
An Extensible Object-Oriented Executor For The

Timeliner User Interface Language

by

Steven M. Stern

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Computer Science and Electrical Engineering

at the at heMASSACHUSETTS INST JE

OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOG'

May 8, 205 . 0CJUL 1 8 2005
May 18, 2005 L'T~& 2ccM1

Copyright 2005 Steven M. Stern. All rights reserved. LIBRARIES

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to

grant others the right to do so.

A uthor ..........................
Department of Electrical Engineering and Computer Science

A May 18, 2005
Certified by....................

Dr. Robert Brown
Charles Stark Draper La,4oratory Thesis Supervisor

Certified by...... .....
Professor Robert Berwick

M..TThesi.2Advisor

Accepted by
Artliur C. Smith

Chairman, Department Committee on Graduate Students

BARKER



THIS PAGE INTENTIONALLY LEFT BLANK

2



An Extensible Object-Oriented Executor For The Timeliner

User Interface Language

by

Steven M. Stern

Submitted to the -
Department of Electrical Engineering and Computer Science

May 18, 2005

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Computer Science and Electrical Engineering

ABSTRACT

Timeliner is a time-oriented scripting language and execution environment used on

the International Space Station. This project describes the creation of a new version

of the executor, using Java technology. This executor is more modular, extensible,
and easier to maintain than the existing Timeliner system, which is written in Ada.

This executor, in conjunction with a previously developed Java compiler, completes

the Next Generation Timeliner system. This system can now compile and execute

many test scripts, including a self contained simulation.

Thesis Supervisor: Dr. Robert Brown
Title: Charles Stark Draper Laboratory Thesis Supervisor

Thesis Supervisor: Professor Robert Berwick
Title: M.I.T. Thesis Advisor

3



THIS PAGE INTENTIONALLY LEFT BLANK

4



Acknowledgments

I would like to thank Robert Brown, Joseph Bondi, and the staff of the Charles

Stark Draper Laboratory. Without their support, this project would not have been

possible. I would also like to thank Professor Robert Berwick for his advice and

guidance. Thank you to my family for your continual support.

This thesis was prepared at The Charles Stark Draper Laboratory, Inc., under

NASA Contract Number NAS-9-01069, sponsored by the NASA Manned Spaceflight

Center, Houston, Texas.

Publication of this thesis does not constitute approval by Draper or the sponsoring

agency of the findings or conclusions contained herein. It is published for the exchange

and stimulation of ideas.

Steven M. Stern

5



THIS PAGE INTENTIONALLY LEFT BLANK

6



Contents

1 Introduction 11

1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 The Timeliner System 15

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Language Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18

2.2.2 Sequences and Subsequences . . . . . . . . . . . . . . . . . . . 19

2.2.3 Control Statements . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The Executor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Executor Implementation 27

3.1 XML Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Keyword Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Keyword Factory Operation . . . . . . . . . . . . . . . . . . . 30

3.2.2 Adding Keyword Handlers to the Keyword Factory . . . . . . 31

3.3 Keyword Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Special Keyword Handlers . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Creating Keyword Handlers . . . . . . . . . . . . . . . . . . . 34

7



3.3.3 Executing Keyword Handlers . . . . . . . . . . . . . . . . . . 38

3.3.4 Abstract Keyword Handler . . . . . . . . . . . . . . . . . . . . 40

3.3.5 Testing Keyword Handlers . . . . . . . . . . . . . . . . . . . . 41

3.4 Executor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Extending the Executor 45

4.1 Sequence Priority Levels . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 New SWITCH Keyword Handler . . . . . . . . . . . . . . . . . . . . 46

4.3 Modifications During Execution . . . . . . . . . . . . . . . . . . . . . 47

5 Results 49

5.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Plant Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Modularity and Extensibility . . . . . . . . . . . . . . . . . . . . . . . 52

6 Discussion 55

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1.1 How Time is Determined . . . . . . . . . . . . . . . . . . . . . 56

6.1.2 Scheduling Algorithm. . . . . . . . . . . . . . . . . . . . . . . 56

6.1.3 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A Sample XML Input File for Figure 2-1 59

B Plant Simulator Bundle 61

C Executor Output When Executing Script in Appendix B 67

8



List of Figures

2-1 Example script in the Timeliner User Interface Language . . . . . . . 18

2-2 Example portion of code that uses secondary control statements. . . . 20

2-3 Table describing output file for script in Figure 2-1 . . . . . . . . . . 23

2-4 List file for script in Figure 2-1 . . . . . . . . . . . . . . . . . . . . . 24

2-5 Visual representation of the executor components . . . . . . . . . . . 26

3-1 XML data for the Sequence declaration seen in Figure 2-1. . . . . . . 29

5-1 Graphical representation of the Plant Simulator environment. .... 51

9



THIS PAGE INTENTIONALLY LEFT BLANK

10



Chapter 1

Introduction

A system as complex as the International Space Station must be thoroughly tested

and monitored in order to insure the safety of the astronauts on board. Even the

slightest mistake could ruin a mission. Such a mistake could cost hundreds of millions

of dollars to repair and retry the mission, or worse yet, endanger the lives of those on

board the station.

Performing these tests and monitoring the International Space Station could itself

prove to be extremely costly. It is very expensive to bring someone on board and

sustain them. The more time they spend testing and monitoring the station itself,

the less time they have to perform their intended mission. Therefore, it is ideal to

have an automated system perform these actions. Timeliner is the system currently

used for this purpose on the International Space Station. This system has also been

in use on the United States space shuttles since 1982 [3].

Before Timeliner, manual crew procedures were used for the testing and monitor-

ing of the space shuttle systems. These procedures were written by ground control

operators. The Timeliner User Interface Language (UIL) was written to closely mimic

the language of the manual procedures, allowing operators to quickly learn the new

computer system. At first, Timeliner was used in simulations for the space shuttle [3].

Since then, NASA chose to use Timeliner as the procedure executor for payload and

core systems on the International Space Station.

Timeliner scripts can be used for almost any task on board the International Space

11



Station. This allows for greater productivity of the mission operators and on board

crew, as well as providing greater reliability and safety since many tests and monitors

can be created without sacrificing mission time.

However, Timeliner can be made even more extensible. The existing Timeliner

system is written in Ada code. Extending the system is possible, but requires a

significant amount of development work. Future NASA systems, as well as other

systems, would benefit from a new, more modular and extensible Timeliner system.

1.1 Objective

The future of Timeliner is the Next Generation Timeliner. This new system will

provide all of the functionality present in the existing Timeliner design, allow for

more extensibility, use modern technologies and design patterns, and provide greater

assurances of reliability. Previously, a compiler for this new system has been devel-

oped [2]. The objective of this project is to create the design, framework, and initial

implementation of the executor for the Next Generation Timeliner.

This executor will complete the initial version of the Next Generation Timeliner.

The executor and compiler will be usable such that scripts written for the current

version of Timeliner can be compiled and executed, with results similar to that of the

existing Timeliner system. However, this new system must be modular and extensible,

allowing for new functionality not easily available in the existing system.

1.2 Motivation

One of the primary motivations for this project is to create a version of Timeliner

that is easier for software developers to maintain. The current version of Timeliner

is written in Ada, a language that is not as commonly used as it once was. The new

system will be implemented in Java. This allows developers to make use of the tools

and support offered by a popular, widely used language. The object oriented nature

of Java also allows for the new system to be highly modular. Inheritance allows for

12



the elimination of duplicate code. Finally, Java is platform independent, allowing for

Timeliner to be easily used on any target system.

The existing Timeliner system is highly procedural. When executing a statement

in the Timeliner User Interface Language, the Ada executor employs a large switch

statement. There is no set definition or interface that the Timeliner UIL statements

must conform to, which makes extending the system difficult and time consuming.

Even small changes can have adverse effects on many parts of the existing system.

The Next Generation Timeliner system will provide a fixed interface that Timeliner

UIL statements must conform to. Each statement will be treated as a separate object,

with abstract classes providing the duplicate functionality. This will make extending

the Timeliner system significantly easier.

1.3 Scope

The Next Generation Timeliner consists of a compiler and an executor. This project

only deals with the executor. In particular, the scope of this project is to design

the framework for the new executor, and create an initial implementation within this

framework. This design provides for ease of both unit testing and integration testing.

Testing to show basic correctness and the viability of this design are within the scope

of this project, as well as the framework for conducting more complex tests; however,

the extensive testing NASA would require before this system can replace the existing

system is outside the scope of this project.

The primary goal of this project is to create a working version of the Next Genera-

tion Timeliner that can immediately be used with great success in testing, simulation,

and other systems that are not mission-critical.

1.4 Organization

The remainder of this thesis is presented in five chapters. In Chapter 2, the Timeliner

User Interface Language and the existing Timeliner system are described in greater

13



detail. Chapter 3 covers the design and implementation of the Next Generation Time-

liner Executor, as well as the rationale behind some of the design decisions. Chapter

4 demonstrates the extensibility of this design by detailing how several changes to

the Timeliner UIL can be implemented in this system. Chapter 5 explains how this

system meets the goals described previously, including the successful execution of a

suite of Timeliner scripts for a greenhouse system. Finally, Chapter 6 explains possi-

bilities for future work, and what will be necessary for the Next Generation Timeliner

to replace the existing Timeliner system.

14



Chapter 2

The Timeliner System

2.1 Overview

The Timeliner system was developed by The Charles Stark Draper Laboratory to

automate procedures that require precise sequencing to achieve autonomous control

of real-time processes. Timeliner is in use on the International Space Station, and is

marketed commercially as part of the TLX family of products offered by the Auspice

Corporation. Timeliner has provided significant mission cost savings and productivity

gains.

The Timeliner system can be used for many tasks. On the International Space

Station, Timeliner has been used for both routine operations as well as operational

work-arounds for problems in the flight hardware and software. Timeliner's versatility

is a combination of a simple to learn Timeliner User Interface Language, a compiler

for this language, and an executor that interprets and performs the actions of the

compiled scripts.

