
Towards Implementing Group Membership in Dynamic
Networks: A Performance Evaluation Study

by

Sophia Yuditskaya

S.B. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2002

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the MASSACHUSET7S INS E

MASSACHUSETTS INSTITUTE OF TECHNOLOGY OF TECHNOLOGY

May 2005 JUL 18 2005
C 2005 Massachusetts Institute of Technology. All rights reserv LIBRARIES

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part and to grant others the right to do so.

A uthor ..
Sophia Yuditskaya

Department of Electrical Engineering and Computer Science
May 19, 2005

C ertified by... ..
Dr. Roger Khazan

Research Scientist, Information Systems Technology, Lincoln Laboratory
Thesis Supervisor

C ertified by..
Dr. Clifford Weinstein

oln Laboratory
-sis Supervisor

Accepted by........(...................
k-thur C. Smith

Professor of Electrical Engineering
Chairman, Department Committee on Graduate Students

BARKER

2

3

Towards Implementing Group Membership in Dynamic Networks:
A Performance Evaluation Study

by

Sophia Yuditskaya

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2005 in Partial Fulfillment of the

Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Support for dynamic groups is an integral part of the U.S. Department of Defense's
vision of Network-Centric Operations. Group membership (GM) serves as the foundation
of many group-oriented systems; its fundamental role in applications such as reliable
group multicast, group key management, data replication, and distributed collaboration,
makes optimization of its efficiency important. The impact of GM's performance is
amplified in dynamic, failure-prone environments with intermittent connectivity and
limited bandwidth, such as those that host military on the move operations.

A recent theoretical result has proposed a novel GM algorithm, called Sigma, which
solves the Group Membership problem within a single round of message exchange. In
contrast, all other GM algorithms require more rounds in the worst case. Sigma's
breakthrough design both makes and handles tradeoffs between fast agreement and
possible transient disagreement, raising the question: how efficiently and accurately does
Sigma perform in practice?

We answer this question by implementing and studying Sigma in simulation, as well
as two leading GM algorithms - Moshe and Ensemble - in a comparative performance
analysis. Among the variants of Sigma that we study is Leader-Based Sigma, which we
design as a more scalable alternative. We also discuss parameters enabling Sigma's
optimal practical deployment in a variety of applications and environments.

Our simulations show that, consistently with theoretical results, Sigma always
terminates within a single round of message exchange, faster than Moshe and Ensemble.
Moreover, Sigma has less message overhead and produces virtually the same quality of
views as Moshe and Ensemble, when used with a filter for limiting disagreement. These
results strongly indicate that Sigma is not just a theoretical result, but indeed a result with
important practical implications for Group Communication Systems: the efficiency of
GM applications can be significantly improved, without compromising accuracy, by
replacing current GM algorithms with Sigma.

Thesis Supervisor: Dr. Clifford Weinstein
Title: Group Leader, Information Systems Technology, Lincoln Laboratory

Thesis Supervisor: Dr. Roger Khazan
Title: Research Scientist, Information Systems Technology, Lincoln Laboratory

4

5

Acknowledgements

I would like to express my heartfelt thanks to my thesis supervisor Dr. Roger Khazan for
the dedicated guidance and valuable advice that he has given me. He has taught me so
much about the field of group communications, as well as the research process, over the
course of my thesis work.

I am deeply grateful to my thesis supervisors Dr. Clifford Weinstein and Dr. Roger
Khazan for welcoming me into MIT Lincoln Laboratory as a research assistant and for
giving me the opportunity to work on this project for my thesis. This research was
sponsored by the United States Air Force under Air Force Contract F19628-00-C-0002.
(Opinions, interpretations, conclusions, and recommendations are not necessarily
endorsed by the US Government.) I am deeply grateful to everyone who vouched for my
character and abilities: special thanks to my academic advisor Professor Arthur C. Smith.
I am deeply grateful to Steve Serra, Siva Ravada, Jeffrey Xie, Terry Xu, and Zhihai
Zhang for their understanding and encouragement while I have pursued my degree.

I would like to thank my friends Debbie and Harvey Furey, and Rebecca S. Bloom, for
their enthusiastic moral support. Thanks to my fellow Lincoln Lab research assistants
Barry, Lisa, Michael, Daryush, and Nick, for their congeniality. Thanks also to my
friends Nicole Alexander, Manjari Yalavarthy, and Andrew Lamb, for their gracious
words of encouragement.

Finally, I would like to give special thanks to my family for their everlasting, steadfast
love and support.

6

7

Table of Contents

Chapter 1 Introduction... 13

1.1 M otivation... 14
1.2 g ... 16

1.2.1 Reliable D istributed Computing ... 16
1.2.2 Group Com m unication... 18
1.2.3 Group M em bership ... 19
1.2.4 Sigm a.. 21

1.3 Thesis Overview ... 23
1.3.1 Contributions .. 23
1.3.2 Results Preview .. 26

1.4 Roadm ap ... 28

Chapter 2 Applications of Group Membership .. 29

2.1 Group Com m unication System s .. 30
2.2 Totally Ordered M ulticast.. 31
2.3 V irtually Synchronous Group M ulticast... 33
2.4 Load Balancing Replicated D ata .. 34
2.5 Interm ittently A tom ic D ata Service ... 36
2.6 Group K ey M anagem ent.. 37

2.6.1 Secure Spread ... 37
2.6.2 Secure Ensem ble.. 38

Chapter 3 Group Membership Specification .. 39

3.1 Environm ent.. 39
3.1.1 Single-tier vs. Two-tier Architecture... 41
3.1.2 Failure D etectors vs. Group M embership ... 41

3.2 Properties and D efinitions.. 42
3.2.1 Group M em bership Specification in Action.. 43
3.2.2 Agreed, Transient, and Disagreed Views 44

3.3 Scalability of G roup M em bership .. 45

Chapter 4 Algorithms...47

4.1 Sigm a 47
4.2 M oshe .. 51
4.3 Leader-Based Sigma.. ... 52
4.4 H orus/Ensem ble... 54
4.5 Exam ple Scenarios and D iscussion ... 55

4.5.1 LB Sigm a vs. A2A Sigma... 56
4.5.2 LB Sigm a vs. Ensem ble... 59
4.5.3 A2A Sigm a vs. M oshe.. 60

Chapter 5 Sim ulation.. 63

5.1 Platform ... 63
5.2 Im plem entation ... 66

8

5.2.1 Modeling Network Events and Failure Detection .. 66
5.2.2 Notification Service... 68
5.2.3 Group M em bership Service ... 71
5.2.4 Comm unication Service .. 73
5.2.5 N etwork Topology Configuration.. 74
5.2.6 Analysis m ethods... 76

C hapter 6 Perform ance A nalysis.. 79

6.1 A ll-to-A ll Study: Sigm a vs. M oshe .. 80
6.1.1 N um ber and D uration of Views .. 81
6.1.2 Agreem ent .. 82
6.1.3 D isagreem ent ... 84
6.1.4 GM Latency.. 86
6.1.5 M essage Overhead... 87

6.2 LB Study: Leader-Based Sigm a vs. Ensem ble .. 89
6.2.1 N um ber and D uration of Views .. 90
6.2.2 Agreem ent .. 91
6.2.3 D isagreem ent ... 93
6.2.4 GM Latency.. 94
6.2.5 M essage Overhead... 95

C hapter 7 D iscussion and Conclusions .. 97

7.1 V iew Form ation Tim e and Overhead ... 98
7.2 Frequency of N ew V iew s.. 100
7.3 A ccuracy ... 101
7.4 Scalability ... 102
7.5 Conclusions... 103

Bibliography .. 105

A ppendix A .. 111

A ppendix B .. 113

A ppendix C .. 115

A ppendix D .. 117

A ppendix E .. 119

A ppendix F .. 122

9

List of Figures

Figure 1-1 The Group Abstraction.. 18

Figure 1-2. All-to-All Communication.. 24

Figure 1-3. Leader-Based Communication.. 24

Figure 1-4. Two-tier Architecture... 25

Figure 1-5. Sigma forms views faster.. 27

Figure 1-6. Agreement percentages... 27

Figure 2-1. Normal vs. Reconfiguration Mode of GM Applications. 30

Figure 2-2. FIFO Ordering ... 32

Figure 2-3. Causal Ordering .. 32

Figure 2-4. Total O rdering... 32

Figure 3-1. Layers of the GM Environment ... 40

Figure 3-2. Two-tier Architecture... 40

Figure 3-3. Single-tier architecture... 41

Figure 3-4. Illustration of Example 3-1. .. 41

Figure 4-1. Pseudocode for A2A Sigma.. 48

Figure 4-2. Sigma's Relationship between GM and NS... 49

Figure 4-3. All-to-All Sigma LD Example... 51

Figure 4-4. Pseudocode for Leader-Based Sigma.. 52

Figure 4-5. All-to-All Sigma, unlimited disagreement (Sigma UD). 56

Figure 4-6. All-to-All Sigma with a filter for limiting disagreement (Sigma,_LD)..... 56

Figure 4-7. Leader-Based SigmaUD... 57

Figure 4-8. Leader-Based SigmaLD .. 57

Figure 4-9. A standard leader-based GM algorithm like Ensemble. 59

Figure 4-10. Moshe Slow Agreement Scenario.. 60

Figure 5-1. Elements of the Ns-2 Platform... 65

Figure 5-2. Interface between NS and GM... 72

Figure 5-3. Example distribution of latencies... 74

Figure 6-1. Total Number of views, RON 1, All-to-All Sigma vs. Moshe. 81

Figure 6-2. Duration of Views, All-to-All Sigma vs. Moshe. 82

Figure 6-3. Percentage of Views in Agreement... 83

10

Figure 6-4. Raw Numbers of Agreed Views, RON 1, All-to-All Sigma vs. Moshe. 84

Figure 6-5. Percentage of views in disagreement. ... 85

Figure 6-6. Raw Number of Disagreed Views... 85

Figure 6-7. Average Latency and Standard Deviations, RON1, All-to-All Sigma vs.
M o sh e .. 86

Figure 6-8. Maximum Latency, All-to-All Sigma vs. Moshe.. 87

Figure 6-9. Average Message Overhead, RON 1, All-to-All Sigma vs. Moshe............ 88

Figure 6-10. Total Number of Views, RON1, Leader-Based Sigma vs. Ensemble. 90

Figure 6-11. Duration of Views, Leader-Based Sigma vs. Ensemble. 91

Figure 6-12. Percentage of Views in Agreement, Leader-Based Sigma vs. Ensemble.... 91

Figure 6-13. Raw Number of Agreed Views, RON 1, Leader-Based Sigma vs. Ensemble.
... 9 2

Figure 6-14. Percentage of Views in Disagreement, Leader-Based Sigma vs. Ensemble.93

Figure 6-15. Number of Views in Disagreement, Leader-Based Sigma vs. Ensemble.... 93

Figure 6-16. Average Latency and Standard Deviations, RON 1, Leader-Based Sigma vs.
E n sem b le... 94

Figure 6-17. Maximum Latencies, Leader-Based Sigma vs. Ensemble....................... 95

Figure 6-18. Average Message Overhead, RON1, Leader-Based Sigma vs. Moshe. 96

Figure 7-1. Percentage of Moshe's Views delivered in FA vs. SA. 98

Figure C-1. Total Number of Views, RON2, All-to-All Sigma vs. Moshe.................... 115

Figure C-2. Raw Numbers of Agreed Views, RON2, All-to-All Sigma vs. Moshe....... 115

Figure C-3. Average Latency, RON2, All-to-All Sigma vs. Moshe............................... 116

Figure C-4. Average Message Overhead, RON2, All-to-All Sigma vs. Moshe............. 116

Figure D- 1. Total Number of Views, RON2, Leader-Based Sigma vs. Ensemble......... 117

Figure D-2. Raw Number of Agreed Views, RON2, Leader-Based Sigma vs. Ensemble.
... 1 17

Figure D-3. Average Latency, RON2, Leader-Based Sigma vs. Ensemble. 118

Figure D-4. Average Message Overhead, RON2, Leader-Based Sigma vs. Ensemble.. 118

ii

List of Tables

Table A -1. R O N trace excerpt. ...

Table E-1. Raw Agreement and Disagreement Data (All-to-All, RON 1)...................... 119

Table E-2. Raw Agreement and Disagreement Data (All-to-All, RON2)...................... 119

Table E-3. Raw Agreement and Disagreement Data (Leader-Based, RONi)................ 120

Table E-4.Raw Agreement and Disagreement Data (Leader-Based, RON2)................. 121

Table F-1. Average Message Overhead Raw Data, All-to-All....................................... 122

Table F-2. Average Message Overhead Raw Data,Leader-Based.................................. 123

12

13

Chapter 1

Introduction

Dynamic groups are an integral part of the DoD's vision of a Network-Centric

Global Information Grid, enabling such important military capabilities as Collaborative

Teams, Communities of Interests, and Command-and-Control on the move operations.

Group Membership (GM) is one of the fundamental services required for supporting

dynamic groups, their applications, and services. Group-oriented applications are

typically blocked while GM handles membership changes. As a result, the performance

of such higher-level applications directly depends on the performance of GM -

specifically, how fast GM is able to handle membership changes, and how frequently

these changes occur. The impact of GM's performance on these applications is amplified

in dynamic, failure-prone environments with intermittent connectivity and limited

bandwidth, such as those that host military on the move operations.

This thesis is motivated by Khazan's recent theoretical result that solves the problem

of GM simpler and more efficiently than previously believed [39]. This solution consists

of two parts: a) a GM algorithm, called Sigma, which handles membership changes faster

than previous algorithms, but possibly with lesser accuracy; and b) a mechanism for

improving accuracy, which works in conjunction with Sigma.

The goal of this thesis is to evaluate how well Khazan's theoretical algorithm

performs in practice, particularly in dynamic, failure-prone environments. Based on this

evaluation, we also hope to provide insight into options for optimizing Sigma and

formulate general guidelines for deploying GM in dynamic environments.

To achieve these goals, we implement and study several variants of Sigma, in

comparison with two other GM algorithms. One of the variants of Sigma that we study is

a new algorithm that we have designed as part of this thesis. This new algorithm

improves Sigma's scalability by transforming its all-to-all type of communication into a

leader-based version [37]. The two GM algorithms to which we compare Sigma are a) an

optimistic all-to-all algorithm, called Moshe [34], and b) a leader-based algorithm

deployed in the Horus and Ensemble group communication systems [19, 27]. We

14

simulate these algorithms in a dynamic environment driven by connectivity traces that

have been collected from a wide-area network (WAN) [9, 29].

The results of our study indicate that Sigma is both practical and efficient [53].

Consistently with the theoretical results, Sigma uses only a single round of message

exchange to handle membership changes, faster than Moshe and Ensemble. Moreover,

Sigma has smaller message overhead and is virtually as accurate as the other two,

particularly when used with a mechanism such as the one mentioned in [39] for

improving Sigma's accuracy.

Our results also yield a general observation that, in dynamic environments, GM is

practical only for those applications and services that do not require GM to respond to

membership changes immediately as they are detected. These are the applications that are

able, and in fact prefer, to delay GM responses for some time in order to ignore short

transient disconnects and avoid useless, frequent view changes and the overhead

associated with them. We reference some applications that fit this category in Chapter 2.

The remainder of this chapter is organized as follows. In Section 1.1 we describe the

motivation behind our research. Section 1.2 provides an overview of the background

relevant to this thesis, from the field of reliable distributed computing, to the fault-

tolerance benefits of group communication and group membership, and finally a

summary of Sigma. Section 1.3 summarizes the contributions and results of this thesis. A

roadmap for the rest of this thesis is provided in Section 1.4.

1.1 Motivation

Collaborative, secure, timely, and reliable communication is essential to the success

of national defense operations. Towards achieving these goals, the vision of fully

integrating defense forces with Network-Centric Operations (NCO) has been articulated

as a high priority by the U.S. Department of Defense. In the Joint C4 Campaign Plan of

September, 2004, the Joint Chiefs of Staff emphasize a networked force as the key to

increasing operational effectiveness, "enabling dispersed forces to more efficiently

communicate, maneuver, share a common operating picture and achieve the desired end-

state [30]". Maj. Gen. Paul Lebras, Commander of the AIA and Joint Information

Operations Center, and Deputy Commander for Information Operations for the 8 h Air

15

Force, describes the important role that NCO has played, to a greater degree than ever

before, in Operation Iraqi Freedom, reflecting a fundamental "paradigm shift" in national

defense techniques: "We had multiple platforms linked into distributed architectures, all

of which understood the commander's intent, and all of which swiftly pushed data

forward [40]".

The need for NCO has outpaced the technological resources available to implement it

in such failure-prone mission-critical environments as are characteristic of military

operations. Such operations require algorithms and services for performing group

communication, collaboration, computation, security, and authentication. Solutions need

to be scalable, secure, and efficient. They need to be designed to operate effectively in

dynamic fault-prone environments with intermittent connectivity and limited bandwidth.

Dynamic groups are an integral part of the DoD's NCO vision. When considered at a

level higher than network connectivity and bandwidth, a major feature that enables NCO

is group-oriented operations and activities. Examples of such activities in the sphere of

national defense include:

" Military operations carried out by dynamic Command, Control, Communications,

Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR) teams;

" Distributed data acquisition and processing;

" Satellite-based capabilities, enabling an edge in military maneuvers, surveillance,

reconnaissance, and global communications [40];

" Command and control of large, joint military operations and multi-organization

cooperative design activities, which involve very large, dynamic groups [15];

" Real-time policy management, group key establishment, and re-keying technology for

groups in which membership can change rapidly for a variety of operational as well

as security reasons [15].

Group-oriented operations are widely applicable, not only for military purposes, but

also for many other distributed applications; some examples are data and service

replication, resource allocation, load-balancing, real-time collaborative computing, and

air traffic control [17, 22, 35, 36, 44, 46]. Many of these applications involve mission-

critical operations in dynamic, failure prone environments.

16

Group membership (GM) serves as the foundation of many group-oriented

applications. GM is an essential component of Group Communication Systems, which

offer robust, fault-tolerant solutions for mission-critical applications [51]. Group

membership (GM) services maintain and report group membership as it changes due to

voluntary joins and leaves, security privilege revocations, as well as involuntary failures,

recoveries, partitions, and merges - network events characteristic of dynamic, failure-

prone network environments. Without GM, even reliable multicast could not be possible,

because messages cannot be sent without knowledge of their destinations - the group

members.

As we shall see in Chapter 2, while GM (or its encapsulating GCS) is handling a

change in group membership, many higher-level applications are blocked, waiting to

receive a new view of the membership (e.g., [26, 36]). A view is a pair consisting of the

membership set and a view identifier, on which group members must agree (see Section

1.2.3). After the application processes receive the new view, they typically synchronize

with the other members to make sure that everyone has also received it, and to bring their

states to a consistent base from which all of them can resume their normal operation.

These two observations imply that performance of GM applications directly depends on

a) how long the underlying GM protocol takes to form new views and b) how frequently

these new views are created. The fundamental role of GM in group-oriented applications

makes optimization of its efficiency important.

1.2 Background

This section overviews the context, relevance, and controversies surrounding the

issues that we address. The description proceeds systematically from the general to the

specific, from the field of reliable distributed computing, to group communication and

group membership, and concluding with an overview of Sigma.

1.2.1 Reliable Distributed Computing

The field of reliable distributed computing has evolved in recent years to develop and

study solutions for mission-critical applications in dynamic failure-prone environments.

17

Distributed computing refers to systems and applications in which physically or logically

separate entities such as servers or processes cooperate to coordinate actions at multiple

locations in a network. Having recently emerged from a specialized niche to ubiquitous

use, today it is a technology that literally everyone depends on, from the Internet to air-

traffic control, management of financial data, and electronic medical records [17].

As distributed computing is increasingly used for mission- and life-critical

applications, reliability becomes especially important. However, reliability has not kept

pace with the lightning-fast spread of distributed computing. As an engineering

discipline, reliable distributed computing is still in its infancy, and is an active area of

research and innovation. Reliability involves three distinct goals: (1) tolerating failures

automatically, (2) guaranteeing properties such as performance or response time, and (3)

offering security against intentional threats [17].

The problem of maintaining distributed consistency inevitably arises in a distributed

system for which reliability is important. Concurrent processing among the multiple

distinct processes in a distributed system can lead to inconsistent local state at each of the

entities. Also, processes can fail, and the network connecting them can experience

congestion or link failures. Networks and the distributed systems built on top of them are

failure-prone environments, full of asymmetries that lead to inconsistencies of state in the

distributed system.

In order to maintain consistency in a distributed system, it is important for the

participating processes to be able to synchronize with each other to obtain and agree on

the most accurate state. Before synchronization can be done, however, the system needs

to know which processes are participating. Not only can processes fail and recover, but

also any robust design must allow for dynamism in which processes can voluntarily join

and leave the system.

One useful abstraction towards achieving distributed consistency is to envision the

participating processes as members of a group (Figure 1-1). Distributed applications can

then use this group abstraction as a black box that provides them with an accurate list, or

membership, of processes that are participating in the resynchronization procedure. In

this research, we delve into the technical details, design issues, and practical analysis of

what happens in that black box.

18

Figure 1-1. The Group Abstraction. Messages are sent to Group G, rather than to individual
nodes. Image source: Idit Keidar.

1.2.2 Group Communication

Technologies that make use of the group abstraction implement a form of distributed

computing called group communication. Group communication is a means for providing

multi-point to multi-point communication, by organizing processes in groups [22].

Processes located at different nodes of a distributed system operate collectively as a

group by using a group communication service (GCS) to multicast messages to all

members of the group [26]. Isis [18], Transis [3], Totem [1, 7], Spread [2],

Horus/Ensemble [19, 51], JGroups [16], and Xpand [23] are just a few of the GCS's that

have been developed.

By providing such communication primitives as broadcasts to the group as a

single entity, group membership changes, and migration of activity from one place to

another, GCS's offer a modular solution -- a "black box" -- to reliable distributed

computing. Outside the black box, these primitives appear instantaneous and atomic -

enabling a distributed system to mimic the behavior of a centralized system [17]. Birman

and Joseph, the designers of Isis and the first to propose and implement the idea of a

GCS, write that "the major advantage of this abstraction is that many aspects of a

distributed application can be treated as independent modules without compromising

correctness [18]". In other words, higher level application code can be designed as if the

system were centralized or synchronous, and application developers need not worry about

the low-level concurrency issues of distributed systems.

19

True to their vision, GCSs have proven to be powerful middleware systems,

facilitating development of distributed systems in dynamic, fault-prone environments by

providing two distinct services: group membership and reliable multicast [39] [17] [26].

1.2.3 Group Membership

As middleware, GCSs are charged with handling, and thus buffering applications

from, the effects of asynchronous failure-prone environments, in which processes can

crash, reconnect, and partition. An essential component that enables the fault-tolerance

capabilities of a GCS is its group membership service (GMS). The role of a GMS is to

maintain the membership of a distributed system on behalf of the logically grouped

processes that are currently active and connected [17]. As network events occur, such as

process crashes and recoveries, and as processes voluntarily request to join or leave the

group, GMS responds by delivering a view to the application that reflects the latest

membership [34]. A view is a pair consisting of an identifier and a membership set.

Given an accurate up-to-date view, the application then uses the GCS's reliable multicast

service to deliver messages to the current view members.

The means by which a GMS forms a new view is a widely studied problem in the

area of fault-tolerant distributed computing [45], and it is called the Group Membership

Problem. Group Membership (GM) is the problem of maintaining a dynamic group of

members and informing members about changes in the group [17, 22]. Changes in the

group occur because of network events such as members joining and leaving the group,

crashing, disconnecting, and reconnecting; also, the group can partition into disjoint

components, and group components can later merge. The goal of GM is to provide each

group member with the same, correct view of the current membership of the group. There

are two parts to solving the Group Membership Problem: (1) determining the set of

members that are currently connected and (2) ensuring that these members agree on the

same view.

The group membership (GM) specification assumes an underlying failure detector,

called a network event notification service (NS) that essentially achieves the first goal.

With the membership set readily provided by the NS, the GMS is left with the problem of

achieving the second goal - to ensure that all members agree on the same view of the

20

membership set. The purpose of the view identifier is to differentiate between two

instances of the same membership set; for example, assuming no other network events, a

membership set M is the same before process A leaves and after process A returns. To

distinguish between the two, the view before process A leaves would be <1, M> while

the view after process A returns would be <3, M>. Thus, agreeing on the same

membership set also involves agreeing on the same view identifier. This goal is called

achieving Agreement on Views.

Solutions to the Group Membership Problem are implemented by group membership

algorithms. Most group membership algorithms have been unique to, and are closely

associated with, the particular GCS in which they have been developed, such as Isis,

Transis, Totem, and Spread [7, 18, 24]. However, a few GM algorithms have proven

portable to some extent and therefore bear names of their own, such as Horus/Ensemble

and Moshe [34, 51].

