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Abstract

Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D
photonic crystals, have been widely studied for many potential applications due to the
presence of wavelength-tunable photonic bandgaps. However, the unique optical
behavior of photonic crystals is based on theoretical models of perfect analogues. Little
is known about the practical effects of dielectric imperfections on their technologically
useful optical properties. In order to address this issue, a finite-difference time-domain
(FDTD) code is employed to study the effect of three specific dielectric imperfections in
1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial
roughness in quarter-wave tuned ID photonic crystals at normal incidence. This study
reveals that the reflectivity of some roughened photonic crystal configurations can
change up to 50% at the center of the bandgap for RMS roughness values around 20% of
the characteristic periodicity of the crystal. However, this reflectivity change can be
mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In
order to explain these results, the homogenization approximation, which is usually
applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the
homogenization approximation match the FDTD results extremely well, suggesting that
the main role of the roughness features is to grade the refractive index profile of the
interfaces in the photonic crystal rather than diffusely scatter the incoming light. This
result also implies that the amount of incoherent reflection from the roughened quarter-
wave stacks is extremely small. This is confirmed through direct extraction of the
amount of incoherent power from the FDTD calculations. Further FDTD studies are
done on the entire normal incidence bandgap of roughened ID photonic crystals. These
results reveal a narrowing and red-shifting of the normal incidence bandgap with
increasing RMS roughness. Again, the homogenization approximation is able to predict
these results. The problem of surface scratches on ID photonic crystals is also addressed.
Although the reflectivity decreases are lower in this study, up to a 15% change in
reflectivity is observed in certain scratched photonic crystal structures. However, this
reflectivity change can be significantly decreased by adding a low index protective
coating to the surface of the photonic crystal. Again, application of homogenization
theory to these structures confirms its predictive power for this type of imperfection as
well. Additionally, the problem of acircular pores in 2D photonic crystals is investigated,
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showing that almost a 50% change in reflectivity can occur for some structures.
Furthermore, this study reveals trends that are consistent with the D simulations:
parameter changes that increase the absolute reflectivity of the photonic crystal will also
increase its tolerance to structural imperfections. Finally, experimental reflectance
spectra from roughened D photonic crystals are compared to the results predicted
computationally in this thesis. Both the computed and experimental spectra correlate
favorably, validating the findings presented herein.

Keywords: Photonic Crystals, Bragg Mirror, Roughness, Imperfections, FDTD

Thesis Supervisor: W. Craig Carter
Title: Lord Foundation Professor of Materials Science and Engineering

Thesis Supervisor: Yoel Fink
Title: Thomas B. King Assistant Professor of Materials Science

4



Acknowledgements

The Lord is my strength and my shield;
My heart trusts in Him, and I am helped;

Therefore my heart exults,
And with my song I shall thank Him.

(Psalm 28:7 NASB)

There are so many people that have helped me through these past several years.
But first and foremost, I would like to acknowledge the one who has played the most
critical role in bringing me to this point: my Lord and Savior Jesus Christ. It is through
Him that I had the strength, patience, courage, wisdom, and faith to persevere through the
most difficult times during graduate school. Indeed, when I first began my studies at
MIT, I did not know God. I relied on myself for earthly gains and was often disappointed
when I fell short. For some reason, I began attending bible studies during my second
year of graduate school. Looking back, I cannot remember any logical reason why I
began doing this. But it was during these bible study sessions that I grew in knowledge,
and therefore love, of God. And this is by far the most valuable thing I have gained from
my time in graduate school. In the words of Paul:

...I count all things to be loss in view of the surpassing value of knowing Christ Jesus my
Lord ... and count them but rubbish so that I may gain Christ, and may be found in Him,
not having a righteousness of my own derivedfrom the Law, but that which is through
.faith in Christ ... that I may know Him and the power of His resurrection ... in order that
I may attain to the resurrection from the dead. (Philippians 2:10-11 NASB)

In addition to the promise of eternal salvation, love and trust in God also brings with it a
promise for our life here on earth:

And we know that God causes all things to work together for good to those who love God,
to those who are called according to His purpose. (Romans 8:28 NASB)

It was the knowledge of this truth that carried me through one of the most difficult times
in my life.

But I would be amiss if I did not also acknowledge the people that God put into
my life to help me through these times. First, I would like to thank my husband, Garry.
Some people may think that seeing your husband almost every hour of the day both at
work and at home would become unbearable. But I truly count that as one of the most
special blessings that God gave me during graduate school. I would often trot down to
his floor when I was troubled, or bored, or just wanted to get a snack - and being near
him would always bring joy to my heart and could easily turn a bad day into a good one.
Not only was Garry always there to emotionally help me through difficult times, he also
had the knowledge to advise me through those times as well. This also made him one of
the most intellectually influential people in my life during my graduate studies.

I would also like to thank the members of the Thursday night GCF bible study
and Praisedance, who supported me through their endless prayers and words of
encouragement. Indeed, their efforts helped me to focus on that which is most important.
I would especially like to thank Shandon Hart, who first introduced me to the bible study
and helped both me and Garry grow immensely in our faith. I really want to thank him

5



for the love, guidance, and fellowship he gave to us, which made graduate school a truly
joyful time in my life. He taught us what it means to be a true follower of Christ, and I
have yet to meet another person as kind, loving, compassionate, thoughtful, and wise as
him and his wife Colleen. Knowing them has been a real blessing.

I would also like to thank my advisor, Prof. Craig Carter. From the beginning, he
has been an extraordinary advisor. Two and a half years ago, I came to him with a
research idea but, of course, no funding. And even though the research was not in his
area of interest, he used money that he could have done anything else with to fund my
idea. This was a genuinely magnanimous gesture that I will never forget. Furthermore,
he gave me freedom in my research for which I am very grateful. And finally, he and
Marty have been extremely kind to me, allowing me to intrude on their home while I was
preparing for my preliminary defense. Having an advisor like Craig is extremely rare,
and I want to thank him for taking me in as a student even when there wasn't really any
room in his group.

I also want to thank all the members of Prof. Carter's group. They all put up with
me using basically any CPU in the group I could get my hands on to do my simulations.
Rick and Colin were especially patient with me when I had computer problems. Rick
spent so much time setting up the machines and trying to install random 3D graphics
packages for me that never ended up working. Colin toiled away at ensuring that the
machines were secure and, of course, rebooting my computer at MIT when it crashed
while I was working at LANL. But I can't forget Ming's late hours that comforted me
when I wasn't the only one working late, and also saved me when I needed a computer to
be rebooted on Christmas Eve. And of course, there's Ellen. Her unique personality
really helped me to laugh and have a life outside of research (e.g. the walk for hunger).
She has been a really great friend and I already miss her.

Cody and Kristy Friesen have also been very good friends to Garry and I
throughout graduate school. They helped us relax by joining us on trips to Canada and
North Carolina, as well as numerous skiing trips. And we had countless hours of fun just
going out to dinner or movies or candlepin bowling. Additionally, Cody helped me a lot
with some of my initial research, for which I am also grateful.

Even though Prof. Yet-Ming Chiang was not one of my advisors, I want to
acknowledge the kindness he and his group showed me during graduate school. Initially,
my research involved experiments. However, because Prof. Carter only does
computational work, I had no labs in which to do the experiments. So Prof. Chiang
allowed me to crowd into his space and use his equipment (at no cost). In addition, the
members of his group were very nice to me and treated me like I was also a member of
the group. I especially want to thank Steven who was a very good friend to both Garry
and me.

I also want to acknowledge the help that Prof. Yoel Fink and his group gave me.
Yoel helped me to think more critically about some of the most difficult problems in my
thesis. In addition, the members of his group, especially Ofer and Shandon, were kind
enough to set aside some of their time to help me with various aspects of my research.

While I was working at LANL, Rick Averitt and James Maxwell served as
mentors to me. It is truly amazing how God looked after me for this portion of my
research. For here too, I was blessed with two remarkable mentors who spent money to
fund me on a project that was outside their field of interest and gave me the freedom to

6



do the research I needed to finish my thesis. This allowed Garry and me to stay together
during his internship and subsequent postdoc appointment at LANL, while still making
progress on my thesis.

At Los Alamos, I was also blessed with many friends that prayed for me and
helped me through the most difficult part of my thesis - the writing and defense. I
especially want to thank Doug and Marci, Kate and Neil, and Jennifer and Neil for their
support and prayers.

Lastly, I would like to thank both my parents and Garry's parents for the support
they have given me. In their own quiet way, my parents stood by me through both the
triumphs and the struggles in my life. Whatever happened, I knew they would always be
proud of me. They never pushed me to be something I didn't want to be, and they never
expected more from me than what I could do while still being happy. As for Garry's
parents, from the first time I met them, they have treated me like I was their own
daughter. The love and support they have given me is remarkable, and I am so thankful
that they are part of my life.

The research in this thesis was supported by the MIT-Singapore Alliance, the Los
Alamos National Laboratory Directed Research and Development Program, and the U.S.
Army through the Institute for Soldier Nanotechnologies under contract DAAD-19-02-D-
0002 with the U.S. Army Research Office. The content does not necessarily reflect the
position of U.S. government, and no official endorsement should be inferred.

Scripture quotations taken from the New American Standard Bible®,
Copyright C 1960, 1962, 1963, 1968, 1971, 1972, 1973,

1975, 1977, 1995 by The Lockman Foundation
Used by permission. (www.Lockman.org)

7



8



Table of Contents

List of Figures ........................................................... 11
Glossary of Symbols .......................................................... 19
Chapter 1: Introduction .......................................................... 23
Chapter 2: An Introduction to Electromagnetism and Photonic Crystals ........................ 29

2.1 The Maxwell Equations and the Helmholtz Wave Equation ................................ 30
2.2 The Behavior of Light at Boundaries .......................................................... 34
2.3 Systems with Multiple Interfaces .......................................................... 42
2.4 Photonic Crystals .......................................................... 46
2.5 Mie Scattering Theory .......................................................... 51

Chapter 3: Methods for Simulating Electromagnetic Responses .................................... 57
3.1 1D Transfer Matrix Method .......................................................... 58
3.2 Frequency Domain Method ........................................ .................. 60
3.3 Finite Difference Time Domain (FDTD) Method .................................................. 61

Chapter 4: Interfacial Roughness in D Photonic Crystals: An FDTD Study ................. 69
4.1 Interfacial Roughness Parameters .......................................................... 72
4.2 Generation of the Roughened Structures .......................................................... 73
4.3 Simulation and Analysis Method .......................................................... 76
4.4 TE Polarization Reflectivity Results .......................................................... 80
4.5 TM Polarization Reflectivity Results .......................................................... 86
4.6 Conclusions .......................................................... 88

Chapter 5: A Scattering Model of Interfacial Roughness ................................................ 91
5.1 Scattering Model .......................................................... 93
5.2 Implementation of the Model .......................................................... 97
5.3 Results of the Model .......................................................... 100
5.4 Conclusions .......................................................... 104

Chapter 6: Homogenization and Kirchhoff Approximations for Interfacial Roughness 107
6.1 The Homogenization Approximation ........................................ ................. 108
6.2 The Kirchhoff Approximation ......................................................... 109
6.3 Implementation of the Homogenization Approximation ...................................... 111
6.4 Implementation of the Kirchhoff Approximation ................................................. 113
6.5 Results of the Applied Approximations ......................................................... 114
6.6 Conclusions ......................................................... 120

Chapter 7: Calculation of the Scattered Power from Interfacial Roughness ................. 123
7.1 General Form of the Reflected Wave ........................................ ................. 124
7.2 Calculation of the Scattered Power ......................................................... 126
7.3 Results for the Simulated Structures ......................................................... 130
7.4 Conclusions ......................................................... 136

Chapter 8: Effect of Interfacial Roughness on the Normal Incidence Band Gap .......... 139
8.1 FDTD Reflectivity Results ......................................................... 140
8.2 Homogenization Approximation Reflectivity Results .......................................... 144
8.3 Conclusions ......................................................... 152

9



Chapter 9: Surface Scratches on D Photonic Crystals ................................................. 153
9.1 Surface Scratch Parameter ................................................... 154
9.2 Generation of the Scratched Structures ................................................... 155
9.3 FDTD Reflectivity Results ................................................... 157
9.4 Homogenization Approximation Reflectivity Results .......................................... 163
9.5 Conclusions ................................................... 163

Chapter 10: Acircular Pores in 2D Photonic Crystals ................................................... 169
10.1 Determination of Simulation Conditions ........................................ ........... 172
10.2 Porous Acircularity Parameter ................................................... 173
10.3 Generation of the Acircular Structures ................................................... 174
10.4 Simulation Equilibration ........................ ........................... 177
10.5 Porous Alumina Reflectivity Results ................................................... 178
10.6 Porous Silicon Reflectivity Results ................................................... 180
10.7 Conclusions ................................................... 184

Chapter 11: Experimental Corroboration ................................................... 187
11.1 Calculated Reflectance Spectra for Two Rough Structures ................................ 189
11.2 Proposed Experiments ................................................... 193

Chapter 12: Conclusions and Future Work ................................................... 199
Appendix A: Code for the Simulation of Actual Roughened Structures ....................... 205
Bibliography ................................................... 227

10



List of Figures

Figure 2.1 Reflection and transmission at a plane boundary from a TE polarized incident
plane w ave .............................................................. 35

Figure 2.2 TE and TM reflection off a plane boundary with Ai=t=l .0, i=1.0, and ,t=4.0.

The Brewster angle, where the TM reflectivity goes to zero, is clear ............................. 41

Figure 2.3 A structure consisting of n interfaces, with the position of each interface given
by z = -d/ .............................................................. 42

Figure 2.4 Possible photonic crystal architectures. The dielectric periodicity can occur in
one dimension, two dimensions, or three dimensions [Joannopoulos (1995), reprinted
with permission from Princeton University Press] .......................................................... 47

Figure 2.5 Plot of the reflectivity versus wavelength and incident angle for three
different photonic crystal structures. The red region in each plot indicates a high
reflectivity, while the blue region corresponds to a low reflectivity. All three systems
have 4 bilayers with nl=2.25 and n2=1.5. However, the volume fraction of the
constituent materials changes, as indicated by the t and t2 values. The center plot
corresponds to a quarter-wave stack configuration. ......................................................... 48

Figure 2.6 Plot of the reflectivity versus wavelength and incident angle for three quarter-
wave stack structures that all have 4 bilayers and nl/n 2 = 1.5. As the average refractive
index of the structure increases, the width of the bandgap also increases ........................ 49

Figure 2.7 Plot of the reflectivity versus wavelength and incident angle for three quarter-
wave stacks that all have 4 bilayers and average refractive indices of 1.875. As the index
contrast of the photonic crystal increases, the absolute reflectivity in the bandgap also
increases ............................................................................................................................ 50

Figure 2.8 Plot of the reflectivity versus wavelength and incident angle for three quarter-
wave stacks with various bilayers. All structures have n1=2.25 and n2=1.5. As the
number of bilayers increases, the absolute reflectivity in the bandgap also increases ..... 50

Figure 2.9 Band diagram for a 2D hexagonal lattice (shown in the inset) where the
pores/rods have a refractive index of 1.0 and the matrix has a refractive index of 3.5.
Also shown is the Brillouin zone with the irreducible section shaded in yellow. The
photonic bandgap, where no eigenmodes exist for any wave vector, is shown in yellow.51

Figure 2.10 Angle-dependent scattering intensity as a function of scatterer radius from
perpendicularly polarized incident light at wavelength o0. As the radius (indicated on top

11



of each plot) increases, the magnitude of the scattered intensity also increases. The index
contrast between the scatterer and the ambient was 1.5 in all cases ................................. 53

Figure 2.11 Angle-dependent scattering intensity as a function of index contrast from
perpendicularly polarized incident light at wavelength 2o. As the index contrast
increases, the amount of scattered intensity also increases at every angle. The radius of
the scatterer here is 0.102o. ............................................................................................... 54

Figure 3.1 Schematic of the simulation domain illustrating the unidirectional source that
allows separation of the total field and the reflected field ............................................... 64

Figure 4.1 One example of a "real world" structure with a large amount of interfacial
roughness. This particular structure is a liquid crystal multilayer fabricated by K. Hsiao,
et al. [Hsiao (2004), reprinted with permission]. The micrograph on the left is the actual
structure, while the schematic on the right is the idealized structure on which the
theoretical optical response of the device is based. .......................................................... 70

Figure 4.2 A micrograph of a porous silicon multilayer structure fabricated by Agarwal,
et al. (reprinted with permission from V. Agarwal and J. A. del Rio, Applied Physics
Letters, 82, 1512 (2003), copyright 2003, American Institute of Physics). Although this
structure does not deviate from its ideal as much as the structure in Fig. 4.1, some amount
of interfacial roughness is still evident. ............................................................. 71

Figure 4.3 Schematic of the rough interfaces in the simulated structures illustrating the
two parameters that were used to characterize each roughened structure: RMS roughness
and RMS wavelength. Also shown is the characteristic periodicity (a) of the photonic
crystal ................................................................................................................................ 72

Figure 4.4 Close up of a roughened interface illustrating the process used to create the
roughness features............................................................................................................. 75

Figure 4.5 Simulation results showing that the size of the domain between periodic walls
was sufficiently large. The distance between periodic walls is given by the parameter n,x.
An nx value of 450 was used for all the FDTD simulations presented in this thesis ........ 77

Figure 4.6 The equilibration of three simulated bilayer systems. The pink region
corresponds to the time steps over which the time average was taken in Eq. 4.9 ............ 78

Figure 4.7 The calculated percent change in the TE-polarized normal incidence
reflectivity for roughened 4-bilayer quarter-wave stacks with nl=2.25 and n2=1.5. Also
shown are four example structures for four particular simulations ................................. 81

Figure 4.8 The calculated percent change in reflectivity for several 4-bilayer quarter-
wave stack configurations. Empirical fits to the data, with index contrast and number of
bilayers as the only parameters, are also shown. ............................................................. 82

12



Figure 4.9 The calculated percent change in reflectivity for several nl=2.25, n2=1.5
quarter-wave stack configurations with varying bilayer numbers. Again, empirical fits to
the data, with index contrast and number of bilayers as the only parameters, are also
show n .. ............................................................................................................................... 84

Figure 4.10 The calculated percent change in the TM-polarized normal incidence
reflectivity for roughened 4-bilayer quarter-wave stacks with nl=2.25 and n2=1.5 ........ 87

Figure 4.1 1 Comparison of the TE and TM polarization reflectivity results ................... 88

Figure 5.1 Schematic illustrating the idea of mimicking the change in reflection and
transmission due to the roughness features by replacing the rough surface with a smooth
surface and correspondingly modifying its refractive index ............................................. 93

Figure 5.2 Transmissivity vs. the transmitting medium's refractive index (nt) for an
incident medium with refractive index ni=1.5. Notice that for a given transmissivity (t)
there are two possibilities for nt, one larger than n and one smaller ............................... 95

Figure 5.3 Illustration of the four distinct interfaces in the simulated quarter-wave stacks.
Each interface results in a different amount of scattering ................................................. 97

Figure 5.4 Schematic illustrating that the incident wavelength for each interface depends
on the refractive index of the preceding layer, while the scatterer size remains the same.
................................................. 99

Figure 5.5 The index modification process applied to a 4-bilayer structure with nl=2.25,
n2,=1.5, and RM = 0. la ................................................ 101

Figure 5.6 Index modification results for the same 4-bilayer systems presented in chapter
4. The scatterer sizes reported on the plot have been scaled to the equivalent RMS
roughness value. The trends predicted with this model agree with the FDTD results.. 102

Figure 5.7 Index modification results for the same nl=2.25, n2=1.5 bilayer systems
presented in chapter 4. The scatterer sizes above have been scaled to their equivalent
R,MS value. Again, the trends are consistent with those seen from the FDTD results... 103

Figure 5.8 Comparison of the results from the FDTD calculations and the index
modification model for the 4-bilayer nl=2.25, n2=1.5 system. Although the index
modification model correctly predicts the trends seen with the FDTD calculations, it fails
to reproduce the actual magnitude and curve shape of the FDTD data ......................... 104

Figure 6.1 Schematic depicting the homogenization approximation for a single rough
interface. The dielectric constant in the region of the rough interface is average to
produce a smoothed dielectric constant function. The smooth dielectric constant is then
approximated with a series of layers ................................................ 109

13



Figure 6.2 Schematic depicting the Kirchhoff approximation for a single rough interface.
The reflectivity of the roughened surface is estimated by averaging the reflection
coefficients from several smooth surfaces with varying heights. The height distribution
of the smooth structures is equal to the height distribution of the rough interface ......... 110

Figure 6.3 Application of the homogenization approximation to the roughened quarter-
wave stacks. The dielectric constant is averaged across each row of the input structure.
The smooth profile is then converted into a series of layers ........................................... 111

Figure 6.4 The averaged refractive index profiles for four RRMs values in the 4-bilayer,
nl=2.25, n2=1.5 system. For the RRMS values of 0.1453a and 0.1759a, the index of
refraction in the approximated structure never reaches the extreme values of 2.25 and 1.5.
......................................................................................................................................... 112

Figure 6.5 Application of the Kirchhoff approximation to the roughened quarter-wave
stacks. The structure is broken up into many structures by taking each column of the
rough structure as a separate 1D structure. The reflection coefficients for each structure
are calculated and averaged to give the estimated reflectivity of the roughened structure.
......................................................................................................................................... 113

Figure 6.6 Comparison of the FDTD results with the results of both the homogenization
and Kirchhoff approximations for the same 4-bilayer systems presented in chapter 4. The
Kirchhoff approximation does a poor job at reproducing the data, but the homogenization
approximation matches the FDTD results very well ..................................................... 115

Figure 6.7 Explanation for why the Kirchhoff approximation under-estimates in some
cases and over-estimates in others. The pink region is the quarter-wave tuned
wavelength. The dashed line is the FDTD result and the dotted line is the Kirchhoff
result ................................................................................................................................ 117

Figure 6.8 Comparison of the FDTD results with the results of both the homogenization
and Kirchhoff approximations for the n1=2.25, n2=1.5 systems presented in chapter 4.
Again, the Kirchhoff approximation does not predict the FDTD results, while the
homogenization approximation matches them very well .............................................. 119

Figure 7.1 The simulated reflected wave for one of the roughened structure. As shown,
the photonic crystal is positioned behind the wave. Thus, the direction of propagation is
out of the page. The periodic boundaries of the domain are located along the yz planes.
......................................................................................................................................... 127

Figure 7.2 The residual of the fit to the reflected wave. The orientation of the photonic
crystal is the same as that in Fig. 7.1. The second order Floquet mode (evanescent) and
the incoherent field are apparent ............................................................. 128

14



Figure 7.3 Incoherent power from the 4-bilayer nl=2.25, n2=1.5 system. Note that the
largest amount of incoherent power is only about 10-3 for an incident wave power of 1.0.
...................................................................................................................................... 130

Figure 7.4 The power in the propagating Floquet mode for the 4-bilayer, nl=2.25, n2=1.5
system. Again, note that the maximum power is only 10-2 for an incident wave power of
1 ...................................... ...................... 131

Figure 7.5 The incoherent power from two 4-bilayer systems presented in chapter 4:
nj=2.25, n2=1.5, and nl=3.0, n2=1.5. The higher index contrast system shows slightly
more incoherent power, but the magnitude is still extremely small (< 10-3 ) ................. 132

Figure 7.6 The power in the propagating Floquet mode from the same two 4-bilayer
systems shown in Fig. 7.6. Again, the magnitude of the power in both systems is
extremely small (< 10-2) .................................................................................................. 133

Figure 7.7 Mie theory prediction of the amount of scattered power from the high-to-low
index interfaces in the nl=2.25, n2=1.5 and nl=3.0, n2=1.5 structures. Notice that both the
curve shape and the trend predicted here are consistent with the incoherent power
calculation from the FDTD data of the same systems ................................................... 134

Figure 7.8 The percentage of reflected power that is carried by scattered light (incoherent
plus Floquet mode) for the nl=2.25, n2=1.5 and nl=3.0, n2=1.5 systems. In the worst
case, only 4.5% of the reflected power is carried by scattered light ............................... 135

Figure 8.1 The simulated normal incidence reflectance spectra corresponding to several
4-bilayer systems. In all systems, a narrowing and red-shifting of the normal incidence
bandgap is apparent ............................................................ 142

Figure 8.2 The percent change in reflectivity (Ar) across the entire normal incidence
bandgap for several 4-bilayer systems. The shading indicates the region where the
reflectivity of the bandgap is within 10% of its maximum value. Again, the red-shift is
apparent in all systems ............................................................ 143

Figure 8.3 The simulated normal incidence reflectance spectra corresponding to several
bilayer systems with n1=2.25 and n2=1.5. Again, a narrowing and red-shifting of the
bandgap is evident in all systems ............................................................ 145

Figure 8.4 The percent change in reflectivity (Ar) across the entire normal incidence
bandgap for several bilayer systems with nl=2.25 and n2=1.5 ...................................... 146

Figure 8.5 The results of the homogenization approximation applied to the 4-bilayer
structures presented in Fig. 8.1. Comparison of the two figures shows that the
homogenization approximation is in good agreement with the FDTD results .............. 148

15



Figure 8.6 The results of the homogenization approximation applied to the 4-bilayer
structures presented in Fig. 8.2 ............................................................. 149

Figure 8.7 The results of the homogenization approximation applied to the bilayer
systems shown in Fig. 8.3. Again, comparison of the two figures shows that the
homogenization approximation is in good agreement with the FDTD results .............. 150

Figure 8.8 The results of the homogenization approximation applied to the bilayer
structures presented in Fig. 8.4 ............................................................. 151

Figure 9.1 The percent change in reflectivity (Ar) for several 4-bilayer quarter-wave
stacks with different constituent refractive index values. In addition to structures without
protective coatings, structures with coatings were also tested in all of the systems. The
coatings had refractive index values of 1.5, 2.0, and 2.5 ................................................ 158

Figure 9.2 The normal incidence bandgap for a unscratched 4-bilayer nl=2.25, n2=1.5
structure with (top) and without (bottom) a protective coating. The coating used for the
bottom structure had a refractive index of 1.5 (beneficial coating) ................................ 160

Figure 9.3 The effect of surface scratches on the normal incidence bandgap for two 4-
bilayer n1=2.25, n2=1.5 structures. The top structure has no protective coating, while the
bottom structure has an n¢=1.5 coating (beneficial coating) ........................................... 161

Figure 9.4 Percent change in reflectivity (Ar) for two 4-bilayer structures with nl=2.25
and n2=1.5. The top structure has no protective coating, while the bottom structure has an
nc=1.5 coating (beneficial coating) ............................................................. 162

Figure 9.5 The results of the homogenization approximation for the 4-bilayer nl=2.25,
n2=1.5 structures presented in Fig. 9.1. As with the other studies, the homogenization
approximation correctly predicts the FDTD results for the scratched structures .......... 164

Figure 9.6 The homogenization approximation results for the 4-bilayer, nl=2.25, n2=1.5
systems across the entire normal incidence bandgap. The benefit of an nc/nl < 1.0 coating
is correctly predicted with the approximation ............................................................. 165

Figure 10.1 Two micrographs of porous alumina. The structure in the left micrograph
was produced under controlled anodization conditions, while the structure on the right
was fabricated with poor control over the anodization process ...................................... 170

Figure 10.2 A micrograph of porous indium phosphide [Carstensen (2005),
Christophersen (2005), reprinted with permission]. Although this structure does not
deviate from its ideal as much as the porous alumina in Fig. 10.1, some amount of pore
acircularity is still evident ............................................................. 171

Figure 10.3 Schematic of the hexagonal lattice used in the simulations. The Brillouin
zone, with the irreducible section shaded, is also shown superimposed on the lattice. The

16



direction of the incident wave vector is coincident with the M-point of the irreducible
Brillouin zone ............................................................. 172

Figure 10.4 The TE bandgap in porous alumina, and the TE and TM bandgaps in porous
silicon are shown as a function of the pore radius (r) normalized to the center-to-center
distance between pores (a). These maps were calculated for the perfect structures using
the MPB frequency domain code [Johnson (2001), Johnson (2005)] ........................... 173

Figure 10.5 Schematic illustrating the range of curvature radii that characterize an
acircular pore. The RMS acircularity (ARMS) is defined as the RMS radius of curvature
deviation from the mean radius of the pore ro ............................................................. 174

Figure 10.6 Schematic of the simulated hexagonal lattice illustrating the relevant
param eters ............................................................. 175

Figure 10.7 Results of the equilibration run for both the 8 row and 12 row structures.
The initial large transient behavior is gone by about the 20 ,0 00th step in both cases. The
shaded region indicated the time steps over which the time-averaging was done in the
reflectivity calculation ............................................................. 179

Figure 10.8 The percent change in the TE polarized reflectivity (Ar) for 8 and 12 row
structures of porous alumina. Also shown are two example structures corresponding to
the most extreme structural deviations tested in this study ............................................. 180

Figure 10.9 The percent change in the TM polarized reflectivity (Ar) for 8 and 12 row
structures of porous silicon. Again, two example structures are shown that corresponding
to the most extreme structural deviations tested in this study. The architectural deviations
in these structures are much more severe than those in the porous alumina study ......... 181

Figure 10.10 The percent change in the TE polarized reflectivity (Ar) for 8 and 12 row
structures of porous silicon. Two example structures with much lower ARMS values are
shown for comparison with those in Figs. 10.8 and 10.9 .............................................. 182

Figure 10.11 The percent change in the TM polarized reflectivity from the porous silicon
system for A MS values less than 0.04r ......................................................................... 183

Figure 10.12 The percent change in the TE polarized reflectivity from the porous silicon
system for A Ms values less than 0.04r ......................................................................... 184

Figure 11.1 One of the "real-world" roughened structures analyzed with the
homogenization approximation [Hsiao (2005), reprinted with permission] ................... 189

Figure 11.2 Experimental reflectance spectrum for the structure shown in Fig. 11.1
[Hsiao (2005), reprinted with permission] ............................................................ 190

17



Figure 11.3 Results of the homogenization approximation applied to the structure shown
in Fig. 11.1 .......................................... 191

Figure 11.4 The second roughened structure analyzed with the homogenization
approximation [Hsiao (2005), reprinted with permission]. Although it is not apparent to
the eye, there are three periodicities built into the structure. .......................................... 192

Figure 11.5 Experimental reflectance spectrum for the structure shown in Fig. 11.4
[Hsiao (2005), reprinted with permission]. Notice the three distinct reflectivity peaks. 193

Figure 11.6 Results of the homogenization approximation applied to the structure shown
in Fig. 11.4. Again, note the three distinct reflectivity peaks ....................................... 194

18



Glossary of Symbols

Al Field amplitude of the positive z propagating waves in the I layer
A RMS RMS pore acircularity
B Magnetic flux density vector
B1 Field amplitude of the negative z propagating waves in the I layer
Cang, Angular cross section of scattered light polarized parallel to the scattering plane
D Electric displacement vector
D:"(id) z-component of electric displacement field at the position i for the time step n
E Electric field vector
E i Incident electric field component that is parallel to the scattering plane
E, IS Scattered electric field component that is parallel to the scattering plane
E,n Coherent electric field magnitude
El st Floquet mode electric field magnitude
En6, mth Floquet mode electric field magnitude
Ei Incident electric field vector
Eit Transverse incident electric field magnitude
Eio Incident electric field magnitude vector
E,o Total magnitude of incident electric field
E,~x x-component magnitude of incident electric field
E,y y-component magnitude of incident electric field
Ei= z-component magnitude of incident electric field
E,x x-component magnitude of the electric field in the layer
E,y y-component magnitude of the electric field in the layer
E,z z-com.ponent magnitude of the electric field in the I layer
Er Reflected electric field vector
E,. Reflected electric field
E,/t Transverse reflected electric field magnitude
E,0 Reflected electric field magnitude vector
E,! Transmitted electric field vector
Elt Transverse transmitted electric field magnitude
E,0o Transmitted electric field magnitude vector
E,x x-component magnitude of transmitted electric field
Ey y-component magnitude of transmitted electric field
Ez z-component magnitude of transmitted electric field
E), y-component magnitude of total electric field above boundary
E:.(ij) z-component of electric field at the position i for the time step n
H Magnetic field strength vector
H,ix x-component magnitude of incident magnetic field
Hy y-component magnitude of incident magnetic field
Hi z-component magnitude of incident magnetic field
HX x-component magnitude of the magnetic field in the layer
H,> y-component magnitude of the magnetic field in the I layer
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Hi z-component magnitude of the magnetic field in the layer
Hx x-component magnitude of total magnetic field above boundary
Hn(ij) x-component of magnetic field at the position ij for the time step n
Hyn(ij)y-component of magnetic field at the position ij for the time step n
H- z-component magnitude of total magnetic field above boundary
Ifs Forward-scattered intensity
J Electric current density
L Length along boundary
Pfs Forward-scattered power from a volume of scatterers
R Fresnel reflection coefficient for a boundary
RI+)l Fresnel reflection coefficient between the layer and the 1+1 layer (see Eq. 2.82)

RRs RMS roughness
S Poynting power vector
S1 ,2 , 3 , 4 Amplitude scattering matrix components
T Transmission coefficient for a boundary
To Time at which the time-average is begun
Ta Time over which the time-average is taken
V(7+l)l Transfer matrix between the layer and the 1+1 layer

WRMS RMS roughness wavelength

a Bilayer thickness in 1D photonic crystals, Pore center-to-center distance in 2D
photonic crystals

an Scattering coefficient involving Riccati-Bessel function
bn Scattering coefficient involving Riccati-Bessel function
c Speed of light ( = 3 x 108 meters/second in vacuum)
di Position of the interface
ill Scattered intensity per unit incident intensity for light polarized parallel to the

scattering plane
k Wave vector
k Wave vector magnitude
ki Incident field wave vector
ki Total magnitude of incident field wave vector
kix x-component magnitude of incident field wave vector
kiy y-component magnitude of incident field wave vector
kiz z-component magnitude of incident field wave vector
kz z-component magnitude of the field in the I layer
kr Reflected field wave vector
kr Total magnitude of reflected field wave vector
krx x-component magnitude of reflected field wave vector
kry y-component magnitude of reflected field wave vector
kt Transmitted field wave vector
kt Total magnitude of transmitted field wave vector
ktx x-component magnitude of transmitted field wave vector
ky y-component magnitude of transmitted field wave vector
kt z-component magnitude of transmitted field wave vector
kxfl x-component magnitude of 1 st Floquet mode wave vector
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keg x-component magnitude of mth Floquet mode wave vector
kyc y-component magnitude of coherent electric field wave vector

kfi y-component magnitude of 1st Floquet mode wave vector
k&g y-component magnitude of mth Floquet mode wave vector
n Integer
nl High refractive index in 1D photonic crystals
n2 Low :refractive index in 1D photonic crystals
nc Refractive index of protective coating
ncirc Number of nodes along the circumference of the pores
ni Refractive index of incident medium (above boundary)
n,odes Number of nodes on rough interface
npv Number of peak or valley pairs on rough interface
ns Time step number
nT Number of time steps over which time-averaging is done
n,, Refractive index of transmitting medium (below boundary)
num_bilayers Number of bilayers in 1D photonic crystals
num_columns Number of columns of pores in 2D photonic crystals
numrows Number of rows of pores in 2D photonic crystals
n,, Number of nodes perpendicular to layers in 1D photonic crystals or parallel to

columns in 2D photonic crystals
n, Number of nodes parallel to layers in 1D photonic crystals or parallel to rows in

2D photonic crystals
pit Ratio of incident to transmitted wave vector magnitudes (see Eqs. 2.51 and 2.61)
P(+)l Ratio of the wave vectors in the 1+l layer and the layer (see Eqs. 2.78 and 2.79)
r Radial spatial distance coordinate vector
r Reflectivity
rc0 Mean pore radius of curvature of 2D photonic crystal
ri Radius of curvature of acircular pore
rrough Reflectivity of 1D photonic crystal with rough interfaces
rsmooth Reflectivity of 1D photonic crystal with smooth interfaces (perfect structure)
t Transmissivity
tl Thickness of high refractive index layer in quarter-wave tuned 1D photonic

crystal
t2 Thickness of low refractive index layer in quarter-wave tuned 1D photonic crystal
tri,A Resonant transmission thickness for a wavelength of A
x x spatial distance coordinate
XPV) x-coordinate of the first peak or valley in the pair
,'V(2 x-coordinate of the second peak or valley in the pair

y y spatial distance coordinate
.yo y-coordinate of the mean interface position
yi y-coordinate of the actual (rough) interface position
z z spatial distance coordinate

Ar Percent change in reflectivity of imperfect structure from perfect structure
At Time step magnitude
Ax Grid cell width in x direction
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Ay Grid cell width in y direction
E Dielectric constant
Eo Permittivity of free space (= 8.85 x 10- 12 farad/meter)
1i Dielectric constant of incident medium (above boundary)
ct Dielectric constant of the layer
t Dielectric constant of transmitting medium (below boundary)

0i Angle between the incident wave vector and the normal of the boundary
0r Angle between the reflected wave vector and the normal of the boundary
Ot Angle between the transmitted wave vector and the normal of the boundary
A Wavelength

2o Nodal wavelength corresponding to the quarter-wave tuned wavelength
Ac Spatial wavelength corresponding to the quarter-wave tuned wavelength
Al Spatial wavelength of the blue end of the bandgap
/10 Nodal wavelength of the blue end of the bandgap

Ah Spatial wavelength of the red end of the bandgap
AhO Nodal wavelength of the red end of the bandgap
P Permeability
uo Permeability of free space ( = 4r x 10- 7 henry/meter)

pA Permeability of incident medium (above boundary)
ul Permeability of the layer
ut Permeability of transmitting medium (below boundary)
v Frequency

Incoherent field
,n Angle-dependent associated Legendre function
p Electric charge density
rn Angle-dependent associated Legendre function
Sbc Phase of coherent field
Ofla Positive x-direction phase of t Floquet mode
4/fb Negative x-direction phase of 1st Floquet mode
WfNea Positive x-direction phase of mh Floquet mode
fSinb Negative x-direction phase of mth Floquet mode

o0 Radial frequency
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Chapter 1: Introduction

Throughout the field of materials science, there are numerous examples of

composite structures that have properties far superior to those of the individual

component materials from which they are made. This phenomenon has enabled countless

technological advances: from more efficient fuel consumption to better, more effective

medical treatments [Watts (1980)]. Indeed, the benefit of composite structures is not

limited to mechanical improvements. In fact, research in the area of electromagnetism

has led to the production of "optical composites" as well. One example of an optical

composite is a photonic crystal. This is a structure consisting of a periodic arrangement

of'dielectric materials. Alone, these materials would have average optical properties: a

typical reflectivity and transmissivity. However, when they are arranged together in a

certain way, they can produce a structure that has remarkable properties: a reflectivity

that is nearly perfect. This reflectivity can even surpass that of the best natural materials.

