
ComBo: A Visualization Tool for Comparative Genomic Data

by

Tamara H. Yu

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

August 27, 2004

Copyright 2004 M.I.T.
s9Iz id n r

AOO1ONHO3. 0O
.U.LLSNI S.LLASHOVSSVN

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

A uthor...............
Department of Electrical Engineering and Computer Science

August 27, 2004

Certified by.

/,

Certified by................. 7 - ,

Certified by.........

Accepted by............

/.. James Galagan
Broad Institute Thesis Supervisor

Jill P. Mesirov
-- ,Broad Institute Thesis Supervisor

Christopher Burge
1 ip-sis Supefvisor

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

BARKER

ComBo: A Visualization Tool for Comparative Genomic Data
by

Tamara H. Yu

Submitted to the
Department of Electrical Engineering and Computer Science

August 27, 2004

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

Abstract

Propelled by advances in sequencing technology, the advent of the genomic era brings
the challenge of managing and interpreting massive amount of genomic data. A number
of single-genome browsers have been developed for data display. However, they are
unsuitable for comparative analysis. We present a dynamic and interactive visualization
tool called ComBo that allows users to quickly navigate sequences, browse their
similarities in a dot plot format, display sequence annotations in feature maps, and
compare annotations in corresponding regions. ComBo allows users to directly control
the display. They can compare any two regions in the sequences at any resolution, from
an entire chromosome down to the residue level. Users can also retrieve detailed
information on any displayed sequence feature or alignment. ComBo can import data
from the Calhoun annotation database or flat files. Developed in Java, ComBo has a
flexible infrastructure allowing the easy addition of functionality in the future.

Thesis Supervisor: Christopher Burge
Title: Associate Professor, MIT Department of Biology

Co- ervisor: James Galagan
Title: Compuitional Biologist, Broad Institute

CO-Supeisor: I nfmeosirov
Title:/ -'irectorB ioinformatics and Computational Biology, Broad Institute

2

Contents

Chapter I Introduction ... 6

1.1 Background ... 6

1.2 Existing Browsers ... 7

1 .3 C o m B o ... 1 2

1.4 Thesis Outline ... 13

Chapter 2 Argo Browser and Prototype Viewer .. 14

2.1 Argo Genome Browser .. 14

2.2 Prototype Comparative Viewer ... 16

Chapter 3 Design ... 20

3 .1 G o a ls ... 2 0

3.2 Overview ... 21

3.3 Components ... 22

3.4 Interactions ... 23

Chapter 4 Data .. 27

4.1 D ata Objects ... 27

4.2 D ata Sources ... 27

Chapter 5 Im plem entation ... 29

5.1 M odel- View- Controller Paradigm .. 29

5.2 Application ofW C in ComBo ... 30

5.3 The M odel ... 31

5.4 The View .. 34

5.5 The Controller ... 40

5.6 M odel Updates .. 46

Chapter 6 Use Case ... 49

6.1 Load D ata ... 49

62 Comparative Perspective .. 50

6 3 Z o o m ... 5 1

6 .4 S e le c t ... 5 4

3

6.5 M ultiple Select.. 55

6.6 Interpolation ... 56

6.7 Residue Level... 57

68 Summary and Availability.. 58

Chapter 7 Conclusion... 59

Chapter 8 Future Considerations... 61

Acknowledgements .. 62

References..63

4

List of Abbreviations

API - Application Programming Interface

BLAST - Basic Local Alignment Search Tool

EST - Expressed Sequence Tag

FASTA - FAST-All (a suite of programs for protein and nucleotide comparisons)

FGI - Fungal Genome Initiative

GFF - General Feature Format

GUI - Graphical User Interface

MVC - Model-View-Controller

5

Chapter 1 Introduction

1.1 Background

At the dawn of the 21 st century, a team of international researchers announced the

completion of the first draft of the human genome. It was a major leap toward unveiling

the secret of life. Indeed, the field of genomics has advanced so rapidly that it is hard to

imagine that merely two decades ago researchers were still painstakingly sequencing the

genomes of bacteriophages through direct determination. Much effort has gone into

perfecting sequencing techniques and automating the process. As a result, researchers

were able to catalog the genetic composition of a wide range of bacterial, archaeal, and

eukaryotic organisms during a short time period.

Meanwhile, the development of software tools and database infrastructures for storing,

managing, visualizing, and analyzing genomic data has strained to keep up. Research

centers around the world have raced to set up public databases for genome sequences,

proteins, and gene expression experiments. While managing such a large quantity of

information is not easy, the real challenge lies in the quest for ways to rapidly analyze

this information and make accurate inferences from it.

Researchers have developed a number of algorithms for interpreting genomic data, and

have successfully applied them to automate the annotation and analysis of small

genomes. However, these algorithms fall short in delivering high-quality results for more

complex genomes. Therefore, we seek novel approaches to leverage human expertise. In

particular, we focus on tools that enable researchers to visually interpret data.

Visualization is critical in understanding genomic data: without it, genomes are simply

strings of As, Gs, Cs, and Ts. Genome browsers provide an annotated and information-

rich view of genomic sequences. Anyone who has seen a FASTA or GFF file can

6

certainly appreciate the accessibility of the graphic display of sequences and features in

popular genome browsers. Some browsers, such as Ensembl [1] and the UCSC Genome

Browser [2], are set up as web servers, allowing users to view the genomes stored in

public databases. Users have a great deal of control over the size of the region being

displayed (by specifying the zoom level or the coordinates), what features are displayed,

and how they are displayed. Clicking on a feature will take the user to a page of available

details about that feature. Nevertheless, these web-based browsers share a common

weakness: they are static. This severely limits the flexibility and adaptability of the

systems. In contrast, browsers such as Apollo [3] and Artemis [4] are desktop

applications that serve as both dynamic genome viewers and annotation editors.

Research in recent years has illustrated the power of comparative genomics. Recognizing

the potential of this approach, the Broad Institute (Broad), one of the leading contributors

to the Human Genome Project, has sequenced the genomes of Mus musculus (mouse),

Pan troglogytes (chimpanzee), and Canisfamiliaris (dog). In addition, it is devoting

resources to a Fungal Genome Initiative [5], a collaboration of the fungal and genomics

communities to identify and sequence a high-priority set of fungi. One of the central

motivations of the FGI is to provide a wide range of insightful evolutionary comparisons.

Currently, the genomes of eight fungi have been sequenced, five have been annotated,

and several more are well underway [6]. We can expect that within a year or two, at least

two dozens fungal genomes will be available. All these projects will greatly expand the

repository of genomic data, providing an unprecedented opportunity to utilize

comparative analysis to further our understanding in genome structures, biological

processes, molecular evolution, and many other research areas. Yet, we cannot take

advantage of this opportunity without the right tools.

1.2 Existing Browsers

Existing genome browsers are not well suited for comparative studies. None of them is

capable of displaying multiple genomes simultaneously. Some explore alternative

7

displays for comparative data. Ensembl introduced Syntenyview [7] for displaying

synteny maps. A synteny map shows regions in two genomes where related genes are

conserved in approximately the same order. Synteny maps are useful in characterizing

genome structures, identifying genes in key biological pathways, and studying the

process of evolution. Syntenyview displays synteny maps with hyperlinked views. Each

view displays one chromosome of a "target" species against all syntenic chromosomes of

a "reference" species (Figure 1). Syntenic regions on the chromosomes are color-coded

and linked to another view in the Ensembl browser, where they are displayed as features

on one of the genomes (Figure 2). Because it is not possible to compare multiple target

chromosomes with multiple reference chromosomes in the same view, this approach falls

short in delivering a global representation of the synteny.

Homo sapiens ch

201

01

-80M

-1001m

-120M

romosome 9

C

Mus m

Figure 1: An EnsembI synteny map for Homo sapiens chromosome 9 versus Mus musculus genome.'

' Courtesy of Ensembl. http://www.ensembl.org/Homo sapiens/syntenyview?chr-9.

8

20M

40M

Chi. I

5011-

90

100m-

1501m-

-20M

401

01

801

1001

1201

14 om

h. 4

u.sculus

Chr 2fls wilus

'RAPGEF1 1WJEL '-CRSpe LNThOS
0

NNNGSD4U L
T
TIl

0
ORHLI LGTW3C4 LC._f LGFIDR LCEL LN

Ensembl Genes LNOVEL 'DE G L Cor498 L TSCr L LEEFIA IRALGDS

L 8N7A6
_________________ CELP

-GF LORM I -GFC S I~
s GRF2 .2l LNTNG2 'bA479K20.2'rj -5'0735114.4 'RLS GTC bQ25G24. LJ555 433 Ej3 LL tA323421. Lbp20302_ 3 0., 714.3 LbA29SG24.1 'C9_p.o LGESIj LCEL L0Vega Genes ~ 555L 0 bU2ILLCRSpa binM LDD3 . L0326L24.