The Timeliner User Interface Language is a scripting language with a focus on

time-oriented execution. The language was designed by examining how mission con-

trol operators would give procedural instructions to astronauts on board the space

shuttle. A language that parallels these instructions was desired so that mission con-

trol operators, who generally have little knowledge of software development, could

easily learn to write Timeliner scripts. The result is that Timeliner commands have

15



a strong correlation to procedural instructions given by human operators. Time-

liner scripts are very easy to create, yet still powerful enough to provide the same

functionality that other scripting environments provide.

Most Timeliner statements are time oriented. The EVERY statement repeats a

task periodically. The WHEN statement blocks until its condition evaluates to true.

The more traditional constructs, such as IF ... ELSE are still available, but the time

oriented statements are used significantly more often for describing procedures in a

flight mission environment.

The statements in Timeliner also follow a very simple pattern. Every statement

is of the form:

KEYWORD <argument> [<optional arguments>]

This makes it very easy for mission control operators to learn the Timeliner syntax.

Multiple scripts may be executed in parallel. This allows for handling triggers that

do not necessarily have a predefined order: for example, separate actions taken when

the temperature and the altitude reach various thresholds. Also, completely separate

parts of a system can be controlled from the same Timeliner executor. For example,

periodic checks to the International Space Station itself can be performed in parallel

to a specific experiment being conducted on board. This gives greater power to the

script developer, but also imposes additional complexity on the executor. Timeliner

developers do not want to deal with resource allocation or contention; the system

must simply work as intended.

The Timeliner system itself is divided into two main components: the compiler

and the executor. There are several reasons for this division. Primarily, these systems

execute at physically different locations. The compiler runs at ground control, while

the executor runs on the target system. This physical division requires that there

be a data transmission standard between the components. A minor change to the

compiler located at a NASA ground control center should not require a change to the

executor on the International Space Station. So long as this minor change does not

break the standard, the existing executor version can remain in use.

16



This division also allows for greater modularity. Compiled scripts can be trans-

mitted to external components for testing and validation. For example, the existing

Timeliner system has a viewer for the compiled files, allowing the operator to visu-

ally examine exactly how the Timeliner compiler parsed and interpreted the original

script. Minor changes to both the compiler and executor do not require changes to

this external viewer.

The remainder of this chapter begins with a more detailed explanation of the

Timeliner User Interface Language. This is followed by a description of the Timeliner

compiler, followed by an introduction to the Timeliner executor. Each of these com-

ponents refer to the existing version of Timeliner. The Next Generation Timeliner,

and how it differs from the existing Timeliner, is described in detail in the subsequent

chapters.

2.2 Language Hierarchy

The Timeliner User Interface Language is a hierarchical, block structured language.

Each procedure in Timeliner is known as a SEQUENCE, and related sequences com-

bine to form a BUNDLE. Procedures are loaded and unloaded from the Timeliner

system at the bundle level at any point during execution. For this reason, sequences

within a bundle are generally part of a common execution theme.

Within a sequence is a list of statements, with one statement per line. White

space is important in the Timeliner UIL since a carriage return denotes the end of a

statement.

Each statement is broken into "components". For example, the statement:

SET X = Y + Z

contains five components: the initial keyword, the three variables, and the addition

operator (the equality operator is implied by the SET keyword component). These

components have a very strong correlation to the Keyword Handlers described later

in Section 3.3.

17



BUNDLE EXAMPLE
DECLARE X NUMERIC

SEQUENCE ONE
WHEN X > 1

SET X = 0
END WHEN

CLOSE SEQUENCE ONE
CLOSE BUNDLE

Figure 2-1: Example script in the Timeliner User Interface Language

Figure 2-1 provides an example of a simple script that uses these constructs. This

script will check the value of X and wait for it to be greater than 1. Once this happens,

the value of X is set to 0 and the script terminates. If the WHEN statement were

replaced by a WHENEVER statement the script would repeatedly check the value of

X and change its value to 0 every time it becomes greater than 1.

For a more detailed description of the Timeliner User Interface Language, there

are references available [3].

2.2.1 Bundles

The highest level of the Timeliner UIL hierarchy is the bundle. A bundle can contain

only four Timeliner constructs: sequences, subsequences, declare statements, and

define statements. Every bundle must contain at least one sequence for it to be valid.

Declare and define statements are for variables that can be accessed from any of the

sequences or subsequences within the bundle.

Individual bundles can be installed and removed at any point during Timeliner

operation. For this reason, the most logical division of sequences is according to what

part of the mission they are needed. If sequences are divided into "launch", "mission"

and "landing" categories, bundles will only be loaded into the system when they are

needed.

18



2.2.2 Sequences and Subsequences

Sequences and subsequences are almost identical. They contain a list of statements

that are generally executed linearly, with two exceptions. First, conditional state-

ments can modify execution, though to a limited extent. The absence of both a

"goto" instruction and a loop "break" instruction keeps execution control very sim-

ple. Second, sequences can be paused, stopped and started both from the human

operator or by commands sent by another sequence in the same bundle. By default,

a sequence begins as "inactive" and requires a start command for it to begin. Alter-

natively, it is possible to declare a sequence as active upon install in the script source

file.

Subsequences, however, do not require start, stop, or pause commands. They can

only be executed through a call from another sequence or subsequence, resulting in

their execution being directly tied to their parent. If the calling sequence is stopped,

so is the execution of the subsequence it called. In general, multiple sequences can

call the same subsequence simultaneously However, a subsequence can be declared

as single-execution only. In such a case, a call to execute the subsequence will block

if it is currently being executed by another subsequence. The call continues to block

until the subsequence is free and can be executed. More than two simultaneous calls

are handled in a first-called, first-handled manner.

Each sequence contains a set of statements, with one statement per line. In

general, these statements are very straightforward. However, the control statements

are what separates the Timeliner UIL from other scripting languages.

2.2.3 Control Statements

The three main control statements in Timeliner are WHEN, WHENEVER and

EVERY. What makes these control statements unique is that each of them pauses

execution until the conditional is true. For example, the statement:

WHEN TEMPERATURE > 50

will block until the temperature value reaches 50.

19



WHEN X > 1 WITHIN 10
SET X = 0

OTHERWISE

MESSAGE "X <= 1 FOR 10 SECONDS"

END WHEN

Figure 2-2: Example portion of code that uses secondary control statements.

There are also optional secondary control statements BEFORE and WITHIN.

These are used to break out of the condition check if the primary conditional does

not evaluate to true before the secondary conditional. For example, the statement

WHEN TEMPERATURE > 50 WITHIN 60

will only wait for 60 seconds to see if the temperature reaches the threshold. If that

happens within 60 seconds, execution immediately proceeds within the loop. If not,

execution proceeds outside the loop.

Finally, there is also an optional OTHERWISE keyword. This keyword declares

a block of statements to execute only if either BEFORE or WITHIN was triggered.

OTHERWISE blocks must be declared just before the END statement for a loop that

contains a secondary control statement. For example, the code shown in Figure 2-2

will check the value of X for 10 seconds. If during that time the value is greater than

1, execution proceeds to the SET statement. If ten seconds elapses, the MESSAGE

command is executed. In either case, execution then proceeds after the end of the

loop.

Timeliner also has IF, ELSE, and ELSEIF statements. These control statements

execute in a more traditional manner: the condition is checked once, which immedi-

ately determines which block of code to execute next.

Each of these constructs will be described in greater detail.

WHEN statement

If the conditional is true, execution immediately proceeds to the statements within

the code block. Otherwise, execution pauses at the conditional statement until it

20



evaluates to true. After the statements within the WHEN code block are executed,

execution proceeds to the statements following the WHEN block.

This statement is not a loop at all, other than waiting for the conditional itself.

In fact, in the absence of any secondary conditionals, it does not matter whether the

statements that follow it are within the WHEN block or below the WHEN block.

Once the conditional evaluates to true, every statement below the WHEN block is

executed linearly.

WHENEVER statement

A WHENEVER statement is a loop version of the WHEN statement. Execution

pauses until the condition evaluates to true, just as with the when statement. How-

ever, after executing the statements within the WHENEVER code block, execution

returns to the primary conditional. This is an "edge-triggered" conditional, meaning

that the conditional must evaluate to false at least once in between two successive

iterations of the loop.

If there is no secondary conditional, the WHENEVER statement and its code

block constitutes an infinite loop. Any statement below this loop is unreachable.

EVERY statement

The EVERY statement is also a loop, but the condition must be a unit of time instead

of a boolean result. For example, "EVERY 5" executes the statements within the

loop every five seconds. Time spent within the loop will count towards the next

iteration: that is, if the loop takes four seconds to run, execution will only wait one

additional second in between successive loop iterations. If the example loop takes six

seconds to run, there won't be any wait time between successive loop iterations.

If the primary condition of an EVERY loop is not a constant, the value is only

calculated when the EVERY statement is first executed. The same value is stored

and reused for successive iterations.

21



BEFORE statement

BEFORE statements are used to break execution when the secondary conditional

becomes true. For the WHEN loop, this only applies if the secondary condition

evaluates to true before the primary condition. However, the WHENEVER and

EVERY loops repeat indefinitely. The BEFORE check happens immediately before

the primary condition is checked. Therefore, if both would evaluate to true at the

same time, the BEFORE condition takes precedence and the loop will break.

If there is an OTHERWISE statement associated with the loop, it will be executed

any time the condition of the BEFORE statement triggers.

WITHIN statement

This is similar to the BEFORE statement, except that the secondary condition here

is a unit of time. The WITHIN statement is very similar to the EVERY statement

in that the unit of time is only calculated the first time the condition is evaluated.

That same value is used every subsequent iteration of the loop.

Time is counted from the first execution of the condition. For example, consider

the statement:

WHENEVER X > 1 WITHIN 10

Execution will break ten seconds after initial execution, regardless of what value X

was during those ten seconds. If ten seconds is reached during execution of statements

within the loop the remainder of the statements will finish executing before execution

breaks out of the loop. Note that there is no way to break the execution of statements

within a loop early.

