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Abstract

Computer vision deals with image understanding at various levels. At the low level, it ad-
dresses issues such us planar shape recognition and analysis. Some classical results on differential
invariants associated to planar curves are relevant to planar object recognition under different
views and partial occlusion, and recent results concerning the evolution of planar shapes un-
der curvature controlled diffusion have found applications in geometric shape decomposition,
smoothing, and analysis, as well as in other image processing applications. In this work we
first give a modern approach to the theory of differential invariants, describing concepts like Lie
theory, jets, and prolongations. Based on this and the theory of symmetry groups, we present
a high level way of defining invariant geometric flows for a given Lie group. We then analyze
in detail different subgroups of the projective group, which are of special interest for computer
vision. We classify the corresponding invariant flows and show that the geometric heat flow
is the simplest possible one. This uniqueness result, together with previously reported results
which we review in this paper, confirms the importance of this class of flows.
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1 Introduction

Invariant theory has recently become a major topic of study in computer vision (see [47] and
references therein). Indeed, since the same object may be seen from a number of points of view,
one is motivated to look for shape invariants under various transformations.

Indeed, the problem of recognizing and locating a partially visible planar object, whose shape
underwent a geometric viewing transformation, often arises in machine vision tasks. Attempts to
address such shape recognition problems raise the question of invariants under viewing transforma-
tions [7, 22, 47].

Work in model based shape analysis and recognition has already resulted in many useful prod-
ucts, such as optical character recognizers, handwriting recognizer interfaces to computers, printed-
circuit board inspection systems and quality control devices. In spite of such successes many low-
level problems remain to be addressed. Efficient ways for analyzing, recognizing and understanding
planar shapes, when they do not come from a well-defined and documented catalogue of shapes,
when they are distorted by a geometric viewing transformation, such as perspective projection or
when they are partially occluded, must still be developed.

Another topic that has been receiving much attention from the image analysis community is
the theory of scale-spaces or multiscale representation. This was introduced by Witkin in [69] and
developed after that by several authors in different frameworks [2, 5, 9, 14, 20, 21, 32, 33, 36, 37, 38,
39, 41, 42, 45, 46, 55, 56, 59, 70, 71]. Initially, most of the work was devoted to linear scale-spaces
derived via linear filtering. In the last years, a number of non-linear and geometric scale-spaces
have been investigated as well.

The combination of invariant theory with geometric multiscale analysis was first investigated in
[57, 58, 59]. There, the authors introduced an affine invariant geometric scale-space, and extended
part of the work to other groups as well in [61, 62, 63]. Related work was also carried out in [1, 11].
As we will see in future sections, this kind of multiscale analysis replaces for some applications
the originally used linear ones. The obtained representations allows for example to compute in-
variant signatures at different scales and in a robust way. These flows are already being used with
satisfactory results in different applications [21, 56, 59, 60]

In this paper, we would like first of all to set out the basic theory of differential invariants for
computer vision. It will therefore have a tutorial nature. We will sketch enough of the language
of differential geometry in order to make precise the notion of infinitesimal invariance. While the
theory may be stated in classical terms (it was developed after all by Sophus Lie in the previous
century), we believe that there is a strong advantage to working with the more modern machinery
if only to avoid the classical proliferation of multi-indices. Moreover, this will give the interested
reader a guide to the modern literature on the subject. Other approaches to the formulation of
differential invariants, as those based on Cartan moving frames, can be found in [8, 18, 19, 29, 49],
as well as in some of the papers in [47].

Our main application of this theory, will be to the new theory of geometric-invariant scale-
spaces, based on invariant geometric diffusion equations. These give geometric multi-resolution
representations of shape which are invariant to a number of the typical viewing transformations
in vision: Euclidean, affine, similarity, projective. The theory of differential invariants allows a
unification of all these scale-spaces. Moreover, using this theory, we classify the flows and show
that the geometric heat flows are the simplest possible amongst all invariant equations.

We now briefly summarize the contents of this paper. In Section 2, we give an outline of
a modern treatment of the theory of differential invariants. In particular, we discuss manifolds,
vector fields, Lie groups and Lie algebras and their actions on spaces, and the relevant notions
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of jets, prolongations, and symmetry groups. These will allow us to give a rigorous definition of
"differential invariant." The reader familiar with this topic, or interested in having a less formal
presentation of the invariant geometric flows, can skip this section in a first reading, since the
following sections are almost self contained. In Section 3, we give the theory of invariant diffusion
equations as applied to the affine, Euclidean, projective, and similarity groups. In particular, using
the invariant theory developed in Section 2, we prove that for any of the preceding subgroups of the
projective group SL(R, 3), say G, the flows we have defined give the unique G-invariant evolution
equation of lowest order (up to constant factor). See Theorem 8 and Corollary 1 below. Next in
Section 4, we show how our flows may be made area or length preserving which effectively solves the
problem of shrinkage in computer vision. Finally, in Section 5, we give some concluding remarks.

2 Basic Invariant Theory

In this section, we review the classical theory of differential invariants. In order to do this in a
rigorous manner, we first sketch some relevant facts from differential geometry and the theory of Lie
groups. The material here is based on the books by Olver [49, 50] to which we refer the interested
reader for all the details. See also the classical work of Sophus Lie on the theory of differential
invariants [40] as well as [8, 19, 49, 50, 67].

We will assume a certain mathematical background, i.e., the reader should be familiar with the
basic definitions of "manifold" and "smooth function." Accordingly, all the manifolds and mappings
we consider below are Co' . (This type of foundational material may be found in [30, 67].) We should
add that in this section no proofs will be given, and the results will just be stated.

2.1 Vector Fields and One-Forms

Since we will be considering the theory of differential invariants, we will first review the infinitesimal
(differential) structure of manifolds. Accordingly, a tangent vector to a manifold M at a point x C M
is geometrically given as the tangent to a (smooth) curve passing through x. The collection of all
such tangent vectors gives the tangent space TMI[ to M at x, which is a vector space of the same
dimension m as M. In local coordinates, a curve is parametrized by x = +(t) = (¢ 1(t),... qbm(t)),

and has tangent vector v = E' r +* em 9 at z = q(t), with components (i d= given by the
components of the derivative b'(t). Here, the tangent vectors to the coordinate axes are denoted
by 9 = O2i, and form a basis for the tangent space TMI=. If f : M - R is any smooth function,
then its directional derivative along the curve is

d mf
dt f[4(t)] = v(f)(O(t))- = af(q(t)) df(+(t))

i=1

which provides one motivation for using a derivational notation for tangent vectors. The tangent
spaces are patched together to form the tangent bundle TM = U:EM TMI of the manifold, which
is an m-dimensional vector bundle over the m-dimensional manifold M. A vector field v is a
smoothly (or analytically) varying assignment of tangent vector vlJ E TMI,. In local coordinates,
a vector field has the form

v= E i
i=1

where the coefficients i(z) are smooth (analytic) functions.
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A parametrized curve q : R -. M is called an integral curve of the vector field v if its tangent
vector agrees with the vector field v at each point; this requires that x = +Q(t) satisfy the first order
system of ordinary differential equations

dxi

d = -i ( t ) , 1 < i < m.

Standard existence and uniqueness theorems for systems of ordinary differential equations imply
that through each x E M there passes a unique, maximal integral curve. We use the notation
exp(tv)x to denote the maximal integral curve passing through x = exp(Ov)x at t = O, which may
or may not be defined for all t. The family of (locally defined) maps exp(tv) is called the flow
generated by the vector field v, and obeys the usual exponential rules:

exp(tv) exp(sv)x = exp((t + s)v)x, t, s 6 R,

exp(Ov)z = z,

exp(-tv)x = exp(tv)-lx,

the equations holding where defined. Conversely, given a flow obeying the latter equalities, we can
reconstruct a generating vector field by differentiation:

VI. = d exp(tv)It=o x, x G M.

Applying the vector field v to a function f : M --4 R determines the infinitesimal change in f under
the flow induced by v:

v(D, = ~ c of d
v(f)= (z) i = f(exp(tv)) ,~~i= l ~t=O

so that

f(exp(tv)x) = f(x) + tv(f)(x) + -t2v(v(f)) + ....

Next given a (smooth) mapping F: M -- N, we define the differential dF: TMI -I TNIF(z)
by

[(dF)(v)](f)(F(x)) := v(f o F)(x),

where f: N -+ R is a smooth function, v is a vector field.
In general, given a point x E M, a one-form at x is a real-valued linear map on the tangent

space
w : TMI, -R.

In local coordinates z = (x, ... ,zm), the differentials dzi are characterized by dzi(Oj) = 56j (the
Kronecker delta), where e9l,..., ,m denotes the standard basis of TMI,. Then locally,

m

= hi(z)dxi .

i=1

In particular, for f : M -4 R, we get the one-form df given by its differential, so

df(v) := v(f).

The (vector space) of one-forms at x is denoted by T*MI[ and is called the cotangent space.
(It can be regarded as the dual space of TMI,,.) As for the tangent bundle, the cotangent spaces
can be patched together to form the cotangent bundle T*M over M.
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2.2 Lie Groups

In this section, we collect together the basic necessary facts from the theory of Lie groups which
will be used below. Recall first that a group is a set, together with an associative multiplication
operation. The group must also contain an identity element, denoted e and each group element
g has an inverse g-l satisfying g · g-1 = g-l . g = e. Historically, it was Galois who made the
fundamental observation that the set of symmetries of an object forms a group (this was in his
work on the roots of polynomials). However, the groups of Galois were discrete; in this paper we
study the continuous groups first investigated by Sophus Lie.

Definition. A Lie group is a group G which also carries the structure of a smooth manifold so
that the operations of group multiplication (g, h) - g. h and inversion g - g-1 are smooth maps.

Example. The basic example of a real Lie group is the general linear group GL(R, n) consisting
of all real invertible n x n matrices with matrix multiplication as the group operation; it is an
n2-dimensional manifold, the structure arising simply because it is an open subset (namely, where
the determinant is nonzero) of the space of all n x n matrices which is itself isomorphic to Rn2 .

A subset H C G of a group is a subgroup if and only if it is closed under multiplication and
inversion; if G is a Lie group, then a subgroup H is a Lie subgroup if it is also a submanifold.
Most Lie groups can be realized as Lie subgroups of GL(R, n); these are the so-called "matrix Lie
groups", and, in this paper, we will assume that all Lie groups are of this type. One can also define
a notion of local Lie group in the obvious way (see e.g., [30]).

Example. We list here some of the key "classical groups". The special linear group SL(R, n) =
{A E GL(R, n): det A = 1} is the group of volume-preserving linear transformations. The group
is connected and has dimension n2 - 1. The orthogonal group O(n) = {A E GL(R, n) : ATA = I}
is the group of norm-preserving linear transformations - rotations and reflections - and has two
connected components. The special orthogonal group SO(n) = O(n) n SL(R, n) consisting of just
the rotations is the component containing the identity. This is also called the rotation group.

