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Abstract

In this thesis, I present the design and implementation of a real-time simulation tool,
RFID Vis, that is used to simulate a UHF RFID environment. The simulation tool
simulates environments containing to pallets of cases as is common in parts of the
supply chain. The simulation tool consists of two parts, a graphical front end which
interfaces with the user as well as displayes the electromagnetic power present in
a given volume of space in an intuitive manner and an electromagnetics simulation
engine which takes care of all the electromagnetic calculations and approximations.
The simulation tool is written in C++ using Microsoft DirectX 9.0 to interface with
the graphics hardware. RFID Vis enables users to quickly simulate a real world
operating scenario providing insights and building intuition.
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Chapter 1

Introduction

Radio frequency identification (RFID) is an automated identification technology that

enables many applications due to the characteristics of radio frequency (RF) commu-

nication. Unlike more common identification technologies such as bar codes, RFID

technologies are capable of identifying objects automatically through obstacles with-

out any human interaction.

RFID is not without its limitations and as the technology begins to make its way

into the popular mainstream, these limitations are going to become encountered more

frequently. Like any technology, it is important that the end users develop an intuition

of how the technology works. The more users understand the technology, the easier

it is to self-diagnose problems and more time, energy and money can be spent on

finding ways to improve the technology and its applications than to troubleshoot it.

A simulation tool that allows users to set up and visualize certain aspects of an

RFID environment facilitates the user's understanding of RFID and helps develop

intuition which in turn helps drive the success of RFID technology.

1.1 Introduction

The advantageous concept behind RFID is straight forward: identify objects auto-

matically using electromagnetic waves in the radio frequency spectrum. By attaching

tags to objects and setting up a well defined reader infrastructure, the objects can
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be identified automatically from a distance. While RFID can be used for many pur-

poses, one of the primary applications of the technology is in the tracking of assets

in a supply chain. Tags may be fixed to an item, to boxes of items, and on large

pallets. Passive tags harvest power from reader antennae in their environment and

activate when they harvest sufficient power. The tags then receive communication

signals from a reader antenna and respond to the reader by communicating a signal

back which includes the tag's unique identification number so that the reader may

properly identify the product. The use of RF energy for both power and communica-

tion results in a complex system that may exhibit non-intuitive behavior, particularly

when operating in a complex, real-world environment.

The power radiated from an antenna is in the form of an electromagnetic wave. An

electromagnetic wave, when striking a boundary between two media, is reflected back

from the boundary and transmitted through the boundary. The angle of incidence,

material properties as well as other factors determine the amplitude of the transmitted

and reflected waves. A metallic object reflects back more power than a cardboard

box causing less energy to travel through the metallic object. Different reflections are

not the only difference a given material's properties have on electromagnetic waves,

different materials also absorb electromagnetic power differently. A box full of napkins

absorbs a minimal amount of power, while a box of shampoo exhibits significantly

greater RF absorption.

If an application, such as indentification using RFID, requires a certain amount

of electromagnetic power, changes in media and environment, despite how minute,

may have a huge impact on the amount of power received at a given location in

space. But how is a novice end user of such an application to know what effects

different media have on electromagnetic power? An exhaustive test of all media is

prohibitively expensive to conduct. End users need a way to quickly analyze and un-

derstand an environment and its impact on electromagnetic wave propagation. Once

a user understands the effects of different media, less time will be spent researching

and testing set ups which the user knows cannot work properly. A simulation tool

that represents information about the key electromagnetic properties, namely total
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power available at all spatial points of interest, graphically so that the information

is represented clearly and immediately would lead to a better understanding of the

technology and allow its uses to progress faster.

1.2 Introduction to Passive RFID

Imagine a stock room full of boxes filled with many different products; razor blades,

laundry detergent, etc. In this scenario there are a few ways to retrieve information

about the physical objects. The first is to manually view and record information, but

this is time consuming and prone to human error. Another way to retrieve information

would be through the use of computer vision or some sensing arrangement, but these

solutions are often expensive and inaccurate even for the most advanced systems.

RFID provides an inexpensive and efficient way to retrieve physical information. The

most inexpensive RFID systems use passive tags. Passive tags, unlike active tags, do

not use external power supplies such as batteries to supply their operational power,

but rather, receive their operational power from the tag reader's communication sig-

nal. This requires the tags to contain less functionality and consume less power than

active tags.

In an RFID environment, multiple reader antennae are placed at strategic loca-

tions to capture as many tag reads as possible. The readers then send out signals

into the environment requesting the identification number of any tags. These signals

are sent into the environment by emitting electromagnetic waves. The exact distance

and direction in which these waves are sent is based on the design and placement of

the reader antennae. The electromagnetic waves then propagate through the environ-

ment and may be reflected, absorbed and even interfere with each other. All of these

effects may cause the waves to end up at unexpected locations or with unexpected

amplitudes and phases.

The passive tags, which are affixed to items of interest, operate in a different

manner. The tags use an antenna and circuitry to receive electromagnetic power

from the reader. If their harvested power is above a minimum operating threshold,
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the tags begin to operate and listen for communication signals from reader antennae.

What signal the tags are listening for is defined by a protocol which both the tags

and the reader antennae must adhere to. Once the tag receives a proper signal, it

then responds to the signal by back scattering some of the electromagnetic waves

that are incident upon it. The signal communicated back to the reader also adheres

to the same protocol as the signal sent from the reader. The back scattered waves

may again be reflected, absorbed or interfered with by other waves. Once the reader

antenna receives this signal, which contains the unique identification (ID) number of

the tag, the ID number is recorded and then processed by a well defined computer

infrastructure. While the system is easy to use, there are many places in which

problems can occur and there exist few tools which allow users to easily understand

an RFID environment in an intuitive manner. In general, getting sufficient power to

the tag is the bottleneck in communication with passive RFID tags.

1.3 Motivation for a Simulator

Passive RFID systems, like any other systems, are not without limitations. When

a tag cannot be read properly by a reader antenna, any number of factors could be

the cause. The tag could be using a different protocol, there could be interference

in the path between the tag and reader which causes signals to be misinterpreted, or

the most common problem is that the tag does not receive sufficient power from the

reader antenna to operate.

The passive tags need to receive a minimum amount of power from the reader

antenna to operate. Not receiving this power is a common problem with passive

RFID systems. The tags can be too far away from the reader antenna or the problem

can be more complex. The problem could deal with specifics about products within

a box or the environment in general. Certain products may allow the power to pass

through and permeate all through the box, while other products may reflect back

most of the power which might cause only certain areas of the box to have sufficient

power for a tag to be operational. Therefore, for certain products, the tags should be
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located in specific areas of the box. Or the problem could not be with the products

themselves, but with the surrounding environment. Light fixtures, metallic walls, and

humidity in the air can all affect the way that electromagnetic power can propagate

through space. With a realistic simulation tool, an end user could understand which

sides of a box to locate a passive tag, or the user can come to the realization that

certain areas of the environment are "dead zones." Both of these conclusions can

be made quickly without expensive or exhaustive tests through the use of a good

simulation tool.

1.4 Description of Simulator

I have developed a software program which simulates specific aspects of an RFID

enviornment called RFID Vis. Its main use is in developing an RFID users' intuition

of how electromagnetic power radiates from reader antennae at UHF frequencies. To

quickly develop intuition, RFID Vis has a few key features. First, RFID Vis has an

intuitive user interface which allows users to create environments quickly and easily.

Menu driven actions create different items like antennas, tags and boxes of products.

Clicking and dragging these objects changes their displacements while dialog boxes

allow the users to change different properties of the objects as well. This intuitive

interface allows users to, through use of the standard keyboard and mouse, create

pallet like environments in which the properties of different boxes are quickly alterable

to show the effects that different materials have on the electromagnetic power radiated

by the antennae.

Another feature that allows RFID Vis to accelerate users' intuition of RFID is its

electromagnetics engine. The electromagnetics engine of RFID Vis allows for the user

to select between different electromagnetic approximation algorithms. Although at

the moment only one algorithm is implemented, in future versions of RFID Vis, other

algorithms may be available for use. Having multiple algorithms to select from as well

as control over certain aspects of the algorithms allows for users to control the speed

and accuracy of the results that are produced. If the users want very accurate results
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or very quick results, they have control over the type of results RFID Vis produces.

Not only does the electromagnetics engine allow the user substantial control over

the accuracy and speed of the results produced by RFID Vis, but the engine also

produces real-time results. As previously mentioned, the users of RFID Vis have

control over the speed and accuracy of the results that are produced, but what if an

object in the scene is moved? If an object is moved, it has the ability to drastically

change the electromagnetic power over a given area, so when an object is moved

the electromagnetics engine defaults to using a real-time algorithm. If the user were

using an algorithm that took a few seconds or minutes to compute results, then it

would take minutes or seconds to move the object and see results. So, by defaulting

to a real-time algorithm, RFID Vis makes it quick to move objects around a scene

and adjust properties while at the same time not having the user doing this without

any feedback. The real-time algorithm provides results so that the user may see the

general effect that moving the object has while making the object movement be quick

and easy to use. Once objects are set in place, the user has the option of running

more accurate algorithms.

One last feature of RFID Vis that allows users to quickly develop intuition is that it

provides results and data quickly and in an easy to understand and three dimensional

manner. Unlike other electromagnetic software packages, RFID Vis provides very

specific information. While some software packages calculate and present a large

amount of data, the data most pertinent to RFID users is the electromagnetic power.

Therefore, RFID Vis provides the user with only the electromagnetic power, this

allows for faster calculations and faster algorithms. Specific power levels are mapped

to specific colors so that in a glance a user may note the power at a point within

a certain degree of accuracy and then these colors are drawn in three dimensional

space. The electromagnetic power is then rendered as a whole volume over space.

This allows for fast prototyping of results because the user no longer has a need to

rerun simulations.

Instead of needing to view many two dimensional graphs or only being able to

view two dimensional contours over a volume of space, the user now has access to see
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a whole volume of data. RFID Vis allows the user to fully explore this whole volume

of data at any angle without needing to rerun any simulations. By rendering the data

in this manner, RFID Vis allows for fast prototyping and at a glance understanding

of results of a whole volume of data. This requires the user to rerun simulations less

and may cause less confusion than some other electromagnetics software packages;

the net result being that RFID Vis is easier to use and produces results more quickly

which leads the users to develop intuition about UHF RFID more quickly than other

software packages.

1.5 Thesis Summary

In this thesis I present the design, implementation, use and evaluation of RFID Vis,

a software tool that simulates specific aspects of passive UHF RFID environments in

real-time and presents data graphically. RFID Vis consists of many interconnected

systems and subsystems all of which are described in this section.

In Chapter 2, I describe the design of and previous work relating to the many

aspects of the user interface, known as the Intuitive Graphical User Inteface (I-GUI),

that is used in RFID Vis. The I-GUI combines many different tasks into one well

defined system. The I-GUI must interact with the user, respond to the user's inputs

and give the user feedback in an intuitive and graphical manner and must do so in a

flexible and easily extendible way.

The key design aspects of the I-GUI are to have the interface be extensible for

future use, intuitive to allow for faster creation of RFID environments and to represent

information in a easy to understand manner. By analysizing previously researched

topics of data visualization, previously implemented user interfaces, and carefully

detailed analysis of the problems facing the I-GUI, a design and a set of goals that

the I-GUI must accomplish was constructed and is discusse.

Chapter 3 bridges the gap from design to implementation as I discuss how the I-

GUI is implemented and how the implementation helps it reach its goals. The I-GUI,

which is responsible for a large number of tasks, is broken down into a number of

21



smaller systems within itself. One system is reposonsible for how objects (antennae,

boxes, etc.) are implemented and managed. Since RFID Vis is a continuing project,

these objects must share a common functionality while also allowing there to be new

objects intorudced without much change to the existing code base. Because of that

fact, the implementation and management of the objects is complex.

Besides objects being managed, the I-GUI must also respond to and receive user

input. What commands are received and the various responses to the different com-

mands are discussed in detail in Chapter 3 as well. One other topic discussed in the

chapter is the implentation of the visualization of computed data. There are many

ways to visualize data and for the specific data which is calculated in RFID Vis, there

were many different approaches to take into consideration. The chapter discusses the

chosen implementation, its advantages, disadvantages and tradeoffs.

In Chapter 4, I analyze and present the implementation of the I-GUI. One por-

tion of the chapter discusses the trade offs between different settings for the data

visualization. The visualization process is complicated and full of different aspects

which can be altered. The different settings have direct correlations to the speed and

appearance of the data visualization. A specific setting may produce the best looking

results, but unfortunately takes an amount of time to render which is too large so

that it hinders the real-time application of RFID Vis. A different setting or group

of settings may produce the quickest results but may not achieve the desired visual

effects. The trade off between settings and their effects on the data visualization are

discussed in Chapter 4.

Chapter 4 also presents how the implementation of objects and how the objects

are managed allows for the I-GUI to be easily extended. A carefully designed and

implemented system for handling objects can make addings new features and new

objects a breeze, but a poorly constructed system may cause lots of headache and

rewriting of code. The chapter discusses how the I-GUI avoids pitfalls and prevents

future headaches.

In Chapter 5, I describe, in detail, the challanges and design issues assosciated

with the electromagnetics engine "back end" of RFID Vis known as the Simulation
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Engine. The Simulation Engine needed to be capable of many different key features

and the chapter discusses what those features are and how they were designed by first

consulting previous work done on the topic of electromangetic simulations.

In Chapter 6, I describe how the previously discussed designs are implemented

and brought into reality. How the abstract concepts of a real-time simulation as well

as an extendible engine were impleneted are presented in detail in the chapter.

Chapter 7 presents data as to how the running time of RFID Vis is affected by the

different settings and aspects of the Simulation Engine. How exactly do the different

parameters of a simulation affect the simulation time and what kind of behavior

is expected at certain levels of complexity? These questions are answered within

Chapter 7.

The final chapter, Chapter 8, presents conclusions about RFID Vis and its devel-

opment, usefulness and accuracy. Possible future expansions to the project are also

discussed.

There are many features of RFID Vis that allow its users to develop their intu-

ition of RFID technology and electromagnetic radiation quickly. An easily usable

user interface allows for scenes to be created quickly and easily. Customizable and

expandable electromagnetics algorithm parameters give the users control over how

accurate and quick results are calculated. Finally, RFID Vis displays data over a

huge volume of space which allows for the entire data to be visualized and deciphered

without recalculations. All of these features combined together allow for a scene to

be easily set up, data of different accuracy to be calculated and then the data is

displayed clearly and easily over a whole volume of space. These aspects of RFID Vis

make it easy to set up and test certain features of an RFID environment. This allows

users of RFID Vis to develop a better understanding of the environment.
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Chapter 2

The Intuitive Graphical User

Interface

The code structure of RFID Vis consists of many interconnected objects working

together. The code can be divided into two main components, the Inuitive Graphical

User Interface (I-GUI) and the Simulation Engine. The I-GUI is made up of the

components of RFID Vis that directly interface with or can be seen by the users;

where as the Simulation Engine is responsible for "behind the scenes" work such as

computing electromagnetic power.

The I-GUI of RFID Vis is made up of many classes working together, but logically

the I-GUI consists of two main systems. One system creates and manages objects

inside an RFID environment such as antennas, boxes, and tags while the other system

renders each object in the environment and displays to the user each object's relevant

data. These two systems working together allow for RFID Vis to be controlled via

user input and display to the user the relevant information that is calculated.