2.3 The Compiler

The compiler provides several key functionalities for the Timeliner system. The pri-

mary and most straightforward functionality is converting an ASCII text file into

a compiled file representing the abstract syntax tree. The compiler executes in the

22



tables create
at compile

time

sequence info

subsequence info

statement info

comDonent info

d

file of
executable

data for each
bundle

....................................
.....................................................

.. .... .. .

.........................
.... ................. ......

...... ....... .......... .

........... ...................... W ..........

install

numenc lits

cstring lits

application-
dependent

Figure 2-3: Table describing output file for script in Figure 2-1

ground control system and the output files are transmitted to the executor, which is

located on the flight system.

There are several key steps involved in compiling a Timeliner script. In order to

integrate with the target system the compiler must read a Ground Database (GDB)

file which represents the variables and commands specific to the target environment.

The compiler then performs syntax checks, reports any errors, and creates two output

files. First is the compiled script. Note that this must be interpreted by the executor;

it is not machine code, and so it cannot be run natively on any system. The structure

of this file is described by the tables in Figure 2-3. The second file generated is a

listing file for the mission control operator. The listing file that corresponds to the

script in Figure 2-1 is shown in Figure 2-4.

23

execution
buffer

onboard

Smem ry reqt

kernef
data onboard

memory
- used by

each
bundle



- TIMELINER EXECUTABLE DATA FOR BUNDLE 'SCRIPT' IS AS FOLLOWS:

- BLOCK/STATEMENT/CoMPONENT INFORMATION AS FILED:

- block stat comp type dati dat2 dat3 dat4 dat5

- bundle 1 1 BUNDLESTATEMENT 1 8 1 6 7

13
8 NUM-INTVAR 1 8 8 1

2 13 DECLARESTATEMENT 8

- seq 1 3 15 SEQSTATEMENT 3 7 14 16 1

0 1 0
24 NUM-NTGRLIT 1

26 BOOLEAN-COMBO 1 8 6 24

- 4 31 WHENSTATE MENT 6 0 26

35 NUM_.NTGRLIT 2

5 37 SETSTATEMENT 8 35

6 40 ENDSTATEMENT 4

- 7 42 CLOSESTATEMENT 3

8 44 CL0SE_STATEMENT 1

-- NUMERIC LITERALS:

- 1 1.00000000000000E+00 0.00000000000000E+00

- CHARACTER LITERALS:

- SCRIPTEXAMPLEONE

Figure 2-4: List file for script in Figure 2-1

As shown in Figure 2-3, the compiled script is composed of several tables. Each

table describes a certain, key element for the target script. The first tables describe

the sequence and subsequences, which are the highest level within a bundle. Next, the

statements are described. Each sequences and subsequence has pointers to this table,

since sequences are composed of statements. Following this is the component infor-

mation which is likewise connected to the elements in the statement table. Finally,

some components can be subdivided into literals, represented in the final tables.

In the Next Generation Timeliner system, each of these elements are known as

Keyword Handlers. Instead of being represented in a table, from highest level to

lowest level, they are represented in a tree structure. This is covered in greater detail

in the next chapter.

The list file, shown in Figure 2-4, is much simpler. This is designed to be read

by the human operators. Messages, warnings and errors from the Timeliner system

are reported as statement numbers, shown in the second column of the figure. The

remaining information ties each statement to its associated entries in the tables from

24



Figure 2-3.

2.4 The Executor

The executor in the Timeliner system interprets and processes these scripts. Com-

piled bundles are sent from ground control to the executor, which is located on the

target system. The executor parses these files and recreates the abstract syntax tree.

Keeping track of which sequences and bundles are active, the executor schedules the

various active tasks and performs the action of the scripts. The executor must provide

values for the system variables and perform the correct action for a system command.

The executor must also keep track of the timing of the system since that is such a

critical component of the Timeliner system.

While performing these operations the executor sends messages back to ground

control in human readable format. This allows the operators to inspect the system

and insure that everything is operating as expected. Generally this is just to insure

there is no human error such as not setting a sequence to "active" status.

A representation of the executor can be seen in Figure 2-5. The "Development

Environment" box on the left represents the compiler, which produces two output

files. The list file is sent to the mission control operator, represented by the oval on

the bottom. The executable data file is sent to the Timeliner executor itself, generally

located on the target system. Each of the operations of the executor is listed in the

various boxes in the center. The ovals on the right represent the target system that

the executor is interfacing with.

The functionality shown in Figure 2-5 is implemented in the Next Generation

Timeliner. The details of this implementation, including the differences between the

two Timeliner systems, are described in detail in the subsequent chapter.

25



-_ - . - _ P= __ .- - _asmnm

.............

..................................................

.................... ......

............. ..

:-:-:-:Env ir6or vn eon .

. ..........

Executable
Data File

...... ............................. .......

..........................................................- . . . . .. . .. . . .. . . .. . .. . .. . . .. .......

.......................

............ .... ........... .................. ......................... ...................................... ........................................................ .. ............................................ ..................................................... ......................... ... .............................. ............... . .......................................... ...
............................ ...........

......................... I ............. ......................................... .. .......... .......................................... ............. .......................... ............ .......................... ...................................................... ...................................
...... ........................................ .............. ............................ ............... . ............................... ........................... .. ......... ....................................

........ .. . . . ........... ................................. ........................ n rdEnW Milt. . ................ .....
------------ . . ............

................... ........... ...............SYSTEM................ .......... ...... .........OPERAT ...... ............................ ............. .....

Figure 2-5: Visual representation of the executor components

26

Timeliner Executor
Execution

Environment



Chapter 3

Executor Implementation

The primary goal for this project is to design and implement a Timeliner executor in

the Java language. This executor, once finished and fully tested, will be part of the

Next Generation Timeliner, which will replace the current Ada Timeliner system. In

particular, this component must implement all of the functionality seen within the

"Executor Kernel" of Figure 2-5.

There are several key goals for this system. First, the system must be very mod-

ular. There should be very little modification necessary to add or change the func-

tionality of a command in the Timeliner User Interface Language. The scheduling

algorithm should also be a separate module that can easily be changed or upgraded

as the need arises. Furthermore, the system must be very easy to test, both for unit

tests and for integration tests, since reliability is a paramount concern.

The Next Generation Timeliner is comprised of two primary components: the

compiler and the executor. The compiler began development at the Charles Stark

Draper Laboratory in 2001, also as a thesis project [2]. The compiler already brings

the Timeliner system away from what was described in the previous chapter. The

most significant change is that the compiler generates a single output file in XML

format, representing the abstract syntax tree of the input script.

The Executor module builds on top of this compiler by providing a system that

reads this XML file and executes the script represented by this abstract syntax tree.

When a compiled script is received by the executor it is first passed to the "Keyword

27



Factory". This component generates a set of concrete classes representing each node

in the abstract syntax tree of the script. Each of these concrete classes meets the

"Keyword Handler" interface definition. The scheduler then decides which order to

execute these Keyword Handlers. The entire system is mediated by the Executor

module, which handles commands and messages sent between sequences, or between

the human operator and a sequence.

The following sections describe each of these components. First, the XML file

structure is explained. This leads to the Keyword Factory's implementation to parse

this file and create Keyword Handlers, which are also explained in detail. The execu-

tor, which ties each of these components together, is then explained. This is followed

by a description of the scheduler module, a part of the execution module. Each of

these modules together comprise the executor for the Next Generation Timeliner.

3.1 XML Structure

Before any discussion of the executor could begin, a brief overview to the structure of

the XML file is necessary. The XML file acts as a tree structure with many areas that

are handled as "black boxes". For example, take the XML tag for a sequence. There

is some typical data specific for a sequence, as shown in the first few lines of Figure

3-1. However, the tag <DeclStatementList> begins a list of arbitrary statements

that appear within the sequence. Furthermore, by examining the full XML code

in Appendix A, there are further instances of this for the condition of the WHEN

statement and the statements within the WHEN block.

This clearly suggests a modular approach to the problem of parsing and executing

this data. For example, the command:

SET X = 0

could appear both as a child of the <CondStatement>, as it does for the code

represented in Appendix A, or it could just as easily appear as a child within the

<DeclStatementList> tag shown in Figure 3-1. The same executor code should be

28



<SeqDecl>

<line>3</line>

<id>ONE</id>

<status>INACTIVE</status>

<DeclStatementList>

<CondStatement>

<line>4</line>

<condWord>WHEN</condWord>

</CondStatement>

</DeclStatementList>

</SeqDecl>

Figure 3-1: XML data for the Sequence declaration seen in Figure 2-1.

running in either instance, suggesting that the code for a SET statement should be

completely independent of its parent. With very few exceptions, any Timeliner state-

ment could appear in many different places just as with the SET statement, and so

every Timeliner statement should be independent of its parent.

Furthermore, the SET statement above is rather simplistic, but it could be more

complicated, such as:

SET X =(Y + Z) / 2

In such a case, the arithmetic on the right side of the equation should already be

agnostic of its parent, as was explained in the previous paragraph. That implies the

SET statement should also be agnostic of its child. Any series of operations that

return an integer value are acceptable children.

This description leads to the design of the Keyword Handlers, described in Sec-

tion 3.3. Every component is an independent Keyword Handler. In the above ex-

ample, the highest level handler is for the sequence. It has one child - the WHEN

keyword handler. It, in turn, has two children: the conditional, and the SET state-

ment. Finally, the SET statement has a child for the expression to evaluate for the

assignment.

In the case of the original example in Figure 2-1, the expression to evaluate is just

a constant, which itself is a very simple Keyword Handler. In the case of the more

29



complex SET statement described earlier, there is a further tree of Keyword Handlers.

The SET statement has a reference to the highest element in the arithmetic, which is

the last expression to evaluate. In this case, it is the division operator. The division

operator has two Keyword Handler children: the numerator and denominator. In

this case, the denominator is a constant Keyword Handler, and the numerator is an

addition Keyword Handler. The addition handler also has two children, each of which

are Keyword Handlers that represent variable values.

In this way, the tree structure of the XML file is converted to the tree structure

of Keyword Handlers. The details of this conversion are explained in the subsequent

sections of this chapter.