2.2.1 Transformation Groups

In many cases in vision (and physical) problems, groups are presented to us as a family of trans-
formations acting on a space. In the case of Lie groups, the most natural setting is as groups of
transformations acting smoothly on a manifold. More precisely, we have the following:

Definition. Let M be a smooth manifold. A group of transformations acting on M is given by a
Lie group G and smooth map A : G x M -- M, denoted by P(g, x) = g z, which satisfies

e x = x, g (h . x) (g * h) * x,for all x E M, g E G.

One can also define in the obvious way the notion of a local Lie group action.

Example. The key example is the usual linear action of the group GL(R, n) of n x n matrices
acting by matrix multiplication on column vectors x E Rn. This action includes linear actions
(representations) of the subgroups of GL(R, n) on Rn. Since linear transformations map lines
to lines, there is an induced action of GL(R, n) on the projective space RPn-l. The diagonal
matrices AI (I denotes the identity matrix) act trivially, so the action reduces effectively to one of
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the projective linear group PSL(R, n) = GL(R, n)/{AI}. If n is odd, PSL(R, n) = SL(R, n) can be
identified with the special linear group, while for n even, since -I E SL(R, n) has the same effect
as the identity, the projective group is a quotient PSL(R, n) = SL(R, n)/{+I).

In vision, of particular importance is the case of GL(R, 2), so we discuss this in some detail.
The linear action of GL(R, 2) on R2 is given by

(Z,y) ,- (az + Py, z + Sy), A= [ ] E GL(R, 2).

As above, we can identify the projective line RP 1 with a circle S1. If we use the projective
coordinate p = z/y, the induced action is given by the linear fractional or M6bius transformations:

pi ap +- A= a E GL(R, 2).
7p-- +5 7 I' 7

In this coordinate chart, the z-axis {(z, 0)} in R 2 is identified with the point p = oo in RP1, and
the linear fractional transformations have a well-defined to include the point at oo.

Example. Let v be a vector field on the manifold M. Then the flow exp(tv) is a (local) action of
the one-parameter group R, parametrized by the "time" t, on the manifold M.

Example. In general, if G is a Lie group which acts as a group of transformations on another
Lie group H, we define the semi-direct product G x, H to be the Lie group which, as a manifold
just looks like the Cartesian product G x H, but whose multiplication is given by (g, h)- (, h) =
(g9., h.(g.h)), and hence is different from the Cartesian product Lie group, which has multiplication
(9, h) ) = (, (g -9 , h*h).

The (full) affine group A(n) is defined as the group of affine transformations z - Az + a in
Rn, parametrized by a pair (A, a) consisting of an invertible matrix A and a vector a E Rn. The
group multiplication law is given by (A, a) . (B, b) = (AB, a + Ab), and hence can be identified
with the semi-direct product GL(R, n) x, Rn. The affine group can be realized as a subgroup of
GL(R, n + 1) by identifying the pair (A, a) with the (n + 1) x (n + 1) matrix

[0 11 

Let GL+(R, n) denote the subgroup of GL(R, n) with positive determinant. Then the group of
proper affine motions of R n is the semidirect product of GL+(R, n) and the translations. Similarly,
the special affine group is given by the semidirect product of SL(R, n) and R n .

We may also define the Euclidean group E(n) as the semi-direct product of O(n) and translations
in Rn, and the group of Euclidean motions as the semidirect product of the rotation group SO(n)
and R n. The similarity group in Rn, Sm(n), is generated by rotations, translations, and isotropic
scalings.

In the sequel, we will usually not differentiate between the real affine group and the group of
proper affine motions, and the Euclidean group and the group of Euclidean motions.

Example. In what follows, we will consider all the above subgroups for n = 2, i.e., acting on the
the plane R2. In this case, they are all subgroups of SL(R, 3), the so-called group of projective
transformations on R 2. More precisely, SL(R, 3) acts on R2 as follows: for A E SL(R, 3)

,) a1 z + a21y + a3s a12z + a22y + a32 \
a13 z + a23y + a33 al 3z + a23y + a33 /
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where
A = [aij]l<ij<3 -

2.2.2 Representations

Linear actions of Lie groups, that is, "representations" of the group, play an essential role in
applications. Formally, a representation of a group G is defined by a group homomorphism p : G --
GL(V) from G to the space of invertible linear operators on a vector space V. This means that p
satisfies the properties: p(e) = I, p(g - h) = p(g)p(h), p(g-l) = p(g)-l.

One important method to turn a nonlinear group action into a linear representation is to look
at its induced action on functions on the manifold. Given any action of a Lie group G on a manifold
M, there is a naturally induced representation of G on the space F = F'(M) of real-valued functions
F: M -- R, which maps the function F to F := g · F defined by

(i) = F(g ),

or equivalently,
(g . F)(g . 2) = F(z).

The introduction of the inverse g-1 in this formula ensures that the action of G on ' is a group
homomorphism: g * (h . F)= (g . h) * F for all g, h E G, F E F.

The representation of G on the function space F will usually decompose into a wide variety of
important subrepresentations, e.g., representations on spaces of polynomial functions, representa-
tions on spaces of smooth (C") functions, or L2 functions, etc. In general, representations of a
group containing (nontrivial) subrepresentations are called reducible. An irreducible representation,
then, is a representation p : G - GL(V) which contains no (non-trivial) sub-representations, i.e.,
there are no subspaces W C V which are invariant under the representation, p(g)W C W for all
g E G, other than W = {0} and W = V. The classification of irreducible representations of Lie
groups is a major subject of research in this century.

Example. Consider the action of the group GL(R, 2) on the space R 2 acting via matrix multipli-
cation. This induces a representation on the space of functions

F(Z,y)= P(a + 3 y, y + Sy) = F(z,y), where A= [r ] E GL(R,2).

Note that is F is a homogeneous polynomial of degree n, so is F, so that this representation
includes the finite-dimensional irreducible representations pn,, of GL(R, 2) on p(n), the space of
homogeneous polynomials of degree n. For example, on the space p(l) of linear polynomials, the
coefficients of general linear polynomial F(z, y) = ax + by will transform according to

i b A = E GL(R, 2) 

so that the representation pl,o(A) = A - T can be identified with the inverse transpose representation.
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2.2.3 Orbits and Invariant Functions

Let G be a group of transformations acting on the manifold M. A subset S C M is called G-
invariant if it is unchanged by the group transformations, meaning g · z E S whenever g E G and
z E S (provided g · z is defined if the action is only local). An orbit of the transformation group
is a minimal (nonempty) invariant subset. For a global action, the orbit through a point z E M is
just the set of all images of z under arbitrary group transformations (, = {g- z : g E G}.

Clearly, a subset S C M is G-invariant if and only if it is the union of orbits. If G is connected.
its orbits are connected. The action is called transitive if there is only one orbit, so (assuming the
group acts globally), for every x, y E M there exists at least one g E G such that g . x = y.

A group action is called semi-regular if its orbits are all submanifolds having the same dimension.
The action is called regular if, in addition, for any z E M, there exist arbitrarily small neighborhoods
U of x with the property that each orbit intersects U in a pathwise connected subset. In particular,
each orbit is a regular submanifold, but this condition is not sufficient to guarantee regularity; for
instance, the one-parameter group (r, 9) i-+ (et(r - 1) + 1, + t), written in polar coordinates, is
semi-regular on R 2 \ 0)}, and has regular orbits, but is not regular on the unit circle.

Example. Consider the two-dimensional torus T = S1 x S1, with angular coordinates (b0, ),
0 < 0, p < 27r. Let a be a nonzero real number, and consider the one-parameter group action
(0, Ao) - (9 + t, so + at) mod 2r, t E R. If a/7r is a rational number, then the orbits of this action
are closed curves, diffeomorphic to the circle S1, and the action is regular. On the other hand, if
a/ir is an irrational number, then the orbits of this action never close, and, in fact, each orbit is a
dense subset of T. Therefore, the action in the latter case is semi-regular, but not regular.

The quotient space M/G is defined as the space of orbits of the group action, endowed with a
topology induced from that of M. As the irrational flow on the torus makes clear, the quotient
space can be a very complicated topological space. However, regularity of the group action will
ensure that the quotient space is a smooth manifold.

Given a group of transformations acting on a manifold M, by a canonical form of an element
x E M we just mean a distinguished, simple representative xz of the orbit containing z. Of course,
there is not necessarily a uniquely determined canonical form, and some choice, usually based on
one's aesthetic sense of "simplicity", must be employed for such forms.

Now orbits and canonical forms of group actions are characterized by the invariants, which are
defined as real-valued functions whose values are unaffected by the group transformations.

Definition An invariant for the transformation group G is a function I : M -- R which satisfies
I(g . x) = I(z) for all g E G, · E M.

Proposition 1 Let I: M -. R be a function. Then the following three conditions are equivalent:

1. I is a G-invariant function.

2. I is constant on the orbits of G.

3. The level sets {I(z) = c} of I are G-invariant subsets of M.

For example, in the case of the orthogonal group O(n) acting on R 'n, the orbits are spheres
-11 = constant, and hence any orthogonal invariant is a function of the radius I = F(r), r = Ixl.
Invariants are essentially classified by their "quotient representatives": every invariant of the group
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action induces a function I: M/G -- R on the quotient space, and conversely. The canonical
form x0 of any element x E M must have the same invariants: I(zo) = I(x); this condition is also
sufficient if there are enough invariants to distinguish the orbits, i.e., x and y lie in the same orbit
if and only if I(x) = I(y) for every invariant I which according to the next theorem is the case for
regular group actions.

An important problem is the determination of all the invariants of a group of transformations.
Note that if I1(x),...,Ik(x) are invariant functions, and 4(yl,...,yYk) is any function, then I =
4(Ii(x),...,Ik(x)) is also invariant. Therefore, to classify invariants, we need only determine all
different functionally independent invariants. Many times globally defined invariants are difficult
to find, and so one must be satisfied with the description of locally defined invariants of a group
action.

Theorem 1 Let G be a Lie group acting regularly on the m-dimensional manifold M with r-
dimensional orbits. Then, locally, near any x E M there exist exactly m-r functionally independent
invariants I, . . ., I_, with the property that any other invariant can be written as a function of
the fundamental invariants: I = (I,... . , I_-,). Moreover, two points x and y in the coordinate
chart lie in the same orbit of G if and only if the invariants all have the same value, I,(x) =
,,(y), v = 1.,...,m- r.