2.1 User Interfaces and Their Challenges

A user interface is a piece of software whose function is that of what its name implies,

it serves as an interface between the user and the rest of the software. In more detail,

a user interface servers as a medium for retrieving input from the user and then
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sending program output back to the user. The user interface is the interface between

the user and the program's functionality.

RFID Vis's main use is developing its user's intuition of electromagnetics and

RFID technology, so the user needs ample control over key aspects of RFID Vis. The

user needs to be able to create an RFID environment and manipulate it. The user also

needs control over certain simulation parameters to be able to specify the accuracy

and speed of the simulations that are run. While the users of RFID Vis need to be

able to control the simulations through some sort of input, the users cannot alter the

RFID environments well without some feedback from RFID Vis. Therefore, the user

interface needs to display to the user where each object is in the environment as well

as the electromagnetic power over specified volumes of space.

The main challenge that plagues user interfaces is that each application which uses

a user interface is very unique. A video game is very different from a spreadsheet

program in terms of the data that needs to be fed into and read out of the different ap-

plications. Because of this fact, user interfaces are not very portable from application

to application and a new interface must be written for every new application.

Each specific user interface has its own set of challenges. There are many objects

in an RFID environment that can be created in RFID Vis, and the user interface

needs to interact with each object in a specific manner. A box that can be stacked

on a pallet may need to be interacted with differently than a reader antenna since

each object has its own parameters that need to be altered. Futhermore, each object

has different data that needs to be presented to the user. The challenge faced by

the interface of RFID Vis was to develop a standardized way to properly interact

with an assortment of unique objects. A standardized method of input and output

needed to be developed which passed the control of the specific behavior down to each

individual object. This way, each object in an RFID environment implements the way

it responds to user interface events rather than a managing class assigning a behavior

to the object. Developing this standard interaction between the user interface and

objects which may be found in an RFID environment without needing very specific

code was a large challenge that was overcome during the development of the user
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interface for RFID Vis.

2.2 Previous Work on Volumetric Data

While the user interface for RFID Vis had many challenges and issues to take into

consideration, one of the more complex challenges was how to render the electromag-

netic power radiated by a reader antenna since RFID Vis computes the power over a

whole volume of space.

Computer screens are two dimensional surfaces, so every image displayed on a

computer screen, despite what the image may be, is ultimately projected onto a two

dimensional surface. A problem arises when two dimensional geometries such as lines

and two dimensional datasets are not sufficient methods for representing the data

that an applications wants to present to a user. When the data to be rendered is a

volume of data, such as the electromagnetic power over a volume of space, rendering

this data to a computer screen is known as volumetric rendering and is a known

problem. Volume visualization or volume rendering is a method of extracting data

from volumetric data sets through interactive rendering[9]. Volumetric rendering has

been a topic of discussion and research in computer graphics for decades and there

are many different concepts and algorithms of how to map a volume of data to a

computer screen.

For the most part, volume data is made up of either scalar fields or vector fields.

For scalar fields, like RFID Vis has, two main algorithms come to mind: direct

mapping and iso-surface mapping which are discussed below [4]. The volume of data

may be well defined and structured or unstructured. The structured datasets contain

data at well defined sample points, while an unstructured set of data may be skewed

and psuedo-random [14]. Since the data computed by RFID Vis is defined as being

the electromagnetic power at a given set of points, the data computed is structured.
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Figure 2-1: Example Voxel Grid

2.2.1 Voxel Based Direct Volume Rendering

One method of volumetric rendering is based on a collection of "cells" or voxels. A

voxel is a pixel taken into three dimensions as voxel is short for volume pixel. Voxel

based direct volume rendering takes the volume of data and directly maps the data

to a grid of voxels much like a Cartesian coordinate system[18]. An example grid

can be seen in Figure 2-1. The dimensions of the voxel grid and overall size of each

individual voxel is dependent on the application and each vertex of the voxel grid has

red, blue, green and alpha values. The data in the dataset is then directly mapped to

the vertices of the voxel grid through use of a color map; this mapping is implemented

differently in each application [8].

Once all data of the voxel grid has been computed, the next step of the rendering

process is to color each pixel of the computer screen based on the voxels in which

there are countless ways to do. One type method, known as forward mapping, maps

the data at each voxel to a set of graphical primitives which are rendered to the

screen in the data set's coordinate system [3]. These methods are straight forward

but require drawing many geometric primitives. Another group of methods, known as

backwards mapping, calculate the color at each pixel through some algorithm, such

as ray tracing, and then once all pixel colors are calculated one rectangle is rendered

in the screen's space giving the illusion of viewing a full scene [13]. These methods
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require rendering only a few simple geometries but require a complex algorithm to

compute the pixel colors. The difference between the two types of method can be

thought of as the difference between being part of a scene and viewing a picture of

the same scene.

Whatever the method used, the colors displayed on the computer screen are based

on the data stored in a grid of voxels. One advantage of voxel based volume rendering

algorithms is that the volume dataset does not require a specific shape or contours; any

amorphous volume such as clouds or gases can be properly rendering using voxel based

methods. Another advantage is that the whole volume dataset may be represented

in the voxel grid as there may be a one to one mapping between voxel vertices and

dataset entries. A disadvantage is that every time an image is to be rendered, the

whole voxel grid must be traversed and there are possibly a large number of geometric

primitives to be rendered.

2.2.2 Surface Based Volume Rendering

Another method of volumetric rendering is based on two dimensional surfaces. The

idea behind surface based volumetric rendering is analogous to isolines on two di-

mensional graphs or that of feature extraction. The volume dataset is traversed and

similar data points or data points within certain thresholds are noted. Once all the

similar data points are collected, surfaces may be constructed based on those points

[18].

How these surfaces are constructed differs from application to application. Some

applications construct a single surface as a threshold value while other applications

may construct many surfaces to indicate points of similar data. Once all the surfaces

are calculated, the surfaces are then constructed out of geometric primitives and the

whole volume of data is no longer required to be kept available. These primitives are

rendered to a scene and then projected onto the computer screen.

One advantage of surface based rendering is that for each rendered image, only a

small subset of the whole volume dataset needs to be traversed as only those points

that are on the surfaces themselves are of note. Also, depending on the number of
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surfaces as well as the surfaces themselves, a small amount of geometric primitives

are needed to render the surfaces. A major disadvantage of surface based rendering

is that not all datasets form well to surfaces. Some datasets have no required shape

or data points of similar values may be few and far between so constructing a surface

based on these datasets will just produce odd looking surfaces that give little to no

useful information to the user.

Direct mapping and surfaced based methods are not the only ways to render vol-

ume based data but are fairly common. New methods are constantly in development,

but each method will have its advantages and disadvantages and each method will

ultimately map the data in a volume dataset to a color that needs to be displayed on

the computer screen.

2.3 I-GUI Design and Goals

When designing the I-GUI, the most important aspect of the design is meeting the

extensibility and usability goals of the I-GUI. The goals of the I-GUI were that the

I-GUI needed to be extendible so that future work on RFID Vis may add objects to

the I-GUI without needing to change too much preexisting code and the I-GUI also

needed to be user friendly and intuitive. The I-GUI must also contain items which

can be used to visually display to the user certain data that is calculated by the back

end about objects in the RFID environment. Extensibility is one of the characteristics

of well designed code [15].

2.3.1 I-GUI Extensibility

While the current implementation of RFID Vis takes into account certain objects

for a packaging related RFID environment, it is not unrealistic to think that the

electromagnetic simulation aspects of RFID Vis could be used for different environ-

ments besides the boxes and pallet environment currently implemented. So, to ensure

the ease in creating new and different environments, the I-GUI was designed to be

moderately extensible with regards to new objects.
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To accomplish this, each object in the RFID environment follows and must imple-

ment a standard interface in which the management classes are used to manage the

RFID environment. Each object must define a method to render and update itself as

well as respond to a defined set of user actions. The actual implementation of these

methods is up to the objects themselves, but the method calls and general interface

to these methods is well known. In doing this, RFID Vis can easily be extended to

contain new objects beyond those included in the current implementation.

For example, if in a future version, a Tube object is added to the RFID environ-

ment, minimal code would have to be altered or added. A Tube class would need to

be defined that extends the generalized RFID environment object. The Tube would

then need to define its own render, update and user action related methods. One

other piece of code would need to be changed within RFID Vis to add a way for the

user to create the Tube object, but that is all. So, to add a whole new type of object

with its own unique behavior, a minimal amount of existing code would need to be

altered and a whole new stand-alone class would need to be created. This makes ob-

ject creation for future versions of RFID Vis easier and allows for new object creation

with minimal changes to the code base.

The effect of this is that future developers of RFID Vis will not be required to

know intimate details of the existing code base to add new objects to the environment.

To extend RFID Vis and create a new object, one needs only know the general

"environment object" interface.

2.3.2 I-GUI User Interaction

No matter how good of an architectures may be designed, if the user has to go

through complicated procedures to input commands, the user becomes frustrated. If

a program becomes frustrating, the key features of a program may never get used

frequently or at all. It is better if the user interactions are quick, easy to understand

and intuitive as this allows for the user to use the program's features faster and more

frequently therefore maximizing the program's usefulness to the user.

RFID Vis has controls which have a low learning curve and have intuitive affects
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which makes RFID Vis easy to use and better enables the use of itself. Some termi-

nology first, a Camera object represents literally a video camera from which the user

is viewing the virtual world created by a program. A program may have any number

of Camera's although most just have a single view point; RFID Vis contains only one

Camera object. The controls for the Camera are set up in a fashion similar to those

of a first person shooter game such as DOOM. Keyboard (or mouse) buttons move

the Camera forwards or backwards along the Camera's line of sight. Other buttons

move the Camera laterally along an axis that is perpendicular to the line of sight and

in the plane of the screen. Other commands adjust the angles at which the Camera

views the world. One command changes the vertical angle while another one changes

the horizontal angle of the Camera. These movement commands can be bound to

any key, so a user can specify the keyboard layout of these commands so that they

may choose a setup that is most comfortable and intuitive to them.

Besides the Camera movement controls, there are a few other commands that the

user has over objects in RFID Vis. The first command uses the mouse to select and

drag an object via left clicking and the familiar drag and drop interface. When an

object is clicked, it is "selected" and certain data about that object is presented to the

user. When clicking on an object, the user may hold down the left mouse button and

drag the object. Upon dragging the object, the objects "drag" interface is invoked

and the object responds in some manner. Many objects may not respond to drags,

while others may adjust their displacement based on the movement of the mouse.

When the user right clicks on an object, the object invokes a command to display its

properties dialog. While the behavior of the objects and how they respond to these

commands may change from object to object, the buttons are not changeable and

these commands are permanently bound to the left and right mouse buttons.

With a very limited number of commands, RFID Vis has a very easy to use

and able understand input/output interface. Users only need to understand how to

use and manipulate a small number of movement commands for the Camera and the

specific workings of each individual object. By having such a low learning curve, users

of RFID Vis are more quickly able to create and manipulate complex environments
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and this will quicken their intuition of UHF RFID propagation.
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Chapter 3

I-GUI Architecture and

Implementation

The I-GUI is made up of many classes and objects working together. While the I-

GUI consists of many classes, logically it can be thought of as distinct packages, one

package consisting of RFID interface renderables, one package consisting of objects

in an RFID environment, and another package to manage all of renderable objects in

a "'scene."l

3.1 Environment Renderable Classes

When developing a graphical simulation application, one of the main features of it are

graphical in nature. It makes sense that a substantial number of objects would be ob-

jects that are drawn to the computer screen. Also, RFID Vis may be used to simulate

a number of RFID environments, RFID Vis needed to be generalizable and extensible.

To have such generalizable behavior and extensibility, object oriented programming

techniques were needed to develop an inheritance hierarchy which placed object im-

plementation specifies down the hierarchy and that defined a standard method for

interacting with the renderable objects. The following is a list of objects which are

part of the RFID Vis's set environment classes.

1. Camera Class The Camera class represents a camera from which a user can
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view the RFID environment.

2. Renderable Class This class defines a standard interface in which an arbitrary

object may be drawn to the screen.

3. SelectionBracket Class Visually indicates to the user which object the user

has selected via user input.

4. SelectionInfo Class This object is used to present to the user some informa-

tion about the currently selected object.

5. CoordinateAxes Class This class represents axes in three dimensional space

at right angles to each other.

3.1.1 Renderable Class

At the top of the class hierarchy is the Renderable class. This class defines a standard

interface to render to the computer screen as well as the ways to allocate and free the

resources needed to accomplish the rendering.

Since RFID Vis uses the DirectX API as its interface to the graphics hardware, the

Renderable class uses a setup similar to that of predeveloped DirectX classes. When a

graphics device changes properties of a viewing window, such as changing a window's

resolution or size or changing the device type being used, the window is said to be

"restored" and all objects to be rendered to the device must be restored for this new

device settings. Therefore, a Renderable object has a restore method which which

takes a Direct3D device as a parameter. When properties of a window or device are

changed, the window and all objects to be drawn to it must be restored to work with

the new device and window settings; the restore method insures that all objects to be

rendered to the screen are restored and validated to use the proper device settings.

An invalidate method is also defined so that the resources that a Renderable object

allocates to properly render itself can be freed. An object is invalidated before it is

deleted or restored to a new device.

The key aspect of a Renderable object is that it represents an object which can

be rendered to the screen, so it follows that a Renderable object has a method called

render which handles the function calls to actually draw the object to the screen. The
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render method is passed as a parameter a RENDER-PASS which describes what type

of rendering to do. There are many types of passes such as an OPAQUE-PASS which

renders only the opaque aspects of the objects. Also, an Renderable object has an

update method which takes as a parameter a floating point number which represents

a timestep to update by. The update method allows an option for a Renderable object

to vary with respect to time.

The Renderable class is a virtual class. Each of its methods is purely virtual as

the class itself only defines a behavioral interface for other classes to inherit from and

extend. Most of the other objects which are part of the I-GUI ultimately inherit from

the Renderable class.

3.1.2 Geometry Class

The Geometry class serves as a utility class that defines some general geometric struc-

tures as well as some general geometry related functions which may be used and are

useful for a number of situations. The class also is used as a wrapper which de-

fines higher level structures that wrap over predefined DirectX structures for vectors,

quaternions and matrices.

3.2 Physical Objects

One of the major concepts in developing any environment is the concept of a physical

entity which will be rendered to the screen. While the I-GUI may render any number

of objects to the screen as part of the user interface, the actual RFID environment is

constructed from many real objects such as antennae, tags and boxes which can be

stacked next to and on top of each other to form pallets. These objects have a physical

structure and make up the environment in which RFID Vis will be simulating. A list

of PhysicalObject based objects is seen below.

1. PhysicalObject Class The PhysicalObject class is a Renderable object which

represents a physical entity in RFID Vis which has a physical structure.
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2. Reflector Class A Reflector is a special type of PhysicalObject which has

electromagnetic properties and which may affect the electromagnetic power in

an RFID environment.

3. Antenna Class The Antenna class represents a standard UHF reader antenna.

4. Floor Class The Floor class models a standard cement floor found at ware-

houses.

5. MaterialBox Class A MaterialBox object is a Reflector object that represents

boxes of product that are used to make pallets in a supply chain.

6. Tag Class The Tag class represents a standard passive RFID tag that can

adhere to boxes of product.

3.2.1 PhysicalObject

The PhysicalObject class is a Renderable object which represents a physical entity

in RFID Vis. The class outlines an interface in which the user can interact with the

objects as well as standard features of each object.

