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Abstract

Usual set theory is formulated in terms of closure
conditions. A typical example is the power set axiom, which
asserts closure under the operation of power set.

In Chapter I we consider set theory based on closure
conditions applied only to definable sets. We formalize this
set theory and call it ZF*. Our principal result of Chapter I
is that, provably in first-order arithmetic, ZF is consistent
if ZF* is. Our proof of this theorem uses a Skolem hull
construction and a syntactic transformation.

In Chapter II, we consider three theories of hyperarith-

metic analysis, A1-CA, 21-AC, and :1-DC. These are called

theories of hyperarithmetic analysis primarily because the

hyperarithmetic sets form a minimum w-model for each of them.

1 1We first show that £1-DC is a conservative extension of 1-CA

for purely 21 sentences. The proof is by means of an inner

model construction. Careful attention has to be paid to limit

the axioms we use to prove relevant sentences about hyperarith-

metic sets. We then show that there are theorems of 1-DC

which are not theorems of 1-AC. This is done by first

finding a suitable sentence S and considering the auxiliary



theories :1-AC + S and :-1DC + S. We then obtain our inde-

pendence result via Gdel's Theorem, by showing that

Con(Z1-AC + S) is provable in 1-DC + S. Last, we show that

£1-AC is a conservative extension, for purely 21 sentences,

of T, a natural subsystem of predicative analysis. The proof

uses an inner model construction on certain auxiliary theories.

Thus, a model for each finite subsystem of Z1-AC is obtained

as an inner model of a model of an extension, by the negation

of an instance of induction, of a corresponding finite sub-

system of T. Thus non-standard models are implicit in the

construction.

Chapter III is concerned with hierarchies (based on the
Jump operator) on recursive linear orderings. Let X be the
set of recursive linear orderings which have no hyperarithmetic
descending chains. Joseph Harrison showed that there are ele-
ments of X, which are not well-orderings, on which there are
hierarchies. We first show that under certain weak conditions
on a recursive linear ordering, that if there is a hierarchy
on it, then it must be in X. Finally, we establish the exist-
ence of a recursive linear ordering which is in X, yet on
which there are no hierarchies. The proofs of these assertions
use certain Lemmas which are proved in the following indirect
way: one assumes the Lemma is false, and then forms a theory
consisting of the negation of the Lemma together with certain
true sentences; then one shows that the resulting theory
proves its own consistency.

Thesis Supervisor: Gerald E. Sacks

Title: Professor of Mathematics
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INTRODUCTION

Set theory is usually formulated in terms of closure con-

ditions. A typical example is the power set axiom, which

asserts closure under the operation of power set. In Chapter I,

we consider set theory based on closure conditions applied only

to definable sets. We formalize this set theory and call it

ZF*, and we give a consistency proof of ZF relative to ZF*.

A direct method presents itself for obtaining this rela-

tive consistency result; namely, to use a constructible set

construction, and prove within ZF* the relativized to the

constructible sets of each instance of ZF. This is, of

course, in analogy with the method of proof for the consistency

of ZF + AxC relative to ZF. However, an examination of the

basic principles needed for such a constructible set construct-

ion to go through reveals the need for the least counterexample

principle for ordinals to be provable in ZF*. By the least

counterexample principle for ordinals, we mean the schema

(3a)Pa -> (34a)Pa, where P is any formula. It does not

appear that this schema is derivable in ZF*, even if P is

restricted to have only one free variable, a. Of course, in

ZF, the schema is derivable by means of a closure condition

applied to all sets as follows: assume (3a)Pa, and fix such

an a. Then form [l0fea & P, and use Foundation to obtain

("a)Pa. This illustrates the basic difference between ZF and

ZF*, in that the closure condition, 3 lpea & Pal, is

necessarily provable in ZF* only when a is given a definition.



10

Such a direct attack seems hopeless. An outline of our

proof can be found in Section 4 of Chapter I.

Towards the end of Chapter I, we show how to add elements

"on top of" a model of ZF, to obtain nonstandard models of

ZF*. By this means, we obtain results concerning independence

from ZF*.

In Chapter II, we consider three theories of hyperarith-

metic analysis. These are A1-CA, I1-AC, and Z1-DC. Here

CA refers to comprehension axiom; AC, to axiom of choice; DC

to dependent choice. The hyperarithmetic sets form a minimum

w-model for each of these theories. We first prove that

£1-Dc is a conservative extension of 1-cA for purely 1

sentences. The proof is by means of an inner model construct-

ion. We show that given a model of 1-CA, if we then take

the submodel of all sets hyperarithmetic in a fixed set, this

submodel satisfies 1-DC. Careful attention has to be paid

to the way in which the notion of relative hyperarithmeticity

is formalized. The formulation in terms of hierarchies seems

to be the correct one here (not ). The usual proof that the

sets hyperarithmetic in a fixed set always form an w-model

of 2E-DC is too crude for our purposes. It uses the

comparability of all recursive well-orderings, which is a

principle too strong to be provable in A1-CA. However, if we

know, in A 1-CA, that given orderings have hierarchies (based

on the Jump operator) on them, we can then conclude, in AlCA,

their comparability. Thus, the: key point of our proof of the

conservative extension result is the Judicious use of
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hierarchies on orderings.

Our inner model construction can, in the standard way, be

transformed into a finitary consistency proof of 1_-DC rela-

tive to A1-CA.

The second result of Chapter II is the independence of

£-DC from 1-AC. It would seem to be the case that a Cohen

type argument would be not only useful here, but perhaps neces-

sary. We found that quite the contrary is true. Our proof

does not use a Cohen type argument, and Cohen type arguments

do not seem to be helpful here, since it seems difficult to

find Cohen type models (starting with the standard model, the

hyperarithmetic sets, of Z1-AC) which do not have the

following property: any arithmetical predicate (in x) satis-

fied to have a solution in the new model has a solution hyper-

arithmetic (in x) in the new model. This property can be seen,

from our Theorem 1 of Chapter II, to imply that the new model

satisfies 1-DC.

Instead, we use G8del's theorem. We choose a sentence S

and consider the auxiliary theories Z1-AC + S and -1DC + S.

We show that Z-1_DC + S proves the consistency of Z1-AC + S.1 1

So if 1_-DC + S = Z1-AC + S, then Z1-DC + S is inconsistent.

But S is chosen to be a true sentence; so 1_DC f 1_AC.

Notice that the assumption Con(M -DC + S) is needed for

the independence. We do not know if there is a finitary inde-

pendence proof (i.e., a finitary proof of consistency of

Z 1-AC + ~F relative to -AC, for some F that is provable

in z1 -oDC).1
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The key property of 21-DC is that for any n21 sentence,

B, one can construct, in £1-DC + B, an W-model for B. The

key property of the sentence S is that the theory Z 1-AC + S

is equivalent, in 21-DC, to an extension of induction by a

IT2 sentence. S intuitively says that for all sets x, every

recursive well-ordering in x has a hierarchy starting from x.

More information may be obtained than independence. We

see that -DC + S proves Con(Il-AC + S); hence £i-DC

proves S -> Con(21-AC + S), which is a purely 12 sentence.

Furthermore, an examination of our proof yields that C:-AC

together with only a finite number of instances of no parameter

£1-DC is needed to prove S -> Con(l1-AC + S). Finally,

2-DC + S proves 3 an w-model for Z1 -AC + S. From all this1 1
we can conclude that there is a purely 1 sentence which is

provable in ZI-AC together with a finite number of instances

of no parameter 1-DC, but which is not an w-consequence of

£1-AC. (An instance of no parameter 1-DC is the same as

Z -DC, except the hypothesis, (f)( 3g)A(f,g), must have A

arithmetical with no free variables other than f and g.)

The last result in Chapter II is concerned with the

relation between ZI1-AC and a certain natural subsystem of

predicative analysis, T. T represents the first cO levels

of predicative analysis. We show that 1-AC is a conservative

extension of T for purely U1 sentences. This result,

together with the known characterization of the provable

ordinals of T, gives the provable ordinals of Z1-AC. Fur-

thermore, our proof of conservative extension uses an inner
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model construction, which can be transformed into a finitary

proof of consistency of 1i-AC relative to T. Now T is

known to have a predicative consistency proof; and so, then,

must 21-AC.

The relative consistency result is somewhat surprising,

since the minimum -model of ZI-AC is so much larger than

the minimum w-model of T. With this in mind, it is not

surprising that nonstandard models (i.e., non-w-models) must

be essential in our proof. In the proof, we obtain a model of

each finite subsystem of £1-AC as an inner model of a model

of an extension, by the negation of an instance of induction,

of a corresponding finite subsystem of T.

In Chapter III, we consider which elements of W* have

hierarchies. We generalize W* to include recursive linear

orderings whose field is not necessarily w. We also genera-

lize hierarchies, so that at successor we merely have a set in

which the Jump of the set at the predecessor is recursive; at

limits, we have a set in which the effective union of the

previous sets is recursive. Harrison proved that 3 neW*-W on

which there are hierarchies, in the less general sense W*, W

and hierarchies. He left open whether every neW* has a

hierarchy. We answer it in the negative for our general notion

of hierarchy and the less general notion of W*.

We also show, under weak conditions, that if n has a

hierarchy, then neW*.

The proofs use certain Lemmas which are proved in the
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following highly indirect way: we assume the Lemma is false,

and form a theory by adding true sentences to the negation of

the Lemma; we then show that the resulting theory proves its

own consistency.
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CHAPTER I

1. General Situation. Suppose we are given a comprehension

axiom (x1 )... (xn)(3y)Rxl...xny. We are interested here in

forming the derived schema consisting of the axioms

[(3 tx1 )(3 x2 )... (3!xn)(FlX1 &...& Fnxn) ->

(3x )(3x2 )... (3xn ) (FlX1 & F2x2 &...& Fn n & (y)Rx 1 ...xn),

where the Fi are formulae with only the free variable xi.

We are purposely vague about the general situation (what

is a comprehension axiom?), since we have only looked at this

derived schema when the original axiom is drawn from a natural

set of axioms, such as ZF, or analysis, or other naturally

occurring systems.

More specifically, we will look at the schema of schema

formed by taking the union of all the schema defined above

corresponding to each of the comprehension axioms of ZF. We

will not perturb the other (non-comprehension) axioms of ZF,

except in minor ways. We call this derived theory ZF*. (We

inessentially modify the Replacement schema in ZF for

convenience, so that each instance is appropriately placed in

the form (x1)...(Xn)(3y)Rxy, so that we may pass to the

derived schema in the manner above.) The axioms of ZF and

ZF* are spelled out in detail, in an elegant form, in the

next section.

We are interested in the relation between ZF and ZF*



as axiomatic theories. Our main result is that

IFET ConZF* -> ConZF. It is obvious that ZF* is a sub-

system of ZF.

2. Remarks on Terminolo and Notation. The only (standard)

symbols that can occur in a formula of ZF (or ZF*) are the

2 2-ary relation symbols "=", " e; the 2 quantifiers (3x) and

(x); the propositional connectives; and variables xi, Yi,

zi , ui, vi, etc. Everything else is nonstandard; when

nonstandard symbols occur in a formula, they are meant to be

expanded out in such a way that the mere occurrence of a

non-standard symbol implies existence of the corresponding

set. For example, x = y is an abbreviation for

(3z) (w)(wez (3u)(weu & uz)) & x - z]. Also, say, e x

would be (3y) [ (z)(z y) & yex].

3. Axioms. For ZF, we have

0. Axioms for predicate calculus with equality.

1. Extensionality. (x0 = xl) ( 2)(x2 e x - 2 e x1 ).

2. Infinity. (3 xO)( e x & (x1 )(x1 e x0 -> x1 U {x1 le x0 )).

3. Power set. (xO)(3 l)(X2 )(x2 ex1 - (x3)(x3ex2 -> x3 x0 )).

4. Sum set. (x0)( 3 xl ) (x2 ) ( x 2 e x l (3x3 )(x3 ex0 & x2 ex3 )).

5. Replacement schema. Let Axy be a formula with the free

variables x and y and possibly more free variables Xl,..,x n .

Then
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(X)''' (n) (Y)[ (3Y1 ) (Y2 ) (Y2 E Y1 - (3Y3 ) (AY3Y2 & (Y4)

(Ay3Y4 -> Y4 = Y2 ) & Y3 E ))J

is an instance. (The domain is y and the axiom asserts the

range of the partial function, A'y3y2 = AY3y2 & (z)

(Ay3z -> z = Y2 ), on the domain y, exists.)

6. Foundation. (xO)(xO 0 -> (3 x l ) (x l ex & (x2 )(x 2 ex ->

x2 xO ))).

It is clear that by the usual process of making partial

functions into total functions axiom schema 5 is the same as

the usual formulation in the present context.

Now let Ax be a formula of 1 free variable. Then the

formula (3y)(x)(x e y - Ax) is abbreviated as CA.

For ZF* we have

0. Same as ZF.

1. Same as ZF.

2. Infinity. (3xo)(0 E xO & (Xl)(X 1 e x O -> xU [X1 e xO )

& (y)(y E x 0 Fin(y)). Fin(y) will be defined later.

Intuitively it means y is a finite ordinal.

3. Power set. The instances are CA -- > ( 3 xO)(x 1 )

(x1 e xO - (x2)(x2 x 1 -> Ax 2)), A with 1 free variable.

4. Sum set. The instances are CA - ( 3 x 0 )(x 1 )(x l1 x O -

(3x 2 ) ( xI e x2 & Ax2 )), A with 1 free variable.

5. Replacement schema. The instances are CA -> (3xo)(xl)

(x1 E x0 - (3x2)(Ax2 & Bx2x1 & (x3 )(Bx2x3 -> x3 = Xl))), for

A with 1 free variable, B with exactly 2 free variables.

6. Same as ZF.



Remarks: Our formulation of Power set in ZF* is seen

to be equivalent to the derived schema of Power set in ZF

(as given in General Situation) by noticing 1) that if

(3 y)Fy, then CA, where A is (3y)(Fy & xy) and 2) that

if CA, then (3!x)(y)(yEx - Ay). These latter are obtained

by axiom 1 of ZF*, Extensionality. The same remark applies

to Sum Set.

