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Abstract
This paper outlines work on the stability analysis of hybrid systems. Particu-
larly, we concentrate on the continuous dynamics and model the finite dynamics
as switching among finitely many continuous systems. We introduce multiple Lya-
punov functions as a tool for analyzing Lyapunov stability. We use IF'S theory
as a tool for Lagrange stability. By enforcing the conditions of our theorems, one
can also synthesize hybrid systems with desired stability properties.

1 Introduction

We have in mind the following model as a prototypical example of a switching system:
z(t) = Fi(z(t),  z(0) == (1)

where z(-) € R™ and ¢ = 1,...,N. Such systems are of “variable structure” or
“multi-modal”; they are a simple model of (the continuous portion) of hybrid systems.
Hybrid systems are those that inherently combine logical and continuous processes,
e.g., coupled finite automata and ODEs [5, 7, 2]. For instance, the particular ¢ at any
given time may be chosen by some “higher process,” such as a controller, computer,
or human operator. It may also be a function of time or state or both. In the latter
case, we may really just arrive at a single (albeit complicated) nonlinear time-varying
equation. However, one might gain some leverage in the analysis of such systems by
considering them to be amalgams of simpler systems. We add the assumptions that
(1) each F; is globally Lipschitz continuous and (2) the i’s are picked in such a way
that we have finite switches in finite time. Models like Equation (1) have been studied
for stability [4, 8]. We use some of their notation. However, those papers concentrated
on the special case where the F; are linear.
We also discuss difference equations:

zlk + 1] = Fi(z[k + 1]), z[0] = zq
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2 Multiple Lyapunov Functions

In this section, we discuss stability of switching systems via multiple Lyapunov func-
tions (MLFs). We assume the reader is familiar with basic Lyapunov theory (continu-
ous and discrete time), say, at the level of [6]. The level of rigor of the proofs is similar
to those in that book. Let S(r) = {z € R*|zTz = r?}, B(r) = {z € R"|zTz < r?},
and B(r) = {z € R*zTz < r?} represent the sphere, ball, and

Below, we will be dealing with systems that switch among vector fields (resp.
difference equations), over time or regions of state-space. One can associate with such
a system the following switching sequence, indexed by an initial time, tg and an initial
state, zg: s(zo,t0) = (d0,%0), (?1,%¢1),.-., (N, tN),... . The sequence may or may not
be infinite. The switching sequence, along with Equation (1), completely describes
the system according to the following rule: (ix,?x) means that the system evolves
according to £ = Fj, (z(t),t) for tx, <t < tp11. We can take projections of this sequence
onto its first and second coordinates, yielding the sequence of indices, 71 (s(xg, tg)) =
105%1,---,tN, ..., and the sequence times, wo(s{zo,to)) = to,t1,.--,tN,-. ., respectively.

Using this notation, when we say that V' is a Lyapunov function for ¢ = Fj(z)
(resp. z[k + 1] = F;(z[k]), we mean that V is a continuous, positive definite function
(about the origin) such that V < 0 (resp. V(z[k +1]) < V(z[k])) whenever the vector
field (resp. difference equation) F; is active, that is, for all intervals {[t;,t;+1) | ; =i}
(resp. indices {k; | i; = i}).

Remark 1 Suppose we have a finite number of Lyapunov functions V;, i =1,..., N,
corresponding to the continuous-time vector fields ¢ = f;i(z). Let sy be the switching
times of the system. If, whenever we switch in mode (or region) i, with corresponding
Lyapunov function V;, we have Vi(z(sx)) < Vi(z(s;)), where s; < si is the last time we
switched out of mode (or region) i, then the system is stable in the sense of Lyapunov.
Initially, we set so =ty and Vi(z(so)) = o0, for j # ig, the starting mode.

Proof We will do the proof for the case N = 2. Let R > 0 be arbitrary. Let m;(a)
denote the minimum value of V; on S(«). Pick r; < R such that in B(r;) we have
Vi < mi(R). This choice is possible via the continuity of V;. Let 7 = min(r;). With
this choice, if we start in B(r), either vector field alone will stay within B(R).

Now, pick p; < r such that in B(p;) we have V; < m;(r). Set p = min(p;). Thus, if
we start in B(p), either vector field alone will stay in B(r). Therefore, whenever the
other is first switched on we will have V;(z(s1)) < m;(R), so that we will stay within
B(R).