Each PhysicalObject has a linear displacement and a linear rotation. The linear

displacement is a three dimensional vector in world space, measured in meters from

the origin of the scene. The linear rotation of an object is represented by a quaternion

from which a rotation matrix can be calculated from. By using both the linear

displacement and rotation, a 4x4 matrix can be computed for each object known as

the transform matrix which can be used to transform a vector from world space into

the object's space.

Besides a displacement and a rotation, each PhysicalObject has an ID number.

This number should be unique for each PhysicalObject within a scene, but the man-

agement of ID numbers is not a task for each PhysicalObject. Since certain objects

in a scene may depend on another object's properties, such as a passive RFID tag

adhered to a box is placed on the surface of the box, so the tag in a way depends on

the properties of the box, each PhysicalObject has one and exactly one parent Phys-

icalObject in which it depends. While having multiple parent objects may not be

unreasonable, it is somewhat unrealistic. To keep the parent/child hierarchy simple,
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each PhysicalObject can only have one parent PhysicalObject. A PhyiscalObject is

not required to have a parent object. A PhysicalObject also stores a collection of

its children PhysicalObjects since an object can have multiple children. Every child

object should have a parent and that parent should have that child within its list of

child objects.

One goal of RFID Vis is to be able to save an environment setup and reload the

setup at a later point in time. For this to happen, each object in an environment

or "scene"l must be able to be serialized and written to a data stream. Serialization

is a process in which all the high level data structures are taken down to the byte

level and a stream of bytes is written to a data stream. Since each PhysicalObject is

serializable and written to a data stream, each object must also be deserializable and

be read and reconstructed from a datastream. So, each PhysicalObject has a serialize

method and each PhysicalObject class has a static create method. Both methods take

a data stream as a parameter, the serialize writes the object to the stream while the

create method creates a new object based on the data stream.

As mentioned before, a PhysicalObject serves to represent an physical entity

within RFID Vis and the user is able to make adjustments to the setup of the RFID

environment, the PhysicalObject class defines an interface for generalized behavior

which may be linked to user input. Each object has a dialog known as its properties

dialog which it displays to its parent window. The structure and content of this dialog

vary with each object, an example of one can be seen in Figure 3-1.

The PhysicalObject class also outlines behavior to user "drag" actions as well

as "picking" functions which note if a ray from a given point traveling in a given

direction intersects the object.

While the PhysicalObject class does define and implement some standard behavior

that is consistent across all PhysicalObjects, mot of the methods defined, such as the

serialize and pick methods, are defined as virtual to pass the implementation further

down to the specific objects themselves.
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Figure 3-1: Example Properties Dialog
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3.2.2 Reflector Class

A Reflector is a specific type of PhysicalObject which has electromagnetic properties

that affect the electromagnetic power radiated by antennae. Reflectors and only

Reflectors are taken into consideration when the electromagnetic algorithms computed

the power over a given volume of space. All other objects in the scene are not taken

into account in the algorithms.

All Reflectors have three floating point number which represent three specific

electromagnetic constants which dictate their behavior in regards to how the Reflec-

tors affect electromagnetic waves. These constants are the electric permittivity of an

object, c, the magnetic permeability of an object, y and its electrical conductivity,

sigma. The current implementation has these electrical properties being constant

throughout each Reflector making each Reflector a homogeneous material. Future

implementations could change this behavior.

3.2.3 Antenna Class

The Antenna class represents a standard UHF reader antenna. An Antenna can

be of one of many AntennaTypes and PolarityTypes. The AntennaTypes dictate

the directivity of the Antenna object while the PolarityTypes affect the polarity

of the object. In the current implementation, there are two AntennaType values,

ISOTROPIC and PATCH. If the Antenna has an ISOTROPIC AntennaType, then

its directivity is consist with that of an isotropic antenna. While an isotropic antenna

is not physically possible, it is the bases of a lot of measurements of power and gain of

common antennae. There are two values of PolarityTypes which represent linear and

circular polarizations. The AntennaType and PolarityType are the only changeable

parameters that affect the electromagnetic behavior of an Antenna.

The Antenna class, stores in a three dimensional grid of points, the complex

electric and magnetic fields at that point in space. The fields are stored as real parts

and imaginary part and stored as three dimensional vectors. The vector direction

indication the direction of the field and the magnitude indicates the strength of the
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field at that point.

The exact size and number of points in this "grid" is controlled by a few parame-

ters. Each Antenna object is given a set of parameters to describe this grid of points.

An Antenna is passed a width, depth, and height and a parameter of points per me-

ter, all of which are integers. The width controls the total width along the Antenna's

x-axis in which the grid extends, the height controls the y-axis extent and the depth

controls the z-axis extent. In the x and y axes, the width is taken across the center of

the Antenna. So, if a width of 5 meters is specified, the the Antenna has grid points

which represent the the electromagnetic power up to 2.5 meters right and left of the

center of the Antenna; the y-axis would have the power measured up to 2.5 meters

above and below the Antenna. On the z-axis however, the depth is taken from the

Antenna out. This has the Antenna always having the electromagnetic power in the

"forward facing" direction as any power behind it is not stored.

3.2.4 Rendering Antenna Power

When it comes time to render the transparent aspects of an Antenna object, the An-

tenna needs to render the electromagnetic power over its designated volume of space

which is stores the electromagnetic field. Every Antenna, as mentioned above, stores

the electric and magnetic fields over a whole volume of space in the vertices of a three

dimensional "grid." Given this grid structure of storage used by the Antenna, voxel

based volumetric rendering would seem to be the most applicable way of rendering

the volume of data.

The first step in rendering the Antenna's power is to convert the voxel data to

colors that can be used for rendering. The data stored by an Antenna is the electric

an magnetic fields over its given grid volume, but the data that the simulation wants

to render to the screen in its current implementation is the time-average power, not

the electric and magnetic fields. The time-average power can be found using the

electric, E and magnetic, H, fields. The time-average Poynting vector, S, for a given
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wave is calculated to be

(S) = -R(E x H*) (3.1)
2

The time-average power density is then given by

(IS) = -R[J x H*J] (3.2)2

Once the power density at each point is calculated, a color lookup function produces

an RGBA color based on the power density at each point; all power densities are

assumed to have no time dependence, so they are simply the time average power

densities. Each of these colors is then stored in a three dimensional volume texture.

In the end, the color of each texel in the volume texture corresponds to power level

at each point of the "grid" that is stored in each Antenna object.

The next step in rendering the power associated with the Antenna object is find-

ing geometry to render to the screen and associating the geometry with the volume

texture. The approach taken is a standard approach to volume rendering that has

been around for years. The geometry for rendering the volume are "slices" of the

complete volume. The idea is to apply the volume texture onto cutting planes or

"slices." These slices can be of any orientation, but the Antenna object uses object

aligned or image oriented orientation of the cutting planes so that the cutting planes

are parallel to the axes of the volume of data. An example of slices aligned with one

single axis can be seen in Figure 3-2. There are however, three sets of these slices,

one for each axis of the Antenna object.

The advantage of having the cutting planes be axis aligned is that the imple-

mentation in the software is more straightforward while only costing a little bit of

rendering computation. Using the axis aligned cutting planes can lead to a "popping

effect" when the slicing axis changes. When this happens, it is possible that the

image intensity changes as the viewing angle may now be viewing a different number

of slices then at a previous viewing angle. While using axis aligned slices can create

small visual artifacts that may not exist with other alignments such as view angle

slice alignment, the simplicity of the implementation and lack of complex calculations
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Figure 3-2: Axis Aligned "Slices" for a Single Axis

is why the axis aligned method of orientation was chosen.

When the slices are rendered to the screen and alpha blending is enabled so that

more than the front slices are visible, an illusion is given so that it appears that the

whole volume of data is rendered to the screen. In reality the cutting planes form

a series of rectangular prisms with no data inside the "cells." The more frequently

sampled the volume data, the smaller the spacing between slices and the more realistic

the volume of data appears.

One down side to this rendering algorithm is that it requires a lot of texture

memory. Depending on the side of the data set and the size of the volume of space

to render over, the textures created and used could take up huge chunks of RAM.

On older, less capable machines, this could cause an extreme slow down or even out

of memory errors. Fortunately, most of the data sets and fields in which RFID Vis

will feasibly be run in will not even remotely begin to scratch the surface of these

limitations. The textures do however, still take up a large section of RAM currently;

this is an area which may need some optimizing.
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Figure 3-3: A Tag object that is "off" and "on"

3.2.5 MaterialBox Class

A MaterialBox is a Reflector that is a box filled with a specified material with specific

electromagnetic behavior. A MaterialBox represents a box filled with product that

are usually stacked together on pallets in warehouses and loading docks that are used

in a supply chain. A MaterialBox may be filled with predefined a BoxMaterial or

may be filled with a "custom" material that is specified by a few electromagnetic

constants. A MaterialBox is placed on a Floor and when dragged, the MaterialBox

moves along the axes of the Floor.

3.2.6 Tag Class

The Tag class represents a standard passive RFID tag. A Tag is attached to the

face of a MaterialBox upon creation and moves along the surface of the MaterialBox

when dragged. Other classes specify to a Tag the available electromagnetic power

around it. The Tag reads in the power given to it and compares that power level to

a specified minimum threshold power. If the read in power is above the minimum

threshold, then the Tag "turns on" and gives some indication to the fact that the

Tag is on. The visual difference between an "off" Tag and an "on" Tag can be seen

in Figure 3-3. The on/off state of the Tag may be toggled as the power read in may

fluxuate at being above or below the minimum threshold.
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3.3 Environment Management Classes

While objects that may be drawn to the screen make up a large portion of the I-GUI,

the I-GUI also consists of a collection of classes that manages the other classes, feeds

the other classes input from the user and passes information between classes. A list

of classes which are in the set of environment Management classes is given below.

o Scene Writer Class The SceneWriter class takes a "scene" from RFID Vis

and writes the scene to a file. All the objects in the scene are serialized and

written to the file whose filename is specified to the class and the objects are

written in order of the parent/child hierarchy.

o SceneReader Class The SceneReader class reconstructs a "scene" for RFID

Vis based on data read in from a file. All the objects in the scene are deserialized

from information read from the file whose filename is specified to the class.

o Packing Class The Packing class serves as the entry point to RFID Vis as well

ass interfacing directly with the Direct3D and DirectInput APIs. The Packing

class serves as a bridge between low level hardware and API issues and the

higher level issues specific to RFID Vis.

o SceneManager Class The SceneManager class manages everything about an

RFID environment "scene." It keeps track of different objects within RFID Vis

and serves as a bridge between the I-GUI and the Simulation Engine of RFID

Vis. The SceneManager class is the "brain" of RFID Vis.

3.3.1 SceneManager Class

The SceneManager class serves as the center of RFID Vis. It is in charge of "man-

aging" the RFID scene and acts as a bridge between the I-GUI and the Simulation

Engine. Most data that is passed through RFID Vis from class to class, object to

object is passed through the SceneManager at some point in time.

One priority of the SceneManager is to keep track and store the different objects

in a scene, so the SceneManager naturally has to store in a collection, all of the

PhysicalObjects in a scene as well as any other objects of special interest. When
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certain commands or updates are received, the SceneManager sends the appropriate

data to the appropriate places. For example, when the SceneManager gets a signal to

render the scene, it calls the render function of the appropriate objects while setting

the viewport to its appropriate size and setting many other parameters. While the

actual controls of how each object is rendered is placed down at the object level, most

of the other parameters such as setting coordinate systems, and priming the system

to be able to render the object falls to the SceneManager.

The SceneManager also passes information between different systems of RFID

Vis. The back end of RFID Vis runs simulations, but does not know when they

need to be run. The back end does not keep track of the algorithms and calculates

electromagnetic power. The SceneManager must check the environment and note if

a simulation needs to be rerun or if a new simulation has been requested. If either of

those states are true, then the SceneManager requests that the back end run a new

simulation with the specified parameters.

Many of the systems that exist in RFID Vis were developed to accomplish a

certain task or a collection of tasks. These systems are unaware of the existence

of other systems that may exist. This makes the implementation of RFID Vis as a

whole behavior very modular which allows for future additions to RFID Vis to be

easier to make because systems have less dependencies on already existing code. Since

there are less interdependencies between existing code, extending RFID Vis requires

minimal knowledge of the existing implementation of the system.

3.3.2 Other Environment Management Classes

The SceneManager class is the only class presented in detail here as the other envi-

ronment management classes are sufficiently described in the sentences found in their

listings earlier.
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Chapter 4

Analysis of the I-GUI

The I-GUI has many modules which could be implemented in a variety of ways. This

section will discuss the advantages and disadvantages of the current implementation

as well as analyze the effect that certain parameters have on the speed of RFID Vis.

4.1 I-GUI Usability

A large portion of the I-GUI consists of the user interface in which the user directly

interacts with. One of the key features of the user interface is the customizability of

the key bindings with regards to Camera movement. While the default key layout

for the different Camera movement commands are very well placed, the user has the

option to changing the key bindings of the different movement commands so that the

key layout may be what the user prefers. This customizability makes the Camera

movement controls very user friendly. The Camera movement controls have a slight

learning curve as they take a few minutes to grasp. The control are very analogous

to standard first person shooter games like DOOM or Quake's commands, so if the

user has played those games, the learning curve is small. While the controls are

decent and easy to manipulate once the user gets the hang of them, they still leave

something to be desired as on a few occasions to change the Camera position a very

small distance to get a better view of the scene, the user may need to go through

a long series of commands to change the position and viewing angle slightly. Also,
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the Camera movement commands have a set minimum amount they can move in a

particular direction. If the user wants to move less than this amount, it is impossible

for the user to do this. While the minimum is relatively low and in general does not

cause problems, it may still cause minute problems. The Camera movement in RFID

Vis is easily bound to any key which allows the user to specify a particular key setup.

The Camera controls are a major way in which the user interacts with RFID Vis,

but not the only way as the user can also manipulate objects in the environment. The

method that the user have for manipulating the objects involves the use of the mouse.

The user may left click an object to select it, left click and drag an object to activate

the object's drag command, double click to zoom to the object, or right click to bring

up the object's properties dialog. These commands work well and are pretty standard

and easy to understand, unfortunately, unlike the Camera movement commands, the

object manipulation commands cannot be freely bound to any input device; they are

permanently bound to the mouse. The left click will always be the selection and drag

button, while the right click will always bring up the object's properties dialog. The

controls to manipulate objects are simple, but unfortunately, the buttons to control

the object cannot be changed, so the user is stuck with the default buttons for these

controls which limits the customizability of RFID Vis.

Another problem with the object manipulation commands is that every object

has a different drag command and a different properties dialogs and it may take

the user a few uses to memorize how the different objects react when dragged and

what properties the different objects have which may be manipulated. While there

are a relatively low number of unique object types, there does not exist a standard

set of commands or actions. One object may respond to a drag by adjusting its

position based on the Camera movement along certain axes while another object may

be moved along a completely different set of axes or the drag command for a given

object may be to rotate the object or some other command. The problem is that

there is not a standard set of commands, so the user does not really know what to

expect and must experiment with the objects to figure out what their drag commands

are and what properties can be adjusted through the properties dialog. This problem
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of inconsistent commands is not a large problem, but it does make the user have to

experiment a bit to become accustomed to the different behaviors of the different

objects.