LbA295G2L4 IRLGDS
LEEFIAL3

- CURRIED KNOWN GENE OR A503 GURRT 3345(EC P,250110
Gene legend r l 40s T T CURRIED NOVEL COS

ENSEML PREDICTED GENES (NOVEL) ENSEMBL PREDICTED GENES (KNOWDN)

Figure 2: A syntenic region on Homo sapiens chromosome 9 displayed in the Ensembl browser.2

Ensembl is also experimenting with Dotterview, which is "a web interface to the program

Dotter" [8] that compares two DNA sequences using a dot matrix (Figure 3). In a dot
matrix, the rows and columns represent positions on two sequences. If the residue at

position i of the "rows" sequence matches the residue at positionj of the "columns"

sequence, the cell at (i ,j) is dotted. Unlike most pages on the Ensembl website,

Dotterview's content is generated in real time. However, the view takes a long time to
refresh after every command, making it difficult to navigate. Moreover, it offers users

little control over the display. Another tool called gff2aplot [9] reads in an alignment file
in GFF format and produces a postscript file of a dot plot. A dot plot is similar to a dot
matrix, but instead of comparing individual residues, it compares residues within two

windows of sequences. If two sequence windows, il - i2 andji -j2, align by certain
criteria (not necessarily base-by-base identity), a line is drawn between (il,ji) and (i2,j 2)
to denote the alignment, or similarity. Like gff2aplot, PipMaker [10] computes

alignments between two sequences and produces a percent identity plot as a PDF or
postscript document.

2 Courtesy of Ensembl.
http://www.ensembl.org/Homo sapiens/contigview?chr-9&vc start= 129695890&vc end=131315687.

9

Rat synteny
Mouse synteny

Chimp syntengy
Chr. 9 band

DNA(contigs)

Markers

ncRNA Genes

.34.13

129.80 Mb 130.40 Rb '130.20 Nb 130.40 lb 130.60 Nb 130.80 Mb 131.oo Nb 131.20 Nb

II II III I I II I I
D9517- D9S1275 0951230 05119

S125 OHM13 50951910

I9204

Wusjnusculus

1000-

20wo 3000
0 20

chronosone 1:4496577-4596577
N

5000 7000
40W0 600

1- I

0 48
Grescale Hap (threshold:48)

Figure 3: Ensembl's Dotterview shows a dot matrix between a Mus musculus sequence region and a Homo
sapiens sequence region.

One of the best programs to-date for pair-wise genome comparison is UC Berkeley's

VISTA browser [11] (Figure 4). VISTA displays the pre-computed best global alignment

between two sequences as a peaks-and-valleys graph, which shows the percent of

conservation between the sequences at any given point of the alignment. Users can

browse the entire alignment or specify a section of it for display. Moreover, they can

click anywhere in the graph to zoom in on a region. Genes and repeats in the base

sequence are also shown above the graph. Conserved non-coding regions, exons, and

UTRs are colored in the graph. The same sequence region displayed in the graph can also

3 Courtesy of Ensembl.
http://www.ensembl.org/Mus musculus/dotterview?ref=Mus musculus:1:4501577&hom=Homo sapiens:8
:54643825.

10

9

10000

cmJ
0

10
0

a
W

X

3000-

4000--

7000-

0l

0
Ci
0

0

0
0

0.5 kb

I kb

3 kb

5 kb

10 kb

15 kb

20 kb

9000-

10000-

o Grid

Exons:

" novel
" known

repeat

255

be displayed in the UCSC Genome Browser in a separate window. However, since the

UCSC browser is a single-genome browser, only the base sequence can be displayed. The

main drawback of VISTA is that it cannot display all local alignments when a region in

one sequence aligns with multiple regions in another sequence.

C 2ar ow23 2 0 0702p

I ': (111-2
. ~we ew Hel

Figure 4: Vista Genome Browser.4

Building upon VISTA's concepts, Phylo-VISTA [12] is a visualization tool developed

recently for multiple DNA sequence alignments (Figure 5). Phylo-VISTA takes in a

multiple alignment file and a phylogenetic tree. This tree is shown in the top window in

Figure 5. Each leaf node in the tree corresponds to a sequence. Each internal node

corresponds to a similarity plot of the sub-tree. Similarity plots for selected nodes are

visible in the deepest window. Phylo-VISTA also displays the sequences against the

multiple alignment so that users can view the gaps and annotations on each sequence. It

has many of the same zooming capabilities as VISTA. While Phylo-VISTA lacks many

4 Courtesy of VISTA. http://pipeline.lbl.gov/images/help/vvb2applet.gif.

11

At

.0-11- , 3U:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

functions that traditional genome browsers have (e.g., rich feature display and annotation

editing for individual genomes), the idea of a phylogeny-based multiple alignment view

is novel and its implementation noteworthy.

&sadalenors af jffera i b)

ness eCoflasabie node 4deft mouae-chiek)

hufrhum rnou hufrian rnmus

Murnvi mrtuse) lrtwkml puttsh mbrat)

Aplel starled

Figure 5: Phylo-VISTA.5

1.3 ComBo

After a survey of many popular open-source applications, it is clear that there is a

pressing need for genome browsers with sophisticated functionality that can handle the

task of genome comparison in addition to single-genome display and annotation. A

comparative genome browser should be able to display multiple genomes and their

alignments side by side. It should display the data dynamically, allowing the user to

compare arbitrary regions of the genomes in the same view. It should let the user quickly

move between levels of detail, from genome-wide panorama down to individual residues.

5 Courtesy of Phylo-VISTA. http://www-gsd.lbl.gov/phylovista/.

12

In addition to showing the alignments, it should also include genome annotations, so that

the user can compare residue sequences as well as their features.

To address these requirements, we designed and implemented a comparative browser

called ComBo. The conception of ComBo took root in two applications developed at the

Broad Institute, the Argo Genome Browser and the Prototype Comparative Viewer, both

of which enjoyed a great deal of success in their respective application domains. Built on

top of Argo [13], a freely available single-genome browser, ComBo includes all of

Argo's display and editing capabilities for a single sequence. In addition, ComBo adapted

the concept of a comparative perspective introduced by the Prototype Comparative

Viewer. The comparative perspective enables the user to dynamically browse alignments

between two sequences and compare the sequences' annotation. It uses a dot plot [14] to

display alignments to represent the similarities between two sequences. It also contains

two features maps; each displays one of two sequences along with its annotated features.

The perspective initially gives a high-level view of the entire data space, allowing the

user to easily identify data patterns and regions of interest. The user can also zoom in to

further inspect any part of the view. The feature maps are synchronized with the dot plot

to display the same sequence regions. Finally, an inspector component in the perspective

provides additional information about any data selected by the user.

1.4 Thesis Outline

In this thesis, we describe the design and implementation of ComBo. We begin with an

overview of ComBo's predecessors, the Argo Browser and the Prototype Comparative

Viewer, in Chapter 2. Next, we give a detailed description of ComBo's design in Chapter

3. After a brief discussion on data sources and formats in Chapter 4, we turn our attention

to the browser's implementation in Chapter 5. To demonstrate ComBo's features, we go

through a use case in Chapter 6. Finally, we summarize the work in Chapter 7 and discuss

future directions in Chapter 8.

13

Chapter 2 Argo Browser and Prototype Viewer

The design of ComBo is influenced by the Argo Genome Browser and the Prototype

Comparative Viewer developed at the Broad Institute. Argo provides the foundation of a

genome browser with comprehensive single-genome viewing and editing functionality,

while the prototype viewer demonstrates the potential of a comparative perspective that

includes sequences' annotations and alignments.

2.1 Argo Genome Browser

The Argo Genome Browser (Argo) is a graphical user interface (GUI) program for

viewing and editing sequences and their annotated features. Argo's broad functionality as

well as its elegant and extensible implementation makes it an ideal foundation for

ComBo.

FUNCTIONALITY

Argo is the main visualization tool in the Calhoun annotation pipeline system [13]. It

displays any sequence region and all features annotated on that region. It provides users

the means to dynamically navigate within a sequence region. Whether the user wants to

browse the entire sequence, inspect a few residues up close, or look at anything in

between, she can. She may also select features, retrieve details about them, and define

arbitrary regions of interest. The browser offers many options for customization. It

accepts data inputs from Broad's Calhoun database and flat files of various formats.

Argo is also the primary annotation editor used by manual annotators at Broad. It has

many sequence editing capabilities and a well-designed interface, allowing annotators to

easily insert and update evidence features, revise gene models, and use the browser's

feature reports to quickly and accurately interpret data.

14

ARCHITECTURE

The Argo browser is implemented in Java and has a flexible, modular architecture

making it an ideal software environment for the comparative extension. There are three

main components in the design: the data model, the data managers, and the user interface.