3.2 Keyword Factory

In order to meet the goal of modularity, a factory design pattern is the most logical

choice. This factory must create the varied functionality that can be found in a

Timeliner script, yet still present it to the system in a generic way. In particular, the

Keyword Factory returns objects that meet the interface "Keyword Handler". This

meets the goal of modularity in two ways. First, every other component of the system,

including other Keyword Handlers, must only deal with the very simple interface of

a Keyword Handler. Second, if an element of the Timeliner UIL is modified, the

associated Keyword Factory is the only component of the executor that must be

modified to understand the change.

3.2.1 Keyword Factory Operation

The Keyword Factory operates in a loop, reading one element from the compiled

XML file each iteration of the loop. A stack is also maintained of all the Keyword

Handlers currently being processed.

For the first iteration, the stack is empty and so the Keyword Factory expects the

next XML tag encountered to create a new Keyword Handler. The factory maintains

a mapping of XML tags to concrete object names, allowing the factory to determine

30



which Keyword Handler to create. Only XML tags that begin a new Keyword Handler

are stored in this mapping.

For the second iteration the stack is not empty - the Keyword Handler created

in the first iteration is still on the stack. The factory will know when this handler is

finished since closing XML tags must match the opening XML tag. When the factory

receives the next XML tag, it doesn't use the lookup table. Instead, the factory asks

the Keyword Handler at the top of the stack if it recognizes this tag.

If the Keyword Handler returns true, it receives the tag for processing and the

factory continues to the next tag. If the Keyword Handler returns false, the next tag

must be the opening tag to a child Keyword Handler. The factory goes back to its

lookup table and creates a new Keyword Handler to place on the stack.

Again, the factory knows when a Keyword Handler on the stack is finished when

it encounters a closing XML tag that matches the tag that originally created the

handler. A handler is popped off the stack when it has finished. Then, a reference to

the newly completed handler is passed to the Keyword Handler that is next highest

on the stack. In this manner, Keyword Handlers are always passed a reference to any

child handlers they may have.

3.2.2 Adding Keyword Handlers to the Keyword Factory

This design could potentially allow for an operator to add or change Timeliner state-

ments while the executor is running. The data table used by the Keyword Factory

could easily be made mutable through commands from the mission control operator.

In order to create a new Timeliner statement, the following steps are necessary. First,

either the compiler must be modified to understand the new statement, or the new

statement could be added to an existing XML file "by hand". Second, a new object

must be written for this statement that meets the Keyword Handler interface. This

object must be compiled and loaded into the executor system. Finally, the data table

in the Keyword Factory must be modified with the beginning XML tag and concrete

class name of the new Timeliner statement.

Of course, modifying the data table during mission operation is a potentially risky

31



change. This would not be performed by NASA, but future users of the Timeliner

system could potentially have use for this "hot-swap" functionality. However, the

simplicity in modifying the Keyword Factory to understand new Keyword Handlers

also extends to more controlled additions of Keyword Handlers.

3.3 Keyword Handler

The Keyword Handler interface is designed primarily to allow communication between

different Keyword Handler implementations. For example, take the keyword handlers

needed to execute the script in Figure 2-1. The WHEN statement has an associated

keyword handler. This handler must communicate with the keyword handler for the

greater-than operation in order to examine the result of the inequality. Next, there

must be communication between the WHEN handler and the SET Keyword Handler

so the latter knows when to begin execution.

The most significant methods implemented in Keyword Handlers fall into two

categories: creation and execution. The creation methods are used by the Keyword

Factory on a bundle install and are never called again once the bundle has finished

installing. Conversely, the methods in the execution category cannot be called during

a bundle install. In addition to these two categories, some Keyword Handler imple-

mentations also implement the Bundle, Sequence, Declare or Returnable interfaces.

Each of these categories will be explained in further detail in this section.

3.3.1 Special Keyword Handlers

Bundle and Sequence

The handlers for a sequence and bundle are a special case. There are circumstances

in which each of these are different from every other keyword handler, as well as

different from each other. Specifically, there are commands that can come from

either the human operator or other scripts which are unique to either a bundle or

a sequence. Examples of these include starting, stopping, or pausing a sequence, or

32



uninstalling or halting a bundle. Only keyword handlers that also extend one of these

two interfaces will have methods for accepting these special commands.

Furthermore, most modules will not make use of these interfaces. In particular,

only the Executor and Scheduler modules will make use of the Bundle interface. Those

same two modules, plus any Bundle implementation, will make use of the Sequence

interface. Therefore, these two interfaces can be ignored when dealing with interac-

tions between all other keyword handlers. In particular, the commands mentioned

above are implemented as a Command Keyword Handler. Even this handler does

not need to know these interfaces; It uses the executor as the intermediary between

it and the target sequence or bundle.

Returnable

A more interesting special instance of keyword handlers is the Returnable interface.

This interface allows for a keyword handler to pass a value along to another keyword

handler. For example, the Addition Keyword Handler must pass a value along to

another keyword handler to return the result of its execution. Similarly, the Addi-

tion Keyword Handler must be connected to two other keyword handlers that both

implement the Returnable interface. Through this interface, it can know what values

to add together.

Certain keyword handlers know about the Returnable interface. In each of these

situations it is a parent-child relationship. While the Keyword Factory is creating

these keyword handlers the parent has the ability to insure some or all of its children

are Returnable, and an error can be raised if this condition is not met. However, such

an error should never arise since it would imply an error in either the compiler or the

Keyword Factory.

An example of a keyword handler which requires one child to be Returnable is

the WHEN statement. Typically, only one of this statement's many children must be

Returnable. The children in the code block do not necessarily have to be Returnable.

The XML tags will specify which child this is. In the case of a second conditional,

as described in Section 2.2.3, there will be two children that must be Returnable and

33



both will have appropriate XML tags. The Addition Keyword Handler is an example

of a handler in which every child must be Returnable.

Declare

The Declare interface is a subset of the Returnable interface. The Declare interface

is used for variables, which necessarily must also be Returnable. When a keyword

handler must read the value of a variable, it simply views it as a Returnable object.

However, with a keyword handler such as SET, it must also write the value which

happens through the Declare interface.

As with the Returnable interface described previously, a keyword handler can

insure its child is a Declare upon construction if such a condition is necessary.

The Executor and the Environment modules also handle objects at the Declare

level. The decision to create a new interface for this, instead of just using Return-

able, had to do with future development. When dealing with values declared by the

underlying system that Timeliner is interfacing with, added complexities can arise.

These complexities can be handled by the Declare interface without unnecessarily

complicating the simple Returnable interface. Many keyword handlers implement

the Returnable interface, while very few also implement Declare.

3.3.2 Creating Keyword Handlers

The primary creation methods of a Keyword Handler implementation are "pro-

cessTag" and "childListener". There are of course other minor methods, such as

"setLineNumber". This section will step through the creation of two Keyword Han-

dlers to illustrate how they are created and linked together.

Initial XML tag

The Keyword Factory must know the initial tag that creates a new Keyword Handler,

but with the help of the processTag method the factory doesn't need any additional in-

formation. For example, the factory must know that the XML tag <CondStatement>

34



refers to a concrete class for a conditional. However, the factory does not need to

know about the tags <Condition>, <CodeBlock>, and over fifteen other tags used

within a conditional.

See Section 3.1 for a more detailed description of the structure of the XML file.

Instead, the Keyword Factory retains a stack of keyword handlers currently be-

ing created. When the tag <CodeBlock> appears, the factory calls the processTag

method of the keyword handler at the top of the stack. This method returns a boolean

value indicating whether the tag was accepted or rejected. In this example, the con-

ditional handler will accept the tag as its own. The factory then processes the next

XML tag.

Creating children of current Keyword Handler

Inside the <CodeBlock> tag there will be other keyword handlers. For the script in

Figure 2-1, a <Set> tag will appear. The Keyword Factory passes this tag to the

keyword handler at the top of the stack, which is still the When Keyword Handler.

The tag will be rejected, causing the Keyword Factory to try and create a new keyword

handler from this tag. Note that only when the handler at the top of the stack rejects

a tag (or the stack is empty) will the factory try to create a new handler. This solves

the potential ambiguity of two handlers having identical tag names: one as the initial

tag, and the other as an inner tag. The following section covers this ambiguity in

greater detail.

This is where the tree structure comes in, as opposed to a linear creation of

keyword handlers. The When Keyword Handler will first have a conditional, indicated

by the <CondStatement> tag. Within this tag, another keyword handler will be

created and will finish. As stated in Section 3.2.1, the Keyword Factory knows when

a keyword handler has finished. The factory remembers the start tag and so the

handler is complete when the corresponding XML close tag is reached. After this,

the factory knows to give the next XML tag to the parent keyword handler. These

XML tags separate each of the children that the target handler may have. Therefore,

the When Keyword Handler always knows if the child passed by childListener is a

35



conditional, or the next statement in the code block.

Potential ambiguities

There is yet another potential ambiguity which must be taken into consideration. It

is possible to have nested keyword handlers, such that one instance of a particular

concrete handler is the parent of a different instance of the same concrete handler.

For example, a WHEN statement can appear within the code block of another WHEN

statement. If the When Keyword Handler were to always accept <CondStatement>

as its own, the second WHEN statement will not begin a new keyword handler.

Therefore, special care must be taken for opening XML tags. The When Keyword

Handler must reject the second occurrence of this tag since only the first instance is

legal for that particular keyword handler.

A second ambiguity, which was mentioned previously, is the possibility of one

handler's creation tag matching the inner tag of another handler. In such a case, the

keyword handler which has this tag as an inner tag must take care that it does not

mistakenly accept this tag when it is meant to be a creation tag for another handler.

The XML structure is designed such that this ambiguity is never a fundamental

ambiguity. That is, there will never be two different but correct ways in which to

parse a compiled XML file. This is because there is an XML tag to indicate every

time a handler must create a child. Whenever this XML tag was the most recently

accepted tag, the handler must reject all other tags. The only valid tag would be a

close XML tag, indicating the child has completed its creation.

