b1)/a suffices.

Luckily, we can expand the actual cost function using its Taylor series to achieve a

similar effect. The input variable is the SAD, and the Taylor series is centered around

SAD = SAD,.

dC'

Cu(SAD) = dSAlD SAD=SAD, (SAD = SAD0) + Cilsao-suo
dC.

Cio(SAD) = — AzD SAD—saD, (SAD — SADg) + Cssap=san,
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The analytical expression for a Taylor series expansion is too complicated to show.
Numerically, though, it can be evaluated. Using experimentally determined SADgs
and motion vector bit rates, Figure 4-1 graphs the theoretically optimal threshold as
a function of QP.

Using these thresholds, we can graph the rate-distortion performance of the en-
coder. Figures 4-2 and 4-3 compare the performance of a fixed threshold at 200 (a
typical value) versus a varying threshold for the video sequence Foreman at high and
low bit rates. Each point represents a different QP. The figures also show the per-
formance of the H.264 reference software, which measures every possible mode and
requires many more computational resources. At high rates, a varying threshold has
little impact on rate-distortion performance. At low rates, the improvement is signif-
icant: a 20 percent bit rate savings without greater distortion. A varying threshold
also eliminates the perverse effect where rate and distortion simultaneously increase
at very low bit rates.

Implementation is trivial, as it merely involves a table lookup for each QP. De-
pending on how often QP changes, the threshold may need to be updated at the

sequence, frame, or macroblock level.
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Chapter 5

Further work and summary

Figures 4-2 and 4-3 show that the encoder used for this thesis still falls short when
compared to the reference encoder. Much of the underperformance is unavoidable
because of resource limitations. For example, the motion vector search space is limited
compared to the reference encoder. Nevertheless, this chapter outlines some possible

further modifications that could improve performance.

5.1 INTRA modes

INTRA modes require some more analysis when modeling their rate and distortion
characteristics because they rely on spatial prediction. There are two major intra
macroblock modes: INTRA-16 x 16 and INTRA-4 x 4, which differ in the size of their
predicted blocks. Similar to the INTER modes, a smaller block size usually produces
a smaller SAD, but it also requires more bits to code the extra prediction information.
INTRA-16 x 16 mode needs very few extra bits. INTRA-4 x 4 mode, on the other
hand, needs to specify a spatial prediction direction for all of the 16 4 x 4 blocks in
a macroblock.

Unfortunately, the coding of prediction directions in INTRA-4 x 4 mode is not
entirely straightforward. There are a total of 9 possible directions, such as vertical,
horizontal, diagonal, and so forth. These directions are not coded directly but rather

derived from the directions of neighboring blocks because they are often correlated
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[10]. In many cases, a block needs almost no extra bits to signal its prediction
direction.

The H.264 reference software [14] employs an algorithm to calculate the final num-
ber of bits needed for the prediction directions in each INTER-4 x 4 macroblock, and
the algorithm is used in this thesis’s encoder as well. A possible area of improvement
is to use the rate and distortion functions of Equations 3.10 and 3.12 to determine

the final cost from the SAD.

5.2 Chroma coefficients

This thesis examined only the effects of luma coefficients, not chroma. Chroma co-
efficients comprise a much smaller component of the encoded bit rate, and chroma
distortion is less visible to the human eye than luma distortion. Nevertheless, it may
still be useful to include chroma coefficients in a complete rate-distortion model. The
encoder used in this thesis only calculate‘s the SAD of luma coefficients, so no infor-
mation about chroma coefficients is available during mode decision. However, other

encoders might use such information to their advantage.

5.3 Improving rate and distortion models

There is evidence that DCT coefficients are better modeled by a Cauchy distribution
than a Laplace distribution [18]. A Cauchy distribution has the form

(2) = = H
_7T,U,2+.’172

where 4 is an additional parameter equal to twice the full width at half maximum.
While possibly more accurate, a Cauchy distribution is mathematically much more
complicated. In particular, there is no analytical symbolic method to derive x from
the SAD. However, a numerical Cauchy model may help somewhat.