1.2.3.1 Efficiency of Group Membership Algorithms

It is important for GM algorithms to be as efficient as possible. The significance of

optimizing GM algorithms comes from their critical role in group communications

applications. Not only is GM the basis of all GCSs, but also GM serves as a foundation

for powerful fault-tolerant services such as Totally Ordered Multicast [26], Virtually

Synchronous Group Multicast [32], Intermittently Atomic Data Services [36], Group Key

Agreement [5], and load-balancing replicated data [38]. Virtually all such applications

have two states of operation: a normal mode, which proceeds while the network is stable,

and recovery mode, triggered when a view change begins, when network instabilities

cause changes in group membership. We discuss these applications in Chapter 2.

In all such applications, recovery mode represents an interruption of the application's

normal operation, and it is therefore critical to minimize this reconfiguration time.

Because GM plays such a central role in recovery mode, optimizing GM is an essential

and potent step towards shortening reconfiguration time, improving the efficiency of

these applications, and enabling them to run more smoothly in failure-prone network

environments.

21

1.2.3.2 Membership vs. Consensus

The efficiency of GM algorithms has historically been constrained by the view that

the Group Membership Problem can and should be solved as the Consensus problem,

which is known to require a minimum of two rounds of message exchange' [33, 39, 41].

Although the two problems are known to be different, past solutions to GM have been

influenced by Consensus, and therefore involve several rounds of message exchange. The

most efficient among them, Moshe, is an optimistic algorithm that takes one round in the

typical case, but two or more rounds in certain "out-of-sync" cases [34].

The Membership problem is weaker than the Consensus problem [22]. While

Consensus requires each participant to make a single, irrevocable decision right away,

Membership requires only that the correct, final decision be made eventually, once

stability occurs. Stability means that there are no more network events affecting the

group, or, if a partition has occurred, the group component. Also, the underlying network

itself must remain stable, allowing group component members to communicate with each

other, but with no one else. While formal definitions of the Membership problem require

this stability to last forever, in practice it only has to last long enough for the "final"

views to be formed.

1.2.4 Sigma

A recent theoretical result [39] is the first to propose a GM algorithm that fully

harnesses the difference between Membership and Consensus. By virtue of this novel

approach, the resulting algorithm, named Sigma, is guaranteed to achieve Agreement on

Views within one round after the final network events affecting the group component

become known to all the members. The single-round result in Sigma is achieved by

decoupling and parallelizing two processes that run serially in other group membership

algorithms: achieving Agreement on Views, and limiting disagreement.

Khazan notes that prior GM algorithms, implement "duplicate synchronization at the

GMS and application levels [39]". Because only end-to-end confirmation of the

agreement matters, the latter is necessary, but the former is not [39]. These prior GM

More precisely, Consensus requires a minimum of two rounds only if at least one failure has occurred in
the system. If no failures occur, Consensus is trivial, and can be achieved in less than two rounds.

22

algorithms generate new views only when members know that they are in agreement with

each other. The extra synchronization at the GM level creates an unnecessarily high

performance overhead. Because generating a view is conditional on knowing that

agreement has been reached, these solutions often require two or more rounds of message

exchange [39].

In contrast, Sigma allows members to generate transient, inconsistent views in the

process of converging onto the same final view. Members do not know when they have

agreed. This design enables Sigma to achieve Agreement on Views within one round of

message exchange, once the group component becomes stable. There is, however, a

tradeoff between providing lightning-fast Agreement on Views in some situations, and

producing disagreement in other situations [39].

Certain asymmetric network events cause Sigma to produce inconsistent, transient

views, which lead to disagreements. Although such disagreements are short-lived, it is

desirable to avoid them, because they create unnecessary and useless overhead for

applications. In addition, many applications, especially mission-critical ones, have a low

tolerance for even momentary disagreement. Different applications have different

definitions of what "short-lived" means - for some, it is on the order of seconds; for

others, milliseconds. Also, some applications run in environments where asymmetric

network events that cause disagreements are rare, while others may experience such

asymmetries more often.

To eliminate disagreements, [39] suggests using Sigma with a filter for Limiting

Disagreement (LD). Sigma's modular solution for limiting disagreement delays view

deliveries until the latest proposals from all servers agree on the correct membership, and

in the process filters out inconsistent views by preventing them from being delivered to

the application. This modularity preserves Sigma's single-round performance when it is

used with the LD filter. Since Sigma implements an established and widely used

specification of group membership [22], it can be "plugged in" to virtually any group

communication system, such as for example [4], [23], and [19].

23

1.3 Thesis Overview

In this section, we summarize the contributions of this thesis and provide a preview

of the results.

1.3.1 Contributions

We present a performance analysis of Sigma to evaluate the practical implications of

the theoretical results introduced in [39]. We implement and study Sigma in simulation

using the ns-2 network simulation together with WAN connectivity traces collected by

[9, 10] (also used in [29]). We compare Sigma's performance to that of Moshe, a recent

practical, optimistic algorithm [34], which we implement in the same simulation

environment. We also design and implement a leader-based version of Sigma (see

Section 1.3.1.1), and compare its performance to that of a standard leader-based GM

protocol that is used in Ensemble [19] and JGroups [16]. In our performance analysis of

Sigma, we ask the following three basic questions:

* Is Sigma in practice more efficient than its predecessors? We evaluate efficiency by

measuring a GM algorithm's average and maximum latency of execution (GM

Latency), as well as the average message overhead that the algorithm produces.

" Is Sigma accurate enough to be useful in practice? We introduce and define two new

metrics for quantifying GM performance: agreement - whether all members of a view

have installed that same view; and disagreement - whether at least two members

install a view with the same identifier, but different, nondisjoint membership sets. We

measure how much agreement and disagreement a GM algorithm produces during

execution of the trace, in terms of both percentages of views and actual raw numbers

of views falling into each of these two categories.

" Is the LD filter necessary? If so, is it effective? In our measurements, we compare

Sigma, where disagreements are unlimited, not only with Moshe and Ensemble, but

also with Sigma LD, the version of Sigma that has been equipped with the simple

limiting disagreement filter proposed in [39].

24

1.3.1.1 All-to-All vs. Leader-Based Communication

Sigma uses all-to-all type of communication among members. Several prior results

[14, 49] have suggested that leader-based communication schemes are more efficient in

certain distributed environments, such as typical WANs and other high-latency fault-

prone dynamic networks. Motivated by these results, we have also designed and

implemented Leader-Based Sigma, which makes use of a more scalable and efficient

centralized communication scheme.

Figure 1-2. All-to-All Communication.

Leader

Figure 1-3. Leader-Based Communication.

In high-latency limited-bandwidth fault-prone dynamic networks, the number of

message-exchange rounds and the number of messages within each round matters for GM

protocols. In addition, the practical efficiency of a GM protocol can be optimized by

sending messages over links with lower loss rates and greater bandwidth whenever

possible. Leader-Based Sigma uses a minimal number of message exchange rounds like

the original Sigma algorithm, and in addition reduces the number of messages sent during

each round.

Also, like the original A2A protocol, Leader-Based Sigma is meant to be run by a

relatively small number of membership servers maintaining membership information on

behalf of a large set of clients (Figure 1-4). We believe that a combination of such a two-

25

tier architecture with GM servers running the fast leader-based GM protocol is important

to enable large-scale GM services in high-latency, limited-bandwidth networks.

Network

IMemb2a Memb2bI

GM2 Z

N / I

2 Network

.0 eu Z0

4) gV 0 1 1 N

Network

Figure 1-4. Two-tier Architecture. Clients (members) send join/leave requests to, and receive
views from, the server (GM and NS/FIFO).

1.3.1.2 Sensitivity to Disconnects

As part of our performance analysis, we introduce a parameter called Sensitivity to

Disconnects (SD), for the purpose of adjusting the sensitivity of the system to short-term

network instabilities, similarly as discussed in [43]. Transient events, which occur

frequently in wide-area networks, are difficult to distinguish from permanent events,

because this requires knowledge of the future; applications have no way to distinguish a

temporary departure from a permanent leave at the time of a node's disconnection [43].

Without such a distinction, GM delivers a view for each such transient event, the same as

it would for a permanent event.

Many applications can tolerate transient disconnections without reacting to them; for

such applications, it is important to minimize view changes due to transient events,

because at the application level, each view change is associated with costly

reconfigurations. In addition, applications have different definitions of what "permanent"

means; SD enables them to adjust the granularity of events to be perceived as permanent.

26

By appropriately configuring SD according to their needs, applications can avoid

unnecessary reconfiguration overheads by filtering out transient events.

At first glance, it may seem that the delay introduced by SD would defeat Sigma's

purpose as an optimized single-round GM algorithm. We argue to the contrary: as seen

by the application layer, SD is transparent and mutually exclusive of GM's execution.

Reconfigurations associated with changes in group membership begin from the moment

that a view change begins, i.e. when the network event is raised. SD only delays the

raising of the network event, whereas GM begins, and its performance is measured, after

the raising of the network event. The application therefore does not see the delay

reflected in the view reconfiguration time.

The decision to change a view is made by the GM after the expiration of the SD.

Once GM decides to change the view, the view change must be done quickly. Most

applications tend to block while GM reconfigures; the priority is thus for GM to

reconfigure as quickly as possible, once reconfiguration actually starts.

1.3.2 Results Preview

Figure 1-5 offers a glimpse into Sigma's efficiency relative to (a) Moshe and (b)

Ensemble. Consistently with the theoretical results, Sigma forms views faster and with

smaller message overhead than Moshe and Ensemble, across all SD values. Moreover,

because most disconnects are transient in the real WAN traces that we used in our

simulations, and are therefore detected asymmetrically by some members but not others,

Moshe abandons its optimistic path and switches to its multi-round path for about half of

the views.

In terms of accuracy, we observe that SigmaLD, the version with the filter,

produces virtually the same quality of views as Moshe and Ensemble. More specifically,

for very small values of SD, SigmaLD produces a tiny number of disagreed views - less

than half of one percent; note that for such small SD values the view-oriented GM

approach does not seem practical anyway, because it results in extremely high frequency

of view changes.

Maximum GM Latency (LB)
RON1

0.6 SmUD

0.5 SigmaLD
-- Ensemble

0.

> 0.3

0.2

0.1

0 .

Sensitivity to Disconnects (sec)

Maximum GM Latency (A2A)
RON2

0.6 -+- SigmaUD

0.5 --
SigmaLD

Z 0.4 -i- Mshe

0.4

0 3

S0.3 2

0-

Sensitivity to Disconnects (sec)

Figure 1-5. Sigma forms views faster than (a) Moshe and (b) Ensemble.

Importantly, for the rest of SDs (> 15sec), SigmaLD, like Moshe and Ensemble

produced no disagreement and 99-100% agreement on views. Together with the

observation that Sigma LD is faster than Moshe by as much as 260ms (by 30ms on

average), these results confirm that Sigma_LD is widely applicable, and can potentially

be used anywhere Moshe or Ensemble is used, with significant savings in latency and

overhead.

%Views In Agreement (A2A)
RON2

120-

100 -

80

60 0

40
- Sigma_UD

20 -- SigmaLD

-e- Moshe
0 ,

Sensitivity to Disconnects (sec)

%Views in Agreement (LB)
RONI

120

100 -

80-

60

40
-- Sigma_UD

20 -a- Sigma_LD
-E- Ensemble

0 S

Sensitivity to Disconnects (sac)

Figure 1-6. Agreement percentages for (a) Sigma vs. Moshe and (b) Sigma vs. Ensemble.
SigmaLD produces similar quality agreement as Moshe and Ensemble. Sigma_UD's
performance improves with increasing SD.

Sigma without any filter (SigmaUD) produces the same agreed views as both

SigmaLD and Moshe (and in the Leader-Based case, Ensemble); the differences in

views between SigmaUD and SigmaLD consist almost entirely of short-lived views

that Sigma_UD delivers during periods of asymmetric network instability. This

observation is supported by the fact that SigmaUD's agreement percentages increase to

27

28

match both SigmaLD and Moshe (Figure 1-6(a)), and disagreement percentages

decrease to zero, when transient disconnects of short duration are filtered out, through the

application of a sufficient Sensitivity to Disconnects. The results are analogous when

comparing Leader-Based SigmaUD and Ensemble (Figure 1-6(b)). For applications that

can tolerate these conditions, Sigma_UD is a powerful alternative that should be

considered - not only does it have a smaller message overhead, slightly smaller even than

SigmaLD's, but also it is significantly faster than Moshe and Ensemble. For the specific

WAN traces we used, which were collected from a real network, SigmaUD is faster than

Moshe and Ensemble by as much as 400ms.

1.4 Roadmap

The rest of this thesis is organized as follows. Chapter 2 provides context for our

work of optimizing group membership by describing group communication systems and

other applications of group membership that have been developed. Chapter 3 describes

the group membership specification, including its properties, environment model, and

architectural options. Chapter 4 specifies the algorithms that we study in this thesis -

Sigma, Moshe, Leader-Based Sigma, and Ensemble - and offers a theoretical discussion

of their performance tradeoffs. In Chapter 5, we describe how we implemented the

simulation, from constructing the network topology and modeling of realistic network

events, to our implementation of the group membership algorithms, failure detector, and

analysis tools. Chapter 6 presents the results of the performance analysis, measuring

agreement, disagreement, latency, view duration, and message overhead. In Chapter 7,

we discuss Sigma's practical potential in light of these results, and conclude with a view

to the future.

29

Chapter 2

Applications of Group Membership

To put into context the utility of Group Membership (GM) and group communication

systems, as well as the importance of optimizing GM, we describe in this chapter some

applications that have been designed and discussed in the literature of the field. First, we

provide a brief history of group communication systems, along with an evolutionary

timeline of some GCS that are widely known and referenced often in the field. We then

proceed to a more in-depth description of five well-known applications that have been

developed on top of GM: Totally Ordered Multicast [26], Virtually Synchronous Group

Multicast [32], Load-Balancing Replicated Data [38], Intermittently Atomic Data

Services [36], and Group Key Agreement [8]. These applications are a foundation for

higher-level applications that often require the services (reliable ordered multicast, load-

balancing, replication, and group security) and guarantees (total ordering, virtual

synchrony, intermittent atomicity) that these applications provide.

The applications that we describe in this chapter directly depend on the views

generated by GM. For most, knowledge of group membership is a pivotal factor that

enables them to achieve their intended goals. In addition, many take advantage of the

useful properties provided by the GM specification (see Chapter 3), such as the

monotonically increasing property of view ids and the unique association between

distinct membership instances and view ids.

No matter what their motivation for using GM, all these applications have one

common feature: they have two modes of operation - a normal mode, and a

reconfiguration mode (Figure 2-1). Normal mode proceeds while the network is stable,

during which the application engages in activities that fulfill its characteristic purpose.

Reconfiguration mode begins when network instabilities cause changes in group

membership and in the process introduce inconsistencies of state into the distributed

system. Because normal mode cannot proceed in the presence of such inconsistencies,

each process participating in the application switches to reconfiguration mode in order to

30

synchronize its state with the others. Our discussion focuses on the reconfiguration mode

of each application and the role of GM in its functionality.

Reconfiguration
Normal Mode Mode Normal Mode

View
Network Change

Event GM

NS

Figure 2-1. Normal vs. Reconfiguration Mode of GM Applications. Reconfiguration Mode
represents an interruption of the application's normal operation.

2.1 Group Communication Systems

Group communication systems harness the power of the group abstraction to provide

modular services for fault-tolerant group communication. Process groups were first

proposed by Cheriton and Zwaenepoel in the design of the V system [21]. Birman and

Joseph later applied this idea to the context of fault-tolerance, through the Isis group

communication system [18, 52]. The V system (1985) was the first to make use of the

group abstraction as a software base for constructing distributed systems. In the V kernel

environment there are many cooperating processes on different machines; at a certain

level of abstraction, these processes form logical groups. Cheriton and Zwaenepoel found

that one particular operation enabled by this group-oriented organization is "group

interprocess communication, an application-level abstraction of network multicast [21]".

The Isis group communication system (1987), which is considered to be the first

GCS, demonstrated that the group-oriented approach to building fault-tolerant distributed

software is simpler, more flexible, and more robust than alternative approaches [18]. Isis

implements virtual synchrony for replicated services - messages are delivered to all

- - - _-_- - _: FWW. - ;Aq!q

31

members in a consistent order, simulating a synchronous system in an asynchronous

environment.

A variety of GCSs and supporting subsystems have been developed since Isis, each

offering new innovations. Some examples are as follows. Transis (1992), a transport

layer subsystem for GCSs, improves the efficiency of Isis by implementing broadcast

communication [3]. Totem (1995) provides greater consistency by placing a total order

on broadcast messages through the use of a single logical ring to organize group members

[7]. Totem is extended to support multiple rings in [1]. Spread (1998) is a hybrid GCS

that adapts a similar multiple ring protocol for use in Wide-Area Networks by using rings

on a local-area level and bridging them with a Hop protocol [4] [2].

Horus/Ensemble (1996) introduces a novel stackable architecture for GCSs, in which

each service is implemented as a different layer that can be modularly added or removed

as needed by higher-level applications [19, 51]. JGroups [16], an open-source GCS

implemented in Java, has recently emerged, which applies this same stackable

architecture and a similar group membership algorithm as used in Horus/Ensemble, and

offers a range of protocols and services that can be "mixed and matched" as needed by

the application.

True to its name, Xpand (2000) offers expanded utility to as wide a spectrum of

collaborative WAN applications as possible, by providing two types of services: weak

and strong [13, 23]. The strong services closely resemble traditional GCS semantics,

while in the weak services, requirements are relaxed to approximations, allowing room

for QoS negotiation [13]. In Section 2.2, we also describe the VS group communication

system that was developed to provide the view-synchrony property in addition to the

usual GCS primitives.

2.2 Totally Ordered Multicast

As mentioned in Chapter 1, a group communication system (GCS) offers reliable

multicast as one of its services, besides group membership. However, this multicast

primitive offers only weak ordering guarantees, such as FIFO; a multicast service that can

provide stronger guarantees about ordering can be far more useful to higher-level

applications. There are three main types of ordering multicast message delivery: First-In-

32

First-Out (FIFO), Causal order, and Total order. FIFO (Figure 2-2) guarantees that if a

message mO is sent before a message ml by process p, then mO is delivered before ml at

all destinations that they both have in common [17]. While FIFO ordering is focused on

events that happen at a single place in the system, Causal ordering (Figure 2-3) pertains

to events that can span multiple processes [17]. Causally ordered delivery ensures that

any two messages mO and ml, sent by possibly different processes, where mO was sent

before ml, will be processed in the same order at all destinations that they both have in

common [17]. Total ordering (Figure 2-4) is the strongest ordering option, requiring any

processes that receive the same two messages mO and ml to receive them in the same

order [17].

p0G 20 q0 p0 q0 p2

ml m2

Figure 2-2. FIFO Ordering. Figure 2-3. Causal Ordering. Figure 2-4. Total Ordering.
Image Source: [17]. Image Source: [17] Image Source: [17]

Totally Ordered Multicast, designed by [26] and abbreviated VStoTO, is an

application built on top of a View-Synchronous Group Communication System (VS),

also designed by [26] based on COReL [31]. VS, like any other GCS, is itself an

application of group membership, but in addition, it provides a within-view totally

ordered broadcast service that guarantees message delivery within each view to follow a

total ordering. VS and VStoTO serve as foundations for powerful distributed applications

such as replicated data services and sequentially consistent memory, both of which we

discuss in further detail in Sections 2.4 and 2.5.

Normal mode in VStoTO proceeds while the network is stable. Each process keeps,

among other things, two state variables: a content relation and an order sequence. To

each message M received from the client, VStoTO at processor p assigns a label L

consisting of:

33

" The view id at p when the message arrives

" A sequence number

" And the Processor ID "p"

Processor p stores the <label, message> pair LM in its "content" relation, and sends

LM to the other members of the current view, using VS. The other processors then add

LM to their own "content" relations. A processor "p" is in a primary view when its view

includes a certain quorum of processors in the membership set. When p receives LM

while in a primary view, it also places the label L at the end of its "order" sequence.

Otherwise, a processor p that receives LM while in a non-primary view simply records

LM in "content". Each content relation is a partial function from labels to messages.

When considered in combination with content, order describes a total ordering of sent

messages. [26]

While the task of within-view total order is made simple by the use of VS, the

challenge of VStoTO is to achieve total ordering across view changes. VStoTO achieves

this during reconfiguration mode. Reconfiguration mode of VStoTO is initiated by the

Group Membership service, when network events cause changes in group membership.

GM agrees on a view and delivers it to VS, which in turn passes the new view to

VStoTO. Upon receiving the new view, VStoTO proceeds to a state-exchange protocol,

which involves exchanging and combining information to integrate the knowledge of

different members of the new view. Members of the group execute a series of operations

to determine which member among them has the most up-to-date information, such as

whose order sequence to adopt for use in the new view by everyone else [26].

2.3 Virtually Synchronous Group Multicast

Virtually Synchronous Group Multicast [32] is a reliable multicast service that

implements virtual synchrony semantics. As discussed previously, reliable multicast is

one of the services that a GCS provides, in addition to the group membership service. In

fact, reliable multicast can be seen as a client of the GMS. Virtual synchrony is a property

guaranteeing that processes moving together from a view v to another view v' deliver the

same messages in v. By thus synchronizing membership notifications (which ultimately

result in a new view v') with regular messages, and in doing so, associating message send

34

and delivery events with views, virtual synchrony simulates a "benign" world in which

message delivery is reliable within the group [32].

Like VStoTO, Virtually Synchronous Group Multicast operates with a normal mode

and reconfiguration mode. The components of its implementation are as follows, as

summarized from [32]. A connection-oriented communication service CO_RFIFO

implements a FIFO queue channel for every pair of end-points. CO_RFIFO provides

reliable, gap-free FIFO message delivery. Within-view reliable FIFO (WVRFIFO) is

built on top of CORFIFO and a membership algorithm (MBRSHIP), which additionally

guarantees that a prefix of messages (not necessarily all) is delivered in the same view in

which these messages were sent. This is done by tagging messages with the views in

which they were sent and allowing delivery of a message only when its view tag matches

the end-point's current view. During normal mode, Virtually Synchronous Group

Multicast runs WVRFIFO. [32]

Virtual Synchrony RFIFO (VSRFIFO) is implemented on top of WVRFIFO,

extending WV_RFIFO to guarantee that endpoints which transition directly from view v

to the same view v' deliver not just some prefixes of messages, but the same prefixes of

messages. Reconfiguration mode consists of running VSRFIFO, because it handles the

transition from an old view to a new view. Reconfiguration mode begins when GM

notifies WV_RFIFO of an impending view change by delivering a startChange identifier.

Endpoints must then learn which other endpoints may transition from v to v', and achieve

agreement with them on the exact same prefix of messages to be delivered [32].

WV_RFIFO runs in parallel with MBRSHIP.

2.4 Load Balancing Replicated Data

A replicated data service is designed in [38] that load balances queries and

guarantees sequential consistency. Abbreviated VStoD, it is designed to operate on top of

VS, the view synchronous GCS specified in [26]. VStoD maintains, in a consistent and

transparent manner, a data object that has been replicated at a fixed set of servers. Clients

can update and query this object; the replicated data is kept coherent by applying all

update and query operations in the same sequence at all replicas.

35

VStoD is implemented by a layer of replicated servers on top of a communication

layer that consists of a group communication service satisfying VS. The replicated

servers form the group that is serviced by the GCS. The GCS is used for communicating

update and query requests to the group members. VStoD relies on the VS property to

enforce identical sequences of update requests at all servers and to schedule query

requests correctly [38].

The replicated servers layer runs the VStoD application, and operates with a normal

mode and reconfiguration mode. In normal mode, a server participates in an already

established view, processing update and query requests from clients. Servers maintain,

among other things, two prefixes of the sequence of update requests: safe, the update

requests that are safe to execute, and done, the update requests that have already been

executed. Normal mode guarantees that the safe and done prefixes are always consistent

among all servers [38].

During recovery mode, servers synchronize their query and update request

sequences. To synchronize queries, when a server learns of a new view, it moves its own

pending queries for reprocessing and erases any information pertaining to the queries of

other servers [38]. To synchronize updates, a server collaborates with others to ensure

that the past execution histories of all servers of the new view are consistent. To do so,

each server must be able to tell how advanced its state is relative to the others. Criteria for

judging a server's "expertise" are (1) the latest primary view of which the server knows,

(2) a server's updates sequence, and (3) a server's safe prefix. Because normal mode can

only begin when servers have identical updates sequences and safe prefixes, this is the

focus of resynchronization. Each server engages in "advancing the expertise" of other

servers to the highest expertise of which it is aware, its cumulative expertise [38]. Servers

adopt another server's cumulative expertise if it is more advanced than their own. Once

this process of advancing expertise finishes, the server of a primary view extends its safe

prefix to cover the entire updates sequence and moves all pending update requests not in

the safe prefix back for reprocessing. After this step, reconfiguration ends and the server

returns to normal mode.

