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Abstract

In this paper we describe a variational framework for the tomographic reconstruction of an image from the
Maximum Likelihood estimates of its orthogonal moments. We show how these estimated moments and their
(correlated) error statistics can be computed directly, and in a linear fashion, from given noisy and possibly sparse
projection data. Moreover, thanks to the consistency properties of the Radon transform, this two step approach
(moment estimation followed by image reconstruction) can be viewed as a statistically optimal procedure.

The motivation for the approach presented herein stems from the idea that the moments of an image can
be estimated directly from projections and used to focus the information available in the given projection data.
This focusing of information in essence serves to control the degrees of freedom and regularize the reconstruction.
Classical approaches to tomographic reconstruction are based on the idea of reconstructing every pixel value in
the image directly; while in contrast, our approach uses a finite (usually relatively small) number of parameters
(estimated moments) to compute reconstructions of the underlying image.

Furthermore, by focusing on the central role played by the moments of projection data, we immediately
see the close connection between tomographic reconstruction of nonnegative-valued images and the problem of
nonparametric estimation of probability densities given estimates of their moments. Taking advantage of this
connection, we can then adapt methods and concepts used for the latter problem in order to solve the former.
In particular, our proposed variational algorithm is based on the minimization of a cost functional composed of
a term measuring the divergence between a given prior estimate of the image and the current estimate of the
image and a second quadratic term based on the error incurred in the estimation of the moments of the underlying
image from the noisy projection data. This solution has a statistical interpretation as the Maximum A-Posteriori
estimate of the image given a divergence-based prior. We show that an iterative refinement of this algorithm
leads to an efficient algorithm for the solution of the highly complex equality constrained divergence minimization
problem. We show that this iterative refinement results in superior reconstructions of images from very noisy data
as compared to the classical Filtered Back-Projection algorithm.
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1 Introduction

In this paper we discuss the tomographic reconstruction of a function f(x, y) from noisy measured values

of its projections via the maximum likelihood estimation of the orthogonal moments of f. In particular,

the fundamental result on which the algorithms in this paper rely is that the statistically optimal estimate

of an image based on noisy samples of its Radon transform can be obtained in two distinct steps: the

first step being the ML (or MAP) estimation of the moments of the underlying image from the noisy

data, and a second step focusing on the reconstruction of the image from its estimated moments. In

this way, we demonstrate and take advantage of the natural utility of moments in solving tomographic

reconstruction problems.

The first step in this two-tier algorithm is a simple linear estimation problem (allowing us also to

determine error statistics with relative ease) while the second is a highly ill-posed inverse problem. In

particular, by adapting this approach, we have transformed the problem of inverting the Radon transform

into one of reconstructing a function from estimates of its moments. While the problem of reconstructing

a function from a finite number of estimated moments is known to be highly ill-posed [34], by making

contact with the field of statistics, and in particular the problem of nonparametric probability density

estimation from estimated moments, we can take advantage of the many concepts that have been devised

to deal with this ill-posedness in other contexts. Specifically, by using this connection, we adapt ideas

from nonparametric probability density estimation resulting in efficient algorithms for reconstructing

an image using a divergence-based variational criterion. This criterion allows us to use prior knowledge

(obtained, for example using standard tomographic methods) to regularize the problem and also defaults

to a maximum entropy solution if no prior information is available.

We show that there are several advantages to our two-step approach. One is that the use of moments
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provides an explicit mechanism for controlling the degrees of freedom in the reconstructions, an issue

of considerable importance in problems with very noisy or sparse projection data. Another is the

computational savings inherent to our approach. A third is that by using these formulations we can

introduce prior information, in terms of prior estimates of reconstructions, or geometric information, in

a very simple way with only minimal increase in computation. Finally, these features yield an overall

efficient and versatile set of algorithms that yield reconstructions of excellent quality when compared to

other available algorithms operating on data limited in quality and quantity.