Essentially the same idea yields that the union of the

derived schema of the instances of Replacement in ZF is equi-

valent, in the present context, to the schema

(CA1 & C A) >-- > (3xO)(xlExO (3x2)(Ax2 &

B(x2,x fxl A 1x, [x lA2 3,,[x l... Anx 3) & (x3)(B(x2,x 3, [xfA1x,...

{XIAnX}) -- > X3 = 1 ) )) ) ,

where B has n + 2 free variables, A and the Ai have 1

free variable. We want to show this schema is contained (in

the present context) in Replacement in ZF*. But the above is

easily seen to follow from that instance of 5 of ZF*, setting

A as A, Bxy as (CA1 &...& CAn) -> B(X2,xl,fxA 1XX,

{x A2x3 ,.. ., x Anx}). (That the above schema contains Replace-

ment in ZF* is obvious.) NOTE: "In the present context"

means "using the other axioms of ZF*."

4. Outline of Proof of Main Theorem. The main theorem is

ENTConZF* - -> ConZF. The first step in proving this is

developing in ZF* an adequate definition of ordinals, which

18
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turns out to be a much more delicate matter than for ZF, due

to the lack of certain key instances of Replacement in ZF*.

By an adequate definition of ordinals in ZF*, we mean a

definition of ordinals such that provably in ZF*, members of

ordinals are ordinals, and (for a natural definition in ZF*

of w) w is an ordinal, and ordinals are comparable by e,

and the e-relation on the ordinals is transitive, and antisym-

metric, and antireflexive, and every ordinal has a (natural)

successor, except possibly the greatest ordinal. (It even

turns out that in ZF* we can prove there is no greatest

ordinal for our definition of ordinal given later.) The

definition is made and Lemma 1 establishes the above properties

for it in the next section; we even obtain more: that,

provably in ZF*, the new definition of ordinal coincides with

the usual definition given in ZF, on definable sets. (This

is made precise in Lemma 1, f).)

Next we develop an adequate definition of L within ZF*.

Among the properties of the predicate x L needed, we must

have, provable in ZF*, every member of an x E L is L,

w L, the new definition of x L coincides with the usual

definition of constructibility for definable x, and a

definable well-ordering of L.

With this machinery, an apparently straightforward

"proof" of our main result comes to mind. Namely, Just to

prove the relativized to L of each instance of ZF in ZF*

by taking least counterexamples of various things in ZF*, as

G6del established the relativization of the axioms of ZF to
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L within ZF. But a moment's reflection will reveal that one

can hardly expect that ZF* will prove any general least

counterexample principles; i.e., one may well be able to prove

in ZF* that (3 x)(xeL & Px), yet not be able to prove

(3ix)(xeL & Px) in ZF*, where U is defined in terms of

the definable well-ordering of L. In fact, we do not even

see how to prove each instance of the relativized of ZF* to

L, within ZF*!

In order to get our main result, we form an auxiliary

system ZF*' C ZF*, whose definition depends on a certain

crucial transformation on sentences, T. This subsystem has

the property that each instance of ZF*' semi-relativized

(semi-relativization is a certain modification of relativi-

zation) to L, is provable in ZF*. We form another

auxiliary theory ZF' which is related to ZF*' about as

ZF + V = L is to ZF*. It turns out that ZF' ZF. It

also turns out that in the theory obtained by semi-relativizing

each comprehension axiom of ZF*' and retaining the other

axioms, one can give a Skolem hull argument for each finite

subsystem of ZF' that proves the existence of a (suitably

definable) model of this finite subsystem, and hence its

consistency.

Putting all this together we get a finitary proof that (n)

ZF COn(ZFn ) . So FENTConZF* -> ConZF.
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5. Development of Ordinals. We define Ordx = Trans(x) &

e-Conn(x) & (x is semi-closed under succession) & there are

no 3-chains in x, i.e., Ord(x) = (y)(z)((ycx & zEy) -> zcx)

& (y)(z)((yE-x & zx) -

[ (w)(WEz -- (wey v w=y))

ZE & (wey V w=y)]). W

y Q x) -> (y x v y=x))

(x C_ y v yC x)). Ord"

It is obvious that (x)

For Ord(x), we define

y =x U {x.

Lemma 1: The following

free variable:

- yZ V ZE v y =

& (zex v z=x)I) &

e define Ord'(x)

- Ord"(x) - Ord'(

will be our noti

(y)(Ord"x & Ord"y

y is successor

z)) & (y)(yex ->

: (y)(z)(w)([yez &

= Ordx & (y)((Ordy

x) & (y)(Ord'y ->

on of ordinal in

-> (xc y v yEx v y'

of x if and only

are Theorems of ZF*, where

(3z)

&

ZF*.

=X)) 

if

If Ordx & yx,

If Ord'x and

then Ordy.

yEx then Ord'y.

c ) For

For

d) If C

e If y

f ) If y
g ) Ord"(

h) If y

Proof

Trans (x),

v y=w. We

3-chain.

z EX and

x with

Ord(x), x

Ord(x),

a succe

)rd" (x) and yex

r = {xAxI, Ord'(

r = fxiAx}, Ord(y

(w). (Explained 1

r= xlAx}, and 

: a) Claim Trai

we have wEx aj

can't have yew

So wey. To see

WEx, and so zEc

and x not a successor,

ssor, x = y yi, we have

then Ord"(y).

y), then Ord"(y).

), then Ord"(y).

below.)

Ax -> Ord"(x), then Ord

ns(y). Let zy, wz. Th,

nd yx. By -Conn(x), w

v y=w because we would h;

-Conn

w V WEZ

ltJx = x.

t.Jx = y.

t" Vly).

en by

Ey V yEW

ave a

(y), let zey, wey. T'

v w=z by -Conn(x).

hen

a)

b)

Ax has 1
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Towards showing y semi-closed, let zey. Hence zex, and

z lJ zIex or z U {zi = x. By e-Conn(x), we have

z U f{zey or z Lt (zz = y or yez U (z}. But if

yez Ut {z}t, then yez v yz. The first yields the 3-chain

zey, yez, z=x; the second yields yey, which yields the

3-chain yey, yy, yey. So yz U {z.

Now suppose ab, bec, (cea v c=a), a,b,c,ey. Then a,b,cex,

and we have a 3-chain in x.

b) By a), we have Ord(y). Towards showing Ord'(y), let

z ' y, Ord(z). By Trans(x), z C x. Hence zex v z=x. But

z4x, for if z=x, then xC y, and hence yey. So zex. By

e-Conn(x), zey v z=y v yez. But yz, since if yez, then

Y Ey.

c) Let Ord(x), x with (y) (y U yi x). By Trans(x),

every member of a member of x is a member of x. So UxC x,

if Ux exists. Now let yex. By semi-closure of x,

yU {y) ex. But yeyU {y}, and so x =- Ux, since also every

member of x is a member of a member of x. If x = z U {zl,

then again Ux C_ x, if Lix exists. But zx, since x has

no 3-chains. So Ux C z, if it exists. But every member of

z is a member of x, since if wz, then w is a member of

a member of x. So lJx exists and is z.

d) By c), Ord'(y). Let Ord'(z). Then x z z x. If

xC z, then yC z. If z . x, then zex v z=x. If z=x,

then y '. x. If zex, then yez v zy .v z=y. Hence x y v

y _ z.
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e) Let Ord' (y), y = {xJAx . Then either

1) All elements of y are Ord". Then let z be any

Ord . For every xEy we have x C z v z x. Either all

members of y are z or some member of y D z. Suppose

the first holds. Then if y is not a successor, by c) we

have Uy y, and so yC z. If y = u u then u C z.

Since Ord'(z), we have uEz v u=z. If u=z, then zC x.

If uez, then y_ z.

Suppose the second holds, i.e., some xEy contains z.

Then clearly z C y. So y is ord".

2) Some element of y is not Ord". We have ust

proved that any Ord' such that every member is Ord" is

Ord". The (unique) e-least element of y which is not Ord"

is definable, and has every member an Ord". (There is a least

by suitable use of Replacement schema of ZF*, and Foundation.)

Just apply 1) to obtain a contradiction.

f) We merely have to show all definable Ords are Ord'. As in

e) we go down to a definable Ordinal all of whose members are

Ord". Let y be such an ordinal, y = xfBxl. Let z y,

Ordz. We wish to show zEy v z=y. Suppose zfy & yz. Then

3 wEy with w·z. But since Ord"w, we have w z v z w.
If z w then z=w v zw and so zcy. So w z, w z. Now

either w U wc)y v w U w] = y. If wl U w) = y then since

z C y, z=w, and so zey. So w U {w]Ey. Now then Ord"

(wU f w]). Hence wU f {wJ)C_ z v z C w U {w). The first is
out, so zC wl {w], and since Ord'(w tl (w}) we have

z = w U {w) v zEW U (w], either one implying zey.



We now explain Axiom 3. Fin(x) = Ordx & (3y)(x=y

(z)(zex -> (3 w)(z=w U wl)). x is a successor

Ordx & (3y) (y=x U 

ZF*.

Now clearly w

show Ord(w).

1) Trans(w).

successor Ord or

successor Ord or

Ord or 0, and so

SC) XEW.

2) s-Conn (w)

nn & mn & nm. Tt
There is an -least

Now k d 0, since

I xi). We let w be the x0 in Ax. 2 of

is definable, and so we merely have to

Let new. Let xen. Then x is a

0. Since n is transitive, x is a

0 and every member of x is a successor

x is a finite Ord (i.e., Fin(x)), and

. Suppose 3 new such that for some me

ake any -least such n and call it k.

by Replacement in ZF* and Foundation.

em v 0=m, for any mew, by Foundation

and Trans (m). Hence

and by Trans(w), lew

m k & knm & (lem v me

mel, then mck. If

k:=m v kem. Contradic

and the comparability

3) Semi-closur

directly from Axiom 2

4) No 3-chains

k is a sulccessor

. We must have, f

1 v m=l). But if

lm then 1 1 1

tion, by the lack

of 1 and m.

e under succession

of ZF*.

· Suppose nem, m

Ord, and

or some me'

m=l then

= mvlU

of 3-chains

k=lU Il
W, k n &

mek. If

l) em, i
in Ords,

. This is insured

er, rn v r=n, where

n ,m, rEW.

have rer,

contradict

By Trans(r), we have nr. By Trans(r) again,

if ren. If r=n, we also have rr. These

Ord(r).

g)

and

24

Ord y)

Ord =

.e.,

we

W,
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h) We have only to show Ord ~(Uy).

1) Trans ~Jy). If z Jy, then zew for some Ord"(w),

wey; hence any uez has uEw, wey. So u&Jy.

2) s-Conn y). If z,wE Uy, then zez' Iy,ww'EY,z',w'

both Ord". So z w' or w z'. Without loss of generality,

assume z' C w'. Then zew', wEw'. Hence zew v wz v w=z.

3) Semi-closure. Let ze Uy. Then zewey, Ord"(w).

So z U {z}Ew or ZJfzew. In the first case, z U FzIE Uy.

In the second suppose

A) some ucy has w C u, but wu. Hence weu, and

so z U {z} = we Uy.

B) Every ucy has either w=u or u w. Then clearly

Uy = w = z (z3.

A) and B) are exhaustive.

4) No 3-chains. Suppose aeb, bec, (cea v c=a), where

a,b,c e Uy. Then a,b,c are Ord", and aEc. If cea, then

cec. If c=a, aec, then cec. Contradicts Ord(c).

6. Develo nt of L. We wish to define a class of sets, L,

which has a definable well-ordering, and provably so in ZF*.

L, of course, will not be an object. We are interested in

the predicate xL.

We let n,m,r,p,q be special variables for elements of w.

We let a,p,,y,... be special variables for sets x with

Ord"x. We write a+l for a 'U {a}. We let X be a special

variable for limit (non-successor and non-null) Ord"'s.
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We say x=M ( a ) (3f)(Domf = a+l & f(0) = & (X)(Xca+l

--> U f(x) = f(X)) & ()(Bea+l -> f (+l) = Fodo(f(B)) &
XEX

x=f(a)), where Fodo(y) = x (3xo)(3n)(x=(zlzey & <y,ey> 

n(z)[xo]l & FinSeq(x,y))], where <yey> n(z)[xO ] means

the structure <y,e y> satisfies the formula with G6del

number n at the sequence of elements of the domain y, (z,xo) ,

which is the sequence starting with z, followed by the

sequence xO.

Remark on formalization: We formalize the satisfaction relation

in ZF* the same way we do in ZF. Also see 2. Remarks on

Terminoloy and Notation.

Lemma 2: For each Ax with 1 free variable, and for each

Czyl...Yn' and Bzw with only free variables shown, the

following is provable in ZF*: If y ={xjAx. and if Bzw is

a well-ordering of y U y}, and Y1,'''yYn E y, then

tzlzey & <Yey> n(z)[Yl1 ,...,Y n]} z= (zlzy & CY 1 ... yn]

where n is the Gdel number of C. Thus Fodo(x) means the

set of all sets first-order definable over x, for definable

sets x.

Proof: Suppose Czy1 is (3w)(wez & way1 ). We note that

both (zlzey & Czy1l.. and {zlzey & <ys > = n(z)[yl] exist

by Replacement on the definable y. We want to show Czy 1

<ysy> = nlzvyl ] , for zy. The proof in the case of ZF

is routine. What complicates it in the case of ZF* is that

certain sets definable in terms of the members of y may not

provably exist in ZF*, and also that the theory of Gdel

numbering may not be formalizable in ZF*. The latter is not
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the case, since w is definable, and hence by Replacement and

Foundation, induction on w provably holds in ZF*, and also

we may define + and x, and prove the relevant properties.

What comprehension axioms are needed to establish our equi-

valence? Apparently, what's involved is ust that the theory

of finitely hereditary sequences of elements of y and natural

numbers provably in ZF* have the intended interpretation.