36

2.5 Intermittently Atomic Data Service

Active data replication benefits not only from load balancing such as that provided

by VStoD described in Section 2.3, but also from an enforcement of atomicity. In large-

scale, wide-area network environments, providing atomicity is costly in terms of

overhead and latency. To provide an effective alternative, Khazan and Lynch propose in

[36] a weaker atomicity property, called intermittent atomicity, which guarantees that

clients perceive the data object as atomic, but only while the underlying network

component is stable. Atomic semantics are restored within some finite amount of time

after stability returns [36]. During the restoration process, clients are informed about the

current group membership and the new state of the data object. Khazan and Lynch

describe in [36] a design for an Intermittently Atomic Data Service (IADS) that provides

the functionality that satisfies this specification.

IADS allows a dynamic group of clients to access and modify a replicated data object

in satisfaction of the intermittent atomicity property. It operates on top of a group

communication service, and makes use of the virtual synchrony semantics that it

provides. Specifically, the Virtually Synchronous Delivery property, as described in

Section 2.2, guarantees that, if the object replicas were mutually consistent upon entering

normal mode in view v, they remain mutually consistent when view v' is delivered.

Normal mode is when IADS processes client requests to query and modify the object

replicas. Reconfiguration mode begins when a view change occurs, and consists of state-

transfer: "a new state of the object is computed from the merge of object replicas [36]".

In the state-transfer protocol, members of the new view collect the states of each other's

object replicas [36]. Then, each computes a new state for its replica by merging the

collected states [36].

Some optimizations of reconfiguration mode are enabled by the virtual synchrony

guarantees [36]. First, it is enough for only one of the members to communicate the state

of its replica during the state-transfer protocol. This member must have been a member of

the previous view, and must remain as a member in the new view. Second, state-transfer

is unnecessary in situations where the membership of the new view is the same as the

membership of the previous view. In this case, normal mode can continue, uninterrupted.

37

2.6 Group Key Management

To achieve maximum security for group communication, every view change must be

"accompanied by a corresponding adjustment to group security parameters [5]". One

such parameter is the secret group shared key, also called a group secret. Because most

routine group security services depend on the sharing of a common secret, the group

secret key is one of the most fundamental group security mechanisms [5]. Alternatives to

a secret group key are public key encryption, and pairwise secret keys between each pair

of members; however, both involve impractically high overhead [5]. We summarize

protocols for group key management presented by [5],[6], and [42].

Group key management enables authenticated and private communication within a

group. Normal mode consists of members using the group key for secure communication.

Reconfiguration mode generates a new secret group key following every group

membership change. There are two types of group key management protocols -

centralized, where the group key is generated by a single member, which then distributes

it to the other group members; and distributed, where all group members participate in

key generation. In distributed group key management, all group members collectively

generate or agree on a group key. In most distributed protocols, the group secret key is a

function of all group members' individual contributions. Because each individual

member's contribution is known only to that member, such a contributory mechanism

facilitates authentication. [6]

2.6.1 Secure Spread

Amir et al. implement group security services on top of the Spread wide-area GCS

[2]. They make use of the Group Diffie-Hellman (GDH) protocol provided by the

CLIQUES system [47, 48], for authenticated contributory group key management.

CLIQUES depends on an underlying GCS to provide the group membership. GDH

chooses a group controller that is charged with initiating key adjustments following

group membership changes. The most recently joined group member is chosen to be the

group controller. Each group member contributes equally to the group secret key.

38

CLIQUES implements other group key management protocols besides GDH [6, 48].

Centralized Group Key Distribution (CKD) chooses as group controller the oldest

member of the group. Whenever the group membership changes, the group controller

generates a new secret key by itself and distributes it to the group. Before doing so, it

establishes a new secure channel with each joining member using authenticated two-party

Diffie-Hellman.

Other options provided by CLIQUES are the Burmester-Desmedt (BD) protocol,

which distributes computation of the group key among all members of the group, so that

each member performs only three exponentiations; and Tree-Based Group Diffie-

Hellman, which computes a group key derived from the contributions of all group

members by using a binary tree.

2.6.2 Secure Ensemble

Rodeh implements group key management on top of the Ensemble GCS [42]. We

briefly summarize his Diamond group key agreement protocol. Diamond takes advantage

of the fact that Ensemble uses a leader-based GM algorithm, by following a centralized

protocol design. The name comes from its use of a "diamond" graph structure to

characterize the group membership and its secure channel infrastructure for efficient key

exchange. When a membership change occurs, Diamond must wait for the new view to

be delivered by GM, so that the diamond graph can be modified accordingly.

When GM delivers a new view, a representative from each merging group

component sends its diamond structure to the leader, which then merges together the

different diamonds into a new one D. The leader also computes a schedule Q that

determines the order in which members will participate in the key exchange. The leader

then multicasts both D and Q to the group. Upon receiving this information, the first

member listed in Q chooses a new key K and multicasts it to everyone else. The last

member in Q multicasts a ProtoDone message when it receives K. When members

receive the ProtoDone message, they rebuild the new diamond structure D and resume

normal mode. If a failure occurs during the running of the protocol, all members will

abort the protocol. In this case, it is expected that the application will request a rekey in

the forthcoming new view [42].

39

Chapter 3

Group Membership Specification

Our work is based on the standard group membership specification established in

[22]. This chapter describes the environment, architecture, and properties that form the

GM specification assumed by the design of Sigma, Moshe, and Ensemble. We carry over

these assumptions into our implementation and analysis of these algorithms. The GM

environment, described in Section 3.1, assumes a two-tier client-server architecture with

an underlying failure detection and reliable FIFO communication service. As part of the

discussion of the GM environment, we explain why GM cannot be fully replaced by

failure detection.

Section 3.2 summarizes the liveness, local monotonicity, and self-inclusion

properties that GM must satisfy in order to conform to the specification. In addition, we

provide two new definitions that articulate what agreement and disagreement mean under

the standard GM specification. We also discuss, in Section 3.3, the architectural options

for achieving a scalable GM solution. Specifically, we focus on the tradeoffs between an

all-to-all communication protocol and a leader-based one.

3.1 Environment

We assume the same widely accepted environment model as described in [34, 39].

The environment is asynchronous message-passing [41]. Processes may fail by stopping,

and links may fail and later recover, possibly causing network partitions and merges.

Network events may partition the group into components, and the partitions can be

unclean: different members may have contradicting and asymmetric perceptions of the

memberships of their group components.

Figure 3-1 illustrates the layers that comprise the GM environment. Most GM

algorithms utilize external failure detection services and reliable FIFO (RFIFO)

communication services [22]. Both Sigma and Moshe interface their failure detection

service with a network event notification service (NS) [34, 39]. The task of NS is to

inform GM of the events that affect the membership of the group. NS does this by

40

generating ne-r (joining, leaving) events at a member r. The members listed in

the j oining set are either joining or re-connecting to the group; those listed in the

leaving set are either leaving or are suspected of having disconnected or crashed.

Network

IMemb2a Momb2bI

GM

Group Communication System
IE NS / IO

Ordered Multicast Z
2 -= Network 2!

z3

Detector Reliable FIFO

Network

Figure 3-1. Layers of the GM Environment. Figure 3-2. Two-tier Architecture. Clients
(members) send join/leave requests to, and
receive views from, the server (GM, NS/FIFO).

Sigma and Moshe require NS at least to be complete - to correctly identify all

permanently disconnected or crashed members. We assume NS and RFIFO to be such

that, if member r sends message m to member u, then either m is delivered to u, or NS

notifies r that u is unreachable. NS need not satisfy other properties, e.g. accuracy,

symmetry, or transitivity.

While the absence of such helpful properties does not violate correctness of Sigma

and Moshe, it affects their behavior and performance. It is advantageous to use NS

services that attempt to provide such properties. CONGRESS is an example of such a NS

service [12, 34]. As discussed in [22], Ch. 8.1, NS and RFIFO can be implemented

separately, but "are often implemented jointly by the same service, over an unreliable

network". A number of such services are referenced by [22], which suggests that TCP

itself "implements a similar [joint] service over the unreliable lIP protocol". GM can

therefore be implemented directly on top of TCP.

41

3.1.1 Single-tier vs. Two-tier Architecture

In [34, 39], Sigma and Moshe are described as part of a two-tier client-server

architecture, in which a small set of membership servers maintain membership

information on behalf of a large set of clients (Figure 3-2). As explained in [34], such

architecture is more appropriate for supporting large groups in WANs than a single-tier

architecture, in which all members participate as membership servers.

Henceforth, we simplify our discussion and implementation of the GM environment

to a single-tier architecture. This is sufficient for studying the agreement properties of

these algorithms for small groups of nodes. Moreover, the results of such a single-tier

analysis extend to a two-tier setup in which the nodes that we study act as membership

servers, each supporting a large number of clients.

NS FIF

nne <1,(si,s2,s3)> <3,(s1,s2,s3)>

C <1,(S1,S2,s3)> <3,(s1,s2s3)>
be ..r~ *~ ~ i,(SIS2,S3)> <2,(s2,s3)> < c 2s)

UO Network " s2
u <1,(s1,s2,s3)> -si +S1

-- 0:1= SN - s3 A I <3,(s1,s2,s3)>
4k'I time

-S1 +S1

Figure 3-3. Single-tier architecture. Figure 3-4. Illustration of Example 3-1. Filled
circles are view events and stars are ne events.

Figure 3-3 depicts the resulting single-tier architecture. Each member runs a GM

algorithm, which exchanges messages with other members by using reliable FIFO links

and receives notifications from NS about changes in group's membership.

3.1.2 Failure Detectors vs. Group Membership

As we have seen in Section 3.1, the GM environment assumes the existence of an

underlying mechanism for failure detection (FD) that informs GM of network events.

Sigma and Moshe assume NS, the network event notification service, to implement FD.

42

To be able to detect whether a leave or a join has occurred, the failure detector must

itself keep track of the connected members, in parallel to GM. Sigma's design, and the

standard GM specification upon which Sigma is built, decouples FD and GM to such an

extent that the separate application of FD without GM can be readily envisioned. Why,

then, do failure detectors not obviate the need for group membership?

There is an important difference between the two - FD provides inconsistent

information about failures, while GM provides consistent information by virtue of

agreement on views [44]. [44, 50] demonstrate FD to be a possible alternative to GM for

applications where failure suspicions do not lead to process exclusions, and, in the

absence of crashes and suspicions, to perform as well as GM. However, not only do

crashes occur frequently in real networks, but also many applications exist in which

failure suspicions do require process exclusions. In such applications, Schiper et al. prove

GM to be advantageous, and even mandatory [44, 50]. We emphasize the following

reasons to explain why GM remains a necessary construct, despite the separate

applicability of FD, and is therefore important to optimize:

1. Although a simple FD is sufficient for some applications, there are many

applications for which GM is preferable - specifically, where failure

suspicions are output-triggered and therefore require process exclusions [44].

2. GM is more resilient than FD in the presence of crashes [50].

3. FD achieves agreement on membership, while GM achieves agreement on

view identifiers [39]. In other words, the group membership algorithm is

responsible for associating a given view identifier with a given membership

set such that all members compute the same association. This agreement on

view identifiers is a powerful abstraction that serves as the foundation of

view-oriented GM applications such as those described in Chapter 2.

3.2 Properties and Definitions

The established GM specification [22] that we follow requires GM to satisfy

liveness, local monotonicity, and self-inclusion properties. The liveness property applies

to NS - once NS perceives a group component to have stabilized, eventually every

member must get the same views, reflecting correct membership. Eventual agreement is

43

required only after the group stabilizes, so the specification allows disagreement before

stabilization. In fact, we cannot avoid disagreement while guaranteeing delivery of views

with correct membership in an asymmetric, failure-prone environment [20, 22].

Property 3-1. (Liveness) In a group component perceived to be stable by NS, GM

eventually outputs the same view, with membership G, to all the members of G, and does

not output to them any subsequent views [39].

The specification also includes two safety properties: (1) local monotonicity - view

ids must monotonically increase; and (2) self-inclusion - views must be delivered only to

members listed in the views' membership set. The specification is partitionable, meaning

there may be concurrent views with disjoint membership.

Property 3-2. (Local Monotonicity) If a member p installs view V2 after installing

view VI, then the identifier of V2 is greater than that of VI [22, 39].

Property 3-3. (Self-Inclusion) If a member p installs view V, then p is a member of

V [22, 39].

3.2.1 Group Membership Specification in Action

Example 3-1 illustrates how group membership works according to the GM

specification. This example demonstrates the three basic GM properties -- liveness, local

monotonicity, and self-inclusion.

Example 3-1. Figure 3-4 shows three members, si, s2, and s3. Initially, all have the

same view v1=<1,{sl,s2,s3}>. Then, s2 and s3 receive network event ne(-sJ) from NS

informing them that sI disconnected (depicted by stars labeled "-s 1"). GM starts forming

new view v2 with s2 and s3 as members, according to the self-inclusion property. After

s2 finishes view formation, it delivers v2=<2,{s2,s3}> (depicted by the accordingly

labeled filled circle). But before s3 has a chance to deliver v2, si reconnects, and s2 and

s3 receive ne(+sI) from NS. Instead of delivering v2, s3 starts working with sI and s2 on

forming the next view. After the network stabilizes, all have the same view,

v3=<3, {s l,s2,s3 }>, satisfying the liveness property. Because the view identifiers increase

with each new view, local monotonicity is also satisfied.

Example 3-1 illustrates an asymmetric situation in which sI did not even detect that

it disconnected from s2 and s3. Also, s2 delivered v2, but s3 did not, because the

44

membership changed before s3 was ready to deliver it. This behavior is allowed by the

specification--GM allows members to disagree and deliver different views. What it

requires is that after the group stabilizes, everyone must eventually get the same views.

A member may deliver more views than the number of network events (NEs) it

receives, because not all NEs are reported to everyone. On the other hand, not every NE

results in a view delivery, because view formation may be interrupted by subsequent

NEs. In Example 3-1, member sl does not receive any NEs but delivers view v3;

conversely, member s3 receives two NEs but delivers only one view v3.

3.2.2 Agreed, Transient, and Disagreed Views

The goal of a GM algorithm is to deliver the same views, corresponding to correct

group membership, to all the view's members. Sometimes GM algorithms do not realize

this goal because membership changes while view formation is already in progress. In

such situations, it is better to abandon the ongoing view formation attempt and move on

to forming a view with correct membership, than to continue forming and deliver a view

that has obsolete, outdated membership [17]. As a result, only a subset of members might

deliver such interrupted views; these views end up being transient because they are soon

succeeded by different views. Such transient views can lead to disagreements. We define

agreed, transient, and disagreed views as follows.

Definition 3-1. (Agreed, Transient, and Disagreed Views) A view v is an

agreed view or is in agreement if and only if every member in v.set delivers v. A

view v that is not an agreed view is transient. Views v and w are disagreed views

or are in disagreement if and only if they have the same view ids but different,

overlapping membership sets; i.e., if and only if ((v.id=w.id) A (v.set#w.set) A

(v.setnw.set#{})).

In Example 3-1, vi and v3 are in agreement because they are delivered to all their

members. View v2 is transient because it is delivered to s2 but not s3. View v2 is not in

disagreement with any other view because no other view in Example 3-1 has the same

view identifier. Disagreed views are transient views that can occur in some GM

algorithms (such as the theoretical Sigma algorithm) because members observe

concurrent changes in group membership differently.

45

3.3 Scalability of Group Membership

All-to-all (A2A) message exchange is essential to reaching agreement within a

single-round, but it results in high message overhead, specifically O(n 2) unicast messages

(or O(n) multicast messages) in the worst case for n participating nodes. Moreover, the

worst case in A2A protocols is, in fact, the common case. As group membership

protocols are scaled to larger and larger numbers of participating processes, they

experience a steadily growing overhead as greater numbers of messages are exchanged,

acknowledged, lost, and retransmitted. Greater message overheads lead to increased

contention in the network, which results in network congestion, overflowing message

queues, and ultimately message delay and loss. Lost messages need to be retransmitted,

compromising the efficiency of the membership algorithm while further increasing the

message overhead [49].

There are two orthogonal approaches to achieving scalability in a GM algorithm, and

both aim to reduce message overhead. The first approach, which we have discussed in

Section 3.1.1, is a two-tier architecture, in which a set of membership servers maintains

group membership on behalf of a set of clients, the group members [34]. The scalability

of a two-tier architecture comes from the idea of applying it to form a hierarchy of

membership services, where membership servers at one level can at the same time also be

clients of other membership servers that operate at a higher level in the hierarchy. Using

this hierarchy, the number of nodes exchanging messages amongst each other in an all-to-

all manner can be kept constant.

The second approach directly reduces the number of messages being exchanged,

rather than the number of nodes exchanging them: the use of a leader-based protocol

instead of A2A. Instead of having all members send messages to all other members, a

leader-based protocol chooses one of the members to act as an intermediary for

communication among members; this chosen member is called the "leader". Members

only send messages to, and receive messages from, the leader. The leader can be picked

deterministically without any additional communication, in a way that results in every

member choosing the same leader when the underlying group component stabilizes (like

in [19, 51]).

46

Bakr and Keidar [14] studied the effect of message overhead on algorithm

performance in the context of the characteristically lossy nature of a WAN. They

observed that the running time of A2A protocols in the presence of lossy links and

message losses is actually longer than for leader-based protocols, despite the fact that

leader-based protocols involve an extra communication step, because even relatively low

loss rates get amplified by the greater volume of messages sent in an A2A algorithm.

They observed this effect with just nine participating nodes; GM applications can

conceivably involve much larger, and continuously evolving, numbers of participating

members.

Urban and Schiper [49] found a leader-based consensus algorithm to be more

efficient in practice than an equivalent A2A algorithm. They observed that the greater

message overhead found in the A2A algorithm increases network contention, which in

turn causes message loss and communication delays.

Both [49] and [14] agree that centralized, leader-based communication schemes can

be more efficient in practice in certain networks than A2A protocols, due to dramatically

reduced message overhead. They also imply that a leader-based protocol offers more

room for performance optimization than A2A, by enabling the selection of a leader that

can offer the best quality of service, for example one with greater resources or more

reliable connections. Thus, in dynamic networks where message loss is common and

unavoidable and the number of participating members can be large and evolving, we

believe that Sigma can be made more scalable and efficient by transforming its all-to-all

communication scheme into a leader-based one. In this thesis, we pursue this idea further

by designing Leader-Based Sigma as a more scalable alternative to Sigma. We describe

both Sigma and Leader-Based Sigma in Chapter 4.

47

Chapter 4

Algorithms

The algorithms studied in this work are Sigma, Moshe, Leader-Based Sigma, and

Ensemble. This chapter describes these algorithms in greater detail and afterwards

discusses example scenarios that demonstrate the tradeoffs between Sigma and Leader-

Based Sigma, between Sigma and Moshe, and between Leader-Based Sigma and

Ensemble.

Sigma [39] is the first group membership algorithm to achieve a single-round worst-

case upper bound. A filter LD for limiting disagreement is suggested by [39] as a

possibly desirable option for use with Sigma. We therefore study Sigma with and without

the LD filter - SigmaLD and Sigma UD, respectively. Sigma follows an all-to-all

(A2A) communication protocol; we therefore also call it A2A Sigma.

Moshe [34] is an efficient optimistic all-to-all algorithm that has been established to

be practical. It achieves single-round agreement in the best case, but takes two or more

rounds in the worst case. Its architectural similarities to Sigma, and its practical repute,

make it an ideal candidate for a comparative analysis with Sigma.

We have designed Leader-Based Sigma [37] as a more scalable alternative to A2A

Sigma, by transforming the all-to-all protocol into a leader-based one. As with A2A

Sigma, we study Leader-Based Sigma with and without the LD filter. The GM algorithm

that we refer to as Ensemble is a standard leader-based group membership algorithm that

was first introduced in the Horus system [27] and has since evolved into the Ensemble

[19] and JGroups [16] systems. As a leader-based algorithm with wide practical

application, Ensemble is an ideal candidate for comparison with Leader-Based Sigma in

our analysis.

4.1 Sigma

Sigma is a single-round GM algorithm that reaches Agreement on Views within one

message latency after the final network events affecting the group component become

known to all the members [39]. The algorithm has different members converging on the

48

same final view quickly after the group component becomes stable. Members receive

network events from their local NS, as well as view proposals from other members. The

basic idea is to send view proposals in response to a) network events and b) proposals

with higher ids. After a network component stabilizes, the largest proposed view id

reaches all members within one message latency.

Sigma [Member r]

On receive ner (joins, leaves):
prop[r].set <- prop[r] .set u joins - leaves
let maxid = max{prop[i].id I i e prop(r].set

A prop[il.set = prop[r].set}
prop[r].id <- max(prop[r].id + 1, maxjid)

sendview +- true
send proposal (r, prop[r].id, prop[r.set)

to prop [r I set (deliver immediately to self)

On receive proposalr (s, id, set):
prop[s] +- (id, set)
if(set = prop[r].set)

if(id > prop(r].id)

prop r].id <- id

sendview +- true
endif
DeliverViewIfReady()

endif

DeliverviewIfReady()
if((send view = true) A LDO)

deliver view (prop[r] .id, prop[r] .set)
send view <- false

endif

where LD() is a filter used in the Sigma LD algorithm:
LDo ((Vieprop[rl .set)prop[i] .set=prop[r] .set))

For Sigma UD, LD()-true.
* Each event handler is executed atomically.

Figure 4-1. Pseudocode for A2A Sigma.

Figure 4-1 shows the pseudocode for the Sigma algorithm run by a member r; all

members run the same algorithm. There are two event handlers: A member can either

receive a network event (NE) from NS or a proposal from another member. A proposal

carries an id and a set. Each event handler is executed atomically. Sigma's relationship

between GM and NS is shown in Figure 4-2.

49

GM

NS / FIFO

Figure 4-2. Sigma's Relationship between GM and NS.

When member r receives an NE, it does the following:

* updates its membership set prop [r I . set;

" increments its identifier prop [r] . id if already the largest among the proposals

that r has for the current membership set; otherwise r sets its id to the largest

one without incrementing;

* sends a proposal <id, set> to all members that are relevant to the

membership set; it immediately processes its own proposal.

When member r receives a proposal <id, set> from s, it does the following:

" saves the proposal in prop [s] . set;

* updates its prop[r .id if the proposal has a higher id for r's current

membership set;

* attempts to deliver view <id, set> if it is r's own proposal, or if the proposal

has a higher id for r's current membership set.

Because Sigma operates by having all members send proposals to all other members in

the membership set, Sigma is an all-to-all algorithm, and we also call it All-to-All (A2A)

Sigma.

By itself, Sigma is a theoretical algorithm; one practical deficiency of Sigma is that it

may generate inconsistent, transient views prior to converging on the correct final views.

When a member receives an NE, it increments its identifier and outputs a view; if it

receives a proposal for the membership set that it currently believes in and the proposal

has a higher identifier, then the member adopts that identifier and outputs another view.

This results in fast view agreements, but may sometimes produce superfluous (disagreed)

views prior to this agreement. We denote the theoretical Sigma algorithm as SigmaUD,

where UD stands for "unlimited disagreement".

50

To remedy this deficiency, [39] suggests a design in which Sigma is used with a

"filter" to prevent such problematic views from being delivered to GM clients. One

possibility is to use a filter that delays view delivery until it is known that other members

have come up with the same views. This is what all other existing GM algorithms do (see

Section 4.2 and 4.4). Using such a filter would result in the same performance properties

as those of other existing algorithms, requiring two or more rounds of message exchanges

among group members in order to reach Agreement on Views.

Another possibility is to design filters that, when deployed with Sigma, would do

better than existing algorithms. In particular, [39] suggests a simple filter, which we call

LD (see Figure 4-1), that preserves the single-round worst-case performance of Sigma,

and at the same time is claimed to be effective at weeding out inconsistent, transient

views. Specifically, LD delays view deliveries until the latest proposals from all members

agree on the correct membership set. This works, even though the ids of these latest

proposals are not required to be the same, because after a group stabilizes, the

membership sets are already the same, so the remaining task is to produce the same

identifiers. Everyone sends their identifier and the member with the largest one wins.

This maximal identifier in the worst case reaches everyone within one message latency.

We denote the Sigma algorithm with LD filtering as SigmaLD.

s3#

<0,(*4)> ' ,s4)>

s4 P
+s2,s3

Figure 4-3. All-to-All SigmaLD Example.

