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ABSTRACT

Studying and understanding acoustic scattering pattern from underwater targets has been
of interest to various communities such as the archeologists and the navy for several
reasons and applications. The present state-of-the-art technique in this area involves such
methods as analytical approach and FEM/BEM numerical technique. This thesis aims to
study and demonstrate the power of using the hybrid virtual source/FE approach where
the physical presence of a target is replaced by virtual sources placed in the vicinity of the
target and in a manner where the pressure/displacement relationship on the target surface
is satisfied by the virtual sources when the target is being insonified. Accurate results for
the far-field radiation of the target can be obtained by superposition of the point source
Green's function of each virtual source. The hybrid virtual source/FE approach shows
potential to be a computationally efficient method for computing acoustic scattering.

The derivation of the dynamic flexibility matrix for an elastic conical shell with endcaps
will be illustrated in this thesis. It will be shown that the dynamic flexibility matrix
corresponds to the acoustic admittance matrix in the virtual source approach where the
scattering functions are computed in the MIT's program OASES/SCATT. Moreover, the
benchmarking and validation of the approach will be conducted with the hybrid
analytical/ virtual source approach. Firstly, the approach predicts natural frequencies
close to the theoretical analysis for higher order modes with more than 2 circumferential
transverse vibration lobes. Secondly, it produces displacement profile that conforms to
analytical results. The scattering functions are also in agreement those computed by the
hybrid analytical/ virtual source approach, with discrepancies observed at lower
frequencies. In exact terms, discrepancies start to appear for frequency in the range of
1000 to 2000 Hz for a 0.01m thick, 2 m long, 0.3m radius steel cylinder without endcaps.

The scattering functions will be compared with the SCATT/OASES virtual source
approach for pressure release and rigid cylinders and cones. For the hybrid FE/virtual
source approach, the structural sound speed and density approach zero and infinity for
pressure-release and rigid target respectively. On the other hand, in the SCATT/OASES
virtual source approach, the pressure and displacement are required to vanish on the
target surface respectively. It will be shown that the two approaches agree with each
other.

Moreover, scattering functions over steel cones and cylinders for various frequencies
have also been derived in this research. The results will be interpreted physically and
theoretically in this thesis. The importance of including structural damping in the finite
element formulation of the target so as to reflect the effect of resonance on scattering will
be illustrated. Other issues, such as effect of target orientations on scattering, will also be
investigated in this thesis.

The code has shown good potential for adaptation to compute scattering over other axi-
symmteric shapes using conical shells and circular plates as building blocks and the
hybrid FE/ virtual source approach.
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1 INTRODUCTION

1.1 Background

The ability to detect and classify underwater targets has been of interest to various

communities. For example, undersea archaeologists apply this technique to recover the

remains of material evidence and artifacts. The military also has an interest in this for

purpose of undersea warfare involving submarines, torpedoes and mines.

For most of these applications, it is important to be able to interpret and analyze sonar

signals reflected from the targets. For example, most recent technology for real-time

detection of underwater targets involve bistatic synthetic aperture sonar (SAS) where

autonomous underwater vehicles (AUVs) are deployed for maneuvering and collecting

scattered signals from targets. Such targets could be static such as sea mines or moving

such as torpedoes and submarines. It is crucial to interpret the signals accurately to

classify the targets for such purposes as real-time decision making in cases of undersea

warfare or post-processing for undersea archaeology. Other examples where signal

interpretation is involved include undersea observatories where a real-time network

involving several multi-array sonars and hydrophones is deployed for multi-static

detection and classification.

The physics behind the scattering from targets is itself a complicated issue. In order to

interpret and analyze the scattered signals from the targets, it is important to first

understand the scattering function and strength of basic target shapes with common

material properties, including spheres, cylinders and cones. Firstly, this will aid in the

preliminary classification of targets under this broad category. Moreover, such

understanding shows potential for evolving into prediction for more complicated shapes

and other material properties, especially when robust scattering patterns have been

determined. Extensive research has been conducted to understand the response of

underwater objects such as cylindrical and spherical shells when subjected to acoustic

wave excitation. The methods adopted can be broadly classified under
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(i) analytical and

(ii) numerical techniques.

Closed form analytical solutions are available for the response of elastic spheres and

cylinders under dynamic loading. For more complicated shapes, numerical techniques

have to be employed to determine the response. The solutions are then coupled with

computational ocean acoustic methods to derive the incident pressure on these objects

from source and the re-radiation to receivers in the waveguide. For more simplified

waveguides, such as the Pekeris waveguide and non-stratified pressure-release surface -

rigid bottom, closed form solutions for computing the acoustic propagation are available.

Current research in this area evolves primarily from the need to optimize solution

techniques and accuracy. The general trend at present is to use numerical techniques to

compute radiation from complicated shapes. Since numerical methods are more

computationally expensive and time-consuming than analytical techniques, it is necessary

to find optimum methods for the wide spectrum of problems without compromising

accuracy.
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1.2 Literature Review

1.2.1 Analytical Methods

Junger and Feit [1] formulated the analytical solution for dynamic response of spherical

and cylindrical shells under acoustic pressure loading using elastic wave theory. Using

Hamilton's principle and thin shell theories, the equations of motion for spherical and

cylindrical shells are first derived in the shells' local coordinates. The response of the

shells is then determined analytically from the partial differential equations (PDFs), with

reference to the incident acoustic pressure coming from the far-field. The response of the

shells can then be combined with the free-space Green's function to compute the far-field

radiation of the shells, e.g. by applying large-argument asymptotic expansions. In cases

of rigid and pressure release spheres and cylinders, which approximate the real world of

elastic shells, the pressure and displacement potential relation is obtained by applying the

relevant Dirichlet or Neumann boundary conditions on the target surface. The response

is then used to derive the far-field radiation. Junger and Feit applied the above methods

mainly for simply supported or infinite cylindrical shells. They have also treated the

problem of fluid-filled shells by using the method of effective spring and mass and

included considerations such as damping.

Williams [2] presented another analytical concept for computing scattering on the basis

of Fourier acoustics. In this approach, the surface deformation and normal pressure of

the target is represented in K-space using Fourier transformation and propagated to the

farfield using Green's function. The actual pressure is then determined using inverse

Fourier transform. Other important tools were also introduced, such as Ewald sphere

construction, Rayleigh's integral, plate radiation and supersonic intensity.

1.2.2 Numerical methods

Gordon et al [3] presented numerical techniques for 3-dimensional steady-state fluid-

structure interactions. In particular, the coupled finite element/ boundary element

approach was discussed. The surface fluid pressures and normal velocities were

calculated by coupling the Finite Element (FE) model of the underwater structure with a

discretized form of the Helmholtz surface integral equation of the exterior fluid. Farfield
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radiation pressures are then calculated from the surface solution using the Helmholtz

exterior integral equation. The approach was successfully validated using known

analytical solutions for submerged spheres subjected to both incident pressure and

uniform and non-uniform applied mechanical loads.

Burnett and Zampolli [4, 5] also developed the Finite Element for Structural Acoustic

(FESTA) tool for modeling the response of the arbitrarily shaped targets under acoustic

pressure loading. The multi-static scattering behavior of single and multiple fluid-loaded

elastic targets can thus be derived. The target and its surrounding media are discretized

using finite elements to study the overall response. The h-p adaptive finite-element

technology allows for optimization of convergence and computing time. This is done by

adjusting to an optimum the element size (h-refinement) and polynomial order of selected

elements (p-enrichment).

1.2.3 Computational Acoustic Method

Jensen et al [6] presented various computational acoustic tools for studying the acoustic

propagation in the ocean waveguide. Among the tools is the wavenumber integration

method, an upgraded version of SAFARI [7], by Schmidt. The wavenumber integration

method is based on solving for the depth-dependent Green's function for horizontally

stratified media using a Direct Global Matrix (DGM) solution or Propagator Matrix

approach. By implementing the Fast-Fourier Transform (FFT) technique in the method,

the computational efficiency is greatly enhanced as the far-field radiation can be

computed taking advantage of the asymptotic behavior of the inverse Hankel transform.

Other propagation models introduced include the normal mode and the parabolic

equation approaches.

With the methods and tools established, Schmidt developed OASES [8] wavenumber

integration code and C-SNAP, which implements the range-dependant normal mode

approach. Porter [9] also implemented the range-independent normal mode approach in

the KRAKEN code. With these tools in place, the acoustic propagation can be predicted

accurately in complex environments, including range-dependant waveguide, e.g. around
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sea-mounts. This allows sonar signals to be predicted accurately for purpose of target

detection and classification.

Zampolli et al [10] coupled the FESTA solution with OASES to allow the modeling of

scattering in the ocean waveguide. Due to the computational cost, FESTA is normally

implemented in a domain containing the target and the surrounding medium not larger

than a few, at most a few tens of wavelengths. By coupling with OASES, the scattered

pressure in the near-field is treated as the boundary conditions to OASES for the rest of

the computation to be carried out by wavenumber integration. The proportion of

computational time is normally a few hours for the FESTA step and a few minutes only

for OASES.

1.2.4 Virtual Source Approach

The utilization of the virtual source approach to solve radiation and scattering problems is

well-known. One recent example is the solution to scattering of 3-dimensional sources

by rigid barriers in the vicinity of tall buildings. Godinho et al [11] solved for the

response of the virtual sources equally spaced on the vertical axis of the tall building at

different spatial wavenumbers. The summation of the responses from individual sources

and subsequent spatial Fourier transformation then yields the pressure radiation in the

spatial domain.

Of relevance to the underwater acoustics problems, Schmidt [12] implemented the virtual

source approach to determine the target scattering in an insonified ocean waveguide.

With this approach, the finite element domain is reduced to the target structure itself.

The target is then replaced by point sources that virtually represent the target by having a

consistent displacement-displacement potential relation in the surrounding fluid at

locations on the target surface as dynamic stiffness/ flexibility representation. The

computational time by this method is typically in the order of a few minutes once the

dynamic stiffness/ flexibility matrix of the target is available. This method has proven to

have great potential to derive the scattering in a most computationally efficient fashion

without compromising accuracy.
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1.2.5 FE Modeling of axi-symmetrical shells and plates

The FE modeling method is widely used to solve dynamic problems involving complex

shapes and geometry. The computational efficiency of axi-symmetric objects can be

greatly improved by simplifying the model and using 2-dimensional elements to

represent the object. Ross [13, 14] conducted analysis of this form on FE modeling of

cylinders and conical shells, primarily using the Principle of Virtual Work. By using

Fourier expansion to represent the excitation force, moment, displacement and rotation at

the nodes of the FE model, the shells are replaced by 2-dimensional elements, much like

those that represent beams, except for the additional degrees-of-freedom (DOFs) due to

circumferential displacement and differences in the dynamic stiffness/ flexibility

representation. Numerical solutions using FE are superior for more complicated

problems, such as vessels with varying thickness and complex boundary conditions.

Pardoen [15] adopted a similar approach to analyze the static behavior, vibration and

buckling of axi-symmetric circular plates. The 2-dimensional plate elements have 2

DOFs, transverse displacement and rotation per node. The dynamic stiffness formulation

was presented in the paper. Each element represents an annular plate by itself. The FE

formulation was implemented on a slightly different basis than what Ross performed.

Pardeon used Hermitian interpolation polynomials as shape functions for the elemental

displacement in terms of nodal displacement. Moreover, the static stiffness matrix was

derived using plate theories by Timoshenko [13] to predict the static nodal force vector

associated with the degrees of freedom on the plate. In comparison with the exact

analytical solution, it was demonstrated that the FE model was able to predict natural

frequencies for a clamped-clamped annular plate at a discrepancy not more than 0.1%.
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1.3 Motivation

Currently, the various techniques for computing acoustic scattering from underwater

targets can be categorized and summarized using Fig. 1.1. The boxes in green indicate

focus of the research discussed in this thesis.

Close form solution Type of
available target

Free Complex Type of
space waveguide waveguide

scattering

Close Close form FEM /
form solution for BEM

solution target and Approach
(Junger computational

and Feit) ocean acoustic
method

Solution methods

Figure 1-1 A summary of various techniques for computing acoustic scattering

In the real world, there are many objects that exhibit axial symmetry. Such objects can

be simplified by a 2-dimensional representation by taking a cross-sectional view of the

objects on the plane where the axis lies on. The dynamic response of the target can then

be computed by FE analysis of the 2-dimensional model by discretizing the object using

appropriate elements. With the advent of computational acoustic tools over the last 2
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decades, acoustic propagation in the ocean waveguide can be accurately modeled. In

particular, with the virtual source approach being proven in various areas, it has also

shown potential to be applied in underwater acoustics. With these advancement, it is thus

of increasing interest to study the acoustic scattering from underwater targets using these

tools. The research conducted and described in this thesis is motivated by this.

The research aims to combine the tools available i.e. axi-symmetric FE modeling, virtual

source approach and computational acoustics to predict and prove the method's accuracy

in the prediction of sound radiation from underwater targets. In particular, this research

is geared with MCM (Mine-counter measures) applications in mind. Thus, elastic conical

shells with endcaps are the objects of interest. Moreover, most axi-symmetric objects can

be approximated using these conical shells and endcaps as building blocks. The research

aims to study and derive the method as a useful tool with accuracy and computational

efficiency.
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1.4 Research Objectives

The main objective of this research is to implement the FE method for elastic axi-

symmetric conical shells with endcaps to derive the dynamic flexibility matrix for

subsequent computation of acoustic scattering by the virtual source approach using the

SCATT/OASES program by MIT. In the virtual source approach, the dynamic flexibility

matrix relates the displacement to the pressure on the target surface when the target is

replaced by the virtual sources. The dynamic flexibility matrix thus forms the acoustic

boundary conditions for deriving the target scattering in the waveguide.

The FE code was written based on papers by Ross and Pardeon [13, 14, 15] to compute

acoustic boundary conditions for a conical shell with flat circular plates at both ends,

using 2-dimensional elements to discretize the target. The thickness and material

properties could be independently defined for the endcaps and the conical shell. The

thickness is assumed to be uniform for individual sections of the target. Verification of

the hybrid FE/ virtual source approach was then conducted using the following

approaches:

a. Derivation of the acoustic boundary conditions for an elastic cylinder with

pressure release endcaps using an analytical method as outlined by Junger and

Feit [1]. Similar boundary conditions were being computed using the FE code

developed here. The scattering predicted using the two sets of boundary

conditions were then computed and compared.

b. Computation of the acoustic scattering from rigid and pressure release cones of

various geometry with endcaps using the hybrid FE/ virtual source approach.

Subsequently, the scattering functions were computed by requiring the normal

displacement and pressure on the surface to vanish for the rigid and pressure

release cases, respectively. The results were then compared and checked for

agreement.

c. Computation of acoustic scattering from elastic cylinders with various

orientations using the hybrid FE/ virtual source approach and analysis of results

with physical interpretation.
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d. Computation of acoustic scattering from elastic cylinders at resonant

frequencies and off-resonant frequencies and comparison of results with

theoretical prediction.

With the above validation and comparison completed, the code was then used to compute

the boundary conditions for elastic conical shells and the acoustic scattering was

determined.
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1.5 Thesis Outline

This thesis consists of 5 chapters. The present chapter included background of the

research, a review of current relevant literature, description of motivation and research

obj ectives.

In chapter 2, the theory behind the hybrid FE/ virtual source approach will be described.

The method to replace the target in the waveguide by virtual internal sources and

derivation of the acoustic boundary conditions will first be described. The computation

of scattering by method of superposition of the Green's function of the virtual sources

will then be discussed, followed by the FE approach to derive the dynamic flexibility

matrices of conical shells with endcaps. The efficiency of 2-dimensional representation

of the target and subsequent implementation of Fourier series expansion to compute the

vibration response of the shells and plates in 3-dimensional space will be demonstrated.

Another numerical approach to be described in this chapter is the computational acoustic

method to compute the incident wavefield on the target and the radiation of the target to

the far-field. The various established tools available include the wavenumber integration

and normal mode approach. In particular, the MIT code, OASES and SCATT, which

implements the wave number integration approach was the primary tool in this research.

In Chapter 3, the scattering computational results for an elastic cylinder with or without

endcaps will be used for benchmarking of the FE code. The analytical method of

computing the acoustic response of the shell will first be discussed. The analytical

prediction of resonant frequencies of shells will then be presented and compared with

those estimated by the FE approach. The acoustic scattering from an elastic cylinder with

simply supported end conditions will also be computed and compared for the two

approaches using the analytical approach and the FE method respectively to derive the

acoustic boundary conditions. The scattering from rigid and pressure release cylinder

with endcaps can also be computed by requiring the normal displacement and pressure on

the surface to vanish respectively. The results will be compared with the scattering

computed by the hybrid FE/ virtual source approach for very stiff and flexible target
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respectively. Other issues, such as effect of target orientations and shell resonance on

scattering, will also be discussed in this chapter.

In Chapter 4, the results for acoustic scattering from conical shells with endcaps as

computed by the hybrid FE/ virtual source approach will be presented. Scattering from

pressure-release and rigid conical shells will be computed for benchmarking and

validation.

In the final chapter, the summary and conclusion of the thesis will be presented. Future

work will be suggested such as extending the current model to compute the dynamic

flexibility matrix for other arbitrarily shaped axi-symmetric elastic shells using conical

shell elements of varying angles and plates as building blocks. The acoustic scattering

problem for these shapes can thus be subsequently treated using the virtual source

approach.
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2 THEORY

2.1 Virtual Source Approach

The virtual source approach is illustrated in Fig. 2.1. The physical presence of the target

in the waveguide is replaced by an interior distribution of point virtual sources.

Pi

*f-

PS

/

----------

.4

.4

Physical
target

Virtual
sources
distribution

--------------------- 4

Figure 2-1 Virtual source representation of target

The criteria for placing the virtual sources in this research are adopted from Schmidt [12]

(2.1)'4
d2 = 0.6d,

where di : Spacing of virtual sources distributed on the target surface,
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X: Wavelength of the impinging acoustic waves in surrounding fluid,

d2 Distance of virtual sources from target surface along surface normal.

The incident pressure from the source is denoted Pi(x, y, z) with the associated

displacement Ui(x,yz) where x, y, z are the coordinates in the 3-dimensional space

domain. The scattered pressure is P/(x, y, z) with displacement U5(x,yz). The total

pressure and displacement on the target surface is thus P(x, y, z) and U(x,y,z)

respectively which are the superposition of the incident and scattered fields

(2.2a)

(2.2b)

The pressure on the target surface is expressed in terms of the displacement potential, Y,

(PS dt2 , (2.3)

where ps: Density of target structure,

t : Time,

o> : Radian frequency.

The relation between the total displacement potential and total pressure at the surface of

the target is determined from the boundary conditions, and may be expressed in terms of

the admittance matrix, [A],

(2.4)

By treating each individual virtual source as a point source, the source strength of the

sources can be represented by a column vector {s}. Moreover, by writing the
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displacement potential and displacement at discrete surface points, or nodes, as vectors,

the relations between source strength, scattered field and displacement are

{V, }= [GvJ {s}, (2.5a)

{U, }= [G.e {s}, (2.5b)

where [G,], [Ga] are the matrices of Green's function relating the displacement potential

and displacement field at the nodal locations on target surface due to each individual

virtual source.

Combination of equations (2.2) to (2.5) leads to an expression for the source strength

vector {s},

{s}= Gj-[A]. [G ' .jRA]{Uj}-{y}]. (2.6)

The virtual sources {s} ensure that the total displacement and displacement potential field

on the target surface is consistent with the actual field generated by the physical presence

of the target. The scattered field due to the virtual source representation is thus identical

to that of actual target.

