
A Raw Processor Interface to an 802.11b/g RF

Front End

by

Benjamin Philip Eugene Zaks Walker

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2004

@Benjamin Philip Eugene Zaks Walker, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to

grant others the right to do

Author

Depar ment of Electrical Engineering

Certified by

so.
MASSACHUSETTS INSTMUE

OF TECHNOLOGY

JUL 18 2005

.LIBRARIES

and Computer Science
August 5, 2004

..................
Anant Agarwal

Professor, CSAIL
z Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Department Committee on Graduate Students

BARKER

I

2

A Raw Processor Interface to an 802.11b/g RF Front End

by

Benjamin Philip Eugene Zaks Walker

Submitted to the Department of Electrical Engineering and Computer Science
on August 5, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The Raw microprocessor is a tiled architecture processor designed by the Computer
Architecture Group at MIT. Raw was designed in part to be extremely good at
performing streaming-type algorithms such as those found in wireless communcia-
tions processing. This thesis describes the design and implementation of an interface
between the Raw microprocessor and a modified 802.11a/b/g wireless access point.
Combined with the Raw processor, this interface replaces a custom digital chip in
the access point. The interface can be used with the Raw microprocessor to perform
communications research, and as a system demonstrating Raw's capabilities. The
interface has been built, tested, and functionally qualified.

Thesis Supervisor: Anant Agarwal
Title: Professor, CSAIL

3

4

Acknowledgments

I would first like to thank Professor Agarwal for his time and support in supervising

this thesis. I cannot thank Nathan Shnidman enough for his help, time, and excellent

guidance along the way. Thanks also to Jason Miller, Dave Wentzlaff and the rest of

the Raw team. Without the infrastructure they built, this thesis would not have been

possible. Thanks to Justin Morin for his help in lab. Thanks also to Dave Shoemaker,

Ron Cook and Eddie Rubin of Engim, Inc. for their generosity and time.

Thank you to my family for supporting me in everything I've done, and for giving

me every opportunity they could. Thank you Jeremy, Sean, Jen, Paul and Ravi. The

past year at 3 Leonard was that much better because you were a part of it. Thank

you to Miranda. Without your support I would not be here.

This research was supported by DARPA, the NSF, and the Oxygen alliance.

5

6

Contents

1 Introduction 17

1.1 Thesis Statement . 19

2 Background 21

2.1 802.11 . 21

2.2 802.11 Processing Overview . 22

3 System Overview 23

3.1 Overall System . 23

3.1.1 System Description . 23

3.2 RE Front End . 24

3.2.1 RE Front End Operation . 24

3.2.2 Control/Data Signals . 26

3.2.3 RF Control Signals . 27

3.3 Software Processing Section . 28

3.3.1 Raw Processor . 28

3.3.2 Raw Handheld board . 28

3.4 Interface . 30

4 Raw Wireless Board Interface 33

4.1 Design Goals . 33

4.2 D esign . 35

4.2.1 ADC Output> . 35

7

4.2.2 DAC Inputs

4.2.3 Wireless Board control signals

5 Wireless Board Controller

5.1 Design Goals and Overview .

5.1.1 Controller Interface to Raw

5.1.2 Clock Domains

5.2 SpeedGasket

5.2.1 SpeedGasket Modifications

5.3 ADC Section

5.3.1 Overview.........

5.3.2 Design

5.3.3 ADC Section FSM . .

5.4 DAC Section

5.4.1 Overview.........

5.4.2 Design

5.4.3 DAC Section FSM

5.5 Control Section...........

5.5.1 FromRaw Block

5.5.2 ADC/DAC Control and Status Block .

5.5.3

5.5.4

Wireless Board Control and Status Block

ToRaw Block

5.5.5 Control Section FSM

6 Implementation and Testing

6.1 Implementation............

6.1.1 Raw Wireless Board Interface

6.1.2 Wireless Board Controller .

6.2 Testing..................

6.2.1 Raw Wireless Board

6.2.2 Wireless Board Controller .

8

36

36

37

37

40

40

42

42

43

43

44

45

46

46

46

48

49

49

50

52

52

54

57

57

57

58

58

58

60

.

6.3 Lessons Learned. 62

6.3.1 PCB Design . 62

6.3.2 FPGA Design . 64

6.3.3 Board-level Testing . 64

7 Results and Future Work 65

7.1 O verview . 65

7.2 ADC/DAC Chip Control Path Qualification 66

7.3 ADC Data Path Functional Qualification 66

7.4 DAC Data Path Functional Qualification 70

7.5 Functional End to End Test . 74

7.6 Future Work . 76

7.6.1 Integration with Raw Wireless demonstration system 76

7.6.2 Wireless Board Controller Improvements 77

8 Conclusion 81

8.1 C onclusion . 81

A Wireless Board Reference 83

A.1 Wireless Board Signals . 85

A.2 Usage Guidelines . 87

B Wireless Board Controller Reference 89

B.1 Controller Commands . 89

B.2 Status Word. 91

B .3 C aveats . 93

9

10

List of Figures

2-1 Block diagram showing a breakdown of the processing elements in an

802.11 system . 22

3-1 Block diagram of the 802.11g demonstration system. The vertical

dashed line indicates on which PCB the different blocks are imple-

m ented . 24

3-2 Chip-level diagram of the RF front end. Note that the front end con-

tains two identical paths, one for 802.11a (5GHz band), and one for

802.11b/g (2.4GHz band). 25

3-3 Diagram showing processing performed by 802.11b/g RF front-end. . 25

3-4 Timing diagram for 3-wire serial control interface on RF and ADC/DAC

chip s. 27

3-5 Figure showing the Raw processor. 29

3-6 Block diagram of the Raw Handheld board. Note that the Raw pro-

cessor has been divided into 16 tiles by dashed lines. Bold numbers

in the center of the tiles indicate the tile's number; numbers on the

outside edges of the Raw chip indicate port numbers. 29

3-7 Block diagram showing the primary components of the overall system

and datarates of the primary datapaths. The dotted lines indicate the

three logical blocks of which the overall system is composed (RF Front

End, Interface, Software Processing Section). 31

11

4-1 Block diagram showing the Raw wireless board interface. The FPGA

block was included to aid understanding of the interface design. The

blocks labelled DCM are Digital Clock Managers, and are used on the

FPGA to de-skew clock signals and to provide any necessary phase

adjustm ent. 34

5-1 Block diagram showing the overall design of the controller. Dashed

lines delineate boundaries between different clock domains. Note that

the DAC.CLK signal is provided by the ADC/DAC chip and is an

input to the DAC section. 39

5-2 An example of a command. The first word sent (Word 0) specifies

the instruction. In this case it is an RFAGC instruction. The second

word sent (Word 1) supplies any data required for the command. In

the case of the RFAGC instruction, the bottom 6 bits from the data

word are loaded onto the RF AGC bus (described in Chapter 3) . . . 40

5-3 This figure shows a timing diagram illustrating the operation of the

modified SpeedGasket block. Below the timing diagram is a block

diagram showing the direction of the input and output signals. In

the timing diagram it is assumed that there are only two pieces of

data available: DataG and Datal. Thus, after Datal is Yummied, the

output on the Data line is unknown. Vertical dotted lines delineate

each clock cycle. 43

5-4 Diagram of the ADC section of the wireless board controller. ADC-CLK

is the 180MHz sampling clock from the ADC/DAC chip. ADCCLKDV

is a 90MHz clock derived from ADCCLK. 44

5-5 Diagram showing the breakdown of the 24-bit output from the ADC

section. The 24-bit word contains two 12-bit ADC samples. 45

5-6 Diagram of the ADC section FSM. 45

12

5-7 Diagram of the DAC block of the controller. DACCLK is the 180MHz

sampling clock provided by the ADC/DAC chip. DACCLKDV is a

90MHz clock derived from DAC-CLK. 47

5-8 Diagram showing the breakdown of the 40-bit input to the DAC sec-

tion. The 40-bit word contains two I and two Q samples. 47

5-9 Diagram of the DAC section FSM. 48

5-10 High-level block diagram of the Control section. Dotted lines show the

breakdown of how the Control section is described in this thesis. . . . 49

5-11 Figure showing the details of the FromRaw block in the Control section. 50

5-12 Figure showing the details of the ADC/DAC control and status block. 51

5-13 Figure showing the details of the wireless board control and status block. 52

5-14 Figure showing the details of the ToRaw block. 53

5-15 Diagram of the Control section FSM - those states involved with the

wireless board and ADC/DAC section control. 55

5-16 Diagram of the Control section FSM - those states involved with the

status of the wireless board. 56

7-1 Matlab plot showing samples obtained from the ADC chip of a 1.2Vpp,

15M Hz sine wave. 68

7-2 Matlab plot showing samples obtained from the ADC chip of a 1.2Vpp,

1M Hz ram p wave. 69

7-3 Oscilloscope screen capture showing the differential output waveform

of one of the DACs of a full-scale, 15MHz sine wave. 71

7-4 Oscilloscope screen capture showing the differential output waveform

of one of the DACs of a full-scale, 1MHz ramp wave. 72

7-5 Oscilloscope screen capture showing the differential output waveform

of one of the DACs of a full-scale, 1MHz square wave. 73

7-6 Matlab plot of an FFT of the digital samples from the ADC chip in the

end to end test. A 5MHz sine wave was transmitted with a transmit

LO of 2448MHz. The receive LO was set to 2396MHz. 75

13

7-7 Figure showing the clock domains for a design that minimizes the size

of the ADC and DAC clock domains. The dashed lines show the bound-

aries between different clock domains. 78

A-i A chip-level diagram of the Raw wireless board. This shows only the

major chips on the board (e.g. those involved with data and control

signals). The signal names match those used in the schematic. 84

B-1 Bit-level breakdown of the status word. 91

14

List of Tables

A. 1 W ireless board signals . 85

A.2 W ireless board signals . 86

B.1 Wireless board controller commands. 90

B.2 Wireless board controller commands. 91

15

16

Chapter 1

Introduction

In recent years, the use of wireless systems has grown rapidly. In particular, wireless

LANs for mobile computer use have become increasingly popular, with a new high-

datarate standard, 802.11g [3], released this year. As the popularity of wirelessly

connected computers has increased, so has the demand for bandwidth, to open up

new application domains, and to increase the competitiveness of wireless vs. wired

systems. Current standards allow for datarates of up to 54Mb/s, but researchers are

working on wireless LAN technology with datarates of up to 1Gb/s [1].

In addition to a push for higher datarates is an interest in flexible wireless systems.

An all-software GSM base station was recently demonstrated by Vanu, Inc. [6]. This

system's flexibility lies in its software implementation, which allows it to be easily

upgraded and modified.

The push for higher datarates and more flexibility means that wireless systems

are an active research area with many opportunities and challenges. The software al-

gorithms required for wireless systems are also streaming applications, an increasingly

important group of applications.

A streaming application is one where the dataset is assumed to be semi-infinite in

size (the stream of data begins at some time t, but continues on potentially forever

after t) and the data being operated on at any given time is only a small consecutive

set of the stream. In these types of applications, processors continuously take data

in, process it, and then direct the results. Other examples of streaming applications

17

(besides wireless systems) are realtime video processing and speech processing.

Current general-purpose processor architectures are not well suited to streaming

applications. They often suffer from very limited input/output (I/O) bandwidth, and

an inability to efficiently take advantage of certain types of parallelism. As an exam-

ple, it can be difficult to input large quantities of data for processing, because of the

processor's complex memory hierarchy. In streaming applications such as 802.11 wire-

less systems, a customized processor or application-specific integrated circuit (ASIC)

is often used in order to overcome the above limitations [5]. These ASICs often consist

of custom programmable hardware blocks, augmented with general-purpose proces-

sor cores. This situation can result in a lack of flexibility because of the use of fixed

custom hardware blocks.

This lack of flexibility means that many wireless systems cannot easily adapt to

using new standards for communication or take advantage of optimizations requir-

ing more flexibility than that defined in a particular standard. For instance, certain

modulation schemes might be more power-efficient than others depending on envi-

ronmental conditions. A system that could switch between modulation schemes like

this could gain an advantage over a less flexible system.

The Raw processor [7] was designed to be able to process streams of data more

efficiently than current processors, in addition to being able to perform more general-

purpose tasks, providing an important advantage over today's general-purpose pro-

cessors.

Raw contains a tiled array of processors, each of which is capable of executing

an independent stream of instructions. This structure allows Raw to very efficiently

perform parallel computation. In addition, Raw contains several high-speed, low-

latency, on-chip networks that connect individual tiles to one another. These networks

extend off the edge of the chip to allow Raw to interface easily with the outside world

and provide huge amounts of I/O bandwidth. These features allow Raw to very

efficiently perform streaming-type operations.