A larger question is the lack of experimental correlation between SAD and distor-
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Figure 5-1: Experimental graph of ;i%iP
tion, as shown in Section 3.2. A more refined DCT coefficient model, e.g. using the
Cauchy distribution, will not help because factors besides SAD and QP is affecting

distortion. These other factors and their ability to be quantified remain unknown.

5.4 Improving A\

Section 3.3 demonstrated why Equation 1.3 is reasonable. However, experimental
evidence does not seem to support some of assumptions made in [15]. In particular,
Equation 3.14 is highly suspect. Figure 5-1 shows an experimental graph of QP versus
%. Clearly it is not constant as claimed in Equation 3.14, particularly at low bit
rates.
Because of Equations 3.10 and 3.12, it seems possible to calculate a more accurate
dD

theoretical expression for A = —%2. We can find the total differentials for R and D:
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OR OR

dR = 75dQ -+ db
8D 8D
dD = 50dQ+ Grdb

Unfortunately, it is difficult to proceed from here. First, R and D contain both
variables @) and b, so their total differentials contain d@ and db. There is no way
to express both R and D as the function of a single variable. As a result, dD/dR
requires some form of mathematical approximation. One possibility is to assume an
a priori value of b, which is equivalent to setting db = 0. It is not clear whether this
is a valid approximation. Figures 3-6 and 3-7 show that the rate is significantly more
sensitive to changes in QP than SAD, at least in the range of interest. Distortion,
on the other hand, is highly dependent on SAD, as illustrated in Figures 3-8 and 3-9.
As a result, there is reason to suspect the inadequacy of such an approach. A quick
simulation was performed using a fixed b. The results were unsatisfactory because A

was too small at high @Ps. Further investigation is necessary.

5.5 Summary
This thesis made the following contributions:

e Provided a primer to video compression techniques and codecs.

Created a model to estimate rate and distortion characteristics from limited

information for mode decision in H.264.
e Implemented rate-distortion optimization and analyzed the results.

Outlined further areas of improvement for resource-limited H.264 encoders.
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Appendix A

Appendix: Mathematical

derivations

This appendix shows the detailed mathematical derivations of the equations used in

this thesis.

A.1 Expected absolute value of a Gaussian ran-
dom variable
This section shows the derivation of Equation 3.3. The goal is to calculate

too 1 —z o2
BlIXl) = [ lal=sme /N

Because the integrand is an even function of z, we can split it in half and eliminate

the absolute value.

2 Foo —z2 g
BlIX|) = — = /0 w20 gy

Perform the change of variable y = z2/(202). Then dy = x/0%dz, or zdz = ody.

E[lX]] = e Vdy

20‘2 /+oo
oV 2m Jo
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The integral is equal to 1.

EllX]] = 0\@

A.2 Variance of a Laplacian distribution

This section shows how to calculate the variance of a Laplacian distribution. By

definition,

+o00
o? = / z?p(z)dx

-—00

From Equation 3.6,

1
R gy
p(z) 53¢

As a result,
+oo 1
o= /_oo xZ%e“M/bdx

We may eliminate the absolute value operator because the integrand is an even

function of z.
+00
o? = l/ e /v dy
b Jo

Apply integration by parts, with u = 22, du = 2zdz, v = —be %/, and dv =

e~ /.

=400 1 +oo

- = —ozbe*/bdx
z=0 b Jo

o = % (—bz?e /")

Simplify.
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400
o’ = 2/ e *bdg
0

Apply integration by parts again, with 4 = z, du = dz, v = —be™*/®, and dv =

e~ /b,

=-}-00 +oo
0% =2 (—bxe‘z/b),x : - 2/ —be™*/Pdx
= 0

Simplify.

+o00
o? = 2b/ e 2/bdx
0

Perform the final integral.

0'2 = 2b (_be_w/b)|$=+°0

=0

Simplify.

o? = 2b?