Note that it is possible to handle the first ambiguity in the Keyword Factory; if the

next tag to be processed matches the creation tag of the keyword handler at the top

of the stack, automatically begin a new keyword handler. However, this alternative

was not taken because it does not solve the second ambiguity. Furthermore, any steps

taken by the developer to correctly handle the second ambiguity will also satisfy the

conditions of the first ambiguity. The first is easier to describe with an example,

though the second ambiguity is a generalization of the first ambiguity. Keyword

handler developers must take this issue into consideration regardless.

36



Data values

The Keyword Factory will also pass XML data items through the processTag method.

It is the responsibility of the keyword handler to remember the previous XML tag

that this data corresponds to. However, the Abstract Keyword Handler described in

Section 3.3.4 creates a cleaner interface for this issue. Data items are always passed

to the keyword handler at the top of the stack. This is correct since the Keyword

Factory invariant states that the handler at the top of the stack either accepted the

previous XML tag, or was created by the previous XML tag.

Going back to Figure 2-1, during the creation of the Set Keyword Handler, it will

receive a data value indicating that the variable to set is the string "X".

Completing Keyword Handlers

The Keyword Factory can always tell when the keyword handler at the top of the

stack has completed. Since the Keyword Factory knows what tag created this object,

it can infer the XML tag that will complete it. The factory pops the handler off the

stack when it has completed. Then, the Keyword Factory passes a pointer to the

newly created object to the handler that is next on the stack using the childListener

method.

For example, after encountering the <Set> XML tag, the factory knows to wait for

a </Set> XML tag. The current handler can be finished when this tag is reached.

A pointer to this completed Set Keyword Handler is given to the When Keyword

Handler, which is now at the top of the stack again. The When Keyword Handler

must keep a pointer to each of its children so it can execute them when appropriate.

In this way the original abstract syntax tree is again rebuilt. This time, however,

each node in the tree has specific methods that allow the executor to walk the tree

and execute along the way.

37



3.3.3 Executing Keyword Handlers

Once the keyword handlers have been created and pieced together by childListener

calls, the execution happens with the "execute" method. The details of this method

will be very different for each implementation of a keyword handler since this is where

the actual Timeliner functionality takes place.

For example, consider the When Keyword Handler. Upon calling the execute

method, it will first check its conditional. This is done by asking for the value from

one of its child keyword handlers. During creation, the handler insured this child

implements the Returnable interface. If this child is a Greater-than Keyword Han-

dler, as in Figure 2-1, it will ask for the value from its two children, both of which

implement the Returnable interface. If greater-than returns true, the parent When

Keyword Handler can then begin executing its list of child keyword handlers. Upon

completion of the block of child statements, the When Keyword Handler will complete

its execution. This execution began because a parent, such as a Sequence Keyword

Handler, called the execute method of the When Keyword Handler. The parent can

then continue its own execution, or pass execution on to another one of its children.

If the Greater-than Keyword Handler returns false, the When Keyword Handler

must pause execution here. This is done by returning a special value to its parent that

indicates execution must pause until the next time slice. This special value is passed

up the tree, back to the scheduler, which will then know that the remaining time slice

for this execution can be used elsewhere. The following time slice, each node in the

tree knows to give execution back to the same child that had it the previous time

slice. The Greater-than Keyword Handler is checked again, and the process repeats.

Keyword Handlers also receive a unit of time in the execute method. This unit of

time is how long the handler is allowed to execute. Currently, the time is measured in

an arbitrary unit of "steps", with each component deciding for itself how many steps

it consumes as it executes. This allows for the system to be usable as a simulation

environment for the current Timeliner system; each component can declare a number

of steps related to the actual time it would take when executing on a particular system

38



with the current version of Timeliner. Then the execution of this system would mimic

the target system exactly. The need for an external simulation environment further

shows the extended modularity offered by the Next Generation Timeliner. However,

in the future, the Next Generation Timeliner will be real-time. See future work in

Section 6.1.1 for a more detailed description.

Note the distinction between execute and the Returnable interface, described ear-

lier in Section 3.3.1. The decision to separate these two methods was for added

reliability. An alternate design decision would be to have no Returnable interface,

and instead have "execute" return a value in some keyword handlers, or signal that it

has no return value. This decision would provide flexibility in allowing keyword han-

dlers that sometimes return a value when executed, but return nothing other times.

This also simplifies the overall design.

However, this pushes a key error from process time to execution time. Specifically,

if a keyword handler requires a value from one of its child keyword handlers, such as

the Addition Keyword Handler, it is possible for it to not have a value at execution

time. Since the Timeliner User Interface Language does not allow for such a construct,

this could only result from a compiler error or an XML parse error. Reliability is a

paramount concern, and so this error must be reported when the XML file is being

parsed, not at execution time. Furthermore, due to the simple nature in the Timeliner

UIL, it is not feasible that a construct would later be introduced that sometimes

returns a value, and other times does not. Therefore, the decision to separate these

two functionalities provides for greater reliability, does not hinder any functionality,

and only adds a small level of complexity.

During execution, the Executor produces messages in human readable format so

the operator can inspect the system. The messages sent for a sample script appear

in Appendix C. This sample script is described in greater detail in Section 5.1.1.

3.3.4 Abstract Keyword Handler

There is, of course, much overlap among different keyword handlers. An Abstract

Keyword Handler has been built to simplify the development of individual keyword

39



handlers.

Primarily, much of the work in building keyword handlers has been simplified

by this abstract class. Every subclass must implement a method, "acceptableTag",

which returns true if the target tag is accepted by this particular keyword handler.

Also, every subclass must implement "processData". These construction methods

abstract away the common aspects of keyword handler construction that are integral

to the XML file format, while simplifying the few details that must vary from handler

to handler.

In this way, keyword handlers can be written very easily. The acceptableTag

method is often implemented as a series of "or" operators, checking the target string

against each of the tags that can be accepted. A more complex keyword handler can

perform more work on a particular tag, such as to prevent the ambiguity described

in the previous section, but most handlers only perform work in the processData

method. The abstract class maintains a stack of the accepted tags and therefore

can figure out for itself how to handle close tags; each implementation never sees a

close tag. On the processData method, the keyword handler can call a method in

the abstract class that returns the tag at the top of the stack in order to take the

appropriate action.

The Abstract Keyword Handler also handles any operation that is identical across

keyword handlers. For example, the "line" tags and associated data are never passed

to an implementing keyword handler since it is always treated the same. The methods

for reading the line number from a keyword handler are also handled in the abstract

class. Creating a pointer to the Executor for command issuing is also handled at the

abstract level.

3.3.5 Testing Keyword Handlers

As was described earlier, reliability is a paramount concern for the Timeliner system.

Therefore, each keyword handler should be unit tested thoroughly. The modular

design allows for this to be very simple. Each keyword handler has a very concise

interface with other keyword handlers: they can call execute on each other, and with

40



Returnable Keyword Handlers they can ask for a return value. Testing keyword

handlers is very straightforward with this simple interface.

To test a keyword handler, create a test module and stub keyword handlers.

The stubs simply pass messages back and forth between the test module and the

handler to test, allowing the test module to create any environment around the target

keyword handler. The target cannot distinguish this sand-box operation from an

actual execution. The test module passes values through the Returnable interface

in the stubs, checks values if the target keyword handler is Returnable itself, calls

execute on the target, and reads when the target calls execute on the stub keyword

handlers. Through this, the test module can simulate any test case and insure the

correct functionality from the target keyword handler. This allows for an automated

test suite of each keyword handler.

For integration testing, a very similar scenario can be used. The keyword handlers

to test should be linked together correctly. From this collection of handlers, there will

be several that must interact with the outside world. Connect those to stub keyword

handlers, and test just as described previously.

In fact, the converse of this type of test is also possible. Stub handlers can be writ-

ten that mimic bundles or sequences. These stubs do not have any actual children;

they merely pause in order to mimic the execution of an actual bundle or sequence.

In this way, the Executor and Scheduler can be unit tested in any simulated environ-

ment. This can further be used for stress tests. The stub bundles and sequences can

occasionally take an unusually large amount of time in order to insure the Scheduler

can handle this scenario without other stub bundles experiencing resource starvation.

Other scenarios, or even randomly chosen scenarios, can be tried in order to test the

Executor and Scheduler in any situation.

3.4 Executor

The executor module ties the system together. For the most part, it is a very simple

component. On a bundle install, the Executor just passes the XML data to the

41



Keyword Factory, and then retains a handle to the completed bundle. The Executor

also, with the direction of the Scheduler, decides which keyword handlers should

receive processing time and how much time they get. The Executor also handles any

command request, either between mission operators and scripts, or from one script

to another. In doing so, the Executor can perform permission checking, though the

current version does not do so. Timeliner currently runs in extremely controlled

environments, such as the International Space Station, and so there is no need to

check permissions in order to protect against malicious scripts.

3.4.1 Scheduler

The Scheduler is a subcomponent of the Executor. Through using method calls in

the Executor, the Scheduler can get a high level view of the installed system. In

particular, the Scheduler can examine the bundles and sequences installed, including

which bundle each sequence is in. With this information, the Scheduler decides how

to divide processing time.

Currently, the system mimics the existing Timeliner scheduling algorithm. This

algorithm is to divide processing time equally among bundles without regard to the

number of sequences within the bundles. Each bundle is then executed in the order in

which they were installed. If any bundle completes its execution early, its remaining

time slice is divided evenly amongst every bundle that was installed after it; bundles

that already executed and completed do not benefit from this extra time.

A discussion of future work related to improving the scheduler can be found in

Section 6.1.2.

3.5 Environment

The Environment of the current Next Generation Timeliner is merely a stub. This

was done for two reasons. First, an integral part of any Environment interface is the

Ground Database, which the current Next Generation Timeliner compiler does not

yet implement [2]. Second, the author is not familiar with the finer details of the

42



space systems that Timeliner interfaces with. This aspect of the project is better left

to full time employees at the Charles Stark Draper Laboratory.