The reconstruction of images from their moments has not been a central topic in image processing

theory since the use of moments in this setting has primarily focused on their extraction from images

(for use as distinguishing features) rather than on their use in reconstruction [22]. Furthermore, there

has only been a little work in this area within the tomography community [28, 24, 16, 23, 8, 3]. On the

other hand, the moment problem has been the subject of much work in the mathematics community for

many years [1, 29]. However, while variants of variational/regularization methods developed here have

been studied elsewhere in the literature [35, 34, 13, 21, 2], they have not been developed or investigated

in the particular context of tomography of interest here. We also propose novel and efficient numerical

techniques for solving this variational problem and study some of their properties and extensions. These

algorithms may be of independent interest, although what we focus on here, for the most part, is the

value of this approach for tomographic reconstruction from noisy and sparse data.

In Section 2 we present an optimal (Maximum Likelihood) algorithm for the estimation of the mo-

ments of an image from noisy measurements of its projections. In Section 3 we describe how the

underlying image may be reconstructed from these estimated moments via regularization. Section 4

contains the explicit solution to this variational problem and here we also discuss those properties of this

solution that make it attractive. In Section 5 we discuss an iterative refinement of the divergence-based
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regularization approach and demonstrate how this refinement leads to efficient solution of a highly com-

plex equality-constrained divergence minimization problem. Section 6 contains our numerical simulation

results including illustration of how prior information -in this case that provided by the standard filtered

back-projection (FBP) solution- can be incorporated into our approach. Finally, in Section 7, we state

our conclusions.

2 Estimating Moments from Projections

Let f(z,y) E L 2 (D) denote a square-integrable function with support inside the unit disk, D, in the

plane, and further denote by g(t, 0) = ~f, the Radon transform of f defined as follows:

g(t, ) = JJ f(x, y)6(t -w [x, y]T) d dyx (1)

where w = [cos(O), sin(O)] and 6(.) denotes the Dirac delta function. See Figure 1.

The function g(t, 0) E L 2 ([-1, 1] x [0, 27r]) [10] is defined for each pair (t, 0) as the integral of f over

a line at angle 0 + 1 with the x-axis and at radial distance t away from the origin. An elementary result

[10], which follows from the definition of the Radon transform, states that if F(t) is any square integrable

function on [-1, 1], then the following relation holds true:

1 g(t, O)F(t)dt = JJ f(, y)F(w. [x, y]T)dzdy. (2)

By considering F(t) = e- it, the celebrated Projection Slice Theorem [11] is obtained. What we wish to

consider is the case where F(t) is taken to range over a set of orthonormal basis functions over [-1, 1].

In particular, we will consider the case when F(t) = Pk(t), where Pk(t) is the k-th order normalized

Legendre polynomial over [-1, 1] defined by

Pk (x)= 3= 2k dk ( 2 (3)
E)3ikX- 2 2kk! dXk (X 2

In this basis, Equation (2) relates the moments of the function f linearly to those of its Radon transform
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g as we describe next.

Let G(k)(O) denote the k-th order Legendre moment of g(t, 0) for each fixed 0. That is,

G(k)() = g(t, )Pk(t)dt. (4)

Also, denote by Apq the orthogonal moments of f defined as

Apq = J JDf(zx,y)Pp(z)Pq(y)dzdy (5)

By appealing to (2), it is easily shown that the kth orthogonal moment G(k)(0) of g(t, ) is a linear

combination of the orthogonal moments Apq of f(x, y) of order 1 p + q < k, which is a direct con-

sequence of the consistency conditions for Radon transforms discussed in [10, 24]. Defining gN(O) =

[G(°)(0),' . . , G(N)()]T, A(k) =[Ak,o, Ak-l,l,'', A0,k]T and £N = [A(O)T,. . A(N)T] T, we can write

ON(o) = AN(O)LN (6)

where AN(O) is lower block-triangular. When considering the complete (infinite) set of moments of f

and g, we can write

Q(9) = A(O)L (7)

where 9(0) and £ contain all the moments of g and f respectively, and A(O) is a lower triangular

linear operator. Note that since the infinite set of moments L and 9(8) provide complete orthogonal

decompositions of f(x, y) and of g(t, 0), (7) provides us with a factorization of the Radon transform.