Example 4-1. Figure 4-3 illustrates SigmaLD's operation in a scenario in which

Sigma_UD would have produced a disagreement. As before, stars represent network

events and filled circles represent view deliveries. There are two concurrent network

events: sl disconnects and s4 joins. Equipped with the LD filter, Sigma produces no

51

disagreements, and delivers view <3,(s2,s3,s4)> within one message latency after the

final NE.

4.2 Moshe

As part of our comparative analysis, we compare Sigma with Moshe, an existing all-

to-all group membership algorithm that is known to be practical. Moshe takes one round

in the typical case, but may take one or more additional rounds for certain "out-of-sync"

cases. Moshe is a group membership algorithm developed by Keidar, Sussman, Marzullo,

and Dolev specifically for use in WANs [34]. It can be seen in some ways as a precursor

to Sigma. Moshe is similar to Sigma in that each member runs the same algorithm and

there are two event handlers: a member can either receive a network event from NS or a

proposal from another member. Sigma preserves Moshe's client-server design, in which

membership is maintained by a small group of dedicated membership servers on behalf

of a larger group of processes. Sigma and Moshe are both optimistic algorithms.

In spite of their similarities, Moshe is different from Sigma in several ways. Unlike

Sigma, Moshe does not reuse old proposals if they share the same membership set S with

the newly forming view. In addition, Moshe implements extra synchronization to prevent

disagreement and as a fallback measure when the optimistic case does not apply.

Moshe runs in two modes - Fast Agreement (FA) and Slow Agreement (SA). The

FA mode is a single-round algorithm, which terminates successfully in the optimistic

case - if every member s' e S receives new proposals from all members s e S for the

same view. FA blocks if there is some pair of members s,s' e S, for which s does not

receive such a proposal from s'. To prevent this livelock scenario, Moshe implements a

blocking detection mechanism and switches to SA, the slow-path protocol, when these

blocking cases are detected. Moshe's proposals include more information than Sigma

proposals; this additional information is used to detect the "out-of-sync" cases that

require the algorithm to switch to SA. The SA protocol involves one or more additional

rounds of message exchange before the view identifier is determined and the view can be

delivered. The reader is encouraged to consult [34] for an in-depth description of Moshe,

as well as the detailed specifications that were used to implement Moshe for our research.

52

4.3 Leader-Based Sigma

The pivotal distinction between A2A Sigma and Leader-Based Sigma is that while

A2A Sigma has all members both sending and receiving proposals, Leader-Based Sigma

involves the selection of a leader that acts as an intermediary for communication among

members. It is the duty of the leader to collect proposals from other members, construct a

ready-to-install view, and share this view with the rest of the members, which they

subsequently install.

Leader Based Sigma [Member r]

On receive ner(joins, leaves)
prop[r].set <- prop[r].set u joins - leaves

let maxid = max{prop[i].id I ieprop[r].set
A prop[iI.set = prop[r].set}

prop[r].id +- max(prop[r].id + 1, maxjid)
let L = leaderOf(prop[r].set)

if (r = L) share view +- true
else DeliverViewIfReady(L)
endif
send proposal (r, prop[r].id, prop[r].set)

to L (deliver immediately to self if r=L)

On receive proposalr (s, id, set):

prop[s] <- (id, set)
if (set = prop[r].set)

if(id > prop[r].id)

prop[r].id <- id

shareview +- true
endif
ShareViewIfReady ()

endif

On receive viewr(s, id, set):

prop[s] +- (id, set)
DeliverviewlfReady(s)

ShareViewIfReady() =

if((shareview = true) A LD()
send view (r, prop[r] .id, prop[r] .set)

to prop (rI . set (deliver immediately to sell)
share-view +- false

endif

DeliverViewlfReady (L) =

if((prop[L].set = prop[r].set)
A (prop[L].id 2 prop[r].id))

prop[r].id <- prop[L].id

deliver view (prop[r) .id, prop[r] .set)
endif

LD() is a filter used in the Sigma LD algorithm:
LD()s((Vieprop[r] .set)prop[i] .set=prop[r] .set))

For SigmaUD, LDo()true.
* Each event handler is executed atomically.

Figure 4-4. Pseudocode for Leader Based Sigma.

Leader-Based Sigma (Figure 4-4) proceeds as follows. Upon receiving an NE, a

member r updates its membership set prop [r] . set and increments its prop [r I . id

as in the original algorithm. But instead of sending a proposal to all members that are

relevant to the membership set, member r now sends a proposal only to the leader.

When the leader L receives a proposal from member r, it saves the proposal in

props [r] and adjusts prop [L] . id to be maximal, as before. Then, in addition to

53

installing the view itself, the leader also shares the view, by sending it to the rest of the

members. Upon receiving a view from the leader L, member r saves it in its own

prop [L] and conditionally delivers the view to its clients; the condition is the

following: prop [r] . set has to match prop [L] . set, and prop [r] . id has to be

no greater than prop [L] . id. This condition is also checked when member r receives

an NE, because the NE may happen late after the leader already shared the latest view

with r.

The leader is picked deterministically without any additional communication. For

example, the leader can be chosen as the member with the largest process identifier in the

current membership; this is the strategy we assume for the Leader-Based Sigma examples

illustrated in Section 4.5. Other GM algorithms also use a strategy of picking the oldest

member as the leader. In addition to such static strategies, some settings may benefit from

a dynamic leader-selection strategy, which for example may account for connection

qualities of different members.

Regardless of the leader-selection strategy, the leader may need to be changed when

the current leader crashes or disconnects. Note that there may be transient periods during

which different members have different perceptions of the membership, in which case

members may select inconsistent leaders. Also, since the network environment is

partitionable, it is possible for different leaders to serve a mutually exclusive subset of

members.

Because the leader is a group member, in addition to its leadership duties, it also

receives NE events. In leader-based Sigma_UD, when the leader receives an NE, it

immediately sends itself a proposal, processes it, and installs the new view, as well as

shares this view with the other member. This optimistic best-case scenario reduces the

time required for the leader-based algorithm by one round.

Limiting disagreement in leader-based Sigma works similarly as in the A2A

SigmaLD, in that views are installed only when proposals from all the members agree

on the membership set. In Leader-Based Sigma, however, the LD filter has been moved

out of individual members' view delivery process, and into the domain of the leader.

Specifically, the leader shares its view only when the LD condition is satisfied. Since a

54

view is installed only after the leader has shared it, all installed views thus meet the LD

criteria, including views installed by the leader itself.

4.4 Horus/Ensemble

As part of our comparative analysis, we compare Leader-Based Sigma with an

existing practical leader-based group membership algorithm - the one used by the Horus

group communication system [51]. Because Horus has subsequently evolved into the

Ensemble group communication system [28], we denote this group membership

algorithm as Ensemble. The JGroups GCS [16] also uses Ensemble as its membership

algorithm.

Ensemble was developed by Friedman and van Renesse as an implementation of

weak virtual synchrony that does not block messages during view changes [27]. The

specifications that we used for our implementation of Ensemble are detailed in [27]. We

summarize the algorithm in this section.

The Ensemble algorithm assumes that

" The underlying environment provides reliable FIFO communication.

* The failure detector of process pj will eventually generate a suspect event for any

process pi that stops receiving its messages due either to a lossy link or pi

crashing.

* If a message becomes stable, then every live process in the view will eventually

learn about it. A message is stable if it is received by every live member of the

view. A view is stable if all live processes in that view have received it.

" Each message is broadcast to all live processes in the suggested view of its

invoking process.

The Ensemble algorithm proceeds as follows. Each view is associated with a contact,

or leader. If this contact learns, during an already stable view, about another reachable

contact with a smaller address, it sends the smaller contact a join request. When an

available contact receives a join request or suspects that a member of its view has failed,

it starts a view change. A contact is available if it is not already busy with a view change.

A view change is done by adding to the current view the newly joining processes and

deleting faulty ones. Joining processes that are already members of the view are deleted

55

as well. Because such processes thought they were separated from the rest of the view,

they may have refused some messages that were received by the rest of the view. They

must therefore be eliminated before being allowed to rejoin.

The contact then sends this modified view as the "suggested view" to all the

members of this view. Upon receiving a suggested view, a process adopts it, and sends an

acknowledgement back to the contact. In the context of the Ensemble group

communication system, processes would send this acknowledgement after sending all

unstable messages from faulty processes to the contact that initiated the view change.

This step is called "flushing", and the acknowledgement, which notifies the contact that

this process has finished flushing and that all messages sent in the previous view have

become stable, is called the "flushed" message. In our research, however, we study the

membership algorithm in isolation, rather than in the context of a group communication

system. Because the only messages in a membership algorithm have to do with view

changes, the concept of flushing messages is irrelevant to our implementation. We

therefore treat the "flushed" message as a process's acknowledgement of having received

the suggested view.

Once the contact has received flushed messages from all the processes in the

suggested view, it adopts the suggested view and sends the new view to the processes in

the view, which adopt this view. On the other hand, if at least one member of the

suggested view has failed and therefore was unable to send a flushed message to the

contact, then the contact initiates a new suggested view that does not include this faulty

member.

4.5 Example Scenarios and Discussion

In this section we consider the contrasting effects of using Leader-Based Sigma and

A2A Sigma and discuss the tradeoffs involved. In Section 4.5.2, we compare Leader-

Based Sigma to Ensemble. Finally, we give an example in Section 4.5.3 of Moshe's Slow

Agreement algorithm, which is the main difference between Sigma and Moshe.

The scenarios in Figure 4-5 through Figure 4-9 show a system of four membership

members: si, s2, s3, and s4. Horizontal lines represent the passage of time. Filled circles

represent installation of views. The views are shown in angle brackets; initial views are

56

on the left, and final views are on the right. Hollow stars represent network events (NEs).

Hollow arrows represent ignored messages, and filled arrows represent messages that

change state at the recipient. In Figure 4-5 and Figure 4-6, all arrows correspond to

proposals. In Figure 4-7, Figure 4-8, and Figure 4-9, dashed arrows are proposals, and

solid arrows are shared views.

<5,(s1,s2,s3)> <6,(s1,s2,s3,s4)>
s1 p^,O

<5,(s1,s2,s3)> +s4 <6,(s1s2,s3s4)>

s2
<5,(s1,s2,s3)> +S4 P*

s4

<5,(

S1

<5,(s
s2

<5,(s
s3

s4

<0,(s4)>+s

+s1 ,s2,s3 <6,(s1,s2,s3,s4)>

Figure 4-5. All-to-All Sigma, unlimited disagreement (SigmaUD).

, <6,(s1,s2,s3,s4)>

1,s2,s3)> +s4
I-Ah <&s1,s2,s3,s4)>

1,s2,s3)> +s4
<6,(s1,s2,s3,s4)>

<0,(s4)> +s4

+sl,s2,s3 <6,(s1,s2,s3,s4)>

Figure 4-6. All-to-All Sigma with a filter for limiting disagreement (SigmaLD).

4.5.1 LB Sigma vs. A2A Sigma

We first summarize the A2A versions in Figure 4-5 and Figure 4-6. According to

SigmaUD, members can install a view immediately when they receive an NE (Figure

4-5), or within one round of message exchange, when receiving a proposal with the same

membership set, but higher-valued view id. In the example, member s4 first raises an NE

where sl, s2, and s3 join its membership, resulting in view <1,(sl,s2,s3,s4)>, which it

installs. Then, it receives a proposal from s3 with view <6,(s1,s2,s3,s4)>. Since the

proposal offers a higher view id than its current one, member s4 installs the proposed

view. In SigmaLD (Figure 4-6), however, members must wait until proposals from all

57

the members relevant to the current membership set have matching membership sets.

Once all these proposals have been received, the SigmaLD members install the view.

Figure 4-5 and Figure 4-6 demonstrate the A2A nature of the message exchange,

with each member sending proposals to the three other members. For just four members,

there are already 12 unicast messages being sent at the same time (or 4 multicast

messages to 3 members). With each additional member, the number of unicast messages

increases by 2(n-1), where n is the new number of members. For n members, the number

of messages being sent at the same time is n(n-1), or O(n 2). A large-scale GM

deployment can conceivably consist of tens of membership members; sending hundreds

of messages in the network for just a single NE could lead to the various problems of

contention, including network congestion, overflowing message queues at each member,

and ultimately message loss. Message loss leads to retransmissions, which both slows

down the membership algorithm and further increases the message overhead.

<5,(s1,s2,s3)> <6,(s1,s2,s3,s4)>
s1

<5,(s1,s2,s3)> +s4\

s2 < ,3

<5,(sl,s2,s3)> +s4<5,(ss2,3)> .A IZ _:<6,(s1,s2,s3,s4)>
s3 .-A-

s4 <0,(s4)>-------
+s1 ,s2,s3 <6,(s1,s2,s3,s4)>

<1,(s1,s2,s3,s4)>

Figure 4-7. Leader-Based Sigma UD.

<5,(s1,s2,s3)> <6,(s1,s2,s3,s4)>
s1 w

<5,(s1,s2,s3)> +s4\ <6,(s1,s2,s3,s4)>
s2 *

< ,s 1 , 2 s) 1+s 4 < 6 ,(s 1 ,s 2 ,s 3 ,s 4)>

+1,s2,> s346(1s,3s)
s4 +s4 m

PA s2s <6,(sl ,s2,s3,s4)>

Figure 4-8. Leader-Based SigmaLD.

Scenarios describing Leader-Based Sigma UD and Leader-Based SigmaLD are

shown in Figure 4-7 and Figure 4-8, respectively. The leader selection criterion in this

58

scenario is the connected member with the largest id; when member s4 joins, it is chosen

as the leader. When an NE is raised, a member forwards a proposal to the leader. The

leader shares new views with the other members. Upon receiving a shared view from the

leader, members install the view if its identifier is greater than or equal to their current

perception of the correct view id. In Figure 4-7, after s4 receives an NE with s 1, s2, and

s3 joining, s4 constructs the view <1,(sl,s2,s3,s4)> and shares it with the other members.

However, the other members have 6 as their proposal identifier; since this is greater than

the view id 1 shared by the leader, the new view is ignored by the other members. Once

leader s4 receives proposal <6,(sl,s2,s3,s4)> from s3, it corrects its perceived view id to

6, and shares the modified view, which is installed by the rest of the members. Note that

in Leader-Based SigmaUD, the leader shares a view without checking if all proposed

membership sets match, and thus it immediately shares a view when an NE is raised.

However, in Leader-Based SigmaLD, similarly to A2A SigmaLD, the leader waits

until all proposals relevant to its current perception of the group membership have

matching membership sets before sharing the view. Thus, in the latter case, the leader

does not send any messages when an NE is raised.

Figure 4-7 and Figure 4-8 demonstrate how leader-based Sigma delays view

installation by one communication step. In A2A Sigma, views are installed just one round

after the last NE occurs in the worst case, and immediately in the best case (for

SigmaUD). In Leader-Based Sigma, views are installed only after the leader has shared

the view. The leader shares views one round after the last NE event occurs in the worst

case, and immediately in the best case. The members receive the shared views one

message latency later, and thus Leader-Based Sigma's execution is always one message

latency longer than A2A Sigma.

On the other hand, these scenarios demonstrate Leader-Based Sigma's reduction in

message overhead compared to A2A Sigma: for n members, the total message overhead

is O(n) in the worst case for Leader-Based SigmaLD and in the common case for

Leader-Based SigmaUD. As described in Section 3.3, the worst-case message

complexity for Leader-Based SigmaUD is still O(n 2), in the case where all n proposals

have different id's and arrive at the leader in order of increasing id. This worst case,

59

however, is different from, and much less common than, the worst case of A2A

SigmaUD, which is, in fact, its common case, for example, as depicted in Figure 4-5.

By reducing the message overhead from O(n 2) to O(n) in the common case (or in the

worst case, when using the LD filter) Leader-Based Sigma thus offers a significant

reduction in network contention and message loss. Avoiding message loss means fewer

retransmissions, resulting in a more efficient execution of the membership algorithm,

despite a theoretically established extra round of message exchange. In addition, Leader-

Based Sigma, like other leader-based algorithms, offers a parameter for controlling the

quality of service of links over which messages are sent: the choice of leader. Because all

messages are sent either to or from the leader, choosing a leader with the best resources

and most reliable connections can give a performance edge to Leader-Based Sigma even

in the worst case. In contrast, A2A's performance is sensitive to slow and lossy paths

[14]. In this light, in certain practical networks, Leader-Based Sigma can offer better

overall performance and scalability than A2A Sigma.

4.5.2 LB Sigma vs. Ensemble

<5,(s1,s2,s3)> <6,(s1,s2,s3,s4)>
s1 l

<5,(s1,s2,s3)> <6,(s,s2,s3,s4)>
s2 < 1 s

<5,(sl,s2,s3)> <6,(s1,s2,s3,s4)>
s3

+ss,s2,s3 <6,(s1,s2,s3,s4)>

Figure 4-9. A standard leader-based GM algorithm like Ensemble.

Leader-based Sigma must also be considered in the context of other leader-based

algorithms that have been studied and implemented in the past. Figure 4-9 demonstrates a

communication pattern of Ensemble. As we have seen in Section 4.4, Ensemble is similar

to Leader-Based Sigma_LD, but it is different in two ways. First, Ensemble's leader is

the only member that reacts to network events. Upon learning of a network event, the

leader sends a message to the other members asking them to send in their view proposals,

delaying everyone's participation in the algorithm until this message from the leader

60

reaches them. This delay results in GM taking three communication steps, in contrast to

the two steps taken by the Leader-Based SigmaLD.

The second difference is that Ensemble's leader waits to receive new proposals with

the matching view identifier and membership set from all the members before sharing the

view with the members. In contrast, Leader-Based SigmaLD can reuse an old proposal

with a different identifier, as long as the membership set matches. Consequently, Leader-

Based SigmaLD's less rigorous filtering may avoid unnecessary delays that might occur

in the traditional GM algorithms.

4.5.3 A2A Sigma vs. Moshe

In this section, we contrast A2A Sigma's operation with that of Moshe, by describing

a scenario in which Moshe switches to its Slow Agreement protocol. Because Moshe's

Fast Agreement causes the same message exchange patterns as described in Section 4.5.1

for A2A SigmaLD, Moshe's main distinction is its Slow Agreement protocol. The

asymmetric scenario in Example 3-1 is one of several cases that result in Moshe

switching to SA, as depicted in Figure 4-10.

<1,(s1,s2,s3)> <5,(s1,s2,s3)>
s1 1Ao

s3)> <3,(s2,s3)> <A<5,(s1,s2,s3)>

,s3)> -S1 +S1 <5,(s1,s2,s3)>

-s +stime

Figure 4-10. Moshe Slow Agreement Scenario.

A proposal sent by member X for a view with id=Y is denoted pX(vY). To recap, s2

and s3 receive ne(-sI) and send proposals p2(v2) and p3(v2), respectively, to each other,

while sl still thinks it is connected. Receiving p3(v2), s2 increments its viewid, and

installs view <3,(s2,s3)>. However, s3 does not receive p2(v2) until later, when its

membership set is old, and is therefore ignored. Meanwhile, s3 receives ne(+s1), adds s1

to its membership set, and sends proposal p3(v4) to sl and s2. Receiving p3(v4) without

an accompanying network event, si initiates SA, which sends proposals pl(v4) of type

<1,(s1,s2,

s2
<1,(s1,s2

s3

61

SA to the other two members. Receiving pl(v4), s2 and s3 switch to SA, and each

similarly sends SA proposals p2(v5) and p3(v5), respectively, to the other two members.

Once received, agreement is reached, and all three install view <5,(s1,s2,s3)>. Thus, in

this case, SA takes two extra rounds to reach agreement.

62

63

Chapter 5

Simulation

As one of the goals of this thesis, we present in simulation a performance analysis of

Sigma's practical potential and the tradeoffs involved, before introducing Sigma into a

real network. This chapter describes how we implemented the simulation. Chapter 6

describes the analysis results from the simulation, and in Chapter 7 we discuss the

implications of these results. In all, we implemented and studied six algorithms in this

simulation: the four variants of Sigma (A2A SigmaUD, A2A Sigma LD, LB

SigmaUD, and LB SigmaLD), and the two practical algorithms, Moshe and Ensemble,

for comparison. These algorithms have been described in Chapter 4.

5.1 Platform

The simulation was implemented using the ns-2 Network Simulator. Ns-2 is a library

that provides functionality to simulate asynchronous communication channels, TCP,

routing, and multicast protocols over wired and wireless networks [25]. The following ns-

2 constructs were useful in implementing the simulation. All of these constructs are

extensible, enabling customized implementations that accommodate the specific nature of

the intended simulation. Figure 5-1 illustrates these constructs.

0 Nodes represent the physical machines in the simulated network topology. Each

Node gets assigned a unique address automatically by ns-2 at creation, and maintains

a series of ports that serve as an interface to the network.

0 Links correspond to the physical connections among Nodes. Ns-2 provides

simulation tools for a variety of link types, ranging from point-to-point simplex- and

duplex-link connections, to wireless and broadcast connection media. For our

simulation, we used duplex, or bi-directional, links, each specified by two endpoint

Nodes, link bandwidth, link delay, and queue type. Link delay represents the time

required for a packet to traverse a link. The amount of time required for a packet to

traverse a link is defined to be s/b+d where s is the packet size, b is the speed of the

link in bits/sec, and d is the link delay in seconds. Queues represent buffers where

64

packets are held as they arrive. When the queue fills up, it must decide which packets

to drop in order to prevent overflow. A queue is defined by the particular dropping

strategy that it uses; for example, drop-tail (FIFO) or random early drop (RED).

0 Agents and Sinks correspond to processes that execute specific transport-layer

protocols. Ns-2 implements a variety of Agent and Sink types, including a

comprehensive library of TCP variants. An Agent and Sink pair is associated with a

pair of Nodes, or more precisely, a pair of ports that define a link. The Agent runs on

a port on the source Node , and the Sink runs on a port on the destination Node. The

Agent sends packets to the latter port in behalf of the source Node, and the Sink

receives these packets in behalf of the destination Node.

* Packets are the ns-2 representation of this fundamental unit of exchange in

network communication. Each new Packet is first created, or allocated in memory,

and then its header information initialized with the appropriate values. All Packets

used in this simulation have an IP header, among others, in which must be set the

source and destination Nodes' address and port. Packet headers also include such

information as a timestamp, TTL, and any user-defined application- or protocol-

specific fields. Once the Packet header is defined, any relevant application data is

attached, and the specified Agent sends the Packet to its destination.

0 Timers enable control over the scheduling of specific events. Timers are set to

expire after a specified delay. Upon expiration, a Timer will execute application- or

protocol-specific procedures or events.

* The Application construct enables the definition of applications, overlays, or

traffic generators that sit on top of the transport-layer Agents.

9 AppData represents application-specific data that Packets may transport. If a

Packet arriving at a Node contains any AppData, ns-2 extracts the AppData and

automatically passes it to the Application layer for processing.

65

Ap icaion
AppData

Agent

Nod

A nt
Packet

Nod

imer

Figure 5-1. Elements of the Ns-2 Platform.

The implementation of an ns-2 simulation involves the use of two languages; ns-2 is

written in C++ with an OTcl interpreter as a front end. The constructs described above,

and in fact the majority of ns-2's constructs, are implemented in two parallel class

hierarchies, one in C++, and the other in OTcl. This dual design, as described in [25], is

intended to apply the characteristic properties of each language to the two different

aspects of implementing a network simulation: protocol implementation and topology

configuration.

* C++ offers optimal run-time speed for an object-oriented language, while

requiring extra time for reconfiguration and debugging, because C++ code needs to

be compiled before it is run. C++ is therefore ideal for defining new protocols and

applications, which involve detailed processing of bytes, packet headers, and

implement algorithms that run over large data sets.

* OTcl, on the other hand, optimizes reconfiguration time, but it is much slower

than C++ at run-time. Thus, OTcl is ideal for setting up and configuring the network

topology, which only needs to run once, at the start of the simulation.

Thus, network topology is more easily configured using OTcl, while new network

protocols are more easily implemented using C++.

66

5.2 Implementation

Our simulation design follows the model described in Chapter 3, in which the group

membership service (GM) operates in partnership with a notification service (NS), which

interfaces GM with the failure detector and reliable FIFO (RFIFO) communication

service. NS learns about network instabilities from the failure detector, and interprets

them into network events (NEs) that change the group's membership. NS communicates

these NEs to GM, which adjusts its view according to the resident membership algorithm

and may require view proposals to be sent to other membership members. GM passes

these proposals to NS, which wraps them into network packets and sends them, through

the simulated network, to the destination members. Similarly, NS receives view proposal

packets from other members, unwraps them, and passes the proposals to GM.

In a real world situation, a GM implementation would preferably follow the more

scalable two-tier architecture described in Chapter 3. Each membership server would be a

dedicated machine that serves a local group of distinct client machines. For simulation

purposes, however, we consider a membership server as representing an abstract set of

local clients, by treating each simulated server as if it were also a client. We therefore

refer to them simply as "members".