The properties dialogs which are brought up for each object via right clicking

on the object are also a cause for little concern. The dialogs are relatively straight

forward, but the correct type of data to enter into some of the edit boxes is not that

straight forward. Some properties are based on numbers and these numbers can be

floating point numbers or integers depending on the object and the property. The

problem is that the edit boxes allow the user to enter any sort of data and only upon

clicking the "OK" button does the data get checked for proper data type and proper

data. A better feature would be to indicate to the user what type of data to enter

into the edit boxes, but that feature is not available in RFID Vis. This causes the

user to have to experiment as to which properties take integer numbers and which

properties take floating point numbers. While this is not a large problem, it is a

slightly aggravating aspect of RFID Vis.

Overall, the user interface of RFID Vis is easy to use and intuitive which makes

it easy for the user to quickly create and manipulate RFID environments for use in

RFID Vis, but the user interface is not without its problems. While some commands

may freely be bound to any key or input device, other commands are permanently

bound to mouse input. Also, objects may behave differently to different commands

and there is no indication as to how the objects react, so the user is left to experiment

to determine the behavior of different objects. The same occurs with objects' property

dialogs as there is no clear indication which properties require integer numbers and

which properties require a floating point number; the user is left to experiment with

the different properties to find out which data types are required by the different

properties. These flaws with the user interface are small as most of the flaws are

easily worked around with a few minutes worth of experimenting with RFID Vis, but

they are flaws nonetheless.
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4.2 Analysis of Electromagnetic Power Rendering

While a large portion of the I-GUI is the user interface, another portion of it is the

rendering the different objects in an RFID environment. While rendering most of

the objects is straight forward, the rendering of the Antenna object, as mentioned

in Section 3.2.4, is slightly more complicated as the rendering of the electromagnetic

power uses a volumetric rendering procedure to produce useful and good looking

results. The volumetric rendering algorithm used in rendering the electromagnetic

power has many parameters which affect the rendering speed of the algorithm as well

as how the electromagnetic power appears to the user. This section analyzes and

discusses the effects that altering a few parameters has on the underlying algorithm's

speed and results.

4.2.1 Texture Slices

The volumetric rendering algorithm described earlier uses a voxel grid and axis-

aligned slices when rendering the electromagnetic power. The axis-aligned slices are

aligned along the three major axes of the Antenna object, slices for a single axis may

be seen in Figure 3-2, and there exists a constant which defines the number of slices

which are used along each axis. The higher the number of slices, the more planes and

textures are required to be drawn which produces a better looking result because the

planes sample the data. The higher the number of planes, the more often the data

is sampled and it becomes harder to recognize the fact that there are distinct planes

being rendered to the screen, the region of space looks more like a more continuous

set of data. Therefore, the higher the number of slices per axis, the better the data

set looks, but unfortunately more geometry is required to render the electromagnetic

power which causes the algorithm to slow down.

A balance between speed and looks is a must and to find a good balance, a to find

an appropriate balance, some tests and analyses needed to be run. A simple RFID

environment consisting of solely an Antenna object was created and the number of

slices was altered and the average number of frames per second were recorded; the
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Antenna's type was that of a patch antenna. These tests were all run on the same

machine with the same Camera placement to remove many inconsistencies. The

reason for having only an Antenna object in the environment is to ensure that most

of the computation time is spent rendering the power and not in any electromagnetic

simulation. One simulation should be run when the Antenna is first inserted, but

since the Antenna will not be moving, any computation spent after that will solely

be for rendering the electromagnetic power.

The rendering algorithm has a linear complexity dependence on the number of

slices used per axis. Increasing the number of slices per axis by one requires the

algorithm to then draw twelve more triangles to the screen as there are two triangles

per plane, two planes per slice and three separate axes to add slices to. Adding

additional slices also requires a bit more computation to texture map the slices as

well as alpha blend them all together. If the rendering algorithm is not using a

volume texture, than each additional slice also requires an additional texture to be

created and stored which uses a bit of computation and storage space. For a given

number of slices per axis, s, the volumetric rendering algorithm used renders 3s slices

or 12s triangles to the screen. There may be some additional computation or storage

required for each slice, but these constants can largely be ignored. The volumetric

rendering algorithm has a linear complexity dependence on the number of slices, s,

so the algorithm is said to be of the order 0(s).

All tests were run on a Pentium 4 2.0 GHz machine running windows XP profes-

sional with 1 GB of RAM and an nVidia GeForce FX 5200 video card. The results

of the volumetric rendering slices test can be seen in Table 4.1 and a graph of the

results can be seen in Figure 4-1. As expected, the rendering time for a given frame

increases as the number of slices increases because there are more geometries to ren-

der and more textures to compute. Figure 4-1 shows that the growth is roughly linear

with the number of slices which is consistent with the order of growth dependence

mentioned earlier.

The time to rendering a frame is not the only important aspect considered when

deciding on the correct number of slices to use, the data rendered also needed to
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Number of Slices Milliseconds to Render

8 26.72
16 43.61
24 59.73
32 76.98
40 93.72

Table 4.1: Effects of the Number of Slices on Rendering Times

Rendering Times for Different Volumetric Slice Values (Single Antenna Only)
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Figure 4-1: Graph of Rendering Times for Different Numbers of Slices
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Figure 4-2: Electromagnetic Power Rendering with 8 Slices per Axis

look decent. A screenshot of the rendered electromagnetic power using only 8 slices

per axis can be seen in Figure 4-2 and a screenshot using 32 slices can be seen in

Figure 4-3. One can see that when using only 8 slices, the results may be rendered

to the screen quickly, but the data loses a sense of being a whole volume as it is

fairly obvious that planar slices are rendered to the screen. As the number of slices

increases, the use of planar slices becomes less apparent and the data looks more like

a whole volume. I then decided that using 24 slices per axis looked sufficiently like a

whole volume and had a decent rendering time, so a value of 24 slices per axis was

used. A screenshot using 24 slices can be seen in Figure 4-4.

4.2.2 Texturing Methods

The number of slices used in the volumetric rendering of the electromagnetic power

affects the speed of the rendering process more than most other parameters, but

there are other parameters which also affect the speed of the rendering. One of these

parameters is the texturing method used when rendering. As mentioned before, the
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Figure 4-3: Electromagnetic Power Rendering with 32 Slices per Axis

Figure 4-4: Electromagnetic Power Rendering with 24 Slices per Axis

56

.... .. .......



actual geometries rendered to the screen are a collection of parallel two dimensional

planes, but to have these planes be colored correctly, the electromagnetic power data

is mapped to either a three dimensional volume texture, or a set of two dimensional

textures and the textures are then mapped to the geometries themselves.

The reason for having different texture types (the volume texture or traditional

set of two dimensional textures) is that not all video hardware available on the market

have the capability to use a volume texture, so for RFID Vis to be compatible with

all sorts of hardware, RFID Vis dynamically switches between using a three dimen-

sional or set of two dimensional textures based on the current hardware being used.

Although RFID Vis automatically defaults to using a volume texture if applicable, it

is possible, by changing some source code, to force RFID Vis to use a certain type of

texturing method.

Using the volume texture, creates a very large texture in which the slices have

three dimensional texture coordinates which map the texture to the slices, so each

vertex requires three texture coordinates and the volume texture itself requires a large

amount of memory to be stored. On the other hand, using two dimensional textures

requires only two texture coordinates for each vertex, but unfortunately the two

dimensional texture approach requires that three two dimensional textures are stored

for each slice (one per axis) and some of the textures overlap which causes the same

information to be stored on two or three textures instead of a single texture. Using

two dimensional textures seems like a slightly inferior solution, but two dimensional

textures have been in existence for quit some time and the hardware for mapping two

dimensional textures has been highly optimized while volume textures are relatively

new and the graphics hardware may be unoptimized for using volume textures; each

method has its advantages and disadvantages.

To show the affects of the different texturing methods on the rendering speed and

look of the rendered electromagnetic power, the same test environment was used that

was used when testing the affect of using different numbers of slices which involved

solely an Antenna object. Using this test file, the average milliseconds needed to

render a frame were recorded using the two different texturing methods. The results
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Texturing Method Milliseconds to Render
Volume Texture 76.98

Set of 2-D Textures 77.14

Table 4.2: Effects of the Texturing Method on Rendering Times

of the test can be seen in Table 4.2.

The difference in speed between using the two different texturing methods was

negligible. The difference may be increased or even decreased depending on the

computer hardware and what video is used, but overall, the effect of changing the

texturing method used was negligible. RFID Vis uses a volume texture if the hardware

supports it and a set of 2-D textures if it does not.

4.2.3 Summary of Electromagnetic Power Rendering

Overall, the rendering of the electromagnetic power, plays a large role in the overall

speed of RFID Vis. Certain properties of the volumetric rendering algorithm affect

the speed of the algorithm as well as the general look of the power visualization.

There exists a tradeoff between rendering speed and how the electromagnetic power

appears to the user as a better looking visual requires more geometries on the screen

which slows down the rendering process. RFID Vis is balanced such that, even on low

level hardware, the electromagnetic power looks decent while keeping up a reasonable

frame rate while rendering a moderately complex environment.

58



Chapter 5

The Simulation Engine

The Simulation Engine works in a quite different manner than the I-GUI. While the

I-GUI is seen by the user and receives input from and displays data to the user, the

back end is never seen by the user. While the back end may respond indirectly to user

input, the user has little to no knowledge of the Simulation Engine and its workings,

just solely of the results it produces. The Simulation Engine of RFID Vis produces

the results that are eventually shown to the user; the Simulation Engine runs the

simulations for RFID Vis.

5.1 Introduction to Electromagnetics Engines

The definition of a software engine is a piece of software that encapsulates a large

amount of computation, but cannot be used without some kind of front end. So,

an electromagnetics engine is an engine which calculates, through a large amount of

computation, a result that simulates the behavior of electromagnetic phenomena.

What results are ultimately computed and how they are computed are part of the

engine design itself. Some engines calculate a myriad of data, while other engines

may produce a smaller number of results. Another aspect of an engine is flexibility.

Certain engines may produce different results based on formal parameters that are

passed to it. Also, even if engines produce the same type of or very similar results,

the amount of computation and ways of computing the results differ from engine to
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engine as different engines have different algorithms designed to compute their results.

In the end, all electromagnetic engines are similar as they all do a large amount of

computation to produce results based on electromagnetic principles. The difference

in electromagnetic engines comes with the flexibility of the engine, the number of

results, and the speed and method in which the results are calculated; algorithms,

their design and implementation, are the fundamentally different backbone behind

different engines.

5.2 Previous Work on E&M Algorithms

Electromagnetic algorithms have been researched and developed for many years. At

the heart of every electromagnetics algorithm, lies Maxwell's equations. Ultimately,

all of electromagnetics is based on the theory and use of these equations. Electro-

magnetic algorithms to be computed via standard computers are mainly focused into

two main groups which implement different numerical methods for Maxwell's equa-

tions: exact methods and approximate methods. Each numerical method has had

algorithms implementing various aspects of the numerical method [19].

5.2.1 Exact Numerical Methods

Exact methods take Maxwell's equations and implement them "exactly." The diffi-

culty with implementing the equations is that they involve differentiating functions.

While derivatives are nothing new, closed forms of functions cannot be represented

by computers very well. So, instead of having closed form derivatives as solutions,

Maxwell's equations are broken down to difference equations which can be solved via

multiplication and division over small steps in space or time. Most of these methods

are Volume Methods which express the equations over a whole volume to be studied

such as Finite Element Time Domain methods [17]. A more local methods break the

equations down to variation formulas locally over a volume which is decomposed into

small cells, an example being Finite Difference Time Domain method [16]. Another

type of exact numerical method is a boundary method type of implementation, such as
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the Method of Moment, where the equations are taken into consideration at bound-

ary conditions so that wave equations may be deduced from Maxwell's equations.

Overall, method of moments excels at analyzing unbounded radiation and perfect

electric conductors while finite element techniques excel at computing inhomogenous

configurations [6].

No matter what the implementation however, the exact numeric methods take the

exact form of Maxwell's equations and produce exact results. The problem with exact

numeric methods comes in setting them up for use and their complexity. Exact nu-

meric methods' complexity grows exponentially with frequency, so as the application

for using the exact methods calls for higher and higher frequencies, these methods

grow more and more complex and other methods may be better suited for the task.

5.2.2 Approximate Numerical Methods

As the application calls for higher and higher frequencies, the complexity of the exact

numerical methods increases dramatically and their use becomes unrealistic. In these

high frequency applications, approximate numerical methods become a more feasible

way of producing accurate results. [19]. Also, at high frequencies, the field diffraced

by a scattered at a given point becomes less dependent on the field at every point

on the scattering surface but of point in the general vinicity of the scattering object.

This local phenomenon lends itself quite well to geometric algorithms [2].

One key way of classifying approximate numerical methods is through comparing

the size of the "obstacles" in the environment, D, and the wavelength of the elec-

tromagnetic waves, A. When D < A, the electric field can be approximated by a

static solution to Maxwell's equations, but when D > A asymptotic methods based

on Fermat's principle and geometry such as ray tracing techniques can be of use. One

last case comes when D ~ A, when this occurs, more rigorous and less approximate

solutions are necessary then the above mention solutions.

Most of the approximate numerical methods, such as those mentioned above, use

wave equations as approximations to Maxwell's equations. Using the wave equations

allows for the methods to substantially less complex at higher frequencies, but also
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produce only approximate results. The level of approximation varies on the method

and the scenario in which the methods are used, but the results are still approxima-

tions nonetheless. While the exact numerical methods stem from Maxwell's equations

themselves, most of the approximate numerical methods stem from the use of wave

equations and the use of plane wave functionality of electromagnetic waves and their

superposition.

5.3 Challenges with Real-Time

One tough design issue with developing the electromagnetic engine of the simulation

is that at some point, the engine needed to be able to run simulations in "real-

time." An algorithm needed to be implemented that would be able to compute

results quickly within an acceptable range of accuracy [12]. More accurate or more

plentiful results could be computed at some later point if desired by the user. The

engine needed a "real-time" algorithm so that users would be able to manipulate the

RFID environments in a guided manner, so that the users would be able to note

qualitatively the effects that changes to the environment are causing.

"Real-time," in this case, simply means that the engine needs to be able to run

a full simulation of the RFID environment quickly enough so that the calculation of

and rendering of the resultant data can be accomplished within a reasonable frame

rate. To accomplish this, the engine must use an algorithm that requires very few

calculations and/or one that has a few more calculations but will remain at a close

to constant running time based on the number of objects in the environment. The

real-time algorithm must also produce fairly accurate results as inaccurate results

are probably not worth the time spent calculating them. The major challenge with

developing anything real-time is treading the fine line between accuracy and speed

and figuring out what is the best combination of the two. Developing a "real-time"

algorithm that provides both the accuracy needed and the speed required is the heart

of the difficulty in developing the electromagnetic engine.
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5.4 Simulation Engine Goals and Design

Designing an engine is not an easy task and the electromagnetics engine used in RFID

Vis is no different. The Simulation Engine had many goals in which needed to be

met. The first goal was to decide on a good result to calculate and have the result be

the most useful and relevant piece of information about the system. Once a result to

calculate was decided upon, the next goal of the engine was to think of a good and

quick algorithm to use for the real-time simulations run by RFID Vis. The algorithm

needed to be relatively slow order of growth and running time, but produce fairly

accurate results. The last goal of of the engine was for it to be readily and easily

extendible so that many new algorithms which have yet to be thought of may be used

by the user with minimal changes to the existing code base. This would allow users

to vary their selected level of accuracy and speed.