Specifically, let A denote the operator taking L to the family of functions, G(k)(0), of 0 according to (7),

and define the moment operators Qff = L and Mg = 5 (where M maps the function g(t, 0) to the family

of functions G(k)(0)). Then, since g = 9Rf and since M and fI are unitary, we see that

Q = M*AQ1 (8)

In [18], we have used this decomposition of the Radon transform to derive new interpretations of classical

'In fact, for k even, G(k)(O) is a linear combination of Ap, for p + q = k, k - 2, ..., 2, 0, while for k odd, it is a linear
combination of A,, for p + q = k, k - 2, *.., 3, 1.
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reconstruction algorithms such as Filtered Back-Projection (FBP).

Suppose now that we are given noisy measurements of g at m distinct angles 01, 02, , Om in [0, ir)

as

y(t, Oj) = g(t, Oj) + e(t, Oj), (9)

where e(t, Oj) are independent white noise processes in t with intensity a2, and where we assume that

for each Oj, y(t, Oj) is available for all2 -1 < t < 1. If for each 0j we represent our data in terms of its

orthogonal moments, we have

Y(k)(0j) = G(k)(0j) + e(k)(Oj), k = 0,1,.-. (10)

where Y(k)(0 j) and e(k)(0j) denote the L2 inner-products of y(t, Oj) and e(t, j) with the kth order

Legendre polynomial Pk(t). Due to the orthonormality of the family {Pk(t), k > 0 } and the assumption

of white noise, the error terms 3 e(k)(0j) - A(0, o.2) are independent across both k and j. Thus if we let

Y(0j) denote the set of all Y(k)(0j) for k = 0, 1,;..., and use analogous notation for e(0j), we see that

thanks to (7),

Y(Oj) = A(Oj)C + e(6j), j = 1,2,.-, m (11)

Since the full set of moments L provides a complete characterization of f(z, y), we can see that a sufficient

statistic for the estimation of f(z, y) is the Maximum Likelihood (ML) estimate of £ given the data in

(11). However, given the fact that we only have a finite number of viewing angles, it is not surprising

that (11) does not provide an invertible relation between the data Y(Oj) and the full set of moments £.

In fact, we have the following

Proposition 1 Given line integral projections of f(z,y) at m different angles Oj in [0, 7r), one can

uniquely determine the first m moment vectors A(j), 0 < j < m of f(x, y). This can be done using

2 Clearly, in practice, as in our numerical experiments, y(t, 0) will be sampled in t as well as in 0
3Ag( 0 , 2) denotes a zero-mean Gaussian random variable with variance a2
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only the first m orthogonal moments G(k)(8 j ), 0 < k < m of the projections. Furthermore, moments of

f (x, y) of higher order cannot be uniquely determined from m projections.

What this result, which is proved in Appendix A, says is the following. Let YN(0j) denote the vector of

the Legendre moments of y(t, Oj) of order k = 0,1, ... , N so that YN(Oj) = AN(Oj)12 N + eN(Oj) (where

eN(0j) is defined analogously). Collecting all of the YN(Oj) into a large column vector

YN = [YN(1)T, YN(0 2 )T, ' ", YN(m)T]T (12)

we have

YN = ANICN + eN (13)

where AN and eN - Af(O, a2i) are defined in a corresponding fashion. Then from Proposition 1, we

have that AN has full column rank, so that a unique ML estimate of CN exists, if and only if N m - 1,

and this estimate is given by

EN = (ANAN) 'A T YN (14)

with the corresponding error covariance matrix given by QN = 0c2 (ATAN) . Moreover, thanks to the

lower triangular relationship inherited from (6), we also have that the ML estimate of CN in (14), based

on the Legendre moments of the data of order < N, is identical to the ML estimate of £N based on the

complete data, i.e. on all the Legendre moments as in (12).