This theorem provides a complete answer to the question of local invariants of group actions.
Global and irregular considerations are more delicate; for example, consider the one-parameter
isotropy group (x, y) - (Ax, Ay), A E R + . Locally, away from the origin, x/y or y/x any function
thereof (e.g., 0 = tan-l(y/x)) provides the only invariant. However, if we include the origin, then
there are no non-constant invariants. On the other hand, the scaling group

(Xy) H- (Ax, 1y), A $40,

has the global invariant zy. In general, if G acts transitively on the manifold M, then the only
invariants are constants, which are completely trivial invariants. More generally, if G acts transi-
tively on a dense subset Mo C M, then the only continuous invariants are constants. For example,
the only continuous invariants of the irrational flow on the torus are the constants, since every orbit
is dense in this case. Similarly, the only continuous invariants of the standard action of GL(R, n)
on R n are the constant functions, since the group acts transitively on Rn \ {0}. (A discontinuous
invariant is provided by the function which is 1 at the origin and 0 elsewhere.)

2.2.4 Lie Algebras

Besides invariant functions, there are other important invariant objects associated with a trans-
formation group, including vector fields, differential forms, differential operators, etc. We begin
by considering the case of an invariant vector field, which will, in the particular case of a group
acting on itself by right (or left) multiplication, lead to the crucially important concept of a Lie
algebra or "infinitesimal" Lie group. A basic feature of (connected) Lie groups is the ability work
infinitesimally, thereby effectively linearizing complicated invariance criteria.

Definition. Let G act on the manifold M. A vector field v on M is called G-invariant if it is
unchanged by the action of any group element: dg(vl,) = vig.z for all g E G, X E M.

In particular, if we consider the action of G on itself by right multiplication, the space of all
invariant vector fields forms the Lie algebra of the group. Given g E G, let Rg: h F-, h · g denote
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the associated right multiplication map. A vector field v on G is right-invariant if it satisfies
dRg(v) = v for all g C G.

Definition. The Lie algebra 5 of a Lie group G is the space of all right-invariant vector fields.

Every right invariant vector field v is uniquely determined by its value at the identity e, because
vig = dRg(vle). Therefore, we can identify g with TGIt, the tangent space to the manifold G at
the identity, and hence 5 is a finite-dimensional vector space having the same dimension as G.

The Lie algebra associated with a Lie group comes equipped with a natural multiplication,
defined by the Lie bracket of vector fields given by:

[v, w](f) := V((f)) - W((f)).

By the invariance of the Lie bracket under diffeomorphisms, if both v and w are right invariant,
so is [v, w]. Note that the bracket satisfies the Jacobi identity

[u,[V, w]]+ Iv , [, u]] + [w,[u, [u, = 0.

The basic properties of the Lie bracket translate into the defining properties of an (abstract)
Lie algebra.

Definition. A Lie algebra 5 is a vector space equipped with a bracket operation [ , · : x -5 
which is bilinear, anti-symmetric, and satisfies the Jacobi identity.

Theorem 2 Let G be a connected Lie group with Lie algebra 5. Every group element can be written
as a product of exponentials: g = exp(vl) exp(v 2 ) ... exp(vk), for V1 ,..., Vk E g.

Example. The Lie algebra E,C of GL(R, n) can be identified with the space of all n x n matrices.
Coordinates on GL(R, n) are given by the matrix entries X = (aij). The right-invariant vector
field associated with a matrix A E OgCn is given by VA = Ei,j,k aijzjkO9,. The exponential map is
the usual matrix exponential exp(tvA) = etA. The Lie bracket of two such vector fields is found
to be [VA, Vg] = vc, where C = BA - AB. Thus the Lie bracket on 9g,I is identified with the
negative of the matrix commutator [A, B] = AB - BA.

The formula det exp(tA) = exp(t trA) proves that the Lie algebra S2n of the unimodular
subgroup SL(R, n) consists of all matrices with trace 0. The subgroups O(n) and SO(n) have the
same Lie algebra, SO(n), consisting of all skew-symmetric n x n matrices.

Finally, we want to define the key concept of an invariant one-form. In order to do this, we will
first have to define the pullback of a one-form. Let F : M -+ N be a smooth mapping of manifolds,
and let r denote a one-form in T*NIy=F(2 ). Then F*(r/) E T*Ml2 is the one-form given by

F*(?)(v) := I(dF(v)),

where v E TMI,.

Definition. Let G act on the manifold M. A one-form w on M is called G-invariant if it is
unchanged by the pull-back action of any group element

g*(Wlg.2) = wl., Vg E G, x E M.

Dual to the right-invariant vector fields forming the Lie algebra of a Lie group are the right-
invariant one-forms known as the Maurer-Cartan forms. See [50, 67] for details.

The following result follows from the definitions:
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Lemma 1 Let G be a transformation group acting on M.. Then:

1. If I is an invariant function, then dI is an invariant one-form.

2. If I is an invariant function, and w an invariant one-form, then Iw is an invariant one-form.

2.2.5 Infinitesimal Group Actions

Just as a one-parameter group of transformations is generated as the flow of a vector field, so a
general Lie group of transformations G acting on the manifold M will be generated by a set of
vector fields on M, known as the infinitesimal generators of the group action, whose flows coincide
with the action of the corresponding one-parameter subgroups of G. More precisely, if v generates
the one-parameter subgroup {exp(tv) : t E RI C G, then we identify v with the infinitesimal
generator v of the one-parameter group of transformations (or flow) xz - exp(tv) zx. Note that the
infinitesimal generators of the group action are found by differentiating the various one-parameter
subgroups:

Vl, = - exp(tv)lt=oX, x e M, v E g. (1)

If ' : G -4 M is given by (~(g) = g * x (where defined), so vj, = dp,,(vli), and hence d9,(vfg) =
VIg.=. Therefore, resulting vector fields satisfy the same commutation relations as the Lie algebra of
G, forming a finite-dimensional Lie algebra of vector fields on the manifold M isomorphic to the Lie
algebra of G. Conversely, given a finite-dimensional Lie algebra of vector fields on a manifold M,
we can reconstruct a (local) action of the corresponding Lie group via the exponentiation process.

Theorem 3 If G is a Lie group acting on a manifold M, then its infinitesimal generators form a
Lie algebra of vector fields on M isomorphic to the Lie algebra g of G. Conversely, any Lie algebra
of vector fields on M which is isomorphic to G will generate a local action of the group G on M.

Consequently, for a fixed group action, the associated infinitesimal generators will, somewhat
imprecisely, be identified with the Lie algebra 5 itself, so that we will not distinguish between an
element v E g and the associated infinitesimal generator of the action of G, which we also denote
as v from now on.

Given a group action of a Lie group G, the infinitesimal generators also determine the tangent
space to, and hence the dimension of the orbits.

Proposition 2 Let G be a Lie group with Lie algebra g acting on a manifold M. Then, for each
x E M, the tangent space to the orbit through z is the subspace Q1, C TMI_ spanned by the
infinitesimal generators vIJ,, v E . In particular, the dimension of the orbit equals the dimension
of 1I .

2.2.6 Infinitesimal Invariance

As alluded to above, the invariants of a connected Lie group of transformations can be effectively
computed using purely infinitesimal techniques. Indeed, the practical applications of Lie groups
ultimately rely on this basic observation.

Theorem 4 Let G be a connected group of transformations acting on a manifold M. A function
F: M -+ R is invariant under G if and only if

v[F] = 0, (2)

for all x E M and every infinitesimal generator v E g of G.
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Thus, according to (4) the invariants of a one-parameter group with infinitesimal generator
v = i ~i(x)Oi satisfy the first order, linear, homogeneous partial differential equation

i(x) -i = . (3)
O=1

The solutions of (3) can be computed by the method of characteristics. We replace the partial
differential equation by the characteristic system of ordinary differential equations

dzx dx2 dzx
1() = () = ... = (4)

C1 (X)- C2(X) Y(Z)'

The general solution to (4) can be written in the form I,(x) = cl,.., Ir-l(z) = c,_l, where the
ci are constants of integration. It is not hard to prove that the resulting functions Ix,... , Im_l
form a complete set of functionally independent invariants of the one-parameter group generated
by v.

Example. We consider the (local) one-parameter group generated by the vector field

v = -y + x + (1 + m2) r

The group transformations are

(,y,z) xcose-ysine, sine + cosy c sin ose,
cose - zsinE

The characteristic system (4) for this vector field is

dx dy dz

-y X 1 + z 2 '

The first equation reduces to a simple separable ordinary differential equation dy = -x/y, withdo.
general solution x2 + y2 - cl, for cl a constant of integration; therefore the cylindrical radius
r = /z 2 + y2 is one invariant. To solve the second characteristic equation, we replace x by
Vr 2 _ y2, and treat r as constant; the solution is tan- 1 z-sin-l(y/r) = tan-l z-tan-l(y/x) = c2,
where c2 is a second constant of integration. Therefore tan- l z - tan-l(y/x) is a second invariant;
a more convenient choice is found by taking the tangent of this invariant, and hence we deduce
that r = VX2 + y2, w = (xz - y)/(yz + x) form a complete system of functionally independent
invariants, provided yz + x 54 0.

2.2.7 Invariant Equations

In addition to the classification of invariant functions of group actions, it is also important to
characterize invariant systems of equations. A group G is called a symmetry group of a system of
equations

F,(x) =. . = Fk(x) = 0, (5)

defined on an m-dimensional manifold M, if it maps solutions to other solutions, i.e., if x E M
satisfies the system and g E G is any group element such that g . x is defined, then we require that
g x· is also a solution to the system. Knowledge of a symmetry group of a system of equations
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allows us to construct new solutions from old ones, a fact that is particularly useful when applying
these methods to systems of differential equations; [49, 50]. Let S: denote the subvariety defined
by the functions F = {(F,..., Fk}, meaning the set of all solutions z to the system (5). (Note that
G is a symmetry group of the system if and only if Sy is a G-invariant subset.) Recall that the
system is regular if the Jacobian matrix ( a ) has constant rank n in a neighborhood of S, which
implies (via the implicit function theorem), that the solution set S: is a submanifold of dimension
m - n. In particular, if the rank is maximal, equaling k, on Sy, the system is regular.

Proposition 3 Let Fi(z) = ... = Fk(x) = 0 be a regular system of equations. A connected Lie
group G is a symmetry group of the system if and only if

v[F,(x)] = 0, whenever Fi(z) Fk(x)= 0, 1 < v < k,

for every infinitesimal generator v E g of G.

Example. The equation x 2 + y2 = 1 defines a circle, which is rotationally invariant. To check the
infinitesimal condition, we apply the generator v = -y8a + Gxy to the defining function F(x, y) =
X2 + y2 - 1. We find v(F) = 0 everywhere (since F is an invariant). Since dF is nonzero on the
circle, the solution set is rotationally invariant.