The task of implementing the group membership simulation consisted of five major

components: (1) a design for modeling network events and failure detection, setup and

configuration of the network topology; (2) implementation of a FIFO communication

service for message transport through the network; (3) a notification service (NS) that

communicates network events to the group membership algorithm; (4) the membership

service (GM) module that implements the group membership algorithms that we

simulated; and collection and analysis of data from the simulations to enable the

comparative study of Sigma that we describe in Chapters 6 and 7.

5.2.1 Modeling Network Events and Failure Detection

We model network events, simulate the failure detector, and derive the network

configuration by using existing trace data collected over real wide area networks

(WANs). Such traces provide a wealth of authentic network activity, and serve as a

67

valuable resource towards creating realistic network scenarios in simulation. The trace

data set that we used comes from the Resilient Overlay Networks (RON) project [9, 11];

this trace was originally used in [29]. RON traces offer information about the

connectivity between each pair of participating members; this property has motivated our

use of the traces to simulate a NS failure detector.

RON is an application-layer overlay set on top of the existing Internet routing

infrastructure that improves the quality of service in a participating network of nodes.

This is achieved through a distributed process of network outage detection and fast

recovery by re-routing packets to avoid faulty network paths. RON thus acts in large part

as a failure detector. Nodes monitor the connectivity amongst each other by sending

probes to other nodes. To probe, each RON node independently picks a random node j,
sends a packet to j, records this fact in a log, records if there was a response, and then

waits for a random time interval between one and two seconds before probing again. If

there is no response, it is considered to be a loss, and the offending path earns a "point"

towards qualifying as an outage. Interpreting these losses into path outages is an

application-dependent procedure; for example, the original RON study [11] used 4

consecutive losses as the qualifying parameter.

An excerpt of a RON trace is shown in Appendix A. Each line is a distinct entry, and

each entry consists of seven fields [10]:

0 source, the originator of the probe.

* dest, the destination to which the probe was sent.

" ron, a flag to denote the RON link type. This was always 0 throughout the RON

traces that we used, which means that probes were sent directly on the Internet.

The other options are 1, in which the RON link is latency optimized, and 2, in

which the RON link is a loss optimized path.

* sendi, the time at which the source originally sends the probe to the destination.

" reel, the time at which the probe was received on the interface at the destination.

* send2, the time at which the probe was sent back to the sender by the destination.

* rec2, the time at which the probe was received at source's interface.

The clocks on the RON servers were only roughly synchronized; thus, the time fields

are accurate only in relation to other time entries on the same machine. For example,

68

sendl and rec2 are compatible for relative analysis, because both times were computed

by the same physical clock. In contrast, sendl and send2 cannot be compared, because

they were each computed on different machines, and thus different physical clocks.

A loss is represented in the trace by a zero value in any or all of the time entries. It is

not clear why some disconnect probes list zeroes in all the time entries, while others list

zeroes only in the rec1 and send2 fields. We assume that these differences are due to

variations in logging configuration among different nodes.

The particular RON trace used in our simulation was also used and analyzed by [29].

In this trace, there are sixteen nodes that are spread out across the United States and

Europe. Each pair of nodes probe each other once every 22.5 seconds on average. This

trace contains continuous probing for the two-week period from August 2 through August

16, 2002. A detailed description of the properties of this trace, including loss rates, the

number and duration of partitions, and the degree to which communication is symmetric

and transitive can be found in [29].

5.2.2 Notification Service

The notification service (NS) was implemented as an ns-2 Application object called

NESvcTrc. It is designed as an event handler driven by network events that are

interpreted from the RON trace. The NS process at each member parses the same RON

trace, line by line; each member ignores all traces except those with its own member ID

in the source field. The simulation follows the timing of events as specified by the RON

trace data; NS keeps a timer, NSTimer, for this purpose. When the simulation starts,

NSTimer initializes by reading the first line of the RON trace. The time interval specified

by rec2-send 1 is set as the delay after which the first network event is scheduled to occur;

NSTimer is set to expire at the end of this time interval.

Because of the existence of probe statistics in which sendl and/or rec2 could be

marked as zero, deriving a valid time delay interval for which to schedule events from

such probes in the manner described above was impossible, because it would yield a

negative value for the time delay. To solve this problem, we implemented a feature in NS

that computes a running average of computed time delays across all encountered probe

69

lines. For probe lines in which the time delay could not be computed from the trace

statistics, this average delay value was used instead.

The expiration of NSTimer triggers the execution of the event handler, which reads

and processes the next probe line in the RON trace. The event handler ignores the probe

line if the source ID does not match its own, and resets the timer for the rec2-sendl time

delay given by this line. If the source ID does match, then NS interprets the probe data to

determine whether it should be treated as a leave, join, or heartbeat network event.

These events are forwarded to other currently connected members, and

communicated to the membership service, after a Sensitivity to Disconnects (SD) delay

(see Section 5.2.2.3). If a join or heartbeat event occurs within the SD after a leave event

for the same member, the leave event is cancelled. Similarly, if a leave event occurs

within the SD after a join event for the same member, the join event is cancelled. When

an event is cancelled, all forwarding scheduled for this event is cancelled as well.

An event that is still in effect when the SD elapses is then forwarded to other

currently connected members and passed to the membership service. NS sends and

receives messages in behalf of itself as well as the membership service, doing so by

passing messages to, and retrieving messages from, the FIFO communication service. As

an interface to FIFO, NS maintains two sets of TCP Agents; one set for sending messages

and the other for receiving messages. Agents in the former set are implemented by

GCSAgent and in the latter by GCSSink. Each set contains one Agent for every other

node, each Agent therefore representing a single link to (in the former set) and from (in

the latter set) this node.

5.2.2.1 Events

NS learns that a member has left whenever a line is encountered in which any or all

of the time entries in the RON trace are zero; in other words, a lost probe. When a leave

event occurs, NS removes the leaving node from its list of connected members and

notifies the membership service of the leave.

A probe line is treated as a join if the destination node is not listed among NS's list of

connected members and the probe is not a loss (see Section 5.2.1). If the probe is a loss,

70

then NS ignores this line and moves on. When a join event occurs, NS adds the joining

node to its list of connect members and notifies the membership service of the join.

Heartbeat events occur whenever a non-loss probe line is encountered in which the

destination node is already listed in the NS's list of connected members. A heartbeat

event about member M cancels any scheduled leave events about M, because a heartbeat

removes all doubts that M is indeed connected. Otherwise, nothing further is done during

a heartbeat event.

5.2.2.2 Network Event Forwarding

By itself, the RON trace is not equivalent to an NS trace. The NS failure detector

must ensure that NS quickly propagates information to different GM nodes. In contrast,

as described in Section 5.2.1, a RON node chooses a single target node randomly during

each iteration of the RON probing process, and consequently, each node ends up probing

every other node only every 22.5 seconds on average. Because a node requires such a

long time-frame to learn about its connectivity with all other nodes, the RON trace by

itself could not be used in place of NS.

To use the RON trace in the NS simulation, we had to implement a solution in which

each NS forwards network events to the NS's of other currently connected members,

before NS communicates these events to its GM. In this way, the NS's of other members

learn of events and communicate them to their GMs at roughly the same time. This

implementation corresponds to one possible implementation of an NS service.

5.2.2.3 Sensitivity to Disconnects

Another issue in the implementation of NS was the idea of being able to adjust its

sensitivity to short-term network instabilities. For most applications, if a member

disconnects and then reconnects shortly afterwards, it is better to just ignore these two

network events, rather than produce two additional views. Because they are short-lived,

such transient events cause unnecessary view changes, which lead to wasteful processing

and interrupt the application's normal operation.

Transient events occur frequently in wide-area networks and are difficult to

distinguish from permanent events, because this requires knowledge of the future;

71

applications have no way to distinguish a temporary departure from a permanent leave at

the time of a node's disconnection [43]. Without such a distinction, GM delivers a view

for each transient event, the same as it would for a permanent event. It is important to

minimize view changes due to transient events, because at the application level, each

view change is associated with costly reconfigurations.

To this end, we implement a Sensitivity to Disconnects (SD) in the NS. Each

member's NS maintains a timer for every other member. When member r encounters a

disconnect for member u in the RON trace, it sets timer u to expire in SD seconds. When

timer u expires, member r forwards a "leave" network event to all other members (except

member u), and communicates this event to its GM. If member r discovers that member u

has reconnected according to the RON trace before timer u expires, then timer u is

aborted, and the initial disconnect and subsequent reconnect are ignored. Likewise, when

member r encounters a reconnection to a previously disconnected member, it forwards

this information to the members to which it is currently connected.

Different applications would have different requirements for the time interval

between the occurrence and resolution of such transient network instabilities that they can

tolerate without having to create a new view. Applications have different definitions of

what "permanent" means; SD enables them to adjust the granularity of events to be

perceived as permanent. By appropriately configuring SD according to their needs,

applications can avoid unnecessary reconfiguration overheads by filtering out transient

events. We believe that including this sensitivity parameter in our study was important to

obtain more comprehensive results that account for a variety of applications.

5.2.3 Group Membership Service

The Group Membership (GM) service is situated on top of NS. The interface and

interaction between GM and NS is quite simple, as shown in Figure 5-2:

" NS communicates network events to GM,

" GM passes view proposal (and shared view, if leader-based) messages to NS for

transport to other members, and

" NS passes view proposal messages received from other members to GM.

72

Our design for the GM module was flexible enough to enable the implementation of

all six GM algorithms2 within the same framework and minimal, if any, modifications

outside the GM module. In so doing, we have reinforced the idea, first proposed by the

designers of Horus [27], that a modular design can enable different group membership

algorithms to be plugged into a single group communication infrastructure. Such

modularity adds flexibility to the group communication paradigm, leaving the choice of

group membership algorithm to the application, depending on its needs.

GM

C.LN CL

View p s. .? 'View

NS

NE

Figure 5-2. Interface between NS and GM. (1) NS receives network events (NE) and (2) passes
them to GM. (3) GM forms view proposals to send to the GM's of other currently connected
members, and passes them to NS. (4) NS packages the view proposals, and sends them out using
reliable FIFO. (5) View proposal messages of other members are received by NS, which unwraps
them and (6) passes the enclosed view proposals to GM.

We establish a multipurpose data structure View of the form <id, set> where id is an

integer that specifies the view identifier and set is an array of values that uniquely

identify member Nodes. The View data structure was used not only to represent the

official view maintained by a member, and in the leader-based case, shared by the leader,

but also as the view proposals that GM sends to the GM's of other members. This

minimal specification of a view is sufficient for Sigma and Ensemble, as well as many

2 A2A SigmaUD, A2A Sigma_LD, Moshe, LB SigmaU), LB SigmaLD, and Ensemble

73

other GM algorithms, and it was extensible in the case of Moshe, which maintains

additional information in its views.

We implemented the six group membership algorithms described in Chapter 3

straightforwardly from their pseudocode specifications. In our implementation, we model

just one group; this implementation can trivially be extended to multiple groups by

associating different member processes on a single physical node with distinct group

identifiers. Each server in our implementation is considered to represent its clients, and

therefore each server is also treated as a client. In other words, the servers themselves are

the members that connect to and disconnect from the group. The process of installing a

view is represented by writing information about the view to a file.

We model only involuntary network events in our implementation: when members

disconnect, they do not know that they have disconnected; therefore, when they

reconnect, they do not know that they have reconnected. In doing so, we restrict our

study to two different failure types - crash failures, and the transient, usually asymmetric,

disconnects due to network congestion or localized link outages.

In contrast, we do not study voluntary joins and leaves; the reliable FIFO guarantees

of the communication service (see Section 5.2.4), which we implement using TCP, mean

that agreement on views always occurs for voluntary network events, since join and leave

requests can be addressed and reliably delivered to all members.

5.2.4 Communication Service

The reliable FIFO communication service that GM assumes is straightforwardly

implemented by the ns-2 TCP infrastructure. We implement two new classes, GCSAgent

and GCSSink, as subclasses of TcpAgent and TcpSink, respectively, to interface the

group membership simulation to this infrastructure. Specifically, GCSAgent implements

an association between a TcpAgent and an instance of the NESvcTrc application.

GCSAgent wraps View objects into proposal packets before sending them with its

underlying TcpAgent. We implement a subclass of AppData, called GCSAppData, to

hold the View data within the packet. On the receiving end, GCSSink implements a

similar association, between TcpSink and NESvcTrc. GCSSink invokes ns-2's "process-

74

data" command to unwrap the GCSAppData from received packets, so that NESvcTrc

can pass it on to the group membership service.

5.2.5 Network Topology Configuration

In our simulation, a member is represented as an ns-2 Node object, which

communicates with other Nodes using TCP. Each node is physically connected to every

other node by a duplex link with a bandwidth of 2Mbps and a propagation delay uniquely

derived for each link from the RON trace. Each node acts as both a TCP agent for

sending messages, and a TCP sink for receiving messages.

Distribution of Latencies for link svr3 A svr15

1800 -

1600 -
w 1400 -

0 1200 -
, 1000 -

800 -

E 600 -

Z 400
200 -

0 -

CD - CD - CO CO CD D '- CD C N) CD N N N

Latency (sec)

Figure 5-3. Example distribution of latencies. This particular distribution is for the link
between node #3 and node #15.

Propagation delay for each duplex link was assigned on an individual basis based on

our analytical investigation of the latency distributions that occur in the RON trace

between each pair of nodes. For each source/destination pair (A,B), all entries in the

RON trace for which A is the source and B is the destination were extracted. The round-

trip latency was calculated for each entry as the difference between the time at which the

packet was received from the destination at the source's interface (rec2) and the time

immediately before the source originally sends the packet to the destination (send I). This

round-trip latency was divided in half, and then added to the cumulative list of latencies

75

collected for this particular link. The latencies in this list were rounded to the nearest

thousandth, and the mode, or the most frequently occurring latency, was chosen to be the

propagation delay for this link. The reason why the mode was chosen instead of the mean

is because the range of latencies could be quite large, as shown in Figure 5-3. Occasional

periods of congestion could greatly increase the propagation delay for a given link, albeit

temporarily, perhaps by one or more orders of magnitude. In the process, such extreme

outliers could skew the average, and thus misrepresent the actual latency of the link.

On the other hand, the minimum occurring latency might have been most accurate

measure in terms of its ability to capture the physical limitations of the link. However, if

this minimum latency seldom occurs, then assigning such a propagation delay to the link

is unrealistic, and perhaps too optimistic for a worst-case analysis. It is interesting to note

that, as demonstrated by Figure 5-3, the mode for every single link that we analyzed was

either the minimum occurring latency, or within one thousandth of the minimum.

The network was configured in ns-2 by an OTcl script, such as the one shown in

Appendix B. This script was built in an automated fashion externally to the simulation,

by a C++ standalone program that we wrote. First, a list of all the participating RON

servers was extracted from the RON trace. This process parses the RON trace data to

count the number of distinct servers participating in the trace, and assigns node ID's

based on the corresponding distinct machine identifiers found in the trace. Even though

the simulation was run numerous times with varying parameters and membership

algorithms, the same network configuration was used at all times. Thus, the OTcl file was

built once and then reused throughout the study.

First, a Node is created corresponding to each server. An instance of the NESvcTrc

application that defines our implementation of NS is also created for each server. Next,

the linkages and communication agents are configured. For each link, a GCSAgent and

GCSSink are created. The GCSAgent is attached to the source Node for that link, while

the GCSSink is attached to the destination Node for that link, using "attach-agent".

Before the GCSSink is attached, the NESvcTrc object associated with the destination of

the link is set as a parameter of the GCSSink. Afterwards, the GCSAgent is attached to

the NESvcTrc object associated with the source of that link.

76

There are n*(n- 1) such linkages built for n nodes. Once this process finishes, the

script starts up each individual NESvcTrc Application instance, and begins the

simulation. The simulation preserves a completely distributed network model: each

member runs its own FIFO, NS, and GM components locally.

5.2.6 Analysis methods

We describe in this section the functionality that we implemented for analysis in the

simulation environment. Data about the simulation is collected into data files. These data

files are then interpreted by analytical functions that we have implemented to measure the

amount of agreement and disagreement, the time it takes for the GM algorithm to deliver

a view, and the message overhead.

5.2.6.1 Data file format

As mentioned in Section 5.2.3, we represent the act of installing a view by having the

member write the view and related information to a file. Each member keeps its own data

file for this purpose. We collect the following information in these data files, for each

view installed:

* Time the NE that resulted with the view was raised;

* Time at view installation;

* View ID;

* View Members;

" Installation source flag - indicates whether the view was installed immediately

after an NE is raised (N), or after receiving a view proposal (R).

For Moshe, we also collect data relating to whether the view was installed through

fast agreement (FA) or slow agreement (SA).

In addition, members collect data on message overhead during the course of the

simulation. At the end of the simulation, each member writes its message overhead total

to its data file. Members running Moshe also collect message overheads separately for

FA and SA runs, and write this additional data to their data files.

77

5.2.6.2 Agreement/disagreement

We calculate agreement and disagreement both in terms of raw numbers and

percentages. Views in agreement are those for which the view id is the same for the same

membership set; all members listed in the view must have installed this view. We define

a disagreement as a view id for which there is more than one nondisjoint membership set

with this same view id (see Definition 3-1). To obtain percentages we divide the raw

number of agreed or disagreed views by the total number of views.

5.2.6.3 GM Latency

Towards studying exactly how much more efficient Sigma is than Moshe and

Ensemble, it is necessary to measure how long it takes, in seconds, for the membership

algorithm to execute - in other words, how much time elapses between the time an NE

occurs, and the time that the member installs the view reflecting that NE. The timestamps

that we obtain from ns-2 are universal time, because at each member, we get them by

calling Scheduler::instanceo.clocko rather than using a local timer. Thus, to analyze GM

latency, we calculate LVT-LNT for each view, where LVT is the latest time at which the

view was installed, across all members, and LNT is the latest time at which the last NE

was received before installing this view, across all members. For the analysis, we

calculate the average LVT-LNT, its standard deviation, minimum, and maximum over all

the views for a given SD. We plot these values as a function of SD.

5.2.6.4 Message overhead

We calculate average message overhead by summing up the number of messages

sent by all the members and dividing by the number of members. For Moshe, average

message overhead is also broken down into message overhead due to FA and SA.

Message overhead is measured per total simulation run, not per round or per execution.

78

79

Chapter 6

Performance Analysis

Using the simulation that we implemented as described in Chapter 5, we have

conducted a performance analysis of Sigma. Our performance analysis consists of two

studies - the first study, denoted as A2A, presents an evaluation of All-to-All Sigma in

comparison with Moshe; the second study, denoted LB, evaluates Leader-Based Sigma in

comparison with Ensemble.

For each of these two studies, we ran two groups of simulations. Each simulation

parses one million lines of the RON trace, equivalent to roughly 48 hours. Group RONl

simulated the first million lines, and group RON2 simulated the second million lines. The

results that we present in this section are reinforced by the fact that they are consistent

across both groups of simulations.

In each group, we simulated twenty-five sets of simulations for each of the three

membership algorithms: SigmaUD, SigmaLD, and Moshe for our A2A study; and

Leader-Based SigmaUD, Leader-Based Sigma_ LD, and Ensemble for our LB study.

Each set varies the Sensitivity to Disconnects (SD) from 0 to 120s, at 5s intervals.

Members start with viewid = 0 and all possible members in the membership set.

We distinguish the A2A and LB algorithms into separate studies, rather than directly

comparing Sigma with Leader-Based Sigma, for several reasons. First, it is natural

comparatively evaluate Sigma in the context of Moshe, because Moshe is also an A2A

algorithm; similarly, it makes sense to evaluate LB Sigma in comparison with Ensemble,

which is also a leader-based algorithm. Secondly, our simulation does not allow us to

directly study the tradeoffs between A2A and LB, because a) we do not simulate lossy

links, and b) our simulations are not run in the context of a larger encapsulating public

network. Because lossy links and network congestion are major factors motivating the

use of LB instead of A2A, our simulations would not adequately reflect the benefits of

using LB. In addition, Leader-Based Sigma is not intended as an unequivocal

replacement for Sigma, or vice versa. The choice between A2A and LB depends on the

application, group size, and quality of the network environment.

80

For each simulation, we measure number and duration of views, agreement,

disagreement, GM latency, and message overhead. These measurements consider all the

members in relation to each other, rather than in isolation. We count a set of views as one

distinct view if their <id, set> pairs are the same.

6.1 All-to-All Study: Sigma vs. Moshe

In this section, we present the results of the A2A study, in which we compare

SigmaUD, SigmaLD, and Moshe. As a brief overview, we make the following

observations.

" The total number of views is similar for all three algorithms, following a distinctively

exponential decrease with increasing SD. Correspondingly, the duration of views

increases in a near-exponential trend with increasing SD - with no SD (SD = 0

seconds), views change every 15 seconds; but with 60 seconds of SD, views remain

unchanging for as long as four hours. This is consistent with intuition, because a

longer SD hides the short, transient outages that dominate the trace.

* SigmaLD matches Moshe's near-perfect agreement levels, with forty-five out of

fifty data points achieving 99-100% agreement, and zero disagreement. Without the

benefits of a limiting disagreement filter, SigmaUD produces many non-agreed

views, resulting in lower agreement percentages and higher disagreement

percentages.

* Raw numbers of agreed and disagreed views, however, show the differences in

percentage between SigmaUD and SigmaLD to be subtle - the raw trends for all

three algorithms overlap and follow a similar exponential decreasing pattern. Because

of the exponential nature of the raw trends, an analysis of percentages is skewed at

longer SD's, due to the exponentially decreasing total number of views.

" Moshe produces zero disagreement, Sigma_LD produces negligible disagreement for

0-10s sensitivity delays and zero disagreement thereafter, and SigmaUD produces

zero disagreement for SD > 60 seconds.

* Sigma_LD is faster than Moshe by an average of 30ms and by as much as 260ms. On

average, and in the worst case, SigmaLD is slower than SigmaUD by the average

link latency of the network topology.

81

0 Both SigmaUD and SigmaLD operate with less message overhead than Moshe. To

be precise, the message overhead of Sigma is roughly half that of Moshe.

6.1.1 Number and Duration of Views

Figure 6-1 shows the total number of views for the A2A algorithms -- SigmaUD,

SigmaLD, and Moshe - to be similar in RON1. The number of views is an

exponentially decreasing function of SD (Figure 6-1(a)). Figure 6-1(b,c,d) groups

together data points sharing the same order of magnitude, in a piecewise analysis. The

overlapping trends in these graphs suggest that the total number of views is similar for all

three algorithms, with the following exceptions: SigmaUD delivers about two thousand

more views than either Sigma_LD or Moshe at SD = Os. For SD > Os, SigmaUD

performs similarly to SigmaLD and Moshe. The results are reproduced for RON2 and

are shown in Appendix C in Figure C-1. The only difference in RON2 is that SigmaUD

delivers more views than Sigma_LD or Moshe for SD <40s, instead of just at SD = 0.

Total Num ber of Views (A2A)
RONI

12000 A+- SigmaUD

10000 -U- SigmaLD
-e-Mshe

* 8000 -

6000 -

4000

2000 -

0-------sw

Sensitivity to Disconnects (sec)

Total Number of Views (A2A)
20-60 SD, RONI

250 -- Sigma UD

200 - Sigma LD
-+- Moshe

w150

0100

50-

0 .

20 25 30 35 40 45 50 55 60
Sensitivity to Disconnects (sec)

Total Number of Views (A2A)
0-20 SD, RONI

12000 -- SigmaUD

10000 --- SigmaLD

8000
- Mshe

6000

4000

2000

0-
0 5 10 15 20
Sensitivity to Disconnects (sec)

Total Number of Views (A2A)
60-120 SD, RONI

20
18
16
14

,12-

.210
S8-

-6- SigmaUD)

24- SigmaLD
-+-Mshe

Sensitivity to Disconnects (sec)

Figure 6-1. Total Number of Views, RON1. All-to-All Sigma vs. Moshe. (a) Overall picture
(b,c,d) Piecewise analysis.

82

View duration, measured as the average number of seconds that each view lasts

(seconds per view), is shown in Figure 6-2. We observe view duration to increase quickly

with increasing SD. At the shortest SDs, view duration is on the order of seconds: views

last 15s at SD = Os, and views last 66s at SD = 5s. With SD = 35s, views last as long as

an hour; with SD = 60s, views last four hours; by SD = 120s, views last for ten hours.

The exponential decrease in number of views appears to be directly related to the increase

in view duration with increasing SD.

View Duration (A2A),
ROMI

40000
-+- Sigrna_UD

35000 ---- Sigfna_LD
30000 - -- Moshe
25000 -

c 20000-

15000

$ 10000

View Duration (A2A),
RON2

35000
-+- SigmaUD

30000 - SigmaLD

25000 - -- Moshe

20000

15000

o 10000

5000 U000

0 0--

SensItivity to Disconnects (ec) Sensitivity to Disconnects (sac)

Figure 6-2. Duration of Views, All-to-All Sigma vs. Moshe (a) RON1 and (b) RON2.