2.1.1 Green's Function Matrix

Assuming spherical coordinates in an unbounded medium, the Helmholtz equation

governing the acoustic propagation in an infinite medium is

, ar2 -+k2 (r)=0. (2.7)
r- ar ar

By applying the radiation condition of no incoming waves from infinity, the displacement

potential and the associated displacement for a point source can then be expressed as

ikr

f(r) = _S e ,(2.8a)
4Rr
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e ikr 1
U(r)= -S ( -1 2), (2.8b)

47c r r

where S : Source Strength of the virtual point source,

k: Wavenumber (Division of frequency (rad/s) by sound speed (m/s) of

surrounding fluid,

r : Radial distance from source.

Thus, the ith-row, jth-column component of the [G,], [G,] can be expressed as functions

of the distance of the virtual source to the nodal location on the target surface by

ikfri -r;|

G = - I , (2.9a)
4;cr - r 1

ikjr --r,

[G = - ( _ - 2), (2.9b)

where r, and r; represent the radial distance from a fixed origin of the ith-node on target

surface and jth-virtual point source respectively. The above expressions are valid for all

cases where the target is positioned within a localized homogenous medium, such as

those within an ocean waveguide or those which are fully buried in a lower halfspace

For the case of targets half-buried in the seafloor, the treatment is slightly more

complicated in the sense that the stratified Green's function has to be applied. Thus, the

Green's function has to derived based on integral transform solution by application to

point source in a fluid halfspace and ensuring satisfaction of continuity across interface

[12].
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2.1.2 Wavefield Superposition

Once the source strength vector {S} has been determined, the acoustic propagation can be

computed by linear superposition. In the case of unbounded medium, the wavefield is

simply the summation of the source strengths multiplied by the free-field Green's

functions. For stratified waveguide, computational ocean acoustics techniques have to

applied as described in section 2.3.
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Acoustic Boundary Conditions for axi-symmetric elastic target

2.2.1 Dynamic Stiffness Matrix of Conical Shells in the 2D domain

Figure 2.2 illustrates the parameters of the conical shell and the discretizing elements.

...............

* Top
V view

Nodei --

Axi-symmetric
element

Node j

UI

I

4

Figure 2-2 Conical shell element

The elements have 2 nodes with 4 degree-of-freedom (DOF) at each node, 3 translational

and 1 rotational. The stiffness matrix for each element was derived by Ross [13],
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[K(n)]cone= ff[B(n)] [D][B(n)]rdOdx. (2.10)

The interpolation matrix [B(n)] relates the strain on the conical shell to the nodal

displacement and rotation while [D] relates the conical shell stresses to its strain

components. The formulation is a result of the application of the principle of virtual

work on the potential strain energy of the conical shell element. n is the order of a

Fourier expansion in azimuth.

Ross also derived the mass matrix in [14]

[M ]= ph J[NI [N ]rddx, (2.11)

where h: Thickness of conical shell,

[N]: Shape functions relating the elemental displacement to nodal

displacement. [N] was derived on the basis of shape functions of Fourier

order n,

u = [u (1-I) + uj]cos n 60a (2.12a)

v = [vi(I -)+ vj ]sin n e'",x (2.12b)

W = [w (I- 3 +24 3 )+<pjl( -2g 2 + ) + w,(3 2 _2;3 )+pl(--2 + 3 ]cosn Oe" .

(2.12c)

In formulating the equation of motion of cylindrical shells, Junger and Feit [1] in addition

included contribution of rotary inertia in the kinetic energy (K.E.) integral formulation,

2 )2

I_ 1h 3 -a WdIa
K.E.= -p 1 fL-2 +2 -- V rddz . (2.13)

2s ( 12 az r 8
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In matrix form, the equation can be expressed in terms of the shape functions to yield

~ ~ - T

ps - 1W 1 aw - w I aw - 2.4
[M(nfl)]rotay - d - - - -v -- - - rd{. (2.14)

12 f cz r a0 az r ar

Thus, the mass matrix [M(n)]cone for conical shell can be represented as the summation of

the contribution due to mass moment of inertia and rotary inertia,

[M(n)]cone = [M] + [M(n)],,ta,, . (2.15)

By assuming that the displacements of the conical shell are to be represented by above

equations and applying the principle of virtual work (which states that if the elastic body

under a system of external forces (including D'Alembert's forces) is given a small virtual

displacement, the net increase in work done by the forces is equal to the increase in strain

energy), the dynamic stiffhess matrix of the conical shell can be derived,

[K(n)lone - co [M(n)Le = 0 . (2.16)

2.2.2 Dynamic Stiffness Matrix of Circular Plates in 2D domain

The element needed to discretize a circular plate is as shown in Figure 2-3. The axi-

symmetric element contains 2 DOF at each node, 1 translational and 1 rotational. The

shape functions that describe the relation between elemental displacement and nodal

displacement without circumferential lobes were described by Pardoen in [15]. The

expressions can be extended to include the effect of the number of circumferential lobes

when the shell vibrates in an acoustic field. The relation between elemental

displacement, shape functions, nodal displacement and number of circumferential lobes

to be used in this present study is

w(r,0) = [ 1 ,(r)wl + D 2(r) p, + (D 3 (r)w2 + 0 4(r) 92 ]cos( n 0), (2.17)

where Os are the shape functions and subscripts indicate the following:
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: Displacement at node i,

: Rotation at node i,

: Displacement at node j,

: Rotation at node j.

r1~j
'4

V

Node i

no-

Node j

Figure 2-3 Elements to discretize circular plates and related DOFs and coordinate
axis

Based on plate theory [16], the equations that relate the moments and shear forces on an

element to the elemental lateral displacement are
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M=d a2+ p--w+ , (2.18)
_ r 2 r ar r 2 a02

Q~ a- - -- ar w ,0 (2.19)
ar rar yr 202

where d : plate rigidity.

To derive the elemental stiffness matrix, the procedures as outlined by Pardoen [15],

together with equations (2.17) to (2.19), were adopted. In principle, Kijth term in [K(n)]pl

was derived by calculating the load required at DOF i to result in a unit displacement at

DOFj. The elemental stiffness matrix is thus a 4 x 4 matrix.

Pardoen [15] derived the mass matrix, by direct substitution of the shape functions into

the element energy integral,

[M ], = psh f j4Nf [N]drdO, (2.20)

Where N = [ I 2 03 D4]-

2.2.3 Global Flexibility Matrix for conical shells with endcaps

The global stiffness and mass matrices were assembled using a standard FE method. The

nodes were numbered top-down, starting from the centre of the top circular plate for a

standing cylinder. The assembly is illustrated in Figure 2.4.
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[M(n)]g /[K(n)]g =

[K(n)]p

[K(n)]cone /

[M]PI/

[K(n)]pi

Figure 2-4 Assembly of global stiffness and mass matrices from individual plate and

conical matrices

The overlapping of the corners of [K],y and [K]pi, [M]cy and [M]pI matrices indicates the

sharing of nodes by the two types of elements at the edge of the endcaps. The equation

of motion for the object with n circumferential lobes can be represented in the familiar

undamped matrix form by equation (2.21).

[K(n)L - co[M(n)L ]{}cos(nO) = {F}cos(nO), (2.21)

where (6) is the vector of nodal displacements on plates and shell

IF) is the vector of nodal forces on plates and shell

Ambiguity in the surface normal direction of the corner nodes that connect the endcap

elements to conical shell elements arises since the adjacent surfaces are perpendicular on

a 2-D view. This is dealt with by 'shifting" of nodal locations by procedures as

described in section 2.2.4. As a result, no corner node will be represented in the

admittance matrix for virtual source computation. Moreover, the circular plate elements

that represent the endcaps do not have torsional degree of freedom in the circumferential
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direction, 0, and are not able to take membrane forces. Thus, the corresponding 2 degree

of freedoms at the corner nodes are removed at this stage by eliminating the associated

rows and columns in the dynamic stiffness matrix.

Only the displacement normal to the object is assumed to be coupled to the external fluid

medium. Under this assumption, the dynamic stiffness matrix of shell normal

displacement was further condensed by extracting only the rows and columns of the

inverse of the dynamic stiffness matrix of all nodal displacements that correspond to the

normal displacement, w and rotation, 9 of the object, both on the circular plates and

cylinder. Thus, equation (2.21) is rearranged to yield

{w,e9}cos(nO) = [K(n)t - C02[M] {F}cos(n0). (2.22)

2.2.4 Admittance matrix in the 3D domain

By principle of virtual work [17], the nodal force vector can be derived from the

elemental pressure by the volume integral,

W = JPwdV. (2.23)

By expressing w in terms of the nodal displacement, i.e. w = (lwi + (i291 + 1jlwj +

(Dj29j where Ds are the respective shape ftnctions, the nodal force vector {F} for one

single plate element becomes

a

{F} = P~r [(Dii cDi2 J ( 2]Trdr, (2.24)
b

where a: Outer radius of annular plate element,

b: Inner radius of annular plate element.

Similarly, for one single conical shell element, {F} is expressed as
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{F}= PfdJ[(DQi t;2 1yi (Dt 2][ai(r) aj(r)]dj{ri rj]T 
, (2.25)

0

where r is expressed in terms of shape functions and radius of the cone at the ith and jth
node i.e.

r = ai(r) r + ai(r) r. (2.26)

In assembling the nodal force vector to form the global force vector in the 2D domain, a

matrix, {Q}, can be formed from equations (2.24) to (2.26) to relate the nodal forces to

elemental pressure, such that

{F}n = {Q} {p}, . (2.27)

By using shape functions, elemental displacement at the mid-point of elements can be

expressed in terms of nodal displacement and rotation, forming a matrix at the global

assembly level,

{U}, = [N]{w,0},. (2.28)

By combining equations (2.3), (2.22), (2.27) and (2.28), the following expression can be

derived:

{U} = pw2[N] K(n)]G 2O[M(f)]G n[Q]V I, (2.29)

leading to the 2D admittance matrix

[A]n = Pw 2 [N]rK(n) - 2 [M(n)]G ] -[ (2.30)

For p number of elements in the 2-Dimensional finite element system of the structure and

with the structure further discretised into q orders in the circumferential coordinate, 0, the

total number of elements is thus pq. To derive the 3-D admittance matrix [A] defined as
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{U}= [A]{y}, (2.31)

where {y} is the vector containing all the elemental displacement potential and {U} is

the vector of elemental normal displacement at midpoint of element. Figure 2-5

illustrates the elemental label in greater details.

Step 3

Ste

Step

" Element

p 2 :

Step 1

Element
q-1 "p

Element
2

Element
p-I

Top view of conical shell

Axis of
symmetry

2-Dimensional side-view of
conical shell

Figure 2-5 Illustration of nodal labeling of finite element structure.

For pressure (po>2ycos(n9)) applied on element j, the displacement on the entire cone

can be represented in discrete form,

{U(9)}= {A1},y, cos(n 0), (2.32)

where {Aj} is a column vector extracted from jth column of the [A], matrix.
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Thus, for a unit pressure applied on element j, the displacement on the entire cone is

expressed by the Fourier series expansion

{U(O)} =I {A}, y, cos(n 0), (2.33)
no

where the terms in the Fourier expansion are

AO
2r

An= 2 sin( nAO)
n c 2

For computational reasons, the summation in equation (2.33) has to be truncated to finite

n. The structural stiffness of the conical shell results in a limit on the bending radius of

the shell, which in turn causes a decrease in magnitude of transverse shell displacement

with circumferential lobes. Thus, higher order modes do not have significant effect on

the radiated field. It has been investigated that orders more than 10 do not have

contribution to the radiation. Thus, the summation truncates at n = 10.

By repeating the above for element 1 to p, the displacement potential - displacement

relation is thus fully defined, due to the axisymmetric geometry of the target. The 3-D

admittance matrix [A] can then be computed and assembled.
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2.3 Farfield Radiation of Target

The incident wavefield on the target from the source and the subsequent waveguide

scattering are computed using MIT's OASES propagation model. The approach used in

the OASES program is the wavenumber integration approach [6,8].

In this approach, the waveguide is first stratified into layers. Within each layer, the

wavefield is represented by an upward propagating and a downward propagating wave

representation in the wavenumber domain. Analogous to the inverse Fourier transform

that allows the signal in the time domain to be computed from the magnitude in the

frequency spectrum, the wavefield in the layer as a function of depth and range can be

thus represented by inverse Hankel transform of the wavenumber representation as

yi(r,z)= fyI(kr,z)J,(kr)krdk,. (2.34)
0

For a layer without a source, the potential representation in terms of wavenumber in the

kernel is comprised of 2 components - A-e iK + A+eiK-z . For a layer with a source, the

displacement potential field includes an additional term in the integration kernel that

represents the Green's function due to a point source. The coefficients in the kernel (i.e.

A+ and A-) are determined from boundary conditions at the interfaces between layers,

such as continuity of displacement and stresses or requirement for some stresses to

vanish, depending on the type of waveguide and the sea bottom characteristics.

The evaluation of the wavenumber integral requires truncation. Thus, the integration is

normally truncated when the above kernel no longer has any significant contribution to

the integration value beyond a certain wavenumber.

There are various ways to solve for the kernel coefficients. In the Direct Global Matrix

Approach, (DGM), equations are set up to solve for the kernel coefficients using the

boundary conditions in the form of matrix representation. Numerical stability and other

computational-related issues such as mapping of matrix elements and wavenumber
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discretization are being discussed in [6]. In the absence of coupling issues and numerical

instability due to evanescent layer, another approach, the Propagator Matrix approach

also proves the be an effective tool for solving the coefficients. Other tools available

include the invariant embedding method. OASES uses the DGM approach with high

numerical efficiency. Moreover, numerical stability has been ensured due to the global

matrix mapping implemented.

The wavenumber integration method takes advantage of the FFT algorithm to evaluate

the integration which makes the computation very efficient and time-consuming. This is

also due to the asymptotic nature of the Bessel function that allows the representation in a

format suitable for FFT possible.

The above allows the field to be computed from and to the farfield. The local scattering

of the target is computed using equation (2.6) to solve for the source strength vector {s}

by MIT's SCATT. Using wavefield superposition, the directivity function D(,4D) can be

derived. The directivity function can be understood as a 3D function that represents the

strength of the radiation as function of the azimuthal and elevation angle such that in a

free-space, it can be simply combined with the Green's function to give the field,

ikr

y/r0, (D) = D (0,<D)
r (2.35)

The directivity function changes with the environment that the target is being placed. For

example, in the case of a half-buried target, the directivity function changes due to

interaction of the field with 2 different medium with different velocities and densities.

In SCATT, the scattered field (in terms of dB scale) is plotted in the form of scattering

functions. The scattering functions are expressed in both the imaginary part and real part

of the directivity function which represents the field in the radiating and evanescent

regime respectively. To compute total pressure, the OASES program combines the

scattered pressure with the original incident pressure in the waveguide.
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3 COMPUTATIONAL RESULTS FOR ELASTIC CYLINDER

In this chapter, the benchmarking and evaluation of the FE code written based on the

equations and theories described in Chapter 2 will be discussed.

For this purpose, an analytical model of the vibration of the shell was set up. In

particular, close form solution for a cylinder, which is a special case of a cone, with

simply supported boundary conditions is available and will be adopted as a model for this

purpose of evaluation. The analytical model will be described in this chapter. The

resonant frequencies of the cylinder will be computed and compared with the FE model

as a first check. This is followed by the computation of the response of the shell when

subjected to various kinds of loading and comparison using analytical and FE model.

Subsequently, computation of scattering by virtual source approach using the admittance

matrix generated by both methods will be compared. Moreover, scattering functions will

also be compared with pressure-release and rigid targets computed internally in SCATT

using the virtual source approach. Other issues, such as changes in scattering pattern

with target orientation and resonant effect of shell on scattering, will be discussed. An

analysis and discussion of results will conclude this chapter.

3.1 Analytical modeling of in vacuo vibration of cylinder

Junger and Feit [1] outlined the procedures for studying the in vacuo vibration of

cylindrical shells starting with the equations of motion. The geometry of the cylindrical

shell is as shown in Fig. 3.1.

In the formulation of equations of motion for the shell, the 3 terms considered are

i. Kinetic energy (K.E.),

1 2 2 2
K.E.=-pshJ(u +v +w )dS, (3.1)

2
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ii. Potential energy (P.E.),

P.E. = -U0J06o-,e,.+ 0 9 0 0 z9
2

where V: Volume,

a-.,: Stresses and strains.

iii. Work done by external displacement potential,

W = fpw0y)wdS.

(3.2)

(3.3)

V

h

Pitch
y

WW, x

Row

F
u, z

Figure 3-1 Analytical cylindrical shell model

Hamilton's principle was applied to all 3 directions of shell to derive the 3 equationss of

motion. Furthermore, simply supported boundary conditions was applied to the shell,

-=0 at z =0 and L,
az
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v=0 atz=0andL,

w=0 atz=0andL.

Thus, to allow computation of deformation of shell under acoustic excitation, the

displacements and displacement potential are expanded in a Fourier series. The 4th order

partial differential equations of motion can be reduced to a linear system of equations.

The Fourier expansion of the displacements and displacement potential are

u = ZU,,,n cosnOcosk,,zei', (3.5a)

v = EVn sinnOsinkize~'", (3.5b)

W= T, cosnOsinkze-'" , (3.5c)

Y/f= ZTn cosnOsink0 ze"', (3.5d)

where km -
L

By using a 2D Fourier series expansion of rectangular function of unit magnitude, the

displacement due to a rectangular patch of pressure applied along z = l to z = 12 at = 0

can be computed at all locations on the shell, where the summation truncates at m 10

and n =10 due to reasons as described earlier in section 2.2.4. The admittance matrix can

thus be formulated by calculating the displacement at discrete patches on the cylindrical

surface due to pressure on all discrete patches at 0 00 along the z-axis.

y = EE,,, cosnOsinknz, (3.6)

2A0 mid mid
where 'Pmn = m 2 [cos(--- 1 ) cos( )] for n = 0,

mz L L
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4 . nAO mid mid
',,n = 2 sin( 2 )[cos( ')-cos( 2)] forn# 0,

mnIT 2 L L

and AO is the width of rectangular patch in the 0 direction.
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3.2 Resonant frequencies of FE model

Using equations (3.1) and (3.2), the equations of motion of the cylinder without pressure

loading are derived. The 4 th order partial differential equations are reduced to 3 linear

equations in terms of Umn, Vmn and Wmn using equations (3.5a) to (3.5c). In terms of

matrix representation, the equations are re-written to yield

2 n2(1-6)
Q -(k~,a)2  2

2
tka

1+v

2
1-v2 -I (ka)2 -n 2

2
n

lkna

-n

-f +1+,f [(ka)2+n 2]2

Normalized frequency ( ),
C,

P2

C,

Square of normalized thickness ( , )12a -

Sound speed ( E ).
p,(1- 2 )

By setting m = 1, the resonant frequencies for various n values from n = 0 to 10 was

computed by solving for the eigenvalue Q that appears only in the diagonal terms in the 3

x 3 matrix.

Using the FE approach described in chapter 2, corresponding discrete model for the

cylinder without endcaps was derived. The circumferential degree of freedom, v and
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transverse degree of freedom, w at the ends of the cylinder were constrained so that the

boundary conditions were also identical.

To compare the FE code with the analytical modeling, a simply supported cylinder with

material properties and geometry as described in Table 3.1 was used for simulation by

both approaches. 2 elements of length Im each were used to represent the cylinder, thus

resulting in 8 degrees of freedom after 2 had been removed from each ends due to

constraints of boundary conditions.