2.3 Prolongations

In this section, we review the theory of jets and prolongations, to formalize the notion of differential
invariants.

2.3.1 Point Transformations

We have reviewed linear actions of Lie groups on functions. While of great importance, such ac-
tions are not the most general, and we will have to consider more general nonlinear group actions.
Such transformation groups figure prominently in Lie's theory of symmetry groups of differential
equations, and appear naturally in the geometrically invariant diffusion equations of computer vi-
sion that we consider below. The transformation groups will act on the basic space coordinatized
by the independent and dependent variables relevant to the system of differential equations under
consideration. Since we want to treat differential equations, we must be able to handle the deriva-
tives of the dependent variables on the same footing as the independent and dependent variables
themselves. In this section, we describe a suitable geometric space for this purpose - the so-called
"jet space." We then discuss how group transformations are "prolonged" so that the derivative
coordinates are appropriately acted upon, and, in the case of infinitesimal generators, state the
fundamental prolongation formula that explicitly determines the prolonged action.

A general system of (partial) differential equations involves p independent variables x = (zx,..., p),
which we can view as local coordinates on the space X _ RP, and q dependent variables u =
(ul, ... , u), coordinates on U _ Rq. The total space will be an open subset M C X x U ~ RP+ .

A solution to the system of differential equations will be described by a smooth function u =
f (z). The graph of a function, rf = {(z, f(z))}, is a p dimensional submanifold of M which is
transverse, meaning that it has no vertical tangent directions. A vector field is vertical if it is tangent
to the vertical fiber Uo = (z0xo x U, so the transversality condition is Trflz0 n TUz0,zO = (0) for
each z0 = (xo, f(zo)) with z0o in the domain of f. Conversely, the Implicit Function Theorem
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implies that any p-dimensional submanifold r c M which is transverse at a point z0o = (zo, uo) C r
locally, coincides with the graph of a single-valued smooth function u = f(z).

The most basic type of symmetry we will discuss is provided by a (locally defined) smooth,
invertible map on the space of independent and dependent variables:

(, ui) = - (, u) = (=(X, u), g(X, u)). (6)

The general type of transformations defined by (6), are often referred to as point transformations
since they act pointwise on the independent and dependent variables. Point transformations act
on functions u = f(z) by pointwise transforming their graphs; in other words if r f = {(x, f(z))}
denotes the graph of f, then the transformed function f = g · f will have graph

rf = {(I, f())} = 9 rf = {g9 (x, f())}. (7)

In general, we can only assert that the transformed graph is another p-dimensional submanifold of
M, and so the transformed function will not be well-defined unless g . rf is (at least) transverse to
the vertical space at each point. This will be guaranteed if the transformation g is sufficiently close
to the identity transformation, and the domain of f is compact.

Example. Let
gt ' (x, u) = (z cos t-u sint, x sint + u cos t),

be the one-parameter group of rotations acting on the space M - R2 consisting of one independent
and one dependent variable. Such a rotation transforms a function u = f(z) by rotating its graph;
therefore, the transformed graph gt · rf will be the graph of a well-defined function only if the
rotation angle t is not too large. The equation for the transformed function f = gt · f is given in
implicit form

x = zcost-f(z)sint,

ui = zsint+f(x)cost, (8)

and -a = f(Z) is found by eliminating x: from these two equations. For example, if u = ax + b is
affine, then the transformed function is also affine, and given explicitly by

sint + a cost b
U= +

cost - asint cost - a sin t'

which is defined provided cot t $ a, i.e., provided the graph of f has not been rotated to be vertical.

2.3.2 Jets and Prolongations

Since we are interested in symmetries of differential equations, we need to know not only how the
group transformations act on the independent and dependent variables, but also how they act on
the derivatives of the dependent variables. In the last century, this was done automatically, without
worrying about the precise mathematical foundations of the method; in modern times, geometers
have defined the "jet space" (or bundle) associated with the space of independent and dependent
variables, whose coordinates will represent the derivatives of the dependent variables with respect
to the independent variables. This gives a rigorous, cleaner, and more geometric interpretation of
this theory.
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Given a smooth, scalar-valued function f(zx,..., xp) of p independent variables, there are Pk =

p + k- ) different k-th order partial derivatives

aJf(x)- =ax 8 kx2 ... 0xk

indexed by all unordered (symmetric) multi-indices J = (ji,... , jk), 1 < jk < p, of order k = #J.
Therefore, if we have q dependent variables (ui,..., uq), we require qk = qPk different coordinates
u', 1 < a < q, #J = k to represent all the k-th order derivatives ua = aJf"(x) of a function
u = f(x). For the space M = X x U Rx R P x P1, the n-th jet space J' = JnM = X x Un is

the Euclidean space of dimension p + q ( p + ), whose coordinates consist of the p independent

variables z i , the q dependent variables ua, and the derivative coordinates u~, 1 < a < q, of
orders 1 < #J < n. The points in the vertical space U(n) are denoted by u( n) , and consist of all
the dependent variables and their derivatives up to order n; thus a point in Jn has coordinates
(x, U(n)).

A smooth function u = f(z) from X to U has n-th prolongation u(n) = pr(n)f (x) (also known
as the n-jet), which is a function from X to U( n), given by evaluating all the partial derivatives of
f up to order n; thus the individual coordinate functions of pr(n)f are us = aJfa(z). Note that
the graph of the prolonged function pr(n)f, namely r(n) = ((x, pr(n)f(z))}, will be a p-dimensional
submanifold of Jn. At a point x E X, two functions have the same n-th order prolongation, and
so determine the same point of Jn, if and only if they have n-th order contact, meaning that they
and their first n derivatives agree at the point. (This is the same as requiring that they have
the same n-th order Taylor polynomial at the point x.) Thus, a more intrinsic way of defining
the jet space Jn is to consider it as the set of equivalence classes of smooth functions using the
equivalence relation of n-th order contact. If g is a (local) point transformation (6), then g acts
on functions by transforming their graphs, and hence also acts on the derivatives of the functions
in a natural manner. This allows us to naturally define an induced "prolonged transformation"
(x, U(n)) = pr(n)g . (x, u(n)) on the jet space Jn, given directly by the chain rule. More precisely, for
any point ( 0O, u(n)) = (x0,pr(n)f(xo)) E Jn, the transformed point (to, u(0n )) = pr(n)g. (Xo, u(n) =

(io, pr(n)f( o) is found by evaluating the derivatives of the transformed function f = g . f at the
image point io, defined so that (o, fuo) = (Zo, f(Zo)) = g . (2 0, f (zo)). This definition assumes that

f is smooth at -o - otherwise the prolonged transformation is not defined at (ao, un)). It is not
hard to see that the construction does not depend on the particular function f used to represent
the point of Jn; in particular, using the identification of the points in jn with Taylor polynomials
of order n, it suffices to determine how the point transformations act on polynomials of degree at
most n in order to compute their prolongation.

Example. For the one-parameter rotation group considered above, the first prolongation pr(l)gt
will act on the space coordinatized by (x, u,p) where p represents the derivative coordinate uz.
Given a point (zo, uo,po), we choose the linear polynomial u = f(x) = po(z - ao) + uo to represent
it, so f(xo) = uo, f'(zo) = po. The transformed function is given by

sin t + po cost uo-poao
cost - po sin t cos t - po sin t

Then, by (8), Zo = xocost - uosint, so f(4o) = uio = xo sint + uo cost, and po = f'(o) =
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(sint + po cos t)/(cos t - po sin t), which is defined provided p0 4 cot t. Therefore, dropping the 0
subscripts, the prolonged group action is

pr(1)gt (x,u,p)= (xcost-usint,xsint+ucost, sint + pcos t (9)
cost-psint

defined for p 54 cot t. Note that even though the original group action is globally defined, the
prolonged group action is only locally given.

2.3.3 Total Derivatives

The chain rule computations used to compute prolongations are notationally simplified if we intro-
duce the concept of a total derivative. The total derivative of a function of x, u and derivatives of
u is found by differentiating the function treating the u's as functions of the x's.

Formally, let F(x, u(n)) be a function on Jn. Then the total derivative DiF of F with respect
to xzi is the function on J(n+l) defined by

Di(z, pr(n+')f(x)) = F(x, pr(n)f(x))

For example, in the case of one independent variable x and one dependent variable u, the total
derivative Dz with respect to x has the general formula

a 0 (9 9Dz = - + U- + UZ- + uzzx- +"'.
ax Tu 9uz, u.z

In general, the total derivative with respect to the i-th independent variable is the first order
differential operator

Di ai + u J i acA,
.=l J OU

where u = Di(uJ) = u i. The latter sum is over all multi-indices J of arbitrary order.
Even though Di involves an infinite summation, when applying the total derivative to any function
F(x, u(n)) defined on the n-th jet space, only finitely many terms (namely, those for #J < n) are
needed. Higher order total derivatives are defined in the obvious manner, with DJ = Dj .... Dj,
for any multi-index J = (jl,..., jk), 1 < ji < p.

2.3.4 Prolongation of Vector Fields

Given a vector field v generating a one-parameter group of transformations exp(tv) on M C X x U,
the associated n-th order prolonged vector field pr(n)v is the vector field on the jet space Jn which
is the infinitesimal generator of the prolonged one-parameter group pr(n) exp(tv). Thus,

pr(n)vl(,()) = dpr(n)[exp(tv)]It=o0 (x, u(n)). (10)

The explicit formula for the prolonged vector field is given by the following very important "pro-
longation formula" (see [50], Theorem 2.36 for the proof):

Theorem 5 The n-th prolongation of the vector field

P q
i= ZC(xu) d- + Zsol Xu) -C
i=i a=1 OucE
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is given explicitly by
p q na

pr(n)v = Ci(z, u)- -i + (u( (11)
~i=l ~ a=1 j=#J=O

with coefficients

cpa = DJQa ±+ i Ua, (12)
i=l

where the "characteristics" of v are given by

Q (x, u( )) :-= a(x, u) - E i(x, u) -xi', a= 1,...,q. (13)
i=l

Remark. One can easily prove [49, 50] that a function u = f(x) is invariant under the group
generated by v if and only if it satisfies the characteristic equations

Q(x,pr(l)f(x)) = 0, a = 1,...,q.

Example. Suppose we have just one independent and dependent variable. Consider a general
vector field v = f(x, u)aO + o(x, u)ad on M = R 2 . The characteristic (13) of v is the function

Q(x, , u, ) = P(x', u) -((x, u)u~,.