Raw's ability to process streams of data in a flexible fashion makes it well-suited

to meet the current challenges in wireless systems. Thus, a project was started to

18

create a wireless system using Raw as the digital processing element. This system

requires an interface connecting the Raw system to the wireless front end. This thesis

describes the design and implementation of such an interface.

1.1 Thesis Statement

This thesis describes the design and implementation of a Raw processor interface

to an 802.11 radio frequency (RF) front end. The interface described by this thesis

will be used in a system that demonstrates Raw performing the baseband digital

signal processing for the 802.11g wireless standard. This demonstration system will

show that Raw is capable of performing the DSP-like computation found in wireless

baseband signal processing. In addition the flexibility of the RF front end permits

this system to be used in communications research, where Raw serve as a substrate

on which to implement novel ideas in digital communications.

The remainder of this thesis is organised as follows: Chapter 2 provides back-

ground information on the 802.11 wireless local area network (LAN) standard and

briefly discusses how an 802.11 system could be built. Chapter 3 provides an overview

of the demonstration system in order to place the interface in context. The next two

chapters go into the details of the blocks in the interface. Chapter 4 describes the

circuitry added to the RF front end to interface it to the Raw system. Chapter 5 de-

scribes the wireless board controller. Chapter 6 describes the implementation of the

interface, and goes over the steps taken to test it. Chapter 7 describes the significant

accomplishments to date, and future work for the interface. Chapter 8 concludes.

19

20

Chapter 2

Background

This chapter provides some background information on the 802.11 wireless LAN stan-

dard, and briefly discusses how 802.11 signals are processed.

2.1 802.11

802.11 is a wireless local area network (LAN) standard [2] from the Institute of

Electrical and Electronics Engineers (IEEE) that defines methods to allow computers

to connect to each other wirelessly. The 802.11 standard can be broken into two

major layers: a Medium Access Control (MAC) layer and a physical (PHY) layer.

The MAC layer defines a protocol that organises communication activity to ensure

that each user of the network is given an opportunity to transmit data. The PHY layer

determines how the data is actually transmitted (i.e. how it is formatted, encoded,

and modulated onto an RF carrier). The PHY layer also specifies on what frequencies

users can transmit data.

There are three commonly used wireless PHY layers for 802.11: 802.11a, 802.11b

and 802.11g. 802.11a operates in the 5GHz band, and specifies an Orthogonal Fre-

quency Division Multiplexing (OFDM) technique for transmitting data. This PHY

allows datarates of up to 54Mb/s. 802.11b operates in the 2.4GHz band, and spec-

ifies a Direct-Sequence Spread Spectrum (DSSS) technique for transmitting data at

rates up to 11Mb/s. Finally, 802.11g also operates in the 2.4GHz band, but uses a

21

transmission technique similar to that of 802.11a, which allows datarates of up to

54Mb/s.

The demonstration system is designed to use the 802.11g standard.

2.2 802.11 Processing Overview

The processing required in 802.11 wireless LAN systems can be broken into four

different blocks (See Figure 2-1):

1. RF transceiver for performing analog RF upconversion/downconversion.

2. ADC/DAC for performing conversion between the analog and digital domains.

3. A baseband block implementing the digital processing required as part of the

802.11 PHY layer.

4. A MAC block implementing the digital processing for the 802.11 MAC layer.

RX ACRX RX
RFX >>> > Data out

cr TX TX Baseband TX MAC
1 <--- DAC 3 4 1< Data in

2

Figure 2-1: Block diagram showing a breakdown of the processing elements in an
802.11 system.

These four blocks are usually built in multiple chips, although there are some

systems that provide all four blocks on a single chip. Often, blocks 2-4 or 3-4 are

implemented on the same chip. In particular, blocks three and four are usually

implemented as custom hardware with some built-in programmability [4] [5].

The overall system described in this thesis replaces blocks 3 and 4 with the Raw

processor. The key difference in using the Raw processor as the digital processing el-

ement is its flexibility. Since Raw's basic computational elements are general-purpose

processing blocks, these blocks can be easily reconfigured to optimize processing at

different levels of abstraction.

22

Chapter 3

System Overview

3.1 Overall System

This section describes the overall system in which the interface will be used, in order

to provide a context for understanding the design of the interface.

The goal of the overall system is to demonstrate Raw performing the baseband

processing for the 802.11g wireless standard.

3.1.1 System Description

The overall system consists of three major logical blocks: an RF front-end, a software

processing section, and the interface, which is designed to allow the first two blocks

to communicate. Figure 3-1 shows the relationship between these three blocks. Com-

paring Figures 3-1 and 2-1, note that the interface block and the software processing

block replace the baseband and MAC blocks of the 802.11 processing chain.

The three blocks listed above are physically implemented on two different Printed

Circuit Boards (PCBs). The first PCB, the Raw wireless board, is a modified

802.11a/b/g access point board provided by Engim, Inc. This board contains the

circuitry for the RF front-end, as well as some additional components added as part

of the interface. The second PCB, the Raw Handheld board, contains the Raw pro-

cessor, as well as some additional components such as DRAMs and FPGAs which

23

Receive Data Receive Data

Transmit Data Transmit Data
RF Front End Interface Software Processing

Status IStatus

on Raw
Control Control

Raw Wireless Board Raw Handheld Board

Figure 3-1: Block diagram of the 802.11g demonstration system. The vertical dashed
line indicates on which PCB the different blocks are implemented.

support the operation of the Raw processor. Portions of the interface are also imple-

mented in an FPGA on the Raw Handheld board.

3.2 RF Front End

The RF front end is implemented on a modified 802.11a/b/g access point from Engim,

Inc. Figure 3-2 shows a chip-level diagram of the front end.

3.2.1 RF Front End Operation

The front end consists of two separate transmit/receive paths, one for the 2.4GHz

802.11b/g standards, and one for the 5GHz 802.11a standard. Each path consists

of an RF transceiver and an ADC/DAC chip. The RF transceiver deals with down-

conversion/upconversion and any filtering that needs to be done on the baseband

or RF signals. The ADC/DAC chip converts analog received baseband signals to

digital, and provides dual DACs for converting the in-phase and quadrature digital

baseband signals to analog. In this thesis, only the 2.4GHz (802.11b/g) section was

used, although the interfaces to the two sections are identical. The 2.4GHz section

also contains a delay line which feeds back a portion of the transmit signal to the

transceiver. This can be used for transmit cancellation in the receiver.

Figure 3-3 shows the processing performed by the 802.1 lb/g RF front-end section.

Specifically, the RF transceiver chip modulates and demodulates signals in the

2.4GHz range, with a 76MHz baseband analog bandwidth. The ADC section of the

24

RX Antenna

TX Antenna Receive Data Receive Data

ADC

RF Xcvr
RF Transmit Data DAC Transmit Data

Control Control
2.4GHz .

Delay Line Controa

2.4GHz 802.11b/g section

5GHz 802.11 a section

RX Antenna
Receive Data Receive Data

ADC
RF XcIr Transmit Data DAC Transmit Data

TX Antenna

Control Control

RF Front End Interface

Figure 3-2: Chip-level diagram of the RF front end. Note that the front end contains

two identical paths, one for 802.11a (5GHz band), and one for 802.11b/g (2.4GHz

band).

RF Transceiver --- ..--- -- ----
ADC/DAC chip

- N - M ADC P-Received data

Receive blockRXL

Transmit block

x DAC In-phase transmit data

TX LO

90

c DAC uadrature transmit data

Figure 3-3: Diagram showing processing performed by 802.11b/g RF front-end.

25

ADC/DAC chip has a sampling rate of 180MSa/s with a 12-bit resolution. The DAC

section contains two 10-bit DACs with a sampling rate of 180MSa/s. Each of the

DACs is capable of handling signals containing frequencies up to 40MHz. A useful

feature of this front-end is the wide baseband bandwidth that is used. A typical

802.11g channel occupies 20MHz of bandwidth. The received baseband bandwidth

allows the digital processing system simultaneous access to up to 3 channels worth of

data. This additional information can be an advantage in terms of overall throughput

and when designing digital processing algorithms.

3.2.2 Control/Data Signals

ADC/DAC Data Signals

The ADC has a 12-bit digital output that uses 1.5V LVCMOS signalling technology.

The 12-bit digital output of the ADC is accompanied by a 180MHz clock signal. The

two DACs have 10-bit digital interfaces that use 1.5V LVCMOS signalling technology.

A 180MHz sampling clock is also provided by the ADC/DAC chip for the DAC

interface.

ADC/DAC Control Signals

The ADC/DAC chip is controlled by a 3-wire serial interface. The three lines consist

of a clock line, a data line, and a serial enable line. This serial interface is used to

write values to the 32-bit control register in the chip. To begin a transaction, the

serial enable line is first pulled low, and then 32 rising edges of the clock line are used

to sample the data line. After this the serial enable line is pulled high. A simplified

timing diagram is provided in Figure 3-4.

There is also a reset signal that is connected to the ADC/DAC chip that can be

used to reset the device. The BOARDRESET signal is connected to a switch on the

wireless board, and to a control line from the wireless controller.

26

SEN

SCLK

SDATA Bit 31

Figure 3-4: Timing diagram for 3-wire serial control interface on RF and ADC/DAC
chips.

3.2.3 RF Control Signals

The RF chip has two different types of control interface. One is a 3-wire serial interface

identical to that on the ADC/DAC chip. The other consists of parallel buses of one

or more lines.

A key difference between the RF serial interface and the ADC/DAC chip serial

interface is in the number of control registers each chip contains. The ADC/DAC chip

contains a single 32-bit control register, while the RF chip contains 8 29-bit control

registers. In an ADC/DAC serial transaction, all 32 bits sent on the serial bus are

written to the control register. In an RF serial transaction, the last 3 bits sent are

used to determine which register is to be written, and the other 29 bits are written

to that register.

The parallel buses are used for automatic gain control (AGC) and diversity selec-

tion and can be pulled high or low at any time without reference to any type of clock

signal.

The RF transceiver has a single-bit status output, RFLOCK, that indicates

whether either the receive or transmit PLL is locked.

The 2.4GHz delay line chip also has a parallel control bus, RFDLY, which can

be set to change the length of the delay line.

27

3.3 Software Processing Section

The software processing block is implemented on the Raw processor on the Raw

Handheld board. In the demonstration system, this block is responsible for performing

the digital baseband processing as specified by the 802.11g standard. However, for

general wireless research, there are no set specifications for this block. It is only

responsible for producing digital data to be sent to the DAC, and processing the

received data from the ADC.

3.3.1 Raw Processor

The Raw processor [7] is a tiled architecture consisting of a 4x4 grid of tiles (see Figure

3-5). Each tile contains a tile processor, a static switch, and a dynamic network

router. Each tile processor can independently execute its own set of instructions,

and contains its own data and instruction cache. Tile processors are connected to

each other by four on-chip networks. Two of these networks are 'static' networks,

which means that the static switches at each tile must be programmed to perform

the correct routing. The other two networks (the Memory Dynamic Network (MDN)

and the General Dynamic Network (GDN)), are dynamic. These networks take in

blocks of data (messages) and dynamically determine how to route the message from

its source to its destination. Each of these networks uses the SIB protocol to ensure

that no data is lost. See [7] for more information on the SIB protocol.

On the edges of the chip, the networks extend off the side of the Raw chip. This

allows Raw to directly interface with devices that can speak the SIB protocol. The

Raw chip is mounted on a motherboard known as the Raw Handheld board.

3.3.2 Raw Handheld board

The Raw Handheld board contains the Raw processor surrounded by 6 field pro-

grammable gate arrays (FPGAs) connected to the 16 ports on the Raw chip (see

Figure 3-6). These FPGAs are used to communicate with the Raw chip and to con-

nect it to various external devices.

28

Tile D-Cache Tile I-Cache

Tile Processor

Switch Dynamic Network

Processor Router

Figure 3-5: Figure showing the Raw processor.

Expansion connector

FPGA

0 1 2 3

0: 1 2 3

4 5 6 7

8 9 10 |11

------------- |------

12 13 14 15

11 10 9 8

RE

FPGA

Expansion connector

4

FPGA

5 tl 0 0

6

FPGA - -

5

USB interface card

Figure 3-6: Block diagram of the Raw Handheld board. Note that the Raw processor
has been divided into 16 tiles by dashed lines. Bold numbers in the center of the tiles
indicate the tile's number; numbers on the outside edges of the Raw chip indicate
port numbers.