For instance, we must verify provability in ZF*, for sentences

like "for every Yl,y2,y3Ey, n,mew, there exists the sequence

<{yl,n],{n,mll],[y2 ,Y3,fnfl>." Such sentences can clearly be

proved by suitable instances of Replacement in ZF* for

definable sets Y1,Y2,y3, and n,m. One assumes in ZF* that

such a sentence in false, and goes to definable counterexamples

Y1,Y2,y3 and n,m via the definable well-ordering of y ! (y,

Bzw.

Lemma 3: Each instance of the following is provable in ZF*:

a) [a = xAx3 & (=a v pea) & (3x)(x=M(B))] -> 3f satis-

fying the conditions given in the definition of x=M(B).

b) a - xJAx -> (3 !x0 )(x0=M(a)). Also Pea = xfAx3 ->

(3x o ) (Xo=M(P)).
Proof: Assume a = {xjAx & (3x)(x=M(a)). Suppose we

have 2 functions f,g satisfying conclusion, and f g. We

take, using Replacement and Foundation in ZF* in the usual

way, B to be the -least element of a + 1 with the property

that 3f and g, fg satisfying definition of x=M(a), with

f(B) g(P). Then B is definable. Suppose Lim(B). Then

use Replacement on $ to get the fyl (3 y) (ye & for all f
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satisfying definition of x=M(a), f(y) = y)l. We can apply

sum set in ZF* to get a union, U. In any f satisfying

the definition of x=M(a), clearly f(B) = U. But this is

contrary to hypothesis, f(B) g(B).

Now suppose = 6+1. By hypothesis, f(6) is fixed

when f varies over the functions satisfying the definition

of x=M(a). Clearly f(8+l) = Fodo(f(b)) for any f satis-

fying the definition of x=M(a), and so f(6+1) is also

independent of f, again contradicting the definition of i.

Clearly 0.

So no such B exists.

Now suppose for some Bea, part a) false. Take least

such B, and apply above, since least such B is definable.

This concludes part a).

b) Now suppose (3!xo)(xo=M(p)) for all BEa, but not for

= a. We may assume this without loss of generality, by taking

least counterexamples. We

obtaining a contradiction.

in ZF* on a we can get

write M(B) for that x

Thus we may take the union

Now it is not hard to see,

replacement there is an f

PEa, and (a ,U>, and that

definition of U=M(a). So

from a). Suppose a = T-l.

conclude the proof of Lemma 3 by

Suppose Lim(a). Using Replacement

the set of all M(p)'s, Pea. (We

with xo=M() if it is unique.)

by sum set in ZF* and call this U.

under our hypothesis that using

consisting of only <P,M(P)>'s,

this is the required f in the

(3xO )(xo=M(a)). Uniqueness comes

It is easy to see that y is

definable and by our hypotheses, f(y) is definable. It is



29

obvious that elements of Fodo(f(y)) are elements of P(f(y))

and that P(f(y)) exists by power set in ZF*. Furthermore,

Fodo(f(y)) exists since it can be gotten by replacement on

P(f(y)). Proceed as above to get an appropriate f to give

Fodo(f(y)) = M(a). Uniqueness follows from a). The case

a = 0 is trivial.

We want to insure in ZF* there being a definable well-

ordering of L (among other things). This insurance is easily

obtained by a natural definition of L in ZF, but not in ZF*.

We have no choice but to complicate the definition of L by

adding on conditions.

We define xEL, approximately as (3a)(3y)(y=M(a) & xy).

But this is not good enough for our purposes. We define 5

extra conditions on this a and y:

1) (0)(z)([z=M(3) & xz)] -> (a v =a)), and

(z)(z=M(a) --> z=y). Whenever x and a have such a y, we

say O(x) = a.

2) For all yea, there is a unique corresponding y=M(B),

and if B,y < a, then M(B) q M(y).

3) The M(B)'s, Bea, and M(a) are transitive sets.

4) For every zEM(a), we have (3p)(O(z) = ) and

O(z) < a. Also if z,w M(a), then [ (zeM(O(w)) -> O(z)<O(w)] .

5) Now, there is a usual definable mapping F in full

set theory (identity this with the 2-ary relation F(x) = y)

mapping the constructible sets 1-1 into ordinals. Of course,

ZF* may well not be able to prove (x)(3 y)(F(x) = y). Cond-

ition 5) will be that (the 2-ary relation) F is a 1-1
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function when restricted to domain M(a), and

(x)(xM(a) -> Ord"(F(x))). (This is the F which, in full

set theory, assigns (GCdel numbers in the form of ordinals)

to each constructible set a sequence of ordinals, the first

being the rank of the set in the constructible hierarchy, a+l;

the rest of the sequence codes in, via F on the sets in M(a),

how the constructible set in question is first-order defined

over M(a).)

We define xeL = (3a)(3y)(vy=M(a) & XEy & a and y

satisfy conditions 1)-5) above).

We define x < y = xEL & yeL & F(x)eF(y), for F as in 5).

Lemma 4: The following are provable in ZF*: if xeL then

(y)(yeM(O(x)) -> yL). Also (y)(yex -> yeL), if xcL.

Proof: Let yM(O(x)). By 4)

we have y, M(O(y)), O(y) satisfy

nition of yL, since O(y) • O(x)

the definition of yL, let zM(O

(3a)(O(z) = a). O(z) _ O(x), for

contradiction via condition 2) in tl

rest of condition 4) follows for y

being satisfied for y, and that

y satisfies 5)

in the definition of

1), 2), and 3) in the 

. Towards verifying 4

(y)). Then zeM(O(x))

suppose not. Then we

he definition of xL.

because of condition

M(O(y)) C_ M(O(x)).

xeL,

defi-

) in

. Then

get a

The

i4)

(i.e., y, together with O(y), M(O(y))

since x does, and M(O(y))C_ M(O(x)).

To show (y)(yex -> yeL), notice

have (assuming yx) that yM(O(x)),

part of Lemma 4, yeL.

by Trans(M(O(x)) we

and so by the first
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Lemma 5: For each Ax, 1 free variable, B = {xjAx3 ->

(x)(xEM(B) --> xcL), is provable in ZF*. (Note that M(B)

exists unambiguously by Lemma 3.) Also wEL.

Proof of Lemma 5: Form aljac & M(a) does not satisfy

conclusion}. Take e-least member, and call it y. Case 1. y

is a limit. Now y is definable in ZF*. Let xM(y). Then

xeM(a), for some ay, and hence by the definition of y,

xEL. Case 2. = + 1. Let xM(6+l ) . There is a definable

well ordering on M(5), <, and we may use this to definably

well-order, in ZF*, the finite sequences of elements of M(6)

in the natural way, proving in ZF* that it is a well-ordering.

With this well-ordering of M(+1), we take a least, in M(6+l),

x such that there is no a, M(a) satisfying condition 1,

assuming there is an x. This least x is definable in ZF*,

and so we consequently can form {aClaE+l & xEM(a)I and take

the e-least member, thereby obtaining a contradiction.

So every xcM(6+l) possesses a (unique) O(x).

Conditions 2)-4) are treated similarly, taking definable

counterexamples and using definable well-orderings. The proof

of 5), after taking least counterexamples, is much like our

indication of construction of a definable well-ordering of

M(+l) ) on the basis of one for M(5), above.

To show weL, it suffices to prove wM(w+l). The proof

is like the proof of this fact in ZF.

Lemma 6: HZF (x)(x=uW-_(x=w)), where A is A relativized

to the predicate EL.
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Proof: Left to the reader.

7. The System ZF*'. We define a transformation mapping

formula in prenex form in the standard notation (described in

2. Remarks on Terminology and Notation) into formulae which

contain the '<( symbol. If B is in prenex form define B-

to be the usual prenex form for B. Take T to be the

identity on formulae with no quantifiers, and take T((3xi)Bxi)

to be (3xi)(T(Bxi) & (xj)(xj < x i -> T(B-xj))).T((xi)Bxi)

is (xi)(T(Bxi) v (3xj)(xj < xi & T(B-xj))). It is easily

proved by induction that T(B-) and XT(B) are equivalent

for any prenex B. Recall that the interpretation of xj ( xi

is xL & xeL & F(xj)eF(xi).

We form ZF*' as follows: Extensionality & Foundation &

Infinity & Power Set & Sum Set & Modified Replacement. The

latter is the only difference between ZF*' and ZF*. The

other axioms are the same. Replacement in ZF*' is as

follows: Any instance of Replacement in ZF* is an instance

in ZF*' provided that the Axy be of the form T(Bxy) &

(z)(z < y --)> T(Bxz)). Bxy having only 2 free variables. It

is obvious that ZF*' C ZF*.

Lemma 7: Extensionality & Foundation & Infinity are theorems

of ZF* when relativized to L.

Proof: For (Infinity)' take x0 to be w. For

(Extensionality)' and (Foundation)' ust note from Lemma 4 that

(xeL & yx) -> yEL.
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Lemma 8: The Power set and Sum set axioms (of ZF*) are

theorems of ZF* when relativized to L.

Proof: In power set, we have x = yfAyl. The relativized

to L will be equivalent to x = yjyEL & (Ay)'1 & xL. Now

observe that the relation (z C w)' is equivalent to z C w &

zeL & wL. So we have to verify that if xL & x = ylyeL &

(Ay)'), then there is a set xoEL with xO the set of all

subsets z of x such that zeL. Now the hypothesis tells us

that x is definable, and so x has a definable power set,

IP(x). We use replacement on IP(x) to get the set of all

O(y)'s with yEL and yElP(x). This is a definable set of

Ord", and so it has a union, .J U is definable, and so,

all y x with yeL have yeM(J), because if 1a, then

M(0) C m(a). The required set x of all subsets y of x

with yeL is in MJtl), by Lemma 2; hence xoEL, by Lemma 5.

The relativized of Sum Set is checked similarly.

Lemma 9: If (3y)(y < z & Ayxl...xn ), and O(z), O(x1 ),...,O (xn)

all Ea = fxjBxl, then 3 O(y), with y < z & Ayxl...x n .

(That is, if A any formula with the free variables shown, B

any formula with 1 free variable, the above is provable in ZF*).

Proof: One ust assumes there are counterexamples

Z,Xl,...,xn M(a) to this lemma, and then go to definable

counterexamples. But we obtain a contradiction, since there is

provably a O(y) for these supposed definable counterexamples.

Lemma 10: The semi-relativized of each of Replacement in ZF*'

is a theorem of ZF*.
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Proof: We take a particular instance of Replacement in

ZF*', e.g., that one whose Axy is T(( 3 z)(w)Czwxy) &

(u)(u < y -->T(( 3z)(w)Czwxu)), where C is quantifier-free.

We let D be a definable domain, DEL. We wish to show in

ZF* that there is a set SL of all yeL such that for some

xcL with xeD, y is the unique y with (Axy)'. This is

easily seen to be equivalent to finding a set SL of all

yEL such that for some xD,

1) xEL & yL & (3Z))L(w)L(Cwxy V (3WI)L(W, < w & Czw'XY))

& (')L(Z' < z -> (3w)L(~Cztwxy & (wt)L(wI < W -> Cztwtxy)) &

(u)L{U < y ->(z)LE (3w)L(~Czwxu & (w')L(W' < w -> Czwxu)) v

(3z')L(zt < z & (w)L(Cz'wxu v (3w t)L(w t < w & 'Cztwtxu))]].

Convenient Notation: If X and Y are expressions occurring

in 1), then let X,Y] be the subformula of 1) beginning with

X and ending with Y.

Let U = union of the O(y)'s such that 1) holds for some

xeD. We proceed to place definable bounds on the quantifiers

above in such a way that the new formula is equivalent to 1)

for xD, yMJ). (Note that for each xeD there is at most 1

y satisfying 1).)

Let fl(<x,y>) be undefined if 1 is false: be O(z)

for zeL with E(W)LCz'w'xy] otherwise. Define t!1 = union

of the range of fl on D x MJ).

Let f2 (<x,y,z>) be undefined if E(w)L,I~Czwtxy]; be

O(w) for wL with "[Czwxy, Czw'xy], otherwise. Define



= union of the range

Let f3 (<x,y,z,w>)

of f2 on D x M ) x Me 1 ).

be undefined if (w' )L(W' < w ->

otherwise b

(See Lemma

x M(U) x M(

Let f4(<x,y,z>]

'O(z') with 4[z' <

union of the range of

Let f5(<,y,z,2

be O(w) for wL with

union of the range of

Let f6 (<x,y,z, 

otherwise be PO(w')

union of the range of

Let f 7 (<x,y>)

wise be pO(u) with

of the range of f7

Let f8(<x,y,u>)

ie O(w' ) for w' with w' < w &

9.) Define U 3 = union of the range of

l1 ) x M(J2).

) be undefined if [(z')L,Cz'wxyl]; be

z, Cz'w'xy, otherwise. Define tJ =4

f4 on D x M) x M(U1).

'>) be undefined if [ (3w)L,Cz'w'xy];

[CCz'wxy,Cztw'xyj otherwise. Define U =

f5 on D x M) x M) x M4).

',w>) be undefined if r(w')L,Cz'wxy];

with wt < w & .Cz'w'xy. Define U6 =

f6 on D x M(U) x MJll) x M(U4) x MJ 5 ).

be undefined if (u)L,Cz 'w'xu]; other-

Define U 7 =,[u < y, Cz'w'xu].

on D x M(U).

be undefined if 

union

(Z )L,"CZ 'w'xu];

otherwise be O(z) for zL with ~P[(3w)L,~Cz'w'xu] . Define

U 8 = union of the range of f8 on D x M(U) x M(U7 ).

Let f9(<x,y,u,z>) be undefined if .[ (3w)L,Czw'xu];

otherwise be O(w) with wL and [Czwxu, Czwtxu]. Define

U9 = union of the range of f9 on D x MJ) x MU 7 ) x MJ 8 ).

Let fO(<x,y,u,z,w>) be undefined if [(w')L,Czw'xu];

otherwise be uO(wt) with w' < w & "Czw'xu. Define U =

union of the range of f1 0 on D x M)) x M 7 ) x M 8 ) x Ml 9).