From the above remark, we see that a function u = f(x) is invariant under the one-parameter group
generated by v if and only if it satisfies the ordinary differential equation (x, u)uz, = P(x, u). The
second prolongation v is a vector field

pr(2)v = (x' u)a (, + a (x, U(1)) a + (X, U(2)) aax a U du)x a+lx a
on J2, whose coefficients W9, WxZ are given by

.cp = DQ+UZ= ±z+ (.u-z)u.z-=uu,
X = D8Q + fU~x

= Wpx + (2Wxu -, 2 )u, + (puu - 2u)u - uuU + (Wu - 2,)u - 3tuz

For example, the second prolongation of the infinitesimal generator v = -ua, + xau of the
rotation group is given by

pr(2)v = -U += + (1 + + 3a a2 '

where the coefficients are computed as

= Q = D::Q+u)-:UU = D(+uu)-uu = l+u = D +u = D(+uu)-uu = 3 uZuz.Z

The group transformations can then be readily recovered by integrating the system of ordinary
differential equations

dx du dp 2 dq
dt -u, = - X= = 1 +p 2 , = 3pq,dt-u, dt x dt dt

where we have used p and q to stand for u, and u.: to avoid confusing derivatives with jet space
coordinates. We find the second prolongation of the rotation group to be

(x cos t sint,x sint + cost, sin t + p c os t q )
cos t - p sin t' (cos t-psin t)

as could be computed directly.
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2.4 Differential Invariants

At long last, we can precisely define the notion of "differential invariant." Indeed, recall that
an invariant of a group G acting on a manifold M is just a function I : M -- R which is not
affected by the group transformations. A differential invariant is an invariant in the standard
sense for a prolonged group of transformations acting on the jet space JP. Just as the ordinary
invariants of a group action serve to characterize invariant equations, so differential invariants will
completely characterize invariant systems of differential equations for the group, as well as invariant
variational principles. As such they form the basic building block of many physical theories, where
one often begins by postulating the invariance of the equations or the variational principle under
an underlying symmetry group. In particular, they are essential in understanding the invariant
heat-type flows presented below.

Suppose G is a local Lie group of point transformations acting on an open subset M C X x U
of the space of independent and dependent variables, and let pr(n)G be the n-th prolongation of
the group action on the n-th jet space Jn = JnM. A differential invariant is a real-valued function
I ': Jn -, R which satisfies I(pr(n)g . (z, U(n))) = I(z, U(n)) for all g E G and all (x, U(n)) E Jn where
pr(n)g . (x, u(n)) is defined. Note that I may only be locally defined.

The following gives a characterization of differential invariants:

Proposition 4 A function I : Jn -+ R is a differential invariant for a connected group G if and
only if

pr()v(I) = 0,

for all v E g where g denotes the Lie algebra of G.

A basic problem is to classify the differential invariants of a given group action. Note first
that if the prolonged group pr(n)G acts regularly on (an open subset of) Jn with rn- dimensional

orbits, then, locally, there are p + q(n) - r = p + q +n ) - rn functionally independent n-th

order differential invariants. Furthermore, any lower order differential invariant I(x, u(k)), k < n is
automatically an n-th differential invariant, and will be included in the preceding count. (Here we
are identifying I: Jk -* IR and its composition I o Irn with the standard projection 7rk : Jn Jk.)

If O(n) C Jn is an orbit of pr(n)G, then, for any 0 < k < n its projection 7rn(O) C Jn is an
orbit of the k-th prolongation pr(k)G. Therefore, the generic orbit dimension r, of pr(n)G is a
nondecreasing function of n, bounded by r, the dimension of G itself. This implies that the orbit
dimension eventually stabilizes, rn = r* for all n > no. We call r* the stable orbit dimension, and
the minimal order no for which rn, = r*, the order of stabilization of the group.

Now a transformation group G acts effectively on a space M if

9g.=hz, VzEM,

if and only if g = h. Define the global isotropy group

GM := (g:9g = V E M}.

Then G acts effectively if and only if GM is trivial. Moreover, G acts locally effectively if the global
isotropy group GM is a discrete subgroup of G in which case G/GM has the same dimension and
the same Lie algebra as G. We can now state the following remarkable result [54]:
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Theorem 6 The transformation group G acts locally effectively if and only if its dimension is the
same as its stable orbit dimension, so that

rn = r* = dimG,

for all n sufficiently large.

There are a number of important results on the stabilization dimensions, maximal orbit dimen-
sions, and their relationship to invariants; see [49, 51]. We will suffice with the following theorem
which is very useful for counting the number of independent differential invariants of large order:

Theorem 7 Suppose, for each k > n, the (generic) orbits of pr(n)G have the same dimension

rk = r;. Then for every k > n there are precisely q, = q ( p + k ) independent k-th order

differential invariants which are not given by lower order differential invariants.

Next we note that the basic method for constructing a complete system of differential invariants
of a given transformation group is to use invariant differential operators [49, 50, 51]. A differential
operator is said to be G-invariant if it maps differential invariants to higher order differential invari-
ants, and thus, by iteration, produces hierarchies of differential invariants of arbitrarily large order.
For sufficiently high orders, one can guarantee the existence of sufficiently many such invariant
operators in order to completely generate all the higher order independent differential invariants
of the group by successively differentiating lower order differential invariants. See [49, 50, 51] for
details. Hence, a complete description of all the differential invariants is obtained by a set of low
order fundamental differential invariants along with the requisite invariant differential operators.

In our case (one independent variable), the following theorem is fundamental:

Theorem 8 Suppose that G is a group of point transformations acting on a space M having one
independent variable and q dependent variables. Then there exist (locally) a G-invariant one-form
dr = gdz of lowest order, and q fundamental, independent differential invariants J1,..., Jq such
that every differential invariant can be written as a function of these differential invariants and
their derivatives m Jv, where

d 1 d
dr g dzx'

is the invariant differential operator associated with dr. The parameter r gives an invariant
parametrization of the curve and is called arc-length.

Remark. A version of Theorem 8 is true more generally. See [49, 51].

With this, we have completed our sketch of the theory of differential invariants. Once again,
we refer the reader to the texts [49, 50, 51] for a full modern treatment of the subject, including
methods for constructing and counting differential invariants.

With the above background, we are ready to turn to our main topic, namely invariant flows in
vision.
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3 Invariant Flows

In this section, a general approach for formulating invariant flows is described. In particular, we will
consider the uniqueness of our models (see Theorem 8). Thus, given a certain transformation (Lie)
group G, we show how to obtain the corresponding invariant geometric heat flow. We also show
how to formulate this flow just in terms of Euclidean parameters such as the Euclidean curvature.
This formulation permits us to employ already existing results and techniques for the analysis of
such flows. This topic was first presented in [61, 62]. Here we emphasize a novel classification and
uniqueness result.

3.1 Special Differential Invariants

In order to separate the geometric concept of a plane curve from its parametric description, it is
useful to consider the image (or trace) of C(p), denoted by Img[C(p)]. Therefore, if the curve C(p)
is parametrized by a new parameter w such that w = w(p), aw > O, we obtain

Img[C(p)] = Img[C(w)].

In general, the parametrization gives the "velocity" of the trajectory. Given a transformation
group G, the curve can be parametrized using what is called the group arc-length, dr, which is a
non-trivial G-invariant one-form of minimal order (see Theorem 7). This parametrization, which
is an invariant of the group, is useful for defining differential invariant descriptors [30, 49, 50]. In
order to perform this re-parametrization, the group metric g is defined by the equality

dr = gdp,

for any parametrization p. Then r is obtained via the relation (after fixing an arbitrary initial
point)

?P
r(p) := j0 g(~)dc, (14)

and the re-parametrization is given by C o r. We have of course,

Img[C(p)] = Img[C(r)].

For example, in the Euclidean case we have

9C

9euc :=1 aapi I (15)
and the Euclidean arc-length is given by

v = JP 11aae

This parametrization is Euclidean invariant (since the norm is invariant), and implies that the curve
C(s) is traversed with constant velocity (1I aC 11). For examples of other groups, see Sections 3.5,
3.6, 3.7 and [30, 49, 50, 68].

Based on the group metric and arc-length, the group curvature X, is computed. (Note that g, r,
and X can be computed using Lie theory as well as Cartan moving frames method [8, 19, 30, 49].)
The group curvature, as a function of the arc-length, is defined as the simplest non-trivial differential
invariant of the group (see Theorem 7).
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For example, in the Euclidean case, since

II I- 1.

we have that C, I C,,, and the Euclidean curvature is defined as

K :=II C. 11 -

r; is also the rate of change of the angle between the tangent to the curve and a fixed direction.
The corresponding invariants of the affine group will be presented below in Section 3.5.1.

3.2 Geometric Invariant Flow Formulation

We are now ready to describe the type of evolution that we want to deal with. First let C(p, t):
S1 x [0, ') -+ R2 be a family of smooth curves, where p parametrizes the curve and t the family.
(In this case, we take p to be independent of t.) Assume that this family evolves according to the
following evolution equation:

OC(p,t) 2C(p,t) (16)
Ot Op2

C(p, ) = Co(p),

which is the classical heat equation. If C(p, t) = [X(p, t), y(p, t)]T, then [x(p, t), y(p, t)] satisfying
(16) can also be obtained by convolution of [zo(p),yo(p)] with a Gaussian filter whose variance
depends on t. Equation (16) has been studied by the computer vision community, and is used for
the definition of a linear scale-space for planar shapes [5, 14, 20, 36, 37, 38, 39, 41, 42, 69, 71].

The Gaussian kernel, being one of the most used in image analysis, has several undesirable
properties, principally when applied to planar curves. One of these is that the filter is not intrinsic
to the curve (see [63] for a detailed description of this problem). This can be remedied by replacing
the linear heat equation by geometric heat flows [26, 27, 57, 58, 59, 61, 62, 63]. In particular, if
the Euclidean geometric heat flow [23, 24, 26, 27, 28] is used, a scale-space invariant to rotations
and translations is obtained. If the affine one is used [57, 58, 62], an affine invariant multi-scale
representation is obtained [59]. This and other geometric heat flows are presented below.

Another problem with the Gaussian kernel is that the smoothed curve shrinks when the Gaussian
variance (or the time) increases. Several approaches, briefly discussed in Section 4, have been
proposed in order to partially solve this problem for Gaussian-type kernels (or linear filters). These
approaches violate basic scale-space properties. In [63], the authors showed that this problem can
be completely solved using a variation of the geometric heat flow methodology, which keeps the
area enclosed by the curve constant. The flows obtained, precisely satisfy all the basic scale-space
requirements. In the Euclidean case, the flow is local as well. The same approach can be used for
deriving length preserving heat flows. In this case, the similarity flow exhibits locality. In short,
we can get geometric smoothing without shrinkage. In order to give a complete picture of invariant
geometric flows, basic results of this area/length preserving approach are given in Section 4 as well.