Table 3-1 Material properties and geometry of a simply supported

natural frequencies

cylinder for comparing

The natural frequencies for the transverse vibration were plotted and compared as shown

in Fig. 3.2 for both the analytical and FE model. The natural frequencies were not plotted

for n values less than 3 for the FE model as the FE model was not able to produce

eigenvalues corresponding to distinct mode shapes that represent resonance of transverse

vibration. Moreover, it was also observed that the FE model agrees very well with the

analytical model with slight discrepancies at lower order modes n = 3 and 4. This shows

that the FE model generated from 2-D elements may not be able to represent the

cylindrical shell for lower order modes as well as higher order modes.
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Thickness (m) 0.01

Radius (m) 0.3

Height (in) 2

Young's Modulus (N/m2) 206

Density(kg/m3) 7500

Poisson's ratio 0.3
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Figure 3-2 Normalized natural frequencies. Q of transverse vibration mode for various

number of circumferential lobes, n as predicted by both the FE and analytical models

The reasons for the differences and absence of eigenvalues in FE model corresponding to

lower order modes can be deduced by studying the main difference between the

analytical and FE models i.e. stiffness. The finite degrees-of-freedom in FE models

results in greater stiffness. This effect is more prominent in the prediction of lower

natural frequencies where the ratio of added stiffness due to discretization to the actual

stiffness of physical model is large. Moreover, due to the simplification of a 3-D to 2-D

model, 3-D mode shapes corresponding to coupling of vibrations in various directions

may not be very well represented in a 2-D axi-symmetric conical shell model.
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For such cases, 3-D thin shell elements might be necessary for the FE implementation to

generate the respective mode shapes with lesser circumferential lobes.

50



3.3 Response of cylinder under acoustic pressure loading

In this section, response of the FE model under acoustic excitation will be further

compared with the analytical model.

3.3.1 Displacement potential of the form Yr = -n cosn Osin-ze"
L

For the analytical model, equation (3.7) was used to solve for the response. The right-

0
hand side of the equation can be replaced by column vector 0 Iwhere Tm is the

coefficient as used in equation (3.6). For purpose of evaluation, the pressure is assumed

to be

P = PCW2 V P' cosn 0sin- ze"
L

Where T is the coefficient of the Fourier series expansion as defined in equation (2.33)

and AO had been arbitrarily assumed to be 100.

By solving equation (3.7) with the above inputs for Umn, Vmn and Wmn, the deformation

magnitude on the entire cylinder is given by equations (3.5a) to (3.5c).

For the FE model, equation (2.29) was used. The column vector {M}2D takes values of

the function Tn sin(-z) where z is the z-coordinate on the shell of the mid-point of the
L

element corresponding to the particular row of the column {Y}2D. The vector

{U} 2DcOs(nO) thus defines the deflection of the entire cylinder under the loading.

For an excitation frequency corresponding to kr = 3 for the model illustrated on Table 3-1

and surrounding fluid sound speed of 1500 m/s,

4 K(0.3) = 3
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(O
-=10
C

4 (o = 15000

4 f= 2387 Hz.

Also, a pressure loading of magnitude pof'P, cosn~sin- was applied. The difference in
L

loading between the 2 approaches is as illustrated in Fig. 3.3, for a discretization length of

-. Due to the discrete nature of the FE model, the loading in this case is step-wise
4

sinusoidal as opposed to the continuous analytical model that produced a smooth

sinusoidal loading profile.

0 0.2 0.4 0,6 0.8 1
z-coordinate (m)

1.2 1.4 1.6 1.8 2

Figure 3-3 Plot of normalized displacement potential along the z-coordinate for 0

0' for both analytical and FE model
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The deformation obtained by the FE and analytical models are as shown in Fig. 3-4 for n

= 1 and in Fig 3.4 for n = 5.
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From Fig 3.4 and Fig. 3.5, it is observed that the patterns of deformation are very similar

for the two approaches. The peak deformation is also observed to be consistently higher

for n = 5 than n = 1 for both methods. The discrete nature of the FE approach resulted in

lower resolution in the deformation profile.

Moreover, due to the limited degrees of freedom as opposed to the analytical approach

that has an infinite degree of freedom, the FE model is stiffer. There is also a difference

in loading profile between the 2 approaches as described in Fig. 3.3. As a result of these

factors, the magnitude of deformation is lower for the FE model

It is also interesting to note that though the magnitude in deformation is positive for 0

0 , the applied pressure is actually negative. This is a result of the requirement for the

sign convention for the displacement potential and displacement to be consistent with

SCATT program. The applied pressure and displacement are thus in the opposite

direction. Thus, the plots in Fig. 3.4 and Fig. 3.5 illustrated that the displacement is

actually out of phase with the pressure loading. This is consistent with theoretical

prediction. As shown in Fig. 3.2, the natural frequencies for both modes (i.e. 1 and 5

circumferential lobe) have natural frequencies lower than the excitation frequency of

2387 Hz, resulting in the out-of-phase vibration.

N ~ z

3.3.2 Displacement potential of the form n cosn 0sin ze
n=0 L

A similar analysis as the one conducted in part I. was carried out. The only difference is

in the loading, which takes the form of equation (3.9)

P = p) y=P N T cos n0 sin- (ze" (3.9)
n= L

Where % is the coefficient of the Fourier series expansion as defined in equation (2.33)

and AO had been arbitrarily assumed to be 100. For purpose of this analysis, n was

arbitrarily set to n = 2 and n = 7 for verifying consistency between the 2 approaches. The
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deformation as a result of analysis by both FE and analytical models are as shown in Fig.

3-6 and Fig. 3-7.
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Close agreement in the deformation profile is observed in this part of evaluation between

the 2 approaches. Similar scale of difference in magnitude between the 2 approaches as

observed in section 3.3.1 is also observed here due to reasons accounted for.

To provide an alternate perspective in comparison of the 2 approaches, Fig 3.8 illustrates

the deformation predicted by FE modeling, analytical modeling and displacement

2N )

potential due to the the applied loading of ~ P X Y Tn cosn O sin - z for n = 2 at
n=O L

z = Im. It can be observed that the analytical model predicts greater deformation than the

FE model due to its lower stiffness as discussed earlier in section 3.3.1. Moreover, the

deformation along the circumferential angle by both methods follows closely the lobes of

the applied loading.
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Figure 3-8 Comparison of FE model, analytical model deformation and displacement
N 7r

potential nT cosndin-z forn= 2 atz= Im
n=O L
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This section demonstrates the accuracy level of the FE model in prediction of the

deformation profile and thus ability in generating the admittance matrix for representing

the acoustic boundary condition in the virtual source approach of target scattering

prediction. The accuracy in the scattered field computed using these admittance matrices

will be further investigated in the following sections.
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3.4 Acoustic Scattering from steel cylinder without endcap

The admittance matrices for representation of boundary conditions on the target surface

were generated for various frequencies and material properties using the FE approach as

outlined in section 2.2. Moreover, the corresponding matrices were generated using the

analytical approach as outlined in section 3.1.

The material properties are those for a steel cylinder used in chapter 2 of [2]. In

summary, the material properties and the dimension of the simply supported cylinder

without endcap is as shown in Table 3-2. The coordinate system and pitch/roll axes of

the cylinder are consistent with that shown in Fig. 3-1. In summary, the target orientation

and position with reference to the incident plane waves is as illustrated in the benchmark

scenario for target scattering in free-space model (Appendix A).

Table 3-2 Material properties and geometry of a simply
studying acoustic scattering

supported steel cylinder for

The admittance matrices generated were then input into OASES/SCATT for computation

of scattering function for both the horizontal (x-y) plane and vertical (x-z) plane in a free-

space. The .dat file for use with the oast command in OASES [8] is as shown in

Appendix B.
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Thickness (m) 0.01

Radius (in) 0.3

Height (m) 2

Young's Modulus (N/m2) 195 x 109

Density(kg/m') 7700

Poisson's ratio 0.28



For SCATT, the parameters used are as shown in Table 3-3.

Table 3-3 SCATT parameters used in studies

The scattering is computed for a hypothetical target due to the fact that the interior of the

simply supported cylinder is vacuum. In reality, this is not possible since the endcaps are

not present. But, for the purpose of benchmarking the FE approach against the hybrid

analytical/virtual source approach, it is an effective model. The scattering function (SF)

is is defined as

SF = 20 logID(O, (D)l (3.9)

where D is the directivity function [2]. Moreover, in the virtual source approach

representation, the incident field is of unity pressure plane waves.

Fig. 3-9 to Fig. 3-11 illustrate the vertical scattering function (x-z plane) and horizontal

scattering function (x-y plane) for frequencies of 5000 Hz, 2387 Hz and 1000 Hz

respectively, for plane waves in the direction perpendicular to the cylinder's z-axis. Due

to the symmetry of scattering functions about the x-axis as shown in Fig. 3-1, the vertical

scattering function has been plotted only for angle, pv between -90' to +900 where 00

corresponds to the vertical z-axis (i.e. broadside axis). The scattering angle pv, is defined

as

YV sin- (k) (3.10)
k

61

Number of sources in axial direction 30

Pitch of target 00

Roll of target 00



Moreover, to demonstrate the evanescent field, the scattering function plots have also

been extended for 19v I > 900 where the scattering angle and the radial wavenumber are

360 k k
arbitrarily related by 9v = 90+ log[-L + ( -1]. In the plots, positive angle

2r k

implies scattering in the forward direction while negative angles implies backscatter.

For horizontal scattering functions, polar plots are shown where 00 corresponds to the x-

axis in the forward scatter direction. The horizontal scattering function plots were with

reference to -20dB/Pa.

From the Fig 3.9 to 3.11, it is observed that there is close agreement between the hybrid

finite element/virtual source approach and the analytical/virtual source approach in

computing the scattering from the simply supported cylinder for higer frequencies. This

is evident from the Figs. 3-9 and 3-10. However, at lower frequency of 1000 Hz (ka =

1.26), there was distinct difference between the 2 approaches, especially at broadside

angle.

The earlier observation as described in section 3.2 that the FE and analytical models show

discrepancies in prediction of natural frequencies for modes of lesser circumferential

order indicates that at low frequencies, the 2 models do not agree well. Thus, at the lower

frequency of 1000 Hz, the effect of difference has not dampened off as compared to

higher frequencies.

A similar simulation was conducted for a cylinder of thinner shell of 0.005m. This

cylinder has lower natural frequencies for lower order modes due to the more flexible

shell. Thus, at 1000 Hz, the effect of discrepancies for those modes is expected to have

dampened off more as compared to that for 0.Olm shell. The scattering functions are

plotted as shown in Fig. 3-12 supporting the above conclusion at low frequencies since

the 2 approaches agreed well in this case.
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Figure 3-9 Scattering functions for frequency 5000 Hz and shell thickness 0.01m
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Scattenng Function for frequency = 2387Hz
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Scattenng Function for frequency = 1000Hz
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Scattenng Function for frequency 1000Hz
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3.5 Acoustic Scattering from steel cylinder with endcap

In this section, the evaluation of the computation of acoustic scattering from steel

cylinders with endcaps will be discussed. The entire steel cylinder capped with flat plates

on both ends was discretized with the elements as described in Chapter 2 to represent

various target surface boundary conditions.

3.5.1 Rigid and Pressure Release Target Surface

By allowing the structural sound speed and density to approach infinity, the target

material represents a rigid boundary condition on the surface. To achieve this, the

density of the material was set to an order of 1023 times that of the steel material as

described in Table 3-2. Since the structural sound speed is proportional to , the

Young's Modulus was set to 1069 times that of the same steel material. Other geometry

as illustrated in Table 3-2 were preserved.

In the SCATT virtual source approach, the scattering function of an equivalent target

with rigid surface boundary condition can be computed analytically by requiring the total

displacement on the target surface to vanish. The source strength vector for the virtual

sources was then computed to meet this requirement and the scattering function

subsequently computed.

Fig 3-13 shows the comparison of scattering functions as computed by both the 2

approaches. The frequency is 2387 Hz corresponding a ka (product of wavenumber and

cylinder outer radius) value of 3.
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The Figure shows the close agreement in scattering functions computed between the 2

approaches, illustrating the validity of FE generation of admittance matrix for virtual

source computation in this aspect.

A similar approach was conducted for pressure-release target surface. For the FE

approach, the density and Young's modulus were respectively set to 10-23 and 10-69 times

that of the material in Table 3-2. This corresponds to near-zero structural sound speed

and density and thus represents a pressure-release target. In the SCATT virtual source

approach, the scattering function of an equivalent target with pressure-release surface

boundary condition can be computed analytically by requiring the total pressure on the

target surface to vanish. The source strength vector for the virtual sources was then

computed to meet this requirement and the scattering function subsequently computed.

Fig. 3-14 shows the comparison of scattering functions by the two approaches and the

close agreement between them.
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3.5.2 Elastic Target Surface

For the material and geometry as described in Table 3-2, the acoustic scattering for the

steel cylinder with endcaps was computed using the admittance matrices generated from

the FE code. The coordinate system and pitch/roll axes of the cylinder are consistent

with that shown in Fig. 3-1.

Figs. 3-15 and 3-16 show the comparison between the scattering functions in the

horizontal and vertical directions for the cylinder at a frequency of 2387 Hz. The

scattering functions are compared to earlier results for the cylinder without endcaps. 3

plots are shown in the 2 figures:

a. Fig 3.15 -- Horizontal scattering function for 0"<PH<3 600 where pH = 0' is the

forward scatter direction.

b. Fig 3.16a - Vertical scattering function corresponding to the propagating

wavefield for 00<(P<3600 where 9v = 00 is the forward scatter direction and

(Pv = sin-, ()
k

c. Fig 3.16b - Vertical scattering function corresponding to the evanescent

wavefield and

360 k, k
pv - log[--+ ( )-1]

2T k

For the frequency at 2387 Hz, it can be observed that there's a significant difference in

scattering function between the models with and without endcaps. In particular, there is

an increase in scattering strength in the range 60'<PH<3000 in the horizontal plane when

the endcaps are being removed. The increase even extends to a range of 30"<9v<3300 for

propagating scattering function in the vertical plane. For the evanescent field, the

cylinder without endcaps also produce stronger field in the backscatter direction.
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The above observation is interesting as it is different from a first intuition that the

presence of endcaps should reflect sound better and thus cause stronger scattering. This

can be accounted for by looking at the virtual source representation in the perspective of

the requirement for these sources to satisfy the acoustic boundary conditions for an

exterior problem [2]. Due to the presence of encaps, conditions have to be specified for a

broader boundary that spans the endcaps' surface. Such conditions do not necessarily

imply a stronger radiation, depending on a myriad of factors such as frequency, geometry

of target and surrounding medium. This is analogous to an interior problem, such as plate

vibration problems, where specifying the loading-displacement relation actually results in

lesser degrees-of-freedom and may result in lower dynamic deformation.

The main physical difference between the two cases is that the cylinder without endcaps

approximates an open tube while that with endcaps represents exactly a closed cylinder.

Such factors as difference in diffraction pattern and the interaction of the elastic plates

with the medium, resulting in possibility of partial cancellation of scattered waves from

the cylinder by those from the endcaps, can also account for the lower scattering.
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Figure 3-15 Horizontal Scattering function at 2387 Hz for steel cylinder
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Figure 3-16 Vertical scattering function at 2387 Hz for steel cylinder
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Figs. 3-17 and 3-18 show the comparison between the scattering functions in the

horizontal and vertical direction for the cylinders at a frequency of 5000 Hz. The

scattering functions are at the same time compared to the solution obtained if endcaps

were not included.

At the higher frequency of 5000Hz, scattering from the cylinders are more specular than

that at lower frequencies where interaction between the sound waves and structure

contributes significantly to scattering. Thus, sidelobes of the vertical scattering at

5000Hz from the cylinder with endcaps are stronger than that for the cylinder without

endcaps since direct specular reflection from the endcaps results in stronger scattering in

the vertical z-direction. This is not observed at the lower frequency of 2387Hz.

It is also observed that at higher frequencies, i.e. higher wavenumber, the scattering

pattern has more sidelobes. This is also consistent with the pattern change with

increasing frequency for rectangular baffled piston [2].
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Figure 3-17 Horizontal Scattering function at 5000 Hz for steel cylinder
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Figure 3-18 Vertical Scattering function at 5000 Hz for steel cylinder
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3.6 Scattering from a pitched cylinder

The steel cylinder with endcaps and material properties as described in Table 3-2 was

analyzed with a different target orientation from the studies described so far in this thesis.

The pitch and roll angle of the cylinder were consistent with that shown in Fig. 3-1. In

summary, the target orientation and position with reference to the incident plane waves is

as illustrated in the benchmark scenario for target scattering in free-space model

(Appendix A).

The SCATT parameters defined in Table 3-3 were used, except the pitch was set to 900.

Thus, the cylinder's axis (z-axis) is in the same direction as the wave propagation

direction. The endcaps were thus normal to the wave direction. The scattering functions

using the FE admittance matrix were computed for the cases with and without endcaps

and plotted in Fig 3-19. As the vertical and horizontal scattering functions are identical

in this case, due to symmetry, except for an additional evanescent field in the vertical

scattering function, only the vertical scattering functions were plotted.

Contrary to the identical forward and backward scattering strength for the cylinders with

and without endcaps when the target is not pitched (e.g. as observed in Fig. 3-18 of

section 3.5.2), there is a significant difference in the strength in the backscatter when the

target is pitched. It can be observed that the presence of endcaps result in a stronger

backscatter due to the direct reflection from the endcaps. The difference is of order

10dB. In particular, the difference is very prominent in the range 1200<9v<240'. This is

consistent with the physics of sound reflection from a plate.

For the forward scatter direction, the scattering strength is comparable for both cases.

Thus, it is apparent that the endcaps on the bottom of the cylinder (i.e. on the rear of the

pitched cylinder) has relatively lesser effect on the scattering profile and strength.

The evanescent field is also stronger by about 5 dB for the cylinder with endcaps in the

backscatter direction while the forward evanescent scatter is almost unaffected by the

endcaps.
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Figure 3-19 Vertical Scattering function at 5000 Hz for steel cylinder
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3.7 Scattering strength at resonance

The effect of resonance of cylinder on scattering is being studied and discussed in this

section. The simply supported cylinder without endcaps and parameters as described in

Table 3-2 was analyzed at 2 frequencies - 2160 Hz and 2387 Hz. 2160 Hz corresponds

to resonance of the simply supported cylinder at n = 9 i.e. shell transverse vibration mode

shape with 9 circumferential lobes. 2387 Hz corresponds to off-resonance frequency and

ka value of 3. The scattering functions were computed for parameters according to Table

3-3. The horizontal scattering functions were plotted on Fig. 3-20 while vertical

scattering functions, both propagating and evanescent, in Fig 3-21.
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Figure 3-20 Comparison of horizontal scattering functions for simply supported steel

cylinder at and off resonant frequency for n = 9
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Figure 3-21 Comparison of vertical scattering functions for simply supported steel

cylinder at and off resonant frequency for n = 9
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A sharp peak is expected in the plot of shell transverse displacement against frequency at

frequencies corresponding to the eigenvalues to FE model, since damping is not

considered in the FE formulation. Since the eigenvalues of the dynamic stiffness matrix

do not agree exactly with the resonant frequencies of the continuous cylindrical model,

2160 Hz might not actually correspond to the eigenvalues. Thus, increase in scattering is

not observed at 2160 Hz.

From these observations, implications could be drawn that it is important to include

damping in the model to provide a better physical representation. It can be seen from the

example above that unless the scattering is computed exactly at where the peak

corresponding to a singularity in magnitude occurs, it is not possible to reflect

contribution of shell resonance in scattering strength. Moreover, the eigenvlaues of the

FE model do not correspond exactly to the resonance of a real damped structure, since

damping shifts the resonant frequencies.

Thus, structural damping could be included in the FE model so that instead of a sharp

peak at eigenvalues, a gentler slope leading to and falling off the peak of shell

displacement at resonant frequencies would result. While sampling the scattering

strength from the shell, increase in magnitude could be obtained since scattering would

be higher for a band of frequencies containing the resonant frequencies, instead of a

singularity. When coupled with the virtual source approach, fluid added mass and

radiation damping would also be included that provides a complete model for the

scattering computation.