A.3 Probabilistic distribution of quantized Lapla-
cian distribution
This section shows the derivation of Equation 3.8. The objective is to determine

(+3)@

(3 =/ z)dx
p(iQ) 1) p(z)
where, from Equation 3.6,
1
_ 1 i
p(z) = 5pe
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Immediately, we see that
1 ((i+3)Q
0 = — —l=l/bg
1Q) = e z
p(iQ) = 5 f(i_%)Q
Two cases are necessary: ¢ =0 and i # 0. First we consider ¢ = 0.

e—lzl/bg
p(0Q) = 2b/Q/2 *

The integrand is even, so we can eliminate the absolute value operator.
The integral simply becomes
p(0Q) = % (—b —w/b)|$ =+Q/2
Simplify.
p(0Q) =1 — e~/
Let r = Q/(2b).
p(0Q)=1—e"

Now we consider the case i # 0. First, we see that because p(z) is even, it does
not matter whether 7 is negative or positive. Therefore we may apply the absolute

value operator to 7 and remove it from z.

lzl+2)Q B
~ 2% /M—_

Perform the integral.
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x:(lil-&-%)Q
~(i-1)0

1
Q) = — (—be =/t
pQ) = 57 (~be~"1")
Expand.

(_e—(lil+%)Q/b 4 (i —%)Q/b>

N[ =

p(iQ) =
Substitute r = @/(2b).

p(iQ) = (e_(“"%)” _ e—(lil+-§-)2r)

| =

Expand the exponents.

(e—2r[i|+'r _ e—2r|’i|—r)

p(iQ) = %

Collect common terms.

p(iQ) = e M.~ (& — ™)

Substitute sinhz = £(e® — ™).
p(iQ) = e ¥l sinh

-
In summary,

1l—e™, 1=0

p(iQ) = . .
e~ sinhr, 50

A.4 Entropy of quantized Laplacian distribution

This section shows the derivation of Equation 3.9. The entropy is defined as
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S p(iQ) logy p(iQ)

1=-—00

where, from Equation 3.8,

_ 1—e™, 1=0
p(iQ) = . .
e >lilsinhr, 70

First, we split the infinite summation of the entropy expression into negative, zero,

and positive s.

( > p(iQ) log, p(iQ) + p(0Q) log, p(0Q) + ZP(ZQ log, p( zQ))

=—00

It can be seen that p(i@) is even about i. Therefore, the negative and positive

summations are equivalent.

- (#0Q)102,5000) + 2560 o p(60)

We now expand p(iQ).

H=—(1-e")logy(1~e) 2 62 sinh(r) log, (e~ sinh(r
o(

Expand the logarithm and factor out 1/1n 2.

. +00 ) )
2 ?Hl;l T S e i(In(e™ ") + In(sirh 7))
n

i=1

H=—-(1-¢eT)logy(l—€7") -

Simplify the right hand term.

2sinhr 2 : ‘
H=—-(1-eT")logy(l—¢e"")— 811:12 A > (—2rie”* + e In(sinh 7))

i=1
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Split the summation.

4rsinhr &% . 2sinh7In(sinhr) IX _, .
H = —(1-— -r =T s —=2ri —2r3
(1—e™")logy(1~e™") + In2 ;ze In2 ;e
The rightmost summation is a simple power series.
4rsinhr I%  _,. 2sinhrin(sinhr) e %
H=—-1—— —rl 1— —-r ekl —2ri _
( € ) ng( € )+ In?2 ;ZG In2 1 —e—2r
Further simplification is possible.
4r sinhr ¥ ., e "In(sinhr)
H=—(1—e"")1 1—¢e " e s —2rp _ C AT
(1 =) logy(1 — ™) + In2 2 i In2

i=1

The middle term presents some difficulty. Let us examine the more general infinite

series
+00 .
> it
i=1
Notice that
+oco . ) +o0
dliat—(i—1)a*=> d
i=1 i=1

The left hand terms can be split, and the right hand term is a simple power series.

“+oo

too . a
doiat =Y (i—1)a' =
i=1

i=1 l-a

The index of the right summation may be changed slightly.

+00 ) +0oo ) a
o= ot -
i=1 i—0 l—a

Pull out a from the right summation, and change the index again.
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Collect common terms.

o0 a
l1—a ia' =
(=)} o =
Divide to isolate the summation.