Furthermore, this behavior can be tuned to occur at any wavelength simply through

controlling the dielectric architecture of the structure.
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For this reason, photonic crystals have been widely studied for a variety of

applications, including low-loss waveguides, omnidirectional (highly reflective at all

incident angles) mirrors, and optical band pass filters. Since photonic crystals can have

nearly 100% reflectivity at even very large incident angles, they can be used to eliminate

losses due to bends in waveguides as well as allow signals to travel very long distances

with little attenuation [Grillet (2003), Miura (2003), Temelkuran (2002)]. This property

also allows photonic crystals to function as highly reflective mirrors to light at all angles

of incidence, which has been utilized in devices such as high-Q laser cavities [Happ

(2001), Painter (1999)]. Furthermore, if a defect cavity (a dielectric section that is a

different size than the other dielectric units in the crystal) is inserted into a photonic

crystal, the resulting device will be a narrow optical filter, allowing only a small range of

wavelengths to be transmitted [Costa (2003), Usievich (2002)].

However, the desirable optical properties of photonic crystals are based on

theoretical calculations done on perfect structures. In reality, fabricated structures will

deviate from these ideal analogues to some extent. In a controlled laboratory setting,

where device prototypes such as the ones presented in the above references are

fabricated, the amount of structural deviation from perfection will most likely be small.

However, on a large-scale manufacturing setting, the same level of control would lead to

a significant increase in manufacturing costs. Thus, cost minimization in this setting

would correspondingly increase device imperfection, which would decrease the device

performance. Thus, some balance between device cost and device performance is needed

for the realization of photonic crystal device mass production.

Unfortunately, the quantitative effect of potentially large-scale imperfections on

the optical response of photonic crystals is currently unknown. Therefore, it is difficult to

determine how much deviation is tolerable for a given photonic crystal device.

Furthermore, the effect of design parameters (i.e. the materials and architecture of the

structures) on the photonic crystal's tolerance to imperfections is also unknown. Finally,

there are many types of imperfections that can occur in photonic crystals. These range

from deviations in the periodicity of the crystal (e.g. chirped gratings in ID photonic

crystals [Gerken (2003), Russell (1999)] or deviations in rod/pore center positions in 2D

photonic crystals) to changes in the shape/topology of the individual elements in the
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structure. Each of these imperfections could have very different optical effects, which in

turn may be minimized through different parameter changes.

Thus, this thesis sets out to address these issues in a systematic manner for three

specific types of imperfections in 1D and 2D photonic crystals that conform to the latter

type of imperfection mentioned above: interfacial roughness (1D), surface scratches (1D),

and acircular pores (2D). Specifically, the questions that will be addressed are:

1. How large of a decrease in a photonic crystal's reflectivity is expected for a

given amount of structural deviation?

2. What materials/design parameters optimize a photonic crystal's tolerance to

these structural deviations?

3. What is the physical mechanism that leads to the decreased performance in

these imperfect photonic crystals?

4. Is there a way to easily predict how much the reflectivity will decrease for a

specific imperfect structure?

These questions were investigated computationally, by directly simulating the

optical response of imperfect photonic crystal structures. Chapters 2 and 3 provide a

brief background of electromagnetism, photonic crystal theory, scattering theory, and

specific simulation techniques that are typically used to solve electromagnetic problems.

Chapter 4 introduces the problem of interfacial roughness in 1D photonic crystal

structures, which is investigated with the Finite Difference Time Domain (FDTD)

simulation method. This study finds that the reflectivity decrease in roughened 1D

photonic crystals can be as large as 50% at the normal incidence quarter-wave tuned

wavelength. However, the results also reveal that this decrease can be mitigated by

increasing the index contrast and/or the number of bilayers in the structure. Thus, this

chapter answers questions 1 and 2 above for the specific defect of interfacial roughness.

Because the results of chapter 4 oppose the trends that would be predicted from a

preliminary scattering theory analysis, chapter 5 introduces a more rigorous scattering

model that is applied to the simulated structures from chapter 4. The results of this model

reverse the previous scattering theory predictions, producing trends that are consistent

with the trends seen in chapter 4. However, the model also suggests that another
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mechanism is responsible for the marked decrease in reflectivity that is seen with the

roughened structures.

Therefore, chapter 6 approaches the problem of interfacial roughness by applying

two approximations to the roughened structures. These approximations (the

homogenization and Kirchhoff approximations) are commonly used to infer the amount

of coherent scattering from single rough interfaces. Thus, they cannot be used to

determine the total amount of scattering from a rough interface because they do not

account for the amount of incoherent scattering. Despite this, one of the approximations

(the homogenization approximation) accurately reproduces the FDTD results from

chapter 4 for most of the roughened structures. This is significant because the

homogenization approximation can be much more easily applied to specific experimental

structures than the FDTD method, which answers question 3 above. It also provides

insight into the physical mechanism leading to the reflectivity decrease (question 4).

However, the success of the homogenization approximation implies that the amount of

incoherent scattering from these structures is extremely small.

Thus, chapter 7 seeks to verify this surprising result by directly extracting the

amount of incoherent power from the FDTD data. Indeed, the results of this analysis

reveal that the amount of incoherent power is extremely small for all the structures tested

(< 5% of the total reflected power). Hence, it appears that the homogenization

approximation is valid for the roughness scales tested in this study (up to 20% of the

photonic crystal periodicity).

Chapter 8 investigates the effect of interfacial roughness on the entire normal

incidence bandgap for 1D structures. The FDTD results reveal that there is a narrowing

and red-shifting of the bandgap with increasing roughness scales. Furthermore,

application of the homogenization approximation again gives reflectivities that agree well

with the FDTD simulations, correctly reproducing the red-shifting phenomenon. Thus,

the homogenization approximation is determined to be valid over the entire normal

incidence bandgap for the roughness scales tested in this thesis (question 4).

Chapter 9 explores the problem of surface scratches, and the utility of protective

coatings to reduce their effect, on 1D photonic crystals. Again, the FDTD method is

used, and the simulations reveal that a coating with a refractive index less than the top
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layer index of the photonic crystal will increase the structure's tolerance to scratches for

the entire normal incidence bandgap (questions 1 and 2). As expected, these results are

again confirmed with the homogenization approximation (questions 3 and 4).

Chapter 10 branches out to 2D photonic crystals, attacking the problem of

acircular pores. The FDTD results again show there can be a large change in the

reflectivity (approximately 50%) for certain structures (questions 1 and 2). Although

there is no equivalent approximation that can be applied to these 2D structures, the results

are consistent with the general trend implied by all the other simulations in this thesis:

any design parameter change that will increase the absolute reflectivity of the perfect

structure will also increase its tolerance to structural imperfections (question 4).

Finally, chapter 11 compares the results found in this study to actual experimental

data from imperfect structures. Specifically, the experimental reflectance spectra from

two ID photonic crystals with very large interfacial roughnesses are compared with

homogenization calculations done on the actual micrographs of the structures. In both

cases, the reflectance peak shapes, positions, and relative heights correlate favorably,

verifying the results found in this thesis. Additionally, more experiments are proposed to

further verify these findings.

Although this study has been limited to certain imperfections and certain

incidence conditions, the results provide valuable quantitative information on the effect

of these imperfections. They also provide a guide for design optimization, as well as a

method to easily predict the exact amount of reflectivity decrease from specific

structures. Future studies will focus on mapping out the conditions where the

homogenization approximation becomes invalid, investigating other incidence conditions

and imperfections, and further validating these results through experimental

corroboration.
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Chapter 2: An Introduction to

Electromagnetism and Photonic

Crystals

The discovery of electromagnetic waves in the late 19th century opened an

entirely new branch of physics. Indeed, this achievement has been judged by many world

renowned physicists as one of the greatest accomplishments of mankind. In the words of

Richard P. Feynman [Feynman (1965)]:

From a long view of the history of mankind - seen from, say, ten thousand years

from now - there can be little doubt that the most significant event of the 19'h

century will be judged as Maxwell's discovery of the laws of electrodynamics.

Since this discovery, the electromagnetic theory has enabled numerous technologies, such

as photonic crystals. The function of these structures is dependent on the behavior of
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electromagnetic waves in complex architectures. Thus, an understanding of

electromagnetic wave theory is necessary to gain insight into the utility of these devices.

There are many references that can be used to obtain an understanding of electromagnetic

wave theory and photonic crystals. Most of the derivations presented here have been

taken from Kong (2000). However, alternative derivations can be found in other well-

established references on electromagnetism, including Bekefi (1990), Bohren (1983),

Hecht (1987), Jackson (1999), and Purcell (1985).

2.1 The Maxwell Equations and the Helmholtz Wave Equation

The behavior of light, or electromagnetic waves, in all space and time is governed

by a set of equations known as the Maxwell Equations. They were established by James

Clerk Maxwell in 1873 as a compilation of empirically observed laws previously shown

to describe the behavior of electric and magnetic fields [Maxwell (1954)]. They consist

of Ampere's law [Ampere (1820)], Faraday's law [Faraday (1834)], Coulomb's law

[Coulomb (1785)], and Gauss' law [Gauss (1839)]:

a
V x H(r,t) = a D(r,t) + J(r,t), (2.la)

at

Vx E(r,t)= B(r,t), (2.2a)

V. D(r,t) = p(r,t), (2.3a)

V.B(r,t) = 0. (2.4a)

Maxwell's contribution to these laws is the addition of the displacement current term (the

term involving the time derivative) in Ampere's law.

These equations can be greatly simplified if a few reasonable assumptions are

made. E and D, and H and B are related by the constitutive relations, which can be quite

complicated in general. However, for isotropic materials and low field strengths, these

relations simplify to

D(r, t) = E(r, o)E(r, t), (2.5)

B(r,t) = u(r, co)H(r, t). (2.6)

Although e and 1u do vary with r in photonic crystals, the structures are often

made of discrete sections of homogeneous materials. Because of this, the r dependence
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of e and pu can be removed in the equations above and the Maxwell equations can be

solved in each section of the photonic crystal in a piece-wise manner with the appropriate

e and yu for that section. This will yield a correct solution for the field in the entire

structure provided that the appropriate boundary conditions are enforced at the interfaces

between the different dielectric segments. These boundary conditions will be discussed

in the next section.

Furthermore, in general, e and u are also functions of frequency [Ashcroft (1976),

Hunter (2001), Omar (1993)]. The specific dependence is determined by the material

that the electric and magnetic fields are permeating. However, practically, only one or a

small range of frequencies are important for a given problem. Therefore, assuming there

is not a large variation in the values of e and u over the relevant frequency range, a single

value can be chosen that is appropriate for those frequencies, allowing this dependence to

be dropped from the equations above as well. Additionally, in source-free media,

meaning there are no free charges or currents, the current and charge density terms are

both zero.

Thus, under the assumptions outlined above, the Maxwell equations condense to:

V x H(r, t)= c E(r,t), (2.1 b)
at

V x E(r, t)= - a H(r,t), (2.2b)

V. E(r,t) = 0, (2.3b)

V.H(r,t)= O. (2.4b)

Although the conditions for these equations may seem extremely restrictive, most

materials under most conditions can be described to a first-order using these assumptions.

These equations can now be combined to produce a single equation in terms of

only E or H. This can be done by taking the curl of Eq. 2.2b and using the vector identity

C x (A x B) = A(C B)-(C A)B. (2.7)

The resulting equation,

V(V. E(r,t))- (V. V)E(r,t) = V x - ,ut -H(r,t) , (2.8)

can be simplified by using Eq. 2.3b to eliminate the first term on the left-hand side:
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V2E(r,t) = V u H(r,t)). (2.9)

Furthermore, due to the symmetry of mixed partial derivatives, the spatial derivative on

the right-hand side of the equation commutes with the time derivative:

a
V 2 E(r,t) = u (V x H(r, t)). (2.10)

at

Eq. 2.1 b can now be substituted into Eq. 2.10, eliminating the magnetic field component

of the equation:

a2

V2E(r,t) =ue a2 E(r,t) . (2.11)

This equation is known as the homogeneous Helmholtz wave equation. An equivalent

equation in terms of H can be obtained in a similar manner.

The solutions to Eq. 2.11 take the form

E(r,t) = E0eik ' re - i t, (2.12)

where

k 2 = CO2PE (2.13)

through substitution of Eq. 2.12 back into Eq. 2.11. Since the imaginary part of Eq. 2.12

is unphysical, it is understood that the real part is taken to obtain the actual value of the

field in space and time.

Close inspection of Eq. 2.12 reveals that this solution gives an electric field which

is oscillating in time with a frequency of co/27rat every point in space. Furthermore, for

real values of k (magnitude of k), the electric field also oscillates in space with a

frequency of k/2r. Thus, this solution describes an electric field wave that is oscillating

in both space and time. At a set point in time, the plane determined by k-r = constant

describes a constant phase front. The magnitude and direction of the electric field is the

same everywhere in this plane, which is perpendicular to the vector k for all time.

Because of this property, the solution given by Eq. 2.12 is called the uniform plane wave

solution for real values of k.

As time increases, this constant phase plane moves in space (i.e. r changes to

compensate for the increase in t in Eq. 2.12). Because the plane must stay perpendicular

to k at all times, it must move in the direction of k. A little math and geometry reveals
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that after a time to has passed, the phase front has moved by an amount equal to coto/k in

the direction of k. Thus, the speed with which the phase front moves is equal to co/k.

From Eq. 2.13, this is equivalently

0c 1
c=- 1 (2.14)

k /tw

Because co/2zris the temporal frequency v, and 2dk is the inverse of the spatial frequency

(or the wavelength A), Eq. 2.14 also means

c = vA . (2.15)

In general, it is possible for both e and u to be complex, causing k to have both a

real and imaginary component. Such a situation would occur in materials that are lossy,

such as conductors. In this case, Eq. 2.12 would have both an oscillatory part and an

exponentially decaying part. Thus, in lossy media, the electric field would continue to

oscillate, but the magnitude of the field would exponentially decay. The characteristic

length of this decay is called the penetration depth of the material. Additionally, it is

possible for k- to be entirely complex, as in a plasma medium. In this case, the electric

field will not oscillate at all but instead will just exponentially decay into the medium.

This type of wave is called an evanescent wave. In the case of photonic crystal

structures, evanescent waves are mainly important for localized modes, which are not

studied in this thesis.

A similar line of reasoning will result in a magnetic field solution equivalent to

the electric field solution in Eq. 2.12 from the homogeneous Helmholtz wave equation

for the magnetic field. Using these solutions, Eqs. 2.1 b - 2.4b become

k x H(r,t) = -oeE(r,t), (2.16)

k x E(r, t) = opH(r, t), (2.17)

k E(r,t) = 0, (2.18)

k H(r,t) = 0. (2.19)

Written in this form, it is apparent that the vectors H, E, and k are all perpendicular to

one another. Note that this would not necessarily be the case if the constitutive relations

(Eqs. 2.5 - 2.6) were not so simple for the particular medium through which the wave is

traveling. However, for isotropic, homogeneous media with no free currents or charges,
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electromagnetic waves take the form of electric and magnetic field plane waves

perpendicular to each other and both moving in the direction of k.

One other important quantity to consider in the analysis of electromagnetic waves

is the Poynting vector S, which indicates the magnitude and direction of the power

density being carried by the wave. The complex Poynting vector is defined as

S(r) = E(r, t) x H(r, t)* . (2.20)

For the plane wave solution above, this quantity is independent of time and, as the name

implies, is a complex quantity. However, a more physically relevant quantity is the

instantaneous Poynting vector, which is real and time-dependent:

S(r,t) = Re{E(r,t)}x Re{H(r,t)}. (2.21)

The instantaneous Poynting power can be related to the complex Poynting power by

taking a time average to eliminate the time-dependence in Eq. 2.21. The result is that

(S(r,t))= ReS(r))}. (2.22)
2

Eqs. 2.20 and 2.21 reveal that the Poynting vector is perpendicular to both E and H. For

the case of the plane wave solution presented above, this means that the electromagnetic

power density is carried in the same direction as the propagation (i.e. aligned with k).

Again, this would not be the case for anisotropic media.

Although Eq. 2.12 is not the only solution to the Maxwell equations, it reasonably

describes many naturally encountered conditions, and thus it is widely used in describing

the propagation of light in materials. Additionally, this solution can and has been used to

accurately predict the optical behavior of actual devices. Because of this and its

mathematical simplicity, Eq. 2.12 and the proceeding equations are appropriate for first-

order analysis of the optical behavior of photonic structures.

2.2 The Behavior of Light at Boundaries

When an electromagnetic wave hits a plane boundary separating two optically

different media, a reflected and transmitted wave will be generated at the boundary, as

illustrated in Fig. 2.1. For an incident wave in the form of a plane wave, both the

reflected and transmitted waves will also take on the form of plane waves (Eq. 2.12).
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Figure 2.1 Reflection and transmission at a plane boundary from a TE polarized incident
plane wave.

Although the k vector associated with each wave will be different, there are some general

rules that relate the k vector components of each wave. Imagine a boundary surface

separating two optically different media at the position z = 0. The incident, reflected, and

transmitted electric field waves can be written

Ei(r,t) = Eio exp(ik, .r)e - w" , (2.23)

Er(r,t) = Er0 exp(ikr .r) e-i ', (2.24)

E, (r,t) = E,o exp(ik, .r) e- '. (2.25)

Because the Maxwell equations are true for all space, it can be shown that Eqs. 2.1 lb and

2.2b require the tangential components of the electric and magnetic fields to be

continuous at the boundary surface for all x and y in the absence of free currents [Kong

(2000)]. If Elt, Ert, and Ett' denote the magnitude of the tangential components of the

electric field vectors, then this means that

E exp(ikyx + iky)+ E exp(ikrxx + ik,y)= E; exp(ikx + iktyy). (2.26)
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In order for this equation to be true for all values of x and y, the following conditions

must be met:

EI + Et = E,, (2.27)

k = k = k,x = kx , (2.28)

kiy = kry = ky = k (2.29)

The requirement that the tangential components of the wave vectors are conserved across

a boundary (Eqs. 2.28 and 2.29) are known as the phase-matching conditions.

Because of the phase-matching conditions, ki, kr, and k must all lie in a common

plane. This is called the plane of incidence, and also includes the normal to the boundary

surface. Applying Eq. 2.13 to these wave vectors yields

k2 = kr2 = w 2 ,iEi, (2.30)

k 2 = W2 /,. (2.31)

If Oi, Or, and Ot denote the angle of incidence, reflection, and transmission with respect to

the surface normal, then Eq. 2.28 and 2.29 can be rewritten as

ki sin O, = k r sin Or, (2.32)

ki sin Oi = k, sin 0t. (2.33)

In light of Eq. 2.30, Eq. 2.32 means that i = Or. Applying Eq. 2.31 to Eq. 2.33 reveals

Snell's Law:

ni sin O, = n, sin 0,, (2.34)

where the definition of the index of refraction (n) was utilized:

n ~P= (2.35)

When analyzing a reflection and transmission problem, the orientation of the

coordinate system can be chosen arbitrarily in order to simplify the problem. For

example, consider a boundary again parallel to the xy plane with the plane of incidence

parallel to the xz plane, as shown in Fig. 2.1. For a plane wave incident on this boundary,

the Maxwell Equations (Eqs. 2.16 - 2.19) corresponding to this incident wave can be

written
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kE 1 Hy (2.36)
O£i0 6k 

E, =- k- Hi, (2.37)oi

Eiy (k Hz - k,H ), (2.38a)

Hix = -- Ey, (2.39)

Hi= kX Eiy (2.40)

Hiy = - (kxEi: -kiE, x), (2.41a)

since the y component of the wave vector is zero due to the orientation of the plane of

incidence. Eq. 2.38a can be rewritten through substitution of the magnetic field

components defined in Eqs. 2.39 and 2.40:

(k2 + k - (02/iJ )Ely = 0. (2.38b)

Similarly, Eq. 2.4 l1a can also be rewritten through the use of Eqs. 2.36 and 2.37:

(k2 + k- 2 , i )H = 0. (2.41 b)

A similar set of equations can be derived for both the reflected wave in the region above

the boundary surface and the transmitted wave in the region below the surface boundary.

The above equations are general for any incident plane wave reflection and transmission

problem since the orientation of the boundary and incidence planes can be chosen

arbitrarily to correspond with the above orientations.

Close inspection of the above equations reveals that Eqs. 2.38b - 2.40 govern the

behavior of a plane wave with the electric field oriented perpendicular to the plane of

incidence, like the one shown in Fig. 2.1. Likewise, Eqs. 2.36 - 2.37 and 2.41b, which

are completely decoupled from the other equations, govern a wave with the magnetic

field oriented perpendicular to the plane of incidence. This allows the reflection and

transmission problem at a plane boundary to be analyzed separately for each of these

incident wave orientations. Because a wave with any polarization can be constructed
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from the superposition of two linearly polarized waves, the solutions for each of these

waves can be used to analyze the reflection and transmission of a wave with any

polarization at a plane boundary. A wave with an electric field oriented perpendicular to

the plane of incidence is called a TE wave, while a wave with a magnetic field

perpendicular to the plane of incidence is called a TM wave. Further review of the above

equations reveals that Eqs. 2.38 - 2.40b can be obtained from Eqs. 2.36 - 2.37 and 2.41 b

by simply replacing E with H, H with -E, and exchanging u and . This is known as the

principle of duality.

The TE wave solution can be obtained from Eqs. 2.38b - 2.40 for the incident,

reflected, and transmitted field with the appropriate boundary conditions. In the region

above the boundary, the magnitude of the total field is a superposition of the incident and

reflected fields:

Ey = Eo exp (- ik, z + ikxx)+ REio exp(iki,z +ikkxx). (2.42)

Eqs. 2.39 and 2.40 can be used to derive the magnitude of the magnetic field in this

region:

Hx = -- (- Eo exp(- ik,,z + ikxx)+ RE,o exp(ik,,z + ikxx)), (2.43)

H kx (E,0 exp(-ikz + ikxx)+ RE,o exp(ik,,z + ikxx)). (2.44)

In the region below the boundary, the magnitude of the total field is simply the magnitude

of the transmitted wave:

Ey = TE,o exp(- ik,z + ikxx). (2.45)

Again, the magnetic field is obtained from Eqs. 2.39 and 2.40:

Hx ktz (TE, exp(- ik, z + ikxx)), (2.46)

Ht = x (TE,o exp(- ik,z + ikxx)). (2.47)(ot,
With the position of the boundary at z = 0, the condition that the tangential field

components must be continuous across the boundary requires

1+R=T, (2.48)
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ki ( - R)= k T. (2.49)
i Ait

These equations can be solved to find the reflection and transmission coefficients for TE

waves:

= p (2.50)
1+ p,

T 2 (2.51)

1+ Pit

where

Pit (2.51)
k,=,

Eq. 2.38b requires

kX + = c02ii, (2.52)

which is equivalent to Eq. 2.13 since ky = 0. Thus, this restates the magnitude of k and

can be used to find ki, when the angle of incidence is known. Snell's Law can be used to

find the angle of transmission, allowing the equivalent of Eq. 2.52 for the transmitted

wave to be used to obtain kt. When this is done, pit becomes

it ' , sn2 (2.53)
Pt ¥~, , n, cosO i

The time averaged Poynting vector for the incident, reflected, and transmitted

waves can be obtained from the field expressions in Eqs. 2.42 - 2.47. As with the k

vector, the Poynting vector is confined to the xz plane. From Eq. 2.20,

S(r) = E(r,t) x H(r,t)* = EHi - E Hx. (2.54)

Applying Eq. 2.22 and assuming that all k vectors are real, the time averaged Poynting

vector can be calculated for each field, resulting in

(S(r,t))/ =-| [(ki-kzi), (2.55)
2 0+p

(S(r, I 2 E 1 2 (kxi + k,i), (2.56)2.56)
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(S(r,t))t = (k - k,i). (2.57)

The reflectivity of the boundary can now be calculated. This is simply the ratio of the

normal components of the incident and reflected power:

zK (S(r,t)) R(2.58)
- z·(S(r,t))

Similarly, the transmissivity of the boundary can be found:

t i T2 = pitT2 . (2.59)

In light of Eqs. 2.50 and 2.51, it can be seen that

r+t=1, (2.60)

which is simply a statement of power conservation (i.e. the sum of the reflected and

transmitted power must equal the incident power). The tangential components of the

power do not factor into the derivation of Eq. 2.60 because they are conserved across the

boundary by virtue of the phase matching conditions.

The TM wave solutions can be obtained in a similar manner. However, a much

easier method of deriving the solutions is found by invoking the principle of duality on

the TE expressions that have already been calculated above. Thus, the reflection and

transmission coefficients for TM waves are equal to those for TE waves with the

exception that

Pit = k (2.61)

The expressions for the reflectivity and the transmissivity remain the same as Eqs. 2.58 -

2.59.

When r is plotted versus the angle of incidence for TE and TM waves, as in Fig.

2.2, it is interesting to note that there is an incident angle where r goes to zero for TM

waves. This is known as the Brewster angle. At this angle, there is no reflected wave

and all the incident power is transmitted through the boundary. It is also interesting to

note that the opposite (total reflection) is not possible if the index of refraction of the
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Figure 2.2 TE and TM reflection off a plane boundary with ui=tu=l.0, Ei=1.0, and &=4.0.
The Brewster angle, where the TM reflectivity goes to zero, is clear.

transmission material is greater than that of the incident material (i.e. a wave hitting a

material from air or vacuum). From Eq. 2.50, this would require pit to be equal to zero,

which can only occur if the transmission material refractive index is infinite. Although

good conductors approach this limit, only perfect conductors, such as superconductors,

can have a refractive index equal to infinity. Certain materials can have reflectivities that

approach unity, such as gold. However, this is due to the fact that the index of refraction

of gold is largely imaginary and therefore, the magnitude of R is close to one. Thus,

materials do exist that have almost perfect reflectivity. However, this behavior is only

valid over a fixed wavelength range, which is determined by the frequency behavior of

the material's refractive index.

Nevertheless, it is theoretically possible to build a composite structure that will

have nearly perfect reflectivity over any frequency range. Moreover, this composite can

be built from materials that do not have very high reflectivities on their own. However,

this structure, known as a photonic crystal, has a very specific architecture, which will be
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addressed in section 2.4. First, an understanding of the behavior of light in a system with

multiple interfaces must be addressed.

2.3 Systems with Multiple Interfaces

The reflectivity from a system with many plane boundaries can also be calculated

by building on the concepts presented in Section 2.2. Consider the structure with n

interfaces shown in Fig. 2.3, where the position of each interface is given by z = -dl. In

general, each layer in the system will have different optical properties, given by ul and el.

The region above the first interface, as well as the region below the last interface, are

semi-infinite and have optical constants of puo and co, and ut and E, respectively. As for a

single plane boundary, the equations that govern the behavior of the electric and magnetic

field in this system can be separated into TE and TM components. Thus, in analogy to

Eqs. 2.36 through 2.41, the electric and magnetic fields in each layer will conform to the

equations:

Elx k Hly , (2.62)

E/=- Hly, (2.63)

z,0i

layer 0 o, -do
zlayer 1 61-do

layer 1 Sll1

layer 2 62,2

Z = -dl

z=-d2

z=-dn-1
layer n n,Pn 

z= -dn
layer t st, pt

Figure 2.3 A structure consisting of n interfaces, with the position of each interface given
by z = -dr.
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Ely = - (kxH., - kHlx), (2.64a)
O£1

Hlx- k E, (2.65)

kx
H L x Ely, (2.66)

Hy - - (kxEl - kEtx ). (2.67a)

As before, Eqs. 2.64a and 2.67a can be written using Eqs. 2.62 - 2.63, and 2.65 - 2.66:

(k 2 + k o 2a )Ey = 0, (2.64b)

(k + k- 2',I )Hy = 0. (2.67b)

The TE polarized wave is governed by Eqs. 2.64b through 2.66, while the TM polarized

wave is governed by Eqs. 2.62, 2.63, and 2.67b.

The field within each layer of the structure will be a combination of many

transmitted and reflected fields at the multiple interfaces. However, in general, this total

field can be broken up into reflected/transmitted plane waves traveling in the positive z

direction and reflected/transmitted plane waves traveling in the negative z direction.

Furthermore, all the plane waves traveling in the positive z direction can be combined

mathematically into one wave with an amplitude Al. Similarly, all the plane waves

traveling in the negative z direction can be combined into one wave with amplitude B,.

Thus, the magnitude of the total field in each layer is a superposition of these two

combined waves. For a TE wave, the electric and magnetic fields in each layer can be

written as

Ely = B, exp(- ik,,z + ikxx)+ A, exp(ikz + ikxx), (2.68)

Ht= - k, ( B, exp(- ik,z + kxx)+ A, exp(ik,,z + ikxx)), (2.69)

H. = kX (B, exp(- iktz + ikxx)+ A, exp(ik, z + ikxx)). (2.70)

The x component of the wave vector is the same in all layers due to the phase-matching

conditions (Eq. 2.28). Thus, it does not need to be designated with a layer subscript.
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For an incident plane wave of the form

Ely = Eo exp(- iki z + ikx ), (2.71)

the overall reflection and transmission coefficient of the multilayer structure can be

related to the A and B coefficients in the surrounding semi-infinite regions. In the semi-

infinite region above the top interface,

Ao = REio, (2.72)

Bo = Ei0 . (2.73)

Likewise, for the semi-infinite region below the bottom interface, designated as the t

(=n+l) layer,

A, =0, (2.74)

B, = TEio. (2.75)

The amplitude At is zero because there is no way for a positive z direction wave to be

traveling in this medium without some boundary below it that could reflect the negative z

direction light back up through it.

The coefficients Al and B/ for each layer are related to the coefficients Al+l and

Bl+1 in the next layer through the boundary conditions at the interface located between

them (at z = -dl). These boundary conditions require the tangential components of the

field to be continuous across the interface. For TE polarized waves, this means that the

Ey and Hx fields in neighboring layers must be equal at the boundaries. Thus, for the 

and 1+1 layers,

B, exp(ikzdl, )+ A, exp(- ik,d, l )= Bl 1 exp(ik(+l)zdI )+ A,+l exp(- ik(,+l).d ), (2.76)

k (- B, expl k, + A exp(- ikd, ))

(2.77a)

= (--(- B+,1 exp(ik(,+I)Zd, )+ A+,1 exp(- ik(,+l)zd))

The latter equation can be rewritten using the change of variables introduced in Eq. 2.51:

P(+l)I (- B, exp(ik, d, )+ A, exp(- ik,zdl ))

= -B,+, exp(ik(,+l)zd, )+ A, exp(- ik(+l)zd, ) (2.77b)

where
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klzpl+l
P(l+l)l = k ' (2.78)

k(I+l)zP/

An equivalent derivation can be done for TM waves, which leads to the same expressions

relating Al and Bl to Al+l and Bl+l. The only difference is thatp +,)l has a modified

definition:

kiz= £ (2.79)
P(l+)l -k(+l)zl

If the amplitudes Al and B, in the layer are known, Eqs. 2.76 and 2.77 only have

two unknowns: Al+ and Bl+l. Thus, in this case, these amplitudes can be directly

calculated by solving Eqs. 2.76 and 2.77:

Al+1 exp(- ik(l+l)Zdl )= 1 (1 + P(I+), XAI exp(- ik,d, )+ R(i+i)iBl exp(ikd, )), (2.80)

Bl+l exp(ik(+l)Zdl )= + p(l+l), XR(1+1)A, exp(- ik,d, )+ B, exp(ik,zd)), (2.81)

where

R = I PC) (2.82)
(+)1 + P(l+l)

Eqs. 2.80 and 2.81 can be combined into a single matrix equation:

A,, exp- ik d+ exp(- iklzd) (2.83)

Bl+j exp(ik(l+l)zd =(+I) B exp(ik,d, )

where

1 ( + exp(- ik(l+)z (d1+1 - d )) R(+,)/ exp(- ik(I+l)z (d+1 - d )) 2
V(/+)/ = 2 +p(/+) R(l,1) exp(ik(/+)z (dl+1 - d,)) exp(ik(+l)z (d+l - d )) j.(284)

The matrix V(l+J)l is called the transfer matrix or forward-propagating matrix for

layer in the multilayer structure. If the geometry of the structure is known, it can be

used to find the wave amplitudes in any layer. Most often, however, the reflection and

transmission coefficients (Eqs. 2.72 - 2.75) of the entire structure are desired. The

transfer matrix can be used to find these parameters in the following way. The wave

amplitude in the m layer is related to the wave amplitude in the (<< m) layer by

multiplying the transfer matrices of all the intervening layers:
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L Bmexp(ikm,dm) j= Vm(m -) V(m-l)(m-2) ....V(1+2)(+1) V(1+) BA, exp(-ikzdl) (2.85)

Thus, combining Eqs. 2.72 through 2.75 with Eq. 2.85, the amplitudes in the t layer can

be related to the amplitudes in the 0 layer by:

0° = Vt [R exp(- ikizdo) ] (2.86)
=t exp(ikzdo )

where

V,0 = Vtn V(_,n) V21 V0 . (2.87)

The matrix Vto is fully determined by the optical parameters and thicknesses of the layers

in the structure. Thus, if the geometry of the structure is known, Eq. 2.86 can be used to

calculate R and T. The reflectivity of the structure can then be calculated using Eq. 2.58.

Since power conservation still must hold for this structure, once the reflectivity is known,

the transmissivity can be found by utilizing Eq. 2.60. Therefore, this method can be used

to determine the reflectivity and transmissivity of a 1D multilayer structure with an

arbitrary geometry.

2.4 Photonic Crystals

As mentioned at the end of Section 2.2, photonic crystals are dielectric composite

structures that have architectural arrangements resulting in nearly perfect reflectivity.

This specific arrangement requires the constituent dielectric sections to be arranged

periodically. Photonic crystals are therefore simply periodic arrangements of dielectric

materials [Ho (1990), John (1991), Joannopoulos (1995), Joannopoulos (1997), Noda

(2002), Yablonovitch (1993)]. They can be one-dimensional (1D), two-dimensional

(2D), or three-dimensional (3D) (see Figure 2.4). Incident light with a wavelength A and

at an angle 0 will scatter off the various interfaces in the crystal. For a given photonic

crystal geometry, light with certain wavelengths and incident angles scatters off the

interfaces in such a way that very little light is transmitted and nearly total reflection

occurs. This range of wavelengths and incident angles is called the photonic bandgap.

For 1D photonic crystals, this phenomenon can be explored through the transfer

matrix technique discussed in Section 2.3 [Hecht (1987), Kong (2000), Yeh (1988)].
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periodic in periodic in
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Figure 2.4 Possible photonic crystal architectures. The dielectric periodicity can occur in
one dimension, two dimensions, or three dimensions [Joannopoulos (1995), reprinted
with permission from Princeton University Press].

This is because 1D photonic crystals are simply multilayer stacks that are made up of a

series of periodic bilayers. Each bilayer consists of a layer with a high refractive index

and a layer with a low refractive index. Thus, using Eqs. 2.78 through 2.87, it is fairly

straight-forward to write a simple code that will calculate the reflectivity and

transmissivity for a given D photonic crystal geometry [Maskaly (2001)]. Figs. 2.5

through 2.8 show the results of these calculations for several D photonic crystal

configurations. These are plots of the reflectivity of the photonic crystal versus incident

angle and wavelength. Note that the results of both the TE and TM polarizations are

shown. These polarizations are equivalent at an incidence angle of 0°.

In all plots, there is a range of wavelengths and incident angles where the

reflectivity approaches one. This region corresponds to the photonic bandgap of the

crystal. In general, there will be other photonic bandgaps which are located at harmonic

wavelengths of this primary bandgap. Most often, however, the primary bandgap is the

one that is utilized in photonic crystal devices. An alternative plot to the ones shown in

the figures can be obtained by converting the incident wavelength to a frequency and the

incident angle to the x-component of the wave vector (kx), which is conserved across the

multilayer structure due to the phase-matching conditions. This alternative plot is

preferred for depicting the bandgap in infinite structures. It will be addressed again when

21) photonic crystals are discussed later in this chapter.
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The variations shown in Figs. 2.5 through 2.8 reveal that there are several key

parameters that can be controlled to optimize the primary bandgap of a photonic crystal

[Winn (1998)]. Fig. 2.5 shows that changing the volume fraction of the constituent

materials shifts the primary bandgap and also changes its width. The width will be

maximized when the volume fractions correspond to the quarter-wave tuned condition.