These correspond to three Java packages: calhoun.model, calhoun.db, and calhoun.ui.

The data model is the component in the Argo software bearing the most resemblance to

the problem space. It contains abstractions of biologically meaningful objects, such as

Sequence, Feature, etc.

The data managers retrieve data from various sources. In the case where annotations are

modified, the data managers are also responsible for proper executions of commit and/or

rollback to ensure data integrity in the database.

Finally, the user interface is responsible for the visualization and interaction of data

objects. The core component of Argo's user interface is the FeatureMap (Figure 6) which

is a zoomable, scrollable window that arranges the arrow-shaped Features among other

data objects according to their locations on the sequence as marked by a ruler at the top.

15

Agoc File Edit Select View Zoom Rulers Analyze Link User Bookmarks Window Help
Fl@) --- Ar o

40 Thu 12:28 PM

AA868017 e15408..1 S-4r NFL T GBC SI #A4 sap-eIlcDNA dine IMAGE 1461135 3 -sw.II nI TRG92527 092527 ANKYM N

BX107938 BX107938 Soars NFL T GBC S1 V- Wvns cDNA done IMAGpS9H133905 IC~ C2Id9S IAI,. 9 12So89993iepS90!93Ct~o89 I ANPIt.. 21.119q g21434?3
80428696 AGENCOT 7904751 NIH MGC32 Hmo . p d)NA.dn MAGE 6105895'

Nov ~ ~ ~ ~ ~ ~ ~ -Tra-sArip -nnt ipg .4.p1) vran pam

All, - -_K L l T ontansinreeat

0 oPalyA Signal View: Novel Transcrp

ATAA(4 7 0-4-75 86534-8'39

- Properties DNA m ProteiroSelect Features whose:

>HT62bH -28Joe ~ ancnt n83 repeats+
NTAATTATAGAk TVGACAGATGAAw ATAcmcT-

GAGGGAG.GTI-rGT GCAAATATTCTCATAG.ATKGGT CTGAI'CAAATAT UTAGA=TTANGCAACACAGCTGT'CCATTATGCTCTrTATGTA01A'lT031AGGTGGCAMPA7G C-GIGA, ~ TICAATGAAGAA AMWARNA Seuece _F T 1
5 j gataca+-

Search

Figure 6: Argo Genome Browser displays a feature map.6

ROLE IN COMBO

ComBo reuses Argo's framework and object classes, while adding comparative browsing

capabilities. Argo's main component, the feature map, and its subcomponents, are

adapted as building blocks in ComBo. Consequently, more time could be devoted to

adding new features. Argo users also get the benefit of a familiar interface.

2.2 Prototype Comparative Viewer

The modification of the Argo browser to handle comparative data is based on a prototype

viewer developed in Matlab by computational biologist James Galagan at Broad. The

6 Courtesy of James Galagan, Broad Institute.

16

prototype provides a dot plot view and an alignment view of the two genomes being
compared.

The dot plot view presents the result of the comparison from a global perspective. In
Figure 7, the x-coordinate represents the concatenated complete genome of the fungus
Aspergillusfumigatus. The y-coordinate represents the complete genome of the fungus
Aspergillus nidulans. The axis lines indicate the chromosome boundaries. The red boxes
in the plot represent regions of conserved synteny, where related genes are conserved in
roughly the same order.

Figure 7: Prototype Comparative Viewer's dot plot view of the alignments between Aspergillus nidulans

77

and Aspergillusfumigatus.

7 Courtesy of James Galagan, Broad Institute.

17

Zooming in on one of these boxes, Figure 8 shows the actual alignments and gaps of the

two genomes in this region. The genes in this region are also marked as bars along the

axes. The same region is displayed in Figure 9 as an alignment graph, which is useful in

visualizing homology on a fine-grained level.

The viewer also showcases some powerful functions such as synchronized browsing

between the individual genomes and the comparative graphs. The Prototype viewer is

intended to be a prototype tool for research. However, the favorable comments this

prototype received made a strong case that these functions should be implemented for a

wider audience in the richer context of the Calhoun system.

141 V0s. k- ;.* W'4

-own

AXP4Wg#hU nkkdM*

41

6hW W41D

ih-

N

N

N

I

Figure 8: A magnified section of the dot plot in Figure 7.

8 Courtesy of James Galagan, Broad Institute.

18

i mni Ioim iMimm~ Bii MN iumiMV i

Q 94 A A z

I 5 iAP' N

S ,4Wq=M N " 4"W dOlW O Rq 54 40NOjqROIq O 11 WI

A ~$ 14 1* huI ~

Figure 9: Prototype Comparative Viewer's alignment graph view of the same region as in Figure 8.9

9 Courtesy of James Galagan, Broad Institute.

19

Chapter 3 Design

3.1 Goals

The ultimate goal for any user interface design is to make it easy for users to accomplish

tasks. A ComBo user seeks to discover meaningful correlations between two sequences,

but her ability to do so is often hindered by the overwhelming amount of data available.

Thus, it is vital that ComBo allows the user to quickly explore the entire data space.

There are also times when the user wants to focus on a local region of interest and the rest

of the data space becomes distracting. Hence, ComBo's second goal is to draw the user's

attention to relevant information based on the context.

Driven by these goals, the design of ComBo reflects two key concepts:

1. Dynamic user interaction emphasizes flexible display of up-to-date data with

convenient user control. Views are generated dynamically rather than chosen

from a static set, making them highly customizable through direct manipulation.

A straightforward and efficient navigation paradigm further enhances the user's

experience with data exploration.

2. Content management is a combination of filtering out the irrelevant information

from the view and presenting the relevant information in a logical and intuitive

manner. Content management is necessary to prevent the browser from

overwhelming the user with data.

Moreover, for versatility, ComBo has been designed to retain the standard functionality

of the Argo genome browser. Users can browse and edit a single genome, look at

alignments, and compare genomes and annotations all in one application window.

20

3.2 Overview

Building on the Argo foundation, ComBo introduces a comparative perspective, which is

a visual container for components joined together to assist the user in data comparison.

As shown in Figure 10, the comparative perspective is divided into four quadrants,

holding a dot plot, twofeature maps, and an inspector. The horizontal and vertical feature

maps display two separate sequences with annotations. The dot plot displays alignments

between these two sequences. The inspector displays detailed information about the

maps' data contents.

CL
(D

Inspector

Dot Plot

Horizontal Feature Map

_ _ _ _' I p e .

Figure 10: ComBo's comparative perspective.

/

The borders of these four components join to form the axes of a position-based

coordinate system shared between the maps: The coordinates on the X and Y-axes

21

ft E

correspond to positions on the respective sequences, with the origin designated as the 5'-

end of each sequence. Map contents, features and alignments, are placed according to

their sequence positions.

The user may browse the entire map or zoom into a smaller region to examine it more

closely. The feature maps are synchronized with the dot plot to display identical ranges of

sequences, allowing the user to focus on a subset of the alignments and compare features

around the same location.

3.3 Components

DOT PLOT

The dot plot displays pre-computed alignments, which represent correspondences

between the X and Y-sequences at the residue level (Figure 11). Specifically, the

projections of each alignment onto the X- and Y-axes bound the matching sequence

regions. An alignment is inverted if they are on different strands of the sequences.

Sequence X

Figure 11: In this dot plot, the alignment in the center represents an inverse correspondence between two
sequence features.

FEATURE MAP

22

The feature map displays a sequence and its features. ComBo uses a modified version of

Argo's feature map that has two possible orientations instead of one. The vertical version

looks and behaves like its horizontal counterpart, but is rotated 90 degrees

counterclockwise. As mentioned earlier, the dot plot and its adjacent feature map along

each axis of the comparative perspective align to share the same coordinates for the same

sequence. This allows the user to cross-reference alignments and features at the same

location.

INSPECTOR

Like the feature map, the inspector is also a concept inherited from Argo. It displays the

properties and details of the currently selected feature, alignment, or a user-defined

sequence region.

3.4 Interactions

ComBo's strength as a comparative genome browser lies in the components' ability to

interact with the user and among themselves. ComBo refines and builds upon many ideas

in Argo's user interface, particularly the navigation paradigm in the feature map. To tie

different pieces of data together to help the user discover the biological connection,
ComBo utilizes a new technique: synchronization of views and actions among the maps.

NAVIGATION

The dot plot and the feature maps are zoomable and scrollable. Only dimensions of a map

that correspond to sequences are zoomable. This means a horizontal feature map is

zoomable along the X-axis and a vertical feature map is zoomable along the Y-axis. We

will refer to the zoomable dimension of a feature map as the length dimension and the

non-zoomable one as the height dimension. On the other hand, a dot plot is both

horizontally and vertically zoomable.