The trends are very similar for the three algorithms, except that in RON2

Sigma_LD's views last 1.4 hours longer than Moshe's and Sigma_UD's views for SD =

115s and SD = 120s. This discrepancy is not reproduced in RONl, during which the

trends overlap consistently for all SDs.

6.1.2 Agreement

Figure 6-3 compares the percentage of views in agreement for the A2A algorithms as

a function of SD. The trends for the RONl trace are shown in Figure 6-3(a), while the

trends for RON2 are shown in Figure 6-3(b).

These trends show similarity between the agreement performance of Moshe and

Sigma_LD. Moshe is most consistent, as expected, maintaining 100% agreement for all

SDs in RON1, and for all but SDs 115 and 120 in RON2 where its performance drops

uncharacteristically to 85%. Out of fifty total, forty-five of Sigma's data points represent

99% agreement or greater. All but one of the remaining five represent 95% agreement or

83

greater. The one other data point is 91% agreement at SD = 55s. For SDs > 60s,

SigmaLD consistently achieves 100% agreement in both RONI and RON2. In RON2,

SigmaLD also achieves 100% agreement for 25s SD 40s in RON2.

%Views in Agreement (A2A)
RON

120

100

80-

40-
-- SigmaUoD

20 -U- SigmaLD
- Moshe

0 .

Sens itivity to Disconne cts (sec)

%Views in Agreement (A2A)
RON2

120

100 -

80-X

.260

40-
-4-+Sigma_UD

20 -U- Sigma_LD

--- Moshe
0

Sensitivity to Disconnects (sec)

Figure 6-3. Percentage of Views in Agreement. (a) Trends for trace RONI and (b) Trends for
trace RON2. Both (a) and (b) demonstrate that while SigmaUD offers unpredictable performance
between 60 and 80% agreement for SD < 60s, SigmaLD always performs close to or as well as
Moshe in achieving agreement. Also of note is that for SD > 60s, SigmaUD consistently matches
Sigma_LD and Moshe in achieving 100% agreement, or close to it.

SigmaUD demonstrates lower agreement percentages for SD < 60s than both

SigmaLD and Moshe. Within this range, SigmaUD's best performance occurs during

the RONI trace for the range where 10s 5 SD 5 20s, achieving 99% agreement, but this

pattern is not reproduced in the RON2 simulations, and therefore appears to be merely an

artifact of the trace. Despite SigmaUD's variability for SDs < 60 seconds, it may be of

note that the percentage of views in agreement never goes below 60%. For SD > 60s,

SigmaUD consistently remains in the range of 90% agreement or better during both

traces, even achieving 100% in many data points. Specifically, SigmaUD achieves

100% agreement for 65s SD 5 80s and SD 90s in RON2, and for SD 95s in RON1.

Figure 6-3 demonstrates a contrast between SigmaUD and the other two

algorithms, SigmaLD and Moshe. However, judging by the raw number of agreed

views, rather than percentages, as shown in Figure 6-4 for RONI, we observe that the

difference is really quite subtle. We define raw number of agreed views as the actual

number of views that achieved agreement. Figure 6-4(a) shows the complete raw

agreement data for RONI as an exponentially decreasing function of SD.

Raw Number of Agreed Views (A2A)
RON

12000

10000 - SlgmaLD.
-e- FMshe

8000

6000

4000-

2000-

0

t'4 ~ 4 4' ' ~
Sensitivity to Disconnects (sec)

Raw Num ber of Agreed Views (A2A)
20-60 SD, RONI

250-

-- Sigm ULD
200 -- ,- Moshe

* 150

$ 100

50

0 ,
20 25 30 35 40 45 50 55 60

Sensitivity to Disconnects (sec)

Raw Number of Agreed Views (A2A)
0-20 SD, RON

12000

10000 ---- SigneLD
10-6- SiashLD

8000

6000

4000

2000

0
0 5 10 15 20

Sensitivity to Disconnects (sec)

Raw Number of Agreed View s (A2A)
60-120 SD, RONI

20
18-
16-
14-

* 12
10

4 8

6-4- SIgmaUD
-4 - SigmRLD

2-e- Moshe
0

b4i -0 % 4P NZ I
Sensitivity to Disconnects (sec)

Figure 6-4. Raw Numbers of Agreed Views, AU-to-AI Sigma vs. Moshe, RON1. (a) Overall
picture and (b,c,d) Piecewise analysis.

In Figure 6-4(b,c,d) we investigate the raw agreement patterns in a piecewise

manner. Even at this scale, the trends are very similar, although slight differences are

visible for SigmaUD. Percentages as low as 60% occur for Sigma UD in Figure 6-3

despite the subtle changes in raw agreement numbers, in part because the total number of

views itself is relatively small for data points in the lower asymptote. These results are

closely reproduced for RON2, as seen in Appendix C, Figure C-2.

6.1.3 Disagreement

Figure 6-5 shows the percentage of views in disagreement for the A2A algorithms,

for (a) RONI and (b) RON2. Both SigmaLD and Moshe appear to operate with no

disagreements at all. Any differences between the disagreement patterns between

Sigma_LD and Moshe are negligible and therefore not significant. We mention this

because there are, in fact, slight differences between SigmaLD's disagreement

performance and Moshe's, as shown in Appendix E for RONI. Specifically, SigmaLD

84

85

produces a very small, albeit nonzero, amount of disagreement when SD is short enough.

In RONI, disagreement is nonzero for SD 10s. In RON2, disagreement is nonzero for

SD 5 15s. Nevertheless, SigmaLD's nonzero disagreement percentages never exceed

one half of one percent: 0.35% in RONI, and 0.42% in RON2. For all other SDs,

SigmaLD produces zero disagreement. Moshe produces zero disagreement for all SDs,

in both traces, as expected.

% Disagreed Views (A2A)
RON

-4- SigmaUD

35--- Sigmaj.D

30 -e- she

i 25-
0 20-

15
10
5
0

Sensitivity to Disconnects (sec)

%Views In Disagreement (A2A)
RON2

40-
- Snia_LO

30-n- SigmajD

30 -e-eishe

25

20

S15

10

5

0 .ens1 -- to -iso ..ct --..

Sensitivity to Disconnects (sa c)

Figure 6-5. Percentage of views in disagreement. (a) RON1 and (b) RON2.

The patterns for SigmaUD appear to complement the agreement percentages seen in

Figure 6-3. For example, where Figure 6-3(a) shows a local maximum at SD = 15s,

Figure 6-5(a) shows a matching local minimum. Also, the lowest agreement percentages

in Figure 6-3 correspond to the highest disagreement percentages in Figure 6-5.

Raw Number of Disagreed Views
(A2A), RONI

1400-
-+- SigmaE_UD

1200 -- SigmnLD

1000 -- Mshe

* 800

600

400

200y

Sensitivity to Disconnectsi(eec)

Raw 9 disagreed views (A2A),
RON2

2500
--- Sigma_UD

2000 - SigmLD
- Mshe

* 1500

1000

500y

0

Sensitivity to Disconnects (sec)

Figure 6-6. Raw Number of Disagreed Views. (a) RON and (b) RON2.

86

SigmaUD produces a number of disagreed views, peaking at 45 seconds with 41%

of views being disagreed. Again, this number is skewed by the fact that the total number

of views decreases exponentially with increasing SD. For SD > 55s, however, SigmaUD

produces no disagreement. Figure 6-6 confirms this fact by demonstrating an exponential

decrease to zero in SigmaUD's raw number of disagreed views, for the same points

where Figure 6-5 shows disagreement percentages as high as 41%.

6.1.4 GM Latency

Figure 6-7(a) shows the average GM latency of the A2A algorithms as a function of

SD, with standard deviation in Figure 6-7(b). We define GM latency as the time that it

takes for a group membership algorithm to install a view from the moment that it receives

the network event that necessitates this view change. The GM latency patterns for the

three algorithms are similar. As expected, SigmaUD's average latency is negligible,

because most views are installed immediately after the network event is received. On

average, Sigma_UD is faster than SigmaLD by a range between 154ms at the longest

SDs, to 189ms at the shortest SDs. SigmaLD is faster than Moshe by an average of

30ms. These average GM latency results are closely reproduced in RON2, shown in

Appendix C, Figure C-3.

Average GM Latency (A2A)
RON

0.25-

0.2

0.15

* 0.1 + SigmaU E
-- Sigm _LC

0.05 -- oshe

0-

Sensitivity to Disconnects (sec)

Standard Deviation GM Latency (A2A)
RONM

6-
-+- Signi_UD

5 --- SgmaLD
-i-- Moshe

3-

2-

Sensitivity to Disconnects (sac)

Figure 6-7. (a) Average Latency of the A2A Group Membership Algorithms, RON1. (b)
Standard Deviation Latency of the A2A Group Membership Algorithms. On average,
SigmaLD is slightly less than 200ms slower than SigmaUD, while Moshe is roughly 30ms
slower than Sigma LD. The 200ms difference between SigmaUD and SigmaLD is related to
the bottleneck link latency in the simulation.

INS

87

Average GM latency offers a general impression of the relative performance

tendencies of each group membership algorithm. However, more important in our

practical analysis of the algorithms' performance is the formulation and comparison of

upper bound latencies, because upper bounds provide guarantees about worst-case

performance. For this reason, we present the maximum GM latency for each algorithm as

a function of SD, shown in Figure 6-8. The trends are similar for both RONI and RON2.

For the shortest SDs, SigmaUD's maximum latency is on the order of Sigma_LD's

maximum latency (for example, in RONI, SigmaUD's max latency is 244 ms at SD =0,

and SigmaLD's is 253 ms), but becomes negligible as SD is increased beyond 45

seconds. SigmaLD's maximum latency remains fairly constant between 200 and

250ms. Moshe's range of maximum latencies is much wider, and appreciably higher,

ranging between 250ms and 530ms, with higher latencies corresponding to shorter SDs.

Maximum GM Latency (A2A)
RONI

-+- Signa_UD

0.5 -- SigmaLD -

-+- Moshe
43 0.4

0.2-

0.1

0)

Sensitivity to Disconnects (sec)

Maximum GM Latency (A2A)
RON2

0.6 -+-Sigma_UD
--- SigmaLD

0.5 - -+ Mshe

0.4-

~.0.3
C

a 0.2
_j

0.1

0

Sensitivity to Diaconnects (sec)

Figure 6-8. Maximum Latency, All-to-All Sigma vs. Moshe. Maximum latency of SigmaUD,
Sigma_LD, and Moshe execution during (a) RONI and (b) RON2. Both traces show similar
patterns. SigmaUD's maximum latency is similar to Sigma_LD's for the shortest SDs, but
becomes negligible beyond 45 second SDs. On average, in (a) SigmaLD's max latency is 176ms
longer than Sigma_UD, and Moshe's is 135ms longer than Sigma_LD. In (b), SigmaLD's max
latency is 138ms longer than SigmaUD, and Moshe's is 169ms longer than SigmaLD.

6.1.5 Message Overhead

Figure 6-9 shows the average message overhead for the A2A algorithms, as a

function of SD, for the RONl trace. From Figure 6-9(a), we observe that the average

message overhead is an exponentially decreasing function of SD. This is consistent with

the result in Section 6.1.1 in which we observe that the total number of views delivered is

also an exponentially decreasing function of SD. Each view delivery is a culmination of

88

an exchange of messages; thus, the message overhead is related to the number of view

deliveries.

For SD ; 20s, Moshe has a much higher message overhead than Sigma _UD and

Sigma_LD. For example, at SD = 0, each Moshe member sends an average of 300,000

messages during the RONI trace. On the other hand, each SigmaLD member sends an

average of 153,918 messages, half the messages that Moshe sends. SigmaUD members

send 115,657 messages at SD = Os.

Average Message Overhead (A2A)
RONI

350000-
-+- Sigma_UD

300000 -- Sigma_LD

250000 -+-Moshe

200000

1500001

a 100000-

50000-

Ib "I .1 10 4.1 CP Neb 111
Sensitivity to Disconnects (sec)

Average Message Overhead (A2A)
20 - 60 SD, RONI

7000-
000 -- Sigma UD

V-U- Sigma_.LD

5000 - Moshe

* 4000-

:3000-
E

2000

1000.

0
20 25 30 35 40 45 50 55 60

Sensitivity to Disconnects (sec)

Average Message Overhead (A2A)
0-20 SD, RONI

350000-
-+- SigmaUD

300000 -g SigmaLD

250000 - Moshe

,200000

E150000 -

100000 *

50000

0
0 5 10 15 20

Sensitivity to Disconnects (sec)

Average Message Overhead (A2A)
60 - 120 SD, RONI

500- Sigma UD
450-

Sia LD

350-
300
250

0

Sensitivity to Disconnects (sec)

Figure 6-9. Average Message Overhead, RON1, All-to-All Sigma vs. Moshe. (a) Complete
picture of average message overheads as an exponentially decreasing function of SD, for
SigmaUD, SigmaLD, and Moshe. For the shortest SDs, this graph shows Moshe to have a
higher message overhead than SigmaUD and SigmaLD. (b,c,d) Clarifying the trends in the
lower asymptote shows Moshe to consistently maintain a significantly higher message overhead
than both Sigma variants. SigmaLD has a slightly higher message overhead than SigmaUD.

The exponential nature of average message overhead trends in Figure 6-9(a) hinders

a clear analysis of the trends, especially in the lower asymptote, starting from SD = 20,

because at this scale they overlap. We investigate message overhead trends in a piecewise

manner in Figure 6-9(b,c,d); by isolating data points that share the same order of

W

89

magnitude we can obtain a clearer picture of the actual trends. Figure 6-9(b) confirms our

observations regarding Moshe's higher message overhead for SD 20s, as well as the

exponentially decreasing relationship between message overhead and SD for all three

algorithms.

Figure 6-9(c) shows message overhead trends for 20 5 SD 60 seconds. The trends

in this range continue to decrease exponentially as a function of SD. Here, and also in

Figure 6-9(d), which completes the piecewise analysis, Moshe consistently has two times

(more precisely, by a factor of 1.95 on average) the message overhead of SigmaLD.

Throughout Figure 6-9, Sigma_LD consistently shows a slightly larger message overhead

than SigmaUD, by a factor of 1.4 on average. The patterns observed in Figure 6-9

during the RON1 trace are reproduced during RON2. The latter results are provided for

completeness in Appendix C, Figure C-4.

6.2 LB Study: Leader-Based Sigma vs. Ensemble

In this section, we present the results of the Leader-Based (LB) simulations, in which

we compare Leader-Based SigmaUD, Leader-Based SigmaLD, and Ensemble. Overall,

we observe the results in the LB study to be similar to the results of the A2A study:

" The total number of views delivered drops exponentially, as view duration increases,

with increasing SD.

" Leader-Based Sigma_LD's agreement levels are close to the 99-100% agreement of

Ensemble.

* While Leader-Based SigmaUD produces more non-agreed views, thereby reducing

agreement percentages, raw agreement trends are consistent among the three

algorithms.

" Leader-Based SigmaLD is faster than Ensemble, and Leader-Based Sigma_UD is

faster than Leader-Based SigmaLD.

* Leader-Based SigmaUD and Leader-Based SigmaLD share the same message

overhead, which is smaller than the message overhead of Ensemble.

* We also observe several contrasts between All-to-All and Leader-Based Sigma, most

notably that Leader-Based Sigma reduces message overhead by tenfold.

90

6.2.1 Number and Duration of Views

In Figure 6-10, we observe the total number of views delivered by Leader-Based

Sigma_UD, Leader-Based SigmaLD, and Ensemble to be virtually the same in RONi,

with the notable exception of the data point at SD = Os. Note also that the total number of

views follows an exponentially decreasing pattern as SD increases. The piecewise close-

up shown in Figure 6-10(b,c,d) confirms the similarity of the trends for the three

algorithms, clarifying the patterns in the lower asymptote. These results are reproduced in

RON2, shown in Appendix D, Figure D-1.

Total Num be r of Views (LB)
RON

14000
4 SigmaUD

12000 SigmaLD
10000 -*- Ensemble -

8000

6000

4000

2000

0

Sensitivity to Disconnects (sec)

Total Number of Views (LB)
20-60 SD, RON

300 - Sigmf_UD

250 -- Sigma LD

20 --- Ensemble
200

.150

100

50

0-
20 25 30 35 40 45 50 55 60

Sensitivity to Disconnects (sec)

Total Number of Views (LB)
0-20 SD, RONI

14000--+-
SigmaUD

12000 -U- Sigma LD
-e- Ensemble

10000

8000

6000

4000

2000

0
0 5 10 15 20
Sensitivity to Disconnects (sec)

Total Number of Views (LB)
60-120 SD, RONI

20 -4- SigrmUD
18-- SigmaLD
16- -+- Ensemble
14-

012

q8
6
4
2
0

Sensitivity to Disconnects (sec)

Figure 6-10. Total Number of Views, RON1, Leader-Based Sigma vs. Ensemble. (a) Overall
picture (b,c,d) Piecewise close-up of trends.

Figure 6-11 shows the duration of views for Leader-Based Sigma. As described in

Section 6.1.1, duration of views is measured as seconds/view, and describes how long

each view lasts. Similarly to the All-to-All results, we observe that duration of views

increases drastically with increasing SD, both for RON1 and RON2. When SD = 0, view

91

duration is 15 seconds; but when SD is increased to just 60 seconds, view duration

becomes nearly 4 hours. When SD = 120, each view lasts for nearly 10 hours.

View Duration (LB),
RON

40000 -+ SigmaUD
35000 - Sigma_LD

30000 - -Ensemble T
25000

C 20000

1 15000-

10000

5000

0

Sensitivity to Disconnects (sec)

View Duration (LB),
RON2

35000- + SigmaUD

30000 .- SigmaLD

25000 -- Ensemble

i20000-25000

20000
C0

15000y

o10000

5000

0

Sensitivity to Disconnects (sec)

Figure 6-11. Duration of Views, Leader-Based Sigma vs. Ensemble. (a) RON 1, (b) RON2.

6.2.2 Agreement

Figure 6-12 shows the Leader-Based agreement percentages. Ensemble maintains 99-

100% agreement. Leader-Based SigmaLD matches Ensemble's agreement performance

with 95-100% agreement, except for the data points in RON2 (Figure 6-12(b)) at 80s,

95s, and 100s SD where its agreement drops to 85-90%. However, interleaved between

these low points are the data points at 75s, 85s, and 90s SD for which LB SigmaLD's

agreement is at 100%. Judging by these interleaved strong points, as well as the

consistent agreement performance in RON (Figure 6-12(a)), the three data points with

85-90% agreement in RON2 appear to be outliers, artifacts of the trace.

% Views in Agreement (LB)
RON

120-

100 .

80-

-3 60-

40-
-- SigmaUD

20 - SigmaLD
- Ensemble

0

Senstvt to Disconnects (sec)

%Views in Agreement (LB),
RON2

120

100

60

40
-- Sigma_UD

20 -_- SigmeLD
- Ensemble

0

Sensitivity to Disconnects (sec)

Figure 6-12. Percentage of Views in Agreement, Leader-Based Sigma vs. Ensemble. (a)
RONI and (b) RON2.

92

Leader-Based Sigma_UD, similarly to the All-to-All results for SigmaUD, operates

with a lower agreement percentage, ranging from a low of 36% at SD = 85s in RON2 to a

high of 88% at SD = 70s in RONl.

Raw Number of Agreed Views (LB)
RON

12000
-+- SigmaUD

10000 --- SinaLD -
-- Ensemble

8000

6000

S4000

2000

0

Sensitivity to Disconnects (sec)

Raw Number of Agreed Views (LB)
20-60 SD, RONI

250-

s-+ Sigma_UD
200 - SigmeLD -

150
Ensemble

200
-

\ Uk

*150

a 100

50

20 25 30 35 40 45 50 55 60
Sensitivity to Disconnects (sec)

Raw Number of Agreed Views (LB)
0-20 SD, RONI

12000

10000- Signia IN)
10000 U LD -

- Ensenible
8000

j 6000

4000-

2000-

0-
0 5 10 15 20
Sensitivity to Disconnects (sec)

Raw Number of Agreed Views (LB)
60-120 SD, RONI

20 -

18 '4+-SigmaUD
16- Sigma_LD -
14. -+- Ensemble

,12

110
58

6-
4-
2
0

Sensitivity to Disconnects (sec)

Figure 6-13. Raw Number of Agreed Views in RON1, Leader-Based Sigma vs. Ensemble. (a)
Overall picture (b,c,d) Clarifying the trends by piecewise analysis of data points that share the
same order of magnitude.

Similarly to the A2A results, Figure 6-13(a) shows the raw number of agreed views

among the three leader-based algorithms to follow exponentially decreasing trends with

increasing SD. Leader-Based Sigma_LD matches Ensemble's agreement numbers closely

with the notable exception of the first datapoint at SD = Os in RON (Figure 6-13(b)). In

fact, at SD = Os, SigmaLD more closely matches SigmaUD. The trends for SigmaUD

are observed to be slightly lower than those of Ensemble and SigmaLD. Note that the

scale decreases by an order of magnitude between Figure 6-13(b) and Figure 6-13(c), and

between Figure 6-13(c) and Figure 6-13(d); thus "slight" differences as observed in

Figure 6-13(b) are actually not so slight, on the order of thousands, when compared to

slight differences in Figure 6-13(c), of less than one hundred, or Figure 6-13(d), where

93

differences are fewer than 10 views. The raw agreement trends are similar for RON2,

shown in Appendix D, Figure D-2.

Figure 6-14. Percentage of Views in Disagreement, Leader-Based Sigma vs. Ensemble. (a)
RONI and (b) RON2.

6.2.3 Disagreement

In Figure 6-14, we observe the percentage of views that are disagreed among the

three Leader-Based algorithms. The RON results in Figure 6-14(a) show zero

disagreement for all but the first data point at SD = Os, where Leader-Based SigmaUD

produces 0.28% disagreement (32 out of 11566 views), and Leader-Based SigmaLD

produces only 0.02% disagreement - only 2 views out of 11091 total are disagreed.

Raw # of Disagreed Views (LB)
RON

35 - -+SigmaUD
30 -a- Sigma.LD

25 -+ Ensenbie

120

2115

10

5

0-

Senstvt to Disconnects (sec)

Raw Number of Disagreed Views (LB),
RON2

60
-- Sigma_UD

50 -U--Sigma_LD

40 -+-Ensemble

30

20

10

Sensitivity to Disconnects (sec)

Figure 6-15. Number of Views in Disagreement, Leader-Based Sigma vs. Ensemble. (a)
RON and (b) RON2.

The RON2 results in Figure 6-14(b) show zero disagreement for all three algorithms

in all but four data points. Ensemble maintains zero disagreement for all data points.

%Views in Disagreement (LB)

0.3- 0.3--SigmUD
0.25 --- SigmLD

0.2 - Ensentle

0.15

0.1

0.05

D--s----------

Sensitivity to Disconnects (sec)

%disagreed views (LB),
RON2

9-
8- SigmaUD

-- SigmaLD
6 Ensenble

j5
3

2
1

0

Sensitivity to Disconne cts (se c)

94

Leader-Based SigmaLD has nonzero disagreement only at SD = Os with 0.04%

disagreement. Leader-Based Sigma_UD has nonzero disagreement at the following four

data points: 0.45% at SD = Os, 0.15% at SD = lOs, 0.54% at SD = 20s, and 8% at SD =

80s.

The disproportionately large disagreement percentage of 8% at SD = 80s for Leader-

Based SigmaUD in RON2 deserves further insight. Figure 6-15 shows the actual

numbers of disagreed views for RON (Figure 6-15(a)) and RON2 (Figure 6-15(b)). If

we look at Figure 6-15(b), the number of disagreed views at SD = 80s is actually very

small - only 2 views are disagreed. The high percentage in Figure 6-14(b) is skewed by

the fact that the total number of views decreases exponentially with increasing SD.

6.2.4 GM Latency

Figure 6-16(a) shows the average GM latencies for the Leader-Based algorithms in

RON1. The average GM latency appears to decrease slightly with increasing SD, most

notably for Ensemble and Leader-Based Sigma_LD. Leader-Based SigmaUD's average

latency remains constant at an average of 3 ims.

Average GM Latency (LB)
RONI

0.3-

0.25-

S0.2

3%0.15 + SigmLD-
-- Sigma_LD

0.1 -- Ensemble

0.05-

Ssv ts

Sens itivity to Disconnects (sa c)

Standard Deviation GM Latency (LB)
RONI

3.5 -
3 --+-Sigma_UD

a* -uS~gnuLD
2.5 - Ensemle

S2

3 1.5

.1

0.5

0 -

Sensitivity to Disconnects (sec)

Figure 6-16. (a) Average Latency, RON1, Leader-Based Sigma vs. Ensemble. (b) Standard
Deviations.