This is where the thicknesses of each layer are given by

tI (2.88)
4n 

t 2 - (2.89)
4n2

A photonic crystal with layer thicknesses that conform to Eqs. 2.88 and 2.89 is called a

quarter-wave stack. The wavelength, A, to which the photonic crystal is tuned is called

the quarter-wave tuned wavelength. This wavelength will lie roughly at the center of the

primary bandgap. Because the Maxwell Equations are valid at any length scale, the

position of the primary bandgap can be controlled by simply manipulating the thicknesses

of the layers in the quarter-wave stack. This allows photonic crystals to be extremely

useful reflectors at any desired wavelength.

t =0Nt I flz t = 0.4 t=0.6

E
.0I-
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a 
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2 Wavelength (arbifdary units)5 2 WaveleAgth (arbit4ary units)5 2 WaveleIngth (arbitrary unitsi

Figure 2.5 Plot of the reflectivity versus wavelength and incident angle for three
different photonic crystal structures. The red region in each plot indicates a high
reflectivity, while the blue region corresponds to a low reflectivity. All three systems
have 4 bilayers with nl=2.25 and n2=1.5. However, the volume fraction of the
constituent materials changes, as indicated by the t1 and t2 values. The center plot
corresponds to a quarter-wave stack configuration.
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Figure 2.6 Plot of the reflectivity versus wavelength and incident angle for three quarter-
wave stack structures that all have 4 bilayers and nl/n2 = 1.5. As the average refractive
index of the structure increases, the width of the bandgap also increases.

Fig. 2.6 reveals that increasing the average index of the materials in a photonic

crystal will also increase the width of the primary bandgap. In fact, the bandgap can

become so large, that an external omnidirectional reflectance window will open [Winn

(1998)]. This corresponds to a range of wavelengths that has nearly perfect reflectivity at

all incident angles. Figs. 2.7 and 2.8 show that increasing both the refractive index

contrast (nlln2) and the number of bilayers in the photonic crystal structure will increase

the absolute reflectivity in the bandgap. Thus, in general, a photonic crystal device's

performance will be optimized at a given wavelength if the average index, the index

contrast, and the number of bilayers are all made as large as possible.

For 21) and 3D photonic crystals, the above analysis using the transfer matrix is

no longer valid because the structure is not one-dimensional. Instead, the bandgap must

be determined by solving the Maxwell Equations for an infinite structure using an

eigenvalue approach. This technique will not be addressed in detail in this thesis, but

more information on it can be found in Joannopoulos, et al. (1995). This approach is

very similar to the traditional analysis done for semiconductor electronic bandgaps

[Ashcroft (1976), Kittel (1996), Omar (1993)].

Briefly, the Helmholtz wave equation can be seen as an eigenvalue equation for

time harmonic fields [Joannopoulos (1995), Johnson (2001), Zhang (1990)]:

Vx Vx H(r) = H(r). (2.90)
C 2
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Figure 2.7 Plot of the reflectivity versus wavelength and incident angle for three quarter-
wave stacks that all have 4 bilayers and average refractive indices of 1.875. As the index
contrast of the photonic crystal increases, the absolute reflectivity in the bandgap also
increases.
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Figure 2.8 Plot of the reflectivity versus wavelength and incident angle for three quarter-
wave stacks with various bilayers. All structures have nl=2.25 and n2=1.5. As the
number of bilayers increases, the absolute reflectivity in the bandgap also increases.

Here, the eigenfunction is H(r) with a corresponding eigenvalue of (co/c)2. The solution

of the eigenfunction is simply given by Eq. 2.12, where the wave vector k can now be

used to characterize the different electromagnetic eigenmodes of the structure. The wave

vector directions are given by the irreducible Brillouin zone of the photonic crystal

lattice. This is shown schematically in Fig. 2.9 for a 2D photonic crystal system with a

hexagonal lattice, along with its band structure. The lines on the diagram represent the

eigenmodes of the structure. The frequency range where no modes occur for any wave

vector corresponds to the photonic bandgap. Because no electromagnetic modes can
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Figure 2.9 Band diagram for a 2D hexagonal lattice (shown in the inset) where the
pores/rods have a refractive index of 1.0 and the matrix has a refractive index of 3.5.
Also shown is the Brillouin zone with the irreducible section shaded in yellow. The
photonic bandgap, where no eigenmodes exist for any wave vector, is shown in yellow.

exist in the structure at those frequencies, incident light within that frequency range will

be completely reflected by the crystal.

In general, as in the 1D structures, the existence and positioning of the bandgap

will depend on the geometry of the crystal. However, unlike the 1D structures, there is

no rule-of-thumb for the conditions that will optimize the width of the primary bandgap

for a given set of materials. Thus, modeling is required to determine these optimal

conditions in 2D photonic crystals. Such modeling will be addressed in chapter 3.

2.5 Mie Scattering Theory

Some of the imperfections investigated in this thesis scatter light in a similar way

to small spherical particles. Because of this, a brief introduction to scattering theory is in

order. Again, only the relevant equations will be presented here, but more information

can be found in Bohren and Huffman, (1983).
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When light is incident on a small spherical particle, it will be scattered [Bohren

(1983), Kerker (1969), Kong, (2000), Mie (1908), Shifrin (1951), van de Hulst (1957)].

Consider a spherical particle illuminated by a plane wave propagating in the positive z

direction ( ). The incident light will be scattered by the particle outward in all directions

( ). The plane defined by the scattering direction and the incident direction is called the

scattering plane, which is analogous to the plane of incident in the boundary reflection

problem discussed in Section 2.2. Similar to the TE and TM polarizations of plane

boundaries, it is common to separate the scattered electric field into components that are

parallel and perpendicular to the scattering plane. The magnitude of these scattered field

components is related to the incident field by the amplitude scattering matrix:

[El, _ exp(ik(r-z))[S2 S3[E ]j (2.91)

=,s - ikr S, Si Ejli

In general, the components of the scattering matrix will be a function of the angle

between the incident direction and scattering direction in the scattering plane. For

spherical particles, there is no way to couple parallel polarized incident light into

perpendicularly polarized scattered light, and vice versa. Thus, S3 and S 4 are both zero.

Furthermore, the functional form for SI and S2 has been worked out explicity for

spherical particles:

2n+1
n n(n + 1)

S2 I= E2 1C (anrn + bn7) )(2.93)
n n(n + 1)

Unfortunately, both S1 and S2 involve infinite sums of the angle-dependent

associated Legendre functions (n and mn) and the scattering coefficients (an and bn),

which involve Riccati-Bessel functions. However, a sufficient number of terms in the

sums will produce an approximate answer that is very close to the infinite value.

Furthermore, the Ricatti-Bessel functions only depend on the size of the scatterer relative

to the incident wavelength, and the refractive index contrast between the scatterer and the

ambient medium. Thus, the intensity of the scattered field only depends on these

parameters.
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If the incident field magnitude is known, Eqs. 2.92 and 2.93 can be combined

with Eq. 2.91 to solve for the scattered field magnitude as a function of angle. If the

incident field is polarized perpendicular to the scattering plane (similar to the TE

polarization), then the scattered intensity per unit incident intensity is given by

i, = ISI 12. (2.94)

Similarly, if the incident field is polarized parallel to the scattering plane (resembling the

TM polarization), then the normalized scattered intensity is

ill = IS212. (2.95)

As mentioned above, these intensities are also both functions of angle. In order to get the

total amount of forward-scattered intensity, Eqs. 2.94 and 2.95 need to be integrated

between the angles of -90° and 90°:

I= si iei (9) do. (2.96)

A similar expression would be obtained for the total amount of back-scattered intensity.

When the above expressions are evaluated for various values of the index contrast

and scatterer size, the dependence of the scattered intensity on these parameters can be

determined. The angle dependent intensity for perpendicularly polarized light is shown

0.08k n 0.1 O 0.1 2,

1 1

Figure 2.10 Angle-dependent scattering intensity as a function of scatterer radius from
perpendicularly polarized incident light at wavelength 20. As the radius (indicated on top
of each plot) increases, the magnitude of the scattered intensity also increases. The index
contrast between the scatterer and the ambient was 1.5 in all cases.
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Figure 2.11 Angle-dependent scattering intensity as a function of index contrast from
perpendicularly polarized incident light at wavelength 0. As the index contrast
increases, the amount of scattered intensity also increases at every angle. The radius of
the scatterer here is 0. 100o.

for various values of these parameters in Figs. 2.10 and 2. 1. The forward-scattering

direction is at 0° on each plot. These calculations reveal that the intensity of scattering

increases at all angles as both the scatterer size and the index contrast increase. This

results is a general finding of Mie theory.

The above equations can be used to find the total amount of scattered power from

a volume containing many scatterers [Jonasz (2005)]. The amount of scattered power per

angle is given by the angular cross section of each particle times the magnitude of the

incident intensity. For perpendicularly polarized light, the angular cross section is related

to the amplitude scattering matrix components by

Cang (6 k2- (2.97)

S2 12
Cagi (0)= -. (2.98)

The amount of scattered power per unit incident power from a volume of scatterers can

be found by multiplying the appropriate angular cross section by the number of scatterers

per unit irradiated area (projection of the volume onto the plane normal to the incident

direction). Again, because this quantity is a function of angle, the total amount of

forward-scattered power must be obtained through integration:
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fs- - o00eang,9°/ (0)dO- 1 /2 5dO. (2.99)
The above analysis assumes that the scatterers in the volume are independent of

one another (i.e. there is no coupling or shadowing between scatterers). If the density of

scatterers becomes large enough that the particles are effecting each other, then the above

values will deviate from the actual results. However, the order of magnitude of the

forward and back scattered power will most likely still be correct. Thus, the above

equations can still be used to estimate the amount of scattered power even in correlated

systems.
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Chapter 3: Methods for

Simulating Electromagnetic

Responses

The concepts presented in the previous chapter can be used to simulate the

behavior of electromagnetic waves in complex media. There are several methods that

can be used to do this. All of these methods start with the Maxwell Equations (Eqs. 2.1

through 2.4) and numerically solve them in a variety of ways. However, each technique

has inherent assumptions and constraints associated with it. Thus, certain problems may

be more appropriately solved with one technique over another. The following chapter

will present three techniques that are commonly used to simulate electromagnetic waves.

The merits and drawbacks of each method will also be presented.
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3.1 D Transfer Matrix Method

The D transfer matrix method can be used to quickly calculate the reflectivity

and transmissivity from a multilayer structure with an arbitrary geometery [Hecht (1987),

Kong (2000), Yeh (1988)]. It can also be used to calculate the field amplitude anywhere

within the stack. The thicknesses and optical properties of each layer can have any value.

The only constraints on the structure are that it must have a finite number of layers and it

can not have any architectural variation along the layers. Thus, the layer materials must

be homogeneous, but they do not need to be isotropic.

The 1D transfer matrix technique is simply a numerical solution of the equations

presented in Section 2.2. It is straight-forward to apply this technique to any multilayer

structure if the refractive indices and thicknesses of each layer are known. These are the

only parameters that are needed to calculate the transfer matrix for each layer in the stack

(Eq. 2.84) as a function of the incident wavelength and the incident angle:

I 1)= exp(k(Z (+ - d exp(- ik(+lz (d+ -d)) R+l exp(- ik(+ (d+ -d ))
V(R/+l/ = e1 p( +)(,l tR (+ -d,l ) exp(ik(l+,z (dl++ - d)) ()

The value of di+l - di corresponds to the thickness of layer . The k: values in each layer

can be related to the refractive index of the layer using the dispersion relation (Eq. 2.52):

kX2 + k 2 = c2/1 E, = k. (3.2)

Because of the phase-matching conditions (Eq. 2.28), the x component of the wave vector

is conserved across all the interfaces in the multilayer structure. Thus, the x component

of the incident wave vector can be used for the value of kx in Eq. 3.2:

k2 sin2 , + k2 = k. (3.3)

Utilizing the fact that k is inversely proportional to the wavelength, Eq. 3.3 can be

rewritten in terms of the incident wavelength and the wavelength in the layer:

4r 2 2 4,r 2

2 sin2 0 +k2 = 2 (3.4)

The wavelength in the layer will be equal to the wavelength in vacuum divided by the

index of refraction of the layer. Thus, for a wave incident from vacuum, Eq. 3.4 becomes

4C sin2 0 + k2l 4 n (3.5)
I I~~~~~~~~~~~~~35
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This expression can then be used to solve for kl: in terms of the incident wavelength,

incident angle, and refractive index of the layer:

kl = 2 Vn2 -_ sin 2 0 . (3.6)

If the incident medium has a refractive index other than 1.0, then Eq. 3.6 simply

becomes:

k,=, -V2nl -n, sin , (3.7)

where Ai is the incident wavelength in vacuum.

Both P(l+)l and R(l+l) are only dependent on kl, k7+), and the optical properties

of the layers through Eqs. 2.78, 2.79, and 2.82. Combining Eqs. 2.78 and 2.79 with Eq.

3.7,

,U n 22 - n 2 sin2 0,P(/+l)/ = (3.8)

+l -/n2 - n2 sin2 0i
P(+1)1 (3.9)

81 fn2+l - n sin 2
i

where Eq. 3.8 applies to TE polarized waves and Eq. 3.9 applies to TM polarized waves.

These equations can be applied to Eq. 2.82 to get an expression for R(l+I)l. Thus, the

optical constants and layer thicknesses are all that is needed to calculate the transfer

matrix for each layer. Once this is done, the wave amplitudes in any layer, as well as the

reflectivity and transmissivity of the entire structure, can be calculated using Eqs. 2.85

and 2.86.

Because the above equations are rigorous analytical solutions to the Maxwell

Equations, this technique can be used to determine the exact result for structures that

satisfy the constraints outlined at the beginning of this section. The disadvantages of this

technique are that it is limited to finite structures that are only one-dimensional. Thus,

the optical properties of 2D and 3D photonic crystal geometries cannot be determined

with this method. Another technique is needed that can calculate the band diagram for

these structures.
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3.2 Frequency Domain Method

As discussed briefly in chapter 2, the Helmholtz wave equation can be seen as an

eigenvalue equation for time harmonic fields [Joannopoulos (1995), Johnson (2001),

Zhang (1990)]:

Vx V x H(r) H(r). (3.10)

Here, the eigenfunction is H(r) with a corresponding eigenvalue of (0)/c)2. The solution

of the eigenfunction is simply given by Eq. 2.12, where the wave vector k can now be

used to characterize the different electromagnetic eigenmodes of the structure. The

frequency domain method employs a numerical eigensolver to obtain the eigenmodes and

corresponding eigenvalues for specific wave vectors.

In essence, these are the natural modes for a given structure geometry. Like any

periodic system, the natural modes of a photonic crystal will have specific frequencies

that correspond to its structural periodicity. For most architectures, this structural

periodicity varies with direction. For example, consider a 2D square lattice of rods with

the unit cell edges parallel to the x and y axes. The distance between rods in the x or y

direction is a, the length of the unit cell edge. However, in the x+y direction (i.e. the

diagonal of the unit cell), the distance between rods is A/2a. Thus, wave vectors at

different directions will have different frequencies corresponding to their eigenmodes.

The calculations of the eigenfrequencies for different wave vector gives rise to a

band diagram for a given structure. This is a plot of the frequency values associated with

the eigenmodes for each wave vector in the structure (see Fig. 2.9). Because photonic

crystals are periodic, each structure only has a limited range of unique wave vector

directions. Again, consider the 2D square lattice of rods described above. The

periodicity in the x and y direction is the same. So calculating the eigenmodes associated

with wave vectors in each of these directions would be redundant. The construct that

outlines the unique directions of a periodic lattice is the irreducible Brillouin zone. Thus,

only wave vectors in the irreducible Brillouin zone of the structure need to be considered.

All other wave vectors in the crystal will be repeats of those in the irreducible Brillouin

zone.
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Because of the inherent periodic nature that is required for the eigenmode

calculations, the frequency domain method is only applicable to structures that can be

represented through infinite periodic repetitions of a unit cell. Thus, calculations of finite

structures are not possible. Because of this, experimentally measurable quantities from

finite structures, such as reflectivity or transmissivity cannot be extracted from these

calculations. However, this method can be used to quickly compute the eigenmodes of

any infinitely periodic geometry in one, two, or three dimensions. Thus, it is very useful

in determining the expected frequency range of the bandgap for a given photonic crystal

geometry. This is especially beneficial for 2D and 3D architectures, where the bandgap

frequency cannot be easily predicted simply from the geometry and constituent refractive

indices.

3.3 Finite Difference Time Domain (FDTD) Method

The finite difference time domain method is a numerical solution of the Maxwell

Equations on a discretized grid [Kunz (1993), Sullivan (2000), Taflove (2000)]. This

requires rewriting Eqs. 2.1 and 2.2 in terms of discrete derivatives. First, a change of

variables is made to make the finite difference formulation simpler:

E(r, t) = E(r t) (3.11)

D(r, t) = D(r,t) . (3.12)

Then, Eqs. 2.1 and 2.2 are rewritten in terms of these new variables:

V x H(r,t)=-D(r,t) , (3.13)

1 A
- V x E(r, t) =-H(r,t). (3.14)

In two dimensions, these equations can be broken up into TE and TM modes (see

chapter 2). If the simulation plane is parallel to the xy plane, then the field equations

governing the TE mode can be written as
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ao. (IHy dH ) (3.15)

aHO --- 1 aE, (3.16)

at / 0

allyH 1 aE (3.17)
(3.17)

at =Eo~~% ax

In the above equations, the - notation was dropped with the understanding that both the

electric and displacement field are in their normalized forms (Eqs. 3.11 and 3.12).

Rewriting Eqs. 3.15 through 3.17 with discrete derivatives,

D 1+l/2 (ij) -1 / 2(i,j) 1 yn(i + l/ 2, j) H(i 1/ 2, j)
At 8o0-o AX

, (3.18)

1 Hx (i, j + 1/2)-Hx (i, j-1/ 2)

H (i, j +1/2)-H (i, j +1/2) 1 En+2 (i, j + 1) E+ 2(i,j)
, (3.19)

At Ay

Hy+ (i +1/ 2, j)- H(i + l/ 2, j) 1 En+112 (i + 1, j)-En+/12(i, j) (3
= y Z Z (3.20)At Xo 

In the above equations, the time step is denoted by the superscript, and the spatial grid

position of the field is denoted by the i andj arguments in parentheses. Note that the

above algorithm uses a staggered grid: the magnetic field is calculated at half intervals

from the electric field in both space and time. This formulation was first proposed by

Yee in 1966 and it has since been adopted as a common practice in FDTD simulations

due to the increased stability of the calculation [Yee (1966)].

The grid used in most simulations takes Ax=Ay for simplicity. Indeed, all the

FDTD simulations in this thesis also conformed to this standard. Furthermore, the time

step At in the simulation is related to the spatial step Ax by the speed of light. In one

dimension, in order to properly reproduce physical behavior, the simulated time step

cannot exceed the value of Ax/c because the wave can only travel one grid point per

simulation step. In two dimensions, the wave can also travel along the diagonal of a grid

interval. This, therefore, further restricts the time step to be less than Ax / /2c [Press
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(2002), Schneider (1999)]. In order to simplify the finite differenced equations, a time

step of Ax/2c was used in the simulations presented in this thesis.

Applying this value of the time step to Eqs. 3.18 through 3.20,

D n+1'2(i, j)-D/l 2 "(i /2, j) I(H(i +12,j)-Hy(i-1/2, j))
2 Hn (3.21)

-- (H (ij + 1/ 2)-H (i,j-1/2))
2

+(i, j + 1/2)- H (i, j +1/ 2)= -- E+ 12 (i, j+ 1)+ E+ 2 (i,j), (3.22)
2 

Hy+ (i + l/2, j)-H (i + 1/2, j)= -En 12(i + 1j)-E / 2 (ij). (3.23)
2 ((3

The value of the fields at the next time step can now be solved in terms of the field values

at the previous time step:

Dn+1 / 2 (i, j) n-12i n j) nDn+/ 2(i, j) = D / 2(i j)+(H (i+ 1/2,j) - H(i-1/2,j))
2 Hn (3.24)

H 1(ij + 1/2) = HX (i, 1/2)--E 2 (i j+1)+E 2(i) (3.25)
2

H +1 (i + 1/2, j) = H (i + 1 / 2, j) + -En+11 2(i + 1 j)-En+ / 2 (i j). (3.26),+i . 1 n+lr/y tt +l/2, j) = Hy (i+ + E i+2 ,j)-E (3.26)

These equations, in the order presented here, are used in the FDTD code to propagate the

electromagnetic field through the simulation domain. They are evaluated at every point

on the spatial grid for each time step. A loop is used to increment the time step up to the

maximum number of steps, which is usually input by the user.

A source of the electromagnetic radiation must also be added to the FDTD

formulation. This can be done by adding a source term on top of the calculated field at a

set of grid points in the simulation domain. For a plane wave source, a sine wave with

amplitude Eo and frequency cl/i can be added to each grid point in one row of the

domain. If the propagation direction of the plane wave is perpendicular to this row in the

domain, then the amplitude of the sine wave will be the same for every grid point in the

row at a given time step (i.e. no phase needs to be added to the source based on the

location of the grid point in the row). This allows the incident wave information to be
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contained in a separate one-dimensional array. This source term added to each grid point

in the row would therefore be

source = Eo sin(ot)= E sin(2 At . (3.27)

In addition to a computational time benefit, this way of handling the source can

also be used to constrain the source emission to one direction into the simulation space

[Mur (1981), Umashankar (1982)]. This is shown schematically in Fig. 3.1. This creates

two regions in the simulation domain: one that contains the total field (incident and

reflected), and one that only contains the reflected wave. The total wave domain is

truncated by modifying the values of the total field at the edges of this domain for each

time step. If a grid point is located at a position near the edge of the total wave domain,

then the neighboring field values, which are just on the other side of the domain edge,

will be used when its value is updated at the next time step. Thus, in order to prevent the

incident field from "leaking" out of the domain, it needs to be subtracted out of the total

field calculation for these grid points. The incident field value at each time step is held in

the one-dimensional array. Thus, the appropriate value of the incident field for each

affected grid point will be given by the corresponding value in the incident wave array.

As a consequence of this formulation, it is very easy to separate the reflected field

in the simulation from the incident field. This is because the only field in the region

outside of the total wave domain will be the reflected field. Thus, the magnitude of the

reflected wave can be extracted from the simulation by only analyzing the field in the

region outside of the total wave domain.

.-. Total Field

Incident plane
wave is "

generated here

Simulated
Photonic
Crystal

V I (- Total Field

Reflected Field

Figure 3.1 Schematic of the simulation domain illustrating the unidirectional source that
allows separation of the total field and the reflected field.
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Unfortunately, the above formulation only works if the incident field direction is

perpendicular to the rows in the simulation grid. If the incident field propagates in a

different direction, then the source term (Eq. 3.27) would include a phase shift that

depends on the position of the grid points in the simulation domain. Thus, the incident

field information could no longer be stored in a one-dimensional array. However, in

theory, it would still be possible to implement the above unidirectional source algorithm

with a two-dimensional incident array. But the code used in this thesis was a

modification of the code presented in Sullivan (2000), which uses a one-dimensional

incident array. Therefore, a substantial reformulation of the code would be needed in

order to implement a two-dimensional incident array algorithm. Since a considerable

amount of insight could be gained by using the code in its current state, this reformulation

was considered unnecessary for the studies presented in this thesis. However, future

studies could be done using a two-dimensional incident array to simulate other incidence

conditions.

In general, there are two types of boundary conditions that are used in FDTD

simulations: periodic and absorbing boundary conditions. Periodic boundary conditions

can be used to simulate structures that have infinite lengths or widths [Alexanian (1996),

Cangellaris (1993), Celuch-Marcysiak (1995), Chan (1991), Kelly (1994), Kesler (1996),

Navarro (1993), Okoniewski (1993), Tsay (1993)]. When the value of the field just

outside of the simulation domain is required, the value of the field at the opposite

boundary is used. Mathematically, for incident waves traveling perpendicular to the rows

in the domain, this appears as

E (nx + 1, j) = En (1, j), (3.28)

En (i, ny + 1) = En (i,l), (3.29)

for periodic boundaries in the x and y directions, respectively. Thus, it is fairly easy to

add periodic boundary conditions to an FDTD code by simply appending a conditional

statement to the field calculations that includes Eqs. 3.28 and/or 3.29.

Absorbing boundary conditions are used to prevent reflections off of the domain

walls in the simulation. When a field reaches a domain wall that does not have an

absorbing (or periodic) boundary condition, it will reflect off of the wall due to the nature

of the field calculations. However, most often it is desirable to create a simulation
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domain that appears to continue to infinity outside of the domain walls. Many methods

have been proposed to achieve absorbing boundaries. [Bayliss (1980), Bayliss (1982),

Berenger (1994), Engquist (1977), Givoli (1991), Halpern (1986), Higdon (1986),

Higdon (1987), Liao (1984), Moore (1988), Mur (1981), Ramahi (1997), Ramahi (1998),

Trefethen (1986)]. However, the most widely used absorbing boundary condition

algorithm in FDTD simulations is known as the perfectly matched layer (PML)

algorithm, which was developed by Berenger in 1994 [Berenger (1994)]. As in

electronic circuits, it achieves absorbing boundary conditions through impedance

matching at the domain walls. It creates several layers in the simulation domain near the

boundary. Each layer has some amount of absorbance, which is controlled by the value

of e and u in the layer. For each subsequent layer, the absorbance gradually increases,

damping out any impinging wave. Thus, this algorithm can be used to prevent any

unpredictable reflections off of the boundaries. In general, the specific parameters for

each PML layer, as well as the total number of PML layers, should be tuned to minimized

the amount of reflection.

The FDTD method is extremely flexible. It can be used to calculate the

electromagnetic response of any arbitrary dielectric geometry. The results of the

simulations can be easily related back to measurable quantities, such as reflectivity or

transmissivity. Moreover, because this method directly solves the Maxwell Equations, it

can produce results that are very nearly exact if the discrete grid is fine enough. As a

general rule of thumb, a cell width (Ax) smaller than 1/30 th of a wavelength is sufficiently

fine to produce accurate results in the Yee algorithm [Liu (1996)]. The grids used in the

FDTD simulations presented in this thesis had cell widths between 1/330th and 1/480 th of

a wavelength.

Although there are many advantages to the FDTD method, it does have one major

draw back. The larger the structure, the longer the FDTD simulation will take to run. 3D

structures can take an extremely long amount of time due to the numerous field

calculations and time steps required to reach steady state. However, even 2D structure

simulations, such as the ones studied in this thesis, can be very computationally

expensive when the appropriate grid resolution is used. Thus, the FDTD method should

only be used when all other faster simulation methods have been exhausted.
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This is the case for the studies done in this thesis. Because imperfect photonic

crystals are being investigated, the structures have dielectric variations in two

dimensions. This prevents the D transfer matrix technique from being used to solve the

problems addressed here. Furthermore, these imperfections also destroy the intrinsic

periodicity of the photonic crystal. Therefore, the frequency domain method cannot be

used either. Thus, the FDTD method is the best technique to obtain the optical responses

from these structures.
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Chapter 4: Interfacial Roughness

in 1D Photonic Crystals: An

FDTD Study

The well-known and technologically useful properties of one-dimensional

photonic crystals (1DPCs), in particular the presence of a bandgap for certain wavelength

ranges and polarizations, are based on the theoretical crystal models presented in chapter

2. These models assume structures with perfectly flat interfaces between the constituent

layers [Joannopoulos (1995), Yeh (1988), Winn (1998)]. Despite this, the existence of

photonic bandgaps in DPCs has been demonstrated experimentally through laboratory

fabrication of'various 1DPC configurations [Temelkuran (2001), Deopura (2001), Fink

(1998), Chigrin (1999)]. These and other experiments demonstrate that predicted

photonic bandgaps in idealized structures are somewhat robust because laboratory
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processing inevitably introduces interfacial roughness and other defects that were not

treated in the models. However, for the economic design of large-scale manufacturing

processes, where the control of interfacial roughness and defects may be costly, the

question arises: how tolerant are the optical properties of 1DPCs to manufacturing defects

such as interfacial roughness?

There are several "real world" examples of structures that exhibit significant

amounts of interfacial roughness. One such structure is shown in Fig. 4.1. This is a

structure that is currently being researched at the University of Buffalo by K. Hsiao, et al.

as a tunable 1D photonic crystal [Hsiao (2004)]. It was produced by incorporating a

liquid crystal material into a multilayer stack. The refractive index of the liquid crystal

layers can be changed by placing the structure in an electric field. This allows the optical

response of the structure to be adjusted based on its electrical environment. Its perfect

analogue, on which the theoretical optical response of the device is based, is shown

schematically next to it. It is clear that the actual structure deviates significantly from the

ideal one. In fact, the roughness associated with the interfaces in this structure is so

severe that some of the layers themselves are discontinuous (i.e. the roughness scale is

comparable to the thickness of the layers).

Another example of a currently researched structure with rough interfaces is

porous silicon multilayers. When silicon is anodized in a hydrofluoric acid solution,

Figure 4.1 One example of a "real world" structure with a large amount of interfacial
roughness. This particular structure is a liquid crystal multilayer fabricated by K. Hsiao,
et al. [Hsiao (2004), reprinted with permission]. The micrograph on the left is the actual
structure, while the schematic on the right is the idealized structure on which the
theoretical optical response of the device is based.
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pores are etched into the surface of the silicon. The size of these pores can be directly

controlled by the amount of current that is passed during the anodization process. Thus, a

modulation of the current during the anodization will result in a modulation of the pore

size into the surface of the silicon. This consequentially also results in a modulation of

the index of refraction, creating a multilayer structure where the low index layer has large

pores and the high index layer has smaller ones. The advantage of creating multilayer

structures with this method is that the electrochemical anodization technique is cheap,

fast, and can be used to create these structures on a large scale. An example of this

porous silicon multilayer structure is shown in Fig. 4.2 [Agarwal (2003)]. Again,

although this structure does not deviate from its ideal as much as the liquid crystal

multilayer in Fig. 4.1, some interfacial roughness is still evident in the structure.

Other studies have looked at interfacial roughness in multilayers using

perturbation analyses [Amra (1994), Elson (1995)]. However, these studies are limited to

roughness scales much less than the wavelength of light and cannot be simply modified

for specific 1 DPC configurations. Furthermore, practical implications, such as

reflectivity dependence on index contrast and interfacial roughness measures are not

readily derivable from these results. In this chapter, the results of a two-dimensional

Finite Difference Time Domain (FDTD) simulation of 1DPCs with interfacial roughness

are presented [Maskaly (2004)]. As described below, the roughness is simulated by

Figure 4.2 A micrograph of a porous silicon multilayer structure fabricated by Agarwal,
et al. (reprinted with permission from V. Agarwal and J. A. del Rio, Applied Physics
Letters, 82, 1512 (2003), copyright 2003, American Institute of Physics). Although this
structure does not deviate from its ideal as much as the structure in Fig. 4.1, some amount
of interfacial roughness is still evident.
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direct specification of a random amplitude and subsequently characterized with an

average wavelength. Therefore, this method is not limited to small roughness amplitudes

and can be extended to general 1DPC configurations.

Because of the particular relevance and wide-spread use of quarter-wave stacks in

1DPC devices, this study focused on quarter-wave tuned 1DPCs at normal incidence.

The incident wavelength used in the simulations is that to which the quarter-wave stack is

tuned. Additionally, each stack is arranged so that the top layer is the higher index

material. This was done in order to simulate the architecture typically used in 1D

photonic crystal devices. The simulations were done on free-standing crystals - the

surrounding medium on both sides of the crystals is vacuum (dielectric constant 1.0).

4.1 Interfacial Roughness Parameters

The simulated 1DPCs were analyzed in terms of two roughness parameters,

illustrated in Fig. 4.3. The first parameter, the RMS interface roughness, is:

RMS Wavelength (W)
Distance between
peaks (or valleys) as
a percentage of a

Dielectric material 2
Refractive Index = n2

\Periodicity (a) RMS Roughness (R)\ Dielectric material 1
Thickness of Distance between Refractive Index = n l

one bilayer interface position (y)

()/4n + h4n 2) and average position
(Yo) as a percentage of a

Figure 4.3 Schematic of the rough interfaces in the simulated structures illustrating the
two parameters that were used to characterize each roughened structure: RMS roughness
and RMS wavelength. Also shown is the characteristic periodicity (a) of the photonic
crystal.
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RMS - (y - )J I(y YO) -dxJ (Y -Yo ) (4.1)
0 nodes 1

Because the nodes in the FDTD simulation are equally spaced, RRMs is independent of L,

the size of the simulation domain parallel to the layer interfaces. As defined, RRMs is

comparable to the roughness parameter obtained by profilometry [Tencor (1996)].

The second parameter, the RMS interface roughness wavelength, is a measure of

the RMS peak-to-peak or valley-to-valley distance of the roughness features, defined as:

WRMS = n % () -XV) ) (4.2)

Both the x and y interface positions are specified as a fraction of a, the characteristic

photonic crystal periodicity. Because all the photonic crystals simulated were quarter-

wave stacks, this periodicity corresponded to

a = t + t2 = + . (4.3)
4n 1 4n 2

All of the results are therefore independent of absolute length scale.

4.2 Generation of the Roughened Structures

The simulated 1DPC structures were generated with a C++ code, which created

a zero roughness 1 DPC structure and then randomly displaced the interface nodes based

on a specified amplitude. The RMS interface roughness wavelength was controlled by

skipping over a certain number of specified nodes between each displacement. The

indices of refraction of the constituent layers, the number of bilayers in the structure, and

the total number of nodes in the simulation domain parallel and perpendicular to the

interfaces were input. The corresponding nodal thicknesses of the quarter-wave stack

layers were then calculated. This was done by first calculating the photonic crystal

periodicity (i.e. the thickness of a single bilayer) from the total number of nodes

perpendicular to the interfaces and the number of bilayers. Specifically,

na= (4.4)
num _bilayers
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The nodal thickness of each layer was then calculated based on the refractive indices of

the layers:

an
t _": n 2 (4.5)

t(n + n2 '

an
t2= 1 (4.6)

t(nl+ n2 ) '

Values for the indices of refraction, the number of bilayers, and the total number of

perpendicular nodes were selected such that a, tl, and t2 were all integer values. A two-

dimensional array with a size equal to the total number of nodes in the simulation domain

was then generated for a spatial representation of the structure. Refractive index values

were written into the array corresponding to a 1 DPC structure with flat interfaces. Buffer

layers with refractive index values of 1.0 (corresponding to air or vacuum) were written

above and below the structure as well in order to allow both positive and negative

displacements for the first and last interfaces in the structure (the interfaces adjacent to

the ambient).

Values for the maximum displacement for an interface node and the number of

interface nodes between displaced nodes (for control over the RMS wavelength) were

also given as inputs. These values were used to generate a list of numbers, with each

member of the list corresponding to an interface node in the structure. The input values

were converted from percentages of a to number of nodes. A random number was

chosen between 0 and the value corresponding to the maximum displacement.

Additionally, a random angle was chosen between 0 and 2n. If the random angle was

greater than ir, the random number was made negative, allowing for negative

displacements of the interface. This random number was then entered into the list, and

the proceeding and preceding members of the list, up to the number of nodes to skip,

were given values equal to the random number multiplied by a Gaussian with a standard

deviation equal to half the number of skipped interface nodes. This was done in order to

smooth the roughness displacements and avoid sharp discontinuities along the interface.

The numbers in the list for each interface were then summed. A sum greater than

zero meant that the interface had a net positive displacement. This would shift the mean

thickness of the layer to be greater than a quarter-wave thickness. In order to remedy
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this, the roughness feature on that interface with the maximum displacement was located.

The displacement amount for each node corresponding to that Gaussian roughness

feature was then decreased by one (starting with the node at the center of the Gaussian

and then moving outward in each direction) until the total sum for the interface became

zero. If all the nodes of the roughness feature were decreased and the sum was still

greater than zero, then the process was repeated until a zero net displacement for that

interface was achieved. Alternatively, if the displacement sum for an interface was

negative, then the above process was performed but the node displacements were

increased instead of decreased until a zero net displacement was achieved.

The array positions of the interface nodes were then determined. The nodes on

each interface were displaced according to the displacement list. This was achieved by

writing the appropriate refractive index value into each member of the array above (or

below) the interface node up to the value in the displacement list for that node. For

example, if the interface was a high-to-low index interface and the displacement for one

particular node on that interface was positive 10, then the members of the array up to 10

above the interface node were written with the refractive index value of the high index

For positive displacements, n2 is written on the nodes
above the interface up to the value in the displacement list

I
Mean
interface

/position

For negative displacements, n, is written on the nodes
below the interface up to the value in the displacement list

Figure 4.4 Close up of a roughened interface illustrating the process used to create the
roughness features.
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material. Alternatively, if the displacement for that node was negative 10, then the

members of the array up to 10 below that interface node were written with the refractive

index value of the low index material. This process is illustrated in Fig. 4.4.

The RMS roughness and RMS wavelength for the roughened structure was then

calculated from the displacement list using Eqs. 4.1 and 4.2. The refractive index array

was written to an output file, which was then used as an input into the FDTD code. The

nodal magnitude of the incident wave was also input into the FDTD simulation. For all

the following simulations, the quarter-wave-tuned wavelength was used as the incident

wave. The nodal magnitude corresponding to this wavelength can be calculated from the

structure parameters in the following way. Combining Eqs. 4.3 and 4.4,

a= + (4.7)
4n1 4n2 num _bilayers (4.7)

Solving Eq. 4.7 for X0 gives the nodal magnitude of the wavelength:

(4.8)
0 num_bilayers n +n2 8)

Because the Maxwell Equations are valid and take the same form for any length scale,

once this is calculated, all other wavelengths can be scaled to nodal magnitudes using Eq.