23

ComBo has two basic navigation modes, select and zoom. The comparative perspective

uses select-mode by default. A user may click on any feature, alignment, or sequence

segment to retrieve additional information about them in the inspector. The user may also

Control-select or area-select multiple items. She may switch to zoom-mode temporarily

by holding down the Shift key. In zoom-mode, she can left-click to zoom in and right-

click to zoom out by a magnification factor. She may also zoom into an arbitrary region

in the view defined by dragging the mouse.

SYNCHRONIZATION

The role of synchronization is to help the user stay on track with relevant data. ComBo

synchronizes both zooming and selection to ensure a logical, consistent, and informative

comparative perspective.

Synchronous zooming guarantees that neighboring maps make the same sequence range

visible. This is achieved by maintaining the following invariant:

1. The views of two adjacent maps must have the same size along the border they

share, and must align perfectly;

2. These two views must show the same segment of their corresponding sequence

and nothing more; and

3. If the user changes one of the views by zooming or scrolling the map, the adjacent

map must automatically adjust to match the user-updated view.

As a result, users can easily cross-reference alignments, potentially related features, and

their nucleotide sequences.

ComBo also synchronizes selection highlights. When an alignment is selected, ComBo

highlights the ranges it spans in both the horizontal and vertical dimensions. The same

regions are also highlighted in the feature maps allowing users to easily identify

overlapping features, as illustrated in Figure 12.

24

4, 1%r.' r WT% s - I %#trVW--& .

CU

(DU
tJL / Dot Plot

~I~1 I x

Inspector Horizontal Feature Map

Figure 12: Selected alignment and its highlights.

Likewise, if a feature or a user-defined sequence segment is selected in a feature map,
ComBo highlights the corresponding sequence region in the feature map and the dot plot.
Furthermore, if the highlight overlaps with any alignments, the dot plot will interpolate
and highlight those regions the selection aligns with in the other feature map. Finally,
ComBo updates all highlights whenever the map views change. (Figure 13)

25

I'

ci.

L.

L

I
Dot Plot

I 1t

'Horizontal Feature MapInspector

Figure 13: Highlight synchronization by interpolation. The highlights on the X-axis are interpolated from
the highlight for the selected vertical feature.

26

-- a

A

Chapter 4 Data

4.1 Data Objects

ComBo is designed to display the relationships between two sequences. The sequences

may be DNA, RNA, or protein. The raw sequence data are simply two strings of residues.

To begin uncovering potential underlying connections, researchers rely on two classes of

evidence: alignments and features.

The first class of evidence is the sequences' pair-wise alignments at the residue level. An

alignment is a near-perfect match between two regions on separate sequences. There are

many programs available for finding global and local alignments between two sequences.

Once the alignments have been computed externally, they can be loaded into ComBo for

display. While short gaps are common in alignments, ComBo currently ignores them and

simply treats an alignment as a pair of segment locations.

The second class of evidence consists of sequence features. These are specific locations

on the sequences annotated as genes, repeats, BLAST alignments, EST alignments, etc.

Feature data are computed by external feature finding programs or identified through

manual annotation.

4.2 Data Sources

Sequence and feature data are typically loaded together for display. ComBo imports these

single-genome data from two main data sources, the Calhoun database and flat files. The

Calhoun database is an Oracle relational database at the Broad Institute, which tracks

sequences from in-house genome projects as well as external databases. Additionally, it

tracks features on these sequences. Both sequences and features have a variety of object-

27

or type-specific attributes. ComBo is also capable of loading data from flat files in Fasta,

Genbank, or GFF format.

ComBo loads alignments separately from sequence and feature data. As there is not yet

any standard format for comparative data, ComBo does not import alignments from

databases. Moreover, the code for loading alignments from flat files are written as needed

for custom data formats. Currently, ComBo accepts data files that describe pair-wise

alignments in a simple, generic format, in which each line describes one alignment with

twelve tab-delimited fields:

1. Alignment ID, 7. Sequence#2 strand,

2. Sequence#1 start, 8. Sequence#1 contig,

3. Sequence#1 stop, 9. Sequence#2 contig,

4. Sequence#2 start, 10. Percent identity,

5. Sequence#2 stop, 11. Alignment score, and

6. Sequence#1 strand, 12. Expected value.

This format essentially specifies an alignment as a pair of sequence segments with a few

additional attributes. It does not include gap information.

28

Chapter 5 Implementation

The ComBo browser was implemented in Java. Besides being Argo's choice of language,

Java has the obvious benefit of platform independence, eliminating a lot of the guesswork

about native graphical peculiarities in different systems.

What is more, Argo has grown quickly into a complex system. It is foreseeable that

ComBo will similarly take on more features and become an increasingly sophisticated

and well-rounded tool. In order to keep the system manageable and extendable, great care

must be taken to keep the code modular. Java, being an object-oriented language, is a

natural choice for this task.

Keeping a system with so many functionally interdependent components modular and

comprehensible is no straightforward task. To cope with complexity, the implementation

of ComBo loosely follows the Model-View-Controller paradigm [15] pioneered by Java's

predecessor, SmallTalk-80.

5.1 Model-View-Controller Paradigm

In the early 1980s, a programming language called SmallTalk-80 introduced the Model-

View-Controller (MVC) paradigm, a powerful user interface design pattern. In the MVC

paradigm, the modeling of the problem space, the user input, and the graphical output are

explicitly separated and handled by three parts of the program, each specialized for its

task. The model manages the behavior and data of the application domain. The view

produces the graphical output for the model on screen. Finally, the controller interprets

the mouse and keyboard inputs from the user and commands the model and/or the view

to update accordingly.

29

The aim of MVC is to separate concerns and promote code reuse. MVC allows one to

develop the software's user interface frontend and data-centric backend independently.

One implication of this partition is that a single data model can take on several different

views. Another is that no matter how the backend implementation changes, as long as it

maintains the same interface, the frontend is not affected at all. Moreover, MVC

encourages the separation of input and output. The controller accepts user inputs and

updates the model accordingly, while the view generates the output based on the state of

the model. Overall, MVC is an effective abstraction that simplifies user interface

development.

5.2 Application of MVC in ComBo

ComBo is structured according to the Model-View-Controller paradigm, as illustrated in

Figure 14. ComBo imports and models genomic data objects using the Java packages

calhoun.api, calhoun.db, and calhoun.model, graphically presents them in an application

window using calhoun.ui, and orchestrates their actions and interactions using

calhoun.action and calhoun.event.

Controller View

input I paeoutputcalhoun.action calhoun event ca houn ul

Model

calhoun.modol calhoun.db calhoun.sp)

Figure 14: ComBo's program structure from the Model-View-Controller point of view.

30

There are many advantages of structuring ComBo this way. First, since the code for

accessing data (calhoun.db) is separate from the data model interface (calhoun.model),

ComBo can take in data of any format from any source given a data manager to translate

the data into the representation defined in the data model interface. The calhoun.api

package provides templates for writing custom data managers. Second, the MVC pattern

makes it possible to associate multiple views with the same data. This allows powerful

features, such as toggling between views, to be added to ComBo in the future.

5.3 The Model

DATA TYPES

The model of ComBo is responsible for supplying data to the frontend. The first step is to

let the frontend know what kinds of data to expect. The calhoun.model package defines the

following data types:

A Sequence is a Java object that models a genomic sequence. Sequence has a number of

attributes, including a unique ID, a name, a source, and a raw sequence, which is the

string of residues it represents.

A segment models a segment of a sequence. Its attributes include the sequence the

segment is on, the starting and stopping positions on the sequence, and the strand if

applicable.

A Feature represents an annotated feature on a sequence. It is a special kind of Segment

bearing some biological significance. Besides those inherited from segment, Feature has

additional type-specific attributes, such as the product of a gene.

31

An Alignment object is a simple model for a pair-wise alignment. It disregards gap

information; instead, it represents the alignment as a pair of Segment objects indicating

which parts of the sequences share the similarity. In the future, gaps will likely be

addressed in a nested-Alignments fashion that resembles the nested-Features approach for

handling introns in a feature map and is compatible with the existing framework.

DATA MANAGERS

Data managers are modules that import and translate raw data into data objects

recognizable by ComBo. The calhoun.api package specifies the programming interface for

data managers. The calhoun.db package contains functional implementations. Figure 15

illustrates the core Java classes and interfaces for data managers.

There are three main types of DataManagers: SequenceManager for sequences, TrackManager

for features, and AlignmentManager for alignments. Three abstract classes,

AbstractSequenceManager, AbstractTrackManager, and AbstractAlignmentManager, serve as

starting points for any concrete data manager implementation. They can be further sub-

classed based on data sources. AbstractSingleFiledAlignmentManager and

AbstractSingleFiledTrackManager can be extended to create data managers that import data

from flat files.