Instead, the system was designed to make it very easy to integrate with absolutely

any environment. There are stub methods which allow for reading or writing envi-

ronment variables, and sending commands to the environment. This environment is

general enough to provide the correct functionality in systems Timeliner currently

powers, and future systems that can benefit from Timeliner.

With this abstraction layer in place, the remaining executor system could be de-

signed and built without the need to know the details of the underlying environment.

43



THIS PAGE INTENTIONALLY LEFT BLANK

44



Chapter 4

Extending the Executor

The primary goal of this project was to create an easily extensible Executor for

the Next Generation Timeliner system. To demonstrate this extensibility, the steps

necessary to make two possible changes to the Timeliner User Interface Language are

described in this chapter. First is the addition of priority levels for sequences in order

to demonstrate changing an existing construct. Second is adding a new construct for

waiting until a specific time before executing a block of code. Finally, a discussion

about modifications during the execution of Timeliner follows.

For both of these constructs, it is assumed that the compiler has already been

modified to accommodate these changes. A detailed description of the changes nec-

essary for this are available in Chapter 4 of the associated thesis [2].

4.1 Sequence Priority Levels

This modification is significant in that it demonstrates how separating the compiler

and executor can allow for iterative development. If the compiler has been modi-

fied to accept priority levels from sequences, the executor can still interact with the

new compiler without any modification. Of course, the priority levels would not be

honored since the executor hasn't been programmed accordingly, but otherwise the

executor will still function correctly. A warning will be given when the XML file is

parsed indicating the presence of new data that it does not understand, but otherwise,

45



execution will proceed as if the compiler had not changed at all.

In order to make this change, the first component that must be changed is the

Sequence Keyword Handler. First, the interface must be modified so there is a way

to read the sequence's priority level. Second, the acceptableTag method, described in

Section 3.3.4, must be modified to accept the new priority tag. Then, the processData

method must be modified to store the data found in this tag. Each of these changes

are very simple and would require very few lines of code.

Finally, either the Scheduler or the Bundle Keyword Handlers must be modified,

depending on the functionality desired. If priority levels are to apply system wide,

the Scheduler should be modified to give time slices to the sequences directly, instead

of giving priority to bundles for them to allocate to their own sequences. Otherwise,

if priority levels apply only within a bundle, the Bundle Keyword Handler must be

modified to give time to its own sequences according to priority. In either case, very

few lines of code would need to be modified for this functionality.

4.2 New SWITCH Keyword Handler

Currently, Timeliner does not have a construct for the switch statement. The first

modification for this is to write the keyword handler itself. It would be a straightfor-

ward extension of the Abstract Keyword Handler described in Section 3.3.4, and so

the methods described there would have to be implemented.

Next, it must implement the childListener method, described in Section 3.3.2.

The compiler must generate an XML tag which defines each of the three types of

children a switch statement can have: the expression to check, possible values for the

expression, and statements to execute if the expression evaluates to the target value.

There also must be a tag that defines the "default" statements to execute if no other

value is triggered. The childListener method can call a method in the abstract class

that indicates which tag is at the top of the stack, letting it know how to handle

the newly created child. For the expression and the target values, the method must

insure that the child passed implements the Returnable interface. If it does not, an

46



error must be raised. The handler must maintain a mapping of values to a list of

statements, plus a special list for the default list of statements if any should exist.

Finally, the handler must implement the "execute" method. This method will

first ask for the value of the expression through the Returnable interface. Next, the

handler must go through each mapping it has stored and ask for the current value

through the Returnable interface. There are possibilities for optimizations here if it

were possible for a Returnable Keyword Handler to say if it has a constant value;

currently, there is no such functionality. When a value is found, or if a default value

exists and no other value matches, the handler has a list of associated statements

for that condition. The handler must pass execution to each of those statements,

followed by returning execution to its own parent.

Note that during each step of this execution, care must be made to not exceed

the time given for execution. The way in which this can be done varies based on

how the time is counted: steps, actual time, or something else. In a possible future

modification, this won't be necessary at all by making Timeliner multi-threaded,

and allowing the Java Virtual Machine to handle timings with the guidance of the

Executor.

Once the Switch Keyword Handler has been implemented, the Keyword Factory

must be modified to understand the opening XML tag for this statement, and to create

the appropriate object. Currently, that is two lines of code per keyword handler.

No other modifications must be made, as every other keyword handler will operate

fine with this new keyword handler. This shows the power of modularity and using

the factory design pattern: a new component can be created, and only two lines of

code in the existing system needed to be altered to introduce the new component.

4.3 Modifications During Execution

The modularity described here allows for even more possibilities. Particularly, it is

possible to modify modules during execution and have the modifications take effect

immediately. This was not done yet in the project since the National Aeronautics

47



and Space Administration (NASA), the primary user of Timeliner, would never take

advantage of this functionality as it introduces some level of risk to the system.

However, Timeliner is being marketed for other systems as well, and future users

could potentially want this functionality.

Particularly, it would be a simple change to have the Executor have a method

that allows for changing the scheduling module during execution. Once the current

time slice has been finished by the current scheduler, it will be unloaded, the new

scheduler will be loaded, and it will take over for the next time slice.

Similarly, it would be simple to have the Keyword Factory provide a method for

introducing new keyword handlers and modifying existing keyword handlers. The two

lines of code that map an XML tag to a keyword handler object can be in a simple

data structure that is modifiable by this new method.

Of course, modifying an existing Timeliner statement will not effect the bundles

currently loaded. Since those were created by the Keyword Factory before it was

modified, they still use the previous keyword handler. Bundles loaded after this

change will make use of the new functionality. However, if modifying the functionality

of the existing bundles during execution was a high priority, it is still possible with

a little additional work. It is still possible to have the Keyword Factory create the

new version of the Timeliner statement by passing it just the applicable piece of the

XML file. Then, the Executor must find the target keyword handler and replace it

with the new keyword handler by relinking the parents and children. The complexity,

however, is in finding the keyword handler, and knowing the details of it enough to

re-link the existing objects. To make this cleaner and easier, modifications would

have to be made to the Keyword Factory interface.

48



Chapter 5

Results

The goal of this project was to create a modular design and implementation of an

executor for the Timeliner User Interface Language. Correctness is one clear measure

of success. Other measures of success are modularity, extensibility, and ease of testing.

Note that efficiency is not a metric used here. Creating a complete executor is

a huge project. In the time frame allowed for this system, a finished product was

not feasible. In discussions with the staff at the Charles Stark Draper Laboratory,

it was determined that the primary goals were the design itself, and enough of an

implementation to execute the various sample scripts that the Charles Stark Draper

Laboratory has for testing and demonstrations. Insuring the keyword handlers were

highly efficient would have restricted how many could be implemented. This is just

the beginning of a long term project, and so efficiency will be revisited at a later date.

This project meets all of its goals. The Executor correctly runs various test

simulations available at the Charles Stark Draper Laboratory, as well as other test

suites created specifically for the Executor and associated keyword handlers. The

modularity of the system clearly allows for extensibility and ease of testing. Some

of these topics have been covered previously since these ideals are so integral to the

design of the system. The remaining results are described in the remainder of this

chapter.

49



5.1 Correctness

Throughout development of the Next Generation Timeliner Executor, testing was a

regular concern. Many scripts were written to test the components of the Executor

as well as the various keyword handlers. These tests checked the basic functionality

as well as boundary cases. A test driver was written which would automate these

tests, allowing for them to be run periodically as new changes are made to insure

completed components are not adversely affected by newer changes. However, due to

the highly modular design of this system, the addition of one component very rarely

affected any other component.

There are also various scripts available at the Charles Stark Draper Laboratory

that are used for testing and demonstration. The Next Generation Timeliner system

has been used to run these scripts with great success. First the scripts were compiled

with the Next Generation Timeliner's Java compiler. The resulting XML files were

loaded into the executor and the execution was monitored appropriately to insure

correct functionality. Of course, the way in which to monitor a script varies greatly

from script to script, depending on functionality. An example of such a script, and

the associated tests for correctness, is described below. The Timeliner code for this

script is in Appendix B.

5.1.1 Plant Simulator

The Plant Simulator set of scripts shows an example of how Timeliner can be used

to control a greenhouse environment. The system provides certain variables, such

as carbon dioxide and oxygen levels, pH and nutrient readings, and a handful of

other values. These variables are referenced and several pumps are switched on or off

depending on the levels. Furthermore, the pumps themselves are monitored: if they

don't turn on when the command is given, a warning is given to the operator.

What makes this script especially useful is an accompanying graphical represen-

tation of the system. This program has a very simple interface for reading the values

through Timeliner. Previously, it would be used with the existing version of Time-

50



Figure 5-1: Graphical representation of the Plant Simulator environment.

liner, though with a few modifications it can now integrate with the Next Generation

Timeliner.

The graphical representation is shown in Figure 5-1. Each of the hexagons repre-

sents the status of a pump. A gray hexagon represents a pump that is off, while a

pump that is on will have its hexagon in color. Each of the elements monitored also

has its value shown directly to insure that the pumps are turning on and off when

expected.

Of course, without an actual greenhouse, this set of scripts is useless. In order to

use the full functionality of these tests, a new set of scripts were written to augment

the Plant Simulator. First, a "greenhouse" script was created, which acts as the

pumps themselves. For example, when the carbon dioxide pump is turned on this

script will increase the value for the variable representing the carbon dioxide level.

51

-1



Second, a "plant" script was created which consumes the resources in the system.

Periodically, the plant would consume a little of its resources, such as depleting the

levels of nutrient and carbon dioxide while increasing the level of oxygen.

When these Bundles are all loaded into the Next Generation Timeliner system,

they execute flawlessly. The graphics program shows the level of the various values

moving accordingly and shows the status of the various pumps by having them appear

in color or in gray. An artificial pause was introduced in order to watch the system

and judge its correctness, but it operates identically without the pause. For example,

the carbon dioxide level will slowly decrease while the pump is gray. Once the level

reaches the threshold for turning on the pump, the graphical pump will become

colored and the carbon dioxide levels will quickly increase. If the artificial pause is

made long enough, it is possible to see the carbon dioxide level increase a large jump,

then decrease a little. This shows that while the pump is increasing the level the

plant is still slowly decreasing the level.