4.8 to obtain a scaling factor. This was not necessary for the simulations presented in this

chapter, but it was used for the simulations that studied wavelengths spanning the full

bandgap at normal incidence. These simulations will be presented in chapter 8.

4.3 Simulation and Analysis Method

Each structure was modeled using a 2D FDTD code utilizing the Yee algorithm,

as described in chapter 3, for calculation of both the electric and magnetic fields [Yee

(1966), Sullivan (2000), Taflove (2000)]. Two types of boundary conditions were used

in the simulation. Periodic boundary conditions were specified on the domain walls

perpendicular to the 1DPC layers. The boundaries parallel to the layers were simulated

as PML absorbing boundaries [Berenger (1994)]. These conditions produced a 1DPC

that is infinite in length with a finite number of bilayers. Independence of the simulation

with respect to distance between periodic boundaries was checked by calculating results
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Figure 4.5 Simulation results showing that the size of the domain between periodic walls
was sufficiently large. The distance between periodic walls is given by the parameter nx.
An nx value of 450 was used for all the FDTD simulations presented in this thesis.

for both longer and shorter periodic cells and verifying that the results are statistically

equivalent. The results of these calculations are shown in Fig. 4.5.

The exact FDTD code used was a modification of the code provided in Sullivan

(2000), which does not use any periodic boundaries but instead uses PML absorbing

boundaries on all the simulation domain walls. One advantage of this code, however, is

that it provides a method for simulating a unidirectional plane wave source. This allows

the reflected wave to be easily separated from the incident field, as was described in

chapter 3. The code also provides a straightforward means of implementing the Yee

algorithm and the PML boundary conditions.

Normalized reflectivities, r, were obtained from the time-averaged squared

electric or magnetic field of only the reflected wave over several periods after initial

transient behavior had disappeared. For TE polarized light, this takes the form:

77

.n =350
X

.n =450
x

On =550x 0

· n = 650 · :,

· **

t I .el



Equilibration of 2 Bilayer Simulation

0

2000 4000 6000 8000
Simulation Step Number

Equilibration of 4 Bilayer Simulations
1.5

:.I

.5
.)

cc

-0
CD0co

L)

1 .25

1.0

0.75

0.5

0.25

0

4 a'

1

I .j

.25

1

.>

t

-)cc

0
0

0.75

0.5

0.25

n

- 0 0
* * 000 00000

0

0.5 1 1.5
Simulation Step Number

0 2
x104

Equilibration of 6 Bilayer Simulation

0 0
0

0 00 .0 0 0 0 0 0 4

0

-0 0.5 1 1.5 2
Simulation Step Number x 104

Figure 4.6 The equilibration of three simulated bilayer systems. The pink region
corresponds to the time steps over which the time average was taken in Eq. 4.9.
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r =
(n 1Er

= 1~ 2/ ~ (4.9)
<I E)\ 1

nT 2-JnEr + -I Et
1T In 

The same formulation can be applied to simulations using TM polarized light except that

the magnitude of the magnetic field is used instead of the electric field. Fig. 4.6 shows

the instantaneous amplitude of the reflected electric field versus the time step in the

simulation for three different simulated systems. This figure illustrates that the reflected

electric field reaches a stead-state value after a certain number of simulation steps. The

pink area in the figure indicates the region over which the above time average was taken

for each structure. This corresponds to an averaging over 8 full cycles of the reflected

wave. Because absorption (i.e. imaginary values for the indices of refraction) was not

simulated in this study, the denominator in Eq. 4.9 is equivalent to the time-averaged

squared incident field. Therefore, this method is equivalent to taking the ratio of the

time-averaged Poynting vectors for the reflected and incident fields [Kong (2000)].

Again, the time scale disappears from Eq. 4.9 because the time step remains constant

throughout the simulation. The angled brackets indicate that a spatial average is taken

after the time average to obtain one number for the reflectivity.

The results of the code were verified by comparing the reflectivity from a perfect

(smooth) crystal obtained by the FDTD method to a 1D transfer matrix calculation. This

also allowed tuning of the parameters that determine the absorbing capabilities of the

PML layers. After the PML boundaries were optimized, the results of the two

calculations were identical to within 0.005%. This also provided verification that the grid

used in the FI)TD simulation was fine enough to produce accurate results. The width of

each grid point was between 1/3 30 th and 1/4 80th of a wavelength for all simulations.

The metric used to evaluate the optical response of the roughened structures was

the percent change in the reflectivity of the roughened structure from the perfect

structure. The reflectivity from each simulation, rrough, was normalized by the reflectivity

of an equivalent structure with zero roughness, r,,,,oth. The percent change in reflectivity

Ar is reported as a measure of the "optical leakiness" of the simulated structure:
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Ar =1 rrough (4.10)
rsmooth

4.4 TE Polarization Reflectivity Results

Over 700 simulations at varying conditions were done in order to systematically

study the effects of refractive index contrast, average refractive index, and number of

bilayers on the change in the normal reflectivity from roughened D photonic crystals.

This study was done to determine design conditions that would aid in minimizing the

effects of the roughened interfaces. Reflectivities for a TE-polarized normal incidence

plane wave impinging on several different simulated quarter-wave stacks were obtained.

The Ar for a 4-bilayer quarter-wave stack with nl = 2.25 and n2 = 1.5 is plotted in

Fig. 4.7 as a function of RRMS and WRMS. Each of the 120 simulations done for this study

is represented by a dot in the figure. These simulations corresponded to structures with

WRMS values ranging from about 0. la to 1.Oa and RRMs values ranging from about 0.005a

to 0.175a. Above this upper limit on the roughness value, several roughness features had

heights greater than the thickness of the neighboring layer, causing the measure of

roughness as defined in Eq. 4.1 to no longer accurately represent the specific morphology

of the structure. A surface was fit to the reflectivity results from each of these

simulations using a triangle-based cubic interpolation scheme. In this way, the

dependence of Ar on both parameters can be easily seen with a 3D surface plot. In

addition to the Ar results, Fig. 4.7 also shows four example structures for four particular

simulations in order to provide a better understanding of what structures with those

values of RRMs and WRMS would look like. Notice that the structures with the largest

roughness values still produce multilayer stacks that have discontinuous layers even

though most of the roughness features have heights below the thickness of the

neighboring layer. This is because the layers can become discontinuous if two roughness

features on either interface of a layer grow towards each other and combine to cut off the

intervening layer.

There are two primary conclusions that can be drawn from the results presented in

Fig. 4.7. First, not surprisingly, there is a strong dependence of the change in reflectivity

from roughened structures on the RMS roughness of the structures. Fig. 4.7 is plotted on
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Figure 4.7 The calculated percent change in the TE-polarized normal incidence
reflectivity for roughened 4-bilayer quarter-wave stacks with nl=2.25 and n2=1.5. Also
shown are four example structures for four particular simulations.

81



a log-scale in order to show the features of the plot more clearly. At the most extreme

values of RMS roughness tested (-19% of a), the change in reflectivity from a perfect

structure reaches more than 50%. The second conclusion that can be drawn from these

results is that there is no detectable dependence of the RMS wavelength on the percent

change in reflectivity. This is a more surprising result, which will be explained later

when the mechanism that causes this change in reflectivity will be investigated.

Nonetheless, this result allows the data to be condensed to a 2D plot with only the RMS

roughness as a parameter. This plot is shown in Fig. 4.8, along with the results from

several other simulations for different 4-bilayer quarter-wave stack configurations with

varying values for the high and low refractive indices of the quarter-wave stacks.

Because the previous study showed there was no effect of the RMS wavelength on the

simulation results, a mid-range wavelength was chosen for all of these simulations.

These additional simulations were done in order to systematically study the effect
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Figure 4.8 The calculated percent change in reflectivity for several 4-bilayer quarter-
wave stack configurations. Empirical fits to the data, with index contrast and number of
bilayers as the only parameters, are also shown.
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of average refractive index and index contrast on the change in reflectivity from

roughened 1D photonic crystals. These two parameters were chosen in particular

because of their relevance to the optical properties of perfect 1D photonic crystals, as was

discussed in chapter 2. These simulations reveal that the percent change in reflectivity is

also independent of the 1DPC's average refractive index. This is illustrated by the fact

that the results for the two structures that both have index contrasts of 1.5 overlap, despite

the fact that they have vastly different average index values. This same behavior is seen

with the two structures that both have index contrasts of 2.0. This result makes sense in

light of scattering theory, which holds that the amount of scattered power from a

scattering center is only proportional to the index contrast between the scattering center

and the ambient medium.

Thus, the only refractive index parameter that determines how tolerant a 1 DPC

will be to interfacial roughness is the refractive index contrast. As revealed in Fig. 4.8, a

higher index contrast crystal will be more robust, having a smaller change in reflectivity

for the same RMS roughness as a lower index contrast system. In fact, the difference in

the reflectivity results for different index contrast systems can be quite large. For

example, at about 15% RMS roughness, the change in reflectivity for a 1.25 index

contrast system reaches almost 40%, while a 2.0 index contrast system sees a change of

only 15%. This conclusion starkly contrasts the prediction that would be made by

scattering theory, which maintains that the amount of scattered power increases with

increasing index contrast. However, a more rigorous scattering theory analysis for these

structures will reveal a result that is consistent with the above conclusion. This analysis

will be the subject of chapter 5.

Additional simulations were done to study the effect of the number of bilayers on

the change in reflectivity due to interfacial roughness. The results of these simulations

for a photonic crystal with indices n1=2.25 and n2=1.5 are shown in Fig. 4.9. They reveal

that the number of bilayers also plays an important role in determining the change in

reflectivity from roughened structures. As the number of bilayers decreases, the crystal

becomes less tolerant to interfacial roughness. Again, this difference can be quite large,

with a 2-bilayer system having a change of more than 40% at an RMS roughness of 15%,

while a 6-bilayer system has a change of only about 15% at the same roughness value.
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Again, traditional scattering theory would predict an opposite trend because the greater

the number of bilayers, the more scattering centers and therefore the larger loss in

reflected power due to scattering. However, again, the analysis in chapter 5 will reveal a

result which is consistent with the above trend.

Ten other structures were simulated with varying values of the refractive index

contrast and number of bilayers. These additional simulations were done to map out the

reflectivity response to roughness over the parameter space encompassing index contrasts

between 1.25 and 2.0, and bilayers between 2 and 6. A multi-parameter fit of the data

from all the simulations was then done to provide an empirical estimate of reflectivity

robustness to roughness. The fit was performed using OriginLab curve fitting software.

A general form for the fit that represented the data was chosen:

Ar = aRb. (4.11)
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Figure 4.9 The calculated percent change in reflectivity for several n=2.25, n2=1.5
quarter-wave stack configurations with varying bilayer numbers. Again, empirical fits to
the data, with index contrast and number of bilayers as the only parameters, are also
shown.
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The variation of the parameters a and b with respect to the index contrast and the number

of bilayers was then determined. First, the index contrast dependence was ascertained by

identifying the functions that best fit each parameter as a function of index contrast while

holding the number of bilayers constant. These functions were

a = A - BexpC, (n,)] (4.12a)

b-= A + B exp[- C2 ((n, /n 2)- D2 )] (4.13a)
(1 + exp[- C2((n, n2 )- D2)D2

The values ofA 1, B1, etc. varied with the value of the number of bilayers. These

parameters were then also fit to an arbitrary function that only depended on the number

of bilayers. This provided the form of the bilayer dependence of a and b. After this

process, the final form for the parameters a and b in Eq. 4.9 were found to be

a=12..15- 3.20 13.61exp[- (n,/n2X6.93 - 8 O5NbXNb- 144)-'] (4.12b)
(Nb -2.46) 1+ 3630.98Nb -1815.70Nb

b =: 1.44 + 67.99 exp[- 3.58((n, /n 2 )- 2.22)- 0.87(Nb - 5.63)] (4.13b)
(1 + exp[- 3.58((n, /n2)- 2.22)2 (1 + exp[- 0.87(Nb - 5.63)D2

This fit evaluated for the various structures tested is also shown plotted over the

corresponding FDTD data in Figs. 4.8 and 4.9.

One caveat about this fit is that it is only known to be accurate for values of the

index contrast between 1.25 and 2.0 and values of the number of bilayers between 2 and

6. The change in reflectivity for multilayer stacks that fall out of this parameter space

cannot be predicted using the above fit. Furthermore, because these simulations are for

normal incident waves, the above fits do not apply for oblique incident angles. However,

light hitting the crystal at these angles will most likely be more sensitive to any interface

roughness, and therefore, these estimates provide an upper limit of the robustness of a

given 1DPC configuration. Unfortunately, as discussed in chapter 3, FDTD simulations

of plane waves incident at angles other than normal incidence are extremely difficult. It

either requires the development of new FDTD algorithms to get around the problem

imposed by the periodic boundary conditions, or simulations done with absorbing

boundary conditions on all domain walls with an extremely large domain in order to

catch any reflections occurring at shallow angles and avoid edge effects. Both cases are

85



beyond the scope of this thesis. However, there are devices, such as vertical-cavity lasers

and distributed bragg reflectors [Tropper (2004), Iga (2000)], that rely primarily on

normal incidence reflectivity for their operation. The above analysis would be useful in

evaluating or predicting the performance of these and other such devices, or setting

constraints on the manufacturing process in order to achieve the desired level of device

performance. For example, Eq. 4.9 could be inverted to obtain an estimate of an upper

bound to roughness, given a normal incidence reflectivity tolerance:

R = (r (4.14)

This in turn could be used to evaluate how precise the manufacturing process of the

device needs to be in order to avoid roughness features larger than the upper bound given

by this equation.

There is one other issue that needs to be addressed with the above analysis. All

simulations presented above have been done with TE polarized light. However, most

devices will rely on the reflectivity of both TE and TM polarizations. Therefore, the

reflectivity response of roughened structures to TM polarized light also needs to be

investigated. This is the topic of the next section.

4.5 TM Polarization Reflectivity Results

As with the TE polarization, a series of simulations were done with a TM

polarized normal incidence plane wave to determine the dependence of the percent

change in reflectivity on RRms and WRms. This required significant modification of the

code in Sullivan [Sullivan (2000)] since that code was only written for TE polarized

plane waves. Again, 120 simulations, corresponding to the same 120 structures of

various WRMS and RRms values studied in the TE polarization simulations, were done for a

4-bilayer quarter-wave stack with nl = 2.25 and n2 = 1.5. The results of these simulations

are shown in Fig. 4. 10. As with the TE polarization results, the change in reflectivity

shows a strong dependence on the RMS roughness of the structure, and correspondingly,

no dependence on the RMS wavelength. Thus, the results of these simulations can also
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Figure 4.10 The calculated percent change in the TM-polarized normal incidence
reflectivity for roughened 4-bilayer quarter-wave stacks with nl=2.25 and n2=1.5.

be collapsed onto a 2D plot with RMS roughness as the only parameter. This allows easy

comparison of these results to the results of the corresponding TE polarization

simulations. Fig. 4.11 shows this comparison, which indicates that TE and TM polarized

stacks within the parameter ranges tested. This result may seem surprising, but again, it

can be easily explained once the physical mechanism for the reflectivity decrease is

understood.

The fact that the TE and TM response for the roughened structures is equivalent

leads to another significant conclusion. Since all plane waves that are incident on a 3D

roughened surface will simply be a linear combination of TE and TM polarized waves

(see chapter 2), the above results for TE waves can be applied to full 3D roughened

quarter-wave stacks for plane waves at normal incidence. Thus, the correct reflectivity

response for a 3D roughened multilayer stack within the parameter space tested can be

obtained from just a 2D FDTD simulation. This saves a significant amount of computing
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Figure 4.11 Comparison of the TE and TM polarization reflectivity results.

time. Once a model to physically explain the above results is identified, this conclusion

will be even more significant because it will mean that simple application of the model

can lead to accurate results for 3D structures.

4.6 Conclusions

In order to determine the optical effect of rough interfaces, 2D FDTD simulations

have been done on several 1 DPC quarter-wave stacks at normal incidence with the

quarter-wave-tuned wavelength. Several conclusions can be made from the results of

these calculations.

1. The percent change in the reflectivity of the rough structures from the ideal

structure strongly depends on the RMS roughness of the interfaces in the

structure. For example, an RMS roughness of 0.05a can lead to a change in

reflectivity of almost 10% in some structures.
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2. The percent change in the reflectivity of the rough structures is independent of

RMS distance between rough peaks or valleys (WmRAs) when this parameter is

within the range of 0. la to 1.Oa.

3. The percent change in the reflectivity of rough structures is independent of the

average refractive index of the photonic crystal.

4. The percent change in the reflectivity of rough structures strongly depends on

the 1DPC's refractive index contrast. Systems with higher index contrast are

more robust, having a smaller percentage change in the reflectivity than a

smaller index contrast system with the same interfacial roughness. This result

is counter-intuitive to simplified scattering theory predictions.

5. The percent change in the reflectivity of rough structures strongly depends on

the number of bilayers in the 1DPC. An increase in the number of bilayers

results in a more robust structure. This is also counter-intuitive to simplified

predictions made from scattering theory.

6. TIE and TM polarized light produce equivalent optical responses from

roughened structures within the parameter ranged tested (RRMS = 0.005a to

0.175a, WRms = 0.1 a to 1.0a). This allows the above results for TE polarized

light to be applied to full 3D roughened structures.

Furthermore, an empirical fit based on the results of the simulations was reported to

provide estimates of interfacial roughness tolerances for devices.

Light that is incident on a rough surface will be scattered by that surface because

the roughness features act as scattering centers. Because several of the conclusions

reported above contradict predictions that would be made by scattering theory, a more

rigorous scattering theory analysis for these specific structures is in order. This analysis

will be the topic of the next chapter.
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Chapter 5: A Scattering Model of

Interfacial Roughness

The previous chapter presented the results of several FDTD simulations that were

done to systematically study the effect of interfacial roughness on the optical properties

of 1D photonic crystals. Several conclusions that were drawn from these results

contradict the predictions made from a preliminary analysis using classical scattering

theory (known as Mie theory) [Bohren (1983)]. The relevant conclusions of the

preceding chapter and the corresponding Mie theory predictions are presented below.

The reflectivity of a roughened 1 DPC does not depend on its average refractive

index. This conclusion is actually intuitive when seen through the eyes of Mie theory.

As explained in chapter 2, the intensity of the scattered field only depends on the index

contrast between the scatterer and the surrounding medium. Thus, the absolute sizes of

the refractive indices never comes into play except when considering the incident
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wavelength, which will be equal to the wavelength of the light in vacuum divided by the

index of refraction of the surrounding medium. This fact will be utilized later when

analyzing the scattering from each interface in the photonic crystal because it means that

certain interfaces within the crystal will produce more scattering then others. But each

photonic crystal will have the same amount of internal scattering if it has the same index

contrast, independent of the average index.

A high index contrast roughened photonic crystal will have a smaller change in

the reflectivity than a low index contrast crystal with the same roughness. This result is

counter-intuitive to the predictions of Mie theory. As stated above, the intensity of the

scattered field does depend on the magnitude of the refractive index contrast between the

scatterer and the surrounding medium. So the fact that a dependence on this parameter is

seen with the FDTD simulations does not contradict Mie theory. However, scattering

theory would predict the opposite dependence: that the higher index contrast structures

would be less tolerant to interfacial roughness than the low index contrast structures.

This is because the intensity of the scattered field increases with increasing index

contrast. So the interfaces in the higher index contrast structures will scatter a higher

percentage of the incident light than the lower index contrast structures. Thus, the lower

index contrast structures would experience less loss of the reflectivity due to scattering

than the higher index contrast structures. A more rigorous application of Mie theory to

these specific structures will be needed in order to remedy this apparent contradiction.

A roughened photonic crystal that has a large number of bilavers will have a

smaller change in the reflectivity than a photonic crystal with a small number of bilavyers

at the same roughness. Again, this is an apparent contradiction of classical scattering

theory. A larger number of bilayers in a structure means that it has more interfaces, and

therefore more roughness features to act as scatterers, than a structure with a smaller

number of bilayers. Thus, classical scattering theory would predict that more light would

be lost due to scattering in a structure with a larger number of bilayers. Again, a more

rigorous application of Mie theory to these structures will be needed to correct this

discrepancy.

These apparent contradictions prompted a more methodical approach of applying

Mie theory to these structures. A model was used to imitate the role of the roughness
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features as scatterers on each interface in the crystal. This model and the results of its

implementation are described in the remainder of this chapter.

5.1 Scattering Model

The scattering model presented here is based on the following hypothesis: the

forward scattering from the roughness features on each interface is pushing field intensity

through the subsequent layer that would otherwise have been reflected if the interface

were smooth. This is what is causing the decrease in reflected power and increase in

transmitted power. In essence, the roughness features are therefore changing the

reflection and transmission coefficients of each layer in the photonic crystal. This effect

can be imitated by removing the roughness features and changing the refractive index of

each layer to account for the change in reflection and transmission, as illustrated in Fig.

5.1.

The following algorithm was developed in order to calculate the modified

refractive index for each layer based on the forward scattered intensity at each interface.

The problem will first be solved for a single interface separating two semi-infinite spaces.

It will then be applied to the simulated systems, which have multiple interfaces. For a

single smooth interface between two semi-infinite spaces, an expression can be obtain for

the transmissivity (or transmitted intensity) of the interface using Eqs. 2.51 and 2.59:

_ 4 p,t= 4lp.) 2 (5.1)
(I +pi )2

, E r - Ei
/y

r

x

nI
t

Figure 5.1 Schematic illustrating the idea of mimicking the change in reflection and
transmission due to the roughness features by replacing the rough surface with a smooth
surface and correspondingly modifying its refractive index.
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The parameter Pit is related to the index of refraction of the spaces above and below the

interface by Eq. 2.53. At normal incidence, utilizing Eq. 2.35, this expression becomes

Pit = -, (5.2)

since t = ui for the structures tested here. Although the TE polarization expressions

from chapter 2 were used to derive Eq. 5.2, the relationship between pit and the refractive

indices is the same if the TM polarization expressions are used instead. This is because

the TE and TM polarizations are equivalent (i.e. they results in the same orientation of

the fields) at normal incidence.

If the interface has roughness features, the hypothesis stated above postulates that

the forward scattered intensity from the roughness features adds to the transmissivity that

would result if the interface were smooth. Therefore, the modified transmissivity for the

rough interface is

t' = t + Ifs (5.3)

This new transmissivity can then be related back to a modified pit by

t' 4Pi (5.4)
+ p,;)2

Combining Eqs. 5.3 and 5.4, an expression for the new pit can be found in terms of the

transmissivity of the smooth interface and the forward scattered intensity:

2-t' 2[1-t' 2 - t - Ifs 21 -t- If
pi.= - = (5.5)

fs

This in turn can be related back to a modified value for the refractive index of the half

space below the interface:

nt = pitn. (5.6)

So the increased transmissivity of the rough interface can be imitated by replacing it with

a smooth interface and modifying the refractive index of the region below the interface in

the manner described above.

The plus/minus sign in Eq. 5.5 indicates that there are two solutions for the

modified refractive index. This is because the value of the refractive index can either be

greater than or less than the refractive index of the medium above the interface. The plot
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of refractive index vs. transmissivity in Fig. 5.2 illustrates this. For a given

transmissivity, there are two possibilities for the refractive index of the transmitting

medium: one that is greater than no and one that is less. Therefore, when applying Eq.

5.5 to a multilayer stack, the appropriate index value for each layer must be carefully

considered.

The amount of forward scattering can be calculated using the Mie theory

equations presented in chapter 2. The roughness features that are first encountered by the

incident light are those that protrude into the incident medium from the transmitting

medium. These roughness features can be approximated as circular scatterers, with radii

equal to the RMS roughness of the interface and refractive indices equal to the refractive

index of the transmitting medium. Although the appropriate three-dimensional analogues

of these circular scatterers are cylinders, the amount of scattering was approximated

n n/ n

>,
C,

E
C,
C

C-

t

t

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Refractive Index of Transmitting Medium

Figure 5.2 Transmissivity vs. the transmitting medium's refractive index (nt) for an
incident medium with refractive index n=1.5. Notice that for a given transmissivity (t)
there are two possibilities for nt, one larger than ni and one smaller.
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using spheres instead. This is because many freeware codes exists that calculate the

amount of scattering from spherical scatterers, and the calculations themselves are

straightforward. On the other hand, no freeware codes exist that calculate scattering from

cylindrical scatterers, and the calculations are much more complicated, requiring infinite

sums of cylindrical Bessel functions. Furthermore, the amount of scattering from a

cylinder will be close (same order of magnitude) to the amount of scattering from a

sphere with the same radius. Since this model is simply being used to examine the trends

seen with the FDTD results, and absolute reflectivities are not expected to match the

simulation results anyway, approximating the amount of scattering using spherical

scatterers was deemed acceptable.

Once the roughness features are approximated as spherical scatterers, the intensity

of scattered light normalized to the intensity of incident light, which is essentially the

percentage of incident intensity that is scattered, is provided by Eq. 2.94. The radius of

the scatterers is equal to the RMS roughness of the interface, and the index contrast

between the scatterers and the ambient is the index contrast between the medium after the

interface and the medium before the interface. Note that this definition of index contrast

can result in index contrasts which are less than one if the ambient medium has a higher

refractive index than the scatterer. Furthermore, the wavelength of light incident on the

scatterers is the wavelength of the incident light in vacuum divided by the index of

refraction of the incident medium.

The scattered intensity in Eq. 2.94 is given as a function of scattering angle. In

order to find the forward scattered intensity, the scattered intensity can be integrated

between the scattering anlges of -90 ° and 900, which corresponds to all forward-directed

scattering. This integrated value was the value used for Ifs in calculating the modified

refractive index of each layer in the simulated structures from Eqs. 5.5 and 5.6.

If there is a large index contrast between the incident and transmitting media, then

the forward scattered intensity will be large, resulting in a large modification of the index.

On the other hand, a smaller index contrast interface would have a smaller amount of

forward scattered intensity for the same roughness size and therefore a smaller change in

the refractive index of the transmitting medium. Therefore, this algorithm follows the

trends predicted by Mie theory.
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5.2 Implementation of the Model

Using the above algorithm, the indices of refraction of each layer in the tested

structures was modified based on the index contrast at each interface in the structure and

the RMS roughness of the interface. A freeware Matlab code called Matlab Mie [Barnett

(1997)] was used to perform the scattering calculations using Eqs. 2.92 through 2.95.

This code was verified by calculating a scattering profile under a certain set of conditions

with a different software package (Scatlab [Bazhan (2005)]) and confirming that the

results from the Matlab Mie codes for the same conditions were equal. Nodal

magnitudes were used for the scatterer radius and the incident wavelength since only the

ratio of those values matters.

The value of Ifs for each interface in the photonic crystal structure was calculated

by integrating the forward-directed scattered intensity according to the above method.

There are four distinct interfaces in the simulated quarter-wave stacks, as shown in Fig.

5.3. These are: the air-to-high index interface, the low-to-high index interface, the high-

to-low index interface, and the low-to-air interface. Each of these interfaces will result in

a different forward scattered intensity, which in turn will lead to a different modified

Low index to air interface

High index to low index interface

._- Low index to high index interface

Air to high index interface

Figure 5.3 Illustration of the four distinct interfaces in the simulated quarter-wave stacks.
Each interface results in a different amount of scattering.
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refractive index value. Thus, the top layer in the photonic crystal structure, which is a

high index layer, will have a different modified index than the other high index layers in

the crystal. This is because the modified index for this top layer will be determined by

the amount of forward scattered intensity from the air-to-high index interface, while the

other high index layers will have modified values based on the scattering at the low-to-

high index interfaces. Thus, the value of the modified index for each layer will be

determined by the scattering characteristics of the preceding interface.

When calculating the amount of forward scattering at internal interfaces in the

structure, the actual value, rather than the modified value, of the refractive index of the

preceding layer is used to calculate the index contrast of the interface. This is done

because the actual amount of forward scattering at this interface is determined by the

actual index contrast of the interface, not the modified index contrast. Furthermore, in

calculating the modified value of the refractive index of each layer, the actual value of the

preceding layer's refractive index is used (i.e. Eq. 5.6). If the modified value was used

instead, the high and low refractive indices of the layers in the modified structure would

progressively approach some mean value as the layers went deeper into the structure.

The resultant modified structure would no longer accurately represent what is physically

happening in the system. The percentage of reflected light at each interface would

gradually decreases as the interfaces become deeper in the structure. In reality, the

correct implementation of the above hypothesis would create a structure where the

percentage of reflected light at an equivalent interface in the structure would remain the

same. The only role of the roughness features is to push more intensity to the next

interface than a smooth interface would. Once this increased intensity reaches the next

interface, the same percentage that was pushed through on the last equivalent interface

should be pushed through again. This is achieved if the actual refractive index value of

the preceding layer, rather than the modified value, is used to calculate the modified

value of the refractive index of each layer in the structure.

Recalling that there are two solutions for the value of the modified index (from

Eq. 5.5), the correct value for the new index in the simulated structures is determined by

the appropriate value relative to the index of the preceding layer. For example, for

modification of a high index layer value, the solution that gives a modified index value
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above the preceding layer's index would be the appropriate choice. This retains the

photonic crystal high-low index bilayer structure.

The implementation of this model to the simulated quarter-wave stacks reveals

that there are certain interfaces in the stacks that cause much more scattering than others.

Recall that the scattered intensity is determined by two factors: (1) the index contrast

between the surrounding medium and the scatterer, and (2) the size of the scatterer

relative to the! incident wavelength. The highest index contrast interface in the quarter-

wave stacks is the air-to-high index interface. However, the wavelength that is incident

on this interface is equal to the vacuum wavelength, which will be extremely large

compared to even the largest roughness features. So the roughness on this interface

contributes very little to the overall scattering of the structure in most cases. The

remaining interfaces in the structure have very similar index contrasts, and the interface

with the higher index contrast will depend on the actual refractive index values used.

However, the incident wavelength for each of the remaining interfaces varies

significantly based on the refractive index of the preceding layer. This is illustrated in

Fig. 5.4.

Wavelength = ho

Wavelength = dn/now

Wavelength = o/nhigh RMS Roughness is
same on all interfaces

Figure 5.4 Schematic illustrating that the incident wavelength for each interface depends
on the refractive index of the preceding layer, while the scatterer size remains the same.
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The interface that has the shortest incident wavelength is the high-to-low index

interface. Thus, the size of the roughness features relative to the wavelength is much

larger at that interface than the other interfaces. This causes the high-to-low index

interface to be the most critical interface in terms of scattering in most systems. The

index modification model supports this by the fact that the low index layers experience a

larger change in their refractive indices than any of the other layers in the structure.

Furthermore, the amount of scattering from an interface will also depend on the amount

of power incident on it. Therefore, since the power of the incident wave decays as it

proceeds through the structure, the first high-to-low index interface will experience the

highest incident power. Thus, this specific interface will be the most critical one in most

devices. It is possible to imagine a case where the penetration depth in a structure is so

short that only a small amount of power reaches even the first high-to-low interface. In

that case, the relative amount scattering at each interface will have to be directly

compared in order to determine which one is most critical.

An example of the implementation process applied to one of the simulated

structures is shown in Fig. 5.5. The initial structure has 4 bilayers with nl=2.25 and

n2=1.5, and an RMS roughness of 0.la. Note that the index value of the top layer is

different than the values of the other high index layers in the modified structure. Also

note that the high-low bilayer structure is retained, but the index contrast of the modified

structure is much lower than that of the initial structure due to the high indices decreasing

and the low indices increasing from the modification. This change makes sense because

it allows more light to be transmitted through the modified structure, mimicking the

hypothesized effect of the roughness features correctly.

5.3 Results of the Model

The above process was used to create several modified structures corresponding

to the same photonic crystal systems tested with the FDTD calculations. Because the

modified structures are one-dimensional (i.e. there is only structural variation in the

direction into the crystal), a 1D transfer matrix code could be used to determine the

reflectivity of the modified structures and the corresponding percent change in

reflectivity from the perfect structure. Figs. 5.6 and 5.7 show the results of those
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Input structure:
n = 2.25
n2 = 1.5

RPMS = 0.1 a

Begin at first interface

Low-to-air
[ow-- interface

interlace { nt ertace

Calculate If with: Calculate Ifs with: Calculate Ifs with: Calculate If, with:
= Ao = 360 = o/1.5= 240 A = o /2.25= 160 A = o/1.5= 240

Scatt. rad. = 0.1la = 10 Scatt. rad. = 0.la = 10 Scatt. rad. = 0.la = 10 Scatt. rad. = 0.la = 10

Ambient index = 1.0 Ambient index = 1.5 Ambient index = 2.25 Ambient index = 1.5
Scatt. index = 2.25 Scatt. index = 2.25 Scatt. index = 1.5 Scatt. index = 1.0

Calculate nt' using Calculate n,' using Calculate nt' using Calculate nt' using
Eqs. 5.1 -- 5.6: Eqs. 5.1 - 5.6: Eqs. 5.1 - 5.6: Eqs. 5.1 -5.6:

ni= 1.0 n = 1.5 ni= 2.25 ni = 1.5
n, 2.:25 n,= 2.25 n, = 1.5 n, = 1.0

Use + sign in Eq. 5.5 Use + sign in Eq. 5.5 Use - sign in Eq. 5.5 Use - sign in Eq. 5.5

J
Assign nt' to next layer in modified structure

Last interface?

/ ~~~ \4~~~eS
Proceed to next interface I Output structure I

o Output structure:
nl' = 2.2498
n2' = 1.5043
nl'= 2.2489
n2' = 1.5043

Figure 5.5 The index modification process applied to a 4-bilayer structure with n1=2.25,
n2,=1.5, and RRs = 0.la.
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Figure 5.6 Index modification results for the same 4-bilayer systems presented in chapter
4. The scatterer sizes reported on the plot have been scaled to the equivalent RMS
roughness value. The trends predicted with this model agree with the FDTD results.

calculations for the same photonic crystal systems presented in chapter 4. Surprisingly,

the trends predicted with this scattering model are consistent with the results of the FDTD

calculations. Thus, even though the higher index contrast structures experience larger

modifications to their constituent refractive indices, they still show a smaller percent

change in the reflectivity than the lower index contrast structures. This suggests that the

higher index contrast structures are more tolerant to structural changes than the lower

index contrast structures. Similarly, structures that have a higher number of bilayers are

more tolerant to structural deviations from perfection.

These trends are consistent with the idea that the magnitude of the absolute

reflectivity of a photonic crystal system will be an indication of how tolerant it is to

structural changes. Either a high number of bilayers and/or a high index contrast will

result in structures with a high value for the absolute reflectivity. For example, the 4-

bilayer system with nl=3.0 and n2=1.5 (nlln2=2.0) has an absolute reflectivity at the
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Figure 5.7 Index modification results for the same nl=2.25, n2=1.5 bilayer systems
presented in chapter 4. The scatterer sizes above have been scaled to their equivalent
RRMs value. Again, the trends are consistent with those seen from the FDTD results.

center of the bandgap of 0.9845, while the 4-bilayer system with nl=2.5 and n2=2.0

(nlln2=1.25) only has an absolute reflectivity of 0.5079 at the center of the bandgap.

Likewise, the 6-bilayer system with nl=2.25 and n2=1.5 (nll/n2=l.5) has an absolute

reflectivity of' 0.9696, while the 2-bilayer system with the same values for the refractive

indices has an absolute reflectivity of 0.449. Thus, the tolerance of a photonic crystal to

structural changes mirrors the absolute reflectivity of the crystal at the center of the

bandgap.

Although the index modification calculations predict trends that are consistent

with the FDTD results, they do not accurately reproduce the magnitude or the curve

shape of the FDTD data. The index modification curves rise too steeply and they result

in reflectivity changes that are too small. This is illustrated in Fig. 5.8, which compares

the results of the FDTD calculations to the index modification calculations for the same

structure. Although the absolute magnitudes of the two calculations were not expected to
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Figure 5.8 Comparison of the results from the FDTD calculations and the index
modification model for the 4-bilayer nl=2.25, n2=1.5 system. Although the index
modification model correctly predicts the trends seen with the FDTD calculations, it fails
to reproduce the actual magnitude and curve shape of the FDTD data.

match, it is clear that the amount of scattering that is resulting from these structures is

much too small to account for the change in the reflectivity that is being seen with the

FDTD results. This is especially true in the region before the point where the index

modification curve starts to rise steeply (RRms < 0. la). The amount of scattering in this

region is so small that the change in reflectivity is very close to zero. This points to the

need for another model that will explain the FDTD results and give some insight into the

physical mechanism that is causing the large change in reflectivity. This model, along

with the physical insight, will be revealed in the next chapter.

5.4 Conclusions

In order to gain more insight into the counter-intuitive results of the last chapter, a

model was developed to mimic the effect of scattering from the roughness features at

each interface in the photonic crystal structures. This model was based on the hypothesis
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that the forward scattering from the roughness features is pushing extra field through

each layer in the photonic crystal. This field leakage was approximated by modifying the

transmission coefficient of each layer through modification of the refractive index based

on the amount of forward scattering at each interface.