5.4.1 Calculation of Electromagnetic Fields

One of the first design decisions made when designing the electromagnetics engine of

RFID Vis was deciding and designing what results would be calculated and computed

by the various algorithms. At first glance, since RFID Vis is to be used to visual

electromagnetic power, calculating the power at each point radiated by each antenna

would seem a logical choice of a result to calculate. A problem arises with multiple

antennae though. The magnitude of electromagnetic power does not add together.

Power, much like electric fields and magnetic fields, is a vector quantity and has a

magnitude and direction. So, calculating the magnitude of this vector and storing

only the magnitude of the power would not produce accurate results for multiple

antennae.

Storing the magnitude of the power only is not sufficient. The next step up which

would take slightly more space would be to store the Poynting vector at each given

point, instead of the magnitude of that vector. This effectively triples the space

required to store the data, but would allow multiple antennae to add their Poynting

vectors together to achieve some semblance of superposition. Unfortunately, just
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using the Poynting vector is insufficient for antenna superposition. Many electric and

magnetic fields that are not the same may produce the same Poynting vector even

though the fields themselves may be rotated by 90 degrees. So, storing solely the

Poynting vector at each point may produce incorrect results as different polarizations

may produce the same Poynting vector.

The next logical step back is to store the electric field at each point. There is

a specified relationship between electric and magnetic fields, but this relationship

depends on the dielectric properties of the media in which the specified fields are

traveling in. Since the electric and magnetic fields at a specified point in space may

be the result of the fields traveling through any number of different materials, the

magnetic field at a specific point cannot be derived solely from the electric field at

that point.

Ultimately, it was decided that at each point, both the electric field and the

magnetic field at that point would be stored. Therefore, the parts of the magnetic field

at a point that are caused by different materials may be taken into full account. Also,

since calculations on the electric and magnetic fields may be easier if the quantities

are represented as complex quantities, the electric and magnetic fields were stored as

complex quantities. Therefore, at each point of interest where the electromagnetic

power (or any other calculation for that matter) may want to be calculated, an

Antenna stores at that point four three dimensional vector quantities: one to store

the real portion of the electric field, one to store the imaginary portion and two more

to store the real and imaginary segments of the magnetic field. In doing this, the

Simulation Engine is able to produce the correct results with multiple antennas while

simplifying calculations at the cost of additional storage space.

5.4.2 Engine Design

While a lot of thought and planning needed to go into deciding what values to store

and calculate, most of the design work for the back end was how to modularize

different aspects of the engine to meet specific goals. The electromagnetics engine

was designed to allow different algorithms to be selected and added with minimal
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changes to existing code bases.

To achieve this goal, the Simulation Engine needed to be divided into two main

systems. The first system responds to user commands, resets computation and gen-

erally prepares RFID Vis as a whole to be ready to run a simulation with specific

parameters. Once the back end is properly prepared to run a simulation and a speci-

fied algorithm is chosen, then the other system is in charge of the computation itself.

The second system, calculates the electric and magnetic fields for all antennae over

their specified volumes of space. The system also updates certain dialogs to show the

progress of a given simulation. These two systems, the preparation and the calcula-

tion systems are kept fairly separate with minimal information being passed between

the two systems.
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Chapter 6

Simulation Engine Architecture

and Implementation

The Simulation Engine is made up of a few systems working together. These systems

are an "engine" system which manages the simulations and prepares RFID Vis to run

simulations and a computation system which is strictly in charge of calculating given

quantities for each antenna for a given RFID environment.

6.1 Engine Components

The "engine" system of the Simulation Engine is made of many smaller modules

which each have a particular task. These modules working together allow the engine

system to respond to user input, create algorithms based on user specifications, and

create dialogs to give updates to the user as to the progress of the simulation. The

different modules are described below.

1. EMEngine Class The EMEngine class is the center of the Simulation Engine.

It handles most of the user commands and passes information to and from other

classes.

2. RunSimulationDialog Class The RunSimulationDialog class responds to a

user command and displays to the user a dialog that allows the user to start a

new simulation and adjust certain parameters of a simulation.
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3. SimulationProgressDialog Class Visually indicates to the user the com-

pletion percentage of a given algorithm or process.

4. EMAlgorithm Class The EMAlgorithm class defines a specific interface in

which the algorithm computations may be executed. The EMEngine class may

use this standard interface to run computation for an given algorithm. The

EMAlgorithm function is abstract and future algorithms must extend the class.

6.1.1 SceneManager Class

While the SceneManger class was described in most of its detail in Section 3.3.1, the

class has a small hand in the operations of the Simulation Engine as well. Mainly, the

SceneManager just passes lists of objects to the different Simulation Engine classes

when they are needed. The Simulation Engine runs simulations based on specified

RFID environments, it is up to the SceneManager class to ensure that the environment

on which the Simulation Engine is running simulations on is the same environment

that the user has created, maintained and is currently viewing. If this is not the

case, the the data that the I-GUI is presenting to the user and the data which the

Simulation Engine is computing are meaningless as there is no correlation between

the two.

6.1.2 EMEngine Class

The EMEngine class acts is the center of the back end and is the class with the most

dependencies on other classes. The EMEngine class is the most top level class of the

back end is is the closest to receiving user commands.

The EMEngine class has one simple function, to start a simulation for a given

RFID environment. How is a RFID environment defined with respect to the com-

putation components? An RFID environment is defined as a collection of Antenna

objects and a collection of Reflector objects. The Antenna objects radiate the elec-

tromagnetic power into a volume of space, while the Reflectors may affect the power

in a given volume of space. Therefore, the StartSimulation function of the EMEngine
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class takes as its parameters a Windows window in which to display progress dialogs,

an algorithm to handle the computation of the simulation, a collection of Antenna

objects, and a collection of Reflector objects.

While the concept of the function, to start a simulation, and the parameters of

the function, an algorithm and an RFID environment are rather straightforward and

simple, the inner workings of the StartSimulation function are a bit more complicated.

When starting a simulation, the EMEngine creates a SimulationProgressDialog to

display to the user when non-real-time algorithm is being run. This dialog displays a

progress dialog which slowly fills indicating how far along the total computation the

current simulation is.

Once all the dialogs and parameters are initialized, the function begins computa-

tion. The function begins by spawning a new thread so that there are two threads

running. The newly spawned thread runs the algorithm and takes care of the cal-

culations. The other thread displays a progress dialog which has a button in which

the user may cancel the currently running simulation and listens for user input. The

computation thread updates the progress dialog to give the user some visual feedback

as to the total progress of the simulation. The display thread waits until either the

user cancels the simulation or until the simulation computation is completed.

The EMEngine class is able to start and run a simulation for any given RFID

environment using any given EMAlgorithm. This flexibility allows for quick changing

of algorithms and environments without requires the allocating and freeing of large

chunks of memory.

6.1.3 RunSimulationDialog Class

The RunSimulationDialog class maintains and controls a dialog which is displayed to

the user before any simulation is even begun. When the user selects to run a non-

real-time simulation, a RunSimulationDialog is created and displayed to the user.

The RunSimulationDialog controls and manages the data that is necessary to run a

simulation. The class keeps track of algorithm type, specified algorithm parameters,

and other simulation specific data. This data, is gathered by the SceneManager class
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and then passed to the EMEngine when a simulation is started. The RunSimulation-

Dialog is used to gather user input, translate that input into simulation related data,

then present that information to any class who requests it.

6.1.4 EMAlgorithm Class

The EMAlgorithm class is an abstract or virtual class which is used as a super class

to inherit from. The EMAlgorithm class defines the general set of functions which

all algorithms implemented in the future must adhere to. Each algorithm must im-

plement a Computation Function. This function handles all of the computation for

a given algorithm. Each Computation Function must takes as a parameter a set of

AlgorithmParameters. The AlgorithmParameters structure contains a collection of

Antenna objects, a collection of Reflector objects and a SimulationProgressDialog.

The Computation Function calculates the power at each voxel vertex for every

Antenna and updates the progress dialog. The actual implementation of the calcula-

tions and how the progress dialog is updated is controlled by the algorithm itself. As

new algorithms are implemented, the EMEngine does not require any changes as the

interface for the Computation Function remains the same across all EMAglorithms.

6.2 Ray Tracing Algorithm Components

While the design and the structure of the "engine" portion of the Simulation Engine

allows for a number of algorithms to be used to calculate the power in an RFID envi-

ronment, but the actual work horses of the back end are the collection of algorithms

available to perform the computation. The other engine components hold everything

together and pass around the proper information, but the algorithms perform most

of the work.

This subsection describes some of the modules that go into creating the algorithms

that are available in RFID Vis. Currently, only one algorithm is available for use which

is based on ray tracing but in general is an application of the Geometrical Theory of

Diffraction. This method is a solution of Maxwell's equations which is applicable in
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asymptotic regions of frequency [11].

6.2.1 ElectricRay Class

The first and right now only algorithm available for use is an algorithm which is a ray

tracing derivative. The concept or ray tracing has been around for manner years as

a rendering mechanism for computer graphics and for use in other applications. The

algorithm implemented borrows heavily from the ray tracing concept and is made of

a few different modules, the first being the concept of an electric field "ray".

The ElectricRay class defines the structure and use the "rays" used in the ray

tracing algorithm. Each ray represents a electromagnetic plane wave which is static

in time and has no time dependence. A ray is defined by a few parameters and has

many functions. A ray has an origin and a destination both given in world space

coordinates. The origin and destination serve as starting points and ending points

for a given ray and define the direction in which the ray travels. The ray is said to

have a length which is defined to be the length of the vector between the destination

and origin. The amplitude of the electric field at the ray's origin is given by a

parameter, EG. An ElectricRay also travels in a specified medium and has traveled a

specified distance from its initial radiating source. The ElectricRay class also has a

parameter to indicate the frequency of the electric field. These parameters define an

ElectricRay and an ElectricRay has functions which allow the setting and retrieval of

these parameters.

There are also functions that an ElectricRay has which allows for easy retrieval of

particular information. An ElectricRay has a function, getMagnitudes which takes as

parameters, a point in world space coordinates, and pointers to two different floating

point numbers which represent the real and imaginary portions of the electric ray. An

electric field, can be written as a complex quantity with two different components,

a real component, Er and an imaginary component, E. The total electric field is

then given by

E = E,+ iE (6.1)
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The vectors E. and E$ both point in the same direction, so equation 6.1 may be

rewritten as

E = (Er + zE7) (6.2)

where d is a unit vector indicating the polarization direction of the electric field. The

total magnetic field can then be calculated by the following equation

H = R (Er + iEj)h (6.3)
Tj*

where y is the intrinsic impedance of the medium in which the ElectricRay is traveling

and h is the polarization direction of the magnetic field. The scalar quantities, E,

and Ei, are stored in the floating point numbers which are passed in as parameters to

the getMagnitudes function. How these quantities are calculated is discussed below

[10].

As discussed earlier, an electric field may be thought of as a complex quantity to

facilitate calculations. While there are many forms and equations that the electric

field may take, the electric field at a given point in space caused by an ElectricRay

has the form of

E = Eoeazei"Z6 (6.4)

where z is the length of the projection from the point in space onto the propagation

direction of the ElectricRay and 8 is the polarization direction of the ElectricRay. The

value, a is known as the attenuation constant of a given medium and Q is known as

the phase constant in a medium. The equations for computing a, 0, the wavelength

of the ray, A, and the intrinsic impedance of a medium, q, are given below [1].

{~ -) 1/2
Ce W f-c 2 +1 (6.5)
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rI (6.7)

2ir
A = (6.8)

To find the real and imaginary portions of the electric field, the Euler equation for

a complex exponential is used so that the results stored into the floating point num-

bers passed as parameters to the getMagnitudes function. Using the form of equation

6.2, the two components of the electric field are

E, = EOe"z cos(3z) (6.9)

Ei = Eoe" sin(z) (6.10)

Therefore, the way that the getMagnitudes function computes the real and imag-

inary components of the electric field represented by the ElectricRay class is it first

converts the vector parameter that is passed to it, F, and converts this to the pro-

jection of that vector onto the ElectricRay's propagation direction. This projection

is stored in some temporary variable, z, and z is used in equation 6.9 and equation

6.10. The results of the equations are then stored in the floating point parameters

that are passed to the function only if z is greater than zero and less than the length

of the ElectricRay, otherwise, the real and imaginary portions of the electric field are

stored as zero.

An ElectricRay also has a getPolarization function which retrieves the direction

of polarization of an ElectricRay at a specified point in space. The parameter of

the function is a point in space given by the vector IF and the resultant polarization

direction at this point is stored in the structure passed in as the second parameter

to the getPolarization function, polar. This function is virtual in the definition of
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ElectricRay as there are different polarization types for an electric field, circular

or linear. Currently, only a linear polarized ElectricRay known as a LinearRay is

implemented. A LinearRay stores the same polarization direction in the parameter

polar no matter point in space is passed to the function as the parameter, E.

Another method that an ElectricRay has is the getSpreadingLoss function. This

function takes no parameters and returns the amount of spreading loss in dB of the

ElectricRay based on how far the ray has traveled. The equation used to compute

the spreading loss, LD, in dB is given below

LD = -20 log 47D (6.11)

where D is the distance traveled from the radiating origin and A is the wavelength

of the ElectricRay [7]. Since the spreading loss is a loss of power, its result is always

negative. Given these functions and parameters, a ray tracing algorithm may use the

ElectricRay class to model the effects of an electric field.

6.2.2 EMRayTracing Algorithm

The ElectricRay class laid the ground work for the rest of the ray tracing algorithm

by allowing a simple model of an electric field plane wave. The EMRayTracing class

is an EMAlgorithm that implements the ray tracing derivative algorithm.

The idea of ray tracing is nothing new in computer science. At first, ray tracing

was strictly a technique used for image synthesis in computer graphics. Light rays

would eminate from the scene's camera and be cast through each pixel on the screen

and the color of that pixel determined by the ray casting. The concept can be carried

over into other fields besides computer graphics however. Since the frequency used in

UHF RFID is fairly high, this allows for the radio propagation process to be modelled

as rays [21].

The computation function for the EMRayTracing algorithm, like all computation

functions, is passed a collection of Antennas, a collection of Reflectors, and a progress

dialog. The algorithm starts by looping over every Antenna object. For each Antenna,
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so that each Antenna is treated as an independent radiator, the algorithm retrieves

the location of the different voxel grid vertices, clears the electric and magnetic fields

stored at that vertex and casts an ElectricRay from center of the Antenna towards

that point in space. Although the ElectricRay may be cast in the direction of a

particular vertex in the voxel grid, it will not always reach that destination.

When an ElectricRay is initially cast, it starts with a distance traveled of zero, it

travels in air (as opposed to another medium), and has a specific starting amplitude

based on the type of antenna that is radiating it. Each ray starts with an initial ampli-

tude that is some constant, EFCC. This constant is then multiplied by the directivity

of the Antenna object for the given direction in which the ElectricRay is traveling.

This new scaled constant is then set to be the ElectricRay's initial amplitude, E0 .

The ElectricRay is then begins its casting towards its original destination using the

CastRay method which takes an Antenna and a LinearRay as parameters, a collection

of Reflector objects as a third parameter, and finally takes a integer recursion level

as a fourth parameter. Since a circularly polarized ray may be constructed using two

offset linearly polarized ray, the CastRay method takes a linearly polarized ray as a

parameter instead of a general ElectricRay.

The CastRay function is a general function that casts an already constructed

LinearRay and is the heart of the EMRayTracing algorithm's computation function.