29

(-I

0

15

FPGA

14

13

FPGA

12

Two of the FPGAs (connected to ports 4-7) act as memory controllers, and allow

Raw to access four 512MB Dynamic Random Access Memory (DRAM) chips on

the Handheld board. Another FPGA is used to connect Raw to a computer via a

Universal Serial Bus (USB). This USB interface is used to load programs onto Raw

and allow data to be transmitted to and received from Raw.

Another FPGA, designated as RE, is connected to Raw ports 8-11, and to a

190-pin high-speed matched-impedance connector. This connector is what is used to

mechanically and electrically connect the Raw wireless board to the Raw Handheld

board. The controller portion of the interface is implemented on the RE FPGA.

3.4 Interface

The interface, which is the subject of this thesis, can be broken down into two major

blocks: a wireless board interface and a wireless board controller. Figure 3-7 shows

these two blocks in the context of the overall system.

The wireless board interface consists of chips and components on the Raw wire-

less board and is used to interface the wireless board to the Raw Handheld board

electrically and mechanically.

The wireless board controller is implemented in an FPGA on the Raw Handheld

board and is used to drive the control lines of the wireless board. It also takes transmit

data from Raw and sends it to the wireless board, and takes receive data from the

wireless board and sends it to Raw. The wireless board controller interfaces with

the Raw processor so that software running on Raw can control the operation of the

wireless board.

The next two chapters describe these two blocks.

30

RF Front End Interface Software Processing
Section

RX Antenna ADC Data

RX Data RX Data 24-bit, 9tMSa/ l
76 MHz bandwidth 12-bit, 180MSa/s

TX Atena 2 ADC --- - ----- DAC Data.XAtnaRF Xcvr IX Data TX Data Raw Wireless Raw Wireless4-b,9Ma/

80 MHz bandwidth DAC 20-bit, 180MSa/s:aI Board CInterfracate Raw

ataUs' Control
24GHz - - - ~

Delay Line onr Control

Figure 3-7: Block diagram showing the primary components of the overall system
and datarates of the primary datapaths. The dotted lines indicate the three logical
blocks of which the overall system is composed (RF Front End, Interface, Software
Processing Section).

31

32

Chapter 4

Raw Wireless Board Interface

This chapter describes the Raw wireless board interface, which is implemented on a

modified Engim, Inc. access point. See Figure 4-1 for a chip-level diagram.

4.1 Design Goals

The modifications to the Engim board design were made to allow the board to inter-

face mechanically and electrically with the Raw Handheld board and to remove the

Engim digital processing element. There were five primary design goals that needed

to be met:

1. The FPGA on the Raw Handheld board is set up to use a 3.3V signalling

technology, while the outputs of the ADC and the inputs to the DACs use a

1.5V LVCMOS signalling technology. Thus, some conversion mechanism was

needed to interface the two chips.

2. The inter-board connection between the Raw wireless board and the Raw Hand-

held board, along with the additional wiring distance on both boards, could

compromise the signal integrity of the ADC outputs and the DAC inputs since

these two groups of signals are very high speed (18OMSa/s). The outputs of

the ADC are also slew-rate limited to reduce digital noise; however, slew-rate

33

limiting reduces the capacitive load that they can drive. Thus, signal integrity

issues needed to be considered in the design.

3. There is a significant time delay from the output of the FPGA on Raw to the

input of the DACs on the Raw wireless board. If the signals from the FPGA are

not correctly synchronized to the DAC sampling clock, the signals that arrive at

the DACs could violate the setup or hold time requirements of the DAC inputs.

4. A sampling clock for the ADC outputs is provided by the ADC/DAC chip.

Since the sampling clock is also travelling with the data, it is important that

the skew introduced between the clock and the data by any interface circuitry

be minimized.

5. Changes to the analog sections of the Engim board should be as minimal as

possible.

ADCDATA ADC-DATA ADC-DATA
Level-shift ADCCLK

ADCCLK 1.5V->3.3V Buffer

DACCLK

ADCCLK

DAC_CLK_

DACCLK_-FB PLL DACCLKPLL

DACDATA DACDATA
Level-shift
3.3V->1.5V

ADC/DAC CONTROL

RF CONTROL

RF STATUS

High- speed
Conhector

Raw Wireless board Raw Handheld board

Figure 4-1: Block diagram showing the Raw wireless board interface. The FPGA
block was included to aid understanding of the interface design. The blocks labelled
DCM are Digital Clock Managers, and are used on the FPGA to de-skew clock signals
and to provide any necessary phase adjustment.

34

D Q -

DCM

FPGA

DCM

Q D-

4.2 Design

The design was chosen to minimize the complexity of the additional circuitry added,

and thus reduce the possibility for errors in the hardware. In particular, the analog

section was untouched, since that part of the circuitry is more sensitive to changes,

and would have required significant effort to modify it.

The design consists of digital level-shifting chips, coupled with buffers in the case

of the ADC outputs, and a phase-locked loop (PLL) which is used to synchronize the

output of the FPGA to the input of the DAC. Also, a high-speed matched-impedance

connector was used to connect the two PCBs together. This connector presents a

50Q impedance and is useful for high-speed signals where impedance matching is

important.

The remaining subsections describe how the design works for different groups of

signals.

4.2.1 ADC Outputs

The outputs of the ADC are first level-shifted from 1.5V to 3.3V. The 3.3V signal is

then fed into a buffer that drives the signal from the wireless board to the Handheld

board. Since there is no termination at the Handheld board, the buffers chosen feature

a dynamic output impedance which is designed to minimze reflections when driving

unterminated transmission lines. One thing to note about this design is that even

if the overall propagation delay from the ADC outputs to the inputs of the FPGA

exceeds the clock period (r::: 5.5ns), there won't be any setup time violations. The

reason is that since the clock is being forwarded along with the data, any delay in the

data is ideally also seen in the clock signal. Thus, as long as the delays through the

data lines and the clock line are matched, there should be no setup or hold violations

at the FPGA inputs. This assumes that reflections on the signal lines are minimal.

Finally, the ADC-CLK signal is sent into a Digital Clock Manager (DCM) on the

FPGA which provides a mechanism to shift the phase of its output clock with respect

to its input clock. This provides some control over the phase of the clock used for the

35

ADCDATA input flip-flops.

4.2.2 DAC Inputs

The DAC inputs come from flip-flops on the FPGA. The flip-flop outputs then pass

through the expansion connector and are level-shifted from 3.3V to 1.5V by chips on

the wireless board. The 1.5V outputs of the level-shifters are then sent into the DAC.

Since there is a significant delay from the output of the FPGA to the input of the

DAC, it is important that the clock used for the output flip-flops of the FPGA be

synchronized correctly with the DAC-CLK provided by the ADC/DAC chip. This

is achieved by adding a PLL chip on the wireless board. The PLL skews its output

clock enough such that the DACDATA signals arrive at the correct time with respect

to DAC-CLK.

In addition to ensuring the correct synchronization between the FPGA outputs

and the DAC sampling clock, the signal integrity (SI) of the outputs from the FPGA

must be taken into account since they are high speed, and they have to travel between

two PCBs. In order to overcome any SI issues, the digitally controlled impedance

(DCI) functionality of the FPGA was used. DCI is a feature on Virtex2 devices

that provides controlled-impedance drivers for various signalling standards. In this

case, the signalling standard used is 3.3V LVCMOS, and the output impedance of

the drivers is 50Q, which matches the connector impedance.

4.2.3 Wireless Board control signals

All of the control signals for the wireless board use 3.3V LVCMOS signalling technol-

ogy. Since the FPGA is configured to use this signalling technology, and the control

signals are all low-speed, no special circuitry was added or required.

36

Chapter 5

Wireless Board Controller

5.1 Design Goals and Overview

The wireless board controller for the interface is implemented in firmware on a Xilinx

Virtex2 FPGA. The controller was written in Verilog and then synthesized to the

FPGA hardware. The controller is responsible for three main tasks:

1. Taking the digitized receive data from the ADC, formatting it for use in Raw,

and sending it to the Raw chip.

2. Taking the digital transmit data from the Raw chip, formatting it for use by

the RF front end, and sending it to the DACs.

3. Controlling operation of the chips in the RF front end.

These overall goals are also supplemented by two additional design goals:

1. Make the controller as simple as possible. One of the goals of the demonstration

system is to prove that the Raw chip is capable of performing the necessary

processing for an 802.11g system. Providing minimal support in the FPGA,

and thus using Raw for most of the control helps support this argument. Also,

fixing bugs on the FPGA is more time-consuming than bugs in software on Raw.

For example, recompiling the FPGA code for this project takes approximately

45 minutes, while recompiling the Raw controller code t kes less than a minute.

37

2. Keep the interface to Raw simple, while still exposing most of the 'knobs' in the

control interface to software running on Raw. The control interface provides

access to many different variables such as receive local oscillator (LO) frequency,

transmit LO frequency and low noise amplifier (LNA) gain. It is important

that the software system on Raw be able to adjust as many of these variables

as possible to make the system useful for wireless research and to implement

the MAC layer on Raw.

These goals resulted in the following overall design for the controller (Figure 5-1).

The controller is split into four sections: the Control section, the ADC section, the

DAC section, and the SpeedGasket. The SpeedGasket, designed by David Wentzlaff,

provides a high-speed asynchronous interface to the Raw processor. The Control

section drives the control lines for the wireless board, and presents an interface to Raw

for controlling the chips on the wireless board, and the ADC and DAC sections of the

controller. The Control section receives commands from Raw, and then implements

those commands. This command interface sends and receives data on the static

network on Port 11 on Raw.

The ADC section takes the digitized receive data from the ADC chip and formats

it for use in Raw. Data from the ADC section is streamed into the static network

on Port 9 on Raw. The DAC section takes the digital transmit data from Raw, and

formats it for use in the DAC chip. Data for the DAC section is streamed from the

static network on Port 8 on Raw.

It is important to note that the controller is a passive piece of hardware; it only

processes commands from Raw, and will not effect any changes other than through

commands from Raw. The ADC and DAC sections are similar in that they will only

send data to Raw or to the DACs upon receiving a command from the Control section

(which ultimately is sent by Raw).

38

ADC Data

ADC CLK ADC Section

Raw clock domain
ADC data

A- To Raw Port 9
To Raw

SPEEDGASKET

ADC clock domain TOADC AFIFO FROMADC_AFIFO

Control clock domain
ADC Control ADC Status

Controller Status SEEG KT
ireless Board Control Signals 1 To Raw Port II
ireless Board Status Signals CONTROL Section Raw Commands -- From Raw Port 11

From Raw
SPEED6ASKET

------------ -- -- [---I
DAC clock domain TODACAFIFO FROMDACAFIFO

DAC Control DAC Status

DAC Data
DAC CLK DAC Section

Froni Raw
DAC data SPEEDGASKET From Raw Port 8

Figure 5-1: Block diagram showing the overall design of the controller. Dashed lines
delineate boundaries between different clock domains. Note that the DAC-CLK signal
is provided by the ADC/DAC chip and is an input to the DAC section.

39

W
W

5.1.1 Controller Interface to Raw

In order to make the software interface to the controller as simple as possible while

still exposing the flexibility of the wireless board, the controller operates on commands

sent from Raw. The Control section processes these commands, and sends back any

data if required by the command. For example, The GETSTATUS command causes

the Control section to send a 32-bit status word back to Raw (see Table B.1).

A command consists of two 32-bit words: an instruction word and a data word.

Figure 5-2 shows an example command. The instruction word specifies what action

the controller is to perform (see Tables B. 1 - B.2 for a listing of the different commands

and the actions they perform), and the data word supplies any data that might be

required for the instruction. For example, the command ADCSER writes a 32-bit

word into the control register on the ADC/DAC chip. The 32-bit word that is written

is the one supplied in the data word. Even though a data word may not be required

for some instructions (e.g. GETSTATUS), it still must be supplied; in these cases its

value is simply ignored.

Instruction word Data word

0x000000021 x000000FI

31 0 31 0

Word 0 Word 1

Figure 5-2: An example of a command. The first word sent (Word 0) specifies the
instruction. In this case it is an RFAGC instruction. The second word sent (Word 1)
supplies any data required for the command. In the case of the RF-AGC instruction,
the bottom 6 bits from the data word are loaded onto the RF AGC bus (described
in Chapter 3)

5.1.2 Clock Domains

Figure 5-1 illustrates the four main clock domains in the controller. Each of the ADC

and DAC sections operates in a separate clock domain. The clocks in each of these

domains are synchronous to the 180MHz clocks provided by the ADC/DAC chip.