When applied to the same structures tested in the FDTD calculations, the results

of the model revealed trends that are consistent with the FDTD results. Namely, the

higher index contrast structures and the structures with a larger number of bilayers

showed a smaller change in the reflectivity than their counterparts. Thus, a more rigorous

application of scattering theory to the specific structures tested here results in trends that

contradict the intuitive predictions of scattering theory. Furthermore, the model's results

suggest that the absolute reflectivity of a structure is an indication of how tolerant it is to

structural imperfections. Specifically, structures with a higher absolute reflectivity will

be more tolerant to structural imperfections than lower reflectivity structures.

However, although the trends predicted by this model agree with the FDTD

results, the model does not reproduce the FDTD data accurately. The sizes of the

reflectivity changes are much too small, especially at RRMS values less than 0. la. Thus,

another model is needed that will capture the magnitude of the reflectivity changes and

provide insight into what is physically happening in the structures. Two approximations

that are commonly used to calculate the amount of coherent scattering from single rough

surfaces will be employed to provide this insight. These approximations, along with the

results of their application to the simulated structures, will be presented in the next

chapter.
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Chapter 6: Homogenization and

Kirchhoff Approximations for

Interfacial Roughness

Although the results of the model developed in the previous chapter predicted the

same general trends as those observed with the FDTD results, they failed to reproduce the

magnitude and curve shape of the FDTD data. Therefore, another model was sought that

could more accurately reproduce the data and provide physical insight into the

mechanism for the decreased optical response of the structures.

In an attempt to identify this model, two approximations that are commonly used

to calculate the amount of coherent scattering from single rough surfaces were applied to

the simulated structures. It is important to note that these approximations only apply to

coherent reflections from roughened surfaces, which only occur in the direction of
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spectral reflection [Kong (2000)]. Thus, the representation of a 2D roughened surface

with one or a series of several 1D surfaces, as these approximations do, remains valid

despite the introduction of additional symmetries that are not present in the original

structure. But because of this, these approximations provide no insight into the

magnitude of the incoherent scattering from the roughened surfaces. Therefore, the

magnitude of the incoherent scattering from the simulated structures will need to be

explored by another method, which will be presented in chapter 7. So any comparison

made between the results of these approximations and the FDTD results will only be

valid for the coherent portion of the reflected wave. This chapter will present both of

these approximations along with the results of their application to the simulated

structures.

6.1 The Homogenization Approximation

The homogenization approximation is illustrated in Fig. 6.1. It involves

averaging the dielectric constant (the square of the refractive index, Eq. 2.35) of the

roughened portion of the surface in order to approximate the structure with a graded

interface [Beckmann (1963), Gaylord (1986), Ogilvy (1991), Sentenac (1998),

Voronovich (1994)]. Specifically, if the region containing the rough interface is

discretized into several infinitely thin strips oriented parallel to the surface, then the

dielectric constant would be averaged in each of these strips to produce an average

dielectric constant function <e>(y) that is characteristic of the interface. Mathematically,

iffh(x) describes the height of the roughness profile as a function of distance along the

interface, then <e>(y) can be calculated through piece-wise integration:

E(x, y) = n if Y > fh (X), (6.1)

e(x, y) = n if Y < fh (x), (6.2)

(E)(Y) LE(X,y)d (6.3)

This function only depends on the distance into the interface. Thus, the above process

collapses a two-dimensionally structured surface to a 1D structure that has a graded

refractive index profile at the interface. The length over which the profile is graded

depends on the roughness of the interface. An interface with a larger RMS roughness
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Figure 6.1 Schematic depicting the homogenization approximation for a single rough
interface. The dielectric constant in the region of the rough interface is average to
produce a smoothed dielectric constant function. The smooth dielectric constant is then
approximated with a series of layers.

will result in a 1D structure with a more gradual interface, while a smaller RMS

roughness will result in a sharper interface.

Once <e>(y) is calculated for the interface, it can be approximated by a series of

layers with increasing dielectric constant values. The thickness of each layer is

determined by the gradient of <E>(y) at that position - the larger the gradient, the thinner

the layer. This allows the curve shape of <e>(y) to be accurately represented by the

discrete layers. After the graded interface is approximated with a multilayer stack, a 1D

transfer matrix calculation can be performed on the structure to find the coherent

reflectivity.

The homogenization approximation is valid for rough surfaces where the

roughness features are fairly small and close to one another relative to the incident

wavelength. Furthermore, the rough surfaces should be truly random - there should not

be a large variation in the size/shape of the roughness features from one region of the

interface to another. In essence, a given region on the interface should look like any

other region in terms of the RMS height and distance between the roughness features.

These restrictions create a surface with optical properties that appear "smeared out" or

averaged to the incoming wave. The equivalent theory for bulk media is the effective

medium approximation [Bohren (1983)].

6.2 The Kirchhoff Approximation

The Kirchhoff approximation is illustrated in Fig. 6.2. It involves approximating

the roughened structure with several smooth structures that have various interface
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Figure 6.2 Schematic depicting the Kirchhoff approximation for a single rough interface.
The reflectivity of the roughened surface is estimated by averaging the reflection
coefficients from several smooth surfaces with varying heights. The height distribution
of the smooth structures is equal to the height distribution of the rough interface.

positions [Baylard (1993), Beckmann(1963), Kong (2000), Ogilvy (1991), Sanchez

(1995), Sentenac (1998), Thorsos (1988), Voronovich (1994)]. The height of each

interface is determined by the height distribution of the rough interfacef(x). For

example, the number of structures that will have interface positions between y and y+Ay

is proportional to the probability that the rough interface height is between those values.

Thus, a histogram offh(x) would be equal to a plot of the interface position of the smooth

structures versus the number of structures with that interface position. Iffh(x) is a

continuous function, this method requires discretization of the height distribution in order

to approximate the rough surface with a finite number of smooth surfaces. Thus, as with

the homogenization approximation, the discretization should be fine enough that it

accurately represents the functionfh(x).

Once the rough surface is represented with a finite number of smooth surfaces, the

reflection coefficient (Eq. 2.50) is calculated for each smooth structure. These reflection

coefficients are then averaged, and the reflectivity is calculated by squaring the

magnitude of this averaged value (Eq. 2.58). This is the approximated coherent

reflectivity of the rough surface.

The Kirchhoff approximation is valid for rough surfaces where the roughness

features are significantly separated from one another and are fairly flat (i.e. the gradient

offh(x) stays small) relative to the incident wavelength. The approximation neglects any

multiple scattering or higher order effects. Thus, the distance between roughness features

needs to be large enough that this assumption is valid. However, by averaging the

reflection coefficients from deviate smooth structures, any phase interference induced
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from reflection off roughness features of different heights is taken into account. The

reflection coefficients will be imaginary numbers, having both a magnitude and a phase.

The magnitude will be the same for all the smooth structures since this is essentially the

reflectivity of the surface, which is just determined by the refractive index of the

structure. However, the phase will be very different for each structure because it is

determined by the position of the interface relative to zero (see chapter 2). This

approximation of phase interference will become more valid as the roughness features

themselves become flatter.

6.3 Implementation of the Homogenization Approximation

Both of the above approximations were applied to the simulated quarter-wave

stacks, as outlined in Figs. 6.3 and 6.5. For the homogenization approximation, the

dielectric constant was averaged across the rows of each roughened structure. This

created a corresponding 1D structure that had diffuse index profiles at all the interfaces.

As stated above, the length over which the interfaces were graded depended on the

roughness of the structure. Structures that had a very large RMS roughness resulted in

index profiles where the refractive index never reached the high/low index value

corresponding to the actual structure. This is illustrated in Fig. 6.4, which plots the

averaged refractive index profiles for four RRMs values in the 4-bilayer, n1=2.25, n2=1.5

system. For the RRMS values of 0. 1453a and 0. 1759a, the index of refraction in the

Averian £ . Convert tc
across
each row of
the input
structure

.·

multilayer
stack at
each
interface

Figure 6.3 Application of the homogenization approximation to the roughened quarter-
wave stacks. The dielectric constant is averaged across each row of the input structure.
The smooth profile is then converted into a series of layers.
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Figure 6.4 The averaged refractive index profiles for four RRMs values in the 4-bilayer,
nl=2.25, n2=1.5 system. For the RRms values of 0.1453a and 0.1759a, the index of
refraction in the approximated structure never reaches the extreme values of 2.25 and 1.5.

approximated structure never reaches the extreme values of 2.25 and 1.5. Yet, even at

the highest values of RRms, the index modulation characteristic of a photonic crystal is

never completely lost. In this way, this approximation produced structures similar to

those obtained with the index modification model presented in chapter 5. The two

important differences, however, are that the index modification seen here is not based on

the magnitude of the forward scattering from the roughness features, and the interfaces

between layers are diffuse.

The diffuse index profile for each structure was then converted to a series of

layers. As described above, the thickness of each layer was based on the gradient of the

index profile. An algorithm was developed to implement this conversion. The averaged

index value corresponding to the first row in the input structure was held as a reference.

Each subsequent index value was then scanned until an index greater than a certain

threshold value above the reference index was found. A layer was then made to

approximate the averaged index curve within this range. The layer had a refractive index
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equal to the average between the reference index and the above-threshold index. The

thickness of the layer was given by the distance between the reference index and the

above-threshold index. The above-threshold index was then taken as the next reference

value and the process was repeated for the remainder of the averaged index curve. This

resulted in a series of layers at each interface, shown in the inset in Fig. 6.3, that

approximated the diffuse interfaces of the averaged structure. For all structures except

the 4-bilayer, nl=2.8, n2=1.6 system, the threshold value used was 0.01. It was found that

a lower threshold value of 0.002 was needed to accurately represent the diffuse interfaces

in the 4-bilayer, nl=2.8, n2=1.6 structure.

After the averaged index profiles were converted into multilayer stacks for each

structure, a I1D transfer matrix calculation was performed to obtain the reflectivity. The

percent change in reflectivity could then be found by applying Eq. 4.10 to the results of

the transfer matrix calculations. This allowed the results of this approximation to be

directly compared to the FDTD results reported in chapter 4.

6.4 Implementation of the Kirchhoff Approximation

The process used to apply the Kirchhoff approximation to the simulated structures

is shown in Fig. 6.5. Each structure was divided into several slices, with each slice

having the width of one column of the structure. The slices corresponded to several ID

deviate structures, where the thicknesses and interface positions of each layer in the

deviate structures was determined by the roughness profile of the original structure. A

Take each
column as
-1 n

> R+... - Rn-1 Average
R's fnr allI* .. ..

_tr inti iri structures
--> R -* r = Rave

'- Rn> R2+-.

Figure 6.5 Application of the Kirchhoff approximation to the roughened quarter-wave
stacks. The structure is broken up into many structures by taking each column of the
rough structure as a separate 1D structure. The reflection coefficients for each structure
are calculated and averaged to give the estimated reflectivity of the roughened structure.
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1D transfer matrix calculation was then used to find the reflection coefficient for each of

the deviate structures. The reflectivity corresponding to the simulated structure was

calculated by averaging the reflection coefficients of the deviate structures and squaring

the magnitude of this averaged value (Eq. 2.58). As with the homogenization

approximation, the percent change in reflectivity was calculated with Eq. 4.10 to allow

direct comparison of these results to the FDTD results.

Unlike the single interface case, the reflection coefficients of the deviate

structures varied in both magnitude and phase because of the variation of layer

architecture between the different structures. However, because the transfer matrix

technique keeps track of phase, the phase interference contribution to the coherent

reflection taken into account by this approximation was retained, even between the

internal interfaces in the structures. In reality, the variation in the magnitude of the

reflection coefficients is also a result of phase interference taking place within the

structure. This is a consequence of the deviate structures drifting from the resonant

quarter-wave condition of the photonic crystal. This drifting results in phase shifts at the

internal interfaces, which cause the overall reflectivity of the structure to change. Thus,

there was an additional contribution to the averaged reflectivity of the structures from the

variation in the magnitude of the reflection coefficients.

6.5 Results of the Applied Approximations

A comparison of the FDTD results with the results of both the homogenization

and Kirchhoff approximations for the same 4-bilayer systems presented in chapter 4 is

shown in Fig. 6.6. In all cases, the Kirchhoff approximation does a poor job at

reproducing the FDTD results. For the nl/n2=1.25 system, the Kirchhoff approximation

under-estimates the change in reflectivity seen with the FDTD simulations. On the other

hand, it over-estimates the reflectivity change for the higher index contrast systems, and

the magnitude of this over-estimation gets worse as the index contrast increases.

Although this approximation only predicts the coherent reflectivity of roughened

surfaces, this shifting behavior between over-estimating and under-estimating the FDTD

results suggests that the Kirchhoff approximation is not valid for the structures tested in

this thesis. This idea is further reinforced by the fact that an under-estimation would not
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Figure 6.6 Comparison of the FDTD results with the results of both the homogenization
and Kirchhoff approximations for the same 4-bilayer systems presented in chapter 4. The
Kirchhoff approximation does a poor job at reproducing the data, but the homogenization
approximation matches the FDTD results very well.

be observed if the coherent reflectivity was being accurately predicted but the incoherent

power contribution was causing the FDTD results to differ. If the incoherent power

contributes significantly to the overall reflected power, then the FDTD calculations will

deviate from the approximation results because the FDTD accounts for both the

incoherent and coherent reflected power. However, the situation described above would

result in an over-estimation of the percent change in reflectivity because the

approximation would only be accounting for part of the reflected power. Thus, the

roughness regime tested in the simulated structures does not overlap with the regime

where the Kirchhoff approximation is valid.
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Although the Kirchhoff approximation is not valid for the structures tested, it is

curious that it under-estimates the FDTD results in some cases and over-estimates it in

others. This inconsistent behavior can be explained with the series of plots shown in Fig.

6.7. The Kirchhoff approximation relies on the reflection coefficient from deviate

structures. As mentioned above, the reflectivity of these structures will differ due to their

different layer architectures. Some deviate structures will have reflectivities lower than

the ideal structure (i.e. a quarter-wave tuned structure with smooth interfaces) at the

quarter-wave tuned wavelength. Others will have reflectivities higher than the ideal

structure. The curves in Fig. 6.7 show the extreme cases of each of these types of deviate

structures. For each of the plots, the curve with the highest reflectivity at the quarter-

wave tuned wavelength corresponds to the deviate structure that had the highest

reflectivity out of all the deviate structures. Similarly, the curve with the lowest

reflectivity at the quarter-wave tuned wavelength corresponds to the deviate structure

with the lowest reflectivity out of all the structures. The middle curve corresponds to the

reflectivity from the ideal structure. Notice that the ideal curves for the higher index

contrast structures have a much higher absolute reflectivity than the low index contrast

structure.

The positioning of the deviate curves in the high index contrast plots suggests that

there are only a small number of possibilities for deviate structures that will result in a

higher reflectivity at the quarter-wave tuned wavelength than the ideal structure. On the

other hand, it appears that there are many possibilities for deviate structures that will

result in higher reflectivities for the low index contrast structure. This is because the low

index contrast structure has a low absolute reflectivity and so there are many possible

structural deviations that actually improve the reflectivity of the structure. However, the

higher index contrast structures already have a very high reflectivity, so there are not a lot

of structural changes than can result in an even higher reflectivity. Assuming that the

reflectivities of all the deviate structures will be distributed symmetrically between the

two extreme curves, the average reflectivity that would be obtained from the Kirchhoff

approximation can be estimated by simply averaging the reflectivity of the extreme

curves. This is shown on each plot by the dotted line. The results of the FDTD

calculation for the same structure are given by the dashed lines. This reveals that the
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Figure 6.7 Explanation for why the Kirchhoff approximation under-estimates in some
cases and over-estimates in others. The pink region is the quarter-wave tuned
wavelength. The dashed line is the FDTD result and the dotted line is the Kirchhoff
result.
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higher reflectivity structures are biased towards lower reflectivities due to the inbalance

of deviate structure reflectivities. This causes the change in the reflectivity to be over-

estimated for these structures. Alternatively, the low index contrast structure is biased

toward higher reflectivities, resulting in an under-estimation of the reflectivity change.

On the other hand, the homogenization approximation matches the FDTD results

extremely well. For the structures with index contrasts between 1.25 and 1.75, the curves

resulting from each method actually overlap. Since the homogenization approximation

only predicts the coherent reflectivity, this suggests that the incoherent portion of the

reflected wave is extremely small for these structures. For larger index contrast systems

(i.e. the nl/n2=2.0 system), the approximation starts to deviate slightly from the FDTD

results, over-estimating the reflectivity change for RRMs values less than 0.12a. This is

most likely due to the fact that the incoherent reflected power is becoming a significant

part of the overall reflectivity change. Two factors contribute to this: (1) the amount of

scattering increases as the index contrast increases, and (2) the overall change in the

reflectivity becomes much smaller as the index contrast increases. So the amount that the

coherent reflectivity is decreasing approaches the total amount of incoherent reflected

power. This will cause the incoherent part of the reflected wave to play a larger role in

the overall change in reflected power. This idea will be revisited in the next chapter

when the magnitude of the incoherent reflected power is extracted from the FDTD data.

The results of the homogenization and Kirchhoff approximations for the nl=2.25,

n2=1.5 bilayer systems are shown in Fig. 6.8. The Kirchhoff approximation matches the

2-bilayer FDTD results well, but quickly deviates as more bilayers are added.

Furthermore, as with the increasing index contrast systems, the over-estimation of the

Kirchhoff approximation gets worse as the number of bilayers in the system increases.

Thus, again, the Kirchhoff approximation results fail to reproduce the FDTD data.

However, as with the previous systems, the homogenization approximation

matches the FDTD results extremely well. Thus, it appears that the roughness regime

covered by the simulated structures (except the nl/n2=2.0 system) is within the regime

where the homogenization approximation is valid. This is the parameter space containing

RRms values up to about 0.2a and WRs values up to about 1.0a, for systems with index

contrasts up to 1.75 and number of bilayers up to 6. The fact that the homogenization
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Figure 6.8 Comparison of the FDTD results with the results of both the homogenization
and Kirchhoff approximations for the nl=2.25, n2=1.5 systems presented in chapter 4.
Again, the Kirchhoff approximation does not predict the FDTD results, while the
homogenization approximation matches them very well.

approximation is valid for all the RMS wavelengths tested explains why no WRMS

dependence was seen in the results presented in chapter 4. If the structure can be

approximated as a 1D structure with diffuse interfaces, the two-dimensional

configuration of the interface can not be expected to play any role in the results. All

information on the RMS wavelength of the structure will be erased when the structure is

converted to its 1D approximation. Additionally, the fact that this 1D approximation is

valid for these structures explains why the results for the TE and TM polarizations were

equivalent. For 1D structures, the TE and TM polarizations result in the same orientation

of the fields at normal incidence (see chapter 2). Thus, the polarizations themselves are

equivalent, so it is not surprising that they would produce equivalent results.
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Beyond this, however, the homogenization approximation can actually be used to

accurately predict the total change in reflectivity of the roughened structures within the

above mentioned parameter space. And the fact that the TE and TM responses are

equivalent means that the approximation can be used to predict the optical response of 3D

roughened structures, as explained in chapter 4. This is significant because the FDTD

simulations are extremely time consuming while the calculations done with the

homogenization approximation on the same structures take a small fraction of that time.

For example, a curve consisting of 40 data points would take a few days to calculate with

the FDTD code. However, the same curve would be generated in a few minutes using the

homogenization approximation.

The fact that the homogenization approximation is valid for the simulated

structures also provides insight into what is physically occurring in the structures. The

main role of the roughness features within the tested parameter space is not to scatter the

incoming wave, but instead to simply "smear out" the refractive index in the vicinity of

the interfaces. Thus, the RMS roughness and RMS wavelength scales tested here

(although large compared to a, see Fig. 4.5) are small enough compared to the incident

wavelength that the incident wave just "sees" an effective diffuse refractive index profile

at each interface in the structure.

Considering the regime where the Kirchhoff approximation is valid, the FDTD

results may begin to approach the results of this approximation for very large WRMS

values. However, such values were not tested with this study because they do not

accurately represent the structural deviations that are actually seen in experimental

systems. For example, the WRMS value for the liquid crystal multilayer structure

presented in chapter 4 (Fig. 4.1) is around 1.0a. Additionally, the WRs value for the

porous silicon structure (Fig. 4.2) is much less than a. Thus, both of these structures are

within the tested roughness regime.

6.6 Conclusions

Two approximations, the homogenization and Kirchhoff approximations, were

applied to the simulated quarter-wave stacks in an attempt to gain some physical insight

into the mechanism for the decreased reflectivity of the roughened structures. These
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approximations are commonly used to calculate the amount of coherent reflection from

single rough interfaces. However, when they were applied to the simulated multilayer

structures, it was found that the results from one of the approximations, the

homogenization approximation, matched the FDTD results extremely well for all systems

except the highest index contrast system (nlln2=2.0). The Kirchhoff approximation, on

the other hand, did not accurately predict the FDTD results, underestimating in some

cases and over-estimating in others. This implies that the roughness regime covered by

the simulated structures is within the regime where the homogenization approximation is

valid. Furthermore, it reveals that the primary role of the roughness features is to grade

the interfaces in the multilayer stack, rather than to scatter the incoming light.

The fact that the homogenization approximation results actually overlap the

FDTD results means that the application of this approximation to structures within the

parameters space tested can predict reflectivity changes accurately. This is significant

because the homogenization approximation calculations are much faster than the FDTD

calculations. Thus, it is extremely computationally beneficial to be able to use such an

approximation to predict optical behavior accurately.

Because the homogenization approximation predicts only the amount of coherent

reflection, the close match between it and the FDTD results implies that the amount of

incoherent reflection for these systems is small compared to the amount of coherent

reflection loss. This is consistent with the results of chapter 5, which found that the

change in reflectivity was much too small when only the scattering loss was considered.

Because the FDTD calculations include both the coherent and incoherent portions of the

reflected power, the above conclusion can be independently verified by extracting the

incoherent power from the FDTD results. This process will be presented in the next

chapter.
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Chapter 7: Calculation of the

Scattered Power from Interfacial

Roughness

The results of the last chapter revealed that the homogenization approximation

reproduces the FDTD results when it is applied to the simulated structures. However, the

F)TD results include both the coherent and incoherent reflected power, while the

homogenization approximation only considers the coherent reflection. Therefore, the

close match between the approximation and the FDTD results implies that the amount of

incoherent power in the reflected wave is small. This implication can be directly verified

by extracting the amount of incoherent power in the reflected field from the FDTD

calculations. The following chapter will outline the steps involved in the above process

and present the results of its application to the simulated structures.
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7.1 General Form of the Reflected Wave

Extraction of the incoherent field from the total reflected field will require careful

consideration of the exact form of the reflected wave. In general, the reflected wave in an

FDTD simulation with periodic boundary conditions will have several parts. For a

normal incident TE polarized plane wave, this general form is given by:

E(x, y) = Ec exp(- ikycy + qc )

+ Efl exp(- ikyf lyexp(ikXf Ix + +f )+ exp(- ik xf x + qf lb )]+ (71)
+ Efm exp(-kyfmyexp(ikxfmx + Ofma )+ exp(- ikxfmX + fb )]+

+ r(x, Y)

Each part of Eq. 7.1 will be explained below.

The Coherent Field. The first line in equation 7.1 corresponds to the coherent

portion of the reflected wave. As mentioned in chapter 6, the coherent reflection from a

rough surface will only occur in the direction of spectral reflection [Kong (2000)]. This

means that the wave vectors corresponding to the coherent part of the reflected field will

satisfy Snell's Law and the phase-matching conditions presented in chapter 2 (Eqs. 2.28 -

2.34). Thus, for a normal incident plane wave, the coherent reflection will also be normal

to the reflecting surface, having only a normal component of the wave vector. For the

above equation, the direction normal to the interfaces in the crystal is the y direction.

Therefore, the coherent portion of the reflected field has only a y component of the wave

vector. Furthermore, by virtue of Eq. 2.30, the magnitude of this wave vector will match

the magnitude of the incident wave vector:

kYC = ki = -oa = .2 (7.2)

In general, there will also be a phase shift (qc) associated with the coherent wave that

depends on the time step in which the wave is being examined. Thus, for completeness,

it is also included in Eq. 7.1.

The Propagating Floquet Modes. The second line in Eq. 7.1 corresponds to the

propagating Floquet modes present in the reflected wave. Floquet modes are modes

associated with reflection off a periodic surface [Kong (2000), Taflove (2000)]. Because

the FDTD simulations utilized periodic boundaries on the domain walls perpendicular to
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the layers, the simulated structures were periodic in the direction parallel to the layers

(the x direction in Eq. 7.1). Hence, Floquet modes were set up in the reflected wave

corresponding to this periodicity.

These modes have both an x and y component of their wave vectors. The

magnitude of the x component is constrained by the periodicity imposed in that direction

by the periodic boundaries. Thus, the periodicity of the Floquet modes in that direction

must match the periodicity of the surface. This requires the x component of the Floquet

mode wave vectors to be

27rn
k = z (7.3)

if nx is the length of the simulation domain in the x direction. The n in Eq. 7.3

corresponds to the order of the mode. The first order mode will have a wavelength in the

x direction equal to nx, the second order mode will have a wavelength in the x direction

equal to n/2., and so on.

The y component of the wave vectors is constrained by the fact that the total

magnitude of the wave vectors must equal the magnitude of the incident wave vector.

This is because the wavelength of the Floquet modes is equal to the incident wavelength

since both waves are propagating in the same medium (the ambient) and have the same

frequency (due to the fact that the incident wave is the source of the Floquet modes).

Thus, the y component of the Floquet mode wave vectors is given by

k = k2 - k2 (7.4)

In general, each Floquet mode has two possible wave solutions, one that is

propagating toward the negative x direction and one that is propagating toward the

positive x direction. Since the reflections off a random rough surface do not prefer any

particular direction, the reflections from the simulated structures couple into these two

waves equally. This results in a standing wave in the x direction, which is given by the

portion in the square brackets on the second line in Eq. 7.1. Again, there will be a phase

shift (C) associated with the Floquet modes that depends on the time step in which the

wave is being examined. Each wave solution can have a different corresponding phase,

and so there are two phase values included for each Floquet mode in Eq. 7.1.
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The Evanescent Floquet Modes. The third line in Eq. 7.1 corresponds to the

evanescent Floquet modes in the reflected wave. As the value of n in Eq. 7.3 gets larger,

it will eventually cause the x component of the Floquet mode wave vector to be larger

than the total wave vector magnitude. This in turn requires kyf, to become imaginary

according to Eq. 7.4. Thus, this part of the reflected wave looks very similar to the

propagating Floquet mode. The one difference is that the leading exponential factor no

longer has an imaginary argument, causing this mode to exponentially decay in the y

direction rather than propagate. Note, however, that a standing wave in the x direction is

still present. As with the propagating Floquet modes, this standing wave will have a

wavelength that is characteristic of the mode order.

Eq. 7.1 corresponds to the situation where the mth Floquet mode is the first mode

that has an imaginary y component of the wave vector. This mode will have m periods in

the x direction within the periodic domain, but will decay in the y direction at a rate

determined by the magnitude of kyfm. All modes higher than the mth mode will also be

evanescent, but they will decay faster and have more periods associated with them.

The Incoherent Field. The fourth line in Eq. 7.1 corresponds to the incoherent

portion of the reflected wave. This part of the field is a noisy fluctuating offset to the

other components. For the structures tested in this thesis, this field is a result of the

diffuse scattering from the roughness features that does not coherently combine to

produce either the coherent reflection or the Floquet modes.

7.2 Calculation of the Scattered Power

The amount of power contained in the reflected scattered field was calculated by

applying the above general wave form to the reflected wave obtained with the FDTD

simulations. The reflected wave was extracted from the FDTD results by taking the

electric field in the region in front of the unidirectional source (see chapter 3) at the final

time step of the simulation run (i.e. after steady-state was achieved, see Fig. 4.4). A

three-dimensional fit based on Eq. 7.1 was then performed on the reflected wave with

TableCurve3D curve fitting software. This fit included only the coherent reflection and

the propagating Floquet mode portions of Eq. 7.1. Inclusion of the other parts of the
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reflected wave in the fit caused the fitting algorithm to be unstable due to the large

number of fit parameters.

Fig. 7.1 shows the reflected wave for one of the simulated structures. The large

modulation in the y direction corresponds to both the coherent reflected wave and the y

component of the propagating Floquet mode. However, the secondary modulation in the

x direction corresponding to the standing wave of the first order Floquet mode is also

clear. The various shading in the plot corresponds to the spatial distribution and

magnitude of the residual after the wave was fit in the manner described above. This

residual, with the fit subtracted out, is shown in Fig. 7.2. Plotted in this way, the second

order Floquet mode, which is evanescent, is clearly seen displaying two periods in the x

Figure 7.1 The simulated reflected wave for one of the roughened structure. As shown,
the photonic crystal is positioned behind the wave. Thus, the direction of propagation is
out of the page. The periodic boundaries of the domain are located along the yz planes.
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Figure 7.2 The residual of the fit to the reflected wave. The orientation of the photonic
crystal is the same as that in Fig. 7.1. The second order Floquet mode (evanescent) and
the incoherent field are apparent.

direction and an exponential decay in the y direction. The incoherent fluctuating part of

the field is also clear. Note that the evanescent mode decays to a magnitude that is

negligible compared to the incoherent field within the analysis region shown here.

The values of the wave vectors were fixed in the fit since they could be calculated

using the simulation parameters and Eqs. 7.2 - 7.4. The coherent wave vector was

obtained by combining Eq. 7.2 with Eq. 4.8 for the nodal magnitude of the incident

wavelength. Furthermore, for all simulations, the width of the simulation domain (nx)

was small enough that the first order Floquet mode was the only one that was not

evanescent. Therefore, only one Floquet mode needed to be included in the fit. The
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wave vector components corresponding to this mode were calculated with Eqs. 7.3 and

7.4, with n=1 and the known values of nx and ky¢ from above. Therefore, the only

variable parameters in the 3D fit were the amplitudes of the coherent field (Ec) and the

propagating Floquet mode (Efi), and the phases associated with these parts of the field

(Xc, Ipl],, Of] b)-

In order to confirm that the fit had reached a global minimum, the fitting

algorithm was run several times with different initialization values for the fit parameters.

The fit that produced the highest r2 value was taken as the best fit of the data. All of the

accepted fits had r2 values greater than 0.99, with the majority of fits having r2 values

greater than 0.999. As expected, the r2 value of the accepted fit was lower for rougher

structures. This is because the residual of the fit contained the incoherent portion of the

field, which would be increasing in magnitude as the roughness size increased.

The power in the incoherent field was therefore extracted from the residual of the

fit. Since the residual also contained the evanescent Floquet modes, the incoherent power

had to be extracted from a region where the evanescent modes had decayed to be

negligible. This region was determined by eye through plotting the square of the residual

collapsed onto two dimensions (collapsing the x dimension). Fortunately, the region

where the reflected wave was analyzed was far enough away from the surface of the

structure that the second order Floquet mode was the only evanescent mode still apparent

in the residual. All other modes had much shorter decay lengths, so they had

"disappeared" by the time they reached the analysis region. After identifying the region

where the remaining Floquet mode had decayed to be negligile, the incoherent power was

obtained by taking the average of the square of the incoherent field in that region [Kong

(2000)]:

Incoherent Power = ( (x, ) 2). (7.5)

Because the propagating Floquet mode was an artifact of the periodic boundaries,

the power carried by this mode was considered to be power that would have otherwise

contributed to the incoherent power. The reason for this is that any power that was

coupled into the propagating Floquet mode was undoubtedly power that had been

diffusely scattered. This is evidenced by the fact that the wave vector associated with this
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mode had an off-normal component, which could have only originated from diffuse

scattering. Therefore, this power was also extracted from the FDTD data by taking the

amplitude of the mode found with the fit and squaring it:

Floquet Mode Power = EEf, .

The evanescent Floquet modes carry no power so they did not need to be considered.

7.3 Results for the Simulated Structures

Both the incoherent power and the power in the propagating Floquet mode were

calculated using the method described above for the 4-bilayer, nl=2.25, n2=1.5 system.

The results of these calculations are shown in Figs. 7.3 and 7.4. Again, each of the 120

simulations done for this system is represented by a dot in the figures. The shading is a

cubic interpolated fit of the results of the power calculations corresponding to each of

these simulations.
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Figure 7.3 Incoherent power from the 4-bilayer nl=2.25, n2=1.5 system. Note that the
largest amount of incoherent power is only about 10-3 for an incident wave power of 1.0.
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Figure 7.4 The power in the propagating Floquet mode for the 4-bilayer, nl=2.25, n2=1.5
system. Again, note that the maximum power is only 10-2 for an incident wave power of
1.0.

Both of these plots reveal that although there is some fluctuation in the calculated

powers with increasing RMS wavelength, the main parameter in both plots is the RMS

roughness. This is not surprising since the source of both of these field components is the

diffuse scattering from the rough interfaces, and the magnitude of this scattering is

expected to strongly depend on the size of the roughness features. Furthermore, these

plots show that the magnitudes of both the incoherent and Floquet mode powers are

extremely small. The largest incoherent power is on the order of 10-3, while the Floquet

mode power only reaches 10-2. Recall that this is normalized to an incident wave power

of 1.0. Also, note that these results both needed to be plotted on log scales in order to

show the features of the plots. So there are order-of-magnitude changes taking place in

the amount of power carried by these parts of the field, but they are still extremely small,

even at their largest value, compared to the incident power. Although this result may

seem surprising, it is consistent with the conclusions made in the preceding chapter.
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There, it was postulated that the amount of incoherent power was extremely small

because the homogenization approximation matched the FDTD results so well.

Because the magnitude of the diffuse scattering is expected to increase with

higher index contrast systems, the incoherent and Floquet mode powers were also

calculated for the 4-bilayer, nl=3.0, n2=1.5 system. These results, along with the

previous system's results for comparison, are presented in Figs. 7.5 and 7.6. Since RMS

roughness was shown to be the main parameter from the previous study, the data here has

been collapsed onto 2D plots. However, these results are also plotted on a log scale in

order to show the order-of-magnitude changes occurring at the small roughness scales.

Fig. 7.5 reveals that the higher index contrast system has a slightly larger amount

of incoherent power, as would be expected from scattering theory. For comparison, the

Mie theory calculation of the integrated backscattered power from spherical scatterers is

shown in Fig. 7.7. In chapter 5, it was discovered that the roughness features on the
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Figure 7.5 The incoherent power from two 4-bilayer systems presented in chapter 4:
nl=2.25, n2=1.5, and nl=3.0, n2=1.5. The higher index contrast system shows slightly
more incoherent power, but the magnitude is still extremely small (< 10-3).
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Figure 7.6 The power in the propagating Floquet mode from the same two 4-bilayer
systems shown in Fig. 7.6. Again, the magnitude of the power in both systems is
extremely small (< 10'2).

high-to-low index interface cause the most amount of diffuse scattering in a quarter-wave

stack configuration. Because of this, the conditions corresponding to scattering from that

type of interface was used to generate the plot in Fig. 7.7. This means that the incident

wavelength used was the vacuum wavelength divided by the high refractive index, and

the index contrast between the scatterer and the ambient was actually the low refractive

index divided by the high index value. Specifically, Eq. 2.92 through 2.99 were used to

perform the calculations. Additionally, the RMS wavelengths of the structures were used

to estimate the density of scatterers. This gives rise to the width of the curves in Fig. 7.7.

Notice that both the curve shape and the trend predicted by the Mie theory calculation are

consistent with the incoherent power calculation from the FDTD data.

The magnitude of the calculated power, however, is much smaller for high RRMS

values and much larger for low RMS values than the Mie theory prediction. On the low

end, because the absolute magnitude of the power is getting so small, numerical noise is

starting to play a significant role in increasing the value of the calculated power. On the
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Figure 7.7 Mie theory prediction of the amount of scattered power from the high-to-low
index interfaces in the nl=2.25, n2=1.5 and nl=3.0, n2=1.5 structures. Notice that both the
curve shape and the trend predicted here are consistent with the incoherent power
calculation from the FDTD data of the same systems.

high end, the power in the Floquet mode, shown in Fig. 7.6, must also be considered,

because that power would have been scattered into the incoherent field if the periodic

boundary conditions were not present. When this power is added to the incoherent

power, the magnitude of the total scattered power on the high end matches the Mie theory

calculations much better.

It is curious that the amount of power in the Floquet mode is actually very similar

between the high and low index contrast systems. These modes are essentially diffraction

modes, and correspondingly, there will be a certain efficiency associated with coupling

power into them [French (1971)]. The modes in the two systems compared here are not

the same due to differing simulation conditions. So it is difficult to predict what

particular trend should be observed. However, since the source of the power in the mode

is undoubtedly the diffuse scattering from the roughness features, its dependence on RRmS
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should be similar to that seen with the Mie theory calculations. Indeed, as with the

incoherent power curves, the curve shape in Fig. 7.6 matches the curve shape in Fig. 7.7.

The percentage of reflected power that is carried by scattered power can be

calculated by adding the incoherent and Floquet mode powers and dividing by the total

reflected power from the FDTD results. This value for the two systems under study is

reported in the plot in Fig. 7.8. As expected, the percentage of the power that is carried

by scattered light is extremely small. In the worst case, it is about 4.5% of the total

reflected power. This is not surprising in light of the results of chapter 6, which

suggested that the total amount of scattered power in these systems was low. However, it

is surprising in consideration of the actual amount of architectural deviation from

perfection that these structures exhibit (see Fig. 4.5).