To show the robustness of the above conclusions, 2 more cases were computed and the

results are as shown in Fig. 3.22 to 3.25. Fig. 3.22 and 3.23 show the scattering from the

cylinder at 1304 Hz (resonant frequency of the cylinder for n = 7) as compared to a

slightly higher frequency at 1350 Hz. Fig. 3.22 and 3.23 show the scattering from the

cylinder at 3230 Hz (resonant frequency of the cylinder for n = 11) as compared to a

slightly higher frequency at 3300 Hz. No increase in scattering strength at resonant

frequencies of the cylinder is observed for these cases, supporting the above argument

and emphasizing the importance of considering damping in the structural model.
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Figure 3-22 Comparison of horizontal scattering functions for simply supported steel

cylinder at and off resonant frequency for n = 7
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Figure 3-23 Comparison of vertical scattering functions for simply supported steel
cylinder at and off resonant frequency for n = 7
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Figure 3-24 Comparison of horizontal scattering functions for simply supported steel
cylinder at and off resonant frequency for n = 11
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Figure 3-25 Comparison of vertical scattering functions for simply supported steel
cylinder at and off resonant frequency for n = 11
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3.8 Discussion

This section provides a summary of the findings in this chapter and conclusions drawn

from the observations.

Fig 3-2 shows the accurate prediction of resonant frequencies of the transverse cylindrical

vibration modes with more than 2 circumferential lobes by the 2D axi-symmetric conical

shell FE model. However, no eigenvalue was observed for distinct mode shapes that

correspond to transverse vibration modes with 2 or less circumferential lobes in the FE

dynamic stiffness matrix, and it thus does not yield frequency for these modes. This is

due to the coupling of lower order modes that results in 3-D mode shapes that may not be

very well represented by a 2-D axi-symmetric conical shell model.

Moreover, from Fig. 3-4 to 3-7, it can be gathered that the FE code predicts displacement

profile of a simply supported cylinder very closely to analytical predictions, but yields

lower magnitude due to the stiffness of the elements that constrain the target to a finite

degree-of freedom system. When implemented with the virtual source approach, it

computes the scattering functions of pressure-release and rigid cylinders with endcaps

that agree with the computation by requiring the pressure and displacement to vanish on

the target surface respectively (Fig. 3-13 and 3-14). It also predicts scattering accurately

for higher frequencies but start to show some discrepancies from the hybrid analytical/

virtual source approach at low frequencies. As a reference, for a 0.01m thick, 2 m long,

0.3m radius steel cylinder, discrepancies start to appear for frequency in the range of

1000 to 2000 Hz, as observed in Fig.3-1 1. The discrepancies tie in closely with earlier

observations about the estimation of natural frequencies for lower order circumferential

modes.

For the cylinders, it was also observed that the absence of endcaps produce stronger

vertical scattering in the endfire direction and backscatter for plane waves coming in a

direction normal to the axial direction of the cylinder, as seen in Fig 3-15 and 3-16, for

frequency of 2387 Hz. This phenomenon has been understood as a result of the

requirement to satisfy the conditions for a broader boundary for the cylinder with endcaps
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in the form of an exterior problem. Physically, such factors as difference in diffraction

pattern and the interaction of the elastic plates with the medium in the case of the cylinder

with endcaps can also account for the lower scattering.

At higher frequencies, due to the dominance of specular reflection in the scattered

wavefield, the scattering functions, relative to that at lower frequencies, are more

identical as illustrated in Fig. 3-17 and 3-18 for the case of 5000 Hz.

Agreement with physical prediction of the scattered wavefield was observed for the

hybrid FE/ virtual source approach as shown in Fig. 3-19 for the case of plane waves

coming in a direction parallel to the axial direction of the cylinder. The cylinder with

endcaps produce a stronger backscatter that that without endcaps as the incident

wavefield was directly reflected in the normal direction backwards by the flat endcaps.

Finally, as opposed to the general expectation that the scattered wavefield should be

stronger at cylinder's resonance, the hybrid FE/ virtual source approach developed so far

in this thesis did not produce stronger scattering functions for the cylinder at resonance.

This is due to the singularity in shell displacement at the eigenvalues of FE model and the

difference between eigenvalues and the actual resonant frequencies of the continuous

cylindrical model. Thus, strong scattering as anticipated can only be obtained at the

peaks corresponding to the singularities, which is very hard to achieve due to precision of

computation. A feasible solution is to include structural damping in the FE model, as

discussed. Considering damping results in stronger scattering for a band of frequencies

containing the resonant frequencies, instead of a singularity. When coupled with the

virtual source approach, fluid added mass and radiation damping would also be included

that provides a complete model for the scattering computation.
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4 COMPUTATIONAL RESULTS FOR ELASTIC CONE

In this chapter, computation of scattering by FE/ virtual source approach will be

implemented for conical shells with endcaps. Scattering functions will be compared with

pressure-release and rigid targets computed internally in SCATT using the virtual source

approach and by requiring the pressure and normal displcament to vanish respectively.

Scattering functions for elastic conical shells will also be computed. A discussion and

comparison of results will conclude this chapter.

In this section, unless otherwise stated, the material properties and geometry of the cones

studies are stated in Table 4-1. Moreover, the target orientation and position with

reference to the incident plane waves is as illustrated in the benchmark scenario for target

scattering in free-space model (Appendix A).

Table 4-1 Material properties and geometry of steel cone with endcaps for studying
acoustic scattering
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Thickness (m) 0.01

Top Radius (m) 0.2

Bottom Radius (m) 0.4

Height (m) 2

Young's Modulus (N/m2) 195

Density(kg/m 3) 7700

Poisson's ratio 0.28



4.1 Acoustic scattering from pressure release and rigid cone with endcaps

In this section, the evaluation of the computation of acoustic scattering from rigid and

pressure release cones with endcaps will be discussed. The entire cone capped with flat

plates on both ends was discretized with the elements as described in Chapter 2 to

represent the target surface boundary conditions and the scattering function computed for

evaluation.

For the rigid cone, the structural sound speed and density was set to approach infinity so

that the target material represents a rigid boundary condition on the surface. All other

parameters are unchanged. On the other hand, scattering functions of an equivalent target

with rigid surface boundary condition can be computed analytically by requiring the total

displacement on the target surface to vanish in the SCATT virtual source approach. Fig

4-1 and Fig. 4-2 show the comparison of horizontal and vertical scattering functions as

computed by both the 2 approaches described. The frequency was 2387 Hz

corresponding to a ka (product of wavenumber and cone mean outer radius) value of 3.

The scattering angles, PH and pv are defined as before.

Honzontal Scatterng Function for frequency = 2387Hz
Reference Level -20 dB/Pa
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Figure 4-1 Horizontal Scattering function at ka =3 for rigid cone with endcaps
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Figure 4-2 Vertical Scattering function at ka =3 for rigid cone with endcaps

89

210

80

180



The Figure shows the close agreement in scattering functions computed between the 2

approaches, illustrating the validity of FE generation of admittance matrix for virtual

source computation in this aspect.

A similar approach was applied for the pressure-release target surface. For the FE

approach, the density and Young's modulus were respectively set to 10-2 and 1069 times

that of the material in Table 4-1. This corresponds to near-zero structural sound speed

and density and thus represents a pressure-release target. On the other hand, scattering

functions of an equivalent target with pressure-release surface boundary condition can be

computed analytically by requiring the total pressure on the target surface to vanish in the

SCATT virtual source approach.

Fig. 4-3 and 4-4 show the comparison of horizontal and vertical scattering functions by

both approaches and the close agreement between them.
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Figure 4-3 Horizontal Scattering function at ka =3 for pressure cone with endcaps
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Figure 4-4 Vertical Scattering function at ka =3 for pressure-release cone with endcaps
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4.2 Acoustic scattering from elastic cone with endcaps

For the material and geometry as described in Table 4-1, the acoustic scattering for the

steel cone with endcaps was computed using the admittance matrices generated from the

FE code. Figs. 4-5 and 4-6 show the scattering functions in the horizontal and vertical

direction respectively for the cone at a frequency of 2387 Hz. The scattering functions

for the cylinder as described in section 3.5.2 and material properties and geometry in

Table 3-2 was plotted as well for comparison. The scattering angles, (pH and (pv take on

the earlier definitions in section 3.5.2.
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Figure 4-5 Horizontal scattering functions at ka =3 for steel cone with endcaps
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Figure 4-6 Vertical scattering functions at ka =3 for steel cone with endcaps
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From the plots, it can be observed that the conical shell produces a very much stronger

backscatter of close to 10dB than a cylinder of equivalent size. The forward scatter is, on

the other hand, very similar.

In particular, the backscatter is strongest in the upward direction, which is in agreement

with intuition that the oblique angle of the shell produces strong specular reflection in the

upward backscatter direction. The forward scatter is also stronger in the upward direction

for the same reason. In all, the shape of the target has resulted in more energy to be

scattered in the upward than downward direction, relative to that by a cylinder.
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4.3 Discussion

In this section, it has been shown that the hybrid FE/ virtual source approach computes

the scattering functions of pressure-release and rigid cones with endcaps that agree with

the computation by requiring the pressure and displacement to vanish on the target

surface respectively (Fig. 4-1 to 4-4).

Moreover, for a steel cone of O.Olm shell thickness, 0.3m radius and 2 m height, it was

also observed that more backscatter was generated when compared to that of a steel

cylinder of equivalent size. This is particular so in the 150'<'Pv<1800 and 1200<PH<2400

range, as observed in the Fig. 4-5 and 4-6, due to the oblique angle of the conical profile.

Moreover, the shape of the target has resulted in more energy to be scattered in the

upward than downward direction, relative to that by a cylinder.
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5 CONCLUSIONS

In this section, a summary of the research as described in this thesis will be presented.

This is followed by a review of the research objectives set up in section 1.4 of this thesis.

Finally, future work in this area will proposed.

5.1 Summary

The theory of behind the hybrid FE/ virtual source approach has been described in this

thesis. The broad range of engineering techniques and theories involved in implementing

the hybrid FE/ virtual source approach has been demonstrated. Computational and ocean

acoustic tools are necessary to derive the incident and radiated field from the target. The

scattering of the target has to be derived by computational structural dynamics techniques

and applying the physics of sound radiation. These tools blend together to form the

hybrid FE/virtual source approach that computes scattering efficiently.

The validation of the hybrid FE/ virtual source approach has also been illustrated.

Detailed analyses on the deformation profile of the FE model and scattering computation

have shown close agreement between this approach and the hybrid analytical/ virtual

source approach. Furthermore, the approach also demonstrates consistency with the

scattering predicted for extreme cases, i.e. rigid and pressure-release cylinders, by

requiring the total displacement and pressure to vanish on the target surface. Such issues

as effect of resonance on scattering and validity of computational results remain open and

require further work.

The scattering from elastic cone with endcaps has been computed. Agreement of results

by the hybrid FE/ virtual source approach with that by requiring the total pressure and

displacement to vanish for pressure release and rigid targets has been demonstrated.
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5.2 Research objectives

The research objectives as stated in section 1.4 have been achieved as follows:

a. The FE method for elastic axi-symmetric conical shells had been

implemented. The method had been programmed in Matlab. The manual for

using the Matlab code has also been written as shown in Appendix C.

Moreover, the Matlab .m files are attached in Appendix D. The code has also

been proven to be able to produce the necessary input files to OASES/SCATT

to generate the scattering functions as illustrated throughout this thesis.

b. The benchmarking and validation of the code has been conducted with the

hybrid analytical/ virtual source approach. Firstly, the code predicted natural

frequencies close to the theoretical analysis for higher order modes with more

than 2 circumferential transverse vibration lobes. Secondly, it produced

displacement profile that conforms to analytical results. The scattering

functions are also in agreement with the hybrid analytical/ virtual source

approach, with discrepancies observed at lower frequencies. In exact terms,

discrepancies start to appear for frequency in the range of 1000 to 2000 Hz for

a 0.01m thick, 2 m long, 0.3m radius steel cylinder without endcaps.

c. The scattering functions have also been compared with the SCATT/OASES

virtual source approach for pressure release and rigid cylinders and cones.

The difference in the 2 approaches is that for the hybrid FE/virtual source

approach, this is achieved by setting the structural sound speed and density to

zero/ infinity while for the SCATT/OASES virtual source approach, this is

achieved by requiring the pressure/ displacement to vanish. The two

approaches have shown to agree with each other in this research.

d. Agreement with physical prediction of the scattered wavefield was observed

for the hybrid FE/ virtual source approach for a different target orientation. In

the case of plane waves coming in a direction parallel to the axial direction of

the cylinder, stronger backscatter was observed from the cylinder with

endcaps than that from one without endcaps. Wavefield was directly reflected

in the normal direction backwards by the flat endcaps.
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e. As illustrated in this thesis, the hybrid FE/ virtual source approach developed

so far in this thesis did not produce stronger scattering functions for the

cylinder at resonance. This is due to the singularity in shell displacement at

the eigenvalues of FE model and the difference between eigenvalues and the

actual resonant frequencies of the continuous cylindrical model. Structural

damping has to be included in the FE model to improve the scattering

estimation in this aspect.
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5.3 Future work

The code has shown to have good potential for adaptation to compute scattering over

other axi-symmteric shapes using conical shells and circular plates as building blocks and

the hybrid FE/ virtual source approach.

Future work in this area includes:

a. Looking into the issue of computation of vibration response for lower order

modes by the FE model. This will enhance the ability of the hybrid FE/

virtual source approach to yield accurate results for low frequencies.

b. Considering structural damping in the FE model. This results in stronger

scattering for a band of frequencies containing the resonant frequencies,

instead of a singularity. When coupled with the virtual source approach, fluid

added mass and radiation damping would also be included that provides a

complete model for the scattering computation.

c. Testing the robustness of the approach by running the simulation for a broad

spectrum of frequencies, geometry and material properties. Subsequently,

agreement with physical prediction and theory can be tested with analytical

models.

d. Computation of scattering from other axi-symmetric targets using conical

shells and endcaps as building blocks. Subsequently, experimental data and

numerical techniques (such as FEM/BEM) can be used to verify the approach.
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7 APPENDIX A

Appendix A - Benchmark scenario for target scattering model in free-space

Bott

Compressional
plane waves

radiusTop

om radius

Pitch
Height

Medium sound speed: 1500m/s
Medium density: 1000kg/m 3

For cylinder:
top radius = bottom radius
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8 APPENDIX B

Appendix B - Explanation on .dat file used with oast command for free-space
scattering function computation

The .dat file is a text file with lines containing data defining the ocean environment and
other computational parameters.

Below is a table containing definitions of the parameters entered in each line. More
details can be referred to the OASES manual [8].

Line Description
1 Title printed on all graphics output generated by OAST
2 Output Options (Refer Pg 33 of manual [8] for more details
3 First frequency (Hz)

Last frequency (Hz)
Number of frequencies
Integration contour offset (dB/A)

4 Number of layers, including halfspaces
5 Depth of upper interface of layer (m)

Compressional speed of layer (m/s)
Shear speed of layer (m/s)
Compressional attenuation of layer (dB/A)
Shear attenuation of layer (dB/A)
Density (g/cm3)
RMS value of interface roughness (m)
Correlation length of roughness

(6) 1 line per layer to define the environment in each layer

7 Source depth (m)
8 Depth of first receiver (m)

Depth of last receiver (m)
Number of receivers

I Plot output increment
9 Minimum phase velocity (m/s)

Maximum phase velocity (m/s)
10 Number of wavenumber samples (-1 for automatic)

First sampling point
Last sampling

S1 Minimum range on plots
Maximum range on plots
Length of x-axis for all plots
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A sample of .dat file is as shown below:
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Distance between tick marks
12 Horizontal range from source to center of scatterer in km

Interface number where a scatter is located in the middle depth in the layer
Number of patch grids in x-direction (meaningless in this case for target)
Number of patch grids in y-direction (meaningless in this case for target)
Diameter of spherical target (m) (meaningless in this case for cylinder and cone)
Length of patch in y direction (m) (meaningless in this case for target)

vsccvs 3d test 0 deg
NPE
1000 1000 1 0
4
0 1500 0 0 0 1.0 0 0
0 1500 0 0 0 1.0 0 0
20 1500 0 0 0 1.0 0 0
22 1500 0 0 0 1.0 0 0

10
2020 11
1500 1500

-1 1 1
00.1 200.02
0.03077 3 0 0 1.06 0



9 APPENDIX C

Appendix C - 2-D Axi-symmetric Conical Shell Finite Element Code Manual

Setup

1. Create a directory where you want to run the code and copy all the m. files to
that directory.

Running the code

1. Start Matlab and go to the directory where you store the .m files.
2. In the command window, type the following:

>> cone-main

3. Follow
a.
b.
c.
d.
e.
f.
g.
h.
i.
j.
k.
1.

the prompt to enter the following parameters:
Thickness of tapered tube material (m)
Thickness of top endcap (in)
Thickness of bottom endcap (m)
Diameter of top endcap (m)
Diameter of bottom endcap (in)
Height of cone (in)
Young's Modulus of tapered tube material (GPa)
Density of tapered tube material (kg/m 3)
Young's Modulus of endcaps' material (GPa)
Density of endcaps' material (kg/m 3)
Poisson's ratio of cone and endcaps'material
ka (product of wavenumber and cone's mean outer radius)

Post-processing

1. 2 files with default names as follow will be generated at the end of the
simulation:
a. impet.adm -- Admittance matrix data file

b. impet.srf - Nodal coordinates and normal vectors data file
2. Rename the files to the same name as the .dat and .sck files used in the

SCATT vsccvs simp command. (See SCATT manual for more details)
3. The 2 files generated comply with all definitions and requirements set up in

SCATT.
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10 APPENDIX D

Appendix D - FE 2-D axi-symmetric conical shell with endcaps admittance matrix

generation code in the form of Matlab .m files.