40

Note that there are two 180MHz clocks supplied, one for the ADC, and one for the

DACs.

However, only a small portion of each of these sections operates using the supplied

180MHz clock, while the majority operates using the supplied clock divided by two

(90MHz). Both the ADC and DAC sections convert the 18OMSa/s datastreams to

double-wide, 90MSa/s datastreams. The ADC section converts the 12-bit, 18OMSa/s

datastream to a 24-bit, 90MSa/s datastream. The DAC section operates on a 40-

bit, 90MSa/s datastream, and converts it to a 20-bit, 18OMSa/s datastream before

sending it to the DACs.

This is done for two reasons:

1. Reducing the datarate makes writing the verilog code easier, since the timing

constraints are easier to meet.

2. In the case of the ADC section, since the words written to Raw are always 32

bits wide, packing two samples into every word sent to Raw is a more efficient

use of the available bandwidth.

The Control section operates in a different clock domain, using the Raw clock

divided by 10. This is done because the Raw clock is the only active clock when the

system is started. The ADC and DAC clocks are active only after the Controller

explicitly turns on the ADC/DAC chip via its 3-wire serial control interface. Since

the Control section is in a different clock domain from the ADC and DAC sections,

asynchronous FIFOs (AFIFOs) are needed to communicate commands to and get

status from these sections.

Lastly, the portion of the SpeedGasket which communicates with Raw operates

in another clock domain using the Raw clock. The rest of the SpeedGasket oper-

ates using the clock of the section it is connected to. For example, the part of the

SpeedGasket connected to the ADC section uses the ADC section clock.

41

5.2 SpeedGasket

The purpose of the SpeedGasket is to provide an asynchronous means of communicat-

ing data to and from the Raw chip. On the Raw side, the SpeedGasket uses the SIB

protocol [7], and is clocked using the Raw clock. On the other side, a different clock

can be used, although the SpeedGasket still provides the same SIB-style interface.

5.2.1 SpeedGasket Modifications

For this thesis, a 'From Raw' block of the SpeedGasket was modified to provide a 64-

bit wide interface, instead of the 32-bit interface the SpeedGasket normally provides.

This change was necessary in order to interface to the DAC section, which requires

40-bit samples. The primary difference between a modified SpeedGasket block and

an unmodified one is that the original block uses a SIB interface, while the new one

does not, although it uses the same input and output signals. The key differences are

as follows:

1. The DataValid signal is no longer a single-cycle strobe. DataValid will remain

high until the Data on the line is Yummied.

2. If there is valid data on the Data line (i.e. DataValid is high), no new data will

be output until the current data is Yummied.

3. If the Yummy line is pulled high, and there is new data available to output,

then new data will be put onto the Data line on the first clock cycle after the

Yummy line is pulled high (i.e. 0 latency between Yummy being asserted and

new data being output).

Figure 5-3 has a timing diagram illustrating the operation of this block, and a

block diagram showing the directions of the different signals (CLK, DATA, VALID,

YUMMY).

42

CLK

DATA Data 0 Data 1 XXXXXXXX

VALID

YUMMY

CLK Modified
DATA SpeedGasket
VALID

> YUMMY

Figure 5-3: This figure shows a timing diagram illustrating the operation of the
modified SpeedGasket block. Below the timing diagram is a block diagram showing
the direction of the input and output signals. In the timing diagram it is assumed
that there are only two pieces of data available: DataG and Datal. Thus, after Datal
is Yummied, the output on the Data line is unknown. Vertical dotted lines delineate
each clock cycle.

5.3 ADC Section

5.3.1 Overview

The ADC section takes the incoming data from the ADC (12-bit, 18OMSa/s), converts

it to a 24-bit, 90MSa/s stream, and then either stores the data in a RAM, or sends

it directly to Raw. The ADC section can also read data out of the RAM and send

that to Raw. It is important to note that the ADC only performs these actions based

on commands from the Control finite state machine (FSM) (and ultimately, the Raw

chip). The ADC section will wait for a command from the Control FSM (which in turn

is caused by a command from Raw), and then process that command. Commands

specify what action to take, and for how many 24-bit samples that command should

be executed (e.g. send 52 24-bit samples to Raw, write 64 24-bit samples to RAM).

43

5.3.2 Design

The ADC consists of six major blocks: a 12-bit to 24-bit converter, a counter, a

RAM, an FSM, a 32-bit 2-input mux, and a TO-RAW module. The 12-bit to 24-bit

converter converts the 12-bit 180MSa/s datastream to a 24-bit, 90MSa/s datastream.

The counter is used both to count the number of 24-bit words that have been pro-

cessed, and to address the RAM. The RAM can be used to store data on the FPGA

temporarily, in case the Raw chip is unable to keep up with the datastream from the

ADC. The mux is used to select which data are sent to Raw: the output of the RAM,

or the current data from the ADC. The TO-RAW module converts the output from

the ADC section to the SIB protocol. Lastly, the FSM reads the data coming from

the Control section and generates the correct control signals for all the other blocks.

A schematic is shown in Figure 5-4.

The 24-bit output from the ADC section contains two 12-bit samples from the

ADC. Figure 5-5 shows the breakdown of the 24-bit output. The earlier sample is

stored in the most significant 12 bits (bits 12-23), while the later sample is stored in

the least significant 12 bits (bits 0-11).

Senal toParalle
converter I

ADC DAT D 2Q DQ To Speedgasket

MUX DATAIN DATAOUT RAWADCWDATA
ADC CL WEN VALID RAWADC VALID

FULL TO-RAW YUMMY RAWADC_YUMMY
....... WDATA RDATA

-- EN OUT ADDR

RST WEN RAW-FULL
UPCTR > AM

ADCCLKDV

CNTR-OUT CNTR-EN

RAW FULL RAWFULL CNTR-RST
TOADC-AFIFO EMPTY AHFOEMPTY RAMWEN

TOADCAFIFORDATA AFIFRDATARA E

RAW WWEN _To Control section

AFIFOREN -- +TOADCAFIFO-REN
AFIFOWEN -- +FROMADCAFIFOWEN

DONE -- FROMADCAFIFO WDATA1]
- ADCFM ERR --- +FROMADCAFIFOWDATA[O]

ADC FSM

Figure 5-4: Diagram of the ADC section of the wireless board controller. ADCCLK
is the 180MHz sampling clock from the ADC/DAC chip. ADC_CLKDV is a 90MHz
clock derived from ADCCLK.

44

Sample 0 Sample 1

23 12 11 0

Figure 5-5: Diagram showing the breakdown of the 24-bit output from the ADC
section. The 24-bit word contains two 12-bit ADC samples.

5.3.3 ADC Section FSM

The FSM in the ADC section supplies the control signals for the other blocks in the

ADC section (RAM, Raw data output mux, address counter). The state transition

diagram of the FSM is illustrated in Figure 5-6. Initially, the FSM waits until the

TOADC-AFIFO has data in it. It then reads the data out and determines which

command it has received (ADCDIRECT, ADCTORAM or ADCFROMRAM). Based

on which command it has received, it then goes into a series of states suitable for that

command. The series of states always terminates in the DONE state, which sends a

done signal back to the control section, indicating that the ADC FSM has finished

processing that command. The FSM then returns to the STALL state, where it waits

until another command arrives.

stall toadc-affo-empty

decode

cmd=ADCDIRECT cmd=ADCTORAM cmd=ADCFROMRAM

Write ADC data direct to Write ADC data om ram set Read 1 24-bit sample
to Raw diet t 0an- to RAM r A

~raw-full raw-full

N words N wordsRedAMat
written written Write RAM data fromra w-full fromraml raw-full

~raw-fu
N words

read from RAM

Write RAM data to Raw fromramdone rawfull

done Send DONE signal
to control section

Figure 5-6: Diagram of the ADC section FSM.

45

5.4 DAC Section

5.4.1 Overview

The DAC section takes the incoming data from the SpeedGasket (40-bit, 90MSa/s),

and either stores that data in a RAM, or sends it to a 'parallel to serial' converter

which will convert the stream to a 20-bit 180MSa/s stream. The output of the

converter is then sent to the DACs on the wireless board. Additionally, the DAC

section can stream the contents of the RAM out to the parallel to serial converter.

Similarly to the ADC section, the DAC section receives commands from the Control

section, and processes these commands. When commands are not being processed,

the output of the DAC section will set the DAC chip outputs to OV.

5.4.2 Design

The DAC section consists of a 40-bit to 20-bit converter, a counter, a RAM, a flip-

flop pipeline stage, a 40-bit 3-input mux, and an FSM. The 40-bit to 20-bit converter

converts the 40-bit 90MSa/s datastream to a 20-bit 180MSa/s datastream to send to

the DACs. Its input comes from the output of the mux. The mux selects between

data from the RAM, data from Raw, or a constant value that sets the DAC outputs

to OV. The counter is used to count the number of 40-bit samples processed, and

as an address input for the RAM. The RAM can be used to temporarily store data

from Raw. The pipeline stage is in front of the mux, and was used to ease the

timing constraints on this block. Finally, the FSM generates all the control signals

for these blocks, and processes commands from the Control section. Figure 5-7 shows

a schematic of the DAC section.

The 20-bit output of the DAC section consists of two 10-bit data streams (In-

phase and Quadrature). The 40-bit datastream from the SpeedGasket contains two

samples each of the In-phase and Quadrature data streams (see Figure 5-8).

46

40
RAWDATA

DACCLKDV-

TODAC AFIFO EMPTY -
RANWDATAAVAII -

j

D Q-

MUX

WDATA RDATA D Q
ADDR N

+WEN
+EN ->Consant

~+ D Q -- -

CNTREN
CNTR RST
RAM vEN
RAM~EN
TODAC SEL - - -- _----

-RAWTHANKS
*AFIFO WEN
*AFIKOREN

Figure 5-7: Diagram of the DAC block of the controller. DAC-CLK is the 180MHz
sampling clock provided by the ADC/DAC chip.
derived from DAC-CLK.

DAC-CLKDV is a 90MHz clock

Q1 1 1 Q 1 10

39 30 29 20 19 10 9 0

Figure 5-8: Diagram showing the breakdown of the 40-bit input to the DAC section.
The 40-bit word contains two I and two Q samples.

47

Parallel to Serial conventer

D Q In-phase
MUX +-D Q

-D Q

DAC CL)

-EN OUT -

-RST

+NTROUT

+AW DATAAVAL

FSM

RAW THANK
AFIF WEN
AFIFO~REN

5.4.3 DAC Section FSM

The FSM in the DAC section supplies the control signals for the other blocks (RAM,

DAC data output mux, address counter). The state transition diagram of the FSM

is shown in Figure 5-9. Initially, the FSM is idle, until the TODAC_AFIFO contains

data. Once this occurs, the FSM reads the data from the AFIFO and determines

whether the command is a DACDIRECT, DACTORAM or a DACFROMRAM com-

mand. It then enters a series of states appropriate for the particular command. All

of the paths terminate in the DONE state, which causes a done signal to be sent back

to the Control section via an AFIFO. The FSM then returns to the STALL state,

where it waits until another command arrives.

stall todac-afifo-emply

decode

Send Raw data ra-fl raw-full
to DAC direct direct_stall Write Raw data am from ram setu Read 1 packet from RAM

ra a to RAM to ram toram stall
-raw-full -a~ul raw-full raw-M]

N words N words Read RAM data
sent to DAC written Send RAM data to DAC fromramO

N words read
from RAM

Send RAM data to DAC fromramdone Send RAM data to DAC

Send DONE signal
to Control section

Figure 5-9: Diagram of the DAC section FSM.

48

5.5 Control Section

The Control section deals with the command and status interface to Raw (see Tables

B.1 - B.2 for a command listing), the control of the ADC and DAC sections, and the

control lines on the wireless board. Figure 5-10 shows a high-level block diagram of

the Control section.

ADC/DAC control
tind status block

ADC AFIFOs

C l S
.

Wireless board control
and status block

Control
Wireless board control

: and status logic
Status

FromRaw block

TCommands from Raw

ToRaw block

Status .SStatus
Control Status RFAGC -Status to Raw

RF_DLY . MUX TORAW

DAC AFIFOs Regval

Figure 5-10: High-level block diagram of the Control section. Dotted lines show the
breakdown of how the Control section is described in this thesis.

The different blocks of the Control section are described in the following subsec-

tions.