Nevertheless, examination of the worst case scenario reveals that the radius of the

scatterers rarely exceeds 7% of the incident wavelength. Consider the case where the
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Figure 7.8 The percentage of reflected power that is carried by scattered light (incoherent
plus Floquet mode) for the n1=2.25, n2=1.5 and nl=3.0, n2=1.5 systems. In the worst
case, only 4.5% of the reflected power is carried by scattered light.
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roughness is so large that the high index layers (which are the thinner layers in the

quarter-wave stacks) actually become discontinuous. This results in a structure which

looks more like rows of individual cylindrical high index scatterers in a matrix of low

index material than a multilayer stack. For such a structure, the scatterer diameter is now

equal to the entire width of the high index layer in a quarter wave stack (Eq. 4.5). The

incident wavelength will be equal to the vacuum wavelength divided by the value of the

low refractive index. So the ratio of the scatterer radius to the incident wavelength is

1 an 2

r, 2 (n + n2 ) 1

Ai, 8(n,/n2)'

where Eqs. 4.7 and 4.8 were utilized to substitute out alo.

So in this worst case structure, the ratio of the scatterer radius to the incident

wavelength is actually inversely proportional to the index contrast. Therefore, in reality,

this value will be the largest for the lowest index contrast structures. But the intensity of

the scattered power rapidly decreases as the index contrast decreases (see Fig 2.1 1),

counteracting the effect from this larger scatterer size. For the highest index contrast

structures tested here (nlln 2=2.0), the above value equals only 6.25%. Thus, despite the

large structural deviations, the size of the scatterer relative to the incident wavelength

remains small. The amount of integrated back-scattering from a scatterer this size is only

3 x 10- 3 for an incident intensity of 1.0. With this realization, it is clear why the main role

of the roughness features is to grade the index profile of the interfaces rather than

diffusely scatter the incoming light.

7.4 Conclusions

The results of the previous chapter implied that the amount of incoherent power in

the reflection from roughened structures was extremely small. This was confirmed by

extracting the amount of scattered power directly from the FDTD data. The scattered

power included the incoherent power as well as the power carried by the propagating

Floquet mode. Since the Floquet modes were just artifacts of the periodic boundary

conditions used in the simulation, their power was considered to be power that would

have otherwise been contained in the incoherent field. The highest percentage of the
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reflected power that was carried by the scattered field was 4.5%. This was true even for

the highest index contrast structure tested (njln2=2.0). A close examination of the worst

case scenario structure revealed that the scatterer size rarely exceeds 7% of the incident

wavelength. This explains the extremely small amount of scattered power despite the

large structural changes in the highest RRMS structures.

Now that a physical understanding of what is occurring in the structures has been

achieved, more studies can be done using the FDTD simulation technique on other

relevant problems in photonic crystals. This will allow the validity of the

homogenization approximation to be tested under these other conditions as well. The

first problem that will be addressed is simply an extension of the problem investigated in

chapter 4. Again, structures that have interfacial roughness will be simulated, but now

the effect of this roughness on the entire normal incidence bandgap will be determined.

The results of these simulations will be presented in the next chapter.
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Chapter 8: Effect of Interfacial

Roughness on the Normal

Incidence Band Gap

Chapters 5 through 7 presented several studies that were done in an attempt to

gain a physical understanding of the results seen in chapter 4. It was found that the

roughened structures presented in chapter 4 could be represented accurately with the

homogenization approximation. More studies can now be done using the FDTD

simulation technique to investigate whether or not this approximation is still valid for

other relevant problems in photonic crystals. The problem that will be addressed in this

chapter is simply an extension of the problem investigated in chapter 4. The same type of

structural imperfection, interfacial roughness, will be simulated. However, the effect of

this roughness on the reflectivity of the entire normal incidence bandgap, not just the
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reflectivity at the center of the gap, will be investigated. This is an important issue

because many devices that use 1DPCs, for example band-pass filters, utilize their

reflectivity behavior across the entire bandgap.

Again, because of their wide-spread use, the photonic crystal configuration used

in these studies was the quarter-wave stack, with the high index layer as the top layer. In

fact, the structures used in this study were the exact same structures used in the chapter 4

study. The only difference is that the wavelength used in these simulations was different

from the wavelength given by Eq. 4.8. Thus, the characteristic parameter (RRMs), the

generation of the structures, and the simulation and analysis method pertaining to this

study are given by the explanation of those same aspects presented in chapter 4.

As mentioned in chapter 4, Eq. 4.8 can be used to scale all other wavelengths to

appropriate nodal magnitudes. For example, if the bandgap for a given structure is

known to span between 1l and Ah in some spatial units (i.e. nanometers), then the nodal

magnitudes corresponding to those wavelengths (Alo and AhO) can be calculated from Eq.

4.8 if the quarter-wave tuned wavelength Ac is known in the same spatial units. This is

done by a simple unit conversion:

AIO=- 4ny ( n )8
A, A, num _bilayers n + n2 (8.1)

Aho would be found in a similar manner.

This method was used to calculate the appropriate nodal wavelengths for this

study. The spatial wavelengths corresponding to the edges of the bandgap were found by

using a D transfer matrix calculation to plot the normal incidence bandgap for the

perfect structures in arbitrary spatial units. These spatial wavelengths were then

converted to nodal magnitudes using Eq. 8.1. In addition, several wavelengths within the

bandgap, which were also converted with Eq. 8.1, were chosen for the study. On

average, twenty separate wavelengths spanning the bandgap were simulated for each

structure at four different roughness values.

8.1 FDTD Reflectivity Results

Approximately 400 FDTD simulations were done in order to determine the effect

of interfacial roughness on the full normal incidence bandgap of several different 1D
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photonic crystal configurations. The reflectivities (calculated with Eq. 4.9) from a TE-

polarized normal incidence plane wave impinging on the roughened quarter-wave stacks

were obtained. For comparison, these reflectivities were then plotted on top of the

normal incidence reflectance spectrum for the corresponding perfect structure. The

reflectance data was also fit with a polynomial expression in order to better observe any

trends resulting from the simulations.

The simulated reflectance spectra corresponding to several 4-bilayer systems are

shown in Fig. 8.1. Each point on the plots corresponds to the calculated reflectivity

results obtained from a single simulation. On the other hand, the curves shown are the

fits to the reflectivity data described above, which represent the resulting band structure

at each roughness value.

As expected from the results of chapter 4, Fig. 8.1 shows that the reflectivity

decreases dramatically with increasing roughness across the entire normal incidence

bandgap for all the structures tested. However, the magnitude of this decrease is not the

same for all wavelengths. The blue end of the bandgap (smaller wavelengths)

experiences a much larger change in reflectivity than the red end (larger wavelengths).

This results in a narrowing and red-shifting of the normal incidence bandgap with

increasing RMS roughness. Although this effect is seen in all the structures presented in

Fig. 8.1, the lowest index contrast structure (nlln2=1.25) appears to be more sensitive to

this red-shifting. This is illustrated by the fact that the red-shifting is already evident in

the lowest index contrast structure at the smallest RRms value tested (-0.035a), whereas

the same roughness value in the other structures produces no such effect.

Fig. 8.2, which plots the percent change in reflectivity from the perfect structure

across the bandgap (Ar, Eq. 4. 10), shows this more clearly. Due to the steep slope of the

reflectivity at the edges of the bandgap, the Ar value in this region becomes very large.

Because of this, the region where the perfect bandgap is within 10% of its maximum

value (i.e. where the bandgap reflectance is reasonably flat) is highlighted in the plots.

Outside of this region, the edges of the bandgap begin to effect the Ar value of the

structure. So the below analysis focuses on the behavior of the reflectivity change within

this shaded region.
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Figure 8.1 The simulated normal incidence reflectance spectra corresponding to several
4-bilayer systems. In all systems, a narrowing and red-shifting of the normal incidence
bandgap is apparent.

142



n1 =2.5, n2 =2.0

Wavelength (arbitrary units)

n1 =2.25, n2 = 1.5

Wavelength (arbitrary units)

n1 =2.8, n2 = 1.6

YOU 4UU 4bU bUU bbU
Wavelength (arbitrary units)

Figure 8.2 The percent change in reflectivity (Ar) across the entire normal incidence
bandgap for several 4-bilayer systems. The shading indicates the region where the
reflectivity of the bandgap is within 10% of its maximum value. Again, the red-shift is
apparent in all systems.
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Again, Fig. 8.2 shows that all simulated systems experience a decrease in the

percent change in reflectivity as the wavelength increases. However, the lowest index

contrast structure shows evidence of this red-shifting at even the smallest RRMs value.

This same roughness produces only a uniform change in the reflectivity across the shaded

region in the higher index contrast structures. Notice also that the magnitude of the

reflectivity change is larger overall in the lowest index contrast structure, and decreases

as the index contrast increases. This is consistent with the results in chapter 4, which

showed that the higher index contrast structures were more tolerant to interfacial

roughness.

The reason why the lower index contrast structure appears to be more sensitive to

the red-shifting can be explained with one of the conclusions that was made from the

results of chapter 5. There, it was seen that the higher index contrast structures had a

lower change in their reflectivity despite the fact that they experienced a larger structural

modification. The conclusion was that the higher index contrast structures were more

tolerant to structural changes than the low index contrast systems. Thus, again here, the

higher index contrast systems appear to be more forgiving of structural imperfections,

causing the red-shifting to be indiscernible at low roughness values.

As with the chapter 4 study, additional simulations were done to investigate the

effect of increasing the number of bilayers in the structure. Fig. 8.3 shows the reflectance

spectra for several nl/n2=1.5 systems with differing bilayer numbers. Again, a red-

shifting is observed in all the systems. However, unlike the previous study, there does

not appear to be one system that is more sensitive to this red-shifting than another. This

can be seen more clearly with the plots in Fig. 8.4. Like the plots in Fig. 8.2, this figure

shows the percent change in reflectivity (Ar) for the nl/n2=1.5 systems. Notice that the

lowest RRMS value shows no signs of the red-shift for any of the systems. However, the

trend of the reflectivity change is again consistent with the results of chapter 4 - the

system with more bilayers experiences a lower percent change in the reflectivity overall.

8.2 Homogenization Approximation Reflectivity Results

The reason why a red-shift in the normal incidence bandgap occurs at all could be

explained easily using scattering theory. As was demonstrated in chapter 2, the
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Figure 8.3 The simulated normal incidence reflectance spectra corresponding to several
bilayer systems with n1=2.25 and n2=1.5. Again, a narrowing and red-shifting of the
bandgap is evident in all systems.
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Figure 8.4 The percent change in reflectivity (Ar) across the entire normal incidence
bandgap for several bilayer systems with nl=2.25 and n2=1.5.
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magnitude of scattering increases as the incident wavelength decreases. Thus, if the

decrease in reflectivity from these structures was largely due to diffuse scattering losses,

then the blue end of the bandgap would show a larger reflectivity change.

However, chapters 6 and 7 showed that the amount of diffuse scattering in these

systems is extremely small. Instead, the main source of the reflectivity loss is actually

the graded index profile at the interfaces within the structure. This was demonstrated

through the success of the homogenization approximation to accurately predict the

change in reflectivity given by the FDTD calculations in chapter 4. In order to determine

if this physical picture is still valid at wavelengths other than 20, the homogenization

approximation needs to be applied to this study as well. This only requires changing the

incident wavelength in the transfer matrix calculations of the approximated structures.

The re sults of the homogenization approximation applied to the 4-bilayer

structures presented above are shown in Figs. 8.5 and 8.6. The points on each plot

correspond to the calculated reflectivity from the approximated structures. The curves

are polynomial fits of this data that represent the band structure at each roughness value.

A comparison between these figures and Figs. 8.1 and 8.2 reveals that the

homogenization approximation also matches the FDTD calculations across the entire

normal incidence bandgap. Specifically, it reproduces the red-shifting seen with the

FI)TD data, and moreover, it accurately predicts the increased sensitivity of the low

index contrast structure to the red-shifting. The validity of the homogenization

approximation in this regime is further supported with the comparison of Figs. 8.7 and

8.8 with Figs. 8.3 and 8.4. Again, the red-shifting behavior is clearly predicted and the

magnitude of the reflectivity change matches well with the FDTD calculations.

It is interesting that the homogenization approximation can capture this red-

shifting behavior seen with the FDTD results. The reason for this is that the length over

which the interfaces are diffuse compared to the incident wavelength is larger for bluer

light than for redder light. So the interfaces actually appear sharper to longer

wavelengths than to shorter ones. This causes the deviate structure to "look" more like

the perfect structure to redder parts of the spectrum. Thus, the red end of the bandgap

shows a smaller decrease in the reflectivity than the blue end, resulting in a red-shift.
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Figure 8.5 The results of the homogenization approximation applied to the 4-bilayer
structures presented in Fig. 8.1. Comparison of the two figures shows that the
homogenization approximation is in good agreement with the FDTD results.

148



n1 = 2.5, n2 = 2.0

4.0 4.5 5.0 5.5
Wavelength (arbitrary units)

n1 = 2.25, n2 = 1.5

Wavelength (arbitrary units)

n1 = 2.8, n2 = 1.6

3.5 4.0 4.5 5.0 5.5
Wavelength (arbitrary units)

Figure 8.6 The results of the homogenization approximation applied to the 4-bilayer
structures presented in Fig. 8.2.
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Figure 8.7 The results of the homogenization approximation applied to the bilayer
systems shown in Fig. 8.3. Again, comparison of the two figures shows that the
homogenization approximation is in good agreement with the FDTD results.

150

>,



2 Bilayers

>1

a)
CD

C0a)C
CU

0E

0

L1.U . v 4.U 4.5 5.U 5.5 .U b.5
Wavelength (arbitrary units)

4 Bilayers

0.
.5
-'
a 0.

C
c 0.

n 0.

a)
0

6 Bilayers

Wavelength (arbitrary units)
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8.3 Conclusions

Several 2D FDTD simulations were done in order to determine the effect of

interfacial roughness on the normal incidence bandgap. Many 1D photonic crystal

configurations were tested, with systematic variations in the index contrast and number of

bilayers. In all systems tested, a narrowing and red-shifting of the normal incidence

bandgap was observed. Furthermore, the lowest index contrast system exhibited a higher

sensitivity to the red-shifting. This can be explained by the fact that lower index contrast

structures are less tolerant to structural changes than higher index contrast system, as was

concluded from the study done in chapter 5.

Although the red-shifting observed in the reflectance spectra could be explained

using scattering theory, the results from chapters 6 and 7 revealed that the amount of

diffuse scattering in these systems is extremely small. Thus, the homogenization

approximation was applied to this study in order to determine if it could also reproduce

the red-shifting. The results of these calculations revealed that the homogenization

approximation could be used to accurately predict the reflectance behavior in this study

as well. Thus, it is valid approximation of the structures tested here for all wavelengths

spanning the normal incidence bandgap.

In the next chapter, the validity of the homogenization approximation will be

tested on another type of structural imperfection: surface scratches. The simulated

structures for this study are very similar to those tested in this chapter. The one major

difference is that there is only roughness present on the top surface of the structure,

representing scratches on the surface of the crystal. The addition of protective coatings

will also be explored to determine design conditions that will optimize device tolerance

to scratches. Finally, the FDTD results will be compared to the results of the

homogenization approximation to determine its validity for these structures.
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Chapter 9: Surface Scratches on

ID Photonic Crystals

The unique optical properties of photonic crystals make them desirable for

incorporation into a variety of devices. Due to an increasing demand for instruments that

are operable in remote areas ("in-field-use" instruments), these devices are progressively

being intended for use in uncontrolled environments. In such situations, these devices

may be subject to abuse and subsequent damage due to the harsh conditions.

Additionally, some devices, such as biosensors, may require the photonic crystal to be

subject to a flow field in order to increase the throughput of the device and sample a

greater volume of material. Since the sample material that is being pushed past the

device will likely be contaminated with a variety of foreign objects, there is a high

potential for the photonic crystal to be damaged by these objects. Furthermore, if the
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photonic crystal is put in contact with incompatible chemicals, then it may experience

etching or pitting on the exposed surface of the device.

Thus, the effect of such damage on the desirable optical properties of photonic

crystals should be investigated. One type of damage that is relevant to the above

situations is the introduction of surface scratches on the top layer of D photonic crystals.

The effect of this particular structural modification is explored in the following chapter.

As in the previous chapters, a 2D FDTD code was used to determine the change in

reflectivity of the photonic crystal due to the surface scratches. Again, the simulations

involved quarter-wave stacks with a TE polarized normal incidence plane wave. Studies

were done at both the quarter-wave tuned wavelength and other wavelengths spanning

the entire normal incidence bandgap. Both periodic and absorbing boundary conditions

were used to simulate infinitely long structures that had a finite number of bilayers. The

reflectivity of the structures was found using Eq. 4.9, and the corresponding percent

change in reflectivity from the perfect structure was calculated with Eq. 4.10. Each stack

was arranged so that the top layer was the higher index material, and all simulations were

done on free-standing crystals - the surrounding medium on both sides of the crystals is

vacuum (dielectric constant 1.0). These simulations were run in conjunction with

simulations of equivalent photonic crystal configurations topped with protective coatings

of various refractive indices. This was done in order to explore the effect of these

coatings and determine design parameters to optimize device tolerance to surface

scratches.

Due to the success of the homogenization approximation in the previous studies,

this approximation was also applied to this study in order to determine its predictive

capability for this type of structural imperfection. As before, the FDTD results were

compared to the results of the homogenization approximation in order to determine its

validity for these structures.

9.1 Surface Scratch Parameter

The characteristic parameter defined for the simulated structures in this study is

very similar to the RMS roughness parameter defined for the interfacial roughness
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problems in chapters 4 and 8. For this study, the characteristic parameter is the RMS

scratch depth:

RK( 1 "node AY )
2

RMS- Y (~ y )2 | (9.1)
nodes I 

Note the similarity between Eq. 9.1 and Eq. 4.1. The only difference in the definitions of

the RMS roughness and the RMS scratch depth is that yo in the above equation is the

maximum interface height rather than the average interface position. This is because all

of the surface scratches in the simulated structures are directed into the surface of the

crystal. Again, the scratch depth was normalized to the characteristic periodicity of the

quarter-wave stacks, given by Eq. 4.3. Thus, all the results of these calculations are

scalable based on the spatial magnitude of this parameter for a given fabricated device.

9.2 Generation of the Scratched Structures

The scratched structures were generated with a modified version of the same C++

code used to generate the roughened structures in chapter 4. Again, a quarter-wave stack

with no surface scratches was created first, and the top interface nodes of the structure

were then displaced by a random amplitude. Because the effect of protective coatings

was also investigated with this study, the code was augmented with the ability to add a

surface coating to the crystal with a specified (input) refractive index and thickness.

The nodal thicknesses of the layers in the perfect quarter-wave stack were

calculated as described in chapter 4. Again, a two-dimensional array was then created to

hold the refractive index information of the structure. The refractive index values

corresponding to the perfect structure were written into the array, along with the

refractive index of the coating layer at the input thickness. Ambient buffer layers were

also created above and below the structure with refractive index values of 1.0.

The scratches on the top surface of the structure were created using the same

algorithm as that described in chapter 4 for the creation of the roughness features. The

only difference, as mentioned above, was that all displacements were directed into the

structure, so there was no need for a random angle to determine the direction of the

displacement. Additionally, the algorithm used to maintain the average position of the
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interface at the quarter-wave thickness condition was abandoned because this constraint

was no longer necessary.

The RMS scratch depth was calculated according to Eq. 9.1 from the

displacement list generated with the displacement algorithm. The refractive index array

was written to an output file, which was then used as an input into the FDTD code. The

nodal magnitude of the incident wave was also input into the FDTD simulation. As in

chapter 4, all simulations were done with the quarter-wave tuned wavelength, so Eq. 4.8

could also be used to calculate the nodal magnitude of the incident wavelength for these

simulations.

In order to properly compare the reflectivity changes between the coated and

uncoated structures, it was desired that the absolute reflectivity of the structures would

not change with the addition of the coatings. In general, the addition of a top surface

coating to a photonic crystal will alter its absolute reflectivity, even if the coating has a

perfectly flat surface. However, careful tailoring of the thickness of the coating can allow

one to avoid this reflectivity change at a specific wavelength. If the thickness of the

material equals a multiple of a half wavelength, then it will resonantly transmit light with

that wavelength. This is called the resonant transmission thickness:

2n,

Note that this thickness will only resonantly transmit the wavelength to which it is tuned.

All other wavelengths, except for harmonics of the fundamental wavelength, will

experience some amount of reflection off the coating. Thus, if a resonant transmission

coating that is tuned to a particular wavelength is added to the top of a quarter-wave

stack, then the reflectivity of the stack at that wavelength will not change. Hence, the

thicknesses chosen for the protective coatings in this study corresponded to resonant

transmission thicknesses at the quarter-wave tuned wavelength. Furthermore, in order to

minimize computational run time, the smallest resonant transmission thickness (n=l in

Eq. 9.2) was used. Combining Eq. 9.2 with Eq. 4.8, the value of the coating thickness for

each photonic crystal system tested was

trt,2n = n (9.3)
rt,, n, (numbilayers) n1 + n2 9
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This analysis assumed that there was no absorption present in the coating material. If

absorption is present, then there will be power lost when any amount of the material is

put on top of the structure. However, this loss can be minimized by choosing low loss

materials for the coating and using the smallest thickness acceptable to still retain the

protective utility of the coating.

9.3 FDTD Reflectivity Results

Approximately 500 simulations at various conditions were done in order to

determine the effect of surface scratches on the optical properties of 1D photonic crystals.

Quarter-wave stack configurations with and without protective scratch coatings were

simulated in order to determine the optimal design conditions that minimize the effects of

these imperfections. The reflectivity changes for several 4-bilayer quarter-wave stacks

with different constituent refractive index values are shown in Fig. 9.1. Each stack

configuration was tested with a variety of coatings that had refractive indices ranging

from 1.5 to 2.5. Equivalent configurations with no protective coating were also tested for

comparison.

The results of these simulations show that the addition of a protective coating

does affect the tolerance of the structure to scratches. Moreover, every system tested

reveals that the ratio between the refractive index of the coating (nc) and the refractive

index of the top layer (nl) determines the overall effect of the coating. If n/nl is less than

one, then the coating has a beneficial effect, increasing the tolerance of the structure to

surface scratches. Furthermore, the coating becomes more beneficial as this ratio

decreases. However, if nJnl is greater than one, then the coating has a negative impact

on the tolerance of the crystal, actually exacerbating the effect of the scratches.

This trend is apparent in all of the systems presented in Fig. 9.1. For the nl=2.5,

n2?=2.0 system, all coatings that have refractive index values less than 2.5 result in a

structure that is more robust than the configuration without any coating at all.

Additionally, as the coating refractive index decreases, the structure's tolerance to the

scratches increases. It is interesting to note that a coating with the same refractive index

as the top layer actually slightly decreases the tolerance of the structure. Thus, it would

not be beneficial to make a protective coating for a device by simply increasing the
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Figure 9.1 The percent change in reflectivity (Ar) for several 4-bilayer quarter-wave
stacks with different constituent refractive index values. In addition to structures without
protective coatings, structures with coatings were also tested in all of the systems. The
coatings had refractive index values of 1.5, 2.0, and 2.5.

thickness of the top layer of the structure. However, it would be beneficial to put an

additional low index (n2) layer on top of the structure that was a half-wave thickness

instead of a quarter-wave thickness to act as a protective coating.

The other two plots in Fig. 9.1 reveal another curious aspect of this study. For

two structures that have the same index contrast (both have nl/n2=1.5), identical coatings

on each structure can have dramatically different effects. This is illustrated by the fact

that the n=2.5 coating results in a very different behavior from each of the two

structures. For the nl=3.0, n2=2.0 structure, this coating increases the tolerance of the

crystal. However, the same coating on the n=2.25, n2=1.5 structure decreases its

tolerance. Furthermore, the n=1l.5 coating has a more beneficial effect on the nl=3.0,
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n,=2.0 structure than the nl=2.25, n2=1.5 structure. So the role of the protective coating

is not determined by the index contrast, but instead by the actual value of the high

refractive index.

Note, however, that the results for the structures without protective coatings are

still consistent with the results from the previous chapters. Both nl/n2=1.5 structures

experience similar reflectivity changes, while the lower index contrast structure

(nl/n2=1.25) experiences a much larger change in the reflectivity for the same RMS

scratch depth values. Thus, the effect of surface scratches can be minimized through the

use of photonic crystals that have a high index contrast (preferably with a high average

index so the top layer has a high refractive index value) combined with a coating which

has a very low value for its refractive index.

Also note that the reflectivity changes involved with these defects are much

smaller than those resulting from the interfacial roughness defects. This is because there

is only roughness on the top interface of the structure, rather than all the interfaces. Still,

this reflectivity change can reach up to 15% in the case of the lowest index contrast

structure without the aid of a protective scratch coating.

Even though the protective coatings used above do not affect the absolute

reflectivity of the structures (without scratches) at the quarter-wave tuned wavelength,

they do impact the reflectivity at other wavelengths. This is illustrated by the plots in

Fig. 9.2. The top plot shows the normal incidence bandgap for an uncoated 4-bilayer

quarter-wave stack with nl=2.25 and n2=1.5. On the other hand, the bottom plot shows

the normal incidence bandgap for an equivalent quarter-wave stack configuration that has

an n=1.5 protective coating (beneficial coating). Notice that the reflectivity at the

quarter-wave tuned wavelength (3.6 in this case) is the same in both plots. However, the

reflectivities at other wavelengths differ. With the addition of the coating, the bandgap

narrows and the reflectivity at the edges of the bandgap do not fall completely to zero.

With this alteration of the bandgap in mind, several simulations were done to

investigate the effect of scratches on the entire normal incidence bandgap for structures

with and without coatings. The results of these simulations for the same structures

presented in Fig. 9.2 are shown in Figs. 9.3 and 9.4. As in chapter 8, a narrowing and

red-shifting of the bandgap is observed with increasing RMS scratch depth for both
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Figure 9.2 The normal incidence bandgap for a unscratched 4-bilayer nl=2.25, n2=1.5
structure with (top) and without (bottom) a protective coating. The coating used for the
bottom structure had a refractive index of 1.5 (beneficial coating).
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Figure 9.3 The effect of surface scratches on the normal incidence bandgap for two 4-
bilayer nl=2.25, n2=1.5 structures. The top structure has no protective coating, while the
bottom structure has an nc=1.5 coating (beneficial coating).
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Figure 9.4 Percent change in reflectivity (Ar) for two 4-bilayer structures with nl=2.25
and n2=1.5. The top structure has no protective coating, while the bottom structure has an
n,=1 .5 coating (beneficial coating).
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structures. However, this effect is much more apparent in the structure without the

scratch coating. Fig. 9.4 indicates that the percent change in reflectivity reaches about

7% for the uncoated structures, while it only reaches about 2% for the coated structure.

Thus, the addition of an nc/nl < 1.0 coating actually increases the tolerance of the quarter-

wave stack over the entire normal incidence bandgap. However, as mentioned above, the

absolute reflectivity of the coated structure is altered by the presence of the coating.

Therefore, if the application for which the device is intended can tolerate the bandgap

changes associated with the added coating, then it is more beneficial to use a coated

structure across the entire normal incidence bandgap.

9.4 Homogenization Approximation Reflectivity Results

From chapters 5 and 8, the homogenization approximation was shown to have

predictive capabilities for the reflectivity changes associated with interfacial roughness.

Because of this, the homogenization approximation was also applied to the scratched

structures tested in this study. These results are shown in Figs. 9.5 and 9.6. As before,

the homogenization approximation matches the FDTD results extremely well, even for

the coated structures. As Fig. 9.6 shows, it captures the red-shifting of the normal

incidence bandgap and correctly predicts that the coated structure is more robust over the

entire normal incidence bandgap. Thus, again, the homogenization approximation

appears to be valid for the scratch depths tested here (-0.1 7a). However, unlike the

interfacial roughness study, real scratches on photonic crystal devices could be much

larger than the ones tested here. Thus, for much deeper scratches with much larger

pitches (RMS wavelengths, Eq. 4.2), the homogenization approximation may no longer

hold. More simulations need to be done to determine where this approximation begins to

break down.

9.5 Conclusions

Several FDTD simulations were done to determine the effect of surface scratches

on the optical properties of 1D photonic crystals. The reflectivity changes of quarter-

wave stacks with various protective coatings were calculated and compared to the

reflectivity results from equivalent structures without coatings. The thickness of these
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Figure 9.5 The results of the homogenization approximation for the 4-bilayer nl=2.25,
n2=1.5 structures presented in Fig. 9.1. As with the other studies, the homogenization
approximation correctly predicts the FDTD results for the scratched structures.

coatings corresponded to the resonant transmission thickness for the quarter-wave tuned

wavelength of each structure. This was done in order to prevent the absolute reflectivity

at the quarter-wave tuned wavelength from changing when coatings of different

refractive indices were added to each structure.

The FDTD simulations revealed that the utility of the coatings is determined by

the value of the coating's refractive index (nc) relative to the refractive index of the top

layer of the crystal (ni). The addition of a protective coating with ncnl < 1.0 results in a

structure that is more robust over the entire normal incidence bandgap than an uncoated

structure. Furthermore, a lower value of n/nl always results in a structure that has a

higher tolerance to surface scratches. On the other hand, a structure with nnl > 1.0 is

actually less tolerant to surface scratches than an uncoated structure. Additionally, a
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Figure 9.6 The homogenization approximation results for the 4-bilayer, nl=2.25, n2=1.5
systems across the entire normal incidence bandgap. The benefit of an ncnl < 1.0 coating
is correctly predicted with the approximation.
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structure with n=nl is slightly worse than an uncoated structure, revealing that it would

not be beneficial to make a protective coating by simply increasing the thickness of the

top layer.

The magnitude of the reflectivity change follows the trend seen in the previous

studies of the interfacial roughness. Specifically, a higher index contrast structure will

have a lower percent change in reflectivity due to scratches than a lower index contrast

structure. Combined with the above results, this means that the effects of surface

scratches can be minimized by using a high index contrast structure (preferably with a

high average index so the top layer has a high refractive index value) with an nlnl << 1.0

protective coating.

Although the absolute reflectivity at the quarter-wave tuned wavelength does not

change with the addition of a coating, the reflectivity at other wavelengths does. For an

nc/nl < 1.0 coating, the normal incidence bandgap narrows and does not reach zero at the

edges. Nonetheless, the addition of the coating will increase the tolerance of the structure

across the entire normal incidence bandgap. Therefore, if the device can allow for such

bandgap alterations, it is beneficial to add the nc/nl < 1.0 coating to the structure for

increased device tolerance across the entire normal incidence bandgap.

As expected, the results of the homogenization approximation for these structures

were in good agreement with the FDTD calculations. Thus, the homogenization

approximation is valid for the range of RMS scratch depths tested here (up to about

0.1 7a). However, unlike the interfacial roughness study, the scratch depths used in this

study do not fully encompass the scratch depth values that could be found in real systems.

Thus, more simulations should be done to determine when the homogenization

approximation can no longer be applied accurately to these systems.

Up until now, all of the simulations done in this thesis have been used to explore

the effect of structural imperfections on 1D photonic crystals. However, in the next

chapter, the FDTD code will be used to explore structural imperfections in 2D photonic

crystals. Specifically, the problem that will be investigated is acircular pores in 2D

hexagonal photonic crystals, which is a very relevant issue in current research. The same

analysis used to characterize the tolerance of a 1D photonic crystal to structural
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imperfections will be used to characterize the tolerance of 2D photonic crystals. Thus,

the full capability of the 2D FDTD code will be explored.
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Chapter 10: Acircular Pores in

2D Photonic Crystals

As with 1D photonic crystals, the technologically useful properties of 2D

photonic crystals are based on theoretical calculations performed on perfect structures.

However, fabricated 2D photonic crystals can have a variety of imperfections. One such

imperfection that is especially relevant to current research is acircular pores in 2D

hexagonal photonic crystals. This particular imperfection is manifested in

electrochemically fabricated 2D self-assembling systems, such as porous alumina, porous

silicon, and porous indium phosphide. These systems are currently being researched for

2D photonic crystal applications because they can be fabricated on a large scale very

quickly and cheaply due to their self-assembling nature.

Porous alumina is created by anodizing aluminum in a dilute acidic solution to

create a porous oxide surface film [O'Sullivan (1970)]. The pores in the film form
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cylindrical columns with axes oriented perpendicular to the plane of the film.

Furthermore, under the right conditions, these pores will self-assemble into an ordered

hexagonal structure. The periodic array of pores creates a photonic bandgap in the plane

of the pores (i.e. in the plane of the film) [Nielsch (2002), Mikulskas (2001)]. The period

and size of the pores scale linearly with the applied voltage, allowing one to tailor the

structure to a desired central bandgap frequency. When the anodization conditions are

carefully controlled, evenly spaced pores with almost perfect circular cross sections can

be created. This is illustrated by the structure in the left micrograph in Fig. 10.1.

However, poor control over the fabrication process can lead to porous arrays that are

highly disordered. As shown in the right micrograph in Fig. 10.1, the pores in these

structures can have cross-sections that deviate significantly from circularity. This

particular structure was created on a large-scale manufacturing level by a company

interested in using the porous alumina as a filter membrane rather than a photonic crystal

[Whatman (2005)]. Therefore, they were not interested in maintaining careful control

over the anodization process because they did not require the pores to form a periodic

array without imperfections.

As mentioned in chapter 4, porous silicon is made by anodizing silicon in a

hydrofluoric acid solution to create etched pores in its surface. As with the porous

alumina, the porous silicon pores are cylindrical with axes oriented perpendicular to the

surface of the silicon. Additionally, the pores self-assemble into a hexagonal array and

their period and size can be controlled by the amount of current that is passed during the

Figure 10.1 Two micrographs of porous alumina. The structure in the left micrograph
was produced under controlled anodization conditions, while the structure on the right
was fabricated with poor control over the anodization process.
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anodization process. This makes porous silicon, like porous alumina, very desirable for

2D photonic crystal applications [Schilling (2001)]. However, poor control over the

anodization conditions can again lead to acircular pores. Fig. 10.2 shows a micrograph of

porous indium phosphide, which is made in a similar manner to porous silicon

[Carstensen (2005), Christopherson (2005)]. Although this structure does not deviate

from its ideal as much as the porous alumina in Fig. 10.1, some amount of porous

acircularity is still evident in the structure.

The following chapter will present the results of several 2D FDTD simulations

that were done to study the optical effect of porous acircularity in 2D photonic crystals.

The specific systems that were investigated in this study correspond to the two systems

mentioned above: porous alumina and porous silicon. Thus, the simulated 2D photonic

crystal structures consisted of hexagonally arranged pores (refractive index np=1.0) in a

higher index matrix (refractive index nm). Furthermore, the arrangement of the lattice for

all structures was such that the incident wave vector corresponded to the M-point in the

irreducible Brillouin zone (see chapter 2). This is illustrated in Fig. 10.3. As detailed

below, the incident wavelength and mean radius of the pores were chosen to correspond

to the center of the bandgap of each structure. As with the D photonic crystal

simulations, all structures in this study were free-standing crystals - the surrounding

medium on both sides of the crystals is vacuum (dielectric constant 1.0). Again, both

periodic and absorbing boundary conditions were used to simulate infinitely long

structures that had a finite number of pore rows. The reflectivity of the structures was

I I

r
48,~R

Figure 10.2 A micrograph of porous indium phosphide [Carstensen (2005),
Christophersen (2005), reprinted with permission]. Although this structure does not
deviate from its ideal as much as the porous alumina in Fig. 10. 1, some amount of pore
acircularity is still evident.
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Direction of
Incident Wave

Figure 10.3 Schematic of the hexagonal lattice used in the simulations. The Brillouin
zone, with the irreducible section shaded, is also shown superimposed on the lattice. The
direction of the incident wave vector is coincident with the M-point of the irreducible
Brillouin zone.

found using Eq. 4.9, and the corresponding percent change in reflectivity from the perfect

structure was calculated with Eq. 4.10.

10.1 Determination of Simulation Conditions

Unlike D photonic crystals, the structural conditions that maximize the primary

bandgap in 2D photonic crystals must be determined using simulation. Forunately,

because this can be done using perfect infinite structures, a simulation technique that is

much faster than FDTD can be used. The specific technique employed to establish the

optimal 2D architecture for the systems tested here was the frequency domain method

(see chapter 3). A freeware frequency domain code called MIT Photonic-Bands (MPB)

was used to map out the primary bandgaps of porous alumina and porous silicon as a

function of pore radius [Johnson (2001), Johnson (2005)]. These maps are shown in Fig.

10.4. Because alumina has such a low refractive index (n 1.7), the porous alumina

structure only has a complete gap for the TE polarization. However, porous silicon has a
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Figure 10.4 The TE bandgap in porous alumina, and the TE and TM bandgaps in porous
silicon are shown as a function of the pore radius (r) normalized to the center-to-center
distance between pores (a). These maps were calculated for the perfect structures using
the MPB frequency domain code [Johnson (2001), Johnson (2005)].

large enough constituent refractive index (n 3.5) that a bandgap for both the TE and

TM polarizations opens up. Thus, in the region where these bandgaps overlap, a 2D

omnidirectional bandgap exists.

The conditions used for the FDTD simulations were chosen to be close to the

center of the maximized TE bandgap for the porous alumina, and the maximized

omnidirectional bandgap for the porous silicon. This was done by resolving the radius

where the bandgap had a maximum width, and then determining the wavelength that

corresponded to the center of the bandgap at that optimal radius. For the porous alumina,

this corresponded to a radius of 0.38a and a wavelength of 2.12a (a/A = 0.4725), where a

is the center-to-center distance between pores. For the porous silicon, the optimal radius

was 0.48a and the corresponding wavelength was 2.05a (a/A = 0.4872). Again, because

all lengths used in the simulations were normalized to the characteristic periodicity of the

crystal a, the results are scalable to any size structure.