Assume that we want to formulate an intrinsic geometric heat flow for plane curves which is
invariant under certain transformation group G. Let r denote the group arc-length (Theorem 7).
Then, the invariant geometric heat flow is given by [61, 62, 63]

ac(p,t) ¢ 2 C(p,t)
at ara 2p(17)

C(p, 0) = Co(p).
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If G acts linearly, it is easy to see that since dr is an invariant of the group, so is C,,. C,, is
called the group normal. For nonlinear actions, the flow (17) is still G-invariant, since as pointed
out in Theorem 7, 9 is the invariant derivative. See [49] and our discussion in Section 3.3 below.
In fact, as we will see the evolution given by (17) is in a certain precise sense the simplest possible
non-trivial G-invariant flow.

We have just formulated the invariant geometric heat flow in terms of concepts intrinsic to the
group itself, i.e., based on the group arc-length. For different reasons, which we will explain shortly,
it is useful to formulate the group velocity C,, in terms of Euclidean notions such as the Euclidean
normal and Euclidean curvature. In order to do this, we need to calculate

< Cr¢,,, >,

where 1A is the Euclidean unit (inward) normal, and < , . > is the standard inner product in R2.
In this way, we will be able to decompose the group normal C,, into its Euclidean unit normal J1
and Euclidean unit tangential T components, and to re-write the flow (17) as

a9c = a + A7.8 (18)

In order to calculate a and 1, assume for the moment that the curve C is parametrized by the
Euclidean arc-length v. Then,

a2C 1 02 C gC (19)
ar2 g2 v2 93 aV '

where g is the group metric defined in Section 3.1. (In this case, g is a function of v.) Now, using
the relations

c[~.= @, v ~=T,

we obtain

a: _ ,= /g (20)
93) g

In general, g(v) in (20) is written as a function of r. and its derivatives (see Section 3.5).
The importance of the formulation (18) can be seen from the following:

Lemma 2 ([15]) Let ,1 be a geometric quantity for a curve, i.e., a function whose definition is
independent of a particular parametrization. Then a family of curves which evolves according to

Ct = af + p0

can be converted into the solution of

Ct = IT +P

for any continuous function a, by changing the space parametrization of the original solution. Since
13 is a geometric function, 13 = p when the same point in the (geometric) curve is considered.
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In particular, the above lemma shows that Img[C(p, t)] = Img[dC(w, t)], where C(p, t) and C(w, t)
are the solutions of

Ct = aT + P,

and

t = ,

respectively. For proofs of the lemma, see [15, 59].
Therefore, assuming that the normal component f3 of tv (the curve evolution velocity) does not

depend on the curve parametrization, we can consider the evolution equation

-C= g · (21)

where fi =< t, > , i.e., the projection of the velocity vector in the Euclidean normal direction.
Since C,, is a geometric quantity, equation (18) can be reduced to (21).

The formulation (17) gives a very intuitive formulation of the invariant geometric heat flow. On
the other hand, the formulation given by equation (18), together with (20), gives an Euclidean-type
flow which also allows us to simplify the flow using the result of Lemma 2. This type of analysis is
crucial, since it allows one to understand the partial differential equation underlying the flow and
to study its essential properties (such as short and long term existence, convergence, etc.). This
will be a key technique when we study affine invariant flows in Section 3.5. Finally, reduction of
equation (17) to (21) allows one to numerically implement the flow on computer. In fact, there is
now available an efficient numerical algorithm due to Osher and Sethian [53, 65] to do this.

The flow given by (17) is non-linear, since the group arc-length r is a function of time. This flow
gives the invariant geometric heat-type flow of the group, and provides the invariant direction of
the deformation. For subgroups of the full projective group SL(R, 3), we show in Theorem 8 below
that the most general invariant evolutions are obtained if the group curvature X and its derivatives
(with respect to arc-length) are incorporated into the flow:

ac(p, t) ax anX a02(p, t)
at r ' rn ) r2

C(p,O) = Co(p),

where GT(.) is a given function. (We discuss the existence of possible solutions of (22) in [62].) Since
the group arc-length and group curvature are the basic invariants of the group transformations, it
is natural to formulate (22) as the most general geometric invariant flow.

Since we have expressed the flow (17) in terms of Euclidean properties (equations (18), (20)),
we can do the same for the general flow (22). All what we have to do is to express X as a function of
rI and it derivatives. This is done by expressing the curve components z(p) and y(p) as a function
of %, and then computing X-

3.3 Uniqueness of Invariant Heat Flows

In this section, we give a fundamental result, which elucidates in what sense our invariant heat-type
equations (17) are unique. We use here the action of the projective group SL(R, 3) on R2 as defined
in Section 2.2.1. We will first note that locally, we may express a solution of (17) as the graph of
a function y = u(z, t).
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Lemma 3 Locally, the evolution (17) is equivalent to

Ou 1 M2 u

at g
2

ax
2

where g is the G-invariant metric (g = dr/dz).

Proof. Indeed, locally the equation

Ct = C,,,

becomes

2xt = X;rr Yt = Yrr-

Now y(r, t) = u((r, t), t), so

Yt = Ua:Xt + Ut, Yrr = Uxxlr + Uxxrr-

Thus,

Ut = Yt - Uozt = Yrr - U2rr =- Xruxx.

Therefore the evolution equation (17) reduces to

Ut = g-2 UZ,

since dr = gdx. El

We can now state the following fundamental result:

Theorem 9 Let G be a subgroup of the projective group SL(R, 3). Let dr = gdp denote the G-
invariant arc-length and X the G-invariant curvature. Then

1. Every differential invariant of G is a function

dx d2 X dnx

X, dr ' dr2 ' '' " d-n

of X and its derivatives with respect to arc length.

2. Every G-invariant evolution equation has the form

du 1 02U
at - 12 ui 2 I(23)Ot g2 8X2

where I is a differential invariant for G.'

We are particularly interested in the following subgroups of the full projective group: Euclidean,
similarity, special affine, affine, full projective. (See our discussion below for the precise results.)

Corollary 1 Let G be one of the listed subgroups of the projective group SL(R, 3). Then there is,
up to a constant factor, a unique G-invariant evolution equation of lowest order, namely

du c O 2 u

At g2 zx2'

where c is a constant.
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Remark. Part 1 of the Theorem 9 (suitably interpreted) does not require G to be a subgroup
of the projective group; however for part 2 and the corollary this is essential. One can, of course,
classify the differential invariants, invariant arc-lengths, invariant evolution equations, etc., for any
group of transformations in the plane, but the interconnections are more complicated. See Lie [40]
and Olver [49] for the details of the complete classification of all groups in the plane and their
differential invariants.

Remark. The uniqueness of the Euclidean and affine flows (see the next section), was also proven
in [1], using a completely different approach. In contrast with the results here presented, the ones
in [1] were proven independently for each group, and when considering a new group, a new analysis
had to be carried out. Our result is a general one, and can be applied to any subgroup. Also, with
the geometric approach presented here, we believe that the result is clear and intuitive.

Proof of Theorem.
Part 1 follows immediately from Theorem 8, and the definitions of dr and X. (Note by Theorem 7
for a subgroup of SL(R, 3) acting on R2, we have each differential invariant of order k is in fact
unique.)

As for part 2, let
v = ~((, U)i2 + W(Z, u)du

be an infinitesimal generator of G, and Let pr v denote its prolongation to the jet space. Since dr
is (by definition) an invariant one-form, we have

v(dr) = [pr v(g) + gD, ]dz,

which vanishes if and only if

pr v(g) = -gD., = -g(-,- + uu). (24)

Applying pr v to the evolution equation (23), and using condition (24), we have (since ~ and TS do
not depend on t)

pr v[u -g- 2 u.I] = (5u- u.u)ut - 2g-2 (x + u-u)ugI -

- g-2pr v[u,,]I- g-2u,,pr v[I]. (25)

If G is to be a symmetry group, this must vanish on solutions of the equation; thus, in the first
term, we replace ut by g-2 u_,I. Now, since G was assumed to be a subgroup of the projective
group, which is the symmetry group of the second order ordinary differential equation u, = 0, we
have pr v[u.z] is a multiple of uz,; in fact, inspection of the general prolongation formula for pr v
(see Theorem 5) shows that in this case

pr v[ux,] = (Wu - 2E, - 3eUu)U.z. (26)

(The terms in pr v[u,,] which do not depend on u,, must add up to zero, owing to our assumption
on v.) Substituting (26) into (25) and combining terms, we find

pr v[Ut - g-2u:zI] = g-2u,,pr v[I],

which vanishes if and only if pr v[I] = 0, a condition which must hold for each infinitesimal
generator of G. But this is just the infinitesimal condition that I be a differential invariant of G,
and the theorem follows. [
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The Corollary follows from the fact that, for the listed subgroups, the invariant arc length r
depends on lower order derivatives of u than the invariant curvature X. (This fact holds for most
(but not all) subgroups of the projective group; one exception is the group consisting of translations
in x, u, and isotropic scalings (x, u) (Ax, Au).) The orders are indicated in the following table:

Group Arc Length Curvature

Euclidean 1 2

Similarity 2 3

Special Affine 2 4
Affine 4 5

Projective 5 7

The explicit formulas are given in the following table:

Group ArcLength Curvature

Euclidean + /Udz u
,Similarity u 1, u (1 + uI2) 3/2

Similarity X X X
(1 + u2)2 2

Special Affine (u ,)1/ 3dz P4

Affine P d P5
Uzz (P4)3/2

Projective (p 5 )1/3 d P
U2X (P5)8/3

Here

P4 = 3uzuz= - 5u.z z ,

PA = 9u2uZx - 45u,,u,=u, zzz + 40uS=.'

P7 is a very complicated polynomial depending on seventh and lower order derivatives of u.
See [40], page 255 for the precise formula. (The invariant P7 is called a there.) Some of this
invariants will be specifically derived below and used to present the corresponding invariant flows
of the viewing transformations.

3.4 Euclidean Invariant Flows

We now show how to use the general theory presented above, for the computation of the invariant
heat flows corresponding to the Euclidean group. In the next section, we will discuss the affine
group.

Recall from our discussion in Section 2.2.1 that a general Euclidean transformation in the plane
is given by

=RX + V,

where X E R2, R is a 2 x 2 rotation matrix, and V is a 2 x 1 translation vector. The Euclidean
transformations constitute a group, and give some of the basic shape deformations which appear
in computer vision applications.



Olver-Sapiro- Tannenbaum 27

We proceed to find, based on the above developed method, an Euclidean invariant geometric
heat equation. From (17), we obtain that the Euclidean geometric heat flow is given by

Ct = C,,,, (27)
C(p, 0) = Co(p).