Note further that for N > m, AN will not have full column rank, implying that only some linear

combination of the Apq for p + q > m have well-defined ML estimates. In principle, of course, optimal

processing requires that all of these ML estimates be calculated. However, obviously in practice only

a finite number of moments can be calculated. Furthermore, as one might expect, the estimates of the

higher order moments are increasingly uncertain for a fixed amount of data. In fact, useful information is

only provided for moments of order considerably less than m. As an example, Figure 2 displays plots of
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the trace of the covariance matrices of the estimated orthogonal moment vectors4 A(k) up to order k = 10,

versus k and for different SNR values. For the curves in this plot, m = 60 equally-spaced projections

in [0, 7r) were considered. Consequently, for practical purposes there is no significant information loss

in using (14) for a value of N < m as a sufficient statistic in place of the ML estimate of all moments.

Thus, in the remainder of this paper we consider the problem of reconstructing f(x, y) given noisy

measurements, EN, of LN with error covariance QN. Finally, note that because of the lower triangular

structure of AN(Oj), QN is not block diagonal, i.e. the estimated moments of f(x, y) of different order

have correlated errors. -The algorithm described in the sequel takes this into account in a statistically

optimal fashion.

3 The Inverse Problem and Its Regularization

In this section we propose a variational approach for the reconstruction of an image from noisy estimates

of (a finite number of) its moments which regularizes the moment problem and at the same time takes

into account the explicit structure of the corrupting noise. Our approach is founded on the principle of

Minimum I-Divergence (MID) [6, 32, 33]. The principle states that, of all the functions that satisfy a

given set of moment constraints, one should pick the one f with the least I-Divergence D(f, fo), relative

to a given prior estimate fo of f where this is defined as

D(f, fo) =JJf (f( y) log( ( Y) ) + fo(x y) - f(x y) dx dy. (15)

The basic idea dates back to Kullback [14] and was later generalized by Csizar [6] and includes the

principle of Maximum Entropy [12] as a special case when fo is assumed to be a constant function.

Entropy and more recently I-Divergence have a rich history of applications in pattern classification [31],

4 Note that for a given k, the covariance matrix of A(k) is simply the (k + 1)th, (k + 1) x (k + 1), diagonal block of the
covariance matrix QN of £N
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spectral analysis [30], image processing [36, 9] and recently tomography [28, 26, 7, 20, 3, 4]. In most of

these applications, the general problem has often been posed as the following type of equality constrained

optimization problem:

minD(f, fo) subject to J/f(, y) i,j(x,y) dx dy = sj (16)

In particular, in the context of tomography, the weight functions bi,j(x, y) have been chosen as

appropriate delta functions so that the constraints i~,j are the noisy measured values of the Radon

transform g(ti, Oj) [28, 26, 7, 20]. That is to say, the constraints have the form

J f(X, Y) 6(ti - Wj [X, Y]T) dx dy = ij (17)

where wj is the unit direction vector making an angle Oj with the x-axis. In fact, most of the tomography

literature on the subject has been concerned with a very special case of Maximum Entropy reconstruction.

Other variants of these algorithms allow for the equality constraints to be inequality constraints so that

some notion of uncertainty in the measured values of 9s,j can be taken into account [13].

Four important features distinguish our approach from other available algorithms mentioned above.

The first concerns the incorporation of a prior estimate fo. In particular, in most (but not all) other work

using divergence-like criteria as in (16), the focus has been on maximum entropy methods corresponding

to the trivial choice fo = 1. Not only do we allow for the possibility of an arbitrary (but positive) fo,

but we also demonstrate the use of particular methods for choosing fo that can enhance performance

considerably by allowing for the incorporation of prior geometric and image information. The second is

that we use the estimated Legendre moments instead of the actual measured values of the projections.

This is to say that, in our case, the basis functions are qi,j(z,y) = Pi(x)Pj(y), where Pi(.) denotes the

ith order normalized Legendre polynomial over the interval [-1, 1]. Third, we do not use the estimated

moments to form hard equality or inequality constraints but rather use these estimates, along with
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their computed covariance structure, to form a composite cost function that consists of the I-Divergence

term plus a quadratic form in terms of the estimated moments. Finally, and perhaps most importantly,

in addition to using the estimated moments, we also directly incorporate their estimated covariances,

thus ensuring that these data are used in a statistically optimal way. That is, as we discussed in the

preceding section, by using moments, we are able to focus the information in the raw projection data, via

a simple linear processing step, identifying a much more compact set of statistically significant quantities

capturing essentially all information of use in reconstruction.