L2'2
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Czw'xy);

,Czw ' xy.

f3 on D
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Let fll(<x,y,u,z>) be undefined if '[ (3zt,)L,Czw'wxu];

otherwise be 0O(z') with [zI < z,CzwtIxu]. Define Ull =

union of the range of fll on D x M(j) x M J7) x M 8).

Let f12 (<xy,u,z,z'>) be undefined if 4 [(w)L,v Cz'w'xu];

otherwise be O(w) for wEL with '[Cz'wxu,,Cz'w'xu . Define

U12 = union of the range of fl2 on D x Ml) x M(U7) x MJ 8 )

x MJl)-

Let f13(<x,y,u,z,z',w>) be undefined if ,[ (3 w,)L,._Cz'wIxu];

otherwise be PO(w') with w' < w & Cztwtxu. Define U 3 =

union of the range of fl on D x MVJ) x M(U7) x MPJ 8) x

Mu11) X M12)
Note that by suitable instances of Replacement in ZF*,

all of the above are provably well-defined. Note that each

ULi is definable, so that each M(Ui) C L. It is easily seen

that for xD, yMJ(U), it is the case that Axy is equivalent

to the predicate Bxy obtained by placing the bounds Mi),

1 < i < 13 on the appropriate quantifiers in 1).

Now each instance of the following is provable in ZF*:

If a = xjAx), and a a limit, then for x and yEM(a),

x < y iff x < y holds when the quantifiers in the definition

are relativized to M(a), A of 1 free variable. The proof in

ZF* of the schema is like the proof in ZF. Use the definable

well-ordering of M(a).

Now let; V = max~J,Ui,O(D)). Then relativizing the

quantifiers occurring in the expansions of the "<"ts that

occur in Bxy, to M(V+w), we get the same predicate as Bxy,

for xED. Hence we have shown our S we wanted to show



37

originally EL, is first-order definable over M(V+w), and

hence EM(V+w+l), V + w + 1 definable.

8. The System ZF'. Making use of the transformation T

defined in the previous section, we form ZF' as follows:

first, Extensionality & Foundation & Infinity & Power Set

Sum Set axioms of ZF. In addition, we have (x)(xEL) & (:

(Ordx -> Ord"(x)) & (x)(3y)(z)(yEx & (zEx -> z y)).

Replacement in ZF' will be the following: Let Bxyyl...;

be a formula in prenex form with only the free variables s

Then (Yl). (Yn)(x) (3 X1) ( 2) (x2 eX1 (3x3)(x 3 &

T (Bx3x2Y1.. 'Yn) & (x4)(x4 < x2 -> )T(Bx3x4Y1 ...Yn)))), i

instance.

Lemma 11: ZF' D ZF.

Proof: First, we wish to show in ZF' each instance

and

x)

Yn

hown.

s an

of

T(A) - A. This is trivial

Suppose T(A) - A is

prenex form with n quanti

T(A) - A is provable with

prenex form. Then we will

any A in prenex form in

Let B be in prenex f

Suppose B is (3xi)(Axi).

(xj)(xj < xi v T(A-x))).

T(A-xj) is equivalent to

for A with no quantifiers.

provable in ZF'

fiers. We then

A having n +

have shown T(A)

ZFt'.

orm with n + 1

Then T(B) is

Now FZFT(Axi)

T(Axj) we have

for all A in

wish to show that

1 quantifiers in

- A provable for

quantifiers.

(3xi)(T(Axi)

Axi . Since

zFT(A-xj)

&

to check that

is provable in

& (xj) (xj(3xi ) (Ax i ) (3xi ) (Ax i

ZF '.

We have

,Axj ) )

< Xi V<x1
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Define Cxy to be y = x & T(Ay). This is, of course,

equivalent with T(Ay & y=x), a transforration on a wff of

n quantifiers. Now (x0 )(3 x1 )(x2 )(x2Exl (3x)(xEx0 & Cxx2 &

(x4 )(x4 ( x2 -> ~T(Ay & y=x))))), is (equivalent to) an axiom

of ZF'. But ZFT(Ax 2 & 2 = x3 ) Ax 2 & X2 = x 3. So

ZFI ,(x) (3xl)(x2 ) (x2exl Ax2 & x2exO). Now assume (3xi)Axi.

Choose any such xi. Take O(xi), and set xO = M(O(xi)),

and use the above theorem of ZF' to get the set of all elements

of M(O(xi)) having the property A. (M(O(xi)) is defined and

has required properties since (x)(xeL) is an axiom of ZF',

and xeL is formalized as in ZF*, previously.) Hence by

one of the axioms of ZF', there is a (-least member.

Hence we have shown by induction the equivalence between T(A)

and A, in ZF'. This has the effect of provably in ZF'

eliminating the T's in the axioms of ZF', and so ZF' 3 ZF.

9. The Skolem Argument. We wish to show (n) ZF* Con(ZFI n)

where ZFn is the first n axioms of ZF' in some natural

enumeration of them. If we succeed in showing this, then

suppose uCon(ZF). Then ~Con(ZF'). Then (3n) Con(ZFA).

But then (3n)ENTCon(ZF). Since ENT is formalizable in

ZF*, (3n) IF*Con(ZFn). Hence (3n)(FzF*Con(ZFA) &

F ZF* Con(ZFn)), and so Con(ZF*). Hence ConZF* -> ConZF.

We give, without loss of generality, a Skolem closure

argument within ZF* to give, provably in ZF*, a set which

is a model for 1) Extensionality in ZF, 2) Foundation in ZF,

3) Infinity in ZF, 4) Power Set in ZF, 5) Sum Set in ZF,
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6) (x)(xEL), 7) (x)(Ordx -> Ord"x), 8) (x)(3y)(z)(yEx &

z y)), 9) Let D(xyT) be the formula obtained from taking

1) in 7. The System ZF*I and replacing the 4-place quantifier-

free predicate C, with some 5-place quantifier-free predicate

E(zwxyT). (D)(T)(3S)(y)(yES (3x)(xED & D(x,y,T)).

The construction, in ZF*, of the model of these 9

sentences will be much like a Skolem construction in which the

initial model is . At each stage n, we throw in some sets

x:EL, and we take the union as n ranges over w.

We simultaneously define an and Sn. We are interested

in U S
nEw n

Sn = M(an). S = M(/) = 0. aO = .

Consider, for each xS n, the <-least yx with (z)

(zEy -> z x).

Consider, for each XESn, PL() - set of all y x with

yeL.

Consider, for each x,yESn, with x y, the <-least

element of x not in y.

Consider, for each XESn, UL(x) = set of all yL such

that (3 z)(zex & yEZ).

Consider, for each TSn, the unique SL satisfying the

semi-relativized of 9) to L. (Call this 9)").

We continue "considering" through 9)", closing Sn in

effect, under the "Skolem functions" for 9)", in such a way

that, as in 7. The System ZF*, we have that the Skolem func-

tions produce values definable in terms of the arguments.
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We take an+l = (union of the O(z)'s for the z's

considered above) + w. Take Sn+ M(an+l).

We can then use appropriate instances of Replacement in

ZF* in combination with the definable well-ordering <, to

show that if the Sn and an are not well-defined for each

n, then there are definable counterexamples to our construction

in the following sense: for some specifically definable sets,

the sets corresponding to them that we considered above do not

exist. But this is impossible by Lemmas 7, 8, 9, and 10. So

our construction is well-defined in ZF*.

Now our model i Sn is an M(a), a definable, a a
new

limit. In particular, it is transitive. It also contains w.

Due to the absoluteness of the definition of L and of the

definition of w in M(a)'s, a a limit, it is easily seen

in ZF*, putting all this together, that the sentences 1)-9)

are true when the quantifiers range over M(a). Furthermore,

since M(a) is definable, the definition of satisfaction and

the induction on a are easily developable in ZF*, in order

to prove, in ZF*, that Con( 1)-9) ).

From the remarks at the beginning of this section, we

immediately have

Theorem 1: F ConZF* -- > ConZF.
ENT

10. ZF. Parameterless ZF, and ZF*. This section is devoted

partially to further consideration of the system ZF* of

Chapter 1, and partially to some other subsystems of ZF.

We define a sentence of set theory to be arithmetical if



it is the relativized of some sentence of set theory to w.

Corollary 1: ZF is a conservative extension of ZF*

for arithmetical sentences.

Proof: Let A be arithmetical, and IZFA. We can show

Con(ZF* + ,A) -> Con(ZF + A) by modifying the proof of

Theorem 1 slightly; Just redefine the systems ZF*I, ZF' as

ZF*' + .A, ZF' + A, respectively. Due to Lemma 6, all of

our Lemmas carry over. Now since ~Con(ZF + .A), we have

Con(ZF* + A), and so zF*A.

Our next Theorem concerns sentences of the form

(x)(3!y)Axy, A arbitrary, with only 2 free variables, that

are provable in ZF*. Now in ZF there are many such sentences

which define, provably, in ZF, a Skolem function which moves

everything and which is 1-1. An example is (x)(3y)(y = IP(x)).

Another is (x)(3y)(y {x}). Not so in ZF*. Thus,

Theorem 2: Let Axy be any formula with only free

variables shown, and let C = (x)(3 1y)(Axy & y x) & (x)(y)(z)

((Axy & Axz) -> y = z). Then C is not provable in ZF*.

Proof: We let C be a sentence of the above form, and

we construct a model for ZF* + XC, given an arbitrary model

for ZF, G\ = <X,R>, where R is a 2-ary relation on X,

X pi . (All models are assumed to be equality models. Note

that ZF* is a first-order theory with equality.)

We define as follows: The domain is to be X U Q,

where Q is the rationals. The 2-ary relation, Sxy, is

defined as Rxy if x,yeX; x < y if x,yEQ; false, if xEQ,

yeX; true if xX, yeQ.



We claim U satisfies ZF* +C.

First, we show that the elements of Q in 3 are

indistinguishable in the sense that if Axl...xnYl...ym holds

in G for xicQ, yjEX, then so does AZl...znyl...y m for

zieQ if the two sequences of rationals, xi, i have the

same order relations in Q, (i.e., there is a 1-1 order

preserving map). To see this, it suffices to show that, given

such a pair of similar sequences of rationals, there is an

automorphism of which keeps the elements of X fixed,

and which maps, in an order-preserving way, the sequence xi

onto zi. And such an automorphism is easily given by any map

which fixes the elements of X and maps the rationals 1-1 onto

itself, which maps the xi into the yj.

Now supposeB j (x)(3,y)(Axy). Then by indistinguish-

ability, it; is clear that for xEQ, we have C Axy for

some yX, for otherwise we would have Axy for x,yEQ, and

hence Axz for z = y + 1. But now I claim that S satisfies

A(x+l,y), since yX, by indistinguishability, assuming xQ.

So 8 does not satisfy C.

Clearly Q3 satisfies axiom 0 of ZF*.

To verify 1 of ZF*, suppose ~ = (x2 )(x2 x0 - x2ex1),

for x2, xl in the domain. Then either xI and xO EX, or

x1 , x0 E Q. In the first case, we can conclude that

a( k (x2 )(x2 EXO - x2 cx1 ), and so since 1= ZF, we have

xO = x1. In the second case, we have 1/2(x0 + x 1) < xO iff

1/2(x0 + x1 ) x1 . But then x0 = x1 .
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To verify 2 of ZF*, set x0 = w of . It is easy to

see that 1d3 = 0 EX0 , since 6 in (3 is same as 0 in f.

Also, x U x) remains unchanged for xeX, when we pass

from al to . Also, the members in a. of x0 are the

same as the members of x in . Also, the subsets in at

of X0, or any of its members, are identical with the corres-

ponding elements in ( . Putting this together, we see that

axiom 2 of ZF* is satisfied in E "in the same way" as it

is in .

To see that 3 of ZF* is satisfied by 4 , suppose

satisfies CA. Then the unique element defined in CA must be

eX, by indistinguishability. We let this element be x. What

we are looking for is a power set of x in the model ( . We

claim that y = P(x) in the model aL does the trick. We

have to show that (2 satisfies y = P(x). But this is

obvious, since the only members of y in are the members

of y in , and the only subsets of x in 3 are the

subsets of x in .

Axiom 4 of ZF* is checked similarly.

To see that axiom 6 of ZF* is satisfied in g , let

xeX U Q. If xeX, take xO in foundation as an R-least

member of x in ® . If xeQ, take x0 to be , in aL (or

2). Obviously I2 j p e x.

Axiom 5 of ZF* is the most complicated. The set that

CA defines in 63 is again e X. Call it D. Then we are

interested in the range in 6 of the partial function in ,



Bx2x1 & (x3 )(Bx2x3 -> x3=x1 ), on the domain D. Now every

X2 with S(x2 ,D) has x2 EX, and so, by indistinguishability,

if S(x2 ,D), and Bx2x & (x3 )(Bx2 x3 -> x3=x1), then x1EX.

Now suppose there is a formula Cx2xl such that, for x2 EX,

x l X , Cx2xl holds in Tl iff Cx2xl holds in . Then by

Replacement in the model 6 , we would have (this instance of)

Replacement in , and we would be done. It remains to show

that for each formula Axl...xn, with the free variables shown,

there is a formula Bx1 ...xn which holds in al iff Ax1 .. . xn

holds in , when xi X.

It suffices to prove by induction that for any formula

AXl...n, and for any partial function f from til<i<n)

into Q, there is a formula Bxil ... xik i k

fill < i < n & i Dom(f)1, such that for any sequence x...x n

with xiEX iff i Dom(f), xi f(i) if iEDom(f), we have

3 A 1...x n iff =Bxil...Xik.
To see this for Axl...x n quantifier-free, take B to

be the formula obtained from A by 1) replacing all instances

of XiExj, iDom(f), JEDom(f), by xi = xi, 2) replacing all

instances of xiExj, or xi=xj, or x =xi, iEDom(f), J Dom(f),

by xjxj, 3) replacing all instances of xi ex j, or xi=xJ,

i,JcDom(f), by (3v)(v=v) if f(i) < f(J), (3v)(v=v) if not;

or (3v)(v=v) if f(i) f(J), (3v)(v=v) if not, respectively.