Zza = —_—(l—a)

=1

We substitute this result into the entropy expression, where ¢ = e%".

4rsinhr e e "In(sinhr)
In2 (1—e2)? In2

H=—-(1-eT")log,(1—e™")+

Further simplification yields the final entropy expression.

_ 1
" In2

<—(1 —e Mn(l—e™") + — e " In(sinh r))

r
sinhr

A.5 Distortion

This section shows the derivation of Equation 3.12. We start with Equation 3.11

(ignoring the multiplicative factor of 256).

(i+ )Q

p= 2 [

i=—00

—iQ)’p(z)dz

First, we split thie infinite summation into negative, zero, and positive is.

b i (/+Q/2+iQ(x—iQ)2p((L')d$) +/+Q/2 P p(z)da

1=—00 —Q/2+iQ —Q/2
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Y ( / e iQ)zp(:c)d:c)

i=1 Q/2+iQ

Because p(z) is an even function, the negative and positive summations are equiv-
alent. Furthermore, it is worth noticing that the integral in middle term (¢ = 0) can
be split into two equal halves. As a result, we may rewrite the expression in the

following manner.

D=2 ( / Y 2V + Z ( / e Z'Q)2p(x)da;))

Q/2+iQ

Now we expand p(z) into its full form. However, in the previous expression, z is
always positive in the range of interest. As a result, we can discard the absolute value

operator in p(x).

1 +Q/2 2l +Q/2+i¢ . \2.—x/b
D_b</o da:—i—Z(/ (z—iQ)’e™*dx

—-Q/2+iQ

On the right term, we perform a change of variable y = z — iQ.

+Q/2 +Q/2 )
D= —ll; (/ z?e /P dx + Z (/ y e_(y“Q)/bdy))
0

Q/2

We can factor and pull out a term from the integrand.

1 Q/2 e +Q/2
D=x (/0 z?e ™/ dx + (Z e“’Q/b> (/_Q/2 yze“y/bdy))

i=1

The infinite series can now be easily calculated.

1 +Q/2 9 e—Q/b +Q/2
_ —z/b 2_,—y/b
D= ([ et (5 ) ([ v

Split the right integral in half.
1 +Q/2 e—Q/b 0 +Q/

D == / 2 _x/bd _— / —y/b / _y/b
b(o x‘e T+ [ =an _Q/ye dy + dy
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Combine common terms. I also change all variables of integration back to z.

1 ]. +Q/2 9 e“‘Q/b 0
_ = - —x/b s 2_—z/b
D b ((1 — e—Q/b) (/o re da:) + (1 — e~ Q/b /—Q/zx e dz

Factor out more common terms.

1 tQ/2 0
_——— —z/b -Q/b 2 —x/b
D—b(l——e“Q/b) (/0 e " dx +e /_Q/zace da:)

Using integration by parts, we find that
/ w2e /4y = —be=2/%(26% + 2bx + 22) + C

Substitute this expression for the integrals.

1 Q?
- - —p—Q/(2b) 2 X 2
D = l—e“Q/b<( e (2b +Qb+4)+2b)
2
+ e/ (——2b2 - R/ (%) <2b2 — Qb+ —)))
4
Multiply out the bottom term.
D = ——_(_earen (o + Qb+ <& + 20
1—e-Q/ 4
2
— 2b2e= Qb 4 o —Q/(20) <2b2 — Qb+ ___))
4
Cancel out all possible terms.
__ 1 2 —Q/b ~Q/(2b)

Multiply out.
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D — o8 2e~9/@)Qp
T 1 —eon

In the right hand term, multiply the numerator and denominator by e®/(2),

2Qb

— op2 _
D=2b eQ/(2b) . ¢—Q/(2))

Substitute sinhz = 3(e® — e7®).

Qb

D =2 — —
Slnh295

Factor out 2b2.

Q
D=2 (1- 2
sinh 50'5

Substitute r = 295.

sinh r

D=2b2<1— r )
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