Formally, we define the I-Divergence Regularization (IDR) cost functional as

JIDR(f, fo) = 7 D(f, fo) + (LN(f) - CN)T N(N(f) - EN), (18)

where y E (0, oo) is the regularization parameter, and EN = QN1 is the inverse of the error covariance

matrix for the estimate EN. To derive a probabilistic interpretation of the IDR cost functional, consider

the MAP estimate of f based on noisy measurement of its moments up to order N. Assuming that P(f)

is some prior probability density function on the space of functions f, the MAP cost to be minimized is

given by

Jmap(f) = -log P(ENIf) - log P(f) = (LN --N) EN(LN(f) - 'N) - logcP(f) (19)

where c is a normalizing constant depending only on N and EN. Comparing (19) to JIDR(f), we conclude

that if

P(f) = -exp(-yD(f, fo)), (20)

then JIDR(f, fO) = Jmap(f). For positive-valued functions f and fo (as in images), the functional

D(f, fo) is in fact known as a directed distance5 [13]. From this point of view, the probability density

function given by (20) is quite analogous to the standard Gaussian density, the difference being that in

the Gaussian case, the exponent is basically the L2 norm of the difference f - fo.

5Note that D(.,.) is nota true metric since D(f, fo) 0 D(fo,f).
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4 Solution of the Variational Problem and Its Properties

To make the presentation simpler, we define the vectors Oqk(x, y) for k = 0, 1,... , N as

bk(Xz,) = [Pk(X)Po(y), Pk-l(X)Pl(y), , Po(z)Pk(y)]T, (21)

where Pk(.) is the kth order normalized Legendre polynomial over the interval [-1,1]. Also define

IN(X, y) = [.t(X, y)1 (a, ), N *, Y XN, a)] T . (22)

With this notation, the cost functional JIDR(f) can be written as

JIDR(f, fo) = (JJ f(, fY)N(, y)dZdy- EN)T N(JJ f(x, Y)N(X y)dxdy -N)

+ yD(f, fo) (23)

The cost functional JIDR(f) has a unique minimum due to its convex nature [14, 13]. Furthermore, a

straightforward variational calculation analogous to ones in other I-divergence minimization problems

[13, 32] (adapted here to deal with the explicit use of estimated moments and the uncertainties in them

rather than hard equality or inequality constraints) yields the following implicit specification of f

f(x, y)= fo(, y) exp(- -N(, Y)E.N(LN(f )-' N)) (24)

The above is now a nonlinear functional equation in f which must be solved (Note that f appears on the

right-hand side in the form of the moment functional tIN(f)). The prior estimate fo enters the solution

multiplicatively. We shall have more to say later about the choice of this prior.

Due to the form of the solution (24), we may convert (24) into a nonlinear algebraic equation in

terms of the coefficient vector CN defined as follows

CN = -- EN(CN(f)- EN)- (25)

Substituting the expression for £LN(f) using (24) we obtain an equation in terms of CN as follows.

C -1
CN ' NH(CN) (26)



H(CN) = (fJf fo(xy) exp(NT(x, )CN)(4N(X, y)dxdy- N) (27)

What we now have is a set of nonlinear, algebraic equations which may be solved by any one of many

techniques such as Newton's method or the conjugate-gradient method [5] to yield the unique solution

fIDR(X, Y) = fo(, y) ex( N(,y)N). (28)

Despite the seemingly complex nature of the cost functional JIDR, the computation of the coefficient

vector CN involves solving a set of nonlinear algebraic equations. This makes the IDR approach a com-

putationally attractive one. Also, note that if fo is a positive function of z and y, then the reconstruction

fIDR is necessarily a positive function as well. This is clearly desirable since we are dealing with images.