When an LinearRay is cast, a ray-sphere intersection is computed with between the

ray and a maximum bounding sphere of each Reflector. Since a ray-sphere intersec-

tion is easily computed, as it takes roughly six multiplication instructions to compute

the intersection point, this intersection test finds out quickly if a ray is close to inter-

secting with a Reflector [5]. If the ray-sphere intersection results in an intersection,

a more accurate intersection function is used as a generic ray intersection method is

called on the Reflector itself. If the ray intersects with the Reflector, then the time

to intersect, t is then stored into a temporary variable if it is the smallest time to

intersect over all the Reflectors tested so far. The time to intersect, t, is defined as

the point of intersection of the ray can be calculated by the following equation:
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P 0 + t(O)(.2

where -is the point of intersection, 0 is the ray's origin, t is the intersection time,

and ? is a unit vector in the direction of the ray's propagation direction.

After all the intersection tests are calculated over all the Reflector objects, three

temporary variables have updated values. The first variable, tint, is the minimum

time to intersect the closest Reflector object. A boolean variable, intersect indicates

if the ray does intersect and Reflector object. Finally, a temporary Reflector object,

mediahit, holds the Reflector object that the ray intersects with first, if any. If the

ray does not intersect a Reflector, the time to intersect is longer than the ray's length,

the time to intersect is less than zero, or the current recursion depth of the castRay

function call exceeds a threshold, then the ray is computationally finished. When a ray

is computationally finished, the ElectricRay affects the electric and magnetic fields at

the point of its destination. First, the real and imaginary portions of the electric field

of the ElectricRay at the ray's destination are retrieved from the ray and stored into

variables, Er and Ei respectively. The polarization of the ray is also computed at the

ray's destination and stored in a vector, and its magnetic polarization is stored in

a vector, h. Therefore, the electric field caused by the Electric Ray at its destination

point is given by equation 6.2 and the magnetic field can be calculated using equation

6.3. Each of these fields however is then scaled by the spreading loss of the ray at

it's destination; the spreading loss is easily computed using the getSpreadingLoss

function. The electric and magnetic fields caused by the ElectricRay are then added

to the electric and magnetic fields which are already stored at the ray's destination.

If the ray does intersect with an Reflector and the other criteria for the ray being

computationally finished are not met, then the ray does intersect the Reflector and

more computation is necessary. When an ElectricRay intersects with a Reflector

object, two new ElectricRays are constructed due to the fact that when an electric

field plane wave hits a boundary between two different media, a portion of the wave

is reflected back from the media boundary while the rest of the wave is transmitted
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Figure 6-1: Incident Wave Reflecting Off of Reflector Surface

through the boundary and into the different medium. The two newly constructed

ElectricRays represent the reflected and transmitted portions of the wave after it

impinges upon a boundary between two different media. How these new rays are

constructed is discussed below.

To construct the reflected portion of the wave, the first step is to compute the

ray's origin and destination. The origin of the reflected wave is the intersection point

between the original ray and the Reflector object, mediahit, which can be computed

using equation 6.12. Computing the reflected ray's destination is a little trickier.

When an electromagnetic wave impinges upon a boundary between two different

media, the reflected portion of the wave is reflected back at an angle which is equal to

the wave's incident angle with respect to the normal vector of the reflective surface.

The angle of incidence, 6, is equal in magnitude to the angle of reflection, 0,. The

geometry of the incident and reflected waves can be seen in Figure 6-1 [10].

Once the angle of reflection is known, then the reflected ray's new destination

may be computed. Using equation 6.12 and having the parameter t being equal to

the original ray's length minus the original ray's distance to intersect, tint and having

the ray's direction being the newly computed reflection direction, the reflected ray's

new destination is computed. The length of the reflected ray is equal to the length of

untraversed portion of the original ray's length, therefore the length of the reflected
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ray and the length that the original ray had to travel to intersect with the Reflector

sum to the total length of the original ray.

The next steps in constructing the reflected ray are to set the medium in which

it is traveling, to set its initial amplitude, and to set its polarization directions. The

reflected ray travels in the same medium that the original ray was traveling in, so

the medium is simply retrieved from the original ray and then that parameter is set

for the reflected ray. The amplitude of the initial ray at the intersection point may

be calculated by using the getMagnitudes function with the total amplitude, E(i),

being the magnitude of the two dimensional complex vector with components given

by the real and imaginary components which were calculated using the getMagni-

tudes function. But the initial amplitude of the reflected ray is not the same as the

amplitude of the original ray at the intersection point. Since the original ray is split

into two different rays, the amplitude of the original ray is then "spread across" the

reflected and transmitted rays and not necessarily equally. The reflected ray's initial

amplitude, EO, at the point of intersection is a scaled version of the original ray's

amplitude at the intersection point where the scaling factor is the reflection coeffi-

cient, R. The reflection coefficient is based on the intrinsic impedances of the two

media, ql and 'q2 respectively and -1 < R < 1. The reflection coefficient may be

calculated using the equation below.

R = 'q2 - *71 (6.13)
772 + "71

The subscripts denote the two different media with a subscript of 1 indicating the

media in which the ray is original traveling and the subscript of 2 denotes the media in

which the original ray is impinging upon. Using these equations, the initial amplitude

of the reflected ray, EO, = REi(p) where -is the point of intersection between the

original ray and the intersected Reflector object, mediahit. If R < 0 then the the

polarization of the reflected ray is then the opposite of the polarization of the ordinal

ray at the point of intersection, but if R > 0, then the polarization of the reflected

ray is the same as the polarization of the reflected ray at the intersection point.
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Figure 6-2: Incident Wave Transmitting Through Reflector Surface

The final parameter to be set is the distance traveled of the ray; the reflected ray is

said to have traveled the original ray's distance traveled plus the intersection distance

between the original ray and the Reflector in which it intersects. Now the reflected ray

has a polarization, an initial amplitude, a media in which it is traveling in, a distance

traveled, an origin, and a destination and with those parameters, the reflected ray is

almost ready to be cast [10].

The transmitted ray, or the ray that is transmitted through the boundary of

the two media is constructed much like the previously discussed reflected ray. The

reflected and transmitted differ in the media in which they are traveling, their des-

tination point, their polarizations, and their initial amplitudes; all other parameters

remain the same. To find the destination point of the transmitted ray, the direction

in which the transmitted ray travels must first be found. Using Snell's law, which is

dervied from phase matching conditions, one has a relationship between the incoming

ray's angle of incidence, 9i and the transmitted ray's angle of transmission, 9 t. The

geometric relationship between the two angles may be seen in Figure 6-2.
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Snell's law states that the sine of the angle of incidence and angle of transmission

are proportional, but that there does not have to be an angle of transmission; the

equation relationship is given below.

ni sin(0i) = nt sin(0t) (6.14)

Where ni and nit are the indices of refraction at a given frequency of operation for the

media in which the incident ray travels in and the media in which the transmitted

ray travels in, respectively. Finding the media in which the incident ray travels in

is a matter of retrieving that information from the original ElectricRay. To find the

transmitted media is a little trickier. First, one must find out if the original ray is

entering or leaving the Reflector object in which it intersects. If it is entering the

Reflector, the the transmitted media is equal to the Reflector object, mediahit, if the

ray is leaving the Reflector, then the transmitted media is assumed to be air. For now,

the algorithm assumes that Reflector objects cannot overlap, so having overlapping

Reflectors may produce incorrect results.

Now that the proper transmitted media has been found, the transmitted ray is

set to be traveling in that media and the transmission direction, Ot may be calculated

if one exists. If the angle of incidence is beyond the critical angle, 0c, then there is no

transmission direction and the transmitted ray has the same origin and destination

point. The destination point of the transmitted ray is then calculated from the

transmission direction in the same manner as the reflected ray's destination point was

calculated from the reflection direction. The transmitted ray's length is the original

ray's length minus the length from the original ray's origin and the intersection point.

The last bit of information to calculated is the transmitted ray's initial ampli-

tude, EOt. Much like the reflected ray, the transmitted ray's initial amplitude is

proportional to the original ElectricRay's amplitude at the intersection point, so that

EOt = TE,(p) where P is the point of intersection between the original ray and the

intersected Reflector object, mediahit, and T is known as the transmission coefficient.

The transmission coefficient can be calculated using the equation below with Tit being
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the intrinsic impedance of the transmitted media and 77 being the intrinsic impedance

of the incident media.

T = 2Tt (6.15)
77t + Tli

Note that the transmission coefficient can never have a negative value, therefore, the

polarization of the transmitted ray always has the same polarization of the original

ray [10].

Once the reflected and transmitted rays are constructed, then if their magnitudes

are beyond a certain cutoff threshold, then they are recursively cast using the same

CastRay function with an increased recursion level parameter. The magnitude cutoff

is used to save computation. At a certain magnitude level, the contribution to the

any electric field that a given ElectricRay may add is insignificant and not worth the

extra computation for such a small contribution to the overall power level. Once the

newly constructed rays are recursively cast, then original ray is deleted.

All of the above is done for each single Antenna object, the next step is to then

use superposition to sum the power for each independent radiator to find the total

power at a given point in space. After the algorithm has completely run, an Antenna

object, at each vertex of its voxel grid, contains the total electric and magnetic fields

at that location in space caused by all of the radiating agents, not just the fields

caused by each individual radiator.
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Chapter 7

Analysis of the Simulation Engine

The Simulation Engine of RFID Vis consists of a well defined and implemented class

hierarchy which allows for new electromagnetic simulation algorithms to be imple-

mented as well as an implemented simulation algorithm based on ray tracing concepts.

The structure and overall usefulness of the electromagnetics engine's structure is de-

scribed in section 6, this section analyzes in detail the complexity and speed of the

currently implemented electromagnetics simulation algorithms.

7.1 Analysis of EMRayTracing Algorithm

The EMRayTracing algorithm, as previously described, consists of casting "rays"

through each vertex in a collection of vertices for each Antenna object and tracing the

path of these "rays" as they are radiated from the Antenna. While a ray is traveling

from its origin to its destination, the ray may interact with a number of Relfector

objects and then spawn additional rays which are cast. Therefore, the algorithm's

behavior is changed with the number of Reflectors in the RFID environment as well

as the number of vertices in an Antenna's voxel grid that is defined over a particular

region of space. This section describes the EMRayTracing algorithm's complexity,

speed, and how the number of Reflector objects and voxel vertices affect the speed of

the algorithm on varying computer hardware.
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7.1.1 Single Ray Complexity

When any arbitrary ray is cast, whether it be one of the initial rays cast toward

a voxel vertex or a ray that is spawned and cast after another ray intersects with

a Reflector, the algorithm performs a series of computations. First, the algorithm

computes if the ray intersects a Reflector object and finds the closest Reflector object

in which the ray intersects. In the current implementation, the algorithm loops over

every individual Reflector and computes a ray-object intersection algorithm with it to

determine if the ray intersects with the Reflector. If there are n Reflectors in a given

RFID environment, then the algorithm needs to run a ray-object intersection function

n times. The computational complexity of the ray-object intersection function varies

from Reflector to Reflector, but could itself require a large amount of computation

which makes the ray-object intersection portion of casting a ray very computationally

expensive. While there exist optimizations which require a ray to test only a small

subset of Reflector objects for intersection based on spatial partitioning, the current

algorithm implementation requires in a worst case scenario a total of n ray-object

intersection calculations.

After the algorithm computes whether an arbitrary ray intersects a Reflector ob-

ject, one of two sets of computations occur. If the ray does not intersect a Reflector

under certain constraints, or if the recursion level of the castRay function call is be-

yond a maximum threshold, then the algorithm computes the electric field produced

by the ray and adjusts the electric field in a region of space accordingly. If the ray

does intersect a Reflector object, then two new rays are constructed and these new

rays are recursively cast using the castRay function. In either scenario the computa-

tion is not dependent on anything which makes the computational complexity of this

stage a constant.

For a single ray whose path is being traced in the castRay function, it has a worst

case running time dependent on the number of Reflectors in an RFID environment, n,

of O(n) due to the fact that the ray-intersection calculation is performed against all

available reflectors. This running time complexity may be optimized to be faster by
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using BSP trees for example, but for the current implementation, a single ray casting

and tracing is linearly dependent on the number of Reflector objects in an RFID

environment as the algorithm requires n ray-object calculations [21]. The complexity

per arbitrary ray does not give a whole picture of the EMRayTracing algorithm's

complexity however.

7.1.2 Initial Ray Complexity

For every vertex in the voxel grid of an Antenna object, the EMRayTracing algorithm,

casts an initial ray towards the vertex. As described in section 6.2.2, this initial

ray may be split into two rays and these rays are recursively cast. There exists a

recursive threshold at which new rays are no longer created in the castRay function.

This threshold exists to prevent infinite recursion. There may exist certain scenarios,

in which Reflector objects are very close together which causes a an initial ray to

intersect with a Reflector every few centimeters which could cause an initial ray to

intersect and split a very large, possibly infinite, amount of times before the recursion

ends. To have the recursive calls of the castRay function not become infinite, the

recursion level threshold is implemented.

As mentioned earlier, a single, arbitrary ray may create two new rays in its place.

Therefore, each initial ray which is cast towards a vertex of the voxel grid, may

eventually, in the worst case scenario, be split into 2D - 1 total rays where D is the

maximum recursion depth with D > 1. Solely taking into account the effects of the

recursion depth, the worst case running time to compute the casting of one of the

"initial rays" which are cast towards a vertex in an Antenna's voxel grid is 0(2D).

Since the EMRayTracing algorithm treats every vertex in the voxel grids the same,

the whole algorithm has a linear dependence on the maximum recursion depth.

From the order of growth, one can tell that the running time is affected by the

maximum recursion depth, D. The lower the value of D, the less times a ray spawns

two new ones and the less ray intersections are computed. This causes the algorithm

to run faster but at the same time could cause the algorithm to return drastically

incorrect results. To show the effect that the recursion depth has on the speed of

85



Figure 7-1: Example of a Complex RFID Environment

simulation, a test RFID environment was developed which contains a single Antenna

object in patch mode, with eight small MaterialBoxes placed in a pallet like config-

uration so that the boxes are very close together. A screenshot of the environment

can be seen in Figure 7-1.

With the MaterialBoxes being close together and close to the Antenna, there

is assumed to be lots of reflections between the boxes and therefore there may exist

plenty of recursive calls of the castRay function. With many recursive calls, the effects

that changes to the maximum recursive depth may be seen more easily. Results of

changing the maximum recursion depth are discussed below.
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Simulation Time Dependence on Maximum Recursion Depth for a Complex Environment

50 100 150 200
Maximum Recursion Depth

Figure 7-2: Simulation Time Depedence on Maximum Recursion Depth
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A graph depicting the simulation run time's depedence on the recursion depth can

be seen in Figure 7-2. The simulation data is graphed along side a scaled function of

2 D to show that the function 2D performs worse than the simulation and is the worst

case scenario running time. Part of the reason why the simulation performs better and

the simulations times do not double as the maximum recursion depth increases by one.

This is because, not all rays in the scene will be intersecting a Reflector, therefore,

some rays will not be effected by the increase in maximum recursions depth, only a

fraction of them will and other computation will remain constant. The effect of the

maximum recursion depth also begins to lessen as D increases because the recursively

split rays eventually fall below the amplitude cutoff threshold for recasting a ray, so

then the rays are never split to begin with.