This system was left running for over 24 hours for a longevity test. While it was

impractical to examine it constantly during that time, at the conclusion of the test

the system was still operating exactly as it had at the beginning. No warnings or

error messages were generated. A sample of the Executor output while running these

bundles is in Appendix C.

5.2 Modularity and Extensibility

The system clearly is extremely modular. The test system, described in Section

3.3.5, is a primary example of the executor's modularity. As a comparison, unit

testing of individual statements is not possible in the previous version of Timeliner.

Each part of the Timeliner system can only be tested by testing the system as a

whole. Furthermore, each module described in Chapter 3 can be tested in such a way.

The system is divided into very clearly defined modules, each with a very simple and

straightforward interface to the other modules. This design allows for a test system to

connect to a module. Once connected, the test system provides correct data through

52



this interface and reads the results passed back. With such a simple interface, writing

the tests and insuring correctness is also very simple and straightforward.

Furthermore, the ability to "hot-swap" components, as described in Section 4.3,

shows the benefits of a highly modular design. The existing Timeliner design is

extremely procedural and tightly integrated. The ability to modify any part while an

existing part is executing is simply not possible.

Finally, a third measure of success here is Chapter 4. As a comparison, when im-

plementing a new Timeliner statement in the existing system, it took several months

of developer time to write, integrate, and test the new statement. With the Next

Generation Timeliner, this time can be cut down by an order of magnitude due to

the modularity of the system.

53



THIS PAGE INTENTIONALLY LEFT BLANK

54



Chapter 6

Discussion

The goal of this project was to create the design, framework, and initial implemen-

tation of an extensible, object-oriented executor for the Timeliner User Interface

Language.

The nodes in the abstract syntax tree of a Timeliner script are each a separate

object. Each of these nodes implements the Keyword Handler interface. Part of this

interface requires that the node can execute on its own, interacting with only its parent

and children in the abstract syntax tree. These objects provide a highly extensible,

object-oriented implementation of the Next Generation Timeliner Executor.

Two example extensions to the Timeliner UIL have been described, along with

the steps necessary to implement those changes. Each of these changes were very

simple in nature, and required minimal modifications to the existing system. This

further demonstrates the extensible nature of this system.

Most importantly, the Next Generation Timeliner system can correctly compile

and execute a set of scripts representing a hypothetical target system. While this

project can immediately be used in a simulation environment, there is still some

existing work that must be done on this system before it can replace the existing

version of Timeliner. The majority of this work is testing and validation; NASA has

an extremely rigorous software reliability standard. Once these changes are made

and testing is complete, users of Timeliner will be able to make use of the many

improvements made possible by this new system.

55



The remainder of this chapter describes the next steps needed to make the Next

Generation Timeliner system ready to replace the existing Timeliner system.

6.1 Future Work

There is still some work to be done on this system. The remaining tasks necessary are

making the system real time, improving the scheduling algorithms, and replacing the

environment stub with an actual target system's environment. In addition to this, a

full test suite must be written to insure the reliability of this new system.

6.1.1 How Time is Determined

The final version of Timeliner must keep track of time in a very accurate manner.

Currently, as described in Section 3.3.3, time is counted in an arbitrary unit of steps.

This was done in order to simplify the development and testing of this new framework.

However, this must be changed to actual time elapsed before the Next Generation

Timeliner can be used in the systems that the previous version of Timeliner currently

powers.

This isn't a trivial change either. One solution is to introduce multi-threaded

environments. However, this must be done with care. There is much research on the

topic of embedded, real time Java systems. This research must be consulted when

making this change to insure that Timeliner scripts are executed at the time they are

expected to execute [4]. In particular, overhead concerning the Java Virtual Machine,

including the automated garbage collector, must be taken into consideration.

6.1.2 Scheduling Algorithm

The current scheduling algorithm, described in Section 3.4.1, is not optimal for cer-

tain situations. In addition to these problems, a priority system is an ideal future

step to help Timeliner script developers better control which sequences receive extra

execution time. A rough outline of the steps required to introduce this priority system

56



is given in Section 4.1.

A priority system would also help in another situation. As described in Section

2.2.2, subsequences can be declared single-execution only. There could be a scenario

where a critical subsequence must be declared as such, and is called by many se-

quences. The high priority, emergency sequences should receive priority in executing

the subsequence. In the most extreme cases, it may be beneficial to roll-back the

existing execution of the subsequence so that the highest priority sequence can im-

mediately take control of the execution. Each of these scenarios can be implemented

within the design and framework of the Next Generation Timeliner.

Even without a priority system, the existing scheduling algorithm may not be

optimal. One example is a system with two bundles, one with very many sequences,

and the other with very few sequences. Each sequence in the former bundle will

have significantly less execution time than each sequence in the latter bundle. This

is because execution time is divided evenly at the bundle level.

One trivial solution to this problem is to divide time at the sequence level. How-

ever, for certain uses of Timeliner, there is potential for much smarter scheduling

algorithms. This design provides a framework so that a developer can create a new

scheduling algorithm and easily integrate this new component with the rest of the

system.

6.1.3 Environment

The environment is currently implemented as a stub. This was done for a number

of reasons. First, the Next Generation Timeliner Compiler does not currently handle

the ground database file, an integral component in any environment integration [2].

Second, the integration with a space flight system, such as the space shuttle or the

International Space Station, is a time intensive task. The Environment interface

does have the necessary functionality to provide this integration. This was verified

by employees of the Charles Stark Draper Laboratory who work with the existing

Timeliner system.

57



THIS PAGE INTENTIONALLY LEFT BLANK

58



Appendix A

Sample XML Input File for Figure

2-1

<?xml version="1.0"?>

<Bundle>

<bundleName>EXAMPLE</bundleName>

<endName>EXAMPLE</endName>

<line>1</line>

<userinfo>null</userinfo>

<fsl><FieldAndSeqDecl><line>2</line>

<fl><LastFieldDeclList><line>2</line>

<head><NumFieldDecl><line>2</line>

<id>X</id>

</NumFieldDecl></head>

</LastFieldDeclList></fl>

<sl><LastSeqDeclList><line>3</line>

<head><SeqDecl><line>3</line>

<isSeq>true</isSeq>

<id>ONE</id>

<endID>ONE</endID>

<status>INACTIVE</status>

<userInfo>null</userInfo>

<dsl><DeclStatementList><line>4</line>

<sl><LastStatementList><line>4</line>

<head><CondStatement><line>4</line>

<endWord>WHEN</endWord>

<ch><CondHeader><line>4</line>

<condWord>WHEN</condWord>

<secondCondWord>null</secondCondWord>

59



<condition><OpExpr><line>4</line>

<op>l0</op>
<left><IdExpr><line>4</line>

<id>X</id>

</IdExpr></left>

<right><IntExpr><line>4</line>

<value>1</value>

</IntExpr></right>

</OpExpr></condition>

</CondHeader></ch>

<slist><LastStatementList><line>5</line>

<head><SetStatement><line>5</line>

<id><IdExpr><line>5</line>

<id>X</id>

</IdExpr></id>

<value><IntExpr><line>5</line>

<value>O</value>

</IntExpr></value>

</SetStatement></head>

</LastStatementList></slist>

</CondStatement></head>

</LastStatementList></sl>

</DeclStatementList></dsl>

</SeqDecl></head>

</LastSeqDeclList></sl>

</FieldAndSeqDecl></fsl>

</Bundle>

60



Appendix B

Plant Simulator Bundle

BUNDLE PLANTSIM

DECLARE TRYINGTO_COOL_SYSTEM BOOLEAN

SEQUENCE STARTUP ACTIVE

SET TRYINGTOCOOLSYSTEM TO FALSE

COMMAND RESET

WAIT 1

COMMAND LIGHTS, NEWSTATE=>ON

WAIT 1

COMMAND BATH, NEWSTATE=>ON

WAIT 1

START PHMONITOR

WAIT 5

START NUTRIENTMONITOR

WAIT 2

START C02_MONITOR

START OXYGENMONITOR

WAIT 5

START TEMPMONITOR

START HUMIDITYMONITOR

CLOSE SEQUENCE

SEQUENCE PHMONITOR

WHENEVER FARMDATA.PH <= 6 THEN
COMMAND ACID, NEWSTATE => ON

61



WHEN FARMDATA.NUTRIENT >= 6.3 THEN

COMMAND ACID, NEWSTATE=>OFF

END WHEN

END WHENEVER
CLOSE SEQUENCE

SEQUENCE NUTRIENTMONITOR

WHENEVER FARMDATA.NUTRIENT <= 800 THEN
COMMAND NITRATE, NEWSTATE=>ON

WHEN FARMDATA.NUTRIENT >= 1200 THEN

COMMAND NITRATE, NEWSTATE=>OFF

END WHEN

END WHENEVER

CLOSE SEQUENCE

SEQUENCE C02_MONITOR

WHENEVER FARMDATA.C02 <= 1200 THEN
COMMAND DIOXIDE, NEWSTATE=>ON

WHEN FARMDATA.C02_PUMP = ON WITHIN 10
WHEN FARMDATA.C02 >= 1500 THEN

COMMAND DIOXIDE, NEWSTATE=>OFF

WHEN FARM-DATA.C02-PUMP = OFF WITHIN 10 THEN
WAIT 1 -- DO NOTHING

OTHERWISE

WARNING "C02 PUMP NOT TURNING OFF

WARNING "INSPECT PUMP AND RESTART C02 MONITOR"

STOP C02_MONITOR

END WHEN

END WHEN

OTHERWISE

WARNING "C02 PUMP NOT TURNING ON

WARNING "INSPECT PUMP AND RESTART C02 MONITOR"