5 Iterative Regularization (It-IDR)

In this section we present an iterative refinement of the IDR algorithm that is based on redefining

the prior. In this formulation, an initial prior is chosen, and using this prior, a solution to the IDR

minimization problem is computed. This solution is then used as the prior for a new IDR cost functional

and the minimization is carried out again. Formally, beginning with fo = fo, we can iteratively define

fk+l = argmin Jk(f, fk). (29)

where the cost function Jk is as in (18) with fo replaced by fk and 7 replaced by 7k.

By appealing to (28) the solution at each k may be written as

f+l( ) = fk(X, y) exp(P (2, y)(k+)) (30)

where

C(k+l) = -- N(LN(fk+i) - LN) (31)
7k

In terms of C), we may rewrite this as
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X = +1)N ( fo(z, Y)'N(z, Y) exp(T (Xz Y) E C(Y))dzdy -fN (32)
kN - k j=1N

Therefore, at each iteration, as before, an IDR solution is computed by solving an algebraic set of

equations for 0C(+l). There are several appealing features about this iterative approach. The first

is that it allows us to control how strictly the estimated moment information is enforced in the final

solution, both through the sizes of the regularization parameter Ak (which, as we discuss, may vary with

iteration) and through the number of iterations performed. Secondly, as shown in Appendix B, if (29)

is carried to convergence, fk converges to the solution of the following equality constrained problem

minD(f, fo), subject to LN(f)= -() (33)

where £I') denotes the projection, defined with respect to the inner product < 11, 12 >EN = ITNl2, of

'EN onto the range of the operator fN. Here SN denotes the operator mapping a square-integrable

function f E L 2 (D), with support in the unit disk, to its Legendre moments up to order N. Note

that if L£N happens to be in the range Ra(fN) of the operator fiN, the constraint simply becomes

iN(f) = EN- If the estimated moments are not consistent, i.e. EN X Ra(ON), the proposed iterative

algorithm implicitly computes and enforces the projection of EN onto the set of consistent moments as

hard constraints. Hence, iterative regularization provides a method of converting the soft-constrained

solutions fIDR to hard-constrained solutions. The fact that this is done automatically and implicitly is

particularly appealing since no explicit description of the set 7Za(QN) is known to exist [29].

The idea of using iterative methods to solve divergence-based minimization problems has been consid-

ered in other contexts [6, 33, 3, 27]. Distinct features of our approach are the applications to tomography 6

6 The problem of (emission) tomographic reconstruction is considered in [3], but with a different setup in which the
effects of measurement noise are captured via a divergence term, in contrast to our use of it as a direct means of capturing
prior information. In addition, no use is made of moment information in [3].
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using estimated moments and the explicit use of the error covariance matrix for these estimates in form-

ing the penalty function to be minimized. Furthermore, to our knowledge, the specific nature of our

iteration (using the finite-dimensional coefficients (k) ) is also new. In addition, by explicitly taking

into account noise, we have a rational mechanism for stopping the iteration based on the fidelity of the

moment estimates.

Several results on convergence of iterative algorithms can be found in [6, 33, 3]. In Appendix C we

provide a convergence result for our specific context which in particular provides us with guidance on

how the regularization parameter 7k should be chosen at each iteration. Moreover, note that, assuming

that 7k is chosen to ensure convergence, then our result states that even if our estimated moments are

inconsistent (i.e. they fall outside lZa(2N)), our iterative algorithm produces an estimate with consistent

moments satisfying the equality constraints in (33).

6 Numerical Examples

In this section we study the performance of the proposed IDR and It-IDR algorithms by applying these

techniques in the tomographic reconstruction of two distinct phantoms. In the experiments to follow,

we assume that samples of the projections g(t, 0) of these phantoms are given from m distinct directions

in the interval [O, ir) and that in each direction Oj, n samples of g(t, Oj) are given and that these are

corrupted by Gaussian white noise. We denote the data as follows:

y(ti, Oj) = g(ti, Oj) + e(ti, Oj) (34)

where e(ti, Oj) is a Gaussian white noise sequence with variance o2. To quantify the level of noise in

relative terms, we define the following Signal-to-Noise Ratio per sample.