(Recall that v is the Euclidean arc-length.) The Euclidean metric is defined by equation (15), and
if the curve is already parametrized by arc-length, then of course geu(v) _ 1. Therefore, using
equation (20) we obtain

Ceeuc = O, .euc = K.

Then, the "Euclidean type" equation equivalent to (27) is (see equation (18))

Ct = Kg. (28)

Equation (28) has a large research literature devoted to it. Gage and Hamilton [26] proved that
any smooth, embedded convex curve converges to a round point when deforming according to it.
Grayson [27] proved that any non-convex embedded curve converges to a convex one. Hence, any
simple curve converges to a round point when evolving according to the Euclidean geometric heat
equation. The flow is also known as the Euclidean shortening flow, since the Euclidean perimeter
shrinks as fast as possible when the curve evolves according to (28); see [27]. Equation (28) was
also found to be very important for image enhancement applications [2, 60], and was introduced
into the theory of shape in computer vision by [33, 34, 35]. In order to proof that the flow indeed
smoothes the curve, results from [3, 26, 27] can be used.

3.5 Affine Invariant Flows

In this section, we present the affine flow corresponding to equation (17) as first developed in
[57, 58, 62]. We first make some remarks about classical affine differential geometry.

3.5.1 Sketch of Affine Differential Geometry

An affine transformation transforms disks into ellipses, and rectangles into parallelograms. Recall
from Section 2.2.1 that a general affine transformation in the plane (R2) is defined by

X = AX + B, (29)

where X G R 2 is a vector, A E GL+ (R) (the group of invertible real 2 x 2 matrices with positive
determinant) is the affine matrix, and B E R2 is a translation vector. As we have seen (29) form
a real Lie group A(2), called the group of proper affine motions. We will also consider the case of
when we restrict A E SL(2, R) (i.e., the determinant of A is 1), in which case (29) gives us the
group of special affine motions, A8p(2).

In the case of Euclidean motions (in which case A in (29) is a rotation matrix), we have that
the Euclidean curvature K of a given plane curve is a differential invariant of the transformation. In
the case of general affine transformations, in order to keep the invariance property, a new definition
of curvature is necessary. In this section, this affine curvature is presented [6, 30, 57]. See [6]
for general properties of affine differential geometry. We should note that when we say "affine
invariant" in the sequel, we will mean with respect to AP(2) (the group of special affine motions).
However, all our "invariants" will be relative invariants with respect to the full affine group, in the
sense that the transformed quantities will always differ by some function of the determinant of the
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transforming matrix. See [13, 49] for the precise definition of "relative invariant." We will consider
flows which are "absolutely" invariant with respect to the full affine group in Section 3.7.

As above, let C : S1 - 1R2 be an embedded curve with parameter p (where S1 denotes the unit
circle). We now make the invariant re-parametrization of C(p) by defining a new parameter s such
that

[C,, C,,] = 1, (30)

where [X, y] stands for the determinant of the 2 x 2 matrix whose columns are given by the vectors
X, y E R2. This relation is invariant under proper affine transformations, and the parameter s is
the affine arc-length. Setting

gaff(P) := [Cp,Cpp]l/3, (31)

the parameter s is explicitly given by

s(p) = j gaff(f)d. (32)

Note, we have assumed (of course) that gaff (the affine metric) is different from zero at each
point of the curve, i.e., the curve has no inflection points. In general, affine differential geometry is
defined just for convex curves [6, 30]. In Section 3.5.2, we will show how to overcome this problem
for the evolution of non-convex curves.

By differentiating (30) we obtain that the two vectors C, and C,,, are linearly dependent and
so there exists IL such that

C,,, + I/C, = 0. (33)

The last equation and (30) imply

t = [C,,, C,,], (34)

and IL is the affine curvature, i.e., the simplest non-trivial differential affine invariant function of
the curve C; see [6]. Moreover, one can easily show [57] that ds, C,, C,,, tL, and the area enclosed by
a closed curve, are (absolute) invariants of the group A,p(2) of special affine motions and relative
invariants of the group A(2) of proper affine motions.

3.5.2 Affine Geometric Heat Equation

With s the affine arc-length, the affine-invariant geometric heat flow is given by [57, 62]

Ct = C8J, (35)
C(p, 0)=Co(p). ()

Since s is only defined for convex curves, the flow (35) is defined a priori for such curves only.
However, in fact the evolution can be extended to the non-convex case, in the following natural
manner. Observe that if C is parametrized by the Euclidean arc-length, then

gaff(V) = [CVCV]1/3= 1[f, j\ 1/3 = 1/3,

and we obtain

aafKf = 13 f 1/3
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Now one easily compute that

C,, = ;1/3±R + tangential component.

(See [57, 62].) Hence, using Lemma 2, we obtain that the following flow is geometrically equivalent
to the affine invariant flow (35):

Ct = ;1/3-3,. (36)

Note that the flow (36) is affine invariant flow, and is also well-defined for non-convez curves.
(We should also observe here that inflection points are affine invariant.) We should also add that
recently Alvarez et al. [1] derived (36) using a completely different approach.

In summary, despite the fact that we cannot define the basic differential invariants of affine
differential geometry on non-convex curves, nevertheless an affine invariant heat-type flow can be
formulated. This is possible due to the possibility to "ignore" the tangential component of the
deformation velocity, together with the invariant property of inflection points. One can see that
while C,, contains three derivatives, its normal component contains only two. This allows one to
write the geometric affine heat flow as a function of r.

The key results in this theory are the following [4, 57, 58, 62]:

Theorem 10 ([57]) A smooth convex curve evolving according to the affine geometric heat flow
remains smooth and convex.

Theorem 11 ([57]) A convex curve evolving according to the geometric heat flow converges to an
elliptical point.

Theorem 12 ([4, 58, 62]) Let C(.,O) : S1 -_ R2 be a C2 embedded curve in the plane. Then
there exists a unique one parameter family of C2 curves C : S1 x [0, T) --+ R2 for some T > 0,
satisfying the affine heat equation

Ct = ECl/3a.

Moreover, there is a to < T such that C(., t) is convex for all to < t < T.

Theorem 13 Any given C2 embedded plane curve converges to an elliptical point when evolving
according to (36) .

Moreover, in [4] we show how to extend (36) to Lipschitz initial curves, and in particular,
polygons. This eliminates the necessity of the viscosity framework [10, 12, 16] as proposed in [1],
being also a stronger result.

In [59], it is formally proven that the affine geometric flow (35) (or its geometric analogue (36))
smoothes the curve. For example, it is shown that the total curvature and the number of inflection
points decrease with time (scale-parameter). Figure 1 gives an example of this flow.
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Fig. 1 - Ezample of the affine geometric heat flow (from [59]). The hands are related

during all the evolution by the same affine transformation.
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3.6 Projective Invariant Flows

We would like to make some remarks about projective invariant flows. The projective maps con-
stitute the most general geometric transformations on planar shapes (or planar curves). Projective
invariant flows have been considered by [17, 18, 60, 61, 62, 64]. Recall from Section 2.2.1 that the
projective group acts on R2 via linear fractional transformations.

Let w denote the projective arc-length. Then

Ct = Cw (37)

is the projective flow. The flow is more complicated than the Euclidean and affine evolutions,
because of the higher derivatives involved. Explicitly,

dw = gp,,dp,

where the projective metric is given by,

.()= (R(p)-3 aQ())1/3 (38)

where

Q(p) = q2(p) - q2(p) Oq(p) R(p) = -3q1(p)q2(p) + 2q3(p) 2 2q(P)Op ' p 2

and

1[CPPP Cpl _ 1[C,, C M
3 [Cp, C q2(P)= 3 [CP, CPp

Assuming that the curve is parametrized by the Euclidean arc-length v, we obtain

q1 (v) =v1 ( 1 2

and Q(v), R(v) and gp,,(v) can be computed. Clearly, we must assume that gp,, is well-defined
and non-zero on the curve for the projective flow to be defined.

We would like to discuss why singularities should arise in this flow. First, we must define the
real projective space RP2 . This is the space of lines through the origin in R 3. Two nonzero points
Pl,P2 E R 3 determine the same point p E RP2 if and only if they are scalar multiples of each
other pi = AP2, A 4 0. We will refer to the coordinates of pi E R3, (X1l, 2 , x3 ), as homogeneous
coordinates of p. Notice this induces a canonical projection

r: R3 \{0} -, RP 2 .

Coordinate charts on Rp 2 are constructed by considering all lines with a given component, say xi,
nonzero; the coordinates are then provided by ratios zk/zi, k : i, which amounts to the choice of
canonical representative of such a line given by normalizing its i-th component to unity. Thus we
may embed R2 as an open subset of RP2 via

LR2 _* Rp2' (X, y) ~_4 yX Y,
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Projective space RP2 may then be regarded as the completion of R12 by adjoining all "directions
at infinity." Thus we have following diagram:

R 3 \{0}
I 1r.

R12 ~ p 2

Now suppose, we are given the flow in R2

Ct = C... (39)

Via t and ;r we may lift this to a flow in R3, say

Ct= dC,, (40)

which is invariant with respect to scaling. Under certain conditions, one can conclude, using results
from the theory of reaction-diffusion equations [66], short term existence for this flow [17]. Suppose
we consider initial curves which differ by a scaling:

C (O, W) = A(W)C 2(0, O ).

Then via (40), the resulting flows will differ by precisely the same scaling:

C1(t, W) = A(w)C2(t, W).

By the uniqueness of the solutions of differential equations, this means that the flow (39) in R12 is
induced by (40).

Given this, even assuming that (40) remains smooth, singularities could develop in (39) in the
following two ways: First, since R2 C p 2 and the flow (39) is induced by the projectively invariant
flow via t, points may go off to infinity, and so the flow in R 2 can be singular. Secondly, the
projection 7r may give cuspidal singular points in (39). Thus the projective invariant case of (17)
does not have the nice smoothing properties of the Euclidean and affine models.

3.7 Similarity and Full Affine Invariant Flows

In this section, we consider flows which are invariant relative to the scale-invariant versions of the
Euclidean and affine groups, namely the similarity and full affine groups as defined in Section 2.2.1.
We begin with the heat flow for the similarity group (rotations, translations, and isotropic scalings).
This flow was first presented and analyzed in [63]. We assume for the remainder of this section
that our curves are strictly convex (Kr > 0). Accordingly, let C be a smooth strictly convex plane
curve, p the curve parameter, and as above, let J, T, and v denote the Euclidean unit normal, unit
tangent, and Euclidean arc-length, respectively. Let

Tv

op

be the speed of parametrization, so that

CP = aOT, Cp = apt + a2KR

Then clearly,

CP .CP = 72
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[Cp,Cpp1 = J3K.