This appendix contains all the Matlab .m files for the FE code. The primary file

"cone main.m" file is shown first. This file controls all the computation and calling of

functions. The rest of the files are in the form of function files and are sorted in

alphabetical order. Each file starts on a fresh page.
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%Script file: conemain.m

%Main file for computing acoustics response for a cone

%*Define variables*
%tube thic -- Thickness of tapered tube (assume uniform) (in)
%topl__thic - Thickness of top plate (assume uniform) (m)
%boplthic -- Thickness of bottom plate (assume uniform) (in)
%top diam -- Top diameter of cone (in)
%botdiam -- Bottom diameter of cone (m)
%coneht -- Height of cone (in)

%*Material properties*
%youncy - Young's modulus of tapered cylinder material (x I0e9 N/m2)
%dens-cy -- Density of tapered cylinder material (kg/m3)
%younpl -- Young's modulus of top and bottom plate material (xl 0e9 N/m2)
%denspl -- Density of top and bottom plate material (kg/m3)
%pois -- Poisson's ratio of material
%nwav -- Wave number in consideration

%*Computed variables*
%tubeleng -- Length of each element on the cylindrical tube (m)
%toplleng -- Length of each element on top end plate (m)
%boplleng -- Length of each element on bottom end plate (in)
%tradi -- Top radius of cone (m)
%bradi -- Bottom radius of cone (in)
%taper - Taper angle of cone
%totaldof -- Total no. of dofs
%topn - Total no. of dofs on top plate
%tub_n - Total no. of dofs on tapered tube
%bot n -- Total no. of dofs on bottom plate

%*Others*
%toplnum -- No. of elements at top end circular plate
%bopl num - No. of elements at bottom end circular plate
%tubenum -- No. of taper cylindrical elements
%ka -- ka of the excitation frequency
%frad -- Excitation frequency (rad/s)

%*Matrices*
%kmat _tu -- Stiffness Matrix (tube)
%mmattu - Mass Matrix (tube)
%kmat to -- Stiffness Matrix (top plate)
%mmat _to - Mass Matrix (top plate)
%kmat__bo -- Stiffness Matrix (bottom plate)
%mmatbo -- Mass Matrix (bottom plate)
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%*Global Matrices*
%k-globe -- Global Stiffness Matrix
%mglobe -- Global Mass Matrix

%Invoke the file to request info from user and define variables

clear;
[tubethic, toplthic, boplthic, topdiam, botdiam, coneht, youn cy, dens cy,
younpl, denspl, pois, ka] = cyparametersdefine;

%Compute variables

[tubeleng, topl leng, bopl leng, tradi, bradi, frad, toplnum, bopl num, tubenum,
taper] = para computecy (coneht, top_diam, botdiam, ka);

for nwav = 0:10

%Get the mass matrix for tapered tube

mmattu(:,:,nwav+1) = tubemass(denscy, tubethic, tradi, bradi, tubeleng, tubenum,
taper, nwav);

%Get the mass matrix for top plate

mmatto(:,:,nwav+1) = toplate-mass(topl_thic, tradi, dens-pl, topl num, nwav);

%Get the mass matrix for bottom plate

mmatbo(:,:,nwav+1) = boplate-mass(bopl_thic, bradi, dens-pl, boplnum, nwav);
%Get the stiffness matrix for tapered tube

kmat_tu(:,:,nwav+1) = tube-stiff(tube thic, youn cy, pois, tradi, bradi, tubenum,
tube_leng, taper, nwav);

%Get the stiffness matrix for top plate

kmatto(:,:,nwav+1) = toplate stiff(topl thic, tradi, younpl, pois, toplnum, nwav);

%Get the stiffness matrix for bottom plate

kmatbo(:,:,nwav+1) = boplate stiff(boplthic, bradi, youn-pl, pois, bopinum, nwav);

%Combine all matrices to form global mass and stiffness matrices
%Y

112



[k-globe(:,:,nwav+1), mglobe(:,:,nwav+1), total_dof, top_n, tubn, botn] =
globecomp(kmattu(:,:,nwav+1), mmat tu(:,:,nwav+1), kmatto(:,:,nwav+1),
mmat_to(:,:,nwav+1), kmat bo(:,:,nwav+1), mmatbo(:,:,nwav+1));

%To derive the dynamic flexibility matrix from global mass and stiffness matrices

flex(:,:,nwav+ 1) = flexglobe (kglobe(:,:,nwav+1), mglobe(:,:,nwav+1), frad, top_n,
tubn, botn, totaldof, taper);

%Orientate the flex matrix to agree with coordinate system in SCATT

orflex(:,:,nwav+1)= orient(flex(:,:,nwav+1), topl_num, tubenum, boplnum);

%Allocate orflex matrix to appropriate layer in flex3d matrix

flex3d(:, :, nwav+1) = orflex(:,:,nwav+1);
end

%Compute 3-D impedance matrix

[immata, fluidense] = stiffglobe(flex3d, topl_num, topl_leng, tubenum, tube leng,
bopl num, bopl_leng, taper, frad);

%Copy data to file

filegen(immata, fluidense, toplleng, bopl_leng, tube leng, tradi, bradi, topl_num,
boplnum, tubenum, coneht, taper);

%End
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function mmatbo = boplate mass(bopl thic, bradi, denspl, boplnum, nwav)

%To assemble the mass matrix for bottom plate

%*Define variables*

%*Input arguments*
%boplthic -- Thickness of bottom plate (assume uniform) (m)
%bradi -- Bottom radius of cone (in)
%denspl -- Density of top and bottom plate material (kg/m3)
%bopl-num -- No. of elements at bottom end circular plate

%*Other arguments*
%totalnode -- Total number of nodes
%tdof -- Total number of DOFs
%jjs -- Number of iteration of "jj"th element
%a_val -- outer radius of annulur element (m)
%b_val -- inner radius of annulur element (m)

%*Matrices*
%mplele4 -- Elemental mass matrix (4 x 4)
%mpla -- Elemental mass matrix (tdof by tdof)
%mmat _bo -- Mass Matrix (bottom plate)
%masscent -- Mass matrix of centre plate (2 x 2)

%Prepare variables to input to elemental mass matrix computation

totalnode = bopl-num;
tdof= 2*totalnode;
mmatbo = zeros(tdof, tdof);

%Add mass contribution by centre plate element
masscent = mcentplate(bopl_thic, denspl, bradi, bopl-num);
mmat-bo(tdof-1:tdof, tdof-1:tdof) = masscent;

%Assemble global mass matrix for bottom plate
forjjs = 1:bopl num-1

b val = jjs*bradi/bopl_num;
a_val = (jjs+1)*bradi/bopl-num;
m_pla = zeros(tdof, tdof);
%Formation of 4x4 elemental mass matrix
m_plele4 = m boplate (a val, b_val, bopl_thic, denspl);
%Formation of elemental mass matrix in entire plate matrix dimensions
m_pla = mplglo bo (mplele4, jjs, tdof);
%Increment to entire plate mass matrix
mmatbo = mmat bo + mpla;
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end

return
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function kmatbo = boplate stiff(bopl-thic, bradi, younpl, pois, boplnum, nwav)

%To assemble the stiffhess matrix for bottom plate

%*Define variables*

%*Input arguments*
%boplthic -- Thickness of bottom plate (assume uniform) (m)
%bradi -- Bottom radius of cone (m)
%younpl -- Young's modulus of top and bottom plate material (x I0e9 N/m2)
%pois -- Poisson's ratio of material
%bopl num -- No. of elements at bottom end circular plate
%nwav -- Wave number in consideration

%*Other arguments*
%totalnode -- Total number of nodes
%tdof -- Total number of DOFs
%jjs -- Number of iteration of "jj"th element
%aval -- Outer radius of annular (in)
%b_ val -- Inner radius of annular (in)
%dval -- Plate rigidity (Nm)

%*Matrices*
%kplele4 -- Elemental stiffness matrix (4 x 4)
%kpla -- Elemental stiffness matrix (tdof by tdof)
%kmatbo -- Stiffness Matrix (bottom plate)

%Prepare variables to input to elemental stiffness matrix computation
totalnode = boplinum;
tdof= 2*totalnode;
kmat bo = zeros(tdof, tdof);

%Add stiffness of centre plate (only K22 is affected by the centre plate)
d-val = (younpl* 1 000000000*bopl thic^3)/(12 *(1 -pois^2));
kmat bo(tdof, tdof) = 2*dval*pi*(1+pois);

%Assemble global stiffness matrix for plate only
forjjs = 1:bopl num-1

k_pla = zeros(tdof, tdof);
b val = jjs*bradi/(bopl-num);
a-val = (jjs+1)*bradi/(bopl-num);
%Formation of 4x4 elemental stiffness matrix
k_plele4 = k boplate(aval, b-val, pois, dval, nwav);
%Formation of tdof x tdof elemental stiffness matrix
k_pla = kplglo bo(kplele4, jjs, tdof);
%Increment to entire plate stiffness matrix
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kmat _bo = kmat bo + k pla;
end

return
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function [tube_thic, topl_thic, boplthic, top_diam, botdiam, cone_ht, youn-cy,
dens cy, younpl, denspl, pois, ka] = cy_parametersdefine

%To input parameters for computation and define variables

%Define variables
%tubethic -- Thickness of tapered tube (assume unifonn) (m)
%toplthic -- Thickness of top plate (assume uniform) (m)
%bopl-thic -- Thickness of bottom plate (assume uniform) (m)
%top diam -- Top diameter of cone (m)
%botdiam -- Bottom diameter of cone (in)
%coneht -- Height of cone (m)

%*Material properties*
%youncy -- Young's modulus of tapered cylinder material (xl 0e9 N/m2)
%dens-cy -- Density of tapered cylinder material (kg/m3)
%younpl -- Young's modulus of top and bottom plate material (xIOe9 N/m2)
%denspl -- Density of top and bottom plate material (kg/m3)
%pois -- Poisson's ratio of material
%ka -- ka of the excitation frequency

%Getting information
tubethic = input('Enter the thickness of tapered tube in m:');
topl-thic = input('Enter the thickness of top plate in in:');
bopl-thic = input('Enter the thickness of bottom plate in m:');
topdiam = input('Enter the diameter of top plate in m:');
botdiam = input('Enter the diameter of bottom plate in m:');
coneht = input('Enter the height of cone in in:');
youncy = input('Enter the Young"s Modulus of tapered cylinder material in GPa:');
denscy = input('Enter the density of tapered cylinder material in kg/m3:');
younpl = input('Enter the Young"s Modulus of endcaps material in GPa:');
denspl = input('Enter the density of endcaps material in kg/m3:');
pois = input('Enter the Poisson ratio of material:');
ka = input('Enter the ka of the excitation frequency:');
return
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function umat = defobopl2(kk, bopl_leng, bopl_num)

%This computes the conversion matrix from nodal force to elemental pressure
%for bottom annulur plate

a = (boplnum - ki + l)*boplleng;
b = (bopl num - kk)*bopl_leng;
r = (bopl_num - kk O.5)*bopl_leng;
al = a/b;

%Definition of nu terms for deriving the displacement shape function

delta = (al^2 - 1)^2 - 4*al^2*(log(al))^2;
nul l = (al^2) * (al^2 - 1 + 2*log(al) - 4*(log(al))^2);
nul2 = (1 - 2*al^2*log(al) - al^2);
nul3 = 4*al^2*log(al);
nul4 = 2*(al^2 - 1);
nu21 = 2*b*al^2*(log(al))^2;
nu22 = -nu2l;
nu23 = b*al^2*(al^2 - 1 - 2*log(al));
nu24 = b*(2*al^2*log(al) - al^2 +1);
nu31 = nul2;
nu32 =-nul2;
nu33 = -nul3;
nu34 =-nul4;
nu41 = b*al*log(al)*(al^2 - 1);
nu42 = -nu4l;
nu43 = b*al*(2*al^2*log(al) - al^2 + 1);
nu44 = b*al*(al^2 - 1 - 2*log(al));

%Definition of rho terms

rol = 1;
ro2 = (r/b)^2;
ro3 = log(r/b);
ro4 = (r/b)^2*log(r/b);

%ciI is the shape function ofwI displacement
%ci2 is the shape function of w2 displacement
%ci3 is the shape function of w3 displacement
%ci4 is the shape function of w4 displacement

cil = (nul l*rol + nul2*ro2 + nul3*ro3 + nul 4*ro4)/delta;
ci2 = (nu21*rol + nu22*ro2 + nu23*ro3 + nu24*ro4)/delta;
ci3 = (nu3l*rol + nu32*ro2 + nu33*ro3 + nu34*ro4)/delta;
ci4 = (nu4l*rol + nu42*ro2 + nu43*ro3 + nu44*ro4)/delta;
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ci = [ci3 ci4 cil ci2];
umat = ci;
return
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function umat = defopl(plleng)

%This computes the conversion matrix from nodal displacement to elemental
displacement
%for centre circular plate

r = plleng/2;
phl = 1;
ph2 = pl leng/2*((r/plleng)^2 - 1);
umat = [phl ph2];
return
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function umat = defo_topl2(ii, topi leng)

%This computes the conversion matrix from nodal force to elemental pressure
%for top annulur plate
%o
a = ii*topl_leng;

b = (ii-1)*toplleng;
r = (ii-0.5)*topl_leng;
al = a/b;

%Definition of nu terms for deriving the displacement shape function

delta = (al^2 - 1)^2 - 4*al^2*(log(al))^2;
nul l = (al^2) * (al^2 - 1 + 2*log(al) - 4*(log(al))^2);
nul2 = (1 - 2*al^2*log(al) - al^2);
nul3 = 4*al^2*log(al);
nul4 = 2*(al^2 - 1);
nu21 = 2*b*al^2*(log(al))^2;
nu22 = -nu2l;
nu23 = b*al^2*(al^2 - 1 - 2*log(al));
nu24 = b*(2*al^2*log(al) - al^2 +1);
nu31 = nul2;
nu32 = -nul2;
nu33 = -nul3;
nu34 = -nul4;
nu41 = b*al*log(al)*(al^2 - 1);
nu42 = -nu4l;
nu43 = b*al*(2*al^2*log(al) - al^2 + 1);
nu44 = b*al*(al^2 - 1 - 2*log(al));

%Definition of rho terms

rol = 1;
ro2 = (r/b)^2;
ro3 = log(r/b);
ro4 = (r/b)^2*log(r/b);

%cil is the shape function of wI displacement
%ci2 is the shape function of w2 displacement
%ci3 is the shape function of w3 displacement
%ci4 is the shape function of w4 displacement

cil = (nul l*rol + nul2*ro2 + nul3*ro3 + nul4*ro4)/delta;
ci2 = (nu21*rol + nu22*ro2 + nu23*ro3 + nu24*ro4)/delta;
ci3 = (nu3l*rol + nu32*ro2 + nu33*ro3 + nu34*ro4)/delta;
ci4 = (nu4l*rol + nu42*ro2 + nu43*ro3 + nu44*ro4)/delta;
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ci = [cii ci2 ci3 ci4];
umat = ci;
return
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function umat = defotu(jj, tube_ leng)

%This computes the conversion matrix from nodal force to elemental pressure
%for conical shell

zi = 0.5;

phi = 1-3*zi^2+2*zi^3;
ph2 =tubeleng*(zi-2*zi^2+zi^3);
ph3 = 3*zi^2-2*zi^3;
ph4 = tubeleng*(-zi^2+zi^3);

umat = [phl ph2 ph3 ph4];
return
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function umat = dipmat(topl num, boplnum, tube num, topl leng, tubeleng,
bopl_leng)

%This computes the conversion matrix from nodal displacement to elemental
displacement

ddl = topl num + bopl_num + tubenum;
dd2 = 2*(topl_num + bopl num) + 2*(tubenum - 1);
umat = zeros(dd l, dd2);

for ii = 1 : topl_num
if ii == 1

umat(ii, ii : ii+1) = defopl(toplleng);
else

umat(ii, 2*ii-3 : 2*ii) = defotopl2(ii, topl_leng);
end

end

for jj = topl-num + I : topl num + tubenum
umat(jj, 2*jj-3 : 2*jj) = defotu(jj, tube_leng);

end

for kk = topl_num + tube num + I : ddl
if kk == ddl

umat(kk, 2*kk-3 : 2*kk-2) = defopl(boplleng);
else

umat(kk, 2*kk-3 :2*kk) = defobopl2(kk - topinum - tubenum, bopl_leng,
boplnum);

end
end
return
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function filegen(immata, fluidense, topl_leng, bopl_leng, tube_leng, tradi, bradi,
toplnum, boplnum, tubenum, coneht, taper)

%To generate the file with printed admittance matrix

%*Inputs*
%imped -- Admittance matrix for cone with endcaps (3D).
%tube-leng -- Length of each element on the cylindrical tube (m)
%toplleng -- Length of each element on top end plate (m)
%boplleng -- Length of each element on bottom end plate (m)
%tradi -- Top radius of cone (m)
%bradi -- Bottom radius of cone (m)
%taper - Taper angle of cone
%topl-num -- No. of elements at top end circular plate
%boplnum -- No. of elements at bottom end circular plate
%tubenum -- No. of taper cylindrical elements
%coneht -- Height of cone (m)

%*Matrices*
%stiff -- 3-D matrix with layer by layer inverse of 3-D admittance matrix
%glstiff -- Global 2-D dynamic flexibility matrix

%*Variables*
%xx -- x-cordinate of node
%yy -- y-cordinate of node
%zz -- z-cordinate of node
%xxnorm -- vector component in x-direction of surface normal vector of node
%yynorm - vector component in x-direction of surface normal vector of node
%zznorm -- vector component in x-direction of surface normal vector of node

%Start

%Definitions
d=size(immata);
row = d(2);
column = d(2);
angle-step = d(1)/d(2);
glim = zeros(row*angle_step, column*angle_step);

%Start computing stiffness matrix from admittance matrix

%Unravel the 3-D admittance matrix into equivalent 2-D global
%admittance matrix

for jj = % angle step
for kk =jj : angle_step
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glim((kk-1)*row + 1 : kk*row, (jj-1)*column + 1 : jj*column) = immata((kk-
jj)*d(2)+1 (kk-jj+1)*d(2), :);

end

for mm = 1: jj - I
glim((mm - 1)*row + 1 mm*row, (jj-l)*column + 1 : jj*column)=

immata((anglestep-jj+mm)*d(2)+I : (anglestep-jj+mm+1)*d(2), :);
end

end

%Below steps to start writing the gistiff matrix entries into
%.imp file base on format by SCATT

%Open file

fid = fopen('impet.adm', 'w');

%Start writing

for aa 1 anglestep*row
for bb = 1: anglestep*row

fprintf(fid, '%d %d\n', real(glim(bb, aa)), imag(glim(bb, aa)));
end

end
status = fclose(fid);

%Start computing and writing nodal positions and surface normal vector
%into .srf file base on format by SCATT

%Open file

fid = fopen('impet.srf, 'w');

%Computation of parameters to generate the nodal distance

arcto topl leng*2*pi/angle step;
arctbo = boplleng*2*pi/angle _step;

%Start computing and writing

fprintf(fid, '%d %d\n', row*anglestep, fluidense);

%Start with angular position 0 degree and progress in positive angular
%direction

for dd = 0:1:anglestep-I
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%Start with top plate nodes

for ee = 1 : topI num
xx = ((ee-0.5)*topl leng)*cos((dd+O.5)*2*pi/angle step);
yy = -((ee-0.5)*topl_leng)*sin((dd+0.5)*2*pi/angle-step);
zz = -coneht/2;
xxnorm =0;
yynorm =0;
zznorm = -1;
dn = ((ee-0.5)*arcto + toplleng)/2;
fprintf(fid, '%1 1.8e %1 1.8e %1 1.8e %1 1.8e %1 1.8e %1 1.8e %1 1.8e\n', xx, yy, zz,

xxnorm, yynorm, zznorm, dn);
end

%Then with tube nodes

for ff = 1 : tubenum
xx = (tradi + (ff-0.5)*tube _leng*sin(taper))*cos((dd+0.5)*2*pi/anglestep);
yy = -(tradi + (ff-0.5)*tube-leng*sin(taper))*sin((dd+0.5)*2*pi/angle-step);
zz = -0.5*coneht + (ff-0.5)*tubeleng*cos(taper);
xxnorm = cos((dd+0.5)*2*pi/angle step)*cos(taper);
yynorm = -sin((dd+0.5)*2*pi/anglestep)*cos(taper);
zznorm = -sin(taper);
dn = (2*pi*(tradi + (ff-0.5)*tubeleng*sin(taper))/angle _step + tube leng)/2;
fprintf(fid, '%11.8e %11.8e %11.8e %11.8e %l1.8e %11.8e %11.8e\n', xx, yy, zz,

xxnorm, yynorm, zznorm, dn);
end

%Finally with with bottom plate nodes

for gg = 1 : boplinum
xx = ((bopI num - (gg-0.5))*boplleng)*cos((dd+0.5)*2*pi/anglestep);
yy = -((bopl num - (gg-0.5))*bopl_ leng)*sin((dd+0.5)*2*pi/angle_step);
zz = coneht/2;
xxnorm = 0;
yynorm = 0;
zznorm = 1;
dn = ((bopl num - (gg-0.5))*arc bo + boplleng)/2;

fprintf(fid, '%11.8e %1 1.8e %11.8e %1l.8e %1l.8e %11.8e %1l.8e\n', xx, yy, zz,
xxnorm, yynorm, zznorm, dn);

end
end

%Done!
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status = fclose(fid);
return
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function flex = flexglobe (kglobe, mglobe, frad, to, tu, bo, total_dof, taper)

%To compute the flexibility matrix for conical shell
%lateral displacement with no v, w vibration at corners.