SNR (dB) = lOlog 1 o (i ij g2(ti Oj)/(mrx n) (35)
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In addition, to quantify the quality of the reconstructions, we define the percent Mean-Squared-Error (%

MSE) as follows:

% MSE= ff(J - f)2 d x 100 (36)
ff f 2 dx dy

Example I: The first phantom to be reconstructed is a 64 by 64 grayscale image shown in the upper

left corner of Figure 3. Projections were generated from 64 equally-spaced angles in [0, 7r) and 64 equally

spaced samples were collected in each projection. The projection data were then corrupted by Gaussian

white noise so as to produce an overall SNR of 4.35 dB per sample. In the lower left side of Figure 3,

the Filtered Back-Projection (FBP) reconstruction is shown where a Butterworth filter of order 3 with

cutoff frequency of 0.25 (normalized) was used. This choice of filter and cutoff frequency was arrived at

to produce the best FBP reconstruction possible, at least from a visual standpoint.

One of the significant features that we wish to demonstrate is that the algorithms we have developed

here can significantly enhance noise rejection and feature delineation given an initial estimate fo of the

underlying image. One obvious choice for that initial estimate is the FBP reconstruction, or rather a

slight modification of the FBP solution. In particular, FBP is not guaranteed to produce a positive-

valued reconstruction; hence, in order to use the FBP reconstruction as an initial estimate, we add a

number to each pixel value in the FBP image in order to maintain positivity. Furthermore, to speed up

the convergence of the It-IDR algorithm, we scaled the result so as to produce an initial estimate with

integral equal to the estimated zeroth order moment.

Using estimated moments up to order 8, the result of the It-IDR algorithm after only 3 iterations

is shown in the lower right-hand side of Figure 3, while the final It-IDR solution (reached after only 10

iterations) is shown in the upper right-hand side of the same Figure. A drastic visual improvement in

the reconstruction quality is seen, both in terms of reduced noise and enhanced feature delineation. In
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fact, in terms of the % MSE, the improvement is equally striking. The %MSE for the (unnormalized)

FBP is roughly 70% while after only 3 iterations of the It-IDR this number is reduced to 38.1% and

the final It-IDR reconstruction incurs only 11.1% error. Similar experiments were performed at various

SNR's to demonstrate the robustness of and MSE reduction provided by the It-IDR solution to noise.

A plot of % MSE versus SNR for the FBP and It-IDR solutions is shown in Figure 4.

A second issue concerns the order of moments incorporated into the procedure, i.e. the value of N.

As we have discussed, the quality of higher-order moment estimates decreases rapidly and thus we would

expect diminishing returns from the inclusion of additional moments. This is illustrated in Figure 5

which shows the MSE versus the order of the highest order moment used in the reconstructions. Figure

6 shows the It-IDR reconstructions obtained using moments up to order 2, 5, 8, and 11, respectively at

SNR=4.35 dB. Note that increasing the order of moments from 8 to 11 reduced the percent MSE by

only roughly 1 percent, and additional experiments showed even less improvement if even higher-order

moments are included. These small gains, however, are only achieved at a significant computational

cost. Indeed, note that the number of moments of order k is k + 1 and thus the dimension of LN and

thus CN increases considerably as N increases (e.g. from dimension 45 for N = 8 to 78 for N = 11)

increasing the complexity in solving the nonlinear equation (26).

To show how the reconstructions change as a function of the choice of prior fo, we next show the IDR

and It-IDR reconstructions when two different priors are used. In Figure 7, we show the reconstructions

when a uniform prior is used. As we have pointed out previously, this corresponds to a maximum entropy-

type criterion. In particular, in this case the It-IDR solution to (33) is precisely the classical Maximum

Entropy solution. Estimated moments up to order 8 were used in the reconstructions. As can be seen,

the It-IDR reconstruction produces a rough estimate of the underlying image with smooth or "flattened"

edge regions. This is essentially due to the fact that the Maximum Entropy prior seeks the "flattest"
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reconstruction that matches the data best. Figure 8 shows the IDR and It-IDR reconstructions when the

minimum Burg Entropy solution is used as the prior and using estimated moments up to order 8. This

prior is given by the solution of: fo = arg minf yo ffDf - log(f)