5.5.1 FromRaw Block

The FromRaw block (see Figure 5-11) shows the modules of the Control section

involved in receiving commands from Raw. Commands are sent from Raw to the

49

Control FSM

ontro tatUS .

FPGA, where they first go through the SpeedGasket (see Figure 5-1), and then to

the FROM-RAW module in the Control section. The FROM-RAW module acts as a

converter between the SIB protocol used by Raw and the SpeedGasket, and a FIFO-

like interface, with ReadEnable, Empty, and Data signals. The Empty signal is sent

to the Control FSM, where it is used to determine whether any command words are

available.

MAINFROMRAWDATA

RAWDATAIN DATAOUT DATAIN -- RAWMAIN_RDATA[31:0]
RAWEMPTYIN < EMPTY VALID -RAWMAINVAILDIN
RAWRENOUT REN FROMRAW YUMMY ->RAWMAINYUMMYOUT

Control FSM

Figure 5-11: Figure showing the details of the FromRaw block in the Control section.

5.5.2 ADC/DAC Control and Status Block

The ADC/DAC control and status block encompasses those modules that deal with

sending control signals to and receiving status signals from the ADC and DAC sec-

tions. This block consists of four AFIFOs, two each for the ADC and DAC sections;

one for sending and one for receiving. The Control FSM takes care of the control

and data signals for these four AFIFOs. The data output from the FROMADC and

FROMDAC AFIFOs is sent to SR flip-flops, which hold the status of the ADC and

DAC sections (adc-busy, adcerr, dac-err, dacibusy). The ERRRST signal is used

to reset the SR flip-flops holding the adc.err and dac.err bits. This signal is toggled

whenever the GETSTATUS command is processed.

50

To ADC section From ADC section

TOADCAFIFO FROMADCAFIFO

FROMADC_-AFIFORDATA[l]

FROMADCAFIFORDATA[0]

LSET Q- ADCBUSY

25 DQ-. RESET

TOADCAFIFOWEN FROMADCAFIFOREN
3 ET Q -ADC-ERR

ADCAFIFOCMD[2:0] -RESET

22 MAINFROMRAWDATA[21:01 ERR_RS'l _>

DACAFIFOCMD[2:0] RESET Q- DACERR

TODACAFIFQWEN_ Control FSM FROMDACAFIFOREN D Q DET

ESET Q- DACBUSY
25 FROMDACAFIFORDATA[0] __.. ET

FROMDACAFIFORDATA[l]

TODACAFIFO r FROMDACAFIFO

To DAC section From DAC section

Figure 5-12: Figure showing the details of the ADC/DAC control and status block.

51

5.5.3 Wireless Board Control and Status Block

This subsection discusses the logic in the Control section dealing with the wireless

board control and status signals. This block contains two serial modules, one each

for the ADC/DAC and RF transceiver chips. These serial modules take in a 32-bit

word and output that word according to the specification for the 3-wire serial control

interface as defined in Section 3.2.2. This block also contains loadable D flip-flops to

drive the RFAGC and RFDLY parallel buses, and input D flip-flops to synchronize

the BOARD-RESET and RFLOCK status signals. There is also a small RAM used

to store the 32-bit values that are written to the different RF chip registers, and

the ADC/DAC chip control register. The Control FSM handles the control of these

modules.

RF-AGC Q D MAINFROMRAW DATA[5:0]

LD

RFDLY Q D MAINFROMRAWDATA[3:01

LD

SDATA DATA MAINFROMRAWDATA[31:0]
SCLK LOAD -
SEN

ADCSERBUSY-- BUSY SERIAL <-

SDATA DATA - MAINFROMRAWDATA[31:0
SCLK LOAD
SEN

RFSERBUSY+ BUSY SERIAL <-

DACCLKDCMRESET - Q D - MAINFROMRAWDATA[0]

LD -

RF LOCK 2
BOARDRESETIN D Q

REGVAL
MAINFROMRAW DATA[31:0] WDATA RDATA

ADDR
WEN
EN

> RAM

RFAGCLD REGADDR
RFDLYLD REG_WEN
ADCSERLD Control FSM REG_EN

FSERLD
ACCLKDCM RESET LD

Figure 5-13: Figure showing the details of the wireless board control and status block.

5.5.4 ToRaw Block

The ToRaw block contains those modules involved in sending status to Raw. Specif-

ically, it contains a TO-RAW module, which presents a FIFO-like interface at its

52

input, and outputs data according to the SIB protocol. It also has a mux which

selects what data is to be sent to Raw. From Figure 5-14 it can be seen that not all

of the inputs to this mux are 32 bits wide. The widths of the inputs are extended to

32 bits as necessary by adding Os to the most significant bit. These two modules are

controlled by the Control section FSM.

MAINFROMRAWDATA[31:0]

RFAGC[5:0]

RIFDLY[3:0] 4 32
RFDY3- MUX DATAIN DATAOUT RAWMAINWDATA[31:0

REGVAL[31:0] WEN VALID RAWMAINVALIDOUT
FULL TORAW YUMMY RAWMAINYUMMYIN

10

DACERR
ADCERR

DACBUSY
ADCBUSY

ADCSERBUSY
RFSERBUSY

RF LOCK
BOARDRESET

ADCRESET
DACRESET

TORAW SEL

Control FSM MAINTORA WWEN
MAINTORAWFULL

Figure 5-14: Figure showing the details of the ToRaw block.

53

5.5.5 Control Section FSM

The FSM in the control section is very simple, although it contains many different

states. It waits in its 'stall' state until there is a command word waiting in the FIFO,

indicated by the mainifromraw-empty signal going low. It then reads the word out,

and moves into the decode state. The decode state determines what command was

issued, and then either stays in the decode state (if the second word of the command

is not yet available), or moves into the next appropriate state, which depends on

what command word was sent. All of the states terminate by returning to the 'stall'

state. Figure 5-15 shows the states involved with processing commands that deal

with control of the wireless board or the ADC/DAC sections. Figure 5-16 shows

those states involved with processing commands that are used to probe the status

of the wireless board or the controller. Note that the 'stall' and 'decode' states are

duplicated in these two figures for clarity.

54

stall main._fromraw-empty

dcde main-fromraw-empty

rfdly adcdirect ADCBUSY

Load DLY register f,
aSend command to AD sect on
Set ADCBUSY

TO STALL

adctoram ADCBUSY

Send command to ADC section
Set ADCBUSY

TO STALL

adcfromram ADCBUSY

Send command to ADC section
Set ADCBUSY

TO STALL

dacdirect DACBUSY

Send command to DAC section
Set DACBUSY

TO STALL

dactoram DACBUSY

Send command to DAC section
Set DACBUSY

gister TO STALL
TO STALL

dacfroram DACBUSY

Send command to DAC section
Set DACBUSY

TO STALL

Figure 5-15: Diagram of the Control section FSM - those states involved with the
wireless board and ADC/DAC section control.

55

TO STALL

rfagc

Load AGC register

TO STALL

rfser RFSERBUSY

Load data into serial block

TO STALL

adcser ADCSERBUSY

Load data into serial block

TO STALL

boardreset

Load BOARDRESETSW register

TO STALL

dac-clk-dcm,_reset

Load DACCLKDCMRESET re

stall main-fromraw-empty

deoe main-fromraw-empty

getrfdly RAWFULL getadcreg getrfreg

Set TORAW_-MUX to RFDLY Load RF reg from RA M Load ADC reg

,Write RFDLY to Raw

TO STALL

getregdone RAW-FULL

getstatus RAWFULL Set TORAW W MUX to RAM output
Write RAM output to RAW

Set TORAWMUX to STATUS TO STALL
Write STA TUS to Raw

TO STALL

getrfagc RAW-FULL

Set TOR AWMUX to RFAGC
,Write RFAGC to Raw

TO STALL

test RAWFULL

Set TORA WMUX to RAWRDA TA
Write RAWRDATA to Raw

TO STALL

from RAM

Figure 5-16: Diagram of the Control section FSM - those states involved with the
status of the wireless board.

56

Chapter 6

Implementation and Testing

This chapter describes how the Raw wireless board and the wireless board controller

were built, and what steps were taken to test them.

6.1 Implementation

6.1.1 Raw Wireless Board Interface

The Raw wireless board interface was built on a modified Engim, Inc. circuit board.

Since Engim provided their schematic and layout files, the first step was to remove

their digital processing chip from the schematic, and add the components and signals

for the Raw wireless board interface. Once the schematic editing was complete, a

design review was held and several changes were made to aid in testing and verification

such as adding test points and grounding any unconnected digital inputs.

After the review, the changes were made in the schematic and a netlist was gener-

ated for board layout. The new circuitry was then placed and routed by hand and the

board was sent to the manufacturer for a Design For Manufacturing (DFM) check.

After correcting several DFM-related issues such as trace widths and clearances, 10

boards were fabricated, and two boards were assembled.

57

6.1.2 Wireless Board Controller

Since the manufacturing and assembly for the Raw wireless board took more than a

month, the wireless board controller was designed and implemented during this time.

The wireless board controller was implemented in verilog and simluated using

VCS. Initially, only the ADC and Control sections were built and integrated. The

DAC section was implemented but not integrated until later in order to allow test-

ing of the Raw wireless board to proceed. The wireless board was finished being

manufactured before the DAC section had passed tests in simulation.

After the first version of the controller (including only the ADC and Control

sections) was implemented and had been simulated, the SpeedGasket was added, and

the design was synthesized. To meet timing, several iterations were needed in order to

determine the optimal placement for the SpeedGasket blocks. Once the DAC section

was complete, it was integrated and the full version of the controller synthesized.

Again, a series of iterations was required to determine the optimal placement for the

SpeedGasket blocks.

6.2 Testing

The following subsections describe the testing that was done on the Raw wireless

board and the wireless board controller.

6.2.1 Raw Wireless Board

Once the Raw wireless board was received from the assembly house, a series of tests

was performed to validate different sections of the board incrementally.

First, only the Raw wireless board interface section was powered to ensure that

the added circuitry was safely connected. Next, a square-wave signal from a function

generator was input to the 1.5V to 3.3V level shifters (to simulate an output from

the ADC/DAC chip), and the output at the connector was probed to check its signal

integrity.

58

The next test checked whether the ADC/DAC and RF chips could be powered

up safely on their own. An FPGA configuration was created that output constant

digital values onto the control pins of the wireless board. This ensured that the digital

control inputs to the various chips on the board would not be floating, and that the

chips would power up in the correct state. First, only the RF section was powered,

and the different VCC pin voltages measured. Next, the entire board was powered

up and the total board current draw measured.

After the board had been burned in, another FPGA configuration was created that

included hardware to control the 3-wire serial interfaces for the RF and ADC/DAC

chips. This configuration was created because at this point in the wireless board

testing, the controller had not yet met timing in synthesis.

Initially, the ADC/DAC chip was programmed to keep both sections off, which is

the state in which the ADC and DACs start up, in order to check that programming in

the startup state caused no changes. It should be noted that this test only provides

information if the test fails. If the test succeeds (as it did in our case), then no

information is gained since a successful test results in no change.

Next, only the ADC was turned on, and the output clock and data lines probed.

The clock and data signals were also probed at various points as they passed through

the level-shifters and buffers. After verifying that the ADC section was activated,

an LED on the Raw Handheld board was used to indicate whether the DCM in the

FPGA was able to lock to the ADC sampling clock.

Once the DCM was able to lock, the connection between the RF chip and the

input to the ADC was removed and a signal from a function generator was input

to test the ADC. At this point the controller was complete, and was used to aid in

further testing.

Raw was used to command the controller to grab a number of samples from the

ADC chip. These samples were sent to a host computer for processing in Matlab.

With Matlab, the time-domain signal could be analyzed, and frequency-domain data

obtained. Th- ADC was tested with several different inputs; this is discussed in

Chapter 7.

59

The next step was to test the DACs. The controller was used to turn the DACs on,

and the output clock was probed, along with the PLL output. Similarly to the ADC

clock, an LED on the Handheld board was used to determine whether the FPGA

DCM locked to the DAC clock. Once the DCM locked, data was sent from Raw to

the DAC section on the controller, and output to the DACs on the wireless board.

The output from the DACs were probed and the oscilloscope data was recorded. This

is also discussed in Chapter 7.