%*Inputs*
%k-globe -- Stiffness Matrix (global)
%mglobe - Mass Matrix (global)
%frad -- Excitation frequency (rad/s)
%totaldof -- Total no. of dofs
%to -- Number of dof for top plate
%tu -- Number of dof for tube
%bo -- Number of dof for bottom plate
%taper - Taper angle of cone

%Output*
%stiff -- Dynamic stiffness matrix for normal shell
%displacement of assembled plate/ tapered tube model.

%*Others*
%tmat -- Transformation matrix to resolve the longitudinal and lateral
%coordinates of tapered tube to align coordinates with normal displacement
%of tapered tube
%dystiff mat -- Dynamic stiffness matrix
%dystiff -- Dynamic stiffness matrix with resolution of longitudinal
%and lateral coordinates of tapered tube to align coordinates
%with normal displacement

%Dynamic stiffness matrix is equal K-(omega^2).*M

dystiff mat = kglobe-(frad^2).*m_globe;

%Resolve the longitudinal and lateral coordinates of tapered tube to align
%coordinates with normal displacement of tapered tube

tmat = zeros(total-dof , total_dof);

for ii = 1: to+2
tmat(ii, ii) = 1;

end

for jj = 1 : tu/4 - 2
tmat(to+2 + 4*(jj-1) + 1 : to+2 + 4*jj, to+2 + 4*(jj-1) + I to+2 + 4*jj) = [cos(taper) 0

-sin(taper) 0; 0 1 0 0; sin(taper) 0 cos(taper) 0; 0 0 0 1];
end
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for kk = I : bo+2
tmat(to + tu - 6 + kk, to + tu - 6 + kk) = 1;

end

dystiff = tmat'*dystiff mat*tmat;
dystcomp = dystiff([1:(to-1) (to+2):(to+tu-5) (to+tu-2):(to+tu+bo-4)], [1:(to-1)
(to+2):(to+tu-5) (to+tu-2):(to+tu+bo-4)]);

dyinv = inv(dystcomp);

aa= [1:to];
for pp = 1:tu/4-2

aa(1,to+2*(pp-1)+1 : to+2*pp) = [to+(pp-1)*4 + 3 to + 4*pp];
end
aa(1, to + 2*(tu/4 -2) + 1 : to + 2*(tu/4 -2) + bo) = to+tu-8 +1 : to+tu+bo -8;

invmat = dyinv(aa, aa);
flex = invmat;

return
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function qmat = for_mat(topl num, bopl_num, tubenum, topl_leng, tubeleng,
bopl_leng, taper, tradi, bradi)

%This computes the conversion matrix from nodal force to elemental pressure

ddl = 2*(topl num + bopl num) + 2*(tubenum - 1);
dd2 = topl num + boplnum + tubenum;
qmat = zeros(ddl, dd2);

for ii = 1 : toplinum
if ii == 1

qmat(ii : ii+1, ii) = shapepl(toplleng);
else

qmat(2*ii-3 : 2*ii, ii) = shapetopl2(ii, toplleng);
end

end

for jj = topl_num + I : toplnum + tubenum
temp =0;
temp = shapetu(jj, tubeleng, tradi, bradi, tubenum, taper);
qmat(2*jj-3 : 2*jj, jj) = tubeleng.*temp;

end

for kk = topl_num + tubenum + 1 : dd2
if kk == dd2

qmat(2*kk-3 : 2*kk-2, kk) = shapepl(boplleng);
else

qmat(2*kk-3 : 2*kk, kk) = shape bopl2(kk - topl num - tubenum, bopileng,
bopl num);

end
end
return
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function fourierterm = fourierangle(anglestep)

%*Input*
%angle-step -- angle step as selected by user to analyse response

%*Output*
%fourierterm -- Vector containing all the 11 fourier terms
%from n =0 to 10.

%*Symbols*
%t -- angle

%Computation
angle = 2*pi/angle step;
fourierterm = zeros(51, 1);
%First fourier term for n=0
fourierterm(l,1) = 1/anglestep;

%The rest of the fourier terms
for ii = 1:50

fourierterm(ii+1,1) = 2/ii/pi*sin(ii*pi/angle step);
end
return
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function [k_globe, mglobe, total_dof, top_n, tub_n, botn] = globecomp(kmat-tu,
mmattu, kmatto, mmat_to, kmatbo, mmat-bo)

%To compute global stiffness and mass matrix for a conical shell
%with flat end caps

%*Input matrices*
%kmattu -- Stiffness Matrix (tube)
%mmattu -- Mass Matrix (tube)
%kmatto -- Stiffness Matrix (top plate)
%mmatto -- Mass Matrix (top plate)
%kmatbo -- Stiffness Matrix (bottom plate)
%mmatbo -- Mass Matrix (bottom plate)

%*Length of matrices*
%totaldof -- Total no. of dofs
%topn -- Total no. of dofs on top plate
%tub_n -- Total no. of dofs on tapered tube
%bot n -- Total no. of dofs on bottom plate

%Computing dofs in individual matrices
top n = length(kmat to);
tubn = length(kmat-tu);
botn = length(kmat-bo);
totaldof = topn-2 + tubn + botn-2;

kglobe zeros(total-dof, total_dof);
mglobe = zeros(totaldof, total_dof);
kglobetop = zeros(totaldof, total dof);
mglobe-top zeros(totaldof, total_dof);
kglobetub = zeros(totaldof, totaldof);
mglobe-tub = zeros(totaldof, total_dof);
kglobebot = zeros(total _dof, totaldof);
mglobe-bot = zeros(total dof, total_dof);

%Formulating k-globe

%Position top plate elements in global matrices
k_globe-top(1:top-n-1, 1:topn-1) = kmat to(1:top-n-1, 1:top_n-1);
k_globe-top(top-n+2, I.:topn-1)= kmat to(top-n, I:top n-1);
k_globe-top(l:top n-1, top_n+2) = kmat to(l:top_ n-1, topn);
k_globe-top(top-n+2, top_n+2) = kmat to(topn, topn);

m_globe-top(1:topn- 1, 1:topn- 1) = mmat to(1:top_n- 1, 1:top-n- 1);
mglobe-top(top-n+2, 1:topn-1) = mmat to(topn, I:topn-1);
m-globe-top(1:top n-1, top n+2) = mmat to(l:top_n-1, top n);
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m_globe top(topn+2, topn+2)= mmat-to(top-n, topn);

%Position tube elements in global matrices
k_globe tub(topn-I:(top n-I)+(tubn-1), top_n-1:(topn-1)+(tubn-1)) = kmat-tu;

m globetub(top-n-l:(topn-1)+(tubn-1), top_n-i:(top n-l)+(tubn-1)) = mmattu;

%Position bottom plate elements in global matrices
k_globe bot((top n-2+tub-n)-3, (topn-2+tub n)-3) = kmatbo(1, 1);
k_globe bot((topn-2+tubn)-3, (topn-2+tub n):(topn-2+tub-n)+(bot-n-2)) =
kmatbo(1,2:botn);
k_globe bot((top n-2+tub n):(topn-2+tubn)+(botn-2), (top n-2+tub-n)-3) =
kmat bo(2:botn, 1);
k_globe bot((topn-2+tub n):(topn-2+tubn)+(botn-2), (top n-2+tubn):(topn-
2+tub-n)+(bot-n-2)) = kmatbo(2:bot n,2:bot_n);

m_globe bot((top n-2+tub n)-3, (top_n-2+tub n)-3) = mmat bo(1,1);
m.globe-bot((topn-2+tub-n)-3, (top_n-2+tub n):(topn-2+tubn)+(bot-n-2))=
mmat-bo(1,2:bot-n);
m_globe bot((topn-2+tub n):(topn-2+tub n)+(botn-2), (top n-2+tub n)-3)=
mmatbo(2:botn, 1);
m_globe bot((topn-2+tub n):(top-n-2+tubn)+(bot n-2), (top n-2+tub n):(topn-
2+tub-n)+(bot-n-2)) = mmatbo(2:bot_n,2:bot-n);

kglobe k globe top + k globe tub + kglobebot;
mglobe = mglobetop + mglobetub + mglobe-bot;

return
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function kplele4 = k boplate(aval, bval, pois, dval, nwav)

%To compute the stiffness matrix for an
%axisymmetric annular element subjected to vibration

%Refer to paper "Static, vibration and buckling analysis of axisymmetric
%circular plates using finite elements", Gerard C. Pardoen, Computers and
%Structures, Vol.3, pp.3 5 5 -3 7 5 .

%Define variables

%*Inputs*
%aval -- outer radius of annulur element (m)
%b_val -- inner radius of annulur element (m)
%pois -- Poisson's ratio of material
%dval -- Plate rigidity (Nm)
%nwav -- Wave number in consideration

%*Output*
%k plele4 -- Elemental stiffness matrix (4 x 4)
%

%*Symbols*
%al -- symbol of al val
%r -- radius
%b-- symbol of b_val
%thet -- angle in circumferential direction
%n -- symbol of nwav

%*Others*
%alval -- Ratio of aval/bval

k_plele4 = zeros(4,4);
syms al r b thet n;
al val = a val/b val;
%

%Definition of nu terms for deriving the displacement shape function

nul l = (al^2) * (al^2 - 1 + 2*log(al) - 4*(log(al))^2);
nul2 = (1 - 2*al^2*log(al) - al^2);
nul3 = 4*al^2*log(al);
nul4 = 2*(al^2 - 1);
nu21 = 2*b*al^2*(log(al))^2;
nu22 = -nu2l;
nu23 = b*al^2*(al^2 - I - 2*log(al));
nu24 = b*(2*al^2*log(al) - al^2 +1);
nu3l = nul2;
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nu32 = -nul2;
nu33 =-nul3;
nu34 = -nul4;
nu4l = b*al*log(al)*(al^2 - 1);
nu42 = -nu4l;
nu43 = b*al*(2*al^2*log(al) - al^2 + 1);
nu44 = b*al*(al^2 - 1 - 2*log(al));

%Definition of rho terms

rol = 1;
ro2 = (r/b)^2;
ro3 = log(r/b);
ro4 = (r/b)^2*log(r/b);

%cil is the shape function of wi displacement
%ci2 is the shape function of w2 displacement
%ci3 is the shape function of w3 displacement
%ci4 is the shape function of w4 displacement

ciI = (nul *ro l + nul2*ro2 + nul3*ro3 + nul4*ro4)*cos(n*thet);
ci2 = (nu21*ro l + nu22*ro2 + nu23*ro3 + nu24*ro4)*cos(n*thet);
ci3 = (nu31*rol + nu32*ro2 + nu33*ro3 + nu34*ro4)*cos(n*thet);
ci4 = (nu41*ro l + nu42*ro2 + nu43*ro3 + nu44*ro4)*cos(n*thet);

%Define the shear forces and moments for each individual respective
%displacement shape function

qI = 2*r*pi*d val*(diff(r^-1*diff(r*diff(cil, r), r), r) + diff(r^-2*diff(cil, thet, 2), r));
ml = 2*r*pi*d val*((diff(cil, r, 2) + pois*r^-1*diff(cil, r)) + (pois*r^-2*diff(cil, thet,
2)));
q2 = 2*r*pi*d val*(diff(r^-1*diff(r*diff(ci2, r), r), r) + diff(r^-2*diff(ci2, thet, 2), r));
m2 = 2*r*pi*d val*((diff(ci2, r, 2) + pois*r^-1*diff(ci2, r)) + (pois*rA-2*diff(ci2, thet,
2)));
q3 2*r*pi*d__val*(diff(r^-l*diff(r*diff(ci3, r), r), r) + diff(rA-2*diff(ci3, thet, 2), r));
m3 = 2*r*pi*d val*((diff(ci3, r, 2) + pois*rAl*diff(ci3, r)) + (pois*r^-2*diff(ci3, thet,
2)));
q4 = 2*r*pi*d val*(diff(r^-1*diff(r*diff(ci4, r), r), r) + diff(r^-2*diff(ci4, thet, 2), r));
m4 = 2*r*pi*d val*((diff(ci4, r, 2) + pois*r^-1*diff(ci4, r)) + (pois*r^-2*diff(ci4, thet,
2)));

%Get rid of cos(n*theta) term and add delta tenr

delta = (al val^2 - 1)^2 - 4*alval^2*(log(alval))^2;
qql = ql /cos(n*thet)/delta;
mm 1 = ml /cos(n*thet)/delta;
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qq2 = q2/cos(n*thet)/delta;
mm2 = m2/cos(n*thet)/delta;
qq3 = q3/cos(n*thet)/delta;
mm3 = m3/cos(n*thet)/delta;
qq4 = q4/cos(n*thet)/delta;
mm4 = m4/cos(n*thet)/delta;

%Compute kplate terms
k_plele4(3,3) = double(subs(qql, {r, b, al, n}, {bval, b_val, al val, nwav}));
tempkplate(4,3) = -double(subs(mm1, {r, b, al, n}, {b_val, bval, al val, nwav}));
k_plele4(1,3) = -double(subs(qql, {r, b, al, n}, {aval, b_val, alval, nwav}));
k_plele4(2,3) = double(subs(mml, {r, b, al, n}, {a val, bval, alval, nwav}));

tempkplate(3,4) = double(subs(qq2, {r, b, al, n}, {b_val, b_val, alval, nwav}));
kplele4(4,4) = -double(subs(mm2, {r, b, al, n}, {b_val, bval, al val, nwav}));
k_plele4(1,4) = -double(subs(qq2, {r, b, al, n}, {a-val, bval, al_val, nwav}));
k_plele4(2,4) = double(subs(mm2, {r, b, al, n}, {a val, bval, alval, nwav}));

kplele4(3,1) = double(subs(qq3, {r, b, al, n, {b val b val al val, nwav
k_plele4(4,1) = -double(subs(mm3, {r, b, al, n}, {b_val, b_val, al val, nwav}));
k_plele4(4,1) = -double(subs(qq3, {r, b, al, n}, {a val, bval, alval, nwav}));
tempkplate(2,1) = double(subs(mm3, {r, b, al, n}, {a_val, b_val, alval, nwav}));

k_plele4(3,2) = double(subs(qq4, {r, b, al, n}, {bval, bval, alval, nwav}));
k_plele4(4,2) = -double(subs(mm4, {r, b, al, n}, {b_val, bval, al val, nwav}));
tempkplate(1,2) = -double(subs(qq4, {r, b, al, n}, {a_val, bval, alval, nwav}));
k_plele4(2,2) = double(subs(mm4, {r, b, al, n}, {a-val, bval, al val nwav}));

%Averaging for (1,2) and (2, 1) elements
%Averaging for (3,4) and (4, 3) elements

kplele4(2, 1) = (tempkplate(2, 1)+tempkplate(1,2))/2;
k_plele4(1,2) = (tempkplate(2,1)+tempkplate(1,2))/2;
k_plele4(4,3) = (tempkplate(4,3)+tempkplate(3,4))/2;
k_plele4(3,4) = (tempkplate(4,3)+tempkplate(3,4))/2;

return

138



function kplele4 = k_toplate(a-val, b_val, pois, dval, nwav)

%To compute the stiffness matrix for an
%axisymmetric annular element subjected to vibration

%Refer to paper "Static, vibration and buckling analysis of axisymmetric
%circular plates using finite elements", Gerard C. Pardoen, Computers and
%Structures, Vol.3, pp.355-375.

%Define variables

%*Inputs*
%aval -- outer radius of annulur element (in)
%bval -- inner radius of annulur element (in)
%pois -- Poisson's ratio of material
%dval -- Plate rigidity (Nm)
%nwav -- Wave number in consideration

%*Output*
%kplele4 -- Elemental stiffness matrix (4 x 4)

%*Symbols*
%al -- symbol of al val
%r -- radius
%b -- symbol of bval
%thet -- angle in circumferential direction
%n -- symbol of nwav

%*Others*
%al_ val -- Ratio of aval/bval

k-plele4 = zeros(4,4);
syms al r b thet n;
alval = a val/b val;

%Definition of nu terms for deriving the displacement shape function

nul l = (al^2) * (al^2 - 1 + 2*log(al) - 4*(log(al))^2);
nul2 = (1 - 2*al^2*log(al) - al^2);
nul3 = 4*al^2*log(al);
nul4 = 2*(al^2 - 1);
nu21 = 2*b*al^2*(log(al))^2;
nu22 = -nu2l;
nu23 = b*al^2*(al^2 - 1 - 2*log(al));
nu24 = b*(2*al^2*log(al) - al^2 +li);
nu31 = nul2;
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nu32 = -nul2;
nu33 = -nul3;
nu34 = -nul4;
nu41 = b*al*log(al)*(al^2 - 1);
nu42 = -nu4l;
nu43 = b*al*(2*al^2*log(al) - al^2 + 1);
nu44 = b*al*(al^2 - 1 - 2*log(al));

%Definition of rho terms

rol = 1;
ro2 = (r/b)^2;
ro3 = log(r/b);
ro4 = (r/b)^2*log(r/b);

%cil is the shape function ofwl displacement
%ci2 is the shape function of w2 displacement
%ci3 is the shape function of w3 displacement
%ci4 is the shape function of w4 displacement

cil = (nul I*rol + nul2*ro2 + nul3*ro3 + nul4*ro4)*cos(n*thet);
ci2 = (nu21*rol + nu22*ro2 + nu23*ro3 + nu24*ro4)*cos(n*thet);
ci3 = (nu3l*rol + nu32*ro2 + nu33*ro3 + nu34*ro4)*cos(n*thet);
ci4 = (nu41*rol + nu42*ro2 + nu43*ro3 + nu44*ro4)*cos(n*thet);

%Define the shear forces and moments for each individual respective
%displacement shape function

qI = 2*r*pi*d val*(diff(r^-1*diff(r*diff(ci1, r), r), r) + diff(r^-2*diff(ci1, thet, 2), r));
ml = 2*r*pi*d val*((diff(cil, r, 2) + pois*r^-1*diff(ci1, r)) + (pois*rA-2*diff(cil, thet,
2)));
q2 = 2*r*pi*d _val*(diff(rA-I*diff(r*diff(ci2, r), r), r) + diff(rA-2*diff(ci2, thet, 2), r));
m2 = 2*r*pi*d val*((diff(ci2, r, 2) + pois*rA1*diff(ci2, r)) + (pois*rA-2*diff(ci2, thet,
2)));
q3 = 2*r*pi*d val*(diff(r^-1*diff(r*diff(ci3, r), r), r) + diff(rA-2*diff(ci3, thet, 2), r));
m3 = 2*r*pi*dval*((diff(ci3, r, 2) + pois*r^-1*diff(ci3, r)) + (pois*rA-2*diff(ci3, thet,
2)));
q4 = 2*r*pi*d val*(diff(rA-1*diff(r*diff(ci4, r), r), r) + diff(rA-2*diff(ci4, thet, 2), r));
m4 = 2*r*pi*d val*((diff(ci4, r, 2) + pois*r^-1*diff(ci4, r)) + (pois*r^-2*diff(ci4, thet,
2)));

%Get rid of cos(n*theta) term and add delta term

delta = (al val^2 - 1)A2 - 4*alval^2*(log(alval))A2;
qql = ql/cos(n*thet)/delta;
mm = ml/cos(n*thet)/delta;
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qq2 = q2/cos(n*thet)/delta;
mm2 = m2/cos(n*thet)/delta;
qq3 = q3/cos(n*thet)/delta;
mm3 = m3/cos(n*thet)/delta;
qq4 = q4/cos(n*thet)/delta;
mm4 = m4/cos(n*thet)/delta;

%Compute kplate terms
k-plele4(1,1) = double(subs(qql, {r, b, al, n}, {bval, b_val, alval, nwav}));
tempkplate(2,1)= -double(subs(mml, {r, b, al, n}, {b_val, b_val, al_val, nwav}));
k plele4(3,1) = -double(subs(qql, {r, b, al, n}, {a val, bval, alval, nwav}));
k-plele4(4,1) = double(subs(mml, {r, b, al, n}, {a_val, bval, al_val, nwav}));

tempkplate(1,2) = double(subs(qq2, {r, b, al, n}, {b_val, b_val, al_val, nwav}));
k-plele4(2,2) = -double(subs(mm2, {r, b, al, n}, {b_val, b_val, alval, nwav}));
kjplele4(3,2) = -double(subs(qq2, {r, b, al, n}, {a val, b_ val, al-val, nwav}));
k-plele4(4,2) = double(subs(mm2, {r, b, al, n}, {a_val, bval, al val, nwav}));

kplele4(1,3) = double(subs(qq3, {r, b, al, n, {b val b val al val, nwav}));
k-plele4(2,3) = -double(subs(mm3, {r, b, al, n}, {b_val, bval, alval, nwav}));
k-plele4(3,3) = -double(subs(qq3, {r, b, al, n}, {a al, b_val, alval, nwav}));
tempkplate(4,3) = double(subs(mm3, {r, b, al, n}, {a_val, bval, alval, nwav}));

k-plele4(1,4) = double(subs(qq4, {r, b, al, n}, {b_val, b_ val, al_val, nwav}));
k plele4(2,4) = -double(subs(mm4, {r, b, al, n}, {b_val, b_val, al_val, nwav}));
tempkplate(3,4)= -double(subs(qq4, {r, b, al, n}, {a_val, bval, alval nwav}));
k-plele4(4,4) = double(subs(mm4, {r, b, al, n}, {a val, bval, alval, nwav}));

%Averaging for (1,2) and (2, 1) elements
%Averaging for (3,4) and (4, 3) elements

k-plele4(2, 1) = (tempkplate(2, 1)+tempkplate(1,2))/2;
k-plele4(1,2) = (tempkplate(2, 1 )+tempkplate( 1,2))/2;
k_plele4(4,3) = (tempkplate(4,3)+tempkplate(3,4))/2;
k-plele4(3,4) = (tempkplate(4,3)+tempkplate(3,4))/2;

return
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function k_cydim = k tube (tubethic, tradi, bradi, youn-cy, pois, tube_leng, tubenum,
taper, jjs, nwav)

%To compute the elemental stiffness matrix for tapered cylindrical elements.