For ComBo, we were able to reuse various single-genome data managers written for

Argo, such as the BroadSequenceManager for importing sequence data from the Calhoun

database and the GenbankDatabaseDataManager for importing Genbank data (sequences and

features). For the generic file-based test alignment data format described in Chapter 4, we

created a TestAlignmentManager by extending the AbstractSingleFiledAlignmentManager

template in the API. It parses a flat file and produces a set of Alignment data objects as

defined in calhoun.model.

Finally, the DataManagerRegistry helps the application track data managers available. When

the user makes a data loading request, ComBo delegates the task to the appropriate data

32

manager, which reads data from the source, creates data objects such as sequences and

Features, and passes them to the view for display.

calhoun.db

SequenceMan
gerRegistry

TrackManager
Registry

Ge~nbankData-

baseDataManl
ager

BroadSequen
ceManager

TestA49nment
maager

calhoun.api

Identiable

DataManager

AllgnmentMan SequenceMan TrackManager -

Absrect4Jgl AbstractSequ Abstract Track ractC

mentaneger enceManager Manager ager

Absbc*Wnge- S-Aestsi515
FeiAugnmen FiledTrackMa

tManager nager

Symbols:

Java objects Java

Java relations, extends

Abstract
Java Class

implements

Java Class

Figure 15: Data Manager API. Colored objects represent the classes relevant to the implementation of the
data manager for the alignment data described in Chapter 4.

33

Filel-oader

AfignmentFile TrackFilet-oad
Loader er

i

5.4 The View

The view of ComBo is primarily responsible for displaying data from the model.

Together with the controller, it gives users the means to directly manipulate the

appearance as well as the actual data. ComBo organizes data into maps and maps into

perspectives.

COMPARATIVE PERSPECTIVE

At the top of the UI hierarchy for ComBo's comparative perspective is the Java object

ComparativePerspective, which is a JlnternalFrame containing exactly four components: (1)

a DotPlotWindow, (2) a vertical FeatureMapWindow, (3) a horizontal FeatureMapWindow, and

(4) an InspectorWindow. The first three components are all maps. The ComparativePerspective

manages the layout of the components relative to one another and sets them up for the

controller. However, the responsibility of data display lies entirely on the maps, which

will be dissected in the following sections.

34

Map Object Diagram

Map View

Schema Implementation

p ----- ScrolfableMap viewport MapPanel

viewport

DotPlotWindow FeatureMapWindow FeatureMapPanel DotPlotPanel

-vewport- i"

Heaontans Glyph ontains

raw header i
column header contains

RulerPanel SegmentGlyph AlignmentGlyph

SequenceRulerPanel PositionRulerPanel FeatureGlyph ColumnGlyph HighlightGlyph

Symbols:

Java objects Javc Java cas Java Class

Java relations: extends implements (simple)

Figure 16: Object diagram of the main Java objects pertaining to a map.

MAP HIERARCHY

The different map-related objects in ComBo are related according to the hierarchy shown
in Figure 16. The map schema is specified in the interface Map and partially implemented

35

in the abstract class ScrollableMap, which becomes the basis for feature map and dot plot's

implementations.

The Map interface in the hierarchy embodies the concept of a map, which is a

representation of data locations. Analogous to a Global Positioning System that uses the

globe's longitude and latitude as its coordinate system for locating a subject, Map uses

positions on one or more sequences as the coordinate system for locating a piece of data,
such as a feature or an alignment.

A ScrollableMap is an implementation of Map. It uses a JScrollPane to display the map

object as shown in Figure 17. It has a fixed-sized viewport, which serves as a window to

the view in the back. The view is a 2D rendering of the map (later referred to as the
MapPanel). Since the view can have any size, zooming can be achieved by stretching or

shrinking the map along its zoomable dimensions. To zoom in, for instance, the view's

size increases, so that the map is drawn bigger. Since the viewport stays the same, the

user sees what used to be only part of the viewport now occupying the entire viewable

space. When the map's size is bigger than the viewport's size, the user can scroll the map

horizontally and vertically to bring different parts of the map into the viewable area.

4. 7 . a

vew\r

Figure 17: ScrollableMap uses a JScrollPane to display a map through a viewport.

36

ComBo has two uses for the ScrollableMap: the FeatureMapWindow for displaying features

and the DotPlotWindow for displaying alignments. Besides avoiding duplicate code between

FeatureMapWindow and DotPlotWindow, the map hierarchy allows the same navigation

mechanism to be reused in the future in other views, such as an alignment graph (Figure

9), by simply extending from ScrollableMap.

VIEW HIERARCHY

The view of a ScrollableMap is a MapPanel, which is a JPanel-type container for glyphs, or

graphical objects, that represent, group, and highlight the data. Like ScrollableMap,

MapPanel is an abstract class. It has two concrete subclasses, FeatureMapPanel and

DotPlotPanel, which serve as views for FeatureMapWindow and DotPlotWindow respectively.

MapPanel has two main functions: keeping track of glyphs and managing their layout.

Recall that the locations of data such as features and alignments are in terms of sequence

positions. To determine where a glyph should be drawn, A MapPanel must translate their

sequence positions to Java's component coordinates and retranslated whenever the view

is resized.

If two or more features share the same sequence position in a FeatureMapPanel, their

glyphs are stacked up, or put in separate rows, along the height dimension. The stacking

order is customizable. On the other hand, stacking is not an option in a DotPlotPanel since

there is not a non-sequence dimension. Therefore, some overlapping AlignmentGlyphs are

unavoidably obscured, at least partially.

MAP HEADERS

Displaying data in a FeatureMapPanel illustrates their locations relative to one another, yet

a map is incomplete without a ruler indicating their absolute locations on the sequence(s).

FeatureMapWindow displays rulers through the viewport of the column (north) or row (east)

37

header of the JScrollPane. Figure 18 shows two FeatureMapWindows. The vertical feature

map holds rulers in the row header, whereas its horizontal counterpart holds them in the

column header.

The "Header" section in Figure 16 outlines the ruler hierarchy in ComBo. A RulerPanel is

the graphical representation of a ruler. Two commonly used RulerPanels are the

PositionRulerPanel and the SequenceRulerPanel. The PositionRulerPanel marks the sequence

positions and is always visible. The SequenceRulerPane displays the residue at each

position. If the segment of the sequence viewable through the viewport is too long for the

residue letters to be legible, the panel is left blank.

MAP CONTENTS

MapPanel uses glyphs to represent, group, and highlight data. The categorization of glyphs

parallels their models: AlignmentGlyph corresponds to Alignment; SegmentGlyph corresponds

to Segment. SegmentGlyph can be divided into three sub-categories: FeatureGlyph,

ColumnGlyph and HighlightGlyph. Figure 16 diagrams the relationship between these classes.

Figure 18 and Figure 19 illustrate the glyphs taken from screenshots.

PositionRulerPanel

SequenceRuterPanelL I _ HighlightGlyph
FeatureGlyph

ColumnGlyph

vertical feature map horizontal feature map

Figure 18: Components in a feature map, including glyphs and rulers.

38

HighlightGlyph

FeatureGlyph

Figure 19: Components in a dot plot.

A FeatureGlyph represents a Feature, and is drawn as an arrow to indicate the feature's

strand orientation. The user may also indicate an arbitrary segment on a sequence by

creating a ColumnGlyph. A ColumnGlyph is drawn as a semi-transparent rectangle covering

the entire section of the feature map bounded by the endpoints of the segment. A

ColumnGlyph remains in the FeatureMapPanel until the user explicitly deletes it or the

FeatureMapPanel is disposed. However, unlike a feature, the segment it represents is not

stored as permanent data. Neither FeatureGlyph nor ColumnGlyph is used in DotPlotPanel.

AlignmentGlyph, FeatureGlyph, and ColumnGlyph are selectable. Their selection is reflected in

the Inspector, which displays various properties of the underlying alignment, feature, or

column. The selection is also highlighted by HighlightGlyphs. HighlightGlyph is similar to

ColumnGlyph, except it is not created by the user, and it is transient, meaning that it will be

destroyed as soon its corresponding selection is deselected. There are three types of

HighlightGlyphs: direct, neighboring, and interpolated. They are categorized by the contexts

for which they are created. They play a central role in synchronization, which will be

discussed in more detail later.

39

5.5 The Controller

The controller of ComBo handles all interactions with the user. There are two parts to the

controller logic. The first involves direct manipulation of objects by the user, such as

opening a new feature map or selecting a glyph. This is handled by actions and input

listeners. The second involves the interactions between objects as the byproducts of

direct manipulation. The theme of the interactions is synchronization, which is achieved

by the resize listener and the view synchronizer.

ACTIONS

An Action is a Java object that represents a command. It is commonly used in

conjunction with a menu item. When the menu item is selected, the associated action is

performed. For example, the action for the menu item "Refresh Map Data" is to reload

the data from its source and regenerate the map. The calhoun.action package contains many

such Actions.