Put Axl...xn in prenex form, and suppose our claim is

true for all formulae with less quantifiers.

We may assume that Axl. ..x n is (xO)CxOxl ..xn,

since the existential case follows from this case by taking
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negations. Let f be a partial function from fill i < n)

into Q. Now 2 finite partial functions g,h from w -> Q

are said to be of the same type if 1) they have the same

domain D, 2) g(x) < g(y) iff h(x) < h(y).

Consider the set of partial functions on filO i < n)

which are identical to f on ill i n. There are only

a finite # of types represented in this set. Pick a repre-

sentative from each type, and call this set ffl,f2,,f. k},

fl = f. Let Di, 1 i k, be the formula given by the

inductive hypothesis for Cx0xl...xn for fi; i.e., each Di

has exactly the free variables x for I Dom(fi),

O .• < n, and for any xO...xn with xeX for lDom(fi),

X = fi (l) for 1eDom(fi), we have (13 CxOxl...xn iff

1 DiXpl. -Xp {PlP q ) = {r o < r n & r Dom(fi )} .

Then we take B to be (xo)D1 & ~ Di. By

indistinguishability, it is easily seen that B and A

satisfies the conclusion of our claim for the function f.

This concludes the proof of Theorem 2.

We now define some new subsystems of ZF. ZFn is to be

the same as ZF except for the Replacement schema. ZF n,

instead, only allows the Axy in the Replacement schema at most

to have n + 2 free variables; x and y and possibly n

other ones. It is easy to see that ZF* is a subsystem of

ZF© . We also have

Corollary 2: ZF* ZF0 .

Proof: Consider the model of ZF* constructed in the



proof of Theorem 2. Consider the sentence A (x)(3y)(0ex

-> (ly & (z)(z0 -> (zEx <-> zy)))). A is obviously
provable in ZFO . But our model of ZF* does not satisfy A.

We believe strongly that ZFO ZF, and in fact in the

stronger conjecture that ZFi Z Fn+ l, for all n. Although

the details of a proof of ZFO ZF have not yet been carried

out, we can give the definition of a very promising model of

ZFO + (3x)(y)(3 z)(--(zy <-- z=x)).
We let M(a) be the minimal model of ZF. We let S be

any Cohen generic set of natural numbers over M(a). We let

MS (a) be the corresponding Cohen model for ZF + V L.

We let FS be the set of all sets of natural numbers

which are finitely different from S (i.e., whose symmetric

difference from S is finite).

Recall that R(I+1) = IP(R(1)), R(X) = U R(1).

Consider the sets xeM S(a) such that for any formula

Ayzx1, we have, in 1MS(a),[zl(3y)(yex & A(x,y,FS))) f xl. We

let X be the set of all such x. We let Y be the set of all

xeX such that any finite combination of union and power set on

x in MS (a) gives a set in X.

For each , let R' () be the unique rank in the cumu-

lative hierarchy up to 5 in the model MS (a).

Define, for each 5, a function f whose domain is

R'(a) n Y, and by the equations f+l(x) {YfyeY & (3z)(zex &

fg (z) y), fX) = U fx y
We define xcZ as [(3B3)(<a d x Range(fg )) & xEY].
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We conjecture that <Z,e> is the desired model.

We feel that a detailed analysis of the relations between

the theories Z n, hopefully by finding natural sentences to

distinguish each ZFn from ZFn+ , would involve non-trivial

applications of the notion of forcing. In particular, careful

attention seems to be required as to the model-theoretic

properties of models of theories obtained by forcing; e.g.,

the definability or indistinguishability of various elements

of the models constructed.



CHAPTER II

1. Definitions of Systems. We will have for our language,

number variables, n,m,p,q,r; set variables, x,y,z,w,u,v,...;

the relation nex between numbers and sets; and the constant

number "O" which can hold only between variables of the same

type.

We introduce function variables in the usual way by

defining them in terms of sets of natural numbers in the usual

way. We will have full number theory at our disposal, since

all systems considered here will have the unrestricted induct-

ion axiom schema (called I) [AO & (n)(An -> An')] --> (n)An,

where A is any formula with possibly free variables of both

kinds, and can have both number and set quantification.

Also, all systems considered here will have the axiom of

extensionality (that any two sets with the same members are

equal), and we will tacitly assume that the system we will call

I includes this axiom. Thus I will be the unrestricted

axiom schema of induction plus the axiom of extensionality.

In addition, all systems considered will have the recurs-

ively enumerable comprehension axiom schema (called ReCA),

(x1). .. (xl)(e)(3y)(n)(ney - (3k)T-e,n,k,xl, .. , 1) ).

The predicates Ti are understood to be written out in

the usual way with bounded quantifiers. (Or, we may have

instead introduced them as primitive, and defined them by

adding axioms of primitive recursion.) The predicates TA



above are what Kleene would call T ,f where above are what Kleene would call T , where fi is

the characteristic function for the set, xi. See Kleene [3],

p. 291.

Before we get into the mathematics of the systems we will

be considering, we will state, informally, some propositions

concerning what can be done in the system I + ReCA.

Proposition 1: We can, in I + ReCA, Justify all uses of

coding normally found in the development of hierarchy theory.

Thus, we may Justify the use of such symbols as x,y> and

(X)n (respectively (2n + l * 3 m+llnex & mey], and {mlpm+lex],

where pn is the nth prime).

We define the relation between functions and sets alluded

to above, as f(n) = m iff n,m> f, where n,m> =

2 n+l 3m+l.

Proposition 2: In ReCA + I, we may provably perform

"collapse of like quantifiers". In other words, the usual way

of collapsing 2 successive universal set quantifiers (or function

quantifiers) into one can be completely Justified on the basis

of ReCA + I.

Def. 1: A predicate A(n,xl, . .., x p ) of n is said to be

essentially 1TI if it is in prenex form followed by a matrix

T(e,n,m,xl,...,P,fl,...,f ,nl,...,nk), where there are no set

quantifiers in A, and the fi occur as universal function

quantifiers, in any order, mixed together with possibly number

quantifiers (ni) and (3 nj) and (3m). (No existential

function quantifiers in A.) An essentially 4 formula is

Just the prenex form of the negation of an essentially T11



5o

formula.

Proposition 3: For every arithmetical predicate (with

parameters) there is a predicate (f)(3 m)T(e,n,m,xl,...,x2,

nl, . . .,n p ) which is, provably in I + ReCA, equivalent.

There is also a predicate (3f)(m),T(i,n,m,xl...,x,·nl,...,np )

which is, provably in I + ReCA, equivalent.

Proposition 4: Define (x) ( ) as the -th Jump of x.

y = (x)( ) - 3 a sequence (x0 ,...,x,) such that x = x and

xi+l = Jump of xi. (Thus, y (x)(1) is a predicate of 3

variables, defined in the usual way.) Then in I + ReCA we

may prove (3!y)(u = (x)()).

This is proved by induction on 2.

Consider

L) (x)(p)(e) (n) (f ) (3m)T2(e,n,m,f,x) (3g)(r)~-T2(p,n,r,g,x)

-- > (3y)(n)(ney (f)(3m)T2(e,n,m,f ,x))}.
2) The schema, (x)((n)[Anx Bnx] -> (3y)(n)(ny- Anx)},

where A is essentially 1, B is essentially I1

3) (x)(e)((n)( 3 f)(m)-T 2 l(e,O,m,n,f,x) -> (3 y)(n)(y)n is a

function & (m)~T2 1 (e,0O,m,n,y,x ) ) )

4) (x)((n)(3 f)A(n,f,x) -> (3y)(n)((Yn) is a function &

A(n,yn,x))), where A is essentially Z1.

5) (x)(e)((f)(3 g)(m)T 3 (e,0,m,f,g,x) -> (f)(3 y)(n)(yo = f &

(m)-T3(e,,m,yn yn+l ,x) ) ).
6) (x)((f)(3g)A(f,g,x) -> (f)(3y)(n)(yo = f & A(Yn·Yn+lX)))

where A is essentially 21 having only the free variables

f,g,x.

We call I + ReCA + 1), the pure A; I + ReCA + 2),We call I + ReCA + 1), the pure A1-CA; I + ReCA + 2),

I

I
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essentially A-CA; I + ReCA + 3), pure E1-AC; I + ReCA + 4),

essentially 41-AC; I + ReCA + 5), pure :1-DC; I + ReCA + 6),

essentially 2 -DC.

NOTE: "CA" is supposed to mean "comprehension axiom"; "AC",

axiom of choice; "DC", dependent choices.

Proposition 5: In pure 21-AC, for every essentially 11

predicate, there is a pure 1 predicate (f)(3n)T(,m,n,...)

which is provably equivalent.

To see this, first use Proposition 2 to collapse adjacent

like quantifiers. Then use pure £1-AC to interchange a

number and function quantifier, and then use Proposition 2 and

then pure Z1-AC, etc.

Proposition 6: Pure 21-AC D pure 1-CA.

The idea is that, in pure Al-CA, one has that for each

m there is a solution to one of two n1 predicates, and one

uses pure Z1-AC to form a Skolem function. Then the required

set in pure A1-CA is obtained, in pure Z1-AC, recursively

in the ump of the Skolem function.

Proposition 7: Pure £1-AC = essentially £1-AC.

By Proposition 5, one has only to consider the case

(n)(3f)(3g)(m)fT--> 3 Skolem function. But we may collapse

the f and g quantifiers in the usual way, and apply pure

1
£1-AC to get a Skolem function, which will have recursive in

it the Skolem function wanted in the implication above.

A similar argument shows

Proposition 8: Pure 2 1-AC D essentially i-CA.
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Conjecture: We do not know whether pure 4-CA -

essentially A-CA, or whether pure A-CA = Z-AC, or whether

Z1-AC - essentially AI-CA, and we conjecture that none of the

three statements is correct.

Proposition 9: Pure 21-DC -> 2Z-AC. (By Prop. 5, we

call essentially 1_AC, and pure 2:-AC, just 1-AC.)

Hence also

Proposition 10: Essentially £1-DC - pure 1-DC.

Proposition 11: We can prove in ReCA + I the recursion

theorem (with parameters).

2. Preliminary Letmmas. We will eventually show that Z1-DC is

a conservative extension for purely 21 sentences of pure hi-CA.

We define, in I + ReCA, several notions.

Def. 1: P(n,m) is defined as the CGdel number (in the usual 1-1

onto G8del numbering of pairs of natural numbers) of the pair

<n,m>.

Def. 2: epX is defined in the usual way as the nth partial re-

cursive function in x. Note that in I + ReCA we can prove

(n)(x)(3 c) 
Def. 3: RLOX(n) is defined as "Range (cpX) C {0,l' & (m)

(meDom(ep )) & Cpx defines a linear ordering," where o defines a

linear ordering means that 1) (m)(cpX(P(m,m)) = 0), 2) (p)(q)(r)

(Cppx(P(p,q)) . 1 & PX(P(q,r)) - 1) -> ,x (P(p,r)) - 1)).

3) (p)(q)(qnx(P(p,q)) - 1 -> cpX(P(q,p)) - 0. 4) (p)(q)(p = q v

Xcp(P(p,q)) = 1 v cp(P(q,p)) = 1). We define RLO(n) =- RLO0(n).



Def. 4: We define

define p < q = RLOX(n) &
n

x = , we use the subscript

< q = RLOX(n) & n(P(p,q))
n

1.

(cpn(P(pq)) 1 v p = q).

n instead of n .

the empty set.)

We define WX(n) as RLOX(n) & (y)(3m)(y= v

(r) (rey ->

= RLOX(n) & q < p
n

& (r)(r < xP -> r xq
n n

Suc x(p) = (3 q)Suc n(p,q). Lim x( ) = RLOX(n) & (3q)(q <

o nx(P) - RLOX(n) &
n

n (Z) 
n

RLO(nX) &

(q)(p 

((Z)p)(l) =(p) (m) (Suc nx (m,)
n

= (P(r,s) s < xPn
& re(z)s ) &

(p)(o (P) ->
n

(x)p Y= ). Thus H x(Z)n
is the predicate of

4 variables asserting that z is a hierarchy on the RLO, n,

starting from ye It will be useful later on to include the

condition

Def. 8: 

(k) (kez -> (3p) (kE(z)p)),

is the predicate ofHYx( )
"I

z is a hierarchy on the RLO, nx

in the definition above.

5 variables asserting that

uR to but not including I

starting from

Def. 9: x y

usual way.

y. Thus if

is defined as

then (z)p= 0.p x,
n
"x is recursive in y"

Def. 10: Inx < ImXI

proper imbedding of

means RLOX (n) & RLOx (m ) &

xn into mX, i.e.,
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We

When

denotes

m < xr))).
n

Def. 6: Suc (pq )
n

(mey &

.SUx (p))-
n

De . 7: HY

)·

(z) m) &

xP &

n

(x)p(p) (lim x(P) ->
n

in the

is a

(p) (q) { (p < -- >nxq 



f(p) xf(q)) &
m

InX

In X I

= ImXI

< ImxI

Def. 11:

([p<xq & q
m

E Range (f)] -> p

means that the range of the

= InXl

HypX (y)

= mXI v In X

E Range (f))1.

f above is

< ImX .

(3n)(3z)(RLOX(n) & (HX (z)) &

y TZ)

Lemma 1:

provable in

(x)(y)(z)([WZ(n) &

I + ReCA. Also, [W'

HZ (x) &
n

HZzn

Z(n) & HZ_(x)
np

(y)] -> y=x)

& HZz (y)] -
np

y = x is also provable.

Given n,x,y,z with WZ(n), HZz(y).
n

in I + ReCA. By WX (n), we have a < -least
n

q. Clearly we must not have

(X)sxq ->
n

0 x(q).
n

= (Y)s),

If lim x(q),
n

we have (X)q

If Suc x(qs),
n

then since

()q = (Y)q.