%Define variables

%*Input arguments*
%tubethic -- Thickness of tapered tube (assume uniform) (m)
%youn-cy -- Young's modulus of tapered cylinder material (x I0e9 N/m2)
%pois -- Poisson's ratio of material
%tradi -- Top radius of cone (m)
%bradi -- Bottom radius of cone (m)
%tubenum -- No. of taper cylindrical elements
%tube-leng -- Length of each element on the cylindrical tube (m)
%taper - Taper angle of cone
%nwav -- Wave number in consideration
%jjs -- Number of iteration of "jj"th element

%*Output argument*
%k-cydim -- Double of kstf

%*Others*
%rl -- Radius at node 1
%r2 -- Radius at node 2
%rvar - Shape function of radius
%ze -- shape function parameter and integrating variable
%dmatrix -- D-matrix (4 by 4)
%b matrix -- B-matrix (6 by 4)
%btransmatrix -- Transpose of B-matrix (4 by 6)
%inted -- B(transpose) x D x B (6 by 6)
%ingd -- Integrated matrix (6 by 6)
%kstf -- Elemental stiffness matrix (6 by 6)

%Generate D-matrix
d-mat = zeros(6,6);
d_mat(1,1)= 1;
d_mat(1,2) = pois;
d-mat(2,1) = pois;
d-mat(2,2) = 1;
d-mat(3,3) = (l-pois)/2;
d-mat(4,4) = tubethic^2/12;
d_mat(4,5) = pois*tubethic^2/12;
d_mat(5,4) = pois*tubethic^2/12;
d_mat(5,5)= tubethic^2/12;
d_mat(6,6) = (1-pois)*tube-thic^2/24;
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d_matrix = [(youn cy* I 000000000*tube_thic)/(1 -pois^2)] *d_mat;

r% = tradi + (js-1)/tube num*(bradi - tradi);
r2 = tradi + jjs/tubenum*(bradi - tradi);

%Define B-matrix
syms ze rvar real;
rvar = r *(I-ze) + r2*ze;

umat=[(-ze)000ze00 0];
vmat = [0 (1-ze) 0 0 0 ze 0 0];
wmat = [0 0 (1-3*ze^2+2*ze^3) (tubeleng*(ze-2*ze^2+ze^3)) 0 0 (3*ze^2-2*ze^3)
(tube leng*(-ze^2+ze^3))];

b_matrix(1,:) = (1/tube_leng).*diff(umat, ze);
b_matrix(2,:) = (nwav/rvar).*vmat + (1/rvar).*(umat.*sin(taper) - wmat.*cos(taper));
b_matrix(3,:) = (1/tubeleng).*diff(vmat, ze) - (1/rvar).*vmat.*sin(taper) -
(nwav/rvar).*umat;
b_matrix(4,:) = (1/tube lengA2).*diff(wmat, ze, 2);
b_matrix(5,:) = (-nwavA2/rvar^2).*wmat + (nwav/rvar^2).*vmat.*cos(taper) +
(sin(taper)/rvar).*(1/tubeleng).*diff(wmat, ze);
b_matrix(6,:) = (-2*nwav/rvar/tube_leng).*diff(wmat, ze) +
(nwav/rvarA2).*wmat.*sin(taper) + (1 /rvar). *( 1/tube_leng). *diff(vmat, ze).*cos(taper) -
(1 /rvarA2). *vmat. *sin(taper).*cos(taper);

%Formation of transpose b matrix
btrans_ matrix = bmatrix';
%Formation of Integrand Matrix
inted=btransmatrix*dmatrix*bmatrix. *rvar;

%Integrating to form the elemental stiffness matrix
ingd=int(inted, 0, 1);

%Transformation of local to global coordinates

tmat = [cos(taper) 0 -sin(taper) 0
0100
sin(taper) 0 cos(taper) 0
0 0 0 1];

transmat = [tmat zeros(4, 4); zeros(4, 4) tmat];

k_stf=pi.*tubeleng.*ingd;
stiffstf = transmat'*kstf*transmat;
k_cydim=double(stiffstf);

return
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function kcylin = k tubeglo (kcydim, jjs, tdof)

%To position the elemental stiffness matrix at proper
%position of global matrix for tapered cylindrical elements.

%Define variables

%*Input arguments*
%k-cylin -- Elemental stiffness matrix in global dimensions of tapered tube (tdof by tdof)
%jjs -- Number of iteration of "jj"th element
%tdof -- Total number of DOFs

%*Output argument*
%k cydim -- Elemental stiffness matrix in local dimensions

k-cylin=zeros(tdof, tdof);
k-cylin(l+(jjs-1)*4 : (jjs+l)*4, 1+(jjs-l)*4: (jjs+l)*4)=k_cydim;

return
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function kpla = kplglobo(kplele4, jjs, tdof)

%Tto position the elemental stiffness matrix at proper
%position of entire plate matrix.

%Define variables

%*Input arguments*
%kplele4 -- Elemental stiffness matrix (4 x 4)
%jjs -- Number of iteration of "jj"th element
%tdof -- Total number of DOFs

%*Output argument*
%kpla -- Elemental stiffness matrix (tdof by tdof)

k_pla=zeros(tdof, tdof);
kpla((tdof+1)-(jjs+1)*2 : tdof-(jjs-1)*2, (tdof+1)-(jjs+l)*2 tdof-(jjs-1)*2)=k__plele4;

return
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function kpla = kplgloto(kplele4, jjs, tdof)

%To position the elemental stiffness matrix at proper
%position of entire plate matrix.

%Define variables

%*Input arguments*
%kplele4 -- Elemental stiffness matrix (4 x 4)
%jjs -- Number of iteration of "jj"th element
%tdof -- Total number of DOFs

%*Output argument*
%kpla -- Elemental stiffness matrix (tdof by tdof)

k_pla=zeros(tdof, tdof);
k_pla(+(jjs-1)*2 : (jjs+1)*2, 1+(jjs-1)*2 : (js+1)*2)=kplele4;

return
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function m_plele4 = m boplate (a, b, bopl_thic, denspl)

%To compute the mass matrix for an
%axisymmetric annular element subjected to vibration

%Refer to paper "Static, vibration and buckling analysis of axisymmetric
%circular plates using finite elements", Gerard C. Pardoen, Computers and
%Structures, Vol.3, pp. 3 5 5 -3 7 5 .

%Define variables

%*fnputs*
%a -- outer radius of annulur element (m)
%b -- inner radius of annulur element (m)
%denspl -- Density of top and bottom plate material (kg/m3)
%boplthic - Thickness of top plate (assume uniform) (m)

%*Output*
%mplele4 -- Elemental mass matrix (4 x 4)

%*Symbols*
%r -- radius

%*Others*
%al -- a/b
%dvalue -- Plate rigidity (Nm)
%mplate -- Elemental mass matrix in symbolic form

%*Matrices*
%ci -- Matrix of shape functions
%citrans - Transpose of ci
%inted -- ci(transpose) x ci (4 by 4)
%ingd -- Integrated matrix (4 by 4)

syms r;
al = a/b;

%Definition of nu terms for deriving the displacement shape function

delta = (al^2 - 1)^2 - 4*al^2*(log(al))^2;
nul l = (al^2) * (al^2 - 1 + 2*log(al) - 4*(log(al))^2);
nul2 = (1 - 2*al^2*log(al) - al^2);
nul3 = 4*al^2*log(al);
nul4 = 2*(al^2 - 1);
nu21 = 2*b*al^2*(log(al))^2;
nu22 = -nu2l;
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nu23 = b*al^2*(al^2 - 1 - 2*log(al));
nu24 = b*(2*al^2*log(al) - al^2 +1);
nu3l = nul2;
nu32 = -nul2;
nu33 = -nul3;
nu34 = -nul4;
nu41 = b*al*log(al)*(al^2 - 1);
nu42 = -nu4l;
nu43 = b*al*(2*al^2*log(al) - al^2 + 1);
nu44 = b*al*(al^2 - 1 - 2*log(al));

%Definition of rho terms

rol = 1;
ro2 = (r/b)^2;
ro3 = log(r/b);
ro4 = (r/b)^2*log(r/b);

%cil is the shape function ofwl displacement
%ci2 is the shape function of w2 displacement
%ci3 is the shape function of w3 displacement
%ci4 is the shape function of w4 displacement

ciI = (nul l*rol + nul2*ro2 + nul3*ro3 + nul4*ro4)/delta;
ci2 = (nu21 *rol + nu22*ro2 + nu23*ro3 + nu24*ro4)/delta;
ci3 = (nu3l*rol + nu32*ro2 + nu33*ro3 + nu34*ro4)/delta;
ci4 = (nu4l*rol + nu42*ro2 + nu43*ro3 + nu44*ro4)/delta;
ci = [cii ci2 ci3 ci4];
ci-trans = [cil

ci2
ci3
ci4];

%Formation of Integrand Matrix
inted = r.*citrans*ci;

%Integrating to form the elemental stiffness matrix
ingd=int(inted, b, a);
mplate=pi.*denspl.*boplthic.*ingd;
mpldouble = double(mplate);

%Derive matrix for bottom plate
m_plele4(l,I) = mpldouble(3,3);
m_plele4(2,1) = mpldouble(4,3);
m_plele4(3,1) = mpldouble(1,3);
m_plele4(4,I) = mpldouble(2,3);
%)/
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m plele4(1,2) = m_pldouble(3,4);
m plele4(2,2) = mpldouble(4,4);
m plele4(3,2) = mpldouble(1,4);
m_plele4(4,2) = mpldouble(2,4);

mplele4(1,3) = mpldouble(3,1);
m-plele4(2,3)= mpldouble(4,1);
m-plele4(3,3) = mpldouble(4,l);
m-plele4(4,3) = mpldouble(2,1);

m plele4(1,4) = mpldouble(3,2);
m-plele4(2,4) = mpldouble(4,2);
m-plele4(3,4) = m pldouble(1,2);
m-plele4(4,4) = mpldouble(2,2);

return
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function masscent = m centplate(plate-thic, dens-pl, pradi, eplno)

%To compute the mass matrix for the
%centre plate

%Refer to paper "Static, vibration and buckling analysis of axisymmetric
%circular plates using finite elements", Gerard C. Pardoen, Computers and
%Structures, Vol.3, pp. 3 5 5 -3 7 5 .

%Define variables

%*Inputs*
%denspl -- Density of top and bottom plate material (kg/m3)
%eplno -- No. of plate elements (including the centre plate)
%pradi-- Radius of plate (m)
%plate thic -- Thickness of plate (assume uniform) (m)

%*Output*
%masscent -- Mass matrix of centre plate (2 x 2)

%Assume the rigid plate to represent centre plate
masscent = zeros(2,2);
mass cent(1,1) = denspl*plate thic*pi*(pradi/eplno)^2;
mass cent(1,2) = -(denspl*plate thic*pi*(pradi/eplno)^3)/4;
mass cent(2,1) = -(denspl*platethic*pi *(pradi/eplno)^3)/4;
mass cent(2,2) = (denspl*plate thic*pi*(pradi/eplno)^4)/12;

return
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function mplele4 = m toplate (a, b, topl_thic, denspl)

%To compute the mass matrix for an
%axisymmetric annular element subjected to vibration

%Refer to paper "Static, vibration and buckling analysis of axisymmetric
%circular plates using finite elements", Gerard C. Pardoen, Computers and
%Structures, Vol.3, pp.355-375.

%Define variables

%*Inputs*
%a-- outer radius of annulur element (in)
%b -- inner radius of annulur element (m)
%denspl -- Density of top and bottom plate material (kg/m3)
%topl thic -- Thickness of top plate (assume uniform) (m)

%*Output*
%mplele4 -- Elemental mass matrix (4 x 4)

%*Symbols*
%r -- radius

%*Others*
%al -- a/b
%dvalue -- Plate rigidity (Nm)
%mplate -- Elemental mass matrix in symbolic form

%*Matrices*
%ci -- Matrix of shape functions
%citrans - Transpose of ci
%inted -- ci(transpose) x ci (4 by 4)
%ingd -- Integrated matrix (4 by 4)

syms r;
al = a/b;

%Definition of nu terms for deriving the displacement shape function

delta = (al^2 - 1)^2 - 4*al^2*(log(al))^2;
nul l = (al^2) * (al^2 - 1 + 2*log(al) - 4*(log(al))^2);
nul2 = (1 - 2*al^2*log(al) - al^2);
nul3 = 4*al^2*log(al);
nul4 = 2*(al^2 - 1);
nu21 = 2*b*al^2*(log(al))^2;
nu22 = -nu2l;
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nu23 = b*al^2*(al^2 - 1 - 2*log(al));
nu24 = b*(2*al^2*log(al) - al^2 +1);
nu31 =nul2;
nu32 = -nu12;
nu33 = -nul3;
nu34 = -nul4;
nu41 = b*al*log(al)*(al^2 - 1);
nu42 = -nu4l;
nu43 = b*al*(2*al^2*log(al) - al^2 + 1);
nu44 = b*al*(al^2 - 1 - 2*log(al));

%Definition of rho terms

rol = 1;
ro2 = (r/b)^2;
ro3 = log(r/b);
ro4 = (r/b)^2*log(r/b);

%ciI is the shape function ofwI displac
%ci2 is the shape function of w2 displac
%ci3 is the shape function of w3 displac
%ci4 is the shape function of w4 displac

cil = (nul 1*rol + nul2*ro2 + nul3*ro3
ci2 = (nu21*rol + nu22*ro2 + nu23*ro3
ci3 = (nu3l*rol + nu32*ro2 + nu33*ro3
ci4 = (nu4l*rol + nu42*ro2 + nu43*ro3
ci = [cil ci2 ci3 ci4];
ci-trans = [ciI

ci2
ci3
ci4];

%Formation of Integrand Matrix
inted = r.*ci trans*ci;

ement
ement
ement
ement

+

+

+

+

nul4*ro4)/delta;
nu24*ro4)/delta;
nu34*ro4)/delta;
nu44*ro4)/delta;

%Integrating to form the elemental stiffness matrix
ingd=int(inted, b, a);
mplate=pi.*denspl.*topl thic.*ingd;
m_plele4 = double(mplate);

return
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function mass cydim = masstube (denscy, tubethic, tradi, bradi, tubeleng,
tubenum, taper, jjs, nwav)

%To compute the elemental mass matrix for tapered cylindrical elements.

%Define variables

%*Input arguments*
%tdof -- Total number of DOFs
%denscy -- Density of tapered cylinder material (kg/m3)
%tube_ thic -- Thickness of tapered tube (assume uniform) (m)
%tradi -- Top radius of cone (in)
%bradi -- Bottom radius of cone (m)
%tube num -- No. of taper cylindrical elements
%tube-leng -- Length of each element on the cylindrical tube (m)
%taper - Taper angle of cone
%jjs -- Number of iteration of "jj"th element

%*Output argument*
%masscydim -- Double of massstf

%*Others*
%rl -- Radius at node I
%r2 -- Radius at node 2
%zi -- shape function parameter and integrating variable
%rvar - Shape function of radius
%n matrix -- N-matrix (2 by 6)
%ntrans matrix -- N-matrix transpose (6 by 2)
%inted - N(transpose) x N (6 by 6)
%ingd -- Integrated matrix (6 by 6)
%massstf -- Elemental stiffness matrix (6 by 6)

%Generate N-matrix
syms rvar zi real;
ri = tradi + (jjs-1)/tube num*(bradi - tradi);
r2 = tradi + jjs/tubenum*(bradi - tradi);
rvar = r1*(1-zi) + r2*zi;

nmatrix(1,:) = [I-zi 00 0 zi 000];

n_matrix(2,:) = [0 1-zi 0 0 0 zi 0 0];

n matrix(3,:) = [0 0 1-3*zi^2+2*zi^3 tube leng*(zi-2*zi^2+zi^3) 0 0 3*zi^2-2*zi^3
tubeleng*(-zi^2+zi^3)];
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n_mat(1,:) = [0 0 (-6*zi+6*zi^2)/tube leng (1-4*zi+3*zi^2) 0 0 (6*zi-6*zi^2)/tubeleng
(-2*zi+3*zi^2)];

n_mat(2,:) = [0 -(1-zi) (-nwav/rvar)*(1-3*zi^2+2*zi^3) (-nwav/rvar)*tube_leng*(zi-
2*zi^2+zi^3) 0 -zi (-nwav/rvar)*(3*zi^2-2*zi^3) (-nwav/rvar)*tube-leng*(-zi^2+zi^3)];
%Define transpose of n matrix
ntransmatrix = n matrix';
ntransmat = nmat';

%Formation of Integrand Matrix
intedl=ntransmatrix*nmatrix.*rvar;
inted2=ntrans mat*n mat.*rvar;

%Integrating to form the elemental stiffness matrix
ingdl=int(intedl, 0, 1);
ingd2=int(inted2, 0, 1);

%Transformation of local to global coordinates

tmat = [cos(taper) 0 -sin(taper) 0
0100
sin(taper) 0 cos(taper) 0
0 0 0 1];

transmat = [tmat zeros(4, 4); zeros(4, 4) tmat];

m_stf=pi.*tubeleng.*tubethic.*denscy.*ingd1 +
(pi*tubeleng*tube thic^3*denscy/12).*ingd2;
massstf= transmat'*mstf*transmat;
mass cydim=double(massstf);

return
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function masscylin = masstubeglo (masscydim, jjs, tdof)

%To position the elemental mass matrix at proper
%position of global matrix for tapered cylindrical elements.