Actions are neatly packaged controller logics that help make the code modular, easy to

understand, and reusable. Unfortunately, not all controller logics can be wrapped up as

Actions: mouse events make a prime example. Actions work well with standard GUI

objects such as menus and toolbars, but another type of controller is necessary to handle

more free-form interactions.

INPUT LISTENERS

Each map has a set of listeners that handles events from input devices, such as mouse

clicks, characters typed, etc. FeatureMapKeyListener and DotPlotKeyListener listen for

KeyEvents, while FeatureMapMouseListener and DotPlotMouseListener listen for

MouseEvents and MouseMotionEvents.

40

The main function of the key listeners is to set the mode. There are two modes in
ComBo: select and zoom. ComBo responds to mouse inputs differently depending on
what the current mode is. The default mode is select. When the user holds the Shift key
down, the mode is temporarily shifted to zoom.

The mouse listeners react to a mouse event based on the current mode and the type of
object clicked on. The following table summarizes mouse listeners' behaviors:

Mode E-ei-t Coipoient Crl Bitton Effect

MouseClicked

FeatureGlyph,
ColumnGlyph,
AlignmentGlyph

HighlightGlyph,
none

No

Yes

Left

Left

I ILeft I

Select component if it is not previously
selected; deselect otherwise. Clear all other
selections in all maps.
Select component if it is not previously
selected; deselect otherwise.

Clear all selections in all maps.
FeatureGlyph, Left Drag and drop. Effect depends on the drag
ColumnGlyph model4.

Select all components enclosed by the drag-
MouseDragged AlignmentGlyph, No Left rectangle. Clear all other selections in all

HighlightGlyph, maps.
none Select all components enclosed by the drag-

Yrectangle.

MouseMoved
FeatureGlyph,
ColumnGlyph,
AlignmentGlyph

Display tool-tip.

Shift the map so that the clicked point is the
MouseClicked Left center of the visible area. Zoom in by a

factor (default is 2x).
Right Zoom out by a factor (default is 0.5x).

Zoom MouseDragged Left Zoom into the region enclosed by the drag-
rectangle.

FeatureGlyph,
MouseMoved ColumnGlyph, Display tool-tip.

AlignmentGlyph ______

Table 1: Mouse controls in maps.

So far, we have described Actions and input listeners, which give the user the means to
control and navigate individual maps. However, to make the most out of the data, these
maps need to cooperate in a comparative context. Two additional controller components

0 The drag modes are artifacts of Argo. They are not meaningful in the comparative context, but are
retained in ComBo so that a user can open a standalone feature map and still get all the Argo functionality.

41

Select

are responsible for managing the interactions between maps, the ResizeListener and the

ViewSynchronizer. In a nutshell, the ResizeListener controls the layout of the maps in such a

way that enables the ViewSynchronizer to easily coordinate zooming and highlighting in the

views.

RESIZE LISTENER

The Corn parativePerspective controls the sizes and locations of its four components with a

ResizeListener. In order to achieve perfect synchronization, the ResizeListener guarantees the

following about the components:

1. Each component is anchored to its respective corner of the perspective,

2. The vertical FeatureMapWindow and the DotPlotWindow are equal in height,

3. The horizontal FeatureMapWindow and the DotPlotWindow are equal in width,

4. Neighboring maps abut without overlap, and

5. The InspectorWindow takes up the remaining space.

The result is a four-quadrant setup with the joint borders forming the X- and Y-axes. The

ResizeListener allows the user to redistribute the space by dragging the origin or one of the

axes. Figure 20 illustrates the layout properties guaranteed and the resizing operations

supported by the ResizeListener.

Vertical Feature Map Dot Plot
(Quadrant 2) (Quadrant 1)

Inspector Horizontal Feature Map
(Quadrant 3) (Quadrant 4)

Figure 20: ResizeListener in the comparative perspective.

42

ResizeListener utilizes an event listener pattern to supervise the layout and provide

immediate visual feedbacks to the user's resizing gestures. Specifically, the
ComparativePerspective instantiates a ResizeListener that listens for MouseEvents and

MouseMotionEvents in all four components. When the user clicks on one of these
components near the axes and drags it, the ResizeListener causes the component to resize
following the mouse movement and simultaneously adjusts the other three components.
Contents are shown during resizing activities as they provide immediate feedback to the
user in determining where to place the boundaries.

VIEW SYNCHRONIZER

A ViewSynchronizer is an object that relays updates from a source map to a target map. The
source and the target share a border, which is either horizontal (X) or vertical (Y). The
ComparativePerspective contains four ViewSynchronizers:

Hoina Fpnt-d
Horizontal FeatureMapWindow DotPlotWindow X
Vertical FeatureMapWindow DotPlotWindow Y
DotPlotWindow Horizontal FeatureMapWindow X
DotPlotWindow Vertical FeatureMapWindow Y
Table 2: Four instances of ViewSynchronizer in ComparativePerspective.

The ViewSynchronizer listens for both zoom and select changes in the source by
implementing the ChangeListener and ContainerListener interfaces.

Zoom-Synchronization

The ViewSynchronizer is a ChangeListener registered with the source's viewport. When the
MapPanel in the viewport resizes or changes its position, it fires a ChangeEvent. Zoom-

related operations on a map, including zoom-in, zoom-out, and scroll, can all be captured
as ChangeEvents. Thanks to ResizeListener's guarantees about map sizes and positions,
zoom synchronization is straightforward: when the ViewSynchronizer receives a

43

ChangeEvent from the source, it sets the view of the target to the same size and the same

position as the source along the shared border. (See an example in Figure 21.) This

method is simple yet robust. We can count on the listener catching every zoom change in

the source and making the appropriate update in the target regardless of what causes the

zoom operation.

(z1. y2) Shared (x2, y2)
A 7borderN A

(Z1, y1) (xI1 y1)

ChangeEvent
Target Source M M

(zoom in)

-b2

Figure 21: A ViewSynchronizer propagates a zoom change (magnification) from its source to its target in
the vertical dimension.

The ViewSynchronizer is also a ContainerListener registered with the source's view. It

receives a ContainerEvent when a component is added to or removed from the view. If

this component is a HighlightGlyph, then the viewSynchronizer must update the highlights in

the target's view. However, before diving into the details of select-synchronization, it is

necessary to first clarify the different types of HighlightGlyphs and how they relate to data

glyphs as well as to each other.

Highlight Glyphs

Unlike most glyphs in ComBo, which are created to represent data objects,

HighlightGlyphs' primary function is to provide visual cues to related data regions across

multiple maps. They are central to synchronization because they best emphasize the

logical relations among the maps.

44

Recall that there are three types of HighlightGlyphs corresponding to the three ways

HighlightGlyphs are used: highlighting a selected data glyph, mirroring a HighlightGlyph in an

adjacent map, and interpolating the intersection of an AlignmentGlyph and another

HighlightGlyph. Each of these uses is illustrated in Figure 22 and is described separately

below.

Feature Map

Neighboring highlight Dighf
HighlightGlyph Hlgh ghtG yph

Direct mirror
HighlightG yph Dot Plot

highlight

mi-r-or HighlightGlyph

interpolate

Interpolated
HighlightGlyph

Figure 22: The relationship among highlight glyphs and data glyphs.

First, when the user selects a FeatureGlyph, a ColumnGlyph, or an AlignmentGlyph, ComBo

creates a direct HighlightGlyph to highlight each sequence segment the selected data glyph

corresponds to. (The highlights in the dot plot of Figure 12 are two examples of direct

HighlightGlyphs.) A direct HighlightGlyph is created in the same map as the selected data

glyph and is destroyed by the map when the data glyph is deselected.

45

Secondly, a neighboring HighlightGlyph is created to mirror a non-neighboring HighlightGlyph

in an adjacent map and any of its subsequent changes. For example, when the vertical

FeatureMapWindow creates a direct HighlightGlyph, the DotPlotWindow in turn creates a

neighboring HighlightGlyph that highlights the same Y range (Figure 13).

Thirdly, when the neighboring HighlightGlyph that mirrors a direct HighlightGlyph in feature

map A intersects with an AlignmentGlyph, we interpolate the segment on sequence B that

would align with the highlighted segment on sequence A, and create an interpolated

HighlightGlyph for it. (Both vertical highlights in the dot plot of Figure 13 are interpolated

HighlightGlyphs.)

Select-Synchronization

All HighlightGlyphs are either directly or indirectly created or destroyed by the selection

mechanism of MapPanel, or map. Since the map alone can set a data glyph as selected or

unselected, only the map determines when to create or delete a direct HighlightGlyph. On

the other hand, one map does not know about direct HighlightGlyphs that other maps have

created. It needs the ViewSynchronizer to act as an agent. Only the ViewSynchronizer can

instruct the map to create or delete a neighboring or interpolated HighlightGlyph.