Lemma 2:

wZ(n) & wZ(m) &

three holds:

The following is provable

a)

in pure ifA1-CA:

then exactly one of the following

there is a unique imbedding of the ordering

initial segment of the ordering
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W.

is

Proof: Form

element

then, since (s)(s <

(Y)q (X)S = (Y)S we have

(P I W p74 (Y)P

(3x) (4 x)).*

zm andnz onto a proper
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there is no imbedding of the ording mZ onto an initial seg-

ment of the ordering n z .

b) there is a unique imbedding of the ordering nz onto the

whole ordering m, and vice versa, and there are no imbeddings

onto proper initial segments in either direction.

c) the interchanging of n with m in a).

Furthermore, denote x(1) for the result of applying 

iterations of the Jump operator to x, e w. Then all the

above maps may be found •fx ( .) for some I depending on n

and m.

Proof: In a), if there is an imbedding, f, of n onto

a proper initial segment of m then it must be unique, since

if g is another, form, in I + ReCA, (klf(k) g(k)), and

take an n-least member, p. Running through the 3 cases,

O (p), Suc z(p) and lim z(p) in a straightforward way,
n n n

using the linearity of n and m, we get a contradiction.

Same with c).

If there is an imbedding, g, of m onto an initial

-1 -l
segment of n, take g 1, and note that g 1 must disagree

with f somewhere. Then follow the procedure above.

If there is an imbedding of n onto the whole ordering m,

then there is one from m to n by taking inverse. (Note

that we can form inverses by ReCA.) And there are no proper

imbeddings, using least counterexample argument above.

So the main thing is the existence of these imbeddings.

We define a function f z(p) greatest k such that



56

(3q)(Suck z(p,q)), where Suck is k iterations of Suc.

(This is well defined, since (p)(q)(r)(Suc z(p,r) & Suc z(p,q)]
n n

-> r = q)). There is always a greatest k, since otherwise

we would have an arithmetically defined chain through nz, and

finitely many iterations of ReCA (+ I) would realize this claim

as an object, and would contradict WZ(n).

Fix n,m, with WZ(n), WZ(m), (x) (Zz (x)). Let f (p) be
n n

abbreviated f(p). We claim that, for each p, either there is

an imbedding of the ordering m onto an initial segment S of

the ordering n, so that keS---> k < p, or there is an
n

imbedding of kJk < zp) of n, onto an initial segment of m,

and these imbeddings are to be found < T(x)p(l(f(P)+l)).

(This is the result of applying 10(f(p)+l) iterations of the

Jump operator to (x)p.)
We assume this is false,and, as usual, form plclaim is

false}. We take an n-least member, q If 0 (q), then

clearly claim is true for q. If Suc (q,r), then certainly

f(r) + 1 = f(q). So there exists a comparison mapping,

< T()r(lO(f(r)+l)), between the segment of n up to r, and

m. It is then easy to see that there is a (unique) comparison

map between the segment of n up to q, and m, IT(x(lO(f(r)+l))

The limit case is similarly easy; the uniqueness of these compar-

ison maps is used heavily, and that the property of being a

comparison map is low arithmetical, and that the function f

is low arithmetical.



Lemma : The following is provable in I + ReCA: If

WY(n) az

(3z) (z <

in n,

nd WY (m),

T(x)p

and InY I

(o (f(f)+l)) &

of the range of the

< lmy I, an

HY (z)), wh
mY

imbedding of

thend (3x) (HY (x)),
nY

ere p is the l.u.b.

in n, and f

defined in the proof of Lemma 2.

Proof: Similar to the proof of Lemma 2.

that if H y

np
Lemma 4:

One notes,

has a solution, it must be unique.

If m < InZI, and p is the l.u.b.

of the image of the imbedding,

& y < T () (l(f(P)+l))),(3x) (H z (x)
np

is provable

where f is f z
n

in I + ReCA.

Proof: One can prove first, as in Lemma 2,

(3x) (H (x)).

with HZZ (x),

np
course,

Then, again like Le

one can prove that

it is provable in ReCA + 

(3!x) HZ (x)).)
np

Def. 12:

(3q) Suck

(q,P) ->

Reas (nx

x(P,q) &
n.

) RLOX (n) &

lim (q) ) &
n

(q)(q < xp )].

(p)

(3r

(Reas (n)

mna 2, starting with this

y < T(x)(lO(f()+l)) (0:

[ that (3x)(HZz(x) ->
np

(Onx (P) v Lim x(p) v (3k)

-) (O (r)) &C (P ) (3q) (Suc

reads "n is reasonable.")

Lemma 5:(z)(n)(x)(y)(m)([Reas(mZ) & Hzz
n

(x) & HZz(y) &
m

(3p)(x < T ( y ) p & there are infinitely many q >mzp)),

is provable in I + ReCA.
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is f y

e.g.,

and (3y)(HZz(y)),
m

in nZ

then

This

that

x

WZ (m) ->



Proof: Assume Reas(mz), ffZ
n

there is a set, w, which has no

(x), H z (y), WZ (m). Then
zleast membermZ-least member. It is

then easy to see, using I + ReCA, that (3g)(k)(g(k+l) ( g(k)).
n

We will show that (p ) (k)((x )p T (Y)g (k~ BY Reas(mZ), this

is sufficient.

For, we take, in I + ReCA, pl(3k)(~((x)p < T(Y)g(k)))•.
We can do this, since the predicate we are taking the extension

of is arithmetical in x,y. And we take an n-least such p,

call it q, by WZ(n). We then obtain a contradiction.

1) 0 z (q). To get a contradiction for this case, it suffices

to show that (k)(z T(Y)g(k)) If lim z(g(k)), then

clearly z T( Y )g (k ) ' If 0m (g(k)), also easy. If

Suc (g(k)), then by Reas(mz), we have Sucrz(g(k),s), some

r,s with lim(s), and so z T(Y)s So clearly (Y)g(k)

() s(r) and so80 z T()g(k)

2) Suc (q,r). Then (X)r < T ( )g (k)' all k. But then

(x)(l) T(Y)g(k1), all k > 0, and hence (X)q T(y)g(k),

all k for the following general reason: if p < zq, then

(y)(l) K T(Y)q The case when lime (q) is easy. When

Sucz ( q ) , use Reas(mz) as in Case 1) above.
m

3) lim (q). Let k be arbitrary. We know () ( < zq

> (X)1 T(Y)g(k+10) ) - Furthermore, the question of whether

a set is (x)1 , is a question low arithmetical in , due to

the uniqueness of Hierarchies on RLO's, and even hierarchies

58
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on initial segments of RLO's. Hence (x)q is low arithmetical

in (Y)g(k+lO)' and hence (x)q will re recursive in

g(k+l10)' Hence, by reasonableness of mZ, we have

(,X)q < T(Y)g(k).

Lemma 6: "The predicate WX(n) is not E1 in x" is

provable in I + ReCA.

Proof: We have, in ReCA + I, the Kleene normal form

for predicates I 1 in x, and we use that to formalize the

Lemma. So assume A) (n)(WX(n) (3f)(m)4T(e,n,m,f,x)). Now

there is an explicit recursive function g, for which we can

prove in ReCA + I, that B) (k)(n)E(f)(3m)T(k,n,m,f,x) -

WX(g(k,n))]. Hence 3 such that (n)(f)(3m)T(n,O,m,f,x) -

(3 f)(m)~'.T(e,n,f,x)), is provable in I + ReCA, since the

predicate (f)(3m)T(m,O,m,f,x) of n is 1 in x, by A)

and B), and Kleene's normal form Theorem is provable. Now

substitute e for n to get a contradiction.

3. Conservative Extension Result.

Theorem 1: Given any model M of pure A1-CA + S, where

S is any purely k sentence, there exists a model M' of

E1 -DC + S where S is (3 y)(g)(3n)T(g,O,n,y,z), for some e.

Proof: A model of pure A1-CA + S consists of an inter-

pretation J of the natural numbers, and +,x,O,, together

with a set of objects, X, and a binary relation R(j,x), JEJ,

XEX. We define a new model HypY(M) = M', as 1) having same

J,+,x,O,'; 2) having same R(J,x) but restricted to those
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JEJ, xX with M Hyp(x). Now since M S, choose y such

that M (g)(3n)T(i,O,n,y,g). Then clearly M' (g)(3n)T

(e,O,n,y,g). So Mt S.

We claim M' = E1-DC. It is sufficient to show that the

relativized of each axiom of X-1DC to the predicate Hyp is

a theorem of pure A1-CA. (We define the relativized, T(A),

of a formula A, to the predicate HypY(x) by T(A v B) =

T(A) v T(B), T(A & B) = T(A) & T(B), T(A) -= T(A), T(3xA) =

(3 x)(T(A) & ypY(x)), T((x)A) = (x)(HypY(x) -> T(A)), T(Q) =

Q, Q quantifier free, T(3nA) = (3n)T(A), T((n)A) = (n)(T(A))).

In other words, the universal closure, obtained by inserting

the universal quantifier (y), of the relativized of each
axiom of -1_DC to HypY is a Theorem of pure A1-CA.

1) Induction. It is clear that the relativized of each

instance of induction to HypY is again an instance of induct-

ion, and so is provable in pure l1-CA.

2) ReCA. To prove the relativized of ReCA, it suffices

to prove, in pure A1-CA, that (x)(HypY (x) -> Hypy (x (l ) ) ) .

To see this, let Hy (z), W Y(n), x < T So x() < T(1)

If ny has a greatest element, i, set k = f y(i) + 2. If

not, set k = 2. Define a new ordering mx by adding on the

first 10'k integers on top of n, and make,in the trivial

way, the ordering my total, so that RLOY(m) and Iny l <

Imy l . Now clearly by Lemma 4, (3w)(Hmy (w)), and so clearly

(3w)(HY y(w)), by I + ReCA. But, also by Lemma 4, z(1)
m



< Tw . Hence HypY(z(l)).

3) Suppose (f)(HpY(f) -> (3g)(HypY(g) & (m)~T3

(e,O,m,f,g,x))), where HypY(x). Let HypY(f). We consider

the predicate Pn n is a member of a finite sequence

n O n l . . . ,n k k 2 0, such that I) (i)WY(ni). II) For any

sequence of sets xO,xl,...,x j , J k, such that (i)(HY (xi )) ,
ny
i

we have that 3 another sequence zi such that each zirx i ,

and z0 = f and (i < J)(m)T 3 (e,O,m,z i+ 1,X). III) For any

sequence xo,xl,...,x, J < k, with (i < J)(RHY(xi)), it is

not the case that (3z)(3p)[Hy (z) & p has infinitely

(nj+1 )pmany q > Zi ~~ T~~i, ¶1+1• TZ-

many q > y p & 3Zozl,S, z jz j+ l i TXi' Zj+1 TZ'
n.+1

with (s < )(m)T3(eO ,m,ZsZs+l,1x)].

Also consider Qn n is a member of a finite sequence

n O , . . . , n , k O, Reas(ny ), such that 3 sequence of sets

xOXl,...,Xk with I) (i)HYy(xi). II) 3 a sequence zi such

that each zi < Txi and zo = f and (i)(m)-T3 (e,O,m,zi,zi+1 ,x

III) Let -1 • j < k. It is not the case that (3z)(3p)

Et • TXJ+l & HY (z) & p has infinitely many q >
(n3 , )y

& 3 ,Zl,...,zj,Zj+l, i _ TXi' ZJ+1 TZ' with (S < )(m)

~,T3 (e ,O,m,zs,zs+1 ,x)].

We first note that Pn is a TI predicate in f,x,y and

that Qn is a 2 1 predicate in f,x,y.

We wish to show, in I + ReCA, that (n)(Pn - Qn).

) ·
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Suppose Pn. Assume that nO,nl,...,nk have the

properties mentioned in the definition of Pn. We claim that

(i)(3 xi)HYy (xi). For, if for some i, '(3xi)HYy (xi), then

take i to be least such (induction), and then by (i)WY(ni)

we have that (q)([WY(q) & (3 z)(Hy (z))] -> qY < InYl),
qY i

and, in fact, qY is imbedded into ny with 1.u.b. having

infinitely many points p > yS. Hence the z with Hy (z)

niy
must be • T some w with H y (w), where r has infin-

itely many points s > yr. We claim that this violates
ni

condition III) of Pn when J = i-l. (We allow J to be

negative.) For Just apply condition 2) of Pn, and that

(f)(3g)(m)-uT relativized to HypY , and that Hypy (f). In

condition II) of Pn, use that (s)(s < i -> (3 xi)HY(xi)),
n½

and use the x i.

So we want to show Qn, and we may choose XO,xl,...,xk

with HYy(xi). II) in Qn follows from 2) in the definition
i

of Pn. III) in Qn follows from III) in Pn plus the

observation that the predicates HY have unique solutions
(n p

< T in (X)p.

So Pn -- > Qn.

Suppose Qn. We first to show (i)WY(ni). Using Lemma 5,

and taking i least with WY (ni), we contradict III) of Qn

in the same way as the argument above for Pn -> Qn. For,

one uses II) of Qn, and the relativization of (f)(3g)(m)~T.
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So (i)WY(ni).

Now II) of Pn follows from II) of Qn by uniqueness

of hierarchies on n i because of WY(ni).

III) of Pn follows from III) of Qn for the same reason.

Next, we show that we can eliminate the parameters f and

x in Pn and Qn, and have the same meaning and still be,

respectively, 1 and E1. For, since Hypy (x ) and Hypy ( f ) ,

let el, e2 have WY(el) and WY(e2 ) & (3z)(HYy(z) & x TZ

e1

with Gdel number k) & (3w)(HYy(w) & f T with G8del
2

number 1). Then take P'n to be (x)(f)(w)(z)(HYy(z) &

HY (w) & x < T with Gdel number k & f Tw with G'del
ey

number 1 -> P(n,f,x)). Take Q'n to be (3x)(3f)(3w)(3z)

(Q(n,x,f) & Hy (w) & x Tz with Gcdel number k & f T

with Gdel number ). Here, el,e2, k, and 2 are constants,

not variables.