Leader-Based Sigma_LD's average latency remains within the range of 195ms at SD

= 120s to 237ms at SD = 30s and SD = 45s. Ensemble's average latency runs from a low

of 234ms at SD = 115s and SD = 120s to a high of 280ms at SD = 25s. Overall,

Sigma_LD's average latency is 225ms, and Ensemble's average latency is 260ms. Thus,

M

95

on average, Leader-Based Sigma_UD is faster than Leader-Based SigmaLD by 194ms,

and Leader-Based SigmaLD is faster than Ensemble by 35ms. For reference, the

standard deviations of the GM latencies are shown in Figure 6-16(b). These results are

reproduced for RON2 and are shown in Appendix D, Figure D-3.

Maximum GM Latency (LB)

0.6 -+- SigmaUD

0.- - Sigma LD
0.5- Ensee

? 0.4

0.3
C

* 0.2

0.1

Sensitivity to Disconnects (sec)

Maximum GM Latency (LB),
RON2

0.6 -+-- Sigma_UD

0.5 --- Sigma_LD
-Ensentle

0.

t y0.3-

0. 1

Sensitivity to Disconnecta (sec)

Figure 6-17. Maximum Latencies, Leader-Based. (a) RON1 and (b) RON2.

Similarly as discussed in the All-to-All case, average GM latencies only demonstrate

relative overall differences in performance; more meaningful in our performance analysis

are upper bounds - the differences in the worst-case behavior of the three leader-based

algorithms. To this end, Figure 6-17 presents the maximum GM latencies for the leader-

based algorithms. Again, Leader-Based SigmaUD is the fastest, with maximum

latencies ranging from 27ms at SD = 120s in RON1 to 167ms at SD = 5s in RONi and

SD = 10s in RON2. Leader-Based Sigma_LD maintains a maximum latency between

244ms and 300ms, with most data points coinciding with the former. Ensemble's

maximum latency ranges from a low of 275ms at SD = 120s in RONI to a high of 571ms

at SD = 10 in RON2.

6.2.5 Message Overhead

Having observed much similarity between the All-to-All trends and the Leader-

Based trends thus far, it is no surprise that the average message overhead trends for

Leader-Based Sigma and Ensemble are also consistent with those seen for All-to-All in

Chapter 6.1.5. Figure 6-18(a) shows the message overhead trends to decrease

exponentially with increasing SD. Ensemble's message overhead is greater than that of

M

96

Leader-Based Sigma by 10000 messages at SD = 0. As evidenced by the piecewise

analysis in Figure 6-18(b,c,d), Leader-Based Sigma has a consistently smaller average

message overhead than Ensemble, although by a lesser margin than that seen in the A2A

study. Leader-Based SigmaUD and Sigma_LD share essentially the same average

message overhead, their trends overlapping consistently in Figure 6-18(a,b,c). Only in

Figure 6-18d, the differences between SigmaUD and SigmaLD emerge to be on the

order of one or two messages in the common case, and at most 10 messages. These

results are reproduced in RON2, and are shown in Appendix D, Figure D-4.

Average Message Overhead (LB)
RONI

35000- Sigma_UD

30000 -- Sigma_LD
-+- Ensemble

25000

20000-

15000.E

4 10000-

5000

0

Sensitivity to Disconnects (sec)

Average Message Overhead (LB)
20-60 SD, RONI

700- -- Sigma UD
600 -- Sigma LD -

-+- Ensemble
500

400-

300
E

200.

100

0-
20 25 30 35 40 45 50 55 60

Sensitivity to Disconnects (sec)

Average Message Overhead (LB)
0-20 SD, RON1

35000-+-
SigmaUD

30000 - - SigmaLD -
--- Ensemble

25000

&, 20000

15000
E

* 10000

5000

0
0 5 10 15 20

Sensitivity to Disconnects (sec)

Average Message Overhead (LB)
60-120 SD, RONI

45

40
35

30

25-I20
E 15

10 -- SigmaULD

5 - SigmaLD
-- Ensemble

0

Sensitivity to Disconnects (sec)

Figure 6-18. Average Message Overhead during RON1, Leader-Based. (a) Overall picture
(b,c,d) Piecewise analysis.

97

Chapter 7

Discussion and Conclusions

Our performance analysis evaluates Sigma's practical potential and in doing so,

explores the extent to which GM algorithms can be optimized. While a GM protocol is

handling changes in groups' membership, higher-level applications are blocked, waiting

to receive a new view. After receiving the new view, they have to synchronize with the

other members to make sure everyone has received it, and to agree on a consistent state.

The performance of GM applications therefore directly depends on (1) how long the

underlying GM protocol takes to form new views and (2) how frequently these new

views are created.

In Chapter 5, we quantified Sigma's performance in these terms, both in its original

all-to-all form and as a leader-based version, in the context of its predecessors, all-to-all

Moshe and leader-based Ensemble. We have measured the GM latency, message

overhead, and duration of views of these algorithms. Our investigation confirms that both

A2A Sigma and LB Sigma are faster and have a smaller message overhead than their

respective GM predecessors.

One of our goals in this analysis has also been to evaluate the effectiveness of a filter

for limiting disagreement. For this purpose, we have presented accuracy measurements in

terms of both agreements and disagreements. The fact that SigmaLD and Leader-Based

Sigma_LD match the accuracy of Moshe and Ensemble suggests that such a filter is

indeed very effective. Furthermore, SigmaUD's less than optimal accuracy in the

absence of a filter confirms that a filter is not only effective, but also necessary for Sigma

to achieve practical accuracy.

We have also examined Sensitivity to Disconnects (SD) as a parameter of value to

GM algorithms, and experimented with a range of SDs. Our results reveal that SD as

short as 60s effectively increases view duration by several hours. In addition, we have

observed that SD itself acts as a type of filter, by ignoring transient events - the most

common source of disagreement. Thus, equipped with a Sensitivity to Disconnects of

98

sufficient length, SigmaUD is able to achieve much higher accuracy, approaching that

of Sigma_LD, Moshe, and Ensemble.

7.1 View Formation Time and Overhead

The results show that All-to-All Sigma and Leader-Based Sigma are significantly

more efficient than Moshe and Ensemble, respectively, both in terms of latency and

message overhead. All-to-All Sigma_LD is faster on average than Moshe by 30ms, and

Leader-Based Sigma is faster on average than Ensemble by 33ms. In terms of worst-case

latency, All-to-All SigmaLD is faster than Moshe by as much as 260ms, and Leader-

Based SigmaLD is faster than Ensemble by as much as 327ms.

% Vlews FA vs. SA % VIw s FA vs. SA,
RONI RON2

70 70
60-6

50-5

40 40

30. 30-

20 -- SA 20
10 10

t0 o'bO 0o*;: C (

Sensitivity to Disconnects (sec) Sensitivity to Disconnects (sec)

Figure 7-1. Percentage of Moshe's Views delivered in FA vs. SA. (a) RON1. (b) RON2.

Figure 7-1 shows the percentage of Moshe's views that were delivered with fast

agreement (FA) versus slow agreement (SA). From these results we see that Moshe runs

SA between 50 and 60% of the time, which means that Moshe delivers the majority of its

views after two or more rounds. In contrast, All-to-All Sigma is guaranteed to deliver

views within one round. Similarly, Ensemble always takes three communication rounds

to deliver views, while Leader-Based Sigma is guaranteed to deliver views within two

rounds.

Moshe's heavy use of SA (60%) in our simulations deserves further comment,

because this result is very different from the performance of Moshe observed in [34],

where less than 2% of all views were delivered using SA. This difference can be

explained as follows. SA occurs more often in a network topology where more nodes are

99

directly connected to each other [34]. The experiments in [34] model only five nodes,

comprising at most 20 direct connections. In contrast, our experiments model 16 nodes,

for a total of 240 direct connections. The greater than tenfold increase of direct

connections in our simulations can certainly account for SA difference. Indeed, Keidar et

al. imply that their results can only generalize to large numbers of nodes under the

assumption that the network topology is configured with no more than five direct

connections [34].

SigmaUD is faster on average than SigmaLD by the average latency of the

network topology. This is consistent with the fact that SigmaUD delivers most views

immediately, while SigmaLD always delivers views at the end of one round. The case is

similar for Leader-Based Sigma, except for an initial delay shared by both LD and UD

due to the extra leader-based step. Our measurements show this delay to be 50ms on

average for the link topology that we used. Accordingly, all timings in the LB study are

prolonged by 50ms relative to the A2A measurements of average GM latency. In the

worst case, SigmaUD is faster in than Moshe by nearly 400ms, and by 230ms on

average. With nearly identical results, Leader-Based SigmaUD is faster than Ensemble

by up to 404ms, and by 230ms on average.

A2A Sigma also has a significantly smaller message overhead than Moshe, by a

factor of 1.95. Again, this has to do with the majority of Moshe's views being delivered

in SA - more rounds mean more messages, which explains Moshe's larger message

overhead. Similarly, for Sigma, fewer rounds mean fewer messages, a smaller message

overhead. These results are reproduced when comparing Leader-Based Sigma with

Ensemble, because Ensemble requires three rounds of message exchange, in contrast to

LB Sigma's two rounds.

Appendix F presents data that distinguishes between Moshe's FA and SA message

overhead. From this data, it is clear that Moshe's FA message overhead is identical to the

message overhead of SigmaLD, while SA adds its own substantial message overhead on

top of that. This observation sheds light on how Moshe ends up with nearly twice the

message overhead of Sigma.

A2A Sigma not only has a smaller message overhead than Moshe, but also a smaller

message size. Besides the view id and membership set, Moshe's messages also include an

100

extra array that grows with the number of members: startChangeNums in view messages,

and usedProps in proposal messages [34]. Sigma's messages, on the other hand, only

carry the view id and membership set. Ensemble's message size is similar to that of

Sigma.

7.2 Frequency of New Views

Our experimentation with Sensitivity to Disconnects has revealed this parameter to

be useful, as both a means of configuring GM based on application preferences, as well

as a technique for filtering out transient events that lead to disagreements. We discuss the

former benefit in this section, and the latter in Section 7.3. As a configuration parameter,

SD enables applications to fine-tune view duration according to their specific needs. In

our measurements, we have found that frequency of views diminishes, and therefore view

duration increases, greatly by increasing SD. A smaller frequency of view delivery (and

accordingly greater view duration) means that the application spends less time

resynchronizing and operates with less interruption.

Despite the efficiency benefits of a Sensitivity to Disconnects such as 60s SD <

120s, leaving it as an optional, configurable parameter is important. Ultimately,

applications must face the tradeoff between minimizing resynchronization overhead and

maximizing accurate current representation of the group membership. One issue to

consider when determining the right balance in this tradeoff is the duration of transient

disconnects that the application is able, and would prefer, to tolerate without reacting to

them. Different applications have different definitions of what "transient" means; SD

enables applications to adjust the granularity of events to be perceived as transient. This

tradeoff is especially pivotal for mission critical applications, in which both speed and

moment-by-moment accuracy are of absolute importance.

For example, in our simulations, a mere five-second SD increases view duration to a

minute, a reasonable duration for certain mission critical applications. Just 15 seconds of

SD increases view duration to five minutes, which in relative network terms is a very

long time; a 25 second SD increases view duration to 23 minutes - for most network

applications, an eternity.

101

In any case, our results show that running GM without any SD at all is suboptimal for

both sides of the tradeoff. In our simulations, this resulted in view changes every 15

seconds. Such frequent view changes cause constant interruption of the application's

normal operation. Even though it might literally be the most accurate representation of

the current membership, a short-lived view is meaningless to most applications, because a

new one is delivered before the application has a chance to use it during normal

operation. Besides, by the time the view change is done, the view could be outdated,

because new views are delivered so frequently. The application would be at a virtual

standstill, paralyzed by a cycle of interruption, reconfiguration, and obsoleteness. Thus,

GM would be useful only to those applications that do not need GM to respond

immediately to every network event - applications that can tolerate a Sensitivity to

Disconnects.

7.3 Accuracy

So far, we have discussed Sigma's significant efficiency advantages and the benefits

of using SD to optimize efficiency by increasing view duration and therefore decrease

resynchronization overhead. However, even the greatest breakthroughs in efficiency

would be meaningless, unless sufficient accuracy is achieved. In this section, we discuss

Sigma's accuracy, in terms of agreement and disagreement.

The results show that Sigma can achieve good quality agreement and zero

disagreement, when equipped with a filter for limiting disagreement. The limiting

disagreement filter proposed in [39] is very effective for Sigma in our simulations. All-to-

All SigmaLD achieves accuracy on par with Moshe, consistently reaching 99-100%

agreement and consistently producing zero disagreement. Even at the shortest SDs,

SigmaLD's disagreement percentages are negligible, less than half of one percent of all

views. Similarly, Leader-Based SigmaLD consistently matches Ensemble's agreement

accuracy and zero disagreement.

On the other hand, SigmaUD produces quite a bit of disagreement and visibly lower

percentages of agreement, especially for SD 60s. This observation, in contrast to

Sigma_LD's good quality agreement for the same SD range, confirms that the LD filter

for limiting disagreement is indeed effective.

102

Note that Leader-Based SigmaUD shows lower agreement percentages than All-to-

All Sigma_UD for SD > 60 seconds, although it does show an increasing trend. This

discrepancy may be due to the extra round in the leader-based version, which may require

a slightly longer SD than 120 seconds for accuracy to improve sufficiently to match that

of Leader-Based SigmaLD and Ensemble.

There are other filters that can be used to limit disagreement. Sensitivity to

Disconnects is one example, and it can complement the use of other filters. SD acts as a

disagreement filter by ignoring transient events. Transient events are usually due to

asymmetric network instabilities such as congestion, link failures, and message loss,

which lead to disagreements. By filtering out transient events, SD eliminates this major

source of disagreements. Unlike the LD filter, SD buffers GM and its applications from

the adverse effects of transient network events without affecting the GM latency.

Another avenue of optimization for the process of limiting disagreement is to modify

the LD filter to distinguish between voluntary and involuntary network events. Because

the reliable FIFO communication service guarantees voluntary network events to be

symmetric, they will never cause disagreements. Thus, we can optimize SigmaLD's

efficiency by running SigmaUD for voluntary network events. Future directions for

study include designing and evaluating such alternative limiting disagreement filters.

7.4 Scalability

In Chapters 3 and 4, we discussed the scalability benefits that Leader-Based Sigma

can offer in theory. Comparing the message overhead graphs for All-to-All Sigma and

Leader-Based Sigma, our simulation results confirm the theoretical figures with Leader-

Based Sigma demonstrating at least a tenfold reduction in message overhead.

Despite the reduced message overhead, Leader-Based Sigma was still slightly slower

in our simulations than All-to-All Sigma, by roughly 50ms on average. However, we

believe that the benefits of a reduced message overhead are not fully reflected in our

simulations, for two reasons. First, we do not simulate lossy links, in which spontaneous

message losses occur. In lossy links, even relatively low loss rates are amplified by the

greater volume of messages sent in an All-to-All algorithm. Secondly, our simulations are

not run in the context of a larger encapsulating public network. Although the RON trace

103

realistically models a WAN environment, taking into account network congestion,

network outages, and other causes of network instability, the message overhead due to

our simulated GM does not contribute to any network congestion outside the 16

participating nodes. To fully explore the scalability benefits of Leader-Based Sigma over

All-to-All Sigma, the next step would be to implement and test them on a real research

network such as PlanetLab. Future research will continue to explore tradeoffs between

Sigma and Leader-Based Sigma by implementing both in real network environments.

7.5 Conclusions

Our performance analysis of Sigma, the first single-round group membership

algorithm, has brought forth some encouraging observations. We have confirmed that

Sigma's underlying design - decoupling the goal of achieving agreement from that of

limiting disagreement - effectively reduces latency, message overhead, and message size,

while preserving good quality agreement on par with such practical algorithms as Moshe

and Ensemble. Combining Sigma with a filter for limiting disagreement is effective,

resulting in virtually all views being in agreement while preserving the single-round

worst-case upper bound. Ignoring short-lived instabilities using a configurable Sensitivity

to Disconnects (SD) is also useful to buffer GM and its applications from the adverse

effects of transient network events without affecting the GM latency.

These results strongly indicate that Sigma is not just a theoretical result, but is

indeed a result with important practical implications for Group Communication systems:

the efficiency of GM applications can be significantly improved, without compromising

accuracy, by using Sigma in place of Moshe, and Leader-Based Sigma in place of

Ensemble. Although the optimal configuration details depend on the nature of the

application and the network environment in which it runs, we hope that our results and

discussions regarding SD, Leader-Based Sigma, and filters for limiting disagreement will

provide insight towards Sigma's optimal deployment in a broad range of group-oriented

applications, from data replication and collaboration systems in wired networks, to

mission-critical operations such as group security in dynamic mobile military

environments.

104

105

Bibliography

[1] Agarwal, D. A., Moser, L. E., Melliar-Smith, P. M., and Budhia, R. K. "The
Totem Multiple-Ring Ordering and Topology Maintenance Protocol." ACM
Transactions on Computer Systems, (1998), 16(2), pp. 93-132.

[2] Amir, Y., and Stanton, J. "The Spread Wide Area Group Communication
System." Center for Networking and Distributed Systems, Johns Hopkins
University. Technical Report CNDS 98-4, July, 1998.

[3] Amir, Y., Dolev, D., Kramer, S., and Malki, D. "Transis: A communication sub-
system for high availability." 22nd IEEE Fault-Tolerant Computing Symposium
(FTCS). July, 1992.

[4] Amir, Y., et al. "The Secure Spread Project."
http://www.cnds.jhu.edu/research/group/secure spread/.

[5] Amir, Y., et al. "Secure Group Communication in Asynchronous Networks with
Failures: Integration and Experiments." 20th IEEE International Conference on
Distributed Computing Systems (ICDCS). April, 2000.

[6] Amir, Y., Kim, Y., Nita-Rotaru, C. and Tsudik, G. "On the Performance of Group
Key Agreement Protocols." Proceedings of the 22nd IEEE International
Conference on Distributed Computing Systems. Vienna, Austria. June, 2002.

[7] Amir, Y., Moser, L. E., Melliar-Smith, P. M., Agarwal, D. A., and Ciarfella, P.
"The Totem single-ring ordering and membership protocol." ACM Transactions
on Computer Systems, (1995), 13(4).

[8] Amir, Y., Nita-Rotaru, C., Stanton, J., and Tsudik, G. "Scaling Secure Group
Communication Systems: Beyond Peer-to-Peer." In the Proceedings ofDISCEX3.
Washington DC. April 22-24, 2003, 2002.

[9] Anderson, D. G., "http://nms.lcs.mit.edu/projects/ron/."

[10] Anderson, D. G., "http://nms.lcs.mit.edu/projects/ron/data/ronl-latency.desc."

[11] Anderson, D. G., Balakrishnan, H., Kaashoek, M. F., and Morris, R. "Resilient
Overlay Networks." Proceedings of the 18th ACMSOSP. Banff Canada.
October, 2001.

106

[12] Anker, T., Breitgand, D., Dolev, D., and Levy, Z. "CONGRESS: Connection-
oriented Group-address Resolution Service." Proceedings of SPIE on Broadband
Networking Technologies. November 2-3, 1997.

[13] Anker, T., Shnayderman, I., and Dolev, D. "The Design of Xpand: A Group
Communication System for Wide Area Networks." The Hebrew University of
Jerusalem, Computer Science Department. Technical Report HUJI-CSE-LTR-
2000-3 1, July, 2000.

[14] Bakr, 0., and Keidar, I. "Evaluating the Running Time of a Communication
Round over the Internet." The 21st A CM Symposium on Principles of Distributed
Computing (PODC). Monterey, CA. July, 2002.

[15] Balenson, D. M., et al. "Dynamic Cryptographic Context Management (DCCM)
Final Report." Cryptographic Technologies Group, Trusted Information Systems,
NAI Labs, The Security Research Division of Network Associates, Inc. Report 4,
April 6, 2000.

[16] Ban, B., et al. "JGroups -- A Toolkit for Reliable Multicast Communication."
http://www.igroups.org/iavagroupsnew/docs/index.html.

[17] Birman, K. P. Building Secure and Reliable Network Applications. Greenwich,
CT, Manning, 1996.

[18] Birman, K. P., and Joseph, T. A. "Exploiting Virtual Synchrony in Distributed
Systems." Proceedings of the 11th A CM Symposium on OS Principles. Austin, TX
1987.

[19] Birman, K. P., van Renesse, R., et al. "The Ensemble Distributed Communication
System." http://www.cs.cornell.edu/Info/Projects/Ensemble/.

[20] Chandra, T. D., Hadzilacos, S.,Toueg, S. and Charron-Bost, B. "On the
impossibility of group membership." 15th A CMSymposium on Principles of
Distributed Computing (PODC). May, 1996.

[21] Cheriton, D. R., and Zwaenepoel, W. "Distributed process groups in the V
kernel." ACM Transactions on Computer Systems, (1985), 3(2), pp. 77-107.

[22] Chockler, G. V., Keidar, I., and Vitenberg, R. "Group Communication
Specifications: A Comprehensive Study." ACM Comput. Surv., (2001), 33(4), pp.
1-43.

107

[23] Dolev, D., et al. "The Xpand Group Communication System."
http://www.cs.huji.ac.il/labs/danss/xpand/.

[24] Dolev, D., Malkhi, D. "The Transis approach to high availability cluster
communication." Communications of the ACM, (1996), 39(4), pp. 64-70.

[25] Fall, K., Varadhan, K., et al., "The ns Manual," in The VINT Project, December,
2003.

[26] Fekete, A., Lynch, N, and Shvartsman, A. "Specifying and Using a Partitionable
Group Communication Service." Proceedings of the Sixteenth Annual ACM
Symposium on Principles of Distributed Computing. August, 1997.

[27] Friedman, R., and van Renesse, R. "Strong and Weak Virtual Synchrony in
Horus." Cornell University. Technical Report 95-1537, August 24, 1995.

[28] Hickey, T., Lynch, N. and van Renesse, R. "Specifications and Proofs for
Ensemble Layers." TACAS, (1999).

[29] Jacobsen, K., Marzullo, K., and Zhang, X. "Group Membership and Wide-Area
Master-Worker Computations." Proceedings of the 23rd ICDCS. 2003.

[30] Joint Chiefs of Staff. "Joint Command, Control, Communications, and Computer
Systems (C4) Campaign Plan." Department of Defense. September, 2004.

[31] Keidar, I. "A Highly Available Paradigm for Consistent Object Replication."
Master's Thesis. Institute of Computer Science, The Hebrew University of
Jerusalem, 1994.

[32] Keidar, I., and Khazan, R. "A client-server approach to virtually synchronous
group multicast: Specifications and algorithms." MIT Laboratory for Computer
Science. Technical Report, 1999.

[33] Keidar, I., and Rajsbaum, S. "A Simple Proof of the Uniform Consensus
Synchronous Lower Bound." Info. Processing Letters (IPL), (2003), 85(1), pp.
47-52.

[34] Keidar, I., Sussman, J., Marzullo, K., and Dolev, D. "Moshe: A group
membership service for WANs." ACM Transactions on Computer Systems,
(2002), 20(3), pp. 1-48.

108

[35] Khazan, R. "Group Communication as a base for a Load-Balancing, Replicated
Data Service." Master's Thesis. Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, 1998.

[36] Khazan, R., and Lynch, N. "An Algorithm for an Intermittently Atomic Data
Service Based on Group Communication." Proceedings of the International
Workshop on Large-Scale Group Communication. Florence, Italy. October, 2003.

[37] Khazan, R., and Yuditskaya, S. "Using Leader-Based Communication to Improve
the Scalability of Single-Round Group Membership Algorithms." 10th IEEE
Workshop on Dependable Parallel, Distributed, and Network-Centric Systems
(DPDNS). April, 2005.

[38] Khazan, R., Fekete, A., and Lynch, N. "Multicast Group Communication as a
Base for a Load-Balancing Replicated Data Service." 12th International
Symposium on Distributed Computing (DISC). Andros, Greece. September, 1998.

[39] Khazan, R. I. "Group Membership: A Novel Approach and the First Single-
Round Algorithm." 24th ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC). Canada. July, 2004.

[40] Lebras, Maj. Gen. P., "A Vision for the Future: It's Still About People," in U.S.
Air Force Spokesman Magazine, September, 2003.

[41] Lynch, N. A. Distributed Algorithms, Morgan Kaufmann Publishers, 1996.

[42] Rodeh, 0. "Secure Group Communication." Ph.D. Thesis. Computer Science
Department, The Hebrew University of Jerusalem, 2001.

[43] Rodrigues, R. "Robust Services in Dynamic Systems." Ph.D. Thesis. Laboratory
for Computer Science, MIT, 2005.