When a ViewSynchronizer receives a ContainerEvent about the addition of a direct or

interpolated HighlightGlyph to the source, it instructs the target to create a neighboring

HighlightGlyph. If the target is a DotPlotMapPanel, it also asks the target to create interpolated

HighlightGlyphs if there are any. On the other hand, when the ViewSynchronizer is notified of

the removal of a HighlightGlyph from the source, it makes sure that all dependent

HighlightGlyphs in the target get removed.

5.6 Model Updates

ComBo makes extensive use of the event listener pattern to communicate changes among

components. A component, the listener, registers interest in changes of another

46

component, the source. When the source changes, it sends an event notification to all of

its listeners. This pattern is particularly common in the controller. The input listeners and

the ResizeListener use it to capture mouse and keyboard events in the maps. The

ViewSynchronizer listens for changes in the contents of containers and in the bounds of

components. These GUI components manage to never miss an update by taking full

advantage of Java's event supports in AWT and Swing.

OBSERVER PATTERN

The need for timely update notifications, however, is not limited to the GUI components

of ComBo. Data models also need a way of informing their views about their changes

immediately to make sure that the views never display stale data and that users receive

immediate feedbacks for the changes or commands they make.

ComBo allows any objects to utilize the event listener pattern by providing two interfaces

in the calhoun.util package, Observer and Observable. By implementing the Observable

interface, an object can notify its observers about changes or even just send them a

generic announcement. Any object can receive messages from the Observable object by

implementing the Observer interface and registering itself with the Observable.

The Observer pattern is powerful, but must not be overused. In a situation that requires

event notification, one should always consider Java's event listener implementation first.

While the Observer pattern can also do the job, it often requires meticulous coding-one

has to take great care to make sure that the notifyObservers() method is called in all possible

update scenarios. This becomes highly error-prone when the component's behavior is

complex, with a large number of potential scenarios. Therefore, the use of the Observer

pattern must be kept in check.

SEGMENT UPDATE

47

One good use of the Observer pattern is to relay updates on a segment model to its frontend

SegmentGlyph. A Segment model may change due to updates from the database or

operations performed by the user, such as dragging the bounds of a ColumnGlyph.

Therefore, upon initialization, FeatureGlyphs and ColumnGlyphs should register themselves

as Observers of their segment models. When a segment's start or stop position changes,

Segment calls notifyObserverso, so that when the glyph receives the notification, it can

update its model and redraw itself immediately.

HIGHLIGHT UPDATE

HighlightGlyph implements both the Observer and Observable interfaces. A direct HighlightGlyph

recalculates its bounds when it receives an update from its Segment model. A neighboring

HighlightGlyph updates its segment model and recalculates its bounds when it receives a

notification from the direct or interpolated HighlightGlyph it mirrors. If this neighboring

HighlightGlyph is in a DotPlotMapPanel, it also asks the panel to refresh the interpolated

HighlightGlyphs because after the change in its bounds, it may not intersect with the same

AlignmentGlyphs anymore.

While direct and neighboring HighlightGlyphs update their segment models only when

notified, interpolated HighlightGlyphs need to be updated more frequently. An interpolated

HighlightGlyph updates even when the map zooms. Unlike other glyphs, its Segment model is

a guess by interpolation. At a resolution level where there are more sequence bases than

pixels to represent them, the interpolation is inevitably crude. Left not corrected, the error

gets magnified increasingly as the resolution gets better by zooming in. Therefore, it is

essential for an interpolated HighlightGlyph to recalculate its Segment model every time its

setBoundso method is called.

48

Chapter 6 Use Case

To demonstrate ComBo's functionality, we present a use case comparing two sequences

from Aspergillusfumigatus and Aspergillus nidulans respectively. Aspergillus is a group

of commonly found molds. Most of them are not pathogenic. However, A. fumigatus is an

exception-it is the most infectious mold worldwide. Despite its notoriety in medicine,

genomic studies on A. fumigatus had been lagging until recently when the Sanger

Institute sequenced its genome, allowing scientists to perform analyses on this newly

available data [16]. One approach in studying A. fumigatus is to compare its genome with

the model fungus A. nidulans. This use case shows how ComBo can lend support to this

task.

6.1 Load Data

The user begins by loading data into a new comparative perspective. First, she selects the

"New Comparative Perspective..." item from the File menu. A dialog box will appear on

screen (Figure 23) prompting for data locations of two sequences (including their

annotations) and the alignments between them.

The A. fumigatus data are stored locally by contigs in Genbank-format files. Each file has

the sequence and all gene features in the given contig. The user chooses contig 19 as the

first sequence. The A. nidulans data are from the Broad database. The annotations include

genes as well as many other features such as BLAST hits. This time, she chooses contig

104 as the second sequence. The pre-computed alignments that indicate corresponding

regions between the above two sequences also come from a local file. This particular file

is not in any popular data format and requires its own data loader custom-made using the

data manager API. (See Chapter 4 for a more detailed account of this alignment data.)

49

Figure 23: Dialog box for loading data into a new comparative perspective. The user must specify two
sequences, including their annotations, and a data set of alignments between the sequences.

6.2 Comparative Perspective

Once all the data have been loaded in, ComBo displays the comparative perspective as
shown in Figure 24. The map in the lower-right is the feature map for A. fumigatus. The
small blue glyphs represent the genes on the sequence. The map in the upper-left is the
feature map for A. nidulans. It contains glyphs of many colors representing features of
different types. The user has the option of turning off any irrelevant types in the feature
map display. The dot plot in the upper-right shows the alignments.

One might notice that the A. fumigatus contig is significantly larger than the A. nidulans
contig. Only part of A. fumigatus shown here corresponds to A. nidulans. In fact, there

50

appears to be an inversion in this syntenic region, made evident by the reversed
orientation of one of the three major alignments in the dot plot.

i~~~ ~ -- -- ---- -

! A - --- - - --

- -

ssuw . n*Usm mn 5 .m ,gena .. ,i in a m e, .

aum .mem nw uasm me 4amm*e e fhmgguine em~meammp..w.

Figure 24: Alignments between A. fumigatus and A. nidulans show synteny.

6.3 Zoom

Next, the user wants to inspect this synteny more closely. So she holds down the Shift

key to switch to zoom-mode and drags the mouse around the region to zoom in. (Figure

25)

51

7t T

5 4

Whe te se reeaesth muse RIbutton, thei pe~Irpective SIook ik FigR4URSUr 2. The iew

in the dot plot is exactly a blown-up version of the area enclosed by the rectangle in

Figure 25. Furthermore, the horizontal and vertical feature maps have also zoomed in to

the corresponding regions automatically to synchronize with the dot plot.

52

N-4 K

I'm'_won___________________a_________ R k 10 4 1 or aa g ot V

I1 iaI 411" a .4 41 a -t s
Is4eA I IA I" a 0 a

Figure 26: A magnified view of a group of alignments and the features on the corresponding sequence
segments.

The features in the horizontal feature map are still indistinguishable. So the user clicks on

this map near the center of the syntenic region with the Shift key down to zoom in on the

X-axis alone. Figure 27 shows the updated view of the perspective.

53

- - - -y

ar iglghe inaltremp.Bt fauemp hwfauesisd h ihiheat#oool-tip.M44M f

'A A

- - :- U%

4~~44~4 1
- * ~%

Figure 27: Comparative perspective after zooming in on the horizontal feature map.

6.4 Select

The user can click on any data glyph to select it. In Figure 28, she has selected an

alignment. The segments that this alignment corresponds to on the X- and Y-sequences

are highlighted in all three maps. Both feature maps show features inside the highlighted

regions. To find out what they are, the user can zoom in further or get a detail report in

the inspector by selecting one feature at a time. If the user only wants to see the ID of a

glyph, she can move the mouse over it, and the mouse tool-tip will display the ID. In

Figure 28, the ID of the selected alignment is shown in both the inspector and the mouse

tool-tip.

54

lb H yau kWW -PN * b O

44

4144

Figure 28: Selection of an alignment.

6.5 Multiple Select

The user may also select multiple glyphs, either by holding down the Control key while

clicking on the glyphs or by dragging the mouse over an area to select everything within.

In Figure 29, the user has selected five alignments.

55

4 -4

44 7

Figure 29: Multiple selections.

6.6 Interpolation

The user can also select feature glyphs. In Figure 30, she has selected an exon in the

horizontal feature map. The segment this feature covers is highlighted on both sides of

the X-axis. The highlight intersects with two alignments in the dot plot. So the

intersections are also interpolated onto the Y-axis.

56

r - a KK

Figure 30: Selection of a feature.