10.2 Porous Acircularity Parameter

The imperfect 2D structures were characterized by their RMS acircularity,

illustrated in Fig. 10.5. This is defined as the RMS radius of curvature deviation from the

mean radius of the pore ro:
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Figure 10.5 Schematic illustrating the range of curvature radii that characterize an
acircular pore. The RMS acircularity (ARms) is defined as the RMS radius of curvature
deviation from the mean radius of the pore ro.

ARMS = IrC ( -1) (10.1)

Note that this definition causes the RMS acircularity to be given as a percentage of the

mean radius of the pore rather than the periodicity of the crystal a. This was done so that

the magnitude of the radial deviation was matched with the pore size. If the deviations

were normalized to the periodicity of the crystals instead, then a given deviation would

result in a much more severe change for small pores than for larger ones.

10.3 Generation of the Acircular Structures

The acircular structures were generated with a C++ code similar to the one used

to generate the roughened structures in chapter 4. Again, the total number of nodes in the

simulation domain (nx), the index of refraction of the matrix material (all pores had

np=1.0), as well as the number of rows and the number of columns of pores in the

structure were given as input into the code. Note that the total number of columns had to
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be odd in order to maintain the periodic boundary conditions. Unlike the 1D structure

code, the number of nodes in the y direction (ny) was constrained by the values of the

above inputs.. This is because the layout of the hexagonal lattice is required to have

certain proportions: for a given pore, the nearest neighbor pores in all directions must be

equidistant away. Thus, from the input values above, the number of nodes in the y

direction is given by

ny = nx num rows -1 (10.2)
,3 A num columns-i (10.2)-

This and the above input values were then used to calculate the center positions of

the pores corresponding to a hexagonal lattice, shown in Fig. 10.6. For a pore in the ith

column andjth row, the x coordinate of the pore center is given by

xv=n i-. (10.3)x'i = nx num columns - (10.3)

The y coordinate of the pore center is based on whether the corresponding column index

of the pore is even or odd. For even columns, the y center position is

7 columns

n,

Refractive Index
the matrix (nm):
1.7 for alumina
3.5 for silicon

\, Refractive Index of
the pore (np) = 1.0

Figure 10.6 Schematic of the simulated hexagonal lattice
parameters.

illustrating the relevant
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Y'C, = y n uy row -i)· (10.4)
num_rows-1 I

while for odd columns, the y center position needs to include an offset to create a

hexagonal lattice rather than a square lattice:

_ _ _ _ _ _-_2 f

Yc = y num_ rows -1 num_ rows - (10.5)

Values for the mean radius of the structure ro, corresponding to the optimal radius

from the frequency domain calculation, and the maximum allowable deviation of the

radius were also given as inputs. These values were converted from percentages of a to

number of nodes, using the calculated value of a:

2ny
a = (10.6)num rows-i1

Each pore in the simulation was assigned a value for its particular mean radius based on

the above input values. This was done in order to get a range of pore sizes around the

mean pore size for the structure. Each pore's mean radius was found by multiplying a

Gaussian deviate times the maximum radial displacement, and subsequently adding that

value to the structure's mean radius. Gaussian deviate values greater than three standard

deviations away from the center were thrown out in order to avoid outliers.

After each pore's particular mean radius was determined, the pores were made

acircular by generating a list of radial deviation values for each pore. The members in

each list corresponded to the nodes on the circumference of each pore. Since the radius

of each pore needed to vary smoothly, Gaussian functions were used to determine the

radial deviation along each pore's circumference. Between three and seven Gaussian

functions, centered at random positions within the lists, were chosen for each pore. A

random number between plus and minus half the maximum radial deviation was chosen

for the height of each Gaussian. The standard deviation was determined by a random

number between 5% and 10% of the total pore circumference. These values were used

because they produced structures that best represented the actual imperfect structures

(Figs. 10.1 and 10.2).
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The list of radial deviations was used to offset the mean radius of each pore. This

was done by simply adding the mean radius of each pore to the values in the

corresponding deviation list, resulting in a list of the total radii of curvature for each pore.

The value of the structure's mean radius was then subtracted from all of the values in

these lists, creating a list of the radii differences from the mean. The values in this

difference list were then summed. If the summed value was not equal to zero, then the

structure's mean radius was no longer the input value. In order to remedy this, one nodal

displacement was added or subtracted from each value in the total radii lists until the

summed differences were zero.

The total radii lists were then used to write the pores into a 2D array that held the

index of refraction information of the structure. This array was initially filled with the

index of refraction of the matrix material. The center of each pore in the array, which is

given by the calculated positions above, was located. The index of refraction of the pores

(1.0) was then written into the array at each angle around the circumference, from the

pore center out to the value of the radius in the total radius list. Buffer layers with

refractive index values of 1.0 (corresponding to air or vacuum) were written into the

array above and below the structure as well.

The RMS acircularity was then calculated from the difference between the radii

lists and the mean radius of the structure using Eq. 10.1. The refractive index array was

written to an output file, which was then used as an input into the FDTD code. The nodal

magnitude of the incident wave was also input into the FDTD simulation. This was

calculated by combining Eq. 10.6 with the optimal wavelength found from the frequency

domain calculation.

10.4 Simulation Equilibration

The FDTD code for the 1D calculations in chapter 4 was verified by comparing

the reflectivity results of a perfect structure with a 1D transfer matrix calculation of the

same structure. Unfortunately, the same method can not be used to verify the results of

these simulations. This is because there is no other independent computational technique

that provides reflectance information for 2D finite structures. The frequency domain

code used above only provides information on the frequency position of the eigenmodes
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for an infinite structure. However, because the same FDTD code has been shown to be

accurate for the 1D structures, it is reasonable to assume that it will also be accurate for

2D structures. Moreover, the code can be further verified by checking that it reaches an

equilibrium value after a certain number of time steps. This will also determine the

amount of time the code needs to run before the reflectivity can be accurately calculated

with Eq. 4.9.

The results of this equilibration run for both the 8 row and 12 rows structures

tested are shown in Fig. 10.7. In both cases, the calculated reflectivity does reach a

steady state value after about 20,000 simulation steps. Because of this, the total number

of simulation steps used for both systems was 25,000 steps. The pink region in Fig. 10.7

represents the simulation steps over which the time-averaging was done for Eq. 4.9. This

corresponds to an averaging of 16 full cycles of the reflected wave.

10.5 Porous Alumina Reflectivity Results

A total of 60 FDTD simulations were run to determine the percent change in

reflectivity due to acircularity in the porous alumina system. The reflectivity change,

calculated with Eq. 4.10, from structures with both 8 and 12 rows of pores is shown in

Fig. 10.8. The plot also shows example structures corresponding to the most extreme

structural deviations tested in this study. As detailed above, these simulations were run at

the optimal conditions determined with the frequency domain calculations of the perfect

infinite structure. For porous alumina, the optimal conditions were established to be:

ro/a=0.38, a/i=0.4725. Only the TE polarization was tested because porous alumina only

displays a bandgap for that polarization.

Again, the simulation results reveal that there is a strong dependence of the

percent change in reflectivity on the structural deviation parameter, ARMs in this case.

The reflectivity change reaches almost 50% for the 8 row structure at an RMS

acircularity of 0.22ro. Furthermore, the curve shape appears to be linear with an x-

intercept offset corresponding to the number of rows in the structure. As with the 1D

simulations, this study reveals that a larger number of periods in the structure (i.e. a larger

number of rows) will make it more robust to structural deviations. These complementary
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Equilibration of 8 Row Simulation
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Figure 10.7 Results of the equilibration run for both the 8 row and 12 row structures.
The initial large transient behavior is gone by about the 2 0,00 0th step in both cases. The
shaded region indicated the time steps over which the time-averaging was done in the
reflectivity calculation.
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Figure 10.8 The percent change in the TE polarized reflectivity (Ar) for 8 and 12 row
structures of porous alumina. Also shown are two example structures corresponding to
the most extreme structural deviations tested in this study.

results suggest that this may be a general trend that can also be applied to structures with

many other types of structural imperfections.

10.6 Porous Silicon Reflectivity Results

Equivalent FDTD simulations were run on the porous silicon system. This time,

both the TE and TM polarizations were simulated due to the presence of an

omnidirectional bandgap in this system. The reflectivity results of these 120 simulations

are shown in Figs. 10.9 and 10.10, along with several example structures corresponding

to specific simulation points on the plots. Again, the simulation conditions used here

were determined by the frequency domain calculations of the perfect infinite structure.

These were established to be: ro/a=0.4 8, a/A=0.4872.
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Figure 10.9 The percent change in the TM polarized reflectivity (Ar) for 8 and 12 row
structures of porous silicon. Again, two example structures are shown that corresponding
to the most extreme structural deviations tested in this study. The architectural deviations
in these structures are much more severe than those in the porous alumina study.

Unlike the porous alumina system, the results from these calculations are very

sporadic after an ARMS value around 0.05ro. The reason for this is clear once the

morphology of these particular deviate structures is explored. The rola value of these

structures is quite high: 0.48. At an rola value of 0.5, the pores will begin to touch and

overlap each other. Therefore, the perfect structure in this system has pores that are

already very close to overlapping. So a small deviation in the radius is all that is needed

to produce a structure that has a significant amount of overlapping pores. The ARMs value

at which this would occur can be approximated by calculating the RMS deviation that

would cause the pores to touch:

0.5 - ro la
A ̀  = (10.7)

r0 a
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Figure 10.10 The percent change in the TE polarized reflectivity (Ar) for 8 and 12 row
structures of porous silicon. Two example structures with much lower ARms values are
shown for comparison with those in Figs. 10.8 and 10.9.

For the porous alumina structure, this critical RMS acircularity value is 0.32. However,

for the porous silicon system, the value becomes only 0.04. The consequence of this

difference can be clearly seen through comparison of the example structures in Figs. 10.8,

and 10.9 and 10.10. After the pores begin to significantly overlap eachother, the

morphology of the structure itself drastically changes. The structure transitions from

being a series of pores in a matrix to a mix of pores and discrete misshapen rods in air.

The remaining structure is made up of the negative spaces left behind in between the

overlapping pores. Furthermore, once the pores begin to overlap, the measure of

acircularity in Eq. 10.1 no longer accurately characterizes the structure.

Therefore, in order to get meaningful results for the porous silicon system,

another series of calculations was done focusing on the ARMS region below 0.04ro. The

results of these calculations, along with some corresponding structures, are shown in

Figs. 10.11 and 10.12. These results are clearly much better behaved than the results in
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Figure 10.11 The percent change in the TM polarized reflectivity from the porous silicon
system for ARMs values less than 0.04ro.

Figs. 10.9 and 10.10. Furthermore, these calculations reveal that there is a distinct

difference between the TE and TM polarization behavior. The TE polarization shows the

same trend in the number of rows that the porous alumina calculations revealed: more

rows produce a more robust structure. However, no such trend is seen with the TM

polarization results. Furthermore, the magnitude of the reflectivity change in the 8 row

structure is much smaller for the TM polarization than for the TE polarization.

Although these results may seem puzzling, they can be explained with one simple

concept that was actually concluded from the results in chapter 5. For the 8 row

structure, the magnitude of the absolute reflectivity for the TM polarization is larger than

the absolute reflectivity for the TE polarization. Thus, the results above are consistent

with the idea that the magnitude of the absolute reflectivity of a photonic crystal system

is an indication of how tolerant it will be to structural changes. Thus, any modification to

the structure that will increase the absolute reflectivity of the perfect analogue (i.e.

increasing the index contrast, increasing the number of periods, etc.) will correspondingly
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Figure 10.12 The percent change in the TE polarized reflectivity from the porous silicon
system for ARMS values less than 0.04 ro.

increase the structure's tolerance to structural imperfections. This conclusion is

supported by all of the results presented in this thesis.

10.7 Conclusions

Several 2D FDTD simulations were done to investigate the effect of acircular

pores on the reflectivity of 2D hexagonal photonic crystals. Two specific systems were

examined: porous alumina and porous silicon. The exact simulation conditions used for

these systems were chosen to be near the center of the maximized photonic bandgap of

the corresponding perfect infinite structures. These conditions were determined through

frequency domain calculations using the MPB freeware code [Johnson (2001), Johsnon

(2005)]. Like the D results presented in chapter 4, the porous alumina simulations

revealed that a larger number of periods in the structure made it more tolerant to

structural imperfections.
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However, the equivalent simulations for the porous silicon produced sporadic

results. This is because the mean radius that was used in the simulations corresponded to

a structure where the pores were very close to overlapping, even in the perfect structure.

Thus, just a small radial deviation (>0.04ro) caused significant overlap of the pores and

correspondingly resulted in a critical morphological shift of the structure. More

simulations were done to focus on smaller radial deviations that would avoid this severe

morphological change. The results of these simulations were much better behaved,

revealing clear trends in the data. Like the porous alumina results, the porous silicon TE

polarization simulations showed an increase in robustness for a structure with more pore

rows. However, the TM polarization results did not show any difference between the 8

row and 12 row structures. Furthermore, the reflectivity change for the TE polarization

was much larger than for the TM polarization in the 8 row structure. However, there is

one important difference between the TE and TM reflectivities of the perfect 8 row

porous silicon structure. The magnitude of the reflectivity is lower for TE polarized light

than for TM polarized light.

Thus, the trends seen in this chapter are consistent with the trends from all the

previous chapters. The absolute reflectivity of the perfect representation of a structure is

an indication of how tolerant the structure will be to structural imperfection. Therefore,

any change that is made to the structure that would increase the absolute reflectivity of

the perfect analogue would correspondingly make the structure more tolerant to

imperfections. This conclusion is supported by all of the results presented in this thesis.
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Chapter 11: Experimental

Corroboration

A quick review of the literature reveals that there are many researchers currently

working on 1 D photonic crystal systems with rough interfaces. For example, a search of

the words "porous", "silicon", and "ID" produces 34 results between the years 2000 and

2005. Granted, not all of these publications pertain to 1D photonic crystals. However,

this still reveals the amount of research currently probing just porous silicon's potential

as a 1D photonic crystal technology.

The results of these and other articles from assorted other search queries (see

Table 11.1) were extensively scrutinized. Unfortunately, for various reasons, no article

was found that could be used to quantitatively compare the results of actual experiments

to the computational findings in this thesis. Often, the RMS roughness of the structure

would not be reported, and therefore the roughness would have to be ascertained from
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Table 11.1 Relevant results of various literature searches for rough 1D photonic crystals.

Search:
"porous" "silicon" "ID", 2000-2005 34 results

Golovan, et al. (2000) No micrograph.
Reece, et al. (2004) Does not report the absolute index values.

Does not provide the absolute index values, only index
Haurylau, et al. (2004) contrast.
Ghulinyan, et al. (2003) Shows a poor and incomplete micrograph.
Agarwal, et al. (2003) Never gives exact structure.
Golovan, et al. (2004) Does not show structures or reflectance spectra.
Search:

"porous" "silicon" "photonic", 2000-2005 34 results
Reece, et al. (2002) Very poor image of crystal (unusable).
Weiss, et al. (2005) Gives an incomplete micrograph.

Gives reflectance and transmittance in arbitrary units, no
Xu, et al. (2003) micrographs.micrographs.
Ohno, et al. (2001) Does not show any measured reflectivity.
Dolgova, et al. (2001) No micrographs.
Oton, et al. (2003) No micrographs.
Nava, et al. (2003) No micrographs.
Meade, et al. (2004) Reflectivities are relative, no micrographs.
Kordas, et al. (2004) Gives incomplete micrograph.
Jain, et al. (2001) No relevant data or micrographs.
Petrov, et al. (2003) No micrographs.
Crisan, et al. (2002) No reflectance spectra.
Search:

"porous" "silicon" "photonic", 1995-1999 15 results
Setzu, et al. (1998) No micrograph.
Pavesi (1996) No micrographs.
Search:

Amra (1994) citings 45 results

Provides an incomplete micrograph, does not give the
refractive index values.

Xiong, et al. (1997) Never gives reflectance spectra or roughness.
Amra (1994) Never gives roughness.
Amra, et al. (1997) Never gives roughness or micrograph.
Ruppe, et al. (1996) No reflectivity data given.
Lysenko, et al. (2001) No reflectivity data given.
Ferre-Borrull, et al. Actually measured amount of scattering from quarter-wave
(2000) stack - got about 8x10-4 for about 0.02a RMS roughness.

Reports scattering of about 10- for a quarter-wave stack with
24 bilayers with a RMS roughness of about 0.015a.
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any micrographs provided in the publication. This could be done by converting the

micrograph into a refractive index file using a simple Matlab script. This refractive index

file would represent the exact microstructure in the micrograph. Thus, it would be

equivalent to the refractive index output files representing the roughened structures used

in the FDTD simulations (see chapter 4). Since the homogenization approximation was

shown to give the same results as the FDTD simulations (see chapter 6), this

approximation could also be applied to the refractive index file from the micrographs to

calculate their alleged reflectivity.

Out of the publications that provided micrographs of their structures, all of the

images were either very poor quality or incomplete (did not show the entire structure), as

indicated in TI able 11.1. Although this latter issue could be accommodated for simple

multilayer structures, the structures involved in these studies were often complicated,

containing defect cavities or multiple periodicities. Thus, another means of

experimentally corroborating the predictions in this thesis had to be found.

11.1 Calculated Reflectance Spectra for Two Rough Structures

I contacted Vincent Kuei-Sen Hsiao at the University of Buffalo, who works on

tunable photonic crystals through liquid crystal incorporation. These structures are

known to have extremely rough interfaces (See Fig. 4.1). He provided me with a full

micrograph of one of his structures, shown in Fig. 11.1, along with its reflectance

spectrum, shown in Fig. 11.2.

This micrograph was converted into a refractive index file in the manner

mentioned above. This was done using the Matlab function imread, which converts a

Figure 11.1 One of the "real-world" roughened structures analyzed with the
homogenization approximation [Hsiao (2005), reprinted with permission].
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Figure 11.2 Experimental reflectance spectrum for the structure shown in Fig. 11.1
[Hsiao (2005), reprinted with permission].

black and white image into an array. The number of array entries is equal to the number

of pixels in the images. The members of the array each have a value between 0 and 256

corresponding to the shade of gray of the equivalent image pixel. Thus, for an image of a

multilayer structure, this array can then be converted into refractive index information by

changing all the "white" entries (> 128) to one constituent index and all the "black"

entries (< 128) to the other constituent index. Once the refractive index array for the

micrograph was determined, the averaged index profile for the structure (see chapter 6)

was obtained for use in the homogenization approximation calculations.

Unfortunately, the exact value of the low refractive index in this specific structure

was unknown. This is because the low index layers were composed of a mixture of air

pores and polymer (n-1.52). The low index value was selected to align the calculated

reflectivity peak with the experimental one. Due to inaccurate measurements of the layer

190



thickness, the periodicity of the structure (in pixel units) was obtained by taking the Fast

Fourier Transform of the average index profile. The periodicity was combined with the

refractive index information to scale the reflectivity results of the homogenization

approximation from wavelength units of pixels to nanometers for comparison with the

experimental reflectance spectrum. Fig. 11.3 shows the results of these calculations for

the structure presented in Fig. 11.1. Comparison with Fig. 11.2 reveals a favorable match

between the homogenization approximation results and the experimental results. The

increase in reflectivity on the far right of the plot in Fig. 11.2 is most likely due to the fact

that those wavelengths are near the edge of the spectrometer's spectral range. Therefore,

this feature is not reproduced in Fig. 11.3. Furthermore, the calculated secondary

reflectance peak around 360nm is too high compared to the same peak in the

experimental data. This is again most likely due to the proximity of this peak to the edge

of the spectrometer's viable range.

>

'a)

Wavelength [nm]

Figure 11.3 Results of the homogenization approximation applied to the structure shown
in Fig. 11.1.
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A comparison of the absolute values of the calculated and experimental

reflectivities is difficult due to variations in experimental conditions. For example, the

experimental reflectivity depends on the quality of the reflectivity reference that is used.

Absolute reflectance measurements can avoid this complication, but require a complex

experimental setup, which was not used by the Buffalo group. However, the favorable

correspondance of the shape of the reflectivity peak is significant, because it depends on

the specific microstructure of the photonic crystal.

In addition to the micrograph shown in Fig. 11.1, K. Hsiao also provided the

micrograph of another structure, shown in Fig. 11.4, along with its corresponding

reflectance spectrum, shown in Fig. 11.5. This structure corresponds to a three-color

filter. Thus, its architecture consists of three distinct periodicities to produce bandgaps at

three different wavelengths. Although this is clear from the reflectance spectrum, the

different periodicities are not apparent to the eye in the micrograph. Also, it is clear in

the micrograph that the roughness in this structure is large because individual layers are

discontinuous.

The same procedure as that described above was also applied to this structure.

These results are shown in Fig. 11.6. Again, the calculated peak shapes match the

experimental ones well, except for the left-most peak. This peak has a broader width,

which is probably due to the sampling area from the micrograph. The left-most

Figure 11.4 The second roughened structure analyzed with the homogenization
approximation [Hsiao (2005), reprinted with permission]. Although it is not apparent to
the eye, there are three periodicities built into the structure.
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Figure 11.5 Experimental reflectance spectrum for the structure shown in Fig. 11.4
[Hsiao (2005'), reprinted with permission]. Notice the three distinct reflectivity peaks.

peak corresponds to the longest periodicity in the microstructure. Thus, more sampling

area is required to accurately represent this periodicity. In addition to the comparable

peak shapes, the relative magnitudes of the peaks also approximate the experimental data.

Furthermore, despite the complexity of the structure, the results of homogenization

theory applied to a single micrograph of this structure correspond extremely well in

reproducing relative peak positions. This again supports the applicability of

homogenization theory to roughened photonic crystals.

11.2 Proposed Experiments

Although the above calculations support the validity of the predictions presented

in this thesis, further confirmation of the predicted absolute reflectivity and scattered

powers requires more specially designed experiments. The preparation, measurements,

and analysis required in these experiments are detailed below.
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Figure 11.6 Results of the homogenization approximation applied to the structure shown
in Fig. 11.4. Again, note the three distinct reflectivity peaks.

Produce a structure with rough interfaces. While many approaches are available

to produce photonic crystals, a large roughness is desired to confirm the theoretical

predicitions. Such a structure can be obtained in a variety of ways:

1. 3D Printing: Ideally, one would want to control the roughness scale and

architecture of the structures. 3D printing allows one to design a structure on

computer and then "print" it out layer by layer [Arptech (2005)]. This could

not be used for photonic crystals that are tuned to the visible or even infrared

regime because the resolution of a single layer is about 0.3mm. However,

rough terahertz or microwave structures may be able to be produced using this

technique. The materials that are compatible with 3D printing are limited and

their optical properties are not well known in this wavelength regime.

Therefore, this option requires extensive experimental investigation before a

viable rough structure could even be made.
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2. Precision machining (CNC milling): Computer controlled mills are able to

produce features on surfaces as small as 10jtm [Denford (2005)]. Therefore,

one could use this technique to create a roughened quarter-wave stack. This

would be done by depositing a layer of material, milling it, and then

depositing another layer on top of that, etc. However, there are a few issues

with using this technique. Again, the materials that can be machined are

limited to plastics and metals. Thus, since the minimum feature size rules out

the visible and near infrared regimes, extensive investigation of the optical

properties of these materials in the terahertz and microwave regimes would

again be needed.

3. Lapping films: Instead of trying to rigidly control the actual roughness profile,

one could simply use lapping paper to physically roughen a deposited surface.

The advantage of this technique is that lapping paper roughnesses range from

0.1 im to several ptm [Pace (2005)]. Therefore, rough structures tuned to the

visible or near infrared wavelengths, where the optical properties of many

materials are already known, could be used.

4. Polyelectrolyte multilayers: Research done by T. Wang, R. Cohen, and M.

Rubner suggests that the interfacial roughness of 1D photonic crystals can be

controlled through tuning nanoparticle synthesis in polyelectrolyte multilayers

[Wang (2002)]. Although there is a limited materials selection, these

structures can be easily produced in the near infrared regime. However, the

only way to characterize the roughness of these structures is to use electron

microscopy to examine a cross-section of the sample after it is made.

5. Poor deposition or electroplating: As evidenced by the example structures

presented in this work (See Figs. 4.1 and 4.2), interfacial roughness can be

induced by simply having poor control over the fabrication process. Thus,

roughened multilayer structures can be produced by using traditional

deposition techniques.

6. Sol1-gel processing: Sol-gel techniques could be used to spin-coat various

rough layers onto substrates. The roughness of these layers could be

somewhat controlled by varying the aging time of the sol-gel solution, the
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volume fraction of the sol-gel components, or the heat treatment. However,

the exact dependence of these variables on the roughness of the film is

currently unknown. Therefore, a systematic study of the effect of these

parameters on the film quality would need to be done first.

All of these techniques require subsequent characterization of the roughened

structure because the processing of higher layers may affect the roughness of lower ones.

Furthermore, the roughness parameter values need to be determined to ensure that they

fall within the ranges tested in this study (i.e. RRms < 0.2a, WRs < 1.0a). Thus, the

structures need to be cross-sectioned (i.e. with ultramicrotoming, or other techniques that

would not significantly disturb the microstructure) and viewed using electron microscopy

to ensure that the roughness has not changed significantly. Moreover, this will also allow

a micrograph of the structure to be produced that can be later used to compare the

calculated prediction to the experimental results. Alternatively, AFM measurements can

be conducted between the deposition of each layer to measure the RMS roughness.

However, these measurements should be conducted only if subsequent deposition will not

disturb the underlying layer roughness. For example, with sol-gel processes, AFM

measurements must be conducted after any heat treatments.

Besides ascertaining the deposited film roughness, the use of amorphous materials

would be preferable since polycrystallites could cause bulk scattering independent of the

interfacial roughness scattering. Dust should also be minimized to prevent large defects

on the interfaces, which would cause the roughness scales in the fabricated structures to

be much larger than those tested in this thesis. Finally, with many deposition techniques,

large roughness levels may result in correlated roughness between layers. As the

homogenization theory results do not explicitly account for correlated roughnesses, it

may be necessary to minimize such effects in the experimental structures.

Measure the reflectivity and off-angle scattering. The reflectivity of the sample

can be measured with a spectrometer in the appropriate spectral range. These devices are

available in both the visible/infrared regimes as well as the terahertz regime. The

reference used for this measurement, however, must be carefully calibrated so that the

absolute reflectivity can be compared to the calculated numbers. Ideally, an absolute

reflectivity measurement would be conducted.
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Off-angle scattering measurements require a more complex optical setup than

reflectivity measurements. One apparatus that could be used for this measurement is an

integrating sphere. This is a device that captures all the light that is scattered from a

sample at once. Unfortunately, there are no integrating spheres that have been made to

work in the terahertz or microwave regimes. For these wavelengths, another (inferior)

setup is required. Such a setup, called a scatterometer, is detailed in Deumie, et al.

(1996). This utilizes a detector that is attached to a goniometer. Unfortunately, this setup

can only measure scattering in one plane around the photonic crystal. But it can at least

provide an order-of-magnitude estimate of the amount of scattering from the roughened

structures.

Compare the experimental and calculated results. The micrograph obtained to

characterize the roughness of the sample can be converted into a refractive index file as

described above. The homogenization approximation can then be applied to this

representation of the structure to calculate the alleged reflectivity of the sample. The

results can then be compared to the absolute reflectivity obtained with the spectrometer.

The prediction for the amount of scattered power, however, would require either

estimation based on the results already obtained for various structures, or more FDTD

calculations. In any event, if the homogenization approximation is able to reproduce the

reflectance spectra obtained with the spectrometer, then the amount of scattered power is

most likely extremely small (see chapter 6).
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Chapter 12: Conclusions and

Future Work

This thesis presented the results of several FDTD simulations designed to

systematically study the effect of structural imperfections in 1D and 2D photonic crystals.

The specific imperfections investigated were: interfacial roughness in 1D photonic

crystals (normal incidence, full bandgap), surface scratches in 1D photonic crystals

(normal incidence, full bandgap), and acircular pores in 2D photonic crystals (M-point).

Several important results were uncovered concerning the quantitative effects of these

imperfections on various photonic crystal configurations.

For the interfacial roughness study, it was found that certain roughened structures

can experience more than a 50% change in reflectivity for roughness scales on the order

of 20% of the characteristic periodicity of the crystal at the quarter-wave tuned

wavelength. Although this is not too surprising, it is curious that this reflectivity change

can be substantially reduced to 15% by increasing the refractive index contrast of the

structure from 1.25 to 2.0. Increasing the number of bilayers can also be used to increase
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a crystal's tolerance to interfacial roughness at the center bandgap wavelength. A 2-

bilayer structure with an index contrast of 1.5 will have over a 50% reflectivity change at

roughness scales around 20% of the periodicity, while a 6-bilayer structure with the same

index contrast will have only a 30% reflectivity change at an equivalent roughness.

Furthermore, the RMS distance between roughness features (up to 100% of the

structure's periodicity), as well as the average refractive index of the structure, appear to

play no role in determining the change in reflectivity due to interfacial roughness.

These results are counter-intuitive to the trends that would be predicted by a

simple scattering theory analysis. However, a more rigorous application of scattering

theory to the specific roughened structures tested in this thesis reveals trends that are

consistent with the FDTD results. Unfortunately, these results also show that the amount

of scattering in these structures is too small to explain the large change in reflectivity

observed with the FDTD simulations.

Thus, another mechanism was sought to explain the marked reflectivity changes

from the roughened photonic crystals. Two approximations that are commonly used to

study the coherent reflectivity from single rough interfaces were applied to the systems

studied here with multiple interfaces. One of these approximations, the homogenization

approximation, produced results that matched the FDTD data very accurately. This

provided physical insight into the mechanism that causes the reflectivity decrease in

roughened structures: the roughness features act to grade the refractive index profile of

the interfaces in the photonic crystal. These graded interfaces allow more light to pass

through the structure, decreasing its reflectivity. The length over which the interfaces in

the approximated structure are graded depends on the RMS roughness scale in the actual

structure. Larger roughness scales produce more diffuse interfaces, which in turn further

increases the transmissivity (decreases the reflectivity) of the structure.

However, the homogenization approximation only predicts the amount of

coherent reflectivity, while the FDTD calculations include both the incoherent and

coherent portions of the power. Thus, the success of this approximation implied that the

amount of incoherent reflected power from these structures was extremely small. This

was verified by directly extracting the amount of incoherent power from the FDTD data.

In the worst case, the amount of incoherent power was only about 4.5% of the total
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reflected power from the structure. This explains why the homogenization approximation

can be accurately applied to the roughened structures tested here. Note, however, that

this only includes roughened structures where the RMS roughness is less than about 20%

of the crystal periodicity and the RMS distance between roughness features is less than

100% of the crystal periodicity. Nevertheless, this range of parameters represents the

roughness scales that typically occur in most imperfect photonic crystals.

Furthermore, the fact that the homogenization approximation is valid for the

structures tested here is also significant because the homogenization approximation is

much faster and easier to apply to a real structure than the FDTD simulations. For

example, a curve consisting of 40 data points would take a few days to calculate with the

FDTD code. However, the same curve would be generated in a few minutes using the

homogenization approximation.

With this understanding, the homogenization approximation was tested on the

entire normal incidence bandgap of the roughened structures. The FDTD results showed

a narrowing and red-shifting of the bandgap with increasing roughness scales.

Furthermore, the low index contrast structure appeared to be more sensitive to this red-

shifting effect. As with the other simulations, the homogenization approximation was

able to correctly predict the behavior observed in the FDTD results. Thus, it was

determined that the homogenization approximation could be accurately applied to the

entire normal incidence bandgap of roughened structures.

Next, the problem of surface scratches on 1D photonic crystals was investigated.

As expected., the amount of reflectivity change was much smaller than the interfacial

roughness study because these structures only had roughness on the top interface. Still a

reflectivity decrease of almost 15% was observed in low index contrast structures for

roughness scales around 15% of the photonic crystal periodicity. However, it was

observed that this reflectivity change could be mitigated by adding a protective coating to

the top of the photonic crystal. As long as the protective coating had a refractive index

less than the top layer in the crystal, the coating acted to make the structure more tolerant

to scratches. However, if the protective coating index was higher than the top layer

index, the structure would become less tolerant to surface scratches. Furthermore, this
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result was found to be true for the entire normal incidence bandgap. As expected, the

homogenization approximation was able to accurately reproduce these trends as well.

The problem of pore acircularity in 2D hexagonal photonic crystal structures was

the last imperfection explored in this study. Two "real-world" systems, porous alumina

and porous silicon, were tested. For the porous alumina, a percent change in reflectivity

of almost 50% was observed for an RMS acircularity of about 25% of the mean pore

radius. As with the 1D structures, this reflectivity change could be mitigated by

increasing the number of periods in the crystal from 8 rows of pores to 12 rows. In the

porous silicon system, the reflectivity decreases were smaller, although the RMS

acircularities that could be properly tested were limited to less than 4% of the mean pore

radius. Despite this, these results revealed a trend that is consistent with all of the other

simulation results in this thesis: the absolute reflectivity of a structure is an indication of

how tolerant a photonic crystal will be to structural imperfections. Thus, any structural

change that can be made to the crystal to increase its absolute reflectivity (i.e. increasing

the number of periods, increasing the index contrast, etc.) will also increase its tolerance

to structural imperfections.

Finally, the concepts put forth in this thesis were verified for two experimental

structures with interfacial roughness. The measured reflectance spectra from the

structures were compared to spectra calculated using the homogenization approximation.

The results were in very good agreement. Additionally, more rigorous experiments were

proposed to further verify the validity of the homogenization approximation for

roughened D photonic crystals.

This work provides a comprehensive basis for future studies on imperfect

photonic crystals. For 1D structures, other angles besides normal incidence conditions

should be tested and compared to the homogenization approximation results to determine

if this approximation is still valid for oblique incidence angles. Furthermore, more

roughness scales should be tested to determine when the homogenization approximation

can no longer be accurately applied to roughened/scratched structures even at normal

incidence. This is especially relevant for scratched crystals because actual scratch scales

may differ significantly from those tested in this study. As for the 2D structures, more

reflectivity tests at other incidence conditions should be done to see if there is a variation
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in the reflectivity response. Furthermore, other structural imperfections, such as

deviation of the pore center positions from the hexagonal lattice spacing, should also be

explored. These methods could be applied to 3D imperfect systems as well. Finally,

rigorous experimental studies can be done to determine the validity of the computational

findings.

In summary, the studies presented in this thesis have contributed to the field of

photonic crystals in the following ways:

1. Quantified the effect of interfacial roughness on the optical properties of 1 D

photonic crystals for the full normal incidence bandgap.

2. Identified structural property requirements for optimizing tolerance to

interfacial roughness.

3. Showed that the homogenization approximation for analyzing reflection from

single rough surfaces can be applied with little error to 1D photonic crystal

structures (for RMS roughnesses < 20% of the crystal periodicity, RMS

wavelengths < 100% of the crystal periodicity, refractive index contrasts <

2.0), and bilayers < 6).

4. Obtained values for the scattered power from roughened structures and

showed that the trends and magnitudes are roughly consistent with Mie theory

predictions.

5. Demonstrated that TE and TM polarizations produce equivalent results for the

roughened structures tested (see point 3 above for parameter constraints),

allowing the results herein to be applied to full 3D rough interfaces.

6. Quantified the effect of surface scratches on the optical properties of ID

photonic crystals (with and without protective coatings) at normal incidence.

7. Identified design requirements for optimizing device tolerance to surface

scratches.

8. Demonstrated the utility of protective coatings for providing higher structural

tolerance to surface scratches over the entire normal incidence bandgap.

9. Quantified the effect of pore acircularity on the optical properties of 2D

photonic crystals at the M-point.
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10. Demonstrated that the same analysis as above can be used to determine the

decrease in reflectivity from imperfect 2D photonic crystals.

11. Experimentally verified the use of the homogenization approximation to

predict the reflectance spectrum from roughened photonic crystals (see point 3

above for parameter constraints).
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Appendix A: Code for the

Simulation of Actual Roughened

Structures

The Matlab code used in chapter 11 to apply the homogenization approximation

to black and white micrographs of actual structures is provided here. The transfer matrix

part of the code was written by Garry Maskaly [Maskaly (2001)], and is reproduced here

with his permission. There are a few requirements for the applicable micrographs: (1) the

layers must be oriented horizontally with the bottom interface being the first one in the

stack, (2) the different materials in the structure (i.e. the layers) should be distinguishable

by their shade of gray, and (3) the higher index material should correspond to the darker

shade of gray. In addition, the contrast of the image should be as large as possible so

there is less error in assigning refractive indices to each pixel in the image. However, if

the image has poor contrast, the code can still handle the image. A remedy was devised

that utilizes white and black thresholds. Any number below the white threshold is taken

to be a white pixel. Similarly, any number above the black threshold is taken to be a

black pixel. F'or the numbers in between the two thresholds, an average is taken between
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the high and low indices of the structure. These thresholds can be adjusted on the

command line in order to optimize the computed fit to the experimental reflectance

spectrum.

There are a series of script files that all need to be loaded into the same directory

along with the image file. A subfolder called 'results' should be included in this

directory as well. This folder holds all the results of each run in a file called 'test'. The

code can be run at any angle, and if only one wavelength is input, the code also computes

the energy density in the approximated structure at that wavelength.