Now, Q'n is 1 . Also, (n)('n-> WY(n)), since

Q'n - P'n. So define Rm - (3n)(Q'n & ImYl InYl). So

clearly (m)(Rm -> WY (x)), and R is l. So by Lemma 6,

(3p)(WY(p) & Rp). Fix such a p. So WY(p) & (n)(Q'n ->

InYlJ IpYl). We wish to form [<r,s>lQ's & Isl ithe segment

of pY up to r ). We can, using pure A -CA, since this is

also equivalent to [<r,s>P's & ~.(the segment of pY up to

rj<jls)1, form this (these) set(s). Call this set S. Let

T = rl(Bs)(<r,s> e S!. By W Y(p), let pO be the < y-least
py



upper bound of this set. Let q have WV(q), with q the

segment of pY up to and including po1. If there is no upper

bound for T, take q = p. In any case, clearly (n)(Q'n ->

Inyl < qY|). Also, clearly ()(3n)(Q'n -> InYl 2 the seg-

ment of q up to I1). Hence, clearly (j)(3 z)(Ky(z)).

We wish to show (3w)(Hy (w)). The only hard case is when
q

qY has no greatest point. But we can form, in pure A1-CA,

{<,J>l(3z)(Hq (z) & Jez)), since it, besides this I 1 defin-

ition, has the 1 definition (<,J>j(z)(H (z) -> jez)),
1 I

and we may, arithmetically in this set, get a w with Hy (w).
qy

Finally, we claim that the sequence (not necessarily

unique) needed to verify the relativized z1-DC to Hypy, can

be defined arithmetically in w with HYy (W), and hence would
qY

have what we wanted all along, namely satisfying HypY . To see

this, it suffices to show that any finite sequence n,...,nk

satisfying the conditions in the definition of Pn can be

extended to nl,nl,...,nk+l, satisfying Pn, and also that

there are sequences satisfying the definition of Pn to begin

with. To see the latter, let f < Tz with H Yy(z), W(e).

Take (k|f a(Z)k, and let k be a l.u.b. Take s with

ISYI = Ithe segment of ey up to k with an appropriate

finite number of points added on top so as to make, by the

Lemmas, (3w)(H y(w) & z Tw ) . If there is no l.u.b., take

s = e. Take nO = s. Then the sequence <no> satisfies the
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the definition of Pn. The same trick allows one to see how to

extend a sequence nO, n , .l' .*, n k satisfying Pn to an

n O n l .. , n k n k + l satisfying Pn, for one uses the fact that

(f)(3g)(m)~T relativizes, and use that <nO,nl,...,nk> satis-

fies (the definition of) Qn.

4. Independence Result. We wish to show here that 21-DC is

independent of 2-AC. It suffices to show that 1i-AC I £-DC.

We do this by showing that, for a suitably chosen sentence S

with Con(S + -DC), we can prove in S + 4i-DC that

Con(S + 2:-AC). For then, if 1-DC then S + DC

proves Con(S + -DC), and hence by Gdel's theorem,

S + 1-_DC would be inconsistent.

Lemma 1: If S is any sentence in prenex form starting

with universal number and set quantifiers from left, followed

by existential number and set quantifiers, followed by a matrix

containing only number quantifiers, then Pr(X1-DC + S a

(coding into natural numbers) w-model satisfying S").

Proof: Collapse all the universal number quantifiers in

the left part of S, and collapse all the existential number

quantifiers on the right part of S (before the matrix) so

that S becomes S' = (n)(x)( 3 m)(3 y)A(n,x,m,y). Then push

(3m) into the matrix, to get (n)(x)(3y)B(n,x,y).

Now in set theory, given two w-models ML and , we

can talk of ( being a closure of at under the sentence

(z)(3w)C(z,w), i.e., L C 3 and (z)(z Dom(fl) -> (3w)

(w Dom(4B) & C(z,w))).
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Instead of talking of real w-models, talk of codings of

them into a set of natural numbers in a natural (arithmetical)

way. Then we can prove in 2z-DC + S that for any n and for

any finite -model, 3 a finite closure of this w-model under

the n sentences (x)(3y)B(,x,y), k < n. This depends

heavily on that (n)(x)(3y)B(n,x,y) is provable in £1-DC + S.

Now, consider the arithmetical predicate D(z,w) = "z is

a (coding of) pair (k,x), w is a (coding of) pair (k+l,y)

where y is a (coding of) finite w-model which is a closure of

the (coding of) finite w-model x under the k sentences

(x)(3y)B(,x,y), p < k+l." ow applying Z1-DC to this predi-

cate D, we obtain a sequence of dependent choices in which

the desired w-model of S can be obtained recursively.

Now suppose we found a true sentence S in the form for

Lemma 1, such that I + S proves £1-AC. Then we would be

done, since I + S would be provably consistent in ZI-DC + S

(remember all w-models provably satisfy I) and i1-DC + S is

consistent, since S is true.

By well-known techniques, ReCA is finitely axiomatizable,

since we need only consider the case of two parameters. We

take S to be the conjunction of this finite axiomatization

with the sentence (x)(n)(Wx(n) -> (3y)(X (y))). Then S is

clearly of the proper form.

We define (W*)X(n) = RLOX(n) & (y)(HypX (y) -> 3 an

nX-least element of y, provided y r 0).

We know that S + I ReCA + I, so we can use Lemmas of

the previous chapter about provability in ReCA + I.
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Lemma 2: The following is provable in S + I: for every

n with WX(n), there is a coding of a function f:w -> P(w)

such that whenever (W*)X(m) & ~WX(m ), we have f(m) is an

imbedding of nx onto an initial segment of mX.

Proof: We can prove, like Lemma 2 of the previous section,

in I + ReCA, that if (W*)X(n) & (3z)(Hxx(z)), then the

conclusion of the Lemma is true. But S guarantees that

(3z)(Hxx(z)) ust on the basis of WX(n).
n

Now suppose (n)(3f)(m)4T(e,O,m,f,n,x). The predicate of

p, (3z)I x(z)) & ReasX(p) is £1, and so, since every p

with WX(p) satisfies it, 3 k such that (3z)(HxX(z)) &

Reasx(k) & Wx (k.). Then by Lemma 5, (z)(Hx',(z) -> Hyp (z)).

Clearly we have (n)( 3f)( 3z)[l x (z) & (m)"hT(e,O,m,f,n,x)3 .

Collapsing the quantifiers in the usual way, and putting the

result in Kleene Normal Form, we end up with (n) (3h)(m)

~T(q,O,h,n,x). Furthermore, any Skolem function for this

sentence would have, recursive in it, a Skolem function for

(n)(3 f)(m)'T(e,O,m,f,n,x). So it remains to show, in S + I,

that (n)(3h)(m)~T(q,O,m,h,n,x) has a Skolem function.

Now,there is a standard recursive function F such that

(n)(RLOX(F(n)) & any set for which there is no F(n)X-least

element, has recursive in it a solution h to (m)~.T(q,O,m,h,n,x)

& any solution h has recursive in it a set for which there

is no F(n)X-least element). So (n)((W*)X(F(n)) & ~wX(F(n))).

Now consider the El-predicate Pk = RLOX(k) & (3f)(n)(f

a coding of a function from w into P(w) such that f(n) is
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an imbedding of kx into F(n)X). By Lemma 2 of this section,

this 1 predicate holds of all k with WX(k), and so holds

for some r with WX(r), by Lemma 6. Then we have a function

f such that for each n, f(n) is an imbedding of rx into

F(n)X . Let X be any non-empty set for which there is no

rX-least member. Then recursively in X, f, we can find a

coding g of a function ---> P(w), such that, for each n,

g(n) is a non-empty set for which there is no F(n)X-least

element. Hence, by the special property of the recursive

function F, we may obtain the desired Skolem function for

(n)(3h)(m)T(q,O,m,h,n,x) recursively in g.

Thus we have verified that I + S proves E1-AC, and we

immediately have

Theorem 2: 1i'-DC is independent of £1-AC.

5. Relation Between Predicative and Ivyperarithmetic Analysis.

£1-A C (or i-CA or E1-DC) are considered reasonable

formulations of so-called hyperarithmetic analysis, in view of

the fact that they are natural systems whose minimum w-model

consists of exactly the hyperarithmetic sets of natural numbers.

In this section we compare 1-AC with a system T which

represents the formalization of a small part of predicative

analysis (see Feferman, E ).

The system T is I + ReCA + the infinite list of axioms

(y)(3x)( (x)), where n varies, and k is fixed, and k

is the Gdel number of a natural well-ordering of type cO.
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(Thus the infinite list of sentences is obtained by changing n).

We will show that £1-AC is a conservative extension of

T with respect to all purely N2 sentences.

(ReCA is formalized as one sentence, in the standard way,

i.e., using only 2 parameters xO x1 .)

It is easily seen by well-known techniques that the proof

of conservative extension can be made finitary. So we obtain a

finitary proof of Con(ZE1-AC) relative to Con(T). Finitary

generally means here, in PRA (primitive recursive arithmetic).

A widely used index of complexity of an axiomatic theory

is how large is the least upper bound of its provable ordinals.

In the present context, an ordinal a is said to be a provable

ordinal of a given fixed theory, if there is an n with RLO(n)

and n has order type a and the theory proves W(n). In

view of the conservative extension for T1 that we will prove,

it is clear that the provable ordinals of 1-AC are exactly

the provable ordinals of T.

It follows from work of Feferman [l) and Tait 5] that the

least upper bound on the provable ordinals of T is the ordinal

represented by the so-th critical function at 0. (See Feferman

l], pp. 14-16). Furthermore, it also follows from their work

that in PRA + rule of primitive recursive induction on the

natural RLO corresponding to the £0-th critical function at O,

a consistency proof may be given for T. So, by our results,

such a consistency proof may be given for 1-AC.

By an instance of induction on kn we mean a statement of
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the form [A(q) & (p)(tp < n & (m)(m< p -> Am)] -> Ap)P

> (p)(p < i n-> Ap), where q has Ok(q), and A is any

formula (in the language of Analysis, described at the begin-

ning of this chapter), with possibly free variables, and A is

in prenex form.

By the complexity of a formula in prenex form, we will

mean here the total number of quantifiers occurring. Let

Comp(A) be the complexity of A.

For each integer m, there is a natural predicate T_(n)

on GCdel numbers of formulae of complexity n, such that

T_(n) says that the formula with GCdel number n is true.
m

The formalization of these truth predicates involve placing

formulae in a weak Kleene normal form (i.e., no attention is

paid to the form of the quantifiers, but only that the matrix

be the T-predicate of the appropriate variables).

By the reflection principle, for a theory S, (of this

language) of complexity m, we mean the single sentence

(n)([n Gdel number of a sentence of complexity (i &

Pr(S,n)] -> T_(n)). We call this Rm (s).
m

We need some facts from proof theory which follow from

work of Tait (see [5]), Feferman (see [1], p. 23) and Kreisel

(see [43 ).
Fact 1: 3 primitive recursive functions F, G, and H such

that the following are provable in PRA:
1) For each m,n > O, F(m,n) gives the Gdel number of

an instance of induction on kG(n) applied to a formula of

complexity < H(m), with no parameters.
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2) For each m,n we have that Rm(In) is provable in

the theory In + the formula represented by F(m,n). In is

defined as the subsystem of I consisting of induction

applied only to formulae of complexity < n.

Let J be the sentence "for every purely Y1 predicate

Pn (possibly with parameters), (32)(q)((q < _- > Pq) &
k

(2 = p v( < _p & (r)(r > -> -Pr))))." We let T' = T +
k k

the infinite list Jp.

In the theory T, the axioms (y)(3x)H (x), as n
kn

varies, have bounded complexity. Choose c' such that the

conjunction of any sentence (y)(3x)(HY (x)) with ReCA and
kn

any purely Z sentence and any Jp, has complexity < c!,

some fixed constant c'. We are interested in Fact 1, when

m = c'. We let c = H(c'). We define new theories TP = In +

(y)(3x)Hy (x) + ReCA + J. Applying Fact 1 for m = c
kp P

we get

Fact 2: 3 primitive recursive functions F and G such that

the following are provable in PRA:

1) For each n > 0, F(n) gives the Gdel number of an

instance of induction on kG(n) applied to a formula with no

parameters of complexity < c.

2) For each n > O, we have that Rc,(In) is provable

in the theory In + the formula represented by F(n).

Now, since Comp(A) = Comp(-A), we see that Rc,(In)

formally implies Con(TP + B) within TP + B, where p is anyn n
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integer, and B is any purely 4 sentence. So hence the

formula represented by F(n) must not be provable in T + B

if TP + B is consistent, by Gdel's Theorem. This is so, no

matter what n and p are.

hew n
Pew

Fact : 3 primitive recursive functions F, G, such that, in

PRA, under the assumption Con(T + B), B some fixed 4

sentence, we can derive, for some constant c,

(n)(p)Con(T + B + .(the sentence "F(n)")) & (n)(F(n) rep-

resents an instance of induction on kG(n) applied to a

formula with no parameters of complexity • c).

Lemma : From Con(T' + B) we can conclude, by finitary

means, that Con(Zl-AC + B).

Proof: It suffices to show (n)Con (z1-AC with only

induction In + B).

For each n, we get a model for "B + 1-AC with only I"

by applying the inner model technique to the theory

TG(nc3) + B + .(the sentence "F(n+c ) " ).
n+c3

Now F(n+c3) represents a certain instance of induction

on k , and let this induction be applied to Qs, no
G(n+c3 )

parameters. Now B says (3f)(f satisfies some specific 1

property); we fix such an f. Then we wish to show the relat-

ivized of each instance of "B + 1-AC with only induction In1n
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to the predicate, Rx = (3s)(3y)(Hf (y) & x < T & (r)(r < s
ks k

-> Qr)), is provable in TG(n + c 3 ) + B + (the sentence
n+c3

"F(n+c3)"). This would give a consistency proof of "B + El-AC

with only I n relative to Con(TG(n+c) + B + ,(the sentence
n+c3

"F(n+c3)") . This in turn is immediately generalizable to a

consistency proof of Z1-AC + B relative to Con(T' + B).

Actually, it suffices to consider the case when n > 5.

This lower bound will be convenient later.