Last, an end-to-end test was performed. This involved turning on the ADC, the

DACs, and the RF chip. Digital samples of a sine wave were generated and sent to the

DRAMs on the Raw Handheld board. Software on Raw then streamed these samples

to the DAC section of the FPGA. The DAC section then sent the samples to the

DACs on the wireless board. The outputs from the DACs were fed into the transmit

section of the RF chip, where they were used to modulate an RF carrier. The output

from the RF chip was attenuated by 50dB and cabled to the receive section of the RF

chip. The receive section then downconverted the RF carrier to baseband and output

the baseband analog signal to the ADC input. The digital output from the ADC was

sent to the ADC section of the controller, which streamed the digital samples into

DRAMs on the Raw Handheld board. The samples in the DRAMs were then sent to

a host computer for analysis in Matlab. The results from this test are discussed in

Chapter 7.

6.2.2 Wireless Board Controller

Once the design was synthesized and met timing requirements, the configuration file

for the FPGA was loaded onto a Raw Handheld board, and the controller was tested

without the Raw wireless board connected.

Commands were sent from Raw to the controller, and the responses were checked

to determine if the controller was working correctly. Specifically, the following tests

were run:

1. The command TEST was sent, and the return value checked to make sure it

60

matched the data value sent with the TEST command.

2. The RF-AGC command was sent to set the RFAGC bus, and then the GETRFAGC

command was sent to check that the RFAGC bus was set to the correct value.

3. The RFDLY command was sent to set the RFDLY bus, and then the GETRFDLY

command was sent to check that the RFDLY bus was set to the correct value.

4. The RFSER command was sent to program various registers on the RF chip.

Then, the GETRFREG command was sent to check that the correct values

had been loaded into the serial module. Also, the outputs from the RF serial

module were also sent to a logic analyzer (LA) header on the Handheld board,

where they were probed to ensure that the serial module correctly output the

data.

5. The ADCSER command was sent to program the control register on the ADC/DAC

chip. This module was tested in the same manner as the RF serial module above.

6. The ADC section and the Control/ADC section interface were tested by creating

a version of the controller with an internal counter connected to the input to the

ADC section. This counter provided a known input to the ADC section, which

helped in testing. Then, ADCDIRECT, ADCTORAM, and ADCFROMRAM

commands were sent from Raw to test whether the ADC section functioned

correctly.

After these tests, the DAC section was completed and integrated into the con-

troller. To test the DAC section, the two 10-bit outputs from the DAC section were

connected to the input of the ADC section (with the most significant 4 bits from the

DAC outputs being truncated, since the ADC input is only 12 bits). Data was sent

from Raw to the DAC section, from the DAC section to the ADC section, and then

back into Raw. The received data on Raw was then sent to the host and analyzed

for correctness.

61

After testing the full controller on the FPGA, the Raw wireless board was con-

nected to the Raw Handheld board, and the controller was used to facilitate further

testing of the Raw wireless board.

6.3 Lessons Learned

This section details insights that were gained while implementing and testing the

interface.

6.3.1 PCB Design

1. Constant-voltage inputs to chips (such as output enables, etc.) should not be

directly connected to power or ground. Instead, they should be connected via

a 10kQ resistor (or some other suitable value). This allows one to change the

constant voltage at the pin if the need should arise, such as during testing. Also,

in the schematic and layout, two resistors should be provided; one connected

to power and the other to ground. Then, only one should be populated during

assembly. This way, during testing, it will be easy to switch the constant voltage

at that pin between power and ground.

2. Test points should be large enough to probe, and easy to reach/probe.

3. Many test points should be used, since it is far easier to put the time in during

layout to do this, than it is to scrape away solder mask and probe thin traces.

However, it is important to understand the effect test points may have on critical

traces.

4. Power headers should be keyed. This will reduce the likelihood of applying

reverse voltages.

5. Providing separate power headers for different sections can be useful for a couple

of different reasons:

62

(a) Separate power headers can allow easy isolation of different sections of the

board.

(b) The different headers allow easy measurement of the current/power draw

of different sections.

6. Create places for ground posts or solder mask openings to allow for easy and

nearby grounding for probes. Keep in mind the speed of the signals being mea-

sured, and make sure access to ground is close enough for proper measurement.

7. Make sure your design is checked over by a more senior engineer and your peers.

There are also mailing lists (such as si-list) that engineers subscribe to, from

which free advice can be obtained.

8. Always have a design review before proceeding to layout, and remember to have

the reviewers provide tips on any layout issues that might come up as a result

of the schematic-level design.

9. If possible, find out how large the panels are for your PCB manufacturing

process. Take this into account when figuring out how large to make the board,

if you're worried about cost vs. PCB size.

10. When having boards assembled, machine assembly is cheapest, but requires

parts to be in cut-tape form, at a minimum of 8" in length.

11. Talk with the PCB manufacturing house and the board assembly house before

beginning layout. At the least, you will need to find out design rules such

as minimum trace width, trace clearances, and how much space must be left

between parts to allow for machine assembly.

12. If doing machine assembly, either leave space on two edges of the board, or add

breakaway rails so that a conveyor can move the board along without interfering

with part placement.

13. Adding LEDs to power buses can provide a quick and easy way of knowing

whether power is on or not.

63

6.3.2 FPGA Design

1. Check the timing specifications for the FPGA before attempting a large design

in order to get a sense of how fast (roughly) designs can run, to get an idea of

any pipelining you might require.

2. Figure out how many clocks will be needed, and try to use the minimum number

of clocks necessary. If many clocks are needed, try to arrange the logic such

that only a few major clock domains exist. Try to avoid having to communicate

among multiple clock domains.

3. For testing purposes, if it is possible to run your design at a slower speed, then

synthesize for the slower speed, since it will allow quicker turns on synthesis

runs, allowing you to fix bugs faster. Only when it becomes necessary to run at

full speed should you synthesize to that speed.

6.3.3 Board-level Testing

1. Using an active probe is helpful in ensuring that probing the signals does not

affect the signals themselves significantly.

64

Chapter 7

Results and Future Work

This chapter discusses the current progress on the interface, and details three key

results that have been obtained.

7.1 Overview

Thus far, the Raw wireless board has been fabricated, the ADC/DAC chip data

and control paths have been functionally qualified, and an end to end test of the

interface and RF front end has been performed. The wireless board controller has

also been written and synthesized to the Virtex2 FPGA on the Raw Handheld board.

The controller has been tested on its own and in conjunction with the Raw wireless

board.

The most significant results to date have been:

1. The successful programming of the ADC/DAC chip to enable either the ADC,

the DAC, or both.

2. The successful digitization and storage on Raw of an analog baseband signal.

3. The successful conversion (by the ADC/DAC chip) from digital to analog of a

digital waveform stored on Raw.

65

4. A functionally successful end to end test involving the Controller, the ADC/DAC

chip, and the RF chip.

The following four sections provide more in-depth information on the above re-

sults.

7.2 ADC/DAC Chip Control Path Qualification

In order to qualify the control path for the ADC/DAC chip, the following sub-goals

were tested for and met:

1. The Raw wireless board controller on the FPGA is able to receive commands

correctly from software running on Raw.

2. The Raw wireless board controller's serial modules function correctly.

To test the ADC/DAC chip control path, the path from Raw to the controller was

tested to ensure that software on Raw could send commands to the controller. Next,

the serial module in the controller was tested via commands from Raw to ensure that

it met the specifications for the 3-wire serial control interface.

Finally, the full control path was tested using commands sent from Raw to the

controller. The command to enable only the ADC section was sent, and the output

clock of the ADC was probed using an oscilloscope. Since the ADC clock is active

only when the ADC section of the ADC/DAC chip is enabled, the presence of the

ADC clock indicated that the ADC/DAC chip was programmed correctly.

A similar test was performed for the DAC section, and the DAC clock was acti-

vated correctly as well.

7.3 ADC Data Path Functional Qualification

In order to test the ADC data path, several sub-goals were tested for and met:

66

1. The ADC data and clock signals are correctly converted to 3.3V, and sent to

the FPGA pins on the Raw Handheld board.

2. The DCM on the FPGA is able to lock to the received ADC-CLK signal.

3. The skew between the data signals as they travel from the ADC to the FPGA

is not too great to violate the setup/hold times on the FPGA input flip-flops.

4. The ADC section of the controller operates correctly.

5. The path from the ADC section to Raw operates correctly.

In order to perform this qualification, the path from the RF transceiver chip to

the ADC/DAC chip was removed, and an analog signal from a function generator

connected to the input of the ADC.

Initially, data received by the Raw chip had some spurious samples, but after some

adjustment of the phase of the clock used on the FPGA, the ADC data was received

correctly. See Figures 7-1 and 7-2 for Matlab plots of the digital samples received on

Raw for different analog input signals. It is important to note that while these plots

show that the output from the ADC chip looks functionally correct (i.e. a sinewave

input produces a sinusoidal output at the correct frequency), no measurements were

taken to ensure the ADC met the specifications given in the data sheet.

67

Data samples from the ADC chip (15MHz, 1.2Vpp sinewave input)

2800-

2600-

2400-

c 2200-

2000-
Ca,

1800-

1600-

1400

1200
I Ii

2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530
Sample number

Figure 7-1: Matlab plot showing samples obtained from the ADC chip of a 1.2Vpp,
15MHz sine wave.

68

Data samples from the ADC chip (1 MHz, 1.2Vpp ramp input)

40
Ca
E

CO,

2800

2600

2400

2200

2000

1800

1600

1400

1200

1000A

3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200
Sample number

Figure 7-2: Matlab plot showing samples obtained from the ADC chip of a 1.2Vpp,
1MHz ramp wave.

69

~

I I

7.4 DAC Data Path Functional Qualification

In order to test the DAC data path, the following sub-goals were tested for and met:

1. The DAC clock signal is converted to 3.3V, sent to the PLL on the wireless

board.

2. The DCM on the FPGA is able to lock to the received DACCLKYPLL signal

from the PLL.

3. The PLL on the Raw wireless board locks correctly.

4. The path from Raw to the DAC section operates correctly.

5. The DAC section of the controller operates correctly.

6. The output signals from the DAC section of the controller arrive at the DAC

at the correct time with respect to the DAC sampling clock.

To test the DAC data path, several different waveform samples were generated

using Matlab and stored in the DRAMs on the Raw Handheld board. Software on

Raw then read the samples from the DRAMs, and sent these samples to the DAC

section of the controller. The DAC section of the controller then sent the samples to

the DAC on the Raw wireless board. The outputs of the DAC were probed using an

oscilloscope on the Raw wireless board. See Figures 7-3 - 7-5. It is important to note

that while these figures show that the DAC output looks functionally correct (e.g. a

sinewave input produces a roughly piecewise-constant sinusoidal output), the output

was not measured to check that it met the specs given in the DAC data sheet.

70

Saved: 27 JUN 2004 16:47:51

Acquisition Sampling mode real time Normal

Memory depth automatic 64000 pts
Sampling rate automatic Sampling rate 4.00 GSa/s
Averaging off Interpolation on

Time base Scale 20.0 ns/ Position 6.1967833 Ms Reference center

Trigger Mode edge Sweep triggered

Hysteresis normal Holdoff time 80 ns Coupling DC
Source channel 1 Trigger level 1.282 V Slope rising

lemory 4 Vertical scale 200 mV/ Offset 0.0 V
Horizontal scale 20.0 ns/ Position 205.16300000000 ns

Aarker X Y
A-r4) = 211.163 ns 652.8 mV
B---(n4) = 244.981 ns -633.7 MV

A = 33.818 ns -1.2865 V

1/X = 29.5699 [lHz

Figure 7-3: Oscilloscope screen capture showing the differential output waveform of

one of the DACs of a full-scale, 15MHz sine wave.

71

Saved: 27 JUN 2004 16:49:15

Acquisition Sampling mode real time Normal
Memory depth automatic 64000 pts
Sampling rate automatic Sampling rate 4.00 GSa/s

Averaging off Interpolation on

Time base Scale 20.0 ns/ Position 6.1967833 gs Reference center

T rigger Mode edge Sweep triggered

Hysteresis normal Holdoff time 80 ns Coupling DC
Source channel 1 Trigger level 1.282 V Slope rising

Memory 4 Vertical scale 200 mV/ Offset 0.0 V
Horizontal scale 500 ns/ Position 6.1967800000000 Ms

Marker X Y
-- (m4) = 5.019516 ps 635.3 V

B---(m4) = 5.992243 gs -625.4 V

A = 972.727 ns -1.2606 V
1/AX = 1.028037 MHz

Figure 7-4: Oscilloscope screen capture showing the differential output waveform of

one of the DACs of a full-scale, 1MHz ramp wave.