For the similarity group (in order to make the Euclidean evolution scale-invariant), we take a
parametrization p such that

CP . CP = [CP CPP I

which implies that

A = 1/.

Therefore the similarity group invariant arc-length is the standard angle parameter 0, since

dO
dv -

where v is the Euclidean arc-length. (Note that T = [cos 0, sin ]T.) Thus the similarity normal is
Cog, and the similarity invariant flow is

Ct = Coo. (41)

Projecting the similarity normal into the Euclidean normal direction, the following flow is obtained

Ct = 1 , (42)

and both (41) and (42) are geometrically equivalent flows.
Instead of looking at the flow given by (42) (which may develop singularities), we reverse the

direction of the flow, and look at the expanding flow given by

-¢ l jt,. (43)
at K (43)

For completeness, we state the following results for the flow (43) (the proofs are given in [63];
see also [26, 35]):

Lemma 4 ([63]) The following evolution equations are obtained for a curve evolving according to
(43):

1. Evolution of Euclidean metric m (dp = mdv, where v is the Euclidean arc-length):

mt = m.

2. Evolution of Euclidean tangent T:

- K= -

K2'

3. Evolution of Euclidean normal Jf:
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4. Evolution of Euclidean perimeter P:

Pt = P.

5. Evolution of area A:

At = f dv.

6. Evolution of Euclidean curvature r;:

7. Evolution of tangential angle 9:

Ot = K.

Theorem 14 ([63])

1. A simple convex curve remains simple and convex when evolving according to the similarity
invariant flow (43).

2. The solution to (43) exists (and is smooth) for all 0 < t < oo.

Lemma 5 ([63]) Changing the curve parameter from p to 9, we obtain that the radius of curvature
r, r := 1/r, evolves according to

rt = rte + r. (44)

Theorem 15 ([63]) A simple (smooth) convex curve converges to a disk when evolving according
to (43).

It is important to note that in contrast with (43), (42) can deform a curve towards singularities.
Since (43) can be seen as a smoothing process (heat flow), the inverse equation can be seen as an
enhancement process. The importance of this for image processing, as well as the extension of the
theory to non-convex curves, is currently under investigation.

Using a similar argument, one may show the invariant equation for the full affine flow (GL(R, 2)x,
R 2 ) is given by

Ct= (45)

As for the similarity flow, this will develop singularities. The backwards flow (add a minus sign to
the right-hand side of (45)), can be shown to asymptotically converge to an ellipse.

When the heat flow can develop singularities, as in the scale-invariant cases described above,
one can use the most general flow given by (22), i.e., to multiply the velocity by functions of the
group curvature and its derivatives. We are currently investigating these more general flows and
their possible smoothing properties.
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4 Geometric Heat Flows Without Shrinkage

In the previous sections, we derived intrinsic geometric versions of the (non-geometric) classical
heat flow (or Gaussian filtering). Using this geometric methodology, we now will solve the problem
of shrinkage to which we alluded above. This theory is developed in [63], to which we refer the
interested reader for all the details and relevant references.

A curve deforming according to the classical heat flow shrinks. This is due to the fact that
the Gaussian filter also affects low frequencies of the curve coordinate functions [48]. Oliensis [48]
proposed to change the Gaussian kernel to a filter which is closer to the ideal low pass filter. This
way, low frequencies are less affected, and less shrinkage is obtained. With this approach, which is
also non-intrinsic, the semi-group property holds just approximately. Note that in [5, 71] (see also
[1]), it was proved that filtering with a Gaussian kernel is the unique linear operation for which the
causality criterion holds. In fact, the approach presented in [48], which is closely related to wavelet
approaches [43, 44], violates this important principle.

Lowe [42] proposes to estimate the amount of shrinkage and to compensate for it. The estimate
is based on the amount of smoothing (variance/time) and the curvature. This approach, which
only reduces the shrinkage problem, is again non-intrinsic, since it is based on Gaussian filtering,
and works only for small rates of change. The semi-group property is violated as well.

Horn and Weldon [31] also investigated the shrinkage problem, but only for convex curves.
In their approach, the curve is represented by its extended circular image, which is the radius of
curvature of the given curve as a function of the curve orientation. The scale-space is obtained by
filtering this representation.

We now show how to solve the shrinkage problem with a variation of the geometric flows de-
scribed above. The resulting flows will keep all the basic properties of scale-spaces, while preserving
area (length) and performing geometric smoothing at the same time [63].

4.1 Area Preserving Euclidean Flow

We now solve the shrinkage problem with the Euclidean geometric heat flow following ideas of Gage
[25].

Consider the evolution (21) given above. When a closed curve evolves according to (21), it is
easy to prove that the enclosed area A evolves according to

at = f dv. (46)

Therefore, in the case of the Euclidean geometric heat flow (28) we obtain (P3 = r)

aA
- -2r, (47)at

and the area decreases. Moreover

A(t) = Ao - 2irt,

where Ao is the area enclosed by the initial curve Co. As pointed out in [25, 26, 27], curves evolving
according to (28) can be normalized in order to keep constant area. The normalization process is
given by a change of the time scale, from t to i-, such that a new curve is obtained via

C(T) := +(t) C(t), (48)
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where +(t) represents the normalization factor (time scaling). (The equation can be normalized
so that the point P to which C(t) shrinks is taken as the origin.) In the Euclidean case, Ob(t) is
selected such that

+2 (t) = . (49)
at*

The new time scale r must be chosen to obtain A _ O0. Define the collapse time T, such that
limtT A(t) O0. Then,

T A0
2r

Let

r(t) = -T ln(T - t). (50)

Then, since the area of C and C are related by the square of the normalization factor +)(t) = (f) 1/2

A, _ 0 for the time scaling given by (50). The evolution of C is obtained from the evolution of C
and the time scaling given by (50). Taking partial derivatives in (48) we have

ad at aC
Oa Ot At

= W-2 (tC + cICt)
= 0-2ktC + V-l7

-= -2PtC + k

From Lemma 2, the flow above is geometrically equivalent to

C= 0-3t < C-, > .+ . (51)

Define the support function p as

p := - < C,> .

Then, it is easy to show that

A= - pdv.
2=i

Therefore, applying the general area evolution equation (46) to the flow (51), together with the
constraint AT _ 0, we obtain

d (p,. 7 P)= (52)
Or A(r)

Note that the flow (52) exists for all 0 < r < oo. Since A, = 0 when C evolves according to (52),
the enclosed area A(Tr) in (46) can be replaced by AO, obtaining

a(p,) = (}- 0) , (53)O-r A
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which gives a local, area preserving, flow.
Since C and C are related by dilations, the flows (28) and (53) have the same geometric properties

[25, 26, 27, 63]. The properties of this flow can also be obtained directly from the general results on
characterization of evolution equations given in l]. In particular, since a curve evolving according
to the Euclidean heat flow satisfies all the required properties of a multi-scale representation, so
does the normalized flow. An example of this flow is presented in Figure 2.

Fig. 2 - Ezample of the area preserving Euclidean geometric heat flow (from [63]).
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4.2 Area Preserving Affine Flow

From the general evolution equation for areas (46), and the flow (36), we have that when a curve
evolves according to the affine geometric heat flow, the enclosed area evolves according to

At = - f ,l/3dv. (54)

Following [6], we define the affine perimeter L as

L := f[Cp,Cpp]/3dp.

Then it is easy to show that [57]

L = J 'l/3dv.

Therefore,

At = -L. (55)

As in the Euclidean case, we define a normalized curve

C('r) := /(t) C(t), (56)

such that when C evolves according to (36), C encloses a constant area. In this case, the time
scaling is chosen such that [63]

ar = 4/3. (57)
at

(We see from the Euclidean and affine examples that in general, the exponent A in a- = _ is

chosen such that p = il-AP.) Taking partial derivatives in (56), using the relations (46), (55), and
(57), and constraining AT O0, we obtain the following geometric affine invariant, area preserving,
flow:

'a7 2=2(,r) RL (58)

Since AT, - 0, .(-r) in (58) can be replaced by Ao to obtain

ad-= (/ - R.
2A0 (59)

Note that in contrast with the Euclidean area preserving flow given by equation (53), the affine
one is not local. This is due to the fact that the rate of area change in the Euclidean case is
constant, but in the affine case it depends on the affine perimeter.

As in the Euclidean case, the flow (59) satisfies the same geometric properties as the affine
geometric heat flow (36). Therefore, it defines a geometric, affine invariant, area preserving multi-
scale representation.
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4.3 Length Preserving Flows

Similar techniques to those presented in previous sections, can be used in order to keep fixed other
curve characteristics, e.g., the Euclidean length P [63]. In this case, when C evolves according to
the general geometric flow

9C

and

C(') := +(t) C(t), (60)

we obtain the following length preserving geometric flow:

a(p, 6)= (- %o a- (61)

The computation of (61) is performed again taking partial derivatives in (60), and using the relations
(see for example [25])

Pt = - /f3dv,

P = f pdv,

together with the constraint

PT _ O.

The following flows are the corresponding length preserving Euclidean, affine, and similarity
heat flows respectively:

ac (8 rp) = (62)

ap ~r) = _ ______(PI )= (C (63)

C (p, 'r) = + ) J. (64)

Note that in the similarity case, the flow is completely local. Another local, length preserving
flow may be obtained for the Euclidean constant motion given by

C = .i7 (65)
This flow, obtained taking r - v and @F(X) = X-1 in (22), models the classical Huygens principle or
morphological dilation with a disk [56] (of course, it is not a geometric heat flow of the form (17)).
In this case, the rate of change of length is constant and the length preserving flow is given by

ac (P.r ) 'p . (66)

Note that a smooth initial curve evolving according to the Euclidean constant motion (65), as well
as to the flow given by (42), can develop singularities [1, 56]. In this case, the physically correct
weak solution of the flow is the viscosity (or entropy [66]) one [1, 56]. See [56, 63] for examples of
this flow.
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5 Conclusions

In this paper, we have outlined the theory of differential invariants, and applied them to invariant
flows that appear in computer vision. Using this theory, we have defined G-invariant heat-type
flows where G is a subgroup of the projective group SL(R, 3). As we have indicated, these flows,
first described in [57, 58, 61, 62, 63], are the simplest possible. In certain cases, such diffusions have
been used to define new geometrically invariant scale-spaces. They have also been employed for
various problems in image processing and computer vision. See [1, 2, 21, 33, 34, 59, 60, 62] and the
references therein. We have also discussed area and length preserving versions of these equations
in which there is no shrinkage. See [63] for full details.

In summary, in addition to novel results as the classification and uniqueness of the geometric
heat flows, this paper gives a complete picture of the relevant theory of differential invariants and
geometric invariant curve flows. Extension of this theory to surface flows can be found in [52].
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