Function: imgscript

This is the main function. So one only needs to call this function in order to calculate the

homogenization results for the micrograph. This function calls all the other functions.

function
[lambda,r]=imgscript(nh,nl,ns,angle,TETM,minwave,maxwave,resolution,bth
reshold,wthreshold,pixres,imagefile,extension);

%function
[lamtbda, r =imgscript (nh, n , ns, angle, TETM, minwave, maxwave, resolution, bth
reshold,wthreshold,pixres, imagefile, extension);
%6

%nlh = high refractive inde>:
%nl = low refractive index
ins = substrate refractive index
%angle = angle of incidence in degrees
%TETM = 'TE' or 'TM' for the polarization of the incident light

%maxwa-ve - maximum wavelength on the plot
9minwave = minimum wavelength on the plot
%resolution - number of points to calculate between maxwave and
%wthreshold = white threshold between 0 and 256)
%bthreshold = black threshold (between 0 and 256, <= wthreshold
%pixres = number of pixels per unit wavelength (i.e. pixels/nm r
%imagefile = the name of the image file in single quotes
%extension = the extension of the image file (i.e. 'JPEG', 'GIF

minwave

or um)

I )

%NOTE: If using a GIF image, you must either reverse the high and low
%index inputs (i.e. nh = low index and nl = high index) or take the
%negative of the image. GIF format uses the opposite convention of all
%other formats when assigning numerical values to black and white
%pi:xe s.

%Calculate the step width corresponding to the input resolution
step=(minwave - maxwave)/resolution;
lambda=[minwave:step:maxwave];
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%Convert twavelengths from spatial units to pixels
minpixlambda=minwave*pixres;
maxpixlambda=maxwave*pixres;

%C(alculate the smoothed index profile with the Smoothindcex function
[stepindex,stepwidth]=Smoothindex(nh,nl,ns,bthreshold,wthreshold,imagef
ile,extension);

%Caalculate the reflectivity for the smcoothed index profile
r=stepbands (stepindex,stepwidth,minpixlambda,maxpixlambda,resolution,an
gle,TETM, 'test',pixres);

Function: Smoothindex

This function converts the image file into a digital refractive index file. It outputs a plot

of the corresponding refractive index file that can be used as a check by the user to make

sure the refractive index information correctly represents to input structure. This function

also takes the refractive index file and calculates the smoothed refractive index profile

and corresponding multilayer structure for it. It then outputs the refractive index

(stepindex) and thickness (stepwidth) of the approximated structure.

function
[stepindex,stepwidth]=Smoothindex(nh,nl,ns,bthreshold,wthreshold,imagef
ile,extension);

funct ion
L[steprindex, stepwidth] Smooth index nrlh, nIll, Ins, bthreshiold -.thresho d, imagef
il e, extensin) ;

'o..h is the hlgh irndex in the structure
r.l is he low index ir the structurre
'ns is t e .:nde of the substrate
'wthreshold is he white threshold (between 0 and 256.
%Lthresho. is the black threshold between 0 and 255, - wthreshold)
%p ixre Is he umher of pixels per unit waveelegt.i .. pixels,::n )
%i r.agyefie s the the name of the image fl.l.e in sir gl.e quotes

%extensir o .s the the extension of tie inmage fil.e l ..e. 'JTE ' , 1'G F'

'6iNCOTE: If u;ingr` a GIF image, yol mtust either reverse the hgh anrd ow
%index inputs {-.e. nh = low index and nl -- high indexi or take the
,negative of the image. GIF format uses the opposite coSnvention of all
.cother formats when assigning numerical values to black and white
Spixels.

%Read in the image file
A=imread(imagefile,extension);

%Convert the image to refractive indices based on the thresholds
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for ix=l:l:size(A,l)
for iy=l:l:size(A,2)

if (double(A(ix,iy)) >= wthreshold)
buffstruct(size(A,1)+l-ix,iy)=nl;

elseif (double(A(ix,iy)) <= bthreshold)
buffstruct(size(A,1)+l-ix,iy)=nh;

else
buffstruct(size(A,1)+l-ix,iy)=nh-((double(A(ix,iy) ) -

bthreshold)/(wthreshold-bthreshold))*(nh-nl);
end;

end;
end;

%These lines let you view what the refractive index array looks like
figure;
surf(buffstruct);
view(2);
shading interp;
colorbar vert;
title('Refractive index file for structure','fontsize',20);
xlabel('Pixels parallel to layers','fontsize',18);
ylabel('Pixels perpendicular to layers','fontsize',18);
axis([l,size(A,2),1,size(A,1)]);
set(gca, 'fontsize' ,16);

%Calculate the dielectric constant from the refractive index array and
%average
index=buffstruct;
eps = index.*index;

smoothedeps = mean(eps');
smoothedindex = smoothedeps.^0.5;

9%These lines allow you to view the smoothed structure in a 3D plot
%rather than a 2D plot
%for ix=l:l:size(index,2}
% for iv=l:l:size(index,1)
% zsurf (ix, i) =smoothedindex (iy) ;
% end;
%end;

%Calculate the discrete layers that approximate the smoothed index
%profile
baseindex = 1;

counter = 1;

counter2 = 2;

counter3 = 0;

stepindex(1) = 1;

stepwidth(1) = 0;

flag = 0;

for ix=l:l:(size(index,1)-1)
if (smoothedindex(ix) == 1)

baseindex = 1;

if (flag == 0)
counter3 = counter3 + 1;
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end
else

flag = 1;

nextindex = smoothedindex(ix);
if ((nextindex == nh) && (smoothedindex(ix+l) = nh))

stepindex(counter2) = nh;
stepwidth(counter2) = counter;
counter2 = counter2 + 1;
counter = 1;

baseindex = nextindex;
elseif ((nextindex == nl) && (smoothedindex(ix+l) -= nl))

stepindex(counter2) = nl;
stepwidth(counter2) = counter;
counter2 = counter2 + 1;
counter = 1;

baseindex = nextindex;
elseif (abs(nextindex - baseindex) >= 0.005)

stepindex(counter2) = (baseindex+nextindex)/2;
stepwidth(counter2) = counter;
counter2 = counter2 + 1;
counter = 1;

baseindex = nextindex;
el s e

counter = counter + 1;
end;

end;
end;

stepindex(counter2) = ns;
stepwidth(counter2) = 0;

%rhese lines a low you to plot the stepped profile
" %count.r.-4 -- c ou rter3 1;
%couLnter-5 coulnter4;

%-fr i -: i :Ie ngths tep i nde) 
, fr -2 = :l:stepwidl th(iy)

piotinde. coIrter4, - stepindex iy);
.ot:widrh coter4 = counter3 + .v2;

% fr ii 1: 45 0
%.* zS uzep, ( i., co uizl-,.tet 4 ? =p ot i.deX (counter4)l

% (~,{ll, u V.r ef - conltere - i;

% coun;6~tsir3 = countert + stepw-dth iv),

-for L:_=co;anter3: i:S1ZE index, 1j
% r:iot index X ix) = I;

% Z!©twJ d iy X =i1x;

P en C;

%9e-nd;

% :t gure;
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%pot plotwidth,plotindex, 'r-);
%hold on;
%for ix=l:l:iength(stepindex)
% plot [counter5, counter5] , [0, stepindex(ix)] , 'k-);
%9 hold on;
% plot. [countel5, stepwidth(ix)+counter5] , [stepindex(ix) 
stepindex(i), k-
% hold on;
% colunterS - counter5 -- stepwidth ix);
tend;

%These lines a.ow ou to plot the smoothed index profile
%f igure;
%plot([l:l:size(index,1)] ,smoothedindex, b-');
%hold on;

9These lines allow you to plot the stepped index on a 3D plot
9 figure;

%surf(zstep');
%sview(2);

%shadlng interp;

clear index;

Function: stepbands

This function calls a transfer matrix code to calculate the reflectivity for each wavelength

step within the desired range. It also stores all the output information (reflectivity,

transmissivity, absorption, and wavelength) into a file prefixed by 'test' in the /results

subdirectory. If only one wavelength is specified, it calls a function that calculates and

plots the energy density in the structure at that wavelength. Otherwise, it calls a function

that plots the reflectivity vs. wavelength results.

function
r=stepbands(stepindex,stepwidth,xmin,xmax,xsteps,angle,TETM,storename,p
ixres);

0 funct ion
r=stepbands ( stepindex, stepwidth,xmin, xmax, xsteps, angle,TETM, storename,p
ixres/);

%stepindex = a column vector with the refractive indices of each layer
%in the structure, starting with the top layer. The first layer and
%last layer correspond to the incident and transmitting medium,
96 respec t ivey .

%stepwidth - a column vector with the thicknesses of each layer in the
%structure, starting with the top layer. The thicknesses should be
%given in the same units as the wavelength(s). The first layer and
%layer laver are both semi-infinite, so their thicknesses should be

210



%:input as 0.

%rm = min..imum wa-;length

%xmsiaX = ,tl i mium wave .length

%xsteps = r.umber of data points to calculate between xmin and xn1ax
%angle = angle of incidence in degrees
T-ETM = 'TE' or 'TM' for the polarization of the incident lrght

96storename = name f file in single quotes where the output data w.ll
9be stored in the /results director-)

%pLxres = the number of pixels per unit wavelength i.e. piels/n.r

%Deternine accuracy of input data
errorflag=C0;
if ((TETM-='TE')&(TETM-='TM'))

disp('Error, neither TE or TM was entered for TETM.')
errorflag=l;

elseif (angle>90) (angle<O)
disp('Error, angle out of range.')
errorflag=l;

end

if errorflag==1
return

end

%Conv-ert input to useabIe numbers
if angle==90

angle=89.999;
end

if TETM=='TE'
TETM=O;

el.se

TETM=1;
end

'Create the wavelength range matrix
if xsteps==l;

xrange=xmin;
else

for counter=l:l:xsteps
xrange(counter)=xmin+(counter-l)*(xmax-xmin)/(xsteps-1);

end.
end

%ilf the ran:,es were input backwards, correct it

if (xrange(l)>xrange(length(xrange)))
for x=length(xrange):-1:1

xrange2(length(xrange)-x+l)=xrange(x);
end
xrange=xrange2;

end
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%Create the angle range matrix (2 components consisting of the angle
%and the polarization)
anglerange=[angle,TETM];

%Reassign the refractive index and layer width information
materialsfile = stepindex;
layers = stepwidth;

%For each wavelength to calculate, read in the refractive index profile
for counter=l:1:size(materialsfile')

n(counter,xsteps)=(materialsfile(counter));
n(counter,:)=(materialsfile(counter));

end

%Ensure that the width of the first and last layers are 0
%(semi-infinite ambient lavers)
layers(1)=0;
layers(length(layers))=0;
warn=0;

%If only one wavelength is input, then calculate tile energy
%distribution in the structure, and just output the reflectivity to the
%sscreen (single number)
if xsteps==l

r=stepenergydist(xrange(l),anglerange(l),anglerange(2),layers,n)
return

end

%Caiculate the reflectivity, transmissivity, and absorption at each
%wavelength for the structure.
for x=l:l:length(xrange)

if anglerange(2)==0
[r(x),t(x),a(x),e(x),ang(x),warn]=bandTE(xrange(x), n(:,x),

anglerange(l), layers, warn);
else

[r(x),t(x),a(x),e(x),ang(x),warn]=bandTM(xrange(x), n(:,x),
anglerange(l), layers, warn);

end
end

ang=real (ang);

%Display message if r+t>=l (i.e. no absorption and/or gain present)
if warn==l

disp(['Rounding errors have occurred or there is no absorption in
',storename,''].);

disp(['Zero absorption was assumed in those regions.']);
end

%Write output to storename file in /results subdirectory.
fid=fopen(['results/' ,storename, 'r'],'w+');
fwrite(fid,r,'real*8');
fclose(fid);
fid=fopen(['results/' , storename,'a'],'w+');
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fwrite(fid,a, ' real*8 ' );
fclose (fid);
fid=fopenl( ['results/' , storename,
fwrite(fid,t, 'real*8');
fclose(fid);
fid=fopen( ['results/', storename,
fwrite(fid,e, 'real*8');
fclose(fid);
fid=fopen ( ['results/' , storename,
fwrite(fid,ang, 'real*8');
fclose(fid);
fid=fopen ( ['results/' , storename,
fwrite(fid,xrange, 'real*8');
fclose(fid);

't'], 'w+');

'e'], 'w+');

'ang'], 'w+');

'lamb'] ,'w+);

';.io r,.af'ecz.vicv results
plotTETMflunc (storename, pixres)

Function: stepenergydist

This function calls a transfer matrix code that calculates the reflectivity as well as the

field amplitudes inside each layer in the input structure. It then uses that information to

calculate the energy density inside the structure. Finally, it plots the energy density as

well as the interface positions of the layers in the structure as a reference.

function [r, EE2, spacing] =stepenergydist (lambda, angle, TM, layers, n)

func t:ion r,EE2, spacing] =stepenergydist (lambda,angle,TM, layers,n}

'ilcla a- the inclden.t wavelength
%ang>3i_ - tT.e .e iCident anle in degrees
%,'IF[ - , fc: F; TE ar ,;zat .or

~ - ' fL 'M P~oOIzation
.,

ia,-es - a c!,imn -rector with he thicknesses of each la'er in the
%str 'ctr--, s tart ng with the top layer. The thicknesses should be

' .-er. i.!' thei same units as the wavelength (s) The first layer and
la e-- l ave-r are both semi-inifinite, so their thicknesses should be

%r= a ro- vector with the refractive indices of each layer in the
-st'u.Ct.ire1, start ing -with the top layer. The first layer and last

la eY correspond to the incident and transmitting medium,

%The cutpu', is the reflectivity, the energy density, and the depth into
t the stl-uc ur e

Lni.t:lail.ze variables and define constants
hold off
resolution=50;
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warn=0;
c=3*10^8;
eO=8.85418781762*10^-12;

%Use Transfer Matrix code to calculate the reflectivity and the wave
%amplitudes in each layer
if TM==O

[r,A,B,warn]=energyTE(lambda, n, layers, angle, warn);
else

[r,A,B,warn]=energyTM(lambda, n, layers, angle, warn);
end

%Initiallze variables and define k vector of incident wave (ko) to find
%skx

EE2 = 0;

spacing(l) = 0;

E2(1)=A(2)+B(2);

ko=2*pi*n(1)/ (lambda);
omega=c*ko;
kx=ko*sin(angle);
thickness=sum(layers);

%Calculate the electric field amplitude within each layer of the
%structure
for counter=2:1:length(layers)-l

k=ko*n(counter);
kz=sqrt(k^2-kx^2);
layerstep=layers(counter)/resolution;
counter2=0;
offset=spacing((counter-2)*resolution+l);
for z=0:layerstep:layers(counter)

counter2=counter2+1;
spacing((counter-2)*resolution+counter2+1) =spacing( (counter-

2)*resolution+counter2)+layerstep;
if TM==O

E2((counter-2)* resolution+counter2+1)=A(counter)* exp(-
i*kz*(z-(layers(counter))))+B(counter)*exp(i*kz*(z-(layers(counter))));

else
coeffl=kz/(omega*(n(counter) ̂2)*eO);
coeff2=-kx/(omega*(n(counter) ̂2)*eO);
terml=coeffl*(A(counter)*exp(-i*kz*(z-

(layers(counter))))-B(counter)*exp (i*kz*(z- (layers(counter)))));
term2=coeff2*(A(counter)*exp(-i*kz*(z-

(layers(counter))))+B(counter)*exp (i*kz*(z- (layers(counter)))));
E2((counter-

2)*resolution+counter2+1)=sqrt(terml^2+term2^2)/376.730313462;
end

end
end

%Calculate the energy density from the electric fi.eld amplitude
EE2=E2.*conj(E2);

%Plot the energy density and the interfaces of the layers in the
%structure (as a reference)
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figure
hold on;
layerst(1) =0;
for counter=l:1:length (layers)

layerst (counter+l)=layerst(counter) + layers(counter);

plot ([layerst(counter+l) ,layerst(counter+l)], [max(EE2)/4,0],' color ',[0.
75,0.75,0.'5]);
end
hold on;
plot(spacing,EE2, 'linewidth',2.0);
axis([0 spacing(length(spacing)) 0 l.l*max(EE2)]);
title('Calculated Energy Density','fontsize',20);
xlabel('Depth into structure [pixels] ','fontsize',18);
ylabel('Energy','fontsize' , 18);
set(gca,'fontsize' , 16);
disp('Light gray lines on energy plot indicate positions of interfaces
between layers in structure.');

%D.sp,.ay message if r-ti (i..e. no abSCorption andor gacin presenlt)
if warn==l

disp('Rounding errors have occurred. Zero absorption was assumed in
those regions.');
end
hold off;

Function: energyTE

This function calculates the reflectivity and field amplitudes in a multilayer structure

using the transfer matrix technique for a TE polarized wave.

function [r,A,B,warn]=energyTE(lambda,n,layers,angle,warn);

%ifunction [, A, , warn en -ergyTa'E ambda, n, layers, angle, arn ;

%lambda -- incident wavelength

. -= a vector with the refractive indices of each layer in the
:%structure, starting with the top layer. The first layer and last
%laver correspond to the incident and transmitting n,ed-ium,

re spec t e y.

'angle - incident angle in degrees

%ilayevrs - a vector' with the thicknesses of each layer n the structure,
%startirn with he top layer. The thicknesses shoulid be gien in r the
,.same un-ts as the wavelength(s) The first layer and layer layer are
;oth semi-- i.nfinite, so their thicknesses should be input as 0.

%warn - wariing flag (default is 0)

%Initialize -,ariables
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numoflayers=length(layers);
totalthick=sum(layers);

%Convert angle to radians
angle=angle*pi/180;

%Define k vector of incident wave and calculate kx, kt, kz, etc.
ko=2*pi*n(1)/(lambda);
kx=ko*sin(angle);
kt=ko*n(2);
kiz=sqrt(ko^2-kx^2);
ktz=sqrt(kt^2-kx^2);

%Define pti (change of variables) and Rti
pti=kiz/ktz; %TE Wave
Rti=(1-pti)/(l+pti);

%Caicuiate and propagate transfer matrices based on refractive indices
%and thicknesses of layers
if numoflayers>2

for x=2:1:numoflayers-1
ki=ko*n(x-l);
kt=ko*n(x);
kiz=sqrt(ki^2-kx^2);
ktz=sqrt(kt^2-kx^2);
pti=kiz/ktz; %TE Wave
Rti=(1-pti)/(l+pti);
if exist('V)

V=(.5*(l+pti)*[exp(-i*ktz*layers(x)), Rti*exp(-
i*ktz*layers(x));Rti*exp(i*ktz*layers(x)) ,exp(i*ktz*(layers(x)))])*V;

else
V=(.5*(l+pti)*[exp(-i*ktz*layers(x)), Rti*exp(-

i*ktz*layers(x));Rti*exp(i*ktz*layers(x)) ,exp(i*ktz*(layers(x)))]);
end

end
end

%Calculate transfer matrix corresponding to the final layer
ki=ko*n(numoflayers-1);
kt=ko*n(numoflayers);
kiz=sqrt(ki^2-kx^2);
ktz=sqrt(kt^2-kx^2);
pti=kiz/ktz; %TE Wa-re
Rti= (1-pti) / (l+pti);
if exist('V')

V=(.5*(l+pti)*[exp(i*ktz*totalthick),
Rti*exp(i*ktz*totalthick);Rti*exp(-i*ktz*totalthick),exp(-
i*ktz*totalthick)] ) *V;
else

V=(.5*(l+pti)*[exp(i*ktz*totalthick),
Rti*exp(i*ktz*totalthick);Rti*exp(-i*ktz*totalthick),exp(-
i*ktz*totalthick)]);
end

%Calculate R and T from transfer matrix
R=-V(3)/V(1);
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T=-(V(3)/V(1))*V(2)+V(4);

%Calculatie refiectitv
r=abs (R) A2

%Calcuiate transmissvity and absorption
ki=ko*n(l);
kt=ko*n(numoflayers);
kiz=sqrt(ki^2-kx^2);
ktz=sqrt(kt^2-kx^2);
pit=ktz/kiz; %TE Wave
if r+pit*a'bs(T) 2>1.000 %If rt - 1.000 rcunding errors, etc.)

warn=1;
t=l-r;
a=O;
e=l;
angTE=atan(imag(R)/real(R))*180/pi;

else
t=pit*abs (T) A2
t=real(t);
a=l-r-t;
a=real(a);
e=O;
angTE=atan(imag(R)/real (R))*180/pi;

end

%Calcu ate phase shift of reflected wa-ve
if R-=0O

Phase_Shift_Degrees=atan(imag(R)/real(R))*180/pi
end

%2alctlat he e field amplitudes in each layer
A(1)=R;
B(1)=1;
kx=ko*sin(angle);
kt=ko*n(2);
kiz=sqrt(ko^2-kx^2);
ktz=sqrt(kt.^2-kx^2);
pti=kiz/ktz; %TE Wave
Rti=(l-pti)/(l+pti);
if numoflayers>2

for x=2:1:numoflayers-1
ki=ko*n(x-l);
kt=ko*n(x);
kiz=sqrt(ki^2-kx^2);
ktz=sqrt(kt^2-kx^2);
pti=kiz/ktz; %TE ave
Rti=(l-pti)/(l+pti);
V=(.5*(l+pti)*[exp(-i*ktz*layers(x)), Rti*exp(-

i*ktz*layers(x));Rti*exp(i*ktz*layers(x)) , exp(i*ktz*(layers(x)))]);
AB=V* [A(x-1) ;B(x-l)];
A(x) =AB (1);
B(x)=AB (2);

end
end
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%6Calculate the field amplitude in the transmitting region
ki=ko*n(numoflayers-1);
kt=ko*n(numoflayers);
kiz=sqrt(ki^2-kx^2);
ktz=sqrt(kt^2-kx^2);
pti=kiz/ktz; %TE Wave
Rti=(l-pti)/(l+pti);
V=(.5*(l+pti)*[exp(i*ktz*totalthick),
Rti*exp(i*ktz*totalthick);Rti*exp(-i*ktz*totalthick),exp(-
i*ktz*totalthick)]);
AB=V* [A(numoflayers-1) ;B(numoflayers-1)];
A(numoflayers)=AB (1);
B(numoflayers)=AB (2);

Function: energyTM

This function calculates the reflectivity and field amplitudes in a multilayer structure

using the transfer matrix technique for a TM polarized wave.

function [r,A,B,warn]=energyTM(lambda,n,layers,angle,warn);

%function [r,A,B,warn] =energyTM(lambda,n,angle,layers,warn);

%lambda = incident wavelength

%n = a vector with the refractive indices of each layer in the
structure, starting with the top layer. The first layer and last

%layer correspond to the incident and transmitting medium,
%respectl'vely .

%angle - incident angle in degrees

96layers = a vector with the thicknesses of each layer in the structure,
9starting with the top layer. The thicknesses should be given in the
%same units as the wavelength(s). The first layer and layer layer are
%both semi--infinrite, so their thicknesses should be input as 0.

%warn = warnig flag (default is 0)

%Initialize variables
numoflayers=length(layers);
totalthick=sum(layers);

%Convert angle to radians
angle=angle*pi/180;

%Define k vector of incident wave and calculate kx, kt, kz, etc.
ko=2*pi*n(1)/(lambda);
kx=ko*sin(angle);
kt=ko*n(2);
kiz=sqrt(ko^2-kx^2);
ktz=sqrt(kt^2-kx^2);
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%Define pti (change of variables) and ti
pti=(kiz*n(2) 2)/(ktz*n(1)^2); %TM Wave
Rti=(1-pti)/(l+pti);

6<aicullate and propagate transfer matrices based on refractive -ndces
%,and thicklnesses of layers
if numoflayers>2

for x=2:1:numoflayers-1
ki=ko*n(x-1);
kt=ko*n(x);
kiz=sqrt(ki^2-kx^2);
ktz=sqrt(kt^2-kx^2);
pti.=(kiz*n(x)^2)/(ktz*n(x-1)^2); %TM Wave
Rti= (1-pti) / (l+pti);
if exist('V')

V=(.5*(l+pti)*[exp(-i*ktz*layers(x)), Rti*exp(-
i*ktz*layers(x));Rti*exp(i*ktz*layers(x)) , exp(i*ktz*(layers(x)))])*V;

else
V=(.5*(l+pti)*[exp(-i*ktz*layers(x)), Rti*exp(-

i*ktz*layers(x));Rti*exp(i*ktz*layers(x)) , exp(i*ktz*(layers(x)))]);
end

end
end

%Calculate transfer matrix corresponding to the final layer
ki=ko*n(numoflayers-1);
kt=ko*n(numoflayers);
kiz=sqrt(ki^2-kx^2);
ktz=sqrt(kt^2-kx^2);
pti=(kiz*n(numoflayers)^2)/(ktz*n(numoflayers-1)^2); %TM Wave
Rti=(l-pti)/(l+pti);
if. exist('V')

V=(.5*(l+pti)*[exp(i*ktz*totalthick),
Rti*exp(i*ktz*totalthick);Rti*exp(-i*ktz*totalthick),exp(-
i*ktz*totalthick)] ) *V;
else

V=(.5*(l+pti)*[exp(i*ktz*totalthick),
Rti*exp(i*ktz*totalthick);Rti*exp(-i*ktz*totalthick),exp(-
i*ktz*totalthick)]);
end

%Calculate R and T from transfer matrix
R=-V(3)/V(1);
T=- (V(3)/V(1))*V(2)+V(4);

%CacuLt e reflect 7 i tvity

r=abs(R) 2;

%,Calculate t.ransmissivlty and asorption
ki=ko*n(l);
kt=ko*n(numoflayers);
kiz=sqrt(ki^2-kx^2);
ktz=sqrt(kt^2-kx^2);
pit=(n(l)^2)*ktz/(kiz*n(numoflayers)^2); %TM Wave
if r+pit*abs(T) 2>1.000 %If rt > 1.000 (ronding errors, etc.)
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warn=l;
t=l-r;
a=O;
e=l;
angTM=atan(imag(R)/real(R))*180/pi;

else
t=pit*abs (T) ^2

t=real(t);
a=l-r-t;
a=real(a);
e=O;
angTM=atan(imag(R)/real(R))*180/pi;

end

9Calculate phase shift of reflected wavre
if R-=0O

Phase_Shift_Degrees=atan(imag(R)/real(R)) *180/pi
end

%Calculate the field amplitudes in each layer
A(1) =R;
B(1) =1;
kx=ko*sin(angle);
kt=ko*n(2);
kiz=sqrt(ko^2-kx^2);
ktz=sqrt (kt^2-kx^2);
pti=(kiz*n(2)^2)/(ktz*n(1)^2); %TM Wave
Rti=(l-pti)/(l+pti);
if numoflayers>2

for x=2:1:numoflayers-1
ki=ko*n(x-l);
kt=ko*n(x);
kiz=sqrt(ki^2-kx^2);
ktz=sqrt(kt^2-kx^2);
pti=(kiz*n(x)^2)/(ktz*n(x-1)^2); %TM Wave
Rti=(l-pti)/(l+pti);
V=(.5*(l+pti)*[exp(-i*ktz*layers(x)), Rti*exp(-

i*ktz*layers(x));Rti*exp(i*ktz*layers(x)) , exp(i*ktz*(layers(x)) ) ]);
AB=V* [A(x-l) ;B (x-l) ];
A(x) =AB (1);
B(x)=AB(2);

end
end

%Calculate the field amplitude in the transmitting region
ki=ko*n(numoflayers-1);
kt=ko*n(numoflayers);
kiz=sqrt(ki^2-kx^2);
ktz=sqrt(kt^2-kx^2);
pti=(kiz*n(numoflayers)^2)/(ktz*n(numoflayers-1)^2); %TM Wave
Rti=(1-pti)/(l+pti);
V=(.5*(l+pti)*[exp(i*ktz*totalthick),
Rti*exp(i*ktz*totalthick);Rti*exp(-i*ktz*totalthick),exp(-
i*ktz*totalthick)]);
AB=V* [A(x) ;B (x) ] ;
A(numoflayers)=AB (1);
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B(numoflayers)=AB(2);

Function: bandTE

This function uses the transfer matrix technique to calculate the reflectivity and

transmissivity for a TE polarized wave incident on an arbitrary multilayer structure.

function [r, t,a, e,angTE,warn] =bandTE(lambda,n, angle, layers,warn);

un fu c' 't ^ ta, eagTE, w arn] badTE ( lambda n, angle, layers,warn);

%iai/lbda :iLnc-ident: wavelencrgth

r6 - a v·ec!.or wit- ,h the refractive indices of each layer in the
%s;trucz~-re sart:ng with the top layer. The first layer and last

lae-er co'r-respond to he incident and transmitting medium.,

a~nrge -- ii:-c.den- ange n derL-ees

' la~es S - a vec-tor with the thicknesses of each layer in the structure,
%startirg itth the top layer. The thicknesses should be given in the
%same -niltc- as the wa-elength(s) . The first layer and layer layer are

°ot c sci- infnite, so their thicknesses should be input as 0.

.,a. rn :- wa'::w:nIna flag 'default s 0)

%Initli. i ze variables
numoflayers=length(layers);
totalthick=sum(layers);

%':2onve:rt agle t.o radians
angle=angle*pi/180;

-o 3ef iu k ;'ec'tcr f iniLdeint wave and calculate x, kt, z, etc.
ko=2*pi*n(1. ) / (lambda);
kx=ko*sin(angle);
kt=ko*n(2)/n(1);
kiz=sqrt(ko^2-kx^2);
ktz=sqrt(kt^2-kx^2);

%Define pti. !change of variables) and Rti
pti=kiz/ktz; %TE Wave
Rti=(l-pti)/(l+pti);

Cac ula ate and propagate transfer matrices based on refractive indices
%ad hlh. cr 0s5e. of 'layers
if numoflayers>2

for x=2:1:numoflayers-1
ki=ko*n(x-1)/n(1);
kt=ko*n(x)/n(1);
kiz=sqrt(ki^2-kx^2);
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ktz=sqrt(kt^2-kx^2);
pti=kiz/ktz; %TE Wave
Rti=(l-pti)/(l+pti);
if exist('V')

V=(.5*(l+pti)*[exp(-i*ktz*layers(x)), Rti*exp(-
i*ktz*layers(x));Rti*exp(i*ktz*layers(x)) , exp(i*ktz*(layers(x)))])*V;

else
V=(.5*(l+pti)*[exp(-i*ktz*layers(x)), Rti*exp(-

i*ktz*layers(x));Rti*exp(i*ktz*layers(x)) , exp(i*ktz*(layers(x)))]);
end

end
end

%Calculate transfer matrix corresponding to the final layer
ki=ko*n(numoflayers-l)/n(l);
kt=ko*n(numoflayers)/n(l);
kiz=sqrt(ki^2-kx^2);
ktz=sqrt(kt^2-kx^2);
pti=kiz/ktz; %TE Wave
Rti= (l-pti) / (l+pti);
if exist('V)

V=(.5*(l+pti)*[exp(i*ktz*totalthick),
Rti*exp(i*ktz*totalthick);Rti*exp(-i*ktz*totalthick),exp(-
i*ktz*totalthick)]) *V;
else

V=(.5*(l+pti)*[exp(i*ktz*totalthick),
Rti*exp(i*ktz*totalthick);Rti*exp(-i*ktz*totalthick),exp(-
i*ktz*totalthick)]);
end

%Calculate R and T from transfer matrix
R=-V(3)/V(1);
T=- (V(3)/V(1))*V(2)+V(4);

9Calculate reflectivity,
r=abs(R)^2;

%Calculate transmissiv-ity and absorption
ki=ko*n(l);
kt=ko*n(numoflayers);
kiz=sqrt(kiA2-kx^2);
ktz=sqrt(ktA2-kxA2);
pit=ktz/kiz; %TE Wave
if r+pit*abs(T)A2>1.000 9If rt > 1.000 (rounding errors, etc.)

warn=l;
t=l-r;
a=O;
e=l;
angTE=atan(imag(R)/real(R))*180/pi;

else
t=pit*abs(T) 2;
t=real(t);
a=l-r-t;
a=real(a);
e=O;
angTE=atan(imag(R)/real(R))*180/pi;
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end

Function: bandTM

This function uses the transfer matrix technique to calculate the reflectivity and

transmissivity for a TM polarized wave incident on an arbitrary multilayer structure.

function [ r, t,a,e,angTM,warn] =bandTM(lambda,n,angle, layers,warn);

%uncton : r, t a,e, angT, arn l =-andTM ri ambda n, ngl e, la, yers , iarn)

%:iambda = incident wavelength

%n =- a -ector with the refractive rindices of each layer in the
9%tructure, starting with the top layer. The frst lIayer and last
%Layer correspond to the incident and transmitting medium,
%Jrespective. i.

%angle - incident angle in degrees

%layers = a vector with the thickresses of each layer in the structLlr-e,
%startLng with the top layer. The thicknesses should be iv en in he
-9-same units as the walvelength(s}. The first la-er and lazer la-yer are
%beoth semi--infinite, so their thicknesses should be input as 0.

warn = war.ning flag (default is 0)

%Init. alize var'iables
numoflayers=length(layers);
totalthick=sum(layers);

)%Convert an71e to radiar.s
angle=angle*pi/180;

%Define k vector of incident wave and calculate kx, kt, kz, etc.
ko=2*pi*n(1)/(lambda);
kx=ko*sin(angle);
kt=ko*n(2)/n(l);
kiz=sqrt(ko^2-kx^2);
ktz=sqrt(kt^2-kx^2);

%Define pti (change of variables) and Rti
pti=(kiz*n(2) 2)/(ktz*n(1) 2); %TIl4 Wave
Rti=(1-pti),/(l+pti);

%Calculat and propagate transfer matrices based on refract--e -ndi:c-es
%and thickesses of lavers
if numoflayers>2

for x=2:1:numoflayers-1
ki=ko*n(x-1)/n(1);
kt=ko*n(x)/n(1);
kiz=sqrt(ki^2-kx^2);
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ktz=sqrt(kt^2-kx^2);
pti=(kiz*n(x)*2)/(ktz*n(x-1)2); %TM Wave
Rti=(1-pti)/(l+pti);
if exist('V')

V=(.5*(l+pti)*[exp(-i*ktz*layers(x)), Rti*exp(-
i*ktz*layers(x));Rti*exp*exp(i*ktz*layers(x)) , exp(i*ktz*(layers(x)))])*V;

else
V=(.5*(l+pti)*[exp(-i*ktz*layers(x)), Rti*exp(-

i*ktz*layers(x));Rti*exp(i*ktz*layers(x)) ,exp(i*ktz*(layers(x)))]);
end

end
end

%Calculate transfer matrix corresponding to the final layer
ki=ko*n(numoflayers-l)/n(l);
kt=ko*n(numoflayers)/n(l);
kiz=sqrt(ki^2-kxA2);
ktz=sqrt(ktA2-kx^2);
pti=(kiz*n(numoflayers)*2)/(ktz*n(numoflayers-1)A2); %TM Wave
Rti=(1-pti)/(l+pti);
if exist('V')

V=(.5*(l+pti) * [exp(i*ktz*totalthick),
Rti*exp(i*ktz*totalthick);Rti*exp(-i*ktz*totalthick),exp(-
i*ktz*totalthick)])*V;
else

V=(.5*(l+pti)*[exp(i*ktz*totalthick),
Rti*exp(i*ktz*totalthick);Rti*exp(-i*ktz*totalthick),exp(-
i*ktz*totalthick)]);
end

%Calculate R and T from transfer matrix
R=-V(3)/V(1);
T=- (V(3)/V(1))*V(2)+V(4);

6Calculate reflectivity
r=abs(R) 2;

%Calculate transmissiit-i and absorption
ki=ko*n(l);
kt=ko*n(numoflayers);
kiz=sqrt(kiA2-kxA2);
ktz=sqrt(ktA2-kxA2);
pit=(n(l)A2)*ktz/(kiz*n(numoflayers)A2); %TM Wave
if r+pit*abs(T) 2>1.000 %If r+t > 1.000 (rounding errcrs, etc.)

warn=l;
t=l-r;
a=O;
e=l;
angTM=atan(imag(R)/real(R))*180/pi;

else
t=pit*abs(T)^ 2;
t=real(t);
a=l-r-t;
a=real(a);
e=0;
angTM=atan(imag(R)/real(R))*180/pi;
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end

Function: plotTETMfunc

This function looks up the data stored in a specified file storename in the /results

subdirectory and plots it.

function plotTETMfunc(storename,pixres)

funct i; ';otl'ET Mfunc(sto renanme,pixres)

%tstoren-oame = onramze of file in sngle quotes -where the output data is
,stored (i:.- .he /results directory

pt.pixres = ;::ulber f pixels per uir.t wavelength i.e. pi.xels/nm or urn)

%Read out ':.ie esults corresponding to storenaine
fid=fopen(['results/' , storename,'lamb'], 'r+');
Wavelength=fread(fid,'real*8');
fclose(fid);
fid=fopen ( ['results/' , storename,'r'] , 'r+');
Reflect=fread(fid, 'real*8');
fclose(fid);
fid=fopen(['results/' ,storename,'ang'],'r+');
Ang=fread(fid, 'real*8');
fclose(fid);

9Plot the eflectivitv data

figure;
hold on;
plot(Wavelength./pixres,Reflect,'linewidth',2.0)
xlabel (' Wavelength',' fontsize ',18);
ylabel('Refilectivity','fontsize',18);
title('Calculated Reflection', 'fontsize',20);
axis([Wavelength(1)/pixres, Wavelength(length(Wavelength))/pixres, 0,
1.] )

set(gca, 'fontsize ',16);
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