72

Saved: 27 JUN 2004 16:46:19

Acquisition Sampling mode real time Normal
Memory depth automatic 64000 pts
Sampling rate automatic Sampling rate 4.00 GSa/s
Averaging off Interpolation on

Time base Scale 500 ns/ Position 6.1967833 gs Reference center

Trigger Mode edge Sweep triggered
Hysteresis normal Holdoff time 80 ns Coupling DC
Source channel 1 Trigger level 1.282 V Slope rising

Memory 4 Vertical scale 200 mV/ Offset 0.0 V
Horizontal scale 500 ns/ Position 6.1967800000000 gs

Marker X V
R-(q) = 4.116788 As 634.0 mV
B---m4) = 4.769517 As -631.2 WV

A = 622.729 ns -1.2653 V
1/AX = 1.605835 MHz

Figure 7-5: Oscilloscope screen capture showing the differential output waveform of

one of the DACs of a full-scale, 1MHz square wave.

73

7.5 Functional End to End Test

As a final step in qualifying the interface, an end to end test was performed that

involved all of the circuitry on the Raw wireless board and the wireless board con-

troller.

Digital samples of a 5MHz sine wave were generated for the in-phase data, and

a constant value corresponding to a OV output from the DAC was generated for

the quadrature data. These digital samples were sent to the DRAMs on the Raw

Handheld board from the host computer. Software on Raw then streamed these

digital samples to the DAC section in the wireless board controller. The DAC section

then streamed the I and Q data to the DACs on the wireless board. The output

from these DACs were fed into the transmit section of the RF chip, where they

were used to modulate an RF carrier (2448MHz). The RF output from the board

was then attenuated by 50dB and sent via cable to the receive section of the RF

chip. The receive section downconverted the received signal using a LO frequency

of 2396MHz. The analog baseband output from the RF chip was then fed into the

ADC and digitized. The digital samples from the ADC were then captured by the

controller, and sent to the DRAMs on the Raw Handheld board. Software on Raw

then streamed these samples to a host computer for processing in Matlab.

Figure 7-6 shows a plot of an FFT of the digital samples from the ADC chip. The

magnitude (in dB) of the signal is plotted on the Y axis, and the frequency (in Hz)

on the X axis. Note that the magnitudes have been normalized so that OdB is the

largest magnitude.

The two highest peaks in the figure are at 47MHz and 57MHz. These corre-

spond to the 5MHz sine wave that was used to modulate the transmitted RF signal.

Initially the 5MHz wave modulated a 2448MHz carrier producing two peaks, one

at 2448MHz - 5MHz = 2443MHz, and one at 2448MHz + 5MHz = 2453MHz.

This spectrum was then downconverted using a 2396MHz LO, which moved the two

peaks to 2443MHz - 2396MHz = 47MHz, and 2453MHz - 2396MHz = 57MHz.

The third largest peak, at 52MHz, is the downconverted transmit LO frequncy

74

(2448MHz - 2396MHz = 52MHz). Ideally, the only peaks in the plot should be at

47MHz and 57MHz. Despite the fact that there are other peaks in the plot (such as

the one at 52MHz), the fact that the two at 47MHz and 57MHz are the strongest

demonstrates that the system works on a functional level. Further debugging and

testing will be required to ensure that the system can be used to transmit 802.11b/g

packets.

FFT of the data samples

.- r2dB,*47M 4§:'

11 6:5dB: 52MHz. -
.
.
.
.
.
.
.
.

.
.
.

.

.

................ .
.
.

.
OdB,, 57-MHz' -

.
.......................

.

.

.

11111f 1116 1 1 L I L i.

-901 T 1..' 'r7

2 3 4 5 6 7 8
Frequency (Hz)

Figure 7-6: Matlab plot of an FFT of the digital samples from the ADC chip in the

end to end test. A 5MHz sine wave was transmitted with a transmit LO of 2448MHz.

The receive LO was set to 2396MHz.

75

0

-10

-20

-30

-40

-50

-60

-70

-80

C
0)

-1UU
0 9

x 10

- .

1

-

7.6 Future Work

The future work for the interface is broken down into two sections: work that needs

to be done to integrate the interface into the Raw wireless demonstration system, and

improvements to the interface.

7.6.1 Integration with Raw Wireless demonstration system

As mentioned in Chapter 1, the interface will be used to create a system that demon-

strates Raw performing the digital baseband processing for the 802.11g protocol.

Currently, the interface works correctly, but there is more work to be done to use it

in the demonstration system. Two key goals must be accomplished: The Raw wireless

board needs to be qualified for sending 802.11g packets, and the interface needs to be

integrated with the software processing block (see Chapter 3, Figure 3-1).

Currently, the Raw wireless board has been provisionally qualified, and an end to

end test has been performed. While the end to end test showed that the RF front

end and the interface work on a functional level, more testing needs to be done to

ensure that the system is capable of transmitting and receiving 802.11g packets.

In terms of integration with the software processing block, some software for Raw

needs to be written to send commands to the wireless board controller, and the data

to and from the controller needs to be processed and formatted correctly for the

software processing section. Specifically, the ADC data from the controller consists

of three 802.11g channels, but the software processing section will handle only one

channel at a time. So, filtering and decimation needs to be performed in order to both

eliminate unwanted channels and to reduce the datarate. In addition, the software

processing block assumes that the data is already split into in-phase and quadrature

samples, and software will be needed to convert the data from the controller to this

format.

76

7.6.2 Wireless Board Controller Improvements

The Raw wireless board controller currently works and is qualified, but there are some

design changes that could be made and features added that would improve it.

1. Minimize the number of major clock domains. It would be advantageous to

change the design such that there is one clock domain containing most of the

logic, with other small clock domains added as necessary.

Instead of having the three major clock domains as defined by the Control,

ADC and DAC sections, create a single clock domain that has the logic for

the Control, ADC and DAC sections in it. Since the ADC and DAC data is

synchronous to different clocks, AFIFOs will be needed to bring the ADC data

in, and send the DAC data out. See Figure 7-7 for a block diagram of the

new design. From the figure, it can be seen that the number of overall clock

domains remains the same. However, one of the clock domains contains most

of the logic. This is advantageous in terms of clock distribution. Since FPGAs

have a limited amount of clock distribution resources, it is advantageous to

reduce the area over which a clock is routed. In terms of the controller, the

large RAMs (implemented as BLOCKRAMs in the FPGA) located in the ADC

and DAC sections means that the clocks associated with these sections need to

travel everywhere within the FPGA. If these two sections shared a clock with

the Control section, then routing the clock is easier, because only one clock

would need to be routed throughout the FPGA.

77

ADC Data
AFIFO

ADC CLK

ADC clock domain_
Control clock domain

RF Board Control Signals
RF Board Status Signals

DAC clock domain

DAC Data AFIFO
DAC CLK

ADC Section

ADC Control

Raw clock domain

A To Raw Port 9
To Raw

SPEEDbASKET

AD

CONTROL Section

DAC Control

I

C Status Toiw

Controller Status SPEEDGASKET
-- To Raw Port 12

Raw Commands
c-From Raw Port 12

From Raw
SPEEDGASKET

DAC Status
1~~~

DAC Section

Fron* Raw
DAC data SPEEDGASKET From Raw Port 8

FrIRwPr

Figure 7-7: Figure showing the clock domains for a design that minimizes the size of
the ADC and DAC clock domains. The dashed lines show the boundaries between
different clock domains.

78

2. Change the network onto which the ADC section sends data, and from which

the DAC section receives data.

If the ADC section sent data over the dynamic network instead of the static

network, then data could be sent directly to the DRAMs on the Raw Handheld

board. Currently, data is sent to Raw via the static network, where a tile

receives the data, and then transfers the data to the dynamic network, which

sends the data to the DRAMs. This means that an entire tile on the Raw

chip is used solely for transferring data from the static network to the dynamic

network. If the ADC section sent the data on the dynamic network to begin

with, this tile could be used instead for useful computation.

The disadvantage of using the dynamic network compared to the static network

is that it requires data to be sent in packets, with a header word sent first,

identifying the length of the packet and where it should be routed. In addi-

tion, when using the dynamic network to send data to memory, another word

specifying the address must also be sent, and packets are limited to 8 32-bit

words.

Since the ADC section is currently clocked at exactly the same rate as the

incoming data, it would be impossible for the ADC section to also send out

these additional header words. However, if the ADC section were clocked at

a higher speed, say 112.5MHz, the ADC section could use the extra time to

send out the additional header words. Data still comes in at a rate of 90MSa/s,

but the new output rate is 112.5MSa/s. This means that for every 8 samples of

data, there are two extra slots that could be used to send out the header words.

For the DAC section, no clock speed modification would be required, since only

two words are needed to request data from the DRAMs. Thus, a DAC section

running at 90MHz could actually request data more rapidly (1 request every 2

cycles = 8 data words every 2 cycles = 360MSa/s) than it could receive it (2

data words every cycle = 180MSa/s).

79

80

Chapter 8

Conclusion

8.1 Conclusion

This thesis described the design of an interface between the Raw microprocessor and

an 802.11b/g RF front end. The interface was created to enable a system using the

Raw chip as the digital processing element in a wireless system. This system can be

used both as a demonstration of Raw's capabilities and as a tool for wireless systems

research.

Specifically, the overall demonstration system was described to provide context

in which to understand the design of the interface. Next, the designs for the two

major blocks of the interface were described, along with a chapter describing their

implementation and testing. Four of the key results that have been obtained so

far were presented: the qualification of the ADC/DAC control path, the functional

qualification of the ADC and DAC data paths, and a functionally successful end

to end test of the RF front end and interface. Last, future work was discussed,

describing the remaining steps to realizing the Raw wireless demonstration system,

and describing some improvements that could be made to the interface.

81

82

Appendix A

Wireless Board Reference

This appendix is designed as a reference guide for those using the Raw wireless board.

It presents a more detailed schematic of the board, along with a description of the

signals on the board, and usage guidelines.

83

C)

~C ~ oCD

C+

00 0o

CDt

C)-

000

CD<

p Cn

0

BPLLLD
B_RF DIV

B-AGC 6
B_PLLCLK

B_PLLDATA
B PLL LE

RX Ant. """ V
ADO 12 12 ADO_33B 12

BRX (diff) - ADC -2 Level-shift / zBuffe

TX Ant. RIF Xcr BTXI (diff) ADC__CLK __.V->3.3V rADC__CLK33B
2.4GHz BTXQ (diff) LDACOCLK DACOCLK_33

- DAC IDO 10 IDO 33
Level-shift PLLL DACLCLKPLL

2.4 GHz DAC QDO 1, 3.3_V->1.5V QD _331__
Delay Line FDACOCLKFB_333

10

10,
SENO

SDATAO
SCLKO

DLY 8,

RESET Sic
Debounce T RESETSW

A PLL._LD
ARFDIV

AAGC 6z

ADC ADC I 2 CL 0 Level-shift 1/, * Buffe AD_3B '
AD1_LK :,1.5V->3.3V , erA DCICLK33B

DACICLK DACICLK-33

DAC IDI 10, IDI-33 L_
Level-shift PLL DACI-CLKPLL

DAC QD1 10 3.3V->1.5V QD1_33 r

IDACI CLK-FB-33
10
10

SENI
SDATA1

SCLK1

High-speed
Connector

APLLCLK
A_PLL,_DATA

APLLLE
RX Ant.""""V

A_RX (diff) ,

TX nt.RF Xcvr A_ TX_I (diff)
TX Ant.5GHz A_TX Q (diff)

__Q~- (if

A.1 Wireless Board Signals

The following table lists the important signals on the wireless board. It gives the

name of the signal as used in the schematic/layout tools, and as it is used in the

FPGA code (in a few cases the names are slightly different). It also provides a brief

description of the signal.

Table A. 1: Wireless board signals

85

Signal Name Signal Name
Schematic/Layout FPGA Code Description

DACOCLKPLL DAC0_CLKPLL The output from the DACCLK
PLL.

DAC0-CLK-FB-33 DACO-CLK-FB-33 The feedback DAC-CLK signal
from the FPGA.

ID0_33 ID0_33 10-bit In-Phase digital DAC
data.

QD0_33 QDO-33 10-bit Quadrature digital DAC
data.

ADCOCLK33B ADCOCLK33B The ADC-CLK signal output
from the 3.3V buffer chip.

AD0_33B ADO-33B 12-bit digital ADC data.
DLY-A1 DLYAl 2.4GHz delay line settings
DLYA2 DLYA2 (8-bit). Bits A2, B2, C2, D2
DLY-B1 DLY_B1 are inverses of Al, B1, C1, DI,
DLYiB2 DLYB2 respectively. Only 16 states are
DLYC1 DLYC1 possible. Al is the least
DLYC2 DLY_C2 significant bit and 0000 is the

DLYD2 DLYD2 minimum delay.