[44] Schiper, A. "Failure Detection vs. Group Membership in Fault-Tolerant
Distributed Systems: Hidden Trade-Offs." Proceedings of PAPM-ProbMiV'02,
LNCS 2399. 2002.

[45] Schiper, A., and Toueg, S. "From Set Membership to Group Membership: A
Separation of Concerns." Ecole Polytechnique Federale de Lausanne. Technical
Report 200371, November 13, 2003.

[46] Shamir, G. "Shared Whiteboard: A Java Application in the Transis Environment."
The Hebrew University of Jerusalem. October, 1996.

109

[47] Steiner, M., Tsudik, G. and Waidner, M. "Diffie-Hellman Key Distribution
Extended to Groups." 3rd ACM Conference on Computer and Communications
Security. March, 1996.

[48] Steiner, M., Tsudik, G. and Waidner, M. "CLIQUES: A New Approach to Group
Key Agreement." IEEE International Conference on Distributed Computing
Systems. May, 1998.

[49] Urban, P., and Schiper, A. "Comparing Distributed Consensus Algorithms." Proc.
IASTED Int'l Conf on Applied Simulation and Modelling (ASM). Rhodos, Greece.
June, 2004.

[50] Urban, P., Shnayderman, I. and Schiper, A. "Comparison of Failure Detectors and
Group Membership: Performance Study of Two Atomic Broadcast Algorithms."
Proc. International Conference on Dependable Systems and Networks (DSN).
2003.

[51] van Renesse, R., Birman, K. P., and Maffeis, S. "Horus: A flexible group
communication system." Communications of the ACM, (1996), 39(4), pp. 76-83.

[52] Wiesmann, M., Defago, X., and Schiper, A. "Group Communication Based on
Standard Interfaces." Proc. 2nd IEEE Intl. Symp. on Network Computing and
Applications (NCA'03). April, 2003.

[53] Khazan, R., and Yuditskaya, S. "A Wide Area Network Simulation of Single-
Round Group Membership Algorithms." Proc. 4th IEEE International Symposium
on Network Computing and Applications (NCA'05). Cambridge, Massachusetts.
July, 2005.

110

111

Appendix A

Table A-I shows an excerpt of the RON wide-area network traces that we used in our
simulations. Each line is a distinct entry, and each entry consists of seven fields [33]:
* source, the originator of the probe.
* dest, the destination to which the probe was sent.
* ron, a flag to denote the RON link type. This was always 0 throughout the RON

traces that we used, which means that probes were sent directly on the Internet. The
other options are 1, in which the RON link is latency optimized, and 2, in which the
RON link is a loss optimized path.

* sendi, the time at which the source originally sends the probe to the destination.
* recl, the time at which the probe was received on the interface at the destination.
* send2, the time at which the probe was sent back to the sender by the destination.
* rec2, the time at which the probe was received at source's interface.

The clocks on the RON servers were only roughly synchronized; thus, the time fields are
accurate only in relation to other time entries on the same machine. For example, send1
and rec2 are compatible for relative analysis, because both times were computed by the
same physical clock. In contrast, send1 and send2 cannot be compared, because they
were each computed on different machines, and thus different physical clocks.

Table A-1. RON trace excerpt.

source dest ron sendi rec1 send2 rec2
3237550090 2472938932 0 1027099710.15943 1027099710.38403 1027099710.38409 1027099710.54001
3469047693 3520452188 0 1027099710.25268 1027099710.46760 1027099710.46778 1027099710.48367

2607122173 2472938932 0 1027099710.32466 1027099710.43134 1027099710.43140 1027099710.53701
1115442534 2183470608 0 1027099710.35424 1027099710.42709 1027099710.42717 1027099710.51633
3433608487 304021648 0 1027099710.39149 1027099710.39597 1027099710.39619 1027099710.40035

112

113

Appendix B

This sample OTcl code was generated for just three nodes of the RON trace. It represents
a subset of the actual code used for our simulation, which constructs a topology
consisting of all 16 nodes.

set ns [new Simulator]
set nO [$ns node]
set nesvc0 [new Application/NESvcTrc 3237550090]
set n1 [$ns node]
set nesvcl [new Application/NESvcTrc 2472938932]
set n2 [$ns node]
set nesvc2 [new Application/NESvcTrc 3469047693]
set tcp1_0 [new Agent/TCP/GCSAgent]
$tcplQ set fid_ 10
$tcp1_0 set destin 2472938932
set sink1_0 [new Agent/TCPSink/GCSSink 2472938932 3237550090]
$sink1_0 set nesvc_ $nesvcl
$ns attach-agent $n0 $tcplO
$ns attach-agent $nl $sink1_0
$ns duplex-link $nO $nl 2Mb 189ms DropTail
$ns connect $tcp1_0 $sink1_0
$nesvc0 attach-agent $tcplO
set tcp2_0 [new Agent/TCP/GCSAgent]
$tcp2_0 set fid_ 20
$tcp2_0 set destin 3469047693
set sink2_0 [new Agent/TCPSink/GCSSink 3469047693 3237550090]
$sink2_0 set nesvc_ $nesvc2
$ns attach-agent $nO $tcp2_0
$ns attach-agent $n2 $sink2_0
$ns duplex-link $nO $n2 2Mb 98ms DropTail
$ns connect $tcp2_0 $sink2_0
$nesvc0 attach-agent $tcp2_0
set tcp0_1 [new Agent/TCP/GCSAgent]
$tcp0_ set fid_ 01
$tcp0_1 set destin 3237550090
set sink0_1 [new Agent/TCPSink/GCSSink 3237550090 2472938932]
$sink0_1 set nesvc_ $nesvc0
$ns attach-agent $nl $tcpOl
$ns attach-agent $nO $sink0_1
$ns duplex-link $nl $nO 2Mb 189ms DropTail
$ns connect $tcpOj $sink0_1
$nesvcl attach-agent $tcp0_
set tcp2_1 [new Agent/TCP/GCSAgent]
$tcp2_1 set fid_ 21
$tcp2_1 set destin 3469047693
set sink2_1 [new Agent/TCPSink/GCSSink 3469047693 2472938932]
$sink2_1 set nesvc_ $nesvc2
$ns attach-agent $nl $tcp2_1
$ns attach-agent $n2 $sink2_1
$ns duplex-link $nl $n2 2Mb 130ms DropTail
$ns connect $tcp2_1 $sink2_1
$nesvcl attach-agent $tcp2_l
set tcp0_2 [new Agent/TCP/GCSAgent]
$tcp0_2 set fid_ 02

114

$tcp0_2 set destin 3237550090
set sink0_2 [new Agent/TCPSink/GCSSink 3237550090 3469047693]
$sink0_2 set nesvc_ $nesvc0
$ns attach-agent $n2 $tcp0_2
$ns attach-agent $n0 $sink0_2
$ns duplex-link $n2 $n0 2Mb 98ms DropTail
$ns connect $tcpO_2 $sink0_2
$nesvc2 attach-agent $tcp0_2
set tcp1_2 [new Agent/TCP/GCSAgent]
$tcpl_2 set fid_ 12
$tcpl_2 set destin 2472938932
set sink1_2 [new Agent/TCPSink/GCSSink 2472938932 3469047693]
$sink1_2 set nesvc_ $nesvcl
$ns attach-agent $n2 $tcpl_2
$ns attach-agent $nl $sinkl_2
$ns duplex-link $n2 $nl 2Mb 130ms DropTail
$ns connect $tcpl_2 $sinkl_2
$nesvc2 attach-agent $tcpl_2
$ns at 0.0 "$nesvc0 start"
$ns at 0.1 "$nesvcl start"
$ns at 0.2 "$nesvc2 start"
$ns run

115

Appendix C

Figure C-I through Figure C-4 present supplementary RON2 results for All-to-All Sigma
vs. Moshe, that reproduce and confirm RONI results presented in Chapter 6.1. We
include these results here for completeness.

Total Number of Views (A2A),
lWN2

14000

12000 S _LD
10000-------- -- Mhe
1 000

*8000

4000-

2000-

Sensivity to Disconnects (sec)

Total Number of Views (A2A),
20-60 8D, RDN2

450 480 -+-- Siu*s.UD
400 -- SigmLD

350 --a Moshe

.300

250
S200

150-

50

20 25 30 35 40 45 50 55 60
Sensitivity to Disconnects (sec)

Total Number of Views (A2A),
0-20 SD, RON2

14000
-+- SIgnaL.U

12000 --- SigmLO

10000 -- Moshe

a 8000

6000

4000

2000

0
0 5 10 15 20
Sensitivity to Disconnects (see)

Total Number of Views (A2A),
60-120 SQ, RDN2

30-
-+- S-1uUD

25 --- SgmqLD

20 -Moshe

I15

5

0

Sensitivity to Disconnects (sec)

Figure C-1. Total Number of Views, RON2. All-to-All Sigma vs. Moshe. (a)
(b,c,d) Piecewise analysis.

Overall picture

Raw Number of Agreed Views (A2A)

12000

10000-- SigmLD -

-- Mosh
8000

6000

4000-

2000

N + o tz # + P
Sensitivity to Disconnects (sac)

Raw Number of Agreed Views (A2A)
20-60 K~ 11M

350
-+- Siga.UD

300 -U- SigumLD

250 -- sk h

1200
150
100

0 , , . . . , . . ,
20 25 30 35 40 45 50 55 60

Sensitivity to Disconnects (sac)

Raw Number of Agreed Views (AA)
0-20 60, RDN2

12000

10000 -4- SlgnuLD

-- Moshe
00

I8000

4000

2000

0
0 5 10 15 20
Sensitivity to Disconnects (sec)

Raw Number of Agreed Views (A2A)
60-120 8D, RON2

30-

25 - SigmeLD
- Moshe

20

Sens itivity to Disconnects (sac)

Figure C-2. Raw Numbers of Agreed Views, All-to-All Sigma vs. Moshe, RON2. (a) Overall
Picture (b,c,d) Piecewise analysis.

Average GM Latency (A2A)
RON2

0.25

0.2

p15 n "* --- SgmD

0.1 -a- SgOmUL _

-e-- Moshe
0.05

0 .

Sensitivity to Disconnects

Standard Deviation GM Latency (A2A)
RON2

6

5 - '-- n LD

-- &- Moshe

S2

0

Sensitivity to Disconnects (sec)

Figure C-3. (a) Average GM Latency, RON2, All-to-All Sigma vs. Moshe. (b) Standard
deviations.

Average Message Overhead (A2A)
RON2

300000
-*- SignuL[)

250000 -- Signa_LD
- Moshe

200000

ismoo

100000

50000

0 --

Sensitivity to Disconnects (sec)

Average Message Overhead (A2A)
20 -60 50, RON2

9000_
8000-

7000

_

-eMoshe

p6000
15=0
34000 --I

E 3000 --

2000

1000-

20 25 30 35 40 45 50 55 60
Sensitivity to Disconnects (sec)_

Average Message Overhead (A2A)
0-20 SD, RON2

3000M SgnU

250000 -- SignuLD

2000 -:: & : M

1150000

46100000

50000-

0
0 5 10 15 20

Sensitivity to Disconnects (sec)

Average Message Overhead (A2A)
60-120 S0, 0iN2

700-0SgI

600 -- SfgmnLD
-a-- Moshe

500

300
y

Me 200 A

100 '' 6

0 i . . . ?

Sons*"vt to Disconnects (sec)

Figure C4. Average Message Overhead, RON2, All-to-All Sigma vs. Moshe. (a) Overall
picture (b,c,d) Piecewise Analysis.

116

IN

117

Appendix D

Figure D- 1 through Figure D-4 present supplementary RON2 results for Leader-Based
Sigma vs. Ensemble, that reproduce and confirm RONI results presented in Chapter 6.1.
We include these results here for completeness.

Total Number of Views (LB),
RON2

14000

12000 :sgu- -M~- -LD
10000 Ensemble

4000

2000

0 be- bz''"

Sensitivity to Disconnects (sec)

Total Number of Views (LB),
20-60 SO, RON2

400

350 --- SIgLD

20

20 .

1200
S150

100-

0-
20 25 30 35 40 45 50 55 60

Sensitivity to Disconnects (sac)

Total Number of Views (LB),
0-20 SA, ION

14000

12000 -- SigmrLD

10000 -- Enseble

8000
*6000

4000

2000

0.
0 5 10 15 20
Sensitivity to Disconnects (sec)

Total Num ber of Views (LB),
60-120 SD, RON2

30
-4- SignmULD

25 - - SigmLD -

20 -- Ensele

115

10

5y

0-

Sensitivity to Disconnects (sac)

Figure D-1. Total Number of Views, RON2, Leader-Based Sigma vs. Ensemble. (a) Overall
picture (b,c,d) Piecewise close-up of trends.

Raw Number of Agreed Views (LB), Raw Number of Agreed Views (LB),
RN2 0-20 SD, RON2

12000 12000

10000 -e- SigmaLD 10000 -- SigmeLD -

8000 Ensem -+- Ensentle

6000 - 6000

4000 4000

2000 2000 A

0 ---------- 0

Sb 0b 01b 0 4 0 5 10 15 20
Sensitivity to Disconnects (sib) Sensitivity to Disconnects (sec)

Raw Number of Agreed Views (LB), Raw Number of Agreed Views (LB),
20-60 SD, RON2 60-120 SO, RON2

350-+- SlgmnUD 25--- SigmUD
200 -e- SniL 20 - SimLD

250 Ensenbie --1- Ensentis

200 j IS

150 A10 '

1005
50-

0
20 25 30 35 40 45 50 55 60

Sensitivity to Disconnects (sac) Sensitivity to Disconnects (sec)

Figure D-2. Raw Number of Agreed Views in RON2, Leader-Based Sigma vs. Ensemble. (a)
Overall picture (b,c,d) Clarifying the trends by piecewise analysis.

Average GM Latency (LB),
RDN2

0.3

0.25

0.2

0.15 -- Signe_UD

9 -- SignqLD
x 0.1

.j - Ensentel

0.05

0

Sensitivity to Disconnects (sec)

Standard Deviation GM Latency (LB),
RON2

3.5

3 a--SnLD

S2.5 --.- Ensentl

2
1.5

a 0.5

0

Sensitivity to Disconnects (seec)

Figure D-3. (a) Average Latency, RON2, Leader-Based Sigma vs. Ensemble. (b) Standard
deviations.

Average Message Overhead (LB),
RON2

35000

30000 -- Slgnu LD

25000

120000

i5000
o 10000

5000

Sensitivity to Disconnects (sec)

Average Message Overhead (LB),
20-60 SD, RON2

1000 - -
900 -a--SgnmLD
800- Ensebe
700

2 eoo1500 &
400*300

200.
100

0
20 25 30 35 40 45 50 55 60

Sensitivity to Disconnects (sec)

Average Message Overhead (LB),
0-20 SD, RDN2

35000-
-+- SignsUD

30000 --a-- Stgig_LD

25000 -- Ensemble

120000

215000

010000

5000

01
0 5 10 15 20

Sensitivity to Disconnects (sec)

Average Message Overhead (LB),
60-120 SD, RON2

50- A - Signai_UD
50 1-- - SInmLD

I\I~i-a.-BiEnsel
40

30

20

Sensitivity to Disconnects (sec)

Figure D-4. Average Message Overhead, RON2, Leader-Based. (a) Overall picture (b,c,d)
Piecewise analysis.

118

119

Appendix E

Table E-1. Raw Agreement and Disagreement Data (All-to-All, RON1).

A2A S gmaUD (RONI) A2A SigmaLD (ONI) Moshe (RON1)
Agreed Disagreed Total Agreed Disagreed Total Agreed Disagreed Total

SD Views Views Views Views Views Views Views Views Views
0 10834 1188 12306 11061 38 11117 11086 0 11128
5 2568 102 2707 2601 4 2608 2606 0 2611
10 1118 30 1157 1127 2 1131 1130 0 1130
15 495 16 513 503 0 504 504 0 504
20 220 12 235 223 0 224 228 0 229
25 117 12 129 124 0 125 125 0 125
30 64 12 77 67 0 68 66 0 66
35 37 12 49 41 0 42 44 0 44
40 21 12 33 26 0 27 26 0 26
45 17 12 29 22 0 24 25 0 25
50 18 2 20 19 0 19 19 0 19
55 16 0 17 16 0 16 15 0 15
60 14 0 15 14 0 14 13 0 13
65 18 0 19 17 0 17 17 0 17
70 18 0 19 18 0 18 18 0 18
75 18 0 19 17 0 17 17 0 17
80 14 0 15 13 0 13 13 0 13
85 18 0 19 18 0 18 18 0 18
90 18 0 19 18 0 18 17 0 17
95 11 0 11 11 0 11 11 0 11
100 7 0 7 7 0 7 7 0 7
105 7 0 7 7 0 7 7 0 7
110 7 0 7 7 0 7 7 0 7
115 7 0 7 7 0 7 7 0 7
120 5 0 5 5 0 5 5 0 5

Table E-2. Raw Agreement and Disagreement Data (All-to-All, RON2).

A2A SigmaUD (ON2) A2A SigmaLD (ON2) Moshe (RON2)
Agreed Disagreed Total Agreed Disagreed Total Agreed Disagreed Total

SD Views Views Views Views Views Views Views Views Views
0 10339 2266 13021 10669 46 10735 10694 0 10765
5 2587 574 3296 2710 4 2724 2722 0 2735
10 1133 288 1510 1198 2 1202 1206 0 1211
15 524 202 782 572 2 576 574 0 576
20 267 138 447 296 0 297 293 0 293
25 153 58 237 172 0 172 174 0 175
30 96 42 162 108 0 108 107 0 107
35 58 34 99 74 0 74 72 0 72
40 44 14 64 51 0 51 50 0 50

120

45 49 16 68 50 0 52 55 0 55
50 36 8 47 37 0 37 38 0 38
55 26 2 29 27 0 27 29 0 29
60 23 0 24 22 0 22 24 0 24
65 18 0 18 18 0 18 19 0 19
70 16 0 16 18 0 18 16 0 16
75 16 0 16 16 0 16 16 0 16
80 12 0 12 13 0 13 13 0 13
85 17 0 18 17 0 17 17 0 17
90 20 0 20 21 0 21 20 0 20
95 10 0 10 11 0 11 10 0 10
100 10 0 10 10 0 10 10 0 10
105 8 0 8 8 0 8 8 0 8
110 10 0 10 10 0 10 10 0 10
115 6 0 6 6 0 6 6 0 7
120 6 0 6 6 0 6 6 0 7

Table E-3. Raw Agreement and Disagreement Data (Leader-Based, RONI).

LB Si maUD (RON1) LB SigmaLD (RON) Ensemble (RON1)
Agreed Disagreed Total Agreed Disagreed Total Agreed Disagreed Total

SD Views Views Views Views Views Views Views Views Views
0 8255 32 11566 10629 2 11091 8760 0 8761
5 1966 0 2678 2516 0 2612 2432 0 2432
10 856 0 1163 1092 0 1137 1109 0 1109
15 373 0 524 495 0 507 499 0 499
20 168 0 241 216 0 229 235 0 235
25 94 0 134 119 0 126 127 0 127
30 48 0 73 67 0 67 71 0 71
35 33 0 51 41 0 43 43 0 43
40 16 0 27 26 0 27 27 0 27
45 16 0 25 23 0 23 25 0 25
50 12 0 19 22 0 22 23 0 23
55 11 0 15 15 0 15 15 0 15
60 12 0 15 13 0 13 13 0 13
65 16 0 19 17 0 17 17 0 17
70 15 0 17 17 0 17 17 0 17
75 15 0 19 17 0 17 17 0 17
80 11 0 13 13 0 13 13 0 13
85 15 0 19 19 0 19 17 0 17
90 14 0 17 17 0 17 17 0 17
95 9 0 11 11 0 11 11 0 11
100 6 0 7 7 0 7 7 0 7
105 6 0 7 7 0 7 7 0 7
110 6 0 7 7 0 7 7 0 7
115 6 0 7 7 0 7 7 0 7
120 4 0 5 5 0 5 5 0 5

121

Table E-4. Raw Agreement and Disagreement Data (Leader-Based, RON2).

___ LB Si ma UD (RON2) LB Si ma LD (RON2) Ensemble_(RON2)
Agreed Disagreed Total Agreed Disagreed Total Agreed Disagreed Total

SD Views Views Views Views Views Views Views Views Views
0 7756 52 11441 10270 4 10707 10949 0 10949
5 1982 0 2892 2624 0 2725 2758 0 2758
10 884 2 1303 1176 0 1215 1268 0 1268
15 431 0 668 581 0 595 636 0 636
20 240 2 368 295 0 302 330 0 330
25 141 0 207 172 0 178 196 0 196
30 82 0 140 112 0 114 122 0 122
35 52 0 84 70 0 73 76 0 76
40 35 0 63 52 0 53 52 0 52
45 39 0 72 56 0 56 56 0 56
50 29 0 52 38 0 38 42 0 42
55 20 0 30 29 0 29 28 0 28
60 15 0 22 23 0 23 22 0 22
65 13 0 20 21 0 21 22 0 22
70 11 0 24 18 0 19 16 0 16
75 10 0 18 15 0 15 16 0 16
80 6 0 14 12 0 14 14 0 14
85 9 2 25 17 0 17 16 0 16
90 12 0 20 21 0 21 22 0 22
95 8 0 12 9 0 10 10 0 10
100 7 0 10 9 0 10 10 0 10
105 5 0 8 9 0 9 8 0 8
110 7 0 10 10 0 10 10 0 10
115 5 0 6 7 0 7 6 0 6
120 5 0 6 7 0 7 6 0 6

122

Appendix F

AMO = Average Message Overhead
FA = Moshe Fast Agreement
SA = Moshe Slow Agreement

Table F-1. Average Message Overhead Raw Data for All-to-All study, including FA vs. SA
breakdown for Moshe. Note that SigmaLD's AMO is very similar to Moshe's FA AMO, often with
exactly the same number of messages per node.

RONI RON2
SD SigmaUD SigmaLD Moshe Moshe Moshe SigmaUD SigmaLD Moshe Moshe Moshe

AMO AMO FAAMO SAAMO AMO AMO AMO FAAMO SAAMO AMO

0 115657 153918 153918 147905 301823 112615 147626 147626 136656 284283

5 26861 35778 35826 35350 71177 28367 37142 37208 35555 72763

10 11652 15458 15441 15352 30794 12675 16620 16855 15930 32786

15 5123 6907 6845 6886 13732 6094 8070 8183 7718 15901

20 2308 3048 3200 3194 6394 3218 4288 4301 4011 8312

25 1234 1708 1751 1695 3447 1800 2409 2530 2317 4847

30 701 909 993 923 1916 1206 1599 1600 1484 3084

35 422 555 621 581 1202 770 1110 1062 1049 2111

40 244 360 360 343 703 532 737 686 652 1339

45 204 324 348 342 690 593 737 763 749 1512

50 179 239 239 218 457 414 497 538 519 1058

55 147 201 179 180 360 278 338 378 401 780

60 125 174 152 131 284 234 263 304 293 598

65 168 207 207 181 388 177 234 231 236 468

70 170 229 229 214 443 161 233 189 168 357

75 169 207 207 195 402 157 192 192 176 369

80 124 152 152 131 284 115 160 157 166 323

85 167 229 229 218 447 178 214 233 228 462

90 169 229 207 163 370 202 269 247 241 488

95 94 132 132 118 251 90 133 111 110 211

100 58 81 81 75 157 90 111 111 110 211

105 58 81 81 75 157 71 87 87 86 173

110 58 81 81 75 157 93 114 114 102 216

115 58 81 81 75 157 48 60 60 50 111

120 36 54 54 60 114 48 60 60 60 111

123

Table F-2. Average Message Overhead Raw Data for Leader-Based study. Provided for completeness.

RONI RON2
SD LB SigmaUD LB SigmaLD Ensemble LB SigmaUD LB SigmaLD Ensemble

AMO AMO AMO AMO AMO AMO

0 20375 19940 30002 19833 19191 28946
5 4748 4680 6625 5023 4880 7303
10 2065 2038 3003 2264 2201 3349

15 927 911 1348 1146 1105 1671

20 423 421 631 621 561 862
25 234 232 339 349 329 510
30 126 118 187 235 218 313
35 86 76 111 141 135 196
40 45 48 68 105 102 133
45 40 41 62 121 103 144
50 31 40 58 85 68 107
55 24 24 36 49 49 70

60 23 20 31 35 38 54
65 30 27 42 31 34 53
70 27 27 42 38 32 39
75 30 27 42 29 39 39
80 20 20 31 22 24 33
85 30 32 42 39 28 39
90 27 29 42 33 35 55

95 17 17 26 18 15 23
100 10 12 16 15 15 23
105 10 10 16 11 14 18
110 10 10 16 15 15 23

115 10 10 16 8 10 12

120 7 7 10 8 10 12