7.1.3 Resolution Complexity

Most of the algorithm parameters which have been analyzed in the preceding sections

are parameters which are encoded into the source code as constants. The values for

the constants were decided on by testing different environments to see which values

have a good balance between performance and results. There are parameters that

affect the EMRayTracing algorithm, or any EMAlgorithm for that matter, which can

be altered and controlled by the user of RFID Vis, the simulation resolution, which

can be altered through the RunSimulationDialog, and the width/height/depth of the

Antennae's field.

Strictly speaking, these parameters do not affect EMAlgorithms, they affect all

the Antenna objects in a scene by changing the number of vertices in the Antenna's

voxel grid. As previously described, the job of an EMAlgorithm is to compute the

electric and magnetic fields at each vertex of each Antenna's voxel grid. Therefore,

changing these parameters changes the total number of vertices in an Antenna's voxel

grid which could cost the algorithm more computation time.

The EMRayTracing algorithm, casts an "initial ray" towards each vertex in an

Antenna's voxel grid for each Antenna, so the more vertices, the more rays need

to be cast. The total number of vertices for an Antenna's voxel grid is given by
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Pattern Width Pattern Height Pattern Depth Simulation Time(seconds)
5 5 5 1.5
10 5 5 2.8125
15 5 5 4.125
5 10 5 2.8125
5 15 5 4.125
5 5 10 2.875
5 5 15 4.125

Table 7.1: Effects of the Antenna Pattern Dimension on Simulation Times

(1 * r + 1)(w * r + 1)(d * r + 1), where 1 is the Antenna's field length, w is the field

width, d is the field depth, and r is the field resolution which may vary between

simulation to simulation. With all other parameters in the algorithm kept constant,

the ray tracing algorithm has a worst case running time dependence of O(l*w*d*r 3).

The actual dependencies should be better than the worst case scenario since most rays

will not be recursively cast to the maximum recursion depth.

The algorithm has a linear dependence on each of the Antenna's field dimensions

and a cubic dependence on the field resolution (the number of calculation points

per meter). To show the effects that changing these parameters has on the speed

of a simulation, a few tests were run. Each test used an RFID environment which

has become standard for most of the tests that were used to test the simulation,

the environment consists solely of an Antenna of a patch type. To see the effects

of the different parameters, the parameters were changed one at a time and a new

simulation was run with the new parameter settings. The running time of each of the

simulations were recorded. The data of the tests can be seen in Table 7.1 and Table

7.2. For the tests in which Antenna pattern dimensions were changed, a simulation

resolution of 5 was used, one dimension was altered at a time while the other two

dimensions remained constant. For the test noting the changes caused by the change

in resolution, all the pattern dimensions were 5 meters.

Graphs which plot the simulation times with respect to the different changes of

pattern dimensions and simulation resolution can be seen in Figure 7-3 and Figure 7-

4. The dependence on each pattern dimension can be seen to be linear while the time
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Simulation Resolution Simulation Time(seconds)
5 1.5
10 11.4375
15 39.6875
20 88.75
25 152.1875
30 234.1875
35 418.1875

Table 7.2: Effects of the Simulation Resolution on Simulation Times

dependence on the simulation resolution is close to cubic in nature. These results fit

well with the calculated running time complexities for the algorithm. The depedence

on the simulation resolution is also graphed with a scaled cubic function to show

the cubic relation of the dependence on the simulation resolution. The simulated

data performs slightly better than the cubic function becomes some rays require less

calculations as their amplitudes may be too small to consder certain operations on.

Overall, the data matches the predicted worse case scenario behavior.

7.1.4 Real-time Analysis

The previous portions of this section discuss the overall running time of the EM-

RayTracing algorithm based on certain parameters of the algorithm and how the

parameters affect the speed of the simulation. While the sections discuss the param-

eters' effects individually, the algorithm is too complex to mathematically describe in

full detail as there are many conditional situations involved. While the algorithm is

complex and cannot truly be written in a formulaic style, the overall running time of

particular simulations and overall performance and running speed of RFID Vis can

be measured accurately.

One of the main features of RFID Vis is the quick production of results to always

give the user some active feedback as to the behavior of the electromagnetic power

in the environment. A constant stream of feedback allows the user's actions to be

guided instead of having the user blindly altering the environment without knowing

how the alterations will affect the electromagnetic power.
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Real-Time Simulation Resolution Average FPS
1 8.96
2 3
3 1.15

Table 7.3: Average Real-time FPS While Using a Complex RFID Environment

Having a decent real-time simulation is a key component of RFID Vis therefore a

few of the algorithm's parameters must be tweaked so that the real-time simulation

runs sufficiently quick for moderate size environments on average computer systems.

To find a good set of parameters for the real-time simulation, a moderately complex

RFID environment was used to test the speed of RFID Vis when using the real-time

simulation. A moderately complex RFID environment consists of a single Antenna

and a moderate amount of MaterialBox objects (around 8); an example can be seen

in Figure 7-1.

In this environment, the goal was, when running the real-time simulation almost

constantly, to have RFID Vis be running at roughly 3 FPS on an average computer

system.

To test the speed of the real-time simulation on different systems, the moderately

complex environment was loaded into RFID Vis and the real-time simulation was

set to always be running. The average FPS of RFID Vis was recorded for a few

different systems as were the different parameters used by RFID Vis during the tests.

The antenna pattern dimensions used during the test were 5 meters in each primary

direction. The data from the tests may be seen in Table 7.3. One may note that for

the computer used, only a resolution of 1 would remotely acheive close to the desired

results. Due to the complexity of the scene, the real-time simulation runs a bit slower

than it usually does. Optimizing the algorithm may speed up the real-time simulation

in future versions to be closer to real-time.

After some thought, it was decided that most of the parameters for the real-time

simulation may be set to a set of generic, well tested values, but the simulation

resolution for the real-time simulation needs to be alterable by the user somewhat.

Due to the fact that the real-time algorithm has a cubic dependence on the simulation
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resolution, this one parameter has the largest single effect on the running time of

the real-time simulation. Giving the user free reign over the value of the simulation

resolution may result in having the resolution be too high and RFID Vis being caught

in an immense set of calculations, but the user needs to have some control over the

value of the resolution because if the user is using a rather low end piece of hardware,

the default resolution for the real-time simulation may be too high for the hardware

to handle at a decent speed.

The data seen in Table notes that for a high end or average system, that a res-

olution of two calculations per meter seems to be sufficiently low to produce quick

enough results for a moderately complex environment in close to real-time, but if

the user is using a low end system or if the environment becomes more complex,

this default real-time resolution may be too high to produce quick enough results to

be real-time. The real-time resolution may also be too low, in case the user has a

high end system and would like better looking results. In these situations, it may

be helpful to have the resolution for the real-time simulation be set at an alternative

value than the default value. Therefore, the resolution for the real-time simulation is

adjustable to be either 1 (the lowest possible), 2, or 3 calculations per meter. This

allows the user more control, allows the simulation to be real-time for a number of

different scenarios as the user is able to allow for faster, although less accurate and

harsher looking results.

7.1.5 Analysis of Produced Results

Most of this sections has been discussing the speed and complexity of the EMRay-

Tracing algorithm, but there has been little discussion of the accuracy of the electro-

magnetic results produced by the algorithm. Even if the algorithm ran with blazing

speed, if the results produced are in no way accurate, then the algorithm is useless

and the speed of the algorithm is inconsequential. This subsection describes results

produced by the algorithm and questions their validity.

There was an inherent difficulty in testing the validity of the algorithm in com-

parison to a real RFID set up for a number of reasons. First of all, the model used
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for an Antenna object allows the Antenna to be of either an isotropic or patch type.

In reality, most of the antennae used are not patch antennae, but have very complex

radiation patterns which are not easily written in as a formula. Because of this, en-

vironments created in RFID Vis can never mirror real environments which makes it

difficult to compare results of RFID Vis to real results. Also, it is very difficult to

measure the electromagnetic power at a particular point in space as doing so requires

special tools which I cannot acquire.

With mismatched models and difficulties measuring exact power in real environ-

ments, testing the validity of algorithm results was done in a round-about fashion.

While I would have liked for the simulation to be as accurate as possible, it was

deemed acceptable to have the algorithms produce accurate qualitative results that

may only be accurate to within an order of magnitude or so. Since RFID Vis was

designed as a predictive tool which predicts electromagnetic behavior as opposed to

a tool to show exact solutions, having the EMRayTracing algorithm be qualitatively

accurate as opposed to wholly quantitatively accurate was what was tested to check

the validity of the algorithm.

To test the qualitative accuracy of the algorithm, a few tests were run to see if

the algorithm predicts certain behavior that was already proved to occur in reality.

The first test was simply seeing if more metallic objects reflect back more power. To

test this, a MaterialBox of default size was set to be filled with air with an Antenna

object radiated power on it. The box was then changed to be filled with water and

aluminum and, using a Tag object to take power measurements within RFID Vis, the

electromagnetic power at the surface of the box is measured and compared between

the three cases; the results of the test can be seen in Table 7.4. The more "metallic"

the object, the more power is reflected back. A box filled with Air did not cause a

reflection, so the power at the surface of the box filled with air was used as a basis

for comparison. When the box was filled with water, some power was reflected, but

when it was filled with a highly reflective material such as aluminum, it can be seen

that RFID Vis simulated that even more power would be reflected which is the case

in reality.
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Material Microwatts at MaterialBox Surface
Air 15.890

Water 208.707
Aluminum 341.015

Table 7.4: Simulated Reflective Power Differences Between Materials

The next test performed tested if the algorithm was capable of producing standing

waves. A standing wave is produced when a plane wave reflects off of a perfect

conductor at normal incidence. The reflected wave destructively interferes with the

incoming wave creating null spots at certain locations in space. While there is no

perfect conductor medium available to fill a MaterialBox with, aluminum is close to

it. So, the test used to check for a standing wave is to have an Antenna object of a

patch type radiating on a very large MaterialBox that is filled with aluminum. The

large size of the MaterialBox is used to increase the chance of a plane wave intersecting

at a close to normal angle of incidence, but since the box is filled with aluminum and

the incident angle is not exactly 90 degrees, there are no exact null spots with no

power, but point of very low power in comparison to points around it. A very high

resolution simulation is then run to see in more detail the exact workings of the

electromagnetic power. A screenshot of the produces inteferance waves can be seen

in Figure 7-5. One can note the periodic regions of low power in the screenshot which

is indicative of standing wave type behavior which shows that the EMRayTracing

algorithm is capable of of calculating interference between waves.

One final test that was run to test the validity of the EMRayTracing algorithm

was developed to show that the algorithm can mimic a peculiar behavior of water.

When an plane wave is incident upon water, a portion of the wave is transmitted

into the water and a portion is reflected back. After the transmitted portion travels

through the water, the wave is then incident on another boundary between water and

air at the back of the container of water. Again, a portion of this wave is reflected

and transmitted through the boundary. It turns out, as to be expected, the available

power at the back of the container of water is dependent on the thickness of the water

(how much water the wave traveled through), t. Varying the value of t yields very
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Figure 7-5: Simulated Destructive Interference

interesting results. One notes that, somewhat counter-intuitively, the power measured

at the back of the water varies periodically with the thickness t although their does

exist a dampening envelope of the crests of the power which is to be expected.

To test for this behavior in RFID Vis, an environment was created which contained

an Antenna object of a patch type radiating on a MaterialBox full of water. The

Antenna is placed close to the box and at an angle close to 90 degrees. A Tag object

is placed on the back of the box to measure the power there. The thickness of the

water (along the same axis that the Antenna is radiating towards) was then altered

by 2 centimeters. The thickness started at a relatively low value and increased in

small increments. The power at the back of the MaterialBox were recorded at each

value of the thickness, t, for simulations at a resolution of 10 calculations per meters.

The data measured can be seen in Figure 7-6.

Notice how the measured power is periodic as a function of t; much like it is

in reality, but is a little off. In reality, the power is periodic at roughly every half
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wavelength, which in this case would be around 16 centimeters [1]. The graph of

the data does not match eactly the behavior of reality due to a few small reasons.

The simulation, as previously mentioned, calculates the power at a given voxel vertex

and the powered measured at a point in space is the power at the closest voxel

vertex. Therefore, if a point is not exactly on a voxel vertex, the power measured

will be close, but not exactly what is measured at that given point. This may cause

somewhat inconsistent data in the graph that creates amplitudes that are too high

or too low; the spikes between the larger amplitudes may be due to the fact that the

power actually being read may be from a point not quite on the surface of the box.

The box is of finite width as well which may cause reflections off of the side which may

cause the spikes in the graph. Also, the test was run every 2 centimeteres, where as

some of the peaks in the power may not have been at the points which were measured,

this causes some of the maxima to not quite fit the decay envelope. A finer resolution

simulation and more data points would solve these problems, but would have made

the gathering of this data take days or months as opposed to hours. Indiscrepancies

also exist due to the model used in the simulation algorithm. The graphed results

do show the general decaying periodic behavior which is what the test was set out to

prove the algorithm was capable of. This test demonstrated that the algorithm was

able to, without any special hard coding or special scenarios, able to mimic a realistic

behavior which vouches for the validity of the algorithm as a whole.

7.1.6 Summary of EMRayTracing Analysis

Overall, the currently implemented EMRayTracing algorithm, which is also the cur-

rent real-time algorithm used in RFID Vis, is a very complex algorithm, but is easy to

implement and can produce decent results in real-time. The algorithm is also capable

of making very accurate, great looking results through use of higher resolution sim-

ulations. The results produced by the algorithm accurately portray electromagnetic

behavior to within an order of magnitude or so.
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Figure 7-6: Simulated Electromagnetic Power Propagating Through Water
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The algorithm could become faster with some more optimizations as it is not the

most scalable of algorithms in the current implementation. There are many ways

to optimize the algorithm, one of which deals with spatial optimization and can

use a BSP tree to separate a scene into many smaller subscenes[20]. These spatial

optimizations allow the algorithm to not have to compute n ray-object intersections,

but some smaller number than that.

The algorithm also struggles with objects that are very close together as their

ray-object intersection times are very similar and a problem can arise with the pre-

cision of floating point numbers and these very small intersection times. Overall, the

algorithm works well, even as a real-time algorithm but struggles in a few cases and

the performance degrades quickly when more Reflectors are added to an environment.
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Chapter 8

Conclusions

This chapter presents the conclusions that I have made about RFID Vis in general as

well as its implementation and other aspects of RFID Vis. Future extensions of the

current implementation and other improvements are also discussed.

8.1 RFID Vis Conclusions

The main purpose in creating RFID Vis, as discussed in Section 1.3, was to create the

underlying modular structure for a tool which would allow users of UHF RFID tech-

nology to increase their intuition and understanding of electromagnetics in a quick

and intuitive manner. To accomplish this task, RFID Vis needs to produce accurate

results quickly for very specific environments while being easy to use. Overall, RFID

Vis accomplishes this task. While it is not an end all solution to every RFID problem,

it accomplishes the tasks it is created to handle. RFID Vis allows users to create en-

vironments that resemble pallets in warehouses, computes the electromagnetic power

over given volumes of space within a certain degree of accuracy, computes the results

quickly, presents the data to the user in a graphical manner which makes the results

easier to understand, and is easy to use with a very small learning curve. I am par-

ticularly proud of the visualization of the electromagnetic power as the transparent

effect and the coloring scheme blend well and are easy to understand.