The proof for general /V requires IV concentric circles constructed as the two were
above. a

The stability theorem of [8] is a special case of the above. Specifically, it re-
quires that Vi, (z(sj+2)) < Vi;(@(sj31)), a stronger condition. Moreover, the proof
of asymptotic stability in 8] is flawed since it only proves state convergence and not
state convergence plus stability, as required. It can be fixed using our theorem.

Remark 2 Suppose we have a finite number of Lyapunov functions V;, i =1,..., N,
with the same point of global minimum, corresponding to the discrete-time difference
equations z[k+1] = f;(z[k]). Let si be the switching times of the system. If, whenever
we switch in mode (or region) i, with corresponding Lyapunov function V;, we have
Vi(z(sk)) < Vi(z(s;)), where s; < s is the last time we switched out of mode (or



region) i, then the system is stable in the sense of Lyapunov. Initially, we set sy = t
and Vi(z(s0)) = oo, for j # 1o, the starting mode.

Proof We will do the proof for the case N = 2. Let R > 0 be arbitrary. Let m;(«a, 3)
denote the minimum value of V; on the closed annulus B(B) - B(a). Pick Ry < R
so that none of the f; can jump out of B(R) in one step. Pick r; < Rg such that in
B(r;) we have V; < m;(Ry, R). This choice is possible via the continuity of V;. Let
r = min(r;). With this choice, if we start in B(r), either equation alone will stay
within B(R).

Pick 79 < r so that none of the f; can jump out of B(r) in one step. Now, pick
p; < ro such that in B(p;) we have V; < m;(ro, 7). Set p = min(p;). Thus, if we start
in B(p), either equation alone will stay in B(rp), and hence B(r). Therefore, whenever
the other is first switched on we will have V;(z(s1)) < mi(Ry, R), so that we will stay
within B(Rg), and hence B(R).

The proof for general N requires N sets of concentric circles constructed as the
two were above. a

Both proofs also work when the F; are time-varying.

3 Iterated Function Systems

We begin with some background [1, 9, 3].

Definition 3 (IFS) An IFS (iterated function system) is a complete metric space

and a set {fi}ier of contractive functions such that I is a compact space and the map
(z,1) = fi(z) is continuous.

Definition 4 A contractive function f is one such that there exists s < 1 where
d(f(z), f()) < sd(z,y), for all z,y.

The image of a set X under an IFS is the set Y = {J;¢; fi(X). It is compact. Now
suppose W is an IF'S. Let S(W) be the semi-group generated by W under composition.

For example, W = {f,g}; SW) = f, g, fof, fog, gof,gog,.... Now, define Aw
to be the closure of the fixed points of S(W). We have

Theorem 5 Suppose W = {w;}ics 1s an IFS on X. Then Aw is compact and
1. Aw = Uses wi(Aw).

2. Aw = U, {limp—eo Wy, oWg,0- - 0w, ()}, for allz € X, where 0 = (01,09,...),
o; € 1. '

The relevance of this theorem is that (i) Aw is an invariant set under the maps {w; }ier
and (ii) all points approach Aw under iterated composition of the maps {w;}ies.

Clearly,this theory can be applied in the case of a set of contractive discrete maps
indexed by a compact set (usually finite). But, to obtain contractive maps while
switching among differential equations requires a little thought .... Assume there
is some lower limit on switching time, 7. Then we can convert this into an IFS as
follows: Let [ = {J;=;,__nJ % [T,2T]. Notice that for any switching time r > T, there
is a decomposition into smaller intervals as follows:

M
r=>t, t; € [T,2T)
=1




Proof Let k = |r/(2T)] and ¢ = r — 2Tk. Now, 2T > q¢ > 0. If ¢ = 0, the
decomposition is t; = 2T, i = 1,...,k. If 2T > g > T, the decomposition is t; = 2T,
t=1,...,k; tr41 = gq; the first equation not applying if £ = 0. Finally, if T > ¢ > 0,
then (we must have £ > 1 since r > T) and 2T > ¢+ T > T, so the decomposition is
ti=2T,i=1,...,k—1; ty =T, tgy+1 = q; the first equation not applying if k =1. O

Now, we see that for each i, if it is active for a time r > T, we can write the
solution in that interval as ¢%(z) = (ojM:lgb%j)(x), where ¢¢ is the fundamental solution
for F; acting for time ¢. Thus the switching sequence can be converted to an iterated
composition of maps indexed by the compact set I.
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