BRFDIV RFLDIV RF Diversity selection. This
line controls whether the RF
chip uses the diversity antenna
port or not.

BAGCA5 RF0_AGC[5] 6-bit RF AGC bus. These 6
BAGCA4 RFL-AGC[4] bits specify the cascaded LNA
BAGCA3 RF0_AGC[3] and IF chain gain. See the RF
BAGC_A2 RF0_AGC[2] chip documentation for more
BAGCA1 RF0_AGC[1] info, as the control of these is
BAGCA0 RF0_AGC[0] somewhat nonintuitive.

Table A.2: Wireless board signals

Signal Name Signal Name
Schematic/Layout FPGA Code Description

BPLLDATA RFLSDATA The data line of the 3-wire se-
rial interface for the 2.4GHz RF
transceiver chip.

B-PLLCLK RFSCLK The clock line of the 3-wire se-
rial interface for the 2.4GHz RF
transceiver chip.

BPLLLE RFOLSENN Active low. The enable line of
the 3-wire serial interface for the
2.4GHz RF transceiver chip.

RFLOCKO RFO-LOCK Status signal from the 2.4GHz RF
chip indicating whether either the
RX or TX PLLs are locked. Bits
27, 28 of the SYNTH/MISC regis-
ter in the RF chip control to which
PLL this signal corresponds.

B_CP_PD RFCP_PDN Active low. Enables power for the
2.4GHz RF transceiver RX and
TX charge pumps. Not useful if
Q101 and Q102 are not populated.

B_PA_PD RFPA_PD_N Active low. Enables power for the
2.4GHz RF power amplifier.

SDATAO ADCL-SDATA The data line of the 3-wire serial
interface for the ADC/DAC chip.

SCLKO ADCOSCLK The clock line of the 3-wire serial
interface for the ADC/DAC chip.

SENO ADCL-SEN-N Active low. The enable line of
the 3-wire serial interface for the
ADC/DAC chip.

RESET BOARD-RESETN The Reset signal from the wireless
board. The Reset signal is an in-
put to the ADC/DAC chip.

RESET-SW BOARDRESETSW-N The software reset signal. Pull
this signal low to cause Reset to
go low as well. This is connected
to a pullup resistor, so it should
be tristated to allow Reset to go
high. This is currently unusable
because resistor R300 and R302
are unpopulated.

86

A.2 Usage Guidelines

This section presents several useful points about how to use the wireless board.

1. When working with the board, always use an anti-static wrist strap that is

properly connected to ground. The circuitry on the board, in particular the RF

circuitry, can be very sensitive to static discharge.

2. Never power up the board unless its digital control and data lines are being

driven. This is important to prevent floating input voltages from causing large

amounts of shoot-through current in CMOS circuits. Also, if the digital lines

are not driven during powerup, the device could be programmed into a harmful

state by the floating voltages at its control inputs.

3. When probing high-speed digital lines, remember that the probe will add capac-

itance, and thus the total board current (i.e. power dissipation) will increase.

4. Use the hold-downs on the 190-pin high-speed connector in order to ensure

proper seating of the connector. Even though the connector may seem to be

seated correctly, some pins may not have a good connection.

5. The ADC/DAC chip requires an external fan to cool it (along with a heatsink).

87

88

Appendix B

Wireless Board Controller

Reference

This appendix is designed as a reference guide for those using the wireless board

controller. It provides detailed information about the commands available, along

with a listing of caveats that could help a new user.

B.1 Controller Commands

As mentioned in the thesis, commands from Raw consist of two 32-bit words, sent

one after the other. The first word is the instruction word and specifies what task the

controller is to perform. The second word is a data word, and supplies any data that

the command might require (e.g. The ADCSER command requires a 32-bit word to

send on the ADC/DAC serial lines). Tables B.1 and B.2 provide a listing of all the

commands, along with their encodings and descriptions. In the table the data word is

referred to as Data. For example, Data[2:0] specifies a 3-bit word consisting of Data

bits O(LSB), 1, 2(MSB).

89

Table B.1: Wireless board controller commands.

Instruction (encoding) Uses Data Description
RFSER (OxOOOOOOOO) Y Sends Data[31:0] to the RF

chip over the 3-wire serial in-
terface. Writes Data[31..0]
to the Control section RAM.

ADCSER (OxOO000001) Y Sends Data[31:0] to the
ADC/DAC chip over the 3-
wire serial interface. Writes
Data[31:0] to the Control
section RAM.

RFAGC (0x00000002) Y Sets the RF AGC bus to
Data[5..0].

RFDLY (0x00000003) Y Sets the RF DLY bus to
Data[3..0].

ADCDIRECT (0x00000004) Y Sends Data[21:0] 2-sample
packets from the ADC di-
rectly to Raw.

ADCTORAM (0x00000005) Y Sends Data[21:0] 2-sample
packets from the ADC to the
ADC section RAM on the
FPGA.

ADCFROMRAM (0x00000006) Y Sends Data[21:0] 2-sample
packets from the ADC sec-
tion RAM on the FPGA to
Raw.

DACDIRECT (0x00000007) Y Sends Data[21:0] 2-sample
packets from Raw directly to
the DAC chip.

DACTORAM (0x00000008) Y Stores Data[21:0] 2-sample
packets from Raw in the
DAC section RAM on the
FPGA.

DACFROMRAM (0x00000009) Y Sends Data[21:0] 2-sample
packets from the DAC sec-
tion RAM on the FPGA to
the DAC chip.

GETSTATUS (OxOOOOOOOA) N Returns a status word to
Raw.

90

Table B.2: Wireless board controller commands.

Instruction (encoding) Uses Data Description
GETRFREG (OxOOOOOOOB) Y Returns the RF chip

register as specified by
Data[2:0] to Raw.

GETADCREG (OxOOOOOOOC) N Returns the latest 32-
bit value written to the
ADC/DAC chip control
register.

GETRFAGC (OxOOOOOOOD) N Returns the current value
of the RF AGC bus.

GETRFDLY (OxOOOOOOOE) N Returns the current value
of the RF DLY bus.

BOARDRESET (OxOOOOOOOF) Y Sets the BOARD-RESET
signal to Data[0].

TEST (OxOO000010) Y Returns Data[31:0].
DAC-CLKDCMRESET (OxOO000011) Y Sets the

DACCLK-DCMRESET
signal to Data[0].

B.2 Status Word

This section describes the status word returned to Raw by the controller. Figure B-1

shows the breakdown of the bits in the status word.

rfser.busy adcser busy adc busy dac busy I adc err I dacerr
5 4 3 2 1 0 Bit number

0 dacreset in I adcreset-in boardresetinsync I rf_lock_in_sync
32 10 9 8 7 6 Bit number

Figure B-1: Bit-level breakdown of the status word.

1. dac-err: This bit is high if an error has occurred in the DAC section. dac-err is

set high if a DACDIRECT command is being processed and no data is currently

available from Raw. DACDIRECT sends data to the DACs every cycle. If, at

any given cycle, no data is available from Raw to send to the DACs, an error

91

signal is sent to the Control section, and dac-err is set high. dac-err is reset to

0 when the GETSTATUS command is processed.

2. adc-err: This bit is high if an error has occurred in the ADC section. adc-err is

set high if an ADCDIRECT command is being processed and no data can be

written to Raw because the buffers are full. ADCDIRECT sends a word from

the ADC to Raw on every cycle. If that word cannot be written to Raw because

the buffers are full, then the word will be lost, and an error signal is sent to the

Control section. The Control section then sets adc-err high. adc-err is reset to

0 when the GETSTATUS command is processed.

3. dac-busy: This bit is high when the DAC section is busy processing a command.

When the DAC section has finished processing the command, it sends a signal

to the Control section, which resets the dac..busy bit.

4. adc.busy: This bit is high when the ADC section is busy processing a command.

When the ADC section has finished processing the command, it sends a signal

to the Control section, which resets the adc-busy bit.

5. adcser-busy: This bit is high when the ADC/DAC serial block is busy sending

a 32-bit word to the ADC/DAC chip. This bit is reset low once the ADC/DAC

serial block is finished.

6. rfseribusy: This bit is high when the RF serial block is busy sending a word to

the RF chip. This bit is reset low once the RF serial block is finished.

7. rfiock-in-sync: This is the synchronized RF-LOCK status signal from the RF

chip. The RFLOCK signal indicates whether the PLLs on the RF chip have

locked. Specifically, it can indicate whether either the RX PLL has locked, or

whether the TX PLL has locked. Which one the RF-LOCK signal corresponds

to is set in the SYNTH-MISC register on the RF chip (register 6).

8. board-reset-in-sync: This is the synchronized BOARDRESET signal from the

wireless board. This signal is an input to the ADC/DAC chip and can be

92

controlled either via a pushbutton switch on the board, or via a control line

from the FPGA. The command BOARDRESET sets this control line. The

reset signal is active low.

9. adcreset-in: This is the reset signal for the ADC section. It is generated exter-

nally to the controller, in the top-level module for the FPGA. This signal will

only release the ADC section from reset only if the ADC DCMs have locked,

and no other global reset conditions exist. This signal is active high.

10. dacreset-in: This is the reset signal for the DAC section. It is generated in

the same manner as the adcreset-in signal except that it will release the DAC

section from reset only if the DAC DCMs have locked and no other global reset

conditions exist. This signal is active high.

B.3 Caveats

This section covers useful miscellaneous information that a new user of the controller

should be aware of. It is hoped that these notes will prevent some debugging issues.

1. There is an issue with using the DCMs to lock onto the ADC and DAC clocks.

If the DCM is initially unable to achieve lock, then the DCM must be manually

reset to cause it to reattempt lock. This is particularly important in the case

of the DAC clock:

The DAC clock sent to the FPGA is the output of a PLL on the wireless board.

One input of the PLL is the DAC clock provided by the ADC/DAC chip. The

other input is the DAC clock generated by the DCM on the FPGA. See Figure

4-1 for a schematic.

When the board is first powered on, and both inputs to the PLL are OV, the PLL

will output a clock signal to the FPGA. This will cause the DCM to attempt to

lock onto this signal. However, it will be unable to, and it will eventually fail

to lock. This means that when the DAC is turned on, the DCM on the FPGA

93

will not attempt to lock since it has already failed to do so. This is the reason

that the DAC-CLK-DCM-RESET command exists. With this command, the

DCM on the FPGA can be kept in reset until the DAC has been turned on,

and then can be allowed to lock.

So, when using the DAC section and the DAC, the following steps must be

performed in this order.

(a) Turn the DAC on via the 3-wire serial interface.

(b) Set the DAC-CLKDCM-RESET signal to 0 via the DACCLK-DCM-RESET

command.

2. The RFAGC control line is not intuitive. While the minimum gain setting is

(Bit 5)000000(Bit 0), the maximum gain setting is (Bit 5)111101(Bit 0). See

the RF chip documentation for more information.

94

Bibliography

[1] A. Chandrakasan, H.-S. Lee, and C.G. Sodini. Wireless Gigabit Local Area Net-

work. Microsystems Technology Laboratories Annual Report, Massachusetts In-

stitute of Technology, MIT, Cambridge, Massachusetts, December 2003.

[2] IEEE 802.11 Working Group. Part 11 : Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) specifications. The Institute of Electrical and

Electronics Engineers, Inc., 1999.

[3] IEEE 802.11 Working Group. Part 11 : Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) specifications. Amendment 4: Further Higher

Data Rate Extension in the 2.4 GHz Band. The Institute of Electrical and Elec-

tronics Engineers, Inc., 2003.

[4] M. Krstic, M. Koushik, A. Troya, E. Grass, and U. Jagdhold. Implementation of

an IEEE 802.1 la Compliant Low-Power Baseband Processor. In 6th International

Conference On Telecommunications In Modern Satellite, Cable and Broadcasting

Service, 2003.

[5] T.H. Meng, B. McFarland, D. Su, and J. Thomson. Design and Implementation of

an All-CMOS 802.11a Wireless LAN Chipset. IEEE Communications Magazine,

41(8):160-168, August 2003.

[6] J. Steinheider, V. Lum, and J. Santos. Field Trials of an All-Software GSM Base

Station. In 2003 Software Defined Radio Technical Conference, November 2003.

95

[7] Michael Bedford Taylor. The Raw Processor Specification. Technical Memo,

CSAIL/Laboratory for Computer Science, MIT, 2004.

96 (qc