While RFID Vis accomplishes the tasks for which it was created, it is not without
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its limitations although these limitations do not encumber the usefulness of RFID Vis

as a whole. One of the major drawbacks of RFID Vis is the fact that the Antenna

object has only a set number of types which do not exactly mimic the antennae used

in real world implementations of UHF RFID environments. The reason for this is the

fact that many of the antennae used in the real world do not have analytic functions

which describe their radiation pattern. It is entirely feasible that, given a general

form for a radiation pattern, if antenna manufacturers provided such equations for

the radiation patterns that RFID Vis would be able to handle any type of antenna

type. Unfortunately, the only radiation patterns available to me in formula form were

for the antenna types given. More may be able to be added quickly, but due to time

restraints, only the two types currently implemented are available.

Another limitation of the current implementation of RFID Vis is that the number

of available objects is somewhat small and the boxes of the material are required

to be rectilinear and filled with homogeneous product instead of an arbitrary shape

and filled with arbitrary product. Having an arbitrary shaped object filled with

arbitrary product is completely within the scope of RFID Vis as the regions of different

products would all be different Reflector objects. The reason that all of the currently

implemented objects are rectilinear is that the meshes for those objects are very simple

to compute. Future work could allow the users to create a new object type that could

read in user defined meshes, as modular design of RFID Vis would easily allow that,

time constraints forced the current implementation to use predefined meshes which

needed to be computationally simplistic in nature.

One last minor limitation is that the currently implemented EMRayTracing algo-

rithm is not optimized as well as it could be, as is discussed in Section 7.1. This causes

the real-time simulations to not perform as well on lower end machines and limits

the algorithm's scalability as more objects are added. This is a minor non-optimality

which can be alleviated with an algorithm tweak, but under the time constraints, a

simplified version of the algorithm was used.

Overall, the currently implemented version of RFID Vis defines and uses a well

constructed hierarchy of objects and data which may be easily extendible for added
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features in future versions. The current version works well and achieves its goals.

The current version allows users to understand the fundamentals of electromagnetic

behavior at UHF frequencies quickly and easily which helps the user develop intu-

ition about electromagnetic behavior. Future versions may allow users more freedom

when creating specific environments which may allow for more realstic environment

creation. More freedom and flexibility helps develop intuition more quickly and may

provide some real-world solutions to very specific RFID problems. In the end, the cur-

rent implementation of RFID Vis defines a rich structure and idea as well as acheiving

the goals that I set out to accomplish in creating it.

8.2 Future Work

Most of the limitations with the current implementation of RFID Vis are not limi-

tations with it as a whole, but are features that were not implemented in the time

alloted. This section will briefly discuss some features that may be added in future

versions of RFID Vis to increase its power and usefulness to RFID users as a whole.

One feature that may be added in the future is for the user to be able to have

different materials in a box instead of a homogeneous material. Users would possibly

be able to specify a mesh to read in from a file and a file that specifies which parts

of the box contain what materials. This would be useful because, as we know, a

box full of packaged products is never homogeneously filled with the product. A

simple version of this feature would be straightforward to implement as each region

of different material could be considered different Reflector objects and no currently

implemented code would need to be altered. I say a simple version because this feature

would be very difficult to implement with a high level of detail. In all actuality, a box

of products is quite complex to model completely. The outmost box has a set thickness

which may be variable from company to company. Then the box which contains the

individual products has a thickness, or maybe the products are contained in plastic

and cardboard which would complicate things even more as these layers are usually

thin and somewhat negligible. So, having this feature in a full level of detail to try to
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mimic reality perfectly would be difficult for the programmer of the next version of

RFID Vis and the user because the user would have to specify such small features in

a mesh. Therefore, a simple version of the feature is much easier to implement and

is very feasible in a future version of RFID Vis.

Another set of features to be added deal with optimizations. Using vertex or pixel

shaders to handle most of the volumetric calculations or even most of the algorithm

computations. This frees up CPU cycles and allows for a faster computation time.

The CPU then could be spent doing other work to make the algorithms more complex

or the visualizations to look better, but at the very least, hardware accelerating RFID

Vis would lead to an increase in performance. Also, when fetching the amount of

power at a given point in space, tri-linear interpolation could be used instead of

direct sampling to achieve a more accurate result of the power at the point if it does

not directly lie on the vertex of a given Antenna's voxel grid. Some space partioning

could be used in the ray tracing algorithms to speed things up as well. There are

many places where RFID Vis can be more optimized.

Other features which may be added could be the ability for users to specify their

own type of Antenna. As mentioned before, only two types are currently implemented,

but it is feasible to, if given a standard format for the equations to use, that the

radiation pattern of an Antenna can be read in from a file and then used in RFID

Vis. This would allow the Antenna in RFID Vis to be closer to the real antennae which

the users of RFID Vis are using. Unfortunately, this would require knowledge of a

equation which represents the radiation pattern of specific antennae which are usually

either unknown or not supplied by the antennae manufacturers, but the functionality

for it is implemented and this feature is feasible in future versions.

The main work which should be added to RFID Vis is refinement and imple-

mentation of new algorithms. As previously mentioned, the only algorithm currently

implemented in RFID Vis is the EMRayTracing algorithm and this algorithm is un-

optimized. Future work could be done optimizing this algorithm so that the real-

time aspect of RFID Vis is fast even on low end machines. Also, new algorithms

could be implemented since RFID Vis specifies an algorithm class which is easily ex-
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tended. These new algorithm may take more concepts into consideration beyond first

principles and may produce better results than the ray tracing algorithm currently

implemented. The speed of these algorithms is of no concern as these simulations

will only be available through the RunSimulationDialog and will not be running in

real-time. These new algorithms should be as precise as possible so that better and

better results may be produced.

Other side amounts of work could be to develop a collision detection algorithm

that is generalized so that object may not overlap each other as well as adding some

lighting which would help the users be able to specify environments faster. Of course,

the user interface can be tweaked and refined to add more and more features.

Overall, the amount of features which may be added to RFID Vis are endless

and because RFID Vis has a well designed architecture for both electromagnetic

algorithm implementation and object implementation, most of these features may

be easily added without manipulating any of the existing code base. This is the

underlying beauty of the work I have done in developing RFID Vis and I hope future

versions of it will benefit from my design.
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Appendix A

User Manual for Simulation Tool

A.1 Installation

To install the Graphical Real-time Simulation Tool for Passive UHF RFID Environ-

ments, simply run the supplied installation executable, setup.exe. The simulation

tool requires Windows XP to operate as well Microsoft's DirectX 9.0 or later. The

installation CD should have an installation executable for DirectX 9.0, but the latest

version of DirectX is also downloadable from www.microsoft.com

To run the simulation tool, use the shortcuts installed on the desktop and start

menu, or run the executable, Packing.exe from the directory where the program was

installed.

A.2 Camera Movement

The following section describes the commands for moving the camera around in the

RFID environment. Default key bindings are mentioned, but these keys may be

changed at any time through the Configure Input menu item in the File pulldown

menu.

The camera used in the simulation tool can be rotated about and moved along

two axes at any given movment. When the W key is pressed, the camera moves

forward along its line of sight, the S key moves the camera backward along this same
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axis. Pressing the A key gives the camera a command to move left, which moves the

camera left on an axis that is perpendicular to the line of sight and perpendicular to

the current "up" of the camera. The move left command can be thought of as "side

stepping" to the left. When given a move right command, initially bound to the D

key is bound to this command, the camera "side steps" to the right. These are the

majority of the commands that affect the camera's position in space.

The viewing angle of the camera can also be adjusted along two separate axes

and by using the arrow keys, the user can adjust the viewing angle. The camera's

viewing angle is bound to a "sphere" and moves as such. If you imagine the camera

at the center of a sphere, then pressing the up and down arrows increases the viewing

angle along the vertical direction. This angle ranges between straight up and straight

down, but cannot exceed either extremity, so the angle is bound to 180 degrees of

rotation.

Pressing the left and right arrows moves the viewing angle horizontally along the

sphere. The effect of rotating along this horizontal plane of the sphere changes with

the vertical viewing angle of the camera. At the very top of a sphere, there is not

much of a horizontal "ring" to move about, so moving the angle horizontally will have

little affect to changing the view of the camera. This is similar to looking at a spot

on the ground straight down and rotating your yourself around it; you'll only still be

seeing the spot. If the veritcal angle is looking exactly forward, then adjusting the

horitzontal angle changes the viewing direction along the circumference of the sphere.

The viewing angle controls are difficult to describe in words, but are very intuitive

and easy to learn when used.

A.3 Coordinate System

The simulation tool uses a cartesian coordinate system for all of its calculations and

renderings. The origin of the coordinate system is located at the center of the top

surface of the floor of the environment. The x and z axes are along the surface of the

floor while the y axis runs perpendicular to the surface. The x axis can be thought
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of as a "width" axis, while the z axis is a "depth" axis and the y axis is a "height"

axis. The units of the coordinate system are meters.

A.4 Objects

There are four types of objects currently implemented in the simulation tool: An-

tenna, MaterialBoxes, Tags and Floors. With the exception of Floors, each of these

object may be created through the Insert menu. Only one Floor is present in any en-

vironment in the simulation tool. Manipulating the objects is covered in Section A.5,

this section describes the properties of each object. Each object can be deleted (with

the exception of the Floor) by pressing the delete key. When an object is deleted, all

of it's children are deleted as well. So, deleting a box will delete any tags attached to

it.

A.4.1 Antenna Object

An Antenna object represents a reader antenna and is the most complex object of the

simulation tool. Each Antenna, has the electromagnetic power over a specified volume

of space calculated and rendered to the screen. An Antenna may present different

types of antennae with different gains and directivities and the electromagnetic power

that is rendered may be of varying sizes.

The first parameter of an Antenna object is its type. Currently there are two

types of Antennae, isotropic and patch. There may be more types in the future, but

these are the only types available now. An isotropic antenna has a gain of 0 dBI while

the patch has a gain of 6 dBI.

The electromagnetic power of an Antenna is calculated over a rectangular volume

of space. The maximum extent of the volume is given by three parameters, pattern

width, pattern height and pattern depth. If each of the constants has a value of 5

meters, then the power is calculated to a maximum extent of -2.5 meters to 2.5 meters

along the Antenna's horizontal axis. The power is also calculated to a maximum

extent of -2.5 meters to 2.5 meters along the Antenna's vertical axis as well as a
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maximum extent of 0 to -5 meters along the Antenna's "z axis." One may note that

only the electromagnetic power in the forward facing or "in front of" the Antenna is

calculated. No power outside the given ranges is calculated; the main use of this is

to save calculation speed. If the user only cares about a predefined region of space,

then only the powers for that region should be calculated.

A.4.2 MaterialBox Object

A MaterialBox is a rectangular box that represents a box used to store items that are

normally placed on pallets. The material inside of the material box can be specified

using three electromagnetic constants. These constants may be specified through

some specified dialog boxes or may be read in from a "material database." The

width, length and depth of the boxes may also be altered through use of dialog boxes.

A box is assumed to have the same material at each point contained within its volume.

The "material database" is read in from a specified text file. This file is in the

relative path "db\materials.txt" The materials in this text file must be specified in a

particular format. The format is as follows:

Material Name[return character] (example: Shampoo)

Electric Permittivity constant [return] (example: 2.09e-012)

Magnetic Permeability constant [return] (example: 1.25e-6)

Electrical conductivity constant [return] (example 3e-02)

Notice the return character after the last constant. This is the case if there are

more materials in the file. For the last material in the database, do not insert

a return character after the last constant. The database file should always end

with the last line being the last constant; the cursor should not be able to move down

to a line below the last constant of the last material. An example file can be seen

below (with no actual numerical accuracy for the constants):

Shampoo
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3e-12

4e-6

0.0

Steak

6e-12

5e-6

3e-02[ENDI

A.4.3 Tag Object

The Tag object represents a very simple model of a passive UHF RFID tag. A Tag

can be inserted onto a box and can move along the faces of that box. The inner

circuitry of a Tag is assumed to need 10 microwatts to "power on." When there is

sufficient power at the Tag's center, the tag lights up and turns yellow to give a visual

indicator that a minimal power threshold is reached. The power seen by the Tag

circuitry is not the same as the RF power available to the Tag. Each Tag is assumed

to have 20% efficiency at converting RF power to usable power. So, any power read

by a Tag is really one fifth of the available RF power at that point.

A.5 Clicking and Dragging

The main way that the user of the simulation tool can interact with individual objects

is through use of the mouse. When an object is clicked, it is dubbed as "selected."

A bracket will pop up to give an indication as to which object is selected and certain

information about the selected item will appear in the lower right of the screen.

Double clicking an object will cause the camera to zoom to that object, the same

effect occurs when its thumbnail that appears in its information window is double

clicked. Right clicking an object opens up its properties dialog in which certain

properties of the object may be altered. Not all object have a properties dialog.

When an object is clicked and dragged, the object invokes its drag command.
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When an object is dragged, the axes in which it can be dragged are displayed on the

screen. What axes these are and how the object is moved when it is dragged are

defined by the object individually. Having the control button pressed while dragging

invoke an "alternate drag." On the object. For instance, when you drag a box, it's

normal movement is laterally along the surface of the floor, but the alternate drag

moves it vertically along a third axis.

A.6 Running a Simulation

While a nice graphical front end is an integral part of the simulation tool, if incorrect

or incoherant results are produced, then presenting them to the user in an interesting

way is somewhat meaningless. This section will discuss how simulations are run and

how certain aspects of simulations may be altered.

A.6.1 Real-time Simulations

Most of the simulations that are run in the simulation tool are run "behind the

scenes" and run in real-time. This real-time simulation is based on a Ray Tracing

algorithm with a very low "algorithm resolution." This means for every meter is

space, there is a specified number of points spread equally across a meter in which

the power is calculated. The lower this number, the less calculations an algorithm

must compute and the faster the simulation run. So, for a real-time simulation, this

resolution is set relatively low so that results may be produced in a timely manner.

Since different machines run at different speeds, this resolution parameter can be

alternated between three low values through use of the Edit Realtime Parameters

menu item in the Simulate menu.

The real-time simulation is run when objects are moved or properties are changed

in which a simulation must be rerun. Since the user needs some way of knowing the

general effects that certain changes has and these changes may happen frequenlty

(such as when an object is being dragged, it's displacement changes very frequently),

the user needs the results of a simulation in a very fast manner. This is where the
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real-time simulation is used. Imagine running a simulation that took 15 seconds

every time an object is moved, this would make dragging an object take minutes to

do because each time the displacement is updated, a new simulation must be rerun.

The real-time simulation exists to give users a general idea of how certain changes

affect the power in the environment in a quick manner; if more accurate results are

required, more accurate simulations may be run once objects in the environment are

stationary.

A.6.2 More Accurate Simulations

While the real-time simulation produces decent results quickly, oftentimes once a

specific environment is set to meet users' needs, users may want to run a more accurate

simulation to produce more accurate results than those produced by the real time

simulaton. When the need for a more accurate results than the real-time simulation

are required, the user may run a slightly slower and more approximate algorithm

through the use of the Run Simulation menu item in the Simulate menu.

When clicked, a dialog opens with two initial parameters to chose from: the

simulation resolution and the algorithm selection. The resolution parameter is the

same as described in Section A.6.1 and the algorithm selection parameter allows

the user to select betwen different types of algorithms. At the moment, only one

algorithm, a Ray Tracing derviative, is selectable. Future versions may include many

more algorithms. Depending on the algorithm selected, the dialog may expand and

contain other algorithm specific parameters.

So, the simulations are used as follows. The real-time simulations guide the user

when the environment changes to show the dynamic alterations in power. Once an

environment is situated to the user's desire, a more finely run simulation may be run

to generate more accurate results.
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