STOP C02_MONITOR

END WHEN
END WHENEVER

CLOSE SEQUENCE

SEQUENCE OXYGENMONITOR

WHENEVER FARMDATA.OXYGEN >= 25 THEN

COMMAND OXYGEN, NEWSTATE=>ON

WHEN FARMDATA.02_FILTER = ON WITHIN 10 THEN
WHEN FARMDATA.OXYGEN <= 20 THEN

COMMAND OXYGEN, NEWSTATE=>OFF

WHEN FARMDATA.02_FILTER = OFF WITHIN 10
WAIT 1 -- DO NOTHING

62



OTHERWISE

WARNING "02 FILTER NOT TURNING OFF -- "

WARNING "INSPECT FILTER AND RESTART 02 MONITOR"

STOP OXYGENMONITOR

END WHEN

END WHEN

OTHERWISE

WARNING "02 PUMP NOT TURNING ON -- "

WARNING "INSPECT FILTER AND RESTART C02 MONITOR"

STOP OXYGENMONITOR

END WHEN

END WHENEVER
CLOSE SEQUENCE

SEQUENCE TEMPMONITOR
EVERY 1

IF FARMDATA.TEMPERATURE >= 25 THEN
SET TRYINGTOCOOLSYSTEM TO TRUE

COMMAND COOLING, NEWSTATE=>ON

WHEN FARMDATA.TEMPERATURE <= 23
SET TRYINGTO_COOL_SYSTEM TO FALSE

COMMAND COOLING, NEWSTATE=>OFF

END WHEN

END IF

IF FARMDATA.TEMPERATURE <= 21 THEN

COMMAND HEATING, NEWSTATE=>ON

WHEN FARMDATA.TEMPERATURE >= 23
COMMAND HEATING, NEWSTATE=>OFF

END WHEN

END IF

END EVERY
CLOSE SEQUENCE

SEQUENCE HUMIDITYMONITOR

EVERY 1

IF FARMDATA.HUMIDITY >= 80 THEN
COMMAND COOLING, NEWSTATE=>ON

WHEN FARMDATA.HUMIDITY <= 75 THEN

IF NOT TRYINGTO_COOL_SYSTEM

COMMAND COOLING, NEWSTATE=>OFF

END IF

END WHEN

END IF

IF FARMDATA.HUMIDITY <= 70 THEN

COMMAND HUMIDITY, NEWSTATE=>ON

63



WHEN FARMDATA.HUMIDITY >= 75 THEN

COMMAND HUMIDITY, NEWSTATE=>OFF

END WHEN

END IF

END EVERY

CLOSE SEQUENCE

SEQUENCE EMERGENCYOPS

EVERY 1

IF FARMDATA.TEMPERATURE <= 0 THEN
WARNING "CHECK HEATING/COOLING UNIT AND TEMP SENSOR"

WARNING "TEMPERATURE BELOW 0 DEGREES C"

START SHUTDOWN

END IF

IF FARMDATA.TEMPERATURE >= 50 THEN
WARNING "CHECK HEATING/COOLING UNIT AND TEMP SENSOR"

WARNING "TEMPERATURE ABOVE 50 DEGREES C"

START SHUTDOWN

END IF

IF FARMDATA.HUMIDITY <= 10 THEN

WARNING "CHECK HUMIDIFIER AND HUMIDITY SENSOR"

WARNING "HUMIDITY BELOW 10%"

START SHUTDOWN

END IF

IF FARMDATA.HUMIDITY >= 95 THEN

WARNING "CHECK HUMIDIFIER AND HUMIDITY SENSOR"

WARNING "HUMIDITY ABOVE 95%"

START SHUTDOWN

END IF

IF FARMDATA.C02 <= 100 THEN

WARNING "CHECK C02 PUMP AND C02 SENSOR"

WARNING "C02 BELOW 100ppm"

START SHUTDOWN

END IF

IF FARMDATA.C02 >= 3000 THEN

WARNING "CHECK C02 PUMP AND C02 SENSOR"

WARNING "C02 ABOVE 3 0 0 0ppm"

START SHUTDOWN

END IF

IF FARMDATA.OXYGEN <= 10 THEN

WARNING "CHECK 02 FILTER AND 02 SENSOR"

WARNING "02 BELOW 10%"

START SHUTDOWN

END IF

IF FARMDATA.OXYGEN >= 30 THEN

64



WARNING "CHECK 02 FILTER AND 02 SENSOR"

WARNING "02 ABOVE 30"

START SHUTDOWN

END IF

IF FARMDATA.NUTRIENT <= 500 THEN

WARNING "CHECK NITRATE PUMP AND NUTRIENT SENSOR"

WARNING "NUTRIENT LEVELS BELOW 500ppm"

START SHUTDOWN

END IF

IF FARMDATA.NUTRIENT >= 3000 THEN

WARNING "CHECK NITRATE PUMP AND NUTRIENT SENSOR"

WARNING "NUTRIENT LEVELS ABOVE 3000ppm"

START SHUTDOWN

END IF

IF FARMDATA.PH <= 5 THEN

WARNING "CHECK ACID PUMP AND pH SENSOR"

WARNING "pH BELOW 5.0"

START SHUTDOWN

END IF

IF FARMDATA.PH >= 8 THEN
WARNING "CHECK ACID PUMP AND pH SENSOR"

WARNING "pH ABOVE 8.0"

START SHUTDOWN

END IF

IF FARMDATA.LIGHTS = OFF THEN
WARNING "LIGHTS SHUT OFF"

END IF

IF FARMDATA.BATH = OFF THEN
WARNING "NUTRIENT BATH SHUT OFF"

END IF

END EVERY

CLOSE SEQUENCE

SEQUENCE SHUTDOWN

MESSAGE "SHUTTING DOWN THE SYSTEM"

STOP EMERGENCYOPS

STOP C02_MONITOR

STOP HUMIDITYMONITOR

STOP NUTRIENTMONITOR

STOP OXYGENMONITOR

STOP PHMONITOR

STOP TEMPMONITOR

COMMAND HUMIDITY, NEWSTATE=>OFF

COMMAND HEATING, NEW-STATE=>OFF

COMMAND COOLING, NEWSTATE=>OFF

65



COMMAND NITRATE, NEWSTATE=>OFF
COMMAND DIOXIDE, NEWSTATE=>OFF

COMMAND OXYGEN, NEWSTATE=>OFF

COMMAND LIGHTS, NEWSTATE=>OFF

COMMAND BATH, NEWSTATE=>OFF

COMMAND ACID, NEWSTATE=>OFF

CLOSE SEQUENCE

CLOSE BUNDLE

66



Appendix C

Executor Output When Executing

Script in Appendix B

NO BUNDLES INSTALLED

NO BUNDLES INSTALLED

BUN/SEQ NAME STATUS LAST INSTRUCTION

GREENHOUSE INACTIVE

BUN/SEQ NAME STATUS LAST INSTRUCTION

GREENHOUSE ACTIVE

PUMPS ACTIVE IF NITRATE.NEWSTATE = ON THEN

67



BUN/SEQ NAME STATUS LAST INSTRUCTION

GREENHOUSE ACTIVE

PUMPS ACTIVE SET FARMDATA.02_FILTER = FALSE

PLANTSIM ACTIVE

STARTUP ACTIVE WAIT 1

PHMONITOR INACTIVE

NUTRIENTMONITOR INACTIVE

CO2_MONITOR INACTIVE

OXYGENMONITOR INACTIVE

TEMPMONITOR INACTIVE

HUMIDITYMONITOR INACTIVE

EMERGENCYOPS INACTIVE

SHUTDOWN INACTIVE

BUN/SEQ NAME STATUS LAST INSTRUCTION

GREENHOUSE ACTIVE

PUMPS ACTIVE IF OXYGEN.NEWSTATE = ON THEN

PLANTSIM ACTIVE

STARTUP ACTIVE WAIT 2

PHMONITOR ACTIVE WHENEVER FARMDATA.PH <= 6 THEN
NUTRIENTMONITOR ACTIVE WHENEVER FARMDATA.NUTRIENT <= 800

C02_MONITOR INACTIVE

OXYGENMONITOR INACTIVE

TEMPMONITOR INACTIVE

HUMIDITYMONITOR INACTIVE

EMERGENCYOPS INACTIVE

SHUTDOWN INACTIVE

BUN/SEQ NAME STATUS LAST INSTRUCTION

GREENHOUSE ACTIVE

68



PUMPS
PLANTSIM

STARTUP

PHMONITOR

NUTRIENTMONITOR

C02_MONITOR

OXYGENMONITOR

TEMP-MONITOR

HUMIDITYMONITOR

EMERGENCYOPS

SHUTDOWN

ACTIVE

ACTIVE
INACTIVE
ACTIVE

ACTIVE

ACTIVE

ACTIVE
ACTIVE

ACTIVE
ACTIVE
INACTIVE

IF DIOXIDE.NEWSTATE = ON THEN

WHENEVER FARMDATA.PH <= 6 THEN
WHENEVER FARMDATA.NUTRIENT <= 800

WHENEVER FARMDATA.C02 <= 1200 THEN

WHENEVER FARMDATA.OXYGEN >= 25 THEN

IF FARMDATA.TEMPERATURE >= 25 THEN

IF FARMDATA.HUMIDITY <= 70 THEN

IF FARMDATA.C02 <= 100 THEN

69



THIS PAGE INTENTIONALLY LEFT BLANK

70



Bibliography

[1] Eyles, Don. "A Time-Oriented Language for the Writing of Procedures to Sequence the
Operation of a Spacecraft and its Systems." The Charles Stark Draper Laboratory Report P-
3006, Presented at the AIAA Computing in Aerospace Symposium, October 1991.

[2] Liu, Frank Tien-Fu. "An Extensible Object-Oriented Compiler for the Timeliner User
Interface Language." Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2001.

[3] NASA, The Charles Stark Draper Laboratory. "The Timeliner User Interface Language
(UIL) System for the International Space Station."
http://timeliner.draper.com/docs/971106_ISSTL_WRITEUP.pdf

[4] Potratz, Eric. "A Practical Comparison Between Java and Ada in implementing a Real-Time
Embedded System." Department of Computer Science, University of Northern Iowa, 2004.

71