6.7 Residue Level

Finally, when the user has zoomed in far enough, she reaches the residue level, as shown

in Figure 3 1. In this case, each feature map shows the positive and negative strands of the

nucleotide sequence. This allows the user to compare the sequences base by base.

57

orp.f V~ i

Figure 31: Residue level.

6.8 Summary and Availability

In summary, we showed how ComBo successfully assisted a user in comparing two
sequence regions from A. fumigatus and A. nidulans. We demonstrated how the user may

load data from different sources, browse the data on a global scale, zoom in to focus on
smaller regions, make selections, and examine the details. The mouse control is intuitive,
allowing the user to manipulate the maps and perform the operations with ease.

ComBo with source code is available for free upon request. It can be run on any
computer that has J2SE Java Runtime Environment vi.4.2 installed. We welcome
inquiries and comments on ComBo as we continue to make this a more powerful tool,
better suited for the need of the research community.

58

Chapter 7 Conclusion

Recent technological advances in genomics have provided scientists a wealth of data

promised to hold the key in answering many profound questions about genetics and

evolution. NCBI's GenBank, one of the largest DNA sequence databases worldwide, has

27.2 million sequences from 140,000 organisms. [17] To help scientists make use of

these data, we developed ComBo, a software tool for visualizing and comparing

sequences.

ComBo is a graphical genome browser that allows users to compare sequences and

inspect sequence annotations. It displays the similarities between two sequences in a dot

plot. The sequences correspond to the X- and Y-axes of the dot plot. Each line, or

alignment, in the dot plot represents a match between its projected segments on the axes.

Two feature maps are placed alongside the axes of the dot plot, displaying the annotated

features on the corresponding sequences. An inspector window displays detail

information on any selected data.

ComBo allows users to dynamically control the display. Users can browse the data from

a global perspective or zoom into any arbitrary region (down to residue level) to study the

local pattern. Zooming and selection are synchronized such that the maps always display

and highlight the corresponding regions. Finally, users can view detail information on

any selected data in the inspector window.

ComBo can import sequence and annotation data from the Calhoun database or flat files

of various formats, such as Fasta, Genbank, and GFF. ComBo currently supports a

generic file-based format for alignments, as there are no widely accepted comparative

data formats available. However, additional data formats can be added easily using the

API package.

59

ComBo was implemented in Java. A lot of development effort went into making the

program easy for future developers to understand and expand. The program follows the

Model-View-Controller paradigm to separate the frontend from the backend and the input

from the output. This structure allows ComBo to easily adapt additional data sources and

formats and display data in different views.

60

Chapter 8 Future Considerations

ComBo has a lot of potential in becoming an all-around visualization tool for genomic

data. It is already a single-genome viewer and editor as well as a browser for comparing

two genomes using the dot plot method. The program has the infrastructure for

integrating new modules for additional capabilities. Through discussions with

bioinformatics researchers and software developers at the Broad Institute, we have

identified the next steps in improving ComBo's functionality and usability for a wider

audience.

We need to begin by drafting a definitive format for comparative data. The format ought

to include gap information and sequence references in addition to the general description

of the locations of the similarities. Secondly, we need to expand the alignment data model

to include gap representation. Finally, we plan to incorporate the alignment graph (similar

to the one shown in Figure 9) into ComBo at the residue level, so that users can compare

the sequences base by base and view gaps in a more natural way.

61

Acknowledgements

This thesis has been a tremendous experience only made possible by the wonderful

people I have had the privilege and pleasure to work with and learn from in this past year.

I would like to take this opportunity to express my heartfelt gratitude for them:

Thanks to James Galagan for his immense support. From coming up with the idea for the

thesis to offering guidance every step along the way, he was beyond inspirational and

helpful.

Thanks to Professor Chris Burge for taking me as his student and so generously providing

supervision on this work. I learned more biology from him and his research group this

year than in my four years of undergraduate school combined.

Thanks to Dr. Jill Mesirov for giving me valuable advice during the development of

ComBo and the write-up of the thesis.

Thanks to Sarah Calvo for having faith in me when I first knocked on her door without

any knowledge of the field. She and the Annotation team brought me in to work on the

Calhoun system and opened my eyes to the wonders of bioinformatics and genomics.

Thanks to Reinhard Engels for always willing to answer my questions about the Argo

Browser.

And thanks to Jade Vinson, Michele Clamp, Mark Borowsky, Li-Jun Ma, and Dave

DeCaprio for their useful comments and feedbacks on ComBo.

62

References

[1] J. Stalker, B. Gibbins, P. Meidl, J. Smith, W. Spooner, H. Hotz, and A. V. Cox,

"The EnsembI Web Site: Mechanics of a Genome Browser," Genome Research,

vol. 14, no. 5, pp. 951-955, 2004.

[2] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler,

and D. Haussler, "The Human Genome Browser at UCSC," Genome Research, vol.

12, no. 6, pp. 996-1006, 2002.

[3] S. E. Lewis, S. M. J. Searle, N. Harris, M. Gibson, V. Iyer, J. Ricter, C. Wiel, L.

Bayraktaroglu, E. Birney, M. A. Crosby, et al, "Apollo: a sequence annotation

editor," Genome Biology, vol. 3, no. 12, research0082.1-0082.14, 2002.

[4] K. Rutherford, J. Parkhill, J. Crook, T. Horsnell, P. Rice, M. Rajandream, and B.

Barrell, "Artemis: sequence visualization and annotation," Bioinformatics, vol. 16,
no. 10, pp. 944-945, 2000.

[5] Fungal Genome Initiative Steering Committee, "Fungal Genome Initiative: A

White Paper for Fungal Genomics," [Online document], 2004 Jul 10, Available

HTTP: http://www.broad.mit.edu/annotation/fungi/fgi/July2004FGIWP.pdf

[6] Broad Institute, "Status of FGI projects," [Online document], 2004, Available

HTTP: http://www.broad.mit.edu/annotation/fungi/fgi/status.html.

[7] M. Clamp, D. Andrews, D. Barker, P. Bevan, G. Cameron, Y. Chen, L. Clark, T.

Cox, J. Cuff, V. Curwen, et al, "Ensembl 2002: accommodating comparative

genomics," Nucleic Acids Research, vol. 31, no. 1, pp. 38-42, 2003.

[8] E. Birney, D. Andrews, P. Bevan, M. Caccamo, G. Cameron, Y. Chen, L. Clarke,
G. Coates, T. Cox, J. Cuff, et al, "Ensembl 2004," Nucleic Acids Research, vol. 32,
Database issue D468-D470, 2004.

[9] J. F. Abril, R. Guigo, and T. Wiehe, "gff2aplot: Plotting sequence comparisons,"

Bioinformatics, vol. 19, no. 18, pp. 2477-2479, 2003.

[10] S. Schwartz, Z. Zhang, K. A. Frazer, A. Smit, C. Riemer, J. Bouck, R. Gibbs, R.

Hardison, and W. Miller, "PipMaker: A Web Server for Aligning Two Genomic

DNA Sequences," Genome Research, vol. 10, no. 4, pp. 577-586, 2000.

63

[11] C. Mayor, M. Brudno, J. R. Schwartz, A. Poliakov, E. M. Rubin, K. A. Frazer, L.

S. Pachter, and I. Dubchak, "VISTA: visualizing global DNA sequence alignments

of arbitrary length," Bioinformatics, vol. 16, no. 11, pp. 1046-1047, 2000.

[12] N. Shah, 0. Couronne, L. A. Pennacchio, M. Brudno, S. Batzoglou, E. W. Bethel,

E. M. Rubin, B. Hamann, and I. Dubchak, "Phylo-VISTA: an interactive

visualization tool for multiple DNA sequence alignments," Bioinformatics, vol. 20,

no. 5, pp. 636-643, 2004.

[13] J. E. Galagan, S. E. Calvo, D. DeCaprio, R. Engels, T. Elkins, S. Purcell, S. Wang,

S. Smirnov, Y. Wu, B. Rehman, et al, "Calhoun: A System for Whole-Genome

Annotation and Analysis," Submitted for publication.

[14] J. V. Maizel, Jr and R. P. Lenk, "Enhanced graphic matrix analysis of nucleic acid

and protein sequences," In Proceedings of the National Academy of Sciences of the

United States of America, 1981, pp. 7665-7669.

[15] G. E. Krasner and S. T. Pope, "A Description of the Model-View-Controller User

Interface Paradigm in the Smalltalk-80 System," Journal of Object-Oriented

Programming, vol. 1, no. 3, pp. 26-49, 1988.

[16] Sanger Institute, "Aspergillusfumigatus genome project," [Online document],

2004, Available HTTP: http://www.sanger.ac.uk/Projects/A fumigatus/.

[17] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler,

"GenBank: update," Nucleic Acids Research, vol. 32, Database issue: D23-D26,

2004.

64