So, certainly all instances of In provably relative to R

since the predicate R has small complexity compared to c3 ,

and I is available in TG(n+c 3)

n+c3 n+c3

Certainly, B provably relativizes, since the numbers, and

hence all the arithmetical relations, remain unchanged by taking

this inner model, by fiat.

For similar reasons, clearly ReCA holds in this inner

model. The inner model is non-empty, since Qq, where O.(q),
k

since we assumed that induction on Q is false.

To verify the last, and most important axiom of "B + 1-AC

with only In", first note that since n 2 5, we have that,

in ReCA + In we can prove W(i) by well-known techniques.

Hence (a)(A < _G(n+c3) -> (3ty)H! (y)) is provable in
k ki

TG(n+c). From now on, whenever Q < _G(n+c3 ), we denote the
n+c3 k

unique y above by H f . Then also



(2)(p)(t: ap & < G(n+c3 ) & p _(n+c 3 )] -> Hf < TH)
k k k k k

is provable in TG (n+ c )
n+c

Now suppose that (p)(3g)A(p,g,x) holds relativized to

the predicate R, where we also have Rx. We wish to conclude,

in the theory TG(n+c3) + B + ,"F(n+c3)" that 3 Skolem
n+c

function for the above sentence, h, such that Rh.

So we have (p)(3g)(A(p,g,x) & Rg), A arithmetical. But

consider an integer s satisfying the properties in the defi-

nition of Rg. Since induction fails on k( c 3 for Q, we

see that s < _ G(n+c3 ). It is straightforward to see, using
U 

W(k) and ReCA, that 1) (p)

(A(p,g,x)) & (t)(t <_s -> Hf

k kt

(3s)(s < _G(n+c3) & (3g< TH )
k ks

does not have a < THf wit]
ktt

A(p,g,x)). It is also easy to see that the part of this sentence

to the right of (3ts) can be written in a natural way in 11

form (since t < s -> Hf < H ) Hence consider the 11
kt - T

predicate Ps which holds iff (3p)(stuff to the right of (3!s)

holds of p and s). It is clear that (s)(Ps -> [(s < _

G(n+c3 ) & (r)(r < s > Qr)]). Applying the axiom J
k G(n+c)

we get a l.u.b. in k, call it ko, on the s with Ps. Now

ko < _G(n+c3). Then clearly (r)(r < kt0 -> Qr). So if
k k

ko = G(n+c3 ), then (r)(r < _G(n+c3 ) -> Qr),
k

contradicting

AU

h
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that induction fails on G(n+c3) with Q.

So k0 < _G(n+c3 ). Hence, since (r)(r < _k0 -> Qr), we

khave (r)(r < k 0 -> ar). A similar argument shows that G(n+c3)
cannot be reached by a finite number of iterations of successor

from ko, in the ordering k. But by sentence 1), it is clear

that a Skolem function for our original sentence can be found

recursive in at most a few jumps of H . Hence a Skolem

function can be found satisfying the predicate R.

In retrospect what we have shown is that for each suffi-

ciently large n, " 1-AC with only I + B" is consistent if

TG(n+c3 ) + B + (F(n+c3))" is. Consequently any 1T' sentence
n+c3

provable in £1-AC must also be provable in T'. We now

observe

Lemma 2: T' T.

Proof: It suffices to show that each Jp is provable

in T. But this is clear, since it is well known that T (or

even ust I + ReCA) proves induction for any formula on k,
p

for each p.

Lemma 3: TC Z1-AC.- 1

Proof: We have to show that for each p, the sentence

(y)(3x)H y (x) is provable in Z1-AC. Let A(q) be the predi-

kp
cate (y)(3x)Hy (x), and we apply induction to A on the

k
q

ordering kp. (Remember, the full schema of induction on kp

is provable in E21-AC). If Suc_(r,q), then clearly A(q) ->
Ik



A(r), by taking J-

(r < _q -> A(r)).
k

umps, using ReCA.

Then (r)(r < _q
k

form a Skolem function for this

we do, we can find,

Suppose 1

-> ( 3 x)H Y

kr

im_ (q)
k

(x)).
&

W

1
sentence, within 1-AC.

(r)

e can

When

recursive in at most a few Jumps of the

Skolem function, a

and so we have A(q

z with Hy

k
q

(z). This is true of all

). Hence by induction on kp, we have

_p -> A(q)).
k

By a similar argument to the above, we

obtain (y)(3x)Hy (x).
kp

We have immediately

Theorem 3: £1-AC is a conservative extension of 1T for 2

sentences.

76

(q)(q <
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CHAPTER III

In this chapter, we consider the question of ust which

recursive linear orderings can have certain structures placed

on them; namely, hierarchies. It is convenient to consider

more general notions of recursive linear orderings and

hierarchies, than in Chapter II.

We say, in this chapter, RLO+(n) iff ape defines a

recursive linear ordering (as in Chapter II) whose field is

recursively enumerable. For any p Field(n), we let np be

the name for the subordering of n, whose field is all q with

q < p. Thus np itself is an RLO+.

We define H+(x) as 1) (k)(kex -> (3m)(ke(x)m & m E

Field(n)). 2) (q)(q Field(n) -> [(On(q) & 9 < T(x)q) v

(SueC(q,r) & (X)(1) T(X)q) v (limn(q) & [P(r,s) s < nq &

r e (x)S} < (x)q)]).

Note that in ReCA + I, we can define the satisfaction

relation for (codings of) w-models. We can do this, since we

can prove in ReCA + I that (x)(J)(3y)(y x ( j ) ) . Given

He (x), we define the corresponding Mx (a coding of an w-model)

as (a coding of) the sets < T in some (x)m, m Field(n). We

define Reas+(e) the same as in Chapter II, except replace

RLO(e) by RLO+(e). We define lim(e) as (p)(3 q)(p E Field(e)

-> P < eq).

We define W+(e) and W*+(e) the same as in Chapter II,

except replace RLO(e) by RLO+(e).
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We say that NW(e,X) iff RLO+(e) & e is not

founded with respect to X, i.e., 1) (3n)(nEX &

2) there is no e-least member of X.

Lemma 1: Let x have H e+(x), Reas+(e), lim(

for corresponding M x, we have M x ~ W*+(e). In

Lemma is provable in I + ReCA.

Proof: We consider the theory T = I + ReCA +

(they satisfy hypotheses of the Lemma but not the c

We will show that T proves its own consistency.

In the theory T, fix such an x, e and M =

ing Mx . We will show, in T, that this M f T.

It is clear that M I.

Also, since lim(e), we have M g= ReCA.

It remains to show M ) (3z)(3n)(%H(z) & Reas

lim(n) & corresponding Mz -~w,(n)).

Since M ~ W*(e), there is an r and an X

Hr(X) & M = W(r) & < TX there

Fix such an r. Now choose s

is taken to imply implicitly s

We can do this, using Reas(e).

set z < (y)s with H+ (z),

(Y)t) We set n = e . We cla

claim about satisfaction in M

& Reas+ (e) & (ReCA + I), and

X, and hence Y, must be in t

r W(r). So M z J W*+(es ).

well-

n E Field(e))

e). Then

fact this

(3x) (3e)

onclusion).

correspond-

+ (n) &

with

is a set Y with NW(e,Y).

such that 1) Lim e (s ). (This

E Field(e)). 2) NW(Y, e).

Consider (y)s. There is a

and with (t)(t < es -> (z)t =

im that for these values, our

holds. For, since M ~ W(e )

M l= Hr (X) & W(r), we see that

he model M z, and Mz certainly

So certainly M /= (Mz l W*+
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(es )). Note that Mz e M, since lim(e).

This completes the proof that M T.

Hence T proves Con(T), since the Soundness Theorem

can be formalized and proved in ReCA + I.

So, by GCdels Theorem, T is inconsistent. So the Lemma

has been established. In fact, in view of the inconsistency, the

Lemma is provable in ReCA + I.

Theorem 1: If Reas+(e) and W*+(e) (of course, in view

of Reas+(e), W* and W*+(e) are identical notions, since

RLO +(e)), then there is no x with H(x).

Proof: If lim(e), then if there was such an x, then

corresponding M, by Lemma 1, has Mx W*+(e). However,

since every hyperarithmetic set is in M (because W+(e)) we

must have Mx . .W*+(e), which is a contradiction.

If -lim(e), then by Reas(e), there is an m with

lime(m) & there are only finitely many n > em. So W* + (e m ) .

Then argue as above.

Let NTWO(n) be RLO+(n) & no tail of n is well-ordered,

i.e., (p)(p Field(n) -> the subordering on qlq > np) is

not well-founded).

Lemma 2: If Reas+(e) & H(x) & corresponding Mx =

NTWO(n), then Mx I + ReCA + S, where S is the sentence

of Chapter II.

Proof: Let zeM. We wish to show Mz i ReCA + I +

(n)(WZ(n) -> (3w)(HZ(w))). Clearly.lim(e), since Mz

NTWO(n). Hence M z I + ReCA.
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Clearly (3s)(s e Field(e) & z T(x)s). Let

n e Field(e) such that the subordering of e defined on

{qls e q en) is satisfied not to be well-founded in the

model Mx . Then Mx satisfies that there is a hierarchy y

(in the generalized sense of this chapter) on a non-well-founded

RLO+, k, the subordering of e defined above, such that (y)p

T' where Ok (p). Then the obvioas generalization of Lemma

5 in Chapter II gives Mx (n)(Wz(n) -> (3w)( (w) &

w Ty)), in view of M m I + ReCA + (3x) NW(k,X).

Lemma 2: The following is provable in I + ReCA + S: If

NTWO(n) & W*+(n) & p Field(n), then (3q)(q > np & NTWO(nq)).

Proof: Choose r e Field(n) with r > np and the

subordering of n determined by {s p • ns < nrj is not well-

founded. We can do this since .W+ (n).

Now consider the N1 predicate, Pt t < nr & the

subordering of n from t to r is well-founded. If P has

no solutions, we are done, for then NTWO(nr).

Harrison (see [2]) has shown that every Nl predicate

which has a solution in Field(n), where W*+(n), has an

n-least solution. His proof uses only principles provable in

I + ReCA, excepting the comparability of recursive well-

orderings. In Chapter II, we showed this comparability Lemma

is provable in I + ReCA + S, by Lemma 2 of Section 2.

So there is an n-least solution to the predicate Pt,

call it q, and we can prove this in I + ReCA + S. By the

way r was chosen, it is clear that q > np. And by the way
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Lemma 4: Let Reas+(e), H(x), lim(e). Then correspond-

ing Mx | ~NTWO(e).

Proof: Consider the theory T = I + ReCA + (3e)(3x) (they

satisfy hypotheses, but not conclusion). As in Lemma 1, we

wish to show that T proves its own consistency.

So, we argue in T, that if e and x are chosen so

that they violate this Lemma, then let M = Mx; and we will

show, in T, that M T.

Clearly, as in Lemma 1, MI + ReCA.

It remains to show M f (3z)(3n)( (z) & Reas+(n) &

lim(n) & corresponding Mz . NTWO(n)).

By Lemma 2 of this chapter, M S + I + ReCA. Hence

M C 1 -AC. Now for each p Field(e) with M NTWO(ep),

we have M f (k)(k < ep -> (3X)NW(ep,X)). Hence M (3Y)

(k)(k < eP - > NWM(ep .(Y)k) ) '

By Lemma 3 of this chapter, M i (p)(p E Field(e) -> (3q)

(q > ep & (3Y)(k)(k < eq -> NW(eq, (Y)k))), since M 1 I +

ReCA + S + W*+(e). So again, by M 1-AC, we obtain a

Z M with M (p)(p Field(e) -> (Z)p is (Y,q) with

q > ep & (k)( < eq --> NW(eq,(Y)k))).

Fix such a Z, and let r have 1) r Field(e),

2) Z T(X)r. Let s > er with M = NTWO(s). Consider

(x)s. There is a natural y K T()s such that H (y), and

(t)(t < e s -> (Y)t = (x)t). We set z = y, n = es, in our

claim about satisfaction in M.
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Clearly lim(es) & Reas+ (es). It remains to show corres-

ponding My NTWO(es).

We have M TWO(s), and Z e My. So every set AZ

is in M . Hence My - TWO(eS).

This completes the proof of the self-consistency proving
of T, and hence the inconsistency of T. Hence Lemma 4 must

be true.

Lemma 5: There is an e with W*+(e) & Field(e) = [nln

is even) such that 1) (3x)H(x), 2) (y)(H(y) -> (3X)(X i,
y(10) & NW(e,X))).

Proof: We define a total recursive function F on indices

of the partial recursive functions. We define G(n) to be the

Gadel number of the RLO (field w) associated with the T1

sentence "RLO(n) v (x)(~.H(x))." So for every n, G(n) is

the Gdel number of some RLO. Let F(n) be the RLO+ with

domain {nln is even} defined by P < G(n)q iff 2p <F(n)2q.

By the recursion theorem, there is an e with tpe = PF(e)

Fix such an e. Then e is the Gdel number of an RLO+ whose

field is (nin is even). It is clear that (X)(NW(e,X) -> (3y)

(H(y) & y < T X(10))) & (y)(H+(y) -> (3x)(NW(e,X) & X 

y(10))). Hence W*+(e). For, if not, then W+(e), and

(3x)(NW(e,X) & Hyp(X)), contradicting the 1st conjunct of the

above conjunction. We claim ~W(e). For, if not, then (3y)

(H+(y)), contradicting the 2nd conJunct of the above conjunction.

So by the 1st conjunct, we have (3y)(H+(y)). So e has all

the properties stated in this Lemma.



83

Theorem 2: There are n with W*(n) (hence Field(n) =

, ) such that (x) (H n (x)).

Proof: Take e as in Lemma 5. Take n to be the nat-

ural RLO with 1) the ordering e is an initial segment, 2)

Field(n) = w, 3) the ordering n corresponds to e x (i.e.,

w copies of e).

Now suppose 'H(x). Then Mx NTWO(n) by Lemma 4.

But (3y)(NW(e,y) & y E Mx). Hence there is a z which can be

found recursively in such a y, with the property that no tail

of n is well-founded with respect to z. And z E Mx . But

this contradicts Mx I NTWO(n).