%Define variables

%*Input arguments*
%jjs -- Number of iteration of "jj"th element
%masscydim -- Elemental mass matrix in local dimensions
%tdof -- Total number of DOFs

%*Output argument*
%masscylin -- Elemental mass matrix in global dimensions (tdof by tdof)

masscylin=zeros(tdof, tdof);
masscylin(1+(jjs-I)*4 : (jjs+1)*4, I+(jjs-1)*4: (jjs+I)*4)=masscydim;

return
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function mpla = mplglo bo(mplele4, jjs, tdof)

%To position the elemental mass matrix at proper
%position of global matrix for bottom plate.

%Define variables

%*Input arguments*
%jjs -- Number of iteration of "jj"th element
%mplele4 -- Elemental mass matrix (4 x 4)
%tdof -- Total number of DOFs

%*Output argument*
%mpla -- Elemental mass matrix (tdof by tdof)
mpa% rstoto)
m_pla=zeros(tdof, tdof);
m_pla((tdof+1)-(jjs+1)*2 : tdof-(jjs-i)*2, (tdof+1

return

)-(jjs+1)*2 : tdof-(jjs-1)*2)=m_plele4;
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function m-pla = mplgloto(mplele4, jjs, tdof)

%PTo position the elemental mass matrix at proper
%position of global matrix for top plate.

%Define variables

%*Input arguments*
%jjs -- Number of iteration of "jj"th element
%mplele4 -- Elemental mass matrix (4 x 4)
%tdof -- Total number of DOFs

%*Output argument*
%%mpla -- Elemental mass matrix (tdof by tdof)

m_pla=zeros(tdof, tdof);
mpla(1+(jjs-1)*2 : (jjs+l)*2, 1+(jjs-l)*2 : (jjs+1)*2)=mplele4;

return
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function orflex = orient(flex, topl_num, tubenum, boplinum)

%To orient the flex matrix so that
%it is properly oriented to the coordinate system in SCATT (i.e.
%pressure vector inwards, displacement vector outwards positive)

%*Inputs*
%flex -- Flexibility matrix for shell lateral displacement
%topl-num -- No. of elements at top end circular plate
%boplnum -- No. of elements at bottom end circular plate
%tubenum -- No. of taper cylindrical elements

%*Outputs*
%orflex - properply oriented flex matrix

%*Others*
%dof - Total number of dofs
%ormat - orientation matrix

dof= 2*(toplnum + tubenum + boplnum - 1);
ormat(1:dof, l:dof) = 1;
ormat(1:2*(topl num + tubenum - 1), 1:2*(toplnum + tube num - 1)) = -1;
ormat(2*(topl-num + tubenum - 1) + 1 : dof, 2*(topl num + tubenum - 1) + 1: dof)=
-1;
orflex = ormat.*flex;
return
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function [tubeleng, topl_leng, bopl_leng, tradi, bradi, frad, toplnum, bopi_ num,
tubenum, taper] = para computecy (cone_ht, top_diam, botdiam, ka)

%Purpose is to compute some essential parameters from those defined by user

%Define variables:

%Output arguments:
%tube leng -- Length of each element on the cylindrical tube (m)
%toplleng -- Length of each element on top end plate (in)
%boplleng -- Length of each element on bottom end plate (m)
%tradi -- Top radius of cone (m)
%bradi -- Bottom radius of cone (m)
%frad -- Excitation frequency (rad/s)
%toplnum -- No. of elements at top end circular plate
%bopl num -- No. of elements at bottom end circular plate
%tubenum -- No. of taper cylindrical elements
%taper - Taper angle of cone

%Input arguments:
%top diam -- Top diameter of cone (m)
%botdiam -- Bottom diameter of cone (in)
%coneht -- Height of cone (m)
%ka -- ka of the excitation frequency

%Others:
%waveleng -- Wavelength of acoustics waves
%mradi -- Mean radius of cone (m)
%cone leng -- Total length of cone (m)

%Calculations

tradi = 0.5*topdiam;
bradi 0.5*botdiam;
mradi 0.5*(tradi + bradi);

frad = ka/mradi* 1500;

waveleng = 2*pi*mradi/ka;
topl_num = round(tradi*8/waveleng);
boplnum = round(bradi*8/waveleng);

cone _leng = sqrt(cone ht^2 + (bradi - tradi)^2);

tube _num = round(coneleng*4/waveleng);
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tube leng = coneleng/tubenum;
toplileng = tradi/toplinum;
bopi leng = bradi/bopl_num;

taper = atan((bradi - tradi)/cone-ht);
return
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function qmat = shape bopl2(kk, bopl_leng, bopl_num)

%This computes the conversion matrix from nodal force to elemental pressure
%for bottom annulur plate

a = (bopl_num - kk + 1)*bopl leng;
b = (bopI num - kk)*boplleng;
syms r
al = a/b;

%Definition of nu terms for deriving the displacement shape function

delta = (al^2 - 1)^2 - 4*al^2*(log(al))^2;
null = (al^2) * (al^2 - 1 + 2*log(al) - 4*(log(al))^2);
nul2 = (1 - 2*al^2*log(al) - al^2);
nul3 = 4*al^2*log(al);
nul4 = 2*(al^2 - 1);
nu21 = 2*b*al^2*(log(al))^2;
nu22 = -nu2l;
nu23 = b*al^2*(al^2 - 1 - 2*log(al));
nu24 = b*(2*al^2*log(al) - al^2 +1);
nu31 = nul2;
nu32 = -nu-12;
nu33 = -nul3;
nu34 = -nul4;
nu41 = b*al*log(al)*(al^2 - 1);
nu42 = -nu4l;
nu43 = b*al*(2*al^2*log(al) - al^2 + 1);
nu44 = b*al*(al^2 - I - 2*log(al));

%Definition of rho terms

rol = 1;
ro2 = (r/b)^2;
ro3 = log(r/b);
ro4 = (r/b)^2*log(r/b);

%cil is the shape function of wi displacement
%ci2 is the shape function of w2 displacement
%ci3 is the shape function of w3 displacement
%ci4 is the shape function of w4 displacement

cil = (nul l*rol + nul2*ro2 + nul3*ro3 + nul4*ro4)/delta;
ci2 = (nu21*ro l + nu22*ro2 + nu23*ro3 + nu24*ro4)/delta;
ci3 = (nu31*rol + nu32*ro2 + nu33*ro3 + nu34*ro4)/delta;
ci4 = (nu41*ro l + nu42*ro2 + nu43*ro3 + nu44*ro4)/delta;
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ci = [ci3; ci4; cii; ci2];
inted = ci.*r;
qsy = int(inted, b, a);
qmat = double(qsy);
return
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function qmat = shapepl(pl leng)

%This computes the conversion matrix from nodal force to elemental pressure
%for centre circular plate

syms r;
phl = 1;
ph2 = pl leng/2*((r/plleng)^2 - 1);
inted = [phl; ph2].*r;
qsy = int(inted, 0, plleng);
qmat = double(qsy);
return
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function qmat = shapetopl2(ii, topl_leng)

%This computes the conversion matrix from nodal force to elemental pressure
%for top annulur plate

a = ii*toplleng;
b = (ii-l)*topl_leng;
syms r
al = a/b;

%Definition of nu terms for deriving the displacement shape function

delta = (al^2 - 1)^2 - 4*al^2*(log(al))^2;
nul l = (al^2) * (al^2 - 1 + 2*log(al) - 4*(log(al))^2);
nul2 = (1 - 2*al^2*log(al) - al^2);
nul3 = 4*al^2*log(al);
nul4 = 2*(al^2 - 1);
nu21 = 2*b*al^2*(og(al))^2;
nu22 =-nu2l;
nu23 = b*al^2*(al^2 - 1 - 2*log(al));
nu24 = b*(2*al^2*log(al) - al^2 +1);
nu31 = nul2;
nu32 = -nu12;
nu33 = -nul3;
nu34 = -nul4;
nu41 = b*al*log(al)*(al^2 - 1);
nu42 = -nu4l;
nu43 = b*al*(2*al^2*log(al) - al^2 + 1);
nu44 = b*al*(al^2 - 1 - 2*log(al));

%Definition of rho terms

rol = 1;
ro2 = (r/b)^2;
ro3 = log(r/b);
ro4 = (r/b)^2*log(r/b);

%cil is the shape function of wi displacement
%ci2 is the shape function of w2 displacement
%ci3 is the shape function of w3 displacement
%ci4 is the shape function of w4 displacement

ciI = (nul l*rol + nul2*ro2 + nul3*ro3 + nul4*ro4)/delta;
ci2 = (nu2l*rol + nu22*ro2 + nu23*ro3 + nu24*ro4)/delta;
ci3 = (nu3l*rol + nu32*ro2 + nu33*ro3 + nu34*ro4)/delta;
ci4 = (nu41 *rol + nu42*ro2 + nu43*ro3 + nu44*ro4)/delta;
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ci = [cii; ci2; ci3; ci4];
inted = ci.*r;
qsy = int(inted, b, a);
qmat = double(qsy);
return
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function qmat = shapetu(jj, tubeleng, tradi, bradi, tubenum, taper)

%This computes the conversion matrix from nodal force to elemental pressure
%for conical shell

syms rvar zi real;
ri = tradi + (jj-1)/tube _num*(bradi - tradi);
r2 = tradi + jj/tube num*(bradi - tradi);
rvar = r1*(I-zi) + r2*zi;

phl = 1-3*zi^2+2*zi^3;
ph2 = tubeleng*(zi-2*zi^2+zi^3);
ph3 = 3*zi^2-2*zi^3;
ph4 = tube_leng*(-zi^2+zi^3);

inted = [phl; ph2; ph3; ph4].*rvar;
qsy = int(inted, 0, 1);
qmat = double(qsy);
return
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function [immata, fluidense] = stiffglobe(flex3d, topi num, topl_leng, tubenum,
tubeleng, bopl_num, bopl_leng, taper, frad)

%To compute the 3-D dynamic flexibility matrix for
%tapered cylindrical tube with flat endcaps.

%*Inputs*
%toplnum -- No. of elements at top end circular plate
%boplnum -- No. of elements at bottom end circular plate
%tubenum -- No. of taper cylindrical elements
%tube-leng -- Length of each element on the cylindrical tube (m)
%toplleng -- Length of each element on top end plate (m)
%boplleng -- Length of each element on bottom end plate (m)%diam -- Diameter of
cylinder (m)
%tubeleng -- Length of tube (m)
%taper - Taper angle of cone
%frad -- Excitation frequency (rad/s)

%*Others*
%angle step -- User input on number of angular steps required for the
%dynamic stiffness matrix.
%fluidense -- Density of fluid medium (kg/m3)

tradi toplnum*toplleng;
bradi bopl num*boplleng;
d = size(flex3d);
angle step = input('Enter the number of angular steps for impedance matrix:');

%Getting fourier terms to represent unit force at theta=O
fourierterm = fourierangle(anglestep);

fluidense = input('Enter the fluid density (kg/m3):');

%F = CONV *PSI
%where CONV = {Area*Density*frequency^2)
%For CONV matrix

qmat = for _mat(topl num, bopl_num, tubenum, topl leng, tube_leng, bopl leng, taper,
tradi, bradi);
qmatrix = (pi*fluidense*frad^2).*qmat;
umat = dipmat(toplnum, bopl num, tubenum, toplleng, tubeleng, boplleng);

umat(toplnum+1, 2*topl num-1) = 0;
umat(topl num+tube_num, 2*(topl num+tubenum)- 1) = 0;
umat(topl-num+tubenum, 2*(topl num+tube num)) = -umat(topl num-+-tubenum,
2*(topl-num+tubenum));
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qmatrix(2*top1 num-1, toplnum+1) = 0;
qmatrix(2*(top1 num+tubenum)-1, topinum+tube num) 0;
qmatrix(2*(topl num+tube num), toplnum+tubenum)= -
qmatrix(2*(topl-num+tubenum), topl_num+tubenum);

for qq = 1 : d(3)
immat(: , :, qq) = umat*flex3d(:, :, qq)*qmatrix;

end

%Compute the dynamic flexibility matrix

dII = topl_num+boplnum+tubenum;
for ii = 1:dll

displ = zeros(d lI*angle step, 1);
for kk = 1:anglestep

for jj = l:d(3)
displ((kk-1)*d1 1 + 1 : kk*dl 1, 1) = displ((kk-1)*d1 1 + 1: kk*dl 1, 1)+ immat(:,

ii, jj).*fourierterm(jj,1).*cos((jj-1)*(kk-1)*2*pi/angle step);
end

end
immata(:, ii) = displ;

end
return
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function mmatto = toplatemass(toplthic, tradi, denspl, topl_num, nwav)

%To assemble the mass matrix for top plate

%*Define variables*

%*Input arguments*
%toplthic -- Thickness of top plate (assume uniform) (m)
%tradi -- Top radius of cone (in)
%denspl -- Density of top and bottom plate material (kg/m3)
%toplnum -- No. of elements at top end circular plate

%*Other arguments*
%totalnode -- Total number of nodes
%tdof -- Total number of DOFs
%jjs -- Number of iteration of "jj"th element
%a_val -- outer radius of annulur element (m)
%b_val -- inner radius of annulur element (m)

%*Matrices*
%mplele4 -- Elemental mass matrix (4 x 4)
%mpla -- Elemental mass matrix (tdof by tdof)
%mmatto -- Entire plate mass matrix (tdof by tdof)
%masscent -- Mass matrix of centre plate (2 x 2)

%Prepare variables to input to elemental mass matrix computation
totalnode = toplnum;
tdof= 2*totalnode;
mmatto = zeros(tdof, tdof);

%Add mass contribution by centre plate element
mass cent = m centplate(toplthic, denspl, tradi, topl-num);
mmat to(1:2, 1:2) = mass-cent;

%Assemble global mass matrix for top plate
forjjs = 1:topl num-1

b_val =jjs*tradi/topl num;
a-val = (jjs+l)*tradi/toplnum;
m_pla = zeros(tdof, tdof);
%Formation of 4x4 elemental mass matrix
m_plele4 = m toplate (a_val, b val, topithic, denspl);
%Fonration of elemental mass matrix in entire plate matrix dimensions
m pla = mplgloto (m_plele4, jjs, tdof);
%Increment to entire plate mass matrix
mmatto = mmatto + mpla;

end
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return
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function kmat to = toplatestiff(topl_thic, tradi, younpl, pois, topl_num, nwav)

%To assemble the stiffness matrix for top plate

%*Define variables*

%*Input arguments*
%toplthic -- Thickness of top plate (assume uniform) (m)
%tradi -- Top radius of cone (m)
%younpl -- Young's modulus of top and bottom plate material (x I0e9 N/m2)
%pois -- Poisson's ratio of material
%toplnum -- No. of elements at top end circular plate
%nwav -- Wave number in consideration

%*Other arguments*
%totalnode -- Total number of nodes
%tdof -- Total number of DOFs
%jjs -- Number of iteration of "j "th element
%a_val -- Outer radius of annular (m)
%b_val -- Inner radius of annular (m)
%d_val -- Plate rigidity (Nm)

%*Matrices*
%kplele4 -- Elemental stiffness matrix (4 x 4)
%kpla -- Elemental stiffness matrix (tdof by tdof)
%kmatto -- Entire plate stiffness matrix (tdof by tdof)

%Prepare variables to input to elemental stiffness matrix computation
totalnode = topl-num;
tdof = 2*totalnode;
kmat to = zeros(tdof, tdof);

%Add stiffness of centre plate (only K22 is affected by the centre plate)
d_val = (younpl*1000000000*topl thic^3)/(12*(I-pois^2));
kmatto(2,2) = 2*dval*pi*(l+pois);

%Assemble global stiffness matrix for plate only
for jjs = 1:topl-num-1

k_pla = zeros(tdof, tdof);
b__val =jjs*tradi/(toplnum);

a-val = (jjs+1)*tradi/(topl num);
%Formation of 4x4 elemental stiffness matrix
k_plele4 = ktoplate(a val, b val, pois, d val, nwav);
%Formation of tdof x tdof elemental stiffness matrix
k_pla = kplgloto(kplele4, jjs, tdof);
%Increment to entire plate stiffness matrix
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kmatto = kmat to + k-pla;
end

return
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function mmat_ tu = tube mass(dens_cy, tubethic, tradi, bradi, tubeleng, tubenum,
taper, nwav)

%Purpose is to assemble the mass matrix for tapered tube

%*Define variables*

%*Input arguments*
%denscy -- Density of tapered cylinder material (kg/m3)
%tubethic -- Thickness of tapered tube (assume uniform) (m)
%tradi -- Top radius of cone (m)
%bradi -- Bottom radius of cone (m)
%tube_ num -- No. of taper cylindrical elements
%tube leng -- Length of each element on the cylindrical tube (m)
%taper - Taper angle of cone

%*Other arguments*
%totalnode -- Total number of nodes
%tdof -- Total number of DOFs
%jjs -- Number of iteration of "jj"th element

%*Matrices*
%masscydim -- Elemental mass matrix in local dimensions
%masscylin -- Elemental mass matrix in global dimensions (tdof by tdof)
%mmattu -- Tapered tube mass matrix (tdof by tdof)

%Prepare variables to input to elemental mass matrix computation
totalnode = tubenum + 1;
tdof= 4*totalnode;
mmat tu = zeros(tdof, tdof);

%Assemble global stiffness matrix for tube only
forjjs = 1:tubenum

mass_ cylin = zeros(tdof, tdof);
%Formation of 6x6 elemental mass matrix
masscydim = masstube (denscy, tubethic, tradi, bradi, tube_leng, tubenum, taper,

jjs, nwav);
%Formation of elemental mass matrix in global matrix dimensions
masscylin = mass__tubeglo (mass cydim, jjs, tdof);
%increment to global mass matrix
mmat tu = mmattu + mass_cylin;

end
return
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function kmattu = tube stiff(tube_thic, youncy, pois, tradi, bradi, tubenum,
tube_leng, taper, nwav)

%Purpose is to assemble the global stiffness matrix for tapered tube

%*Define variables*

%*Input arguments*
%tubethic -- Thickness of tapered tube (assume uniform) (m)
%youn-cy -- Young's modulus of tapered cylinder material (x10e9 N/m2)
%pois -- Poisson's ratio of material
%tradi -- Top radius of cone (m)
%bradi -- Bottom radius of cone (m)
%tubenun -- No. of taper cylindrical elements
%tube-leng -- Length of each element on the cylindrical tube (m)
%taper - Taper angle of cone
%nwav -- Wave number in consideration

%*Other arguments*
%totalnode -- Total number of nodes
%tdof -- Total number of DOFs
%jjs -- Number of iteration of "jj"th element

%*Matrices*
%k-cydim -- Elemental stiffness matrix in local dimensions
%k cylin -- Elemental stiffness matrix in global dimensions of tapered tube (tdof by tdof)
%kmattu -- Stiffness Matrix (tube)

%Prepare variables to input to elemental stiffness matrix computation
totalnode = tubenum + 1;
tdof= 4*totalnode;
kmattu = zeros(tdof, tdof);

%Assemble global stiffness matrix for tapered tube only
forjjs = :tubenum

k_cylin = zeros(tdof, tdof);
%Formation of 6x6 elemental stiffness matrix
k-cydim = ktube (tube thic, tradi, bradi, youncy, pois, tubeleng, tube num, taper,

jjs, nwav);
%Formation of elemental stiffness matrix in global matrix dimensions
k-cylin = k tubeglo (k cydim, jjs, tdof);
%Increment to global stiffness matrix
kmattu = kmat-tu + k-cylin;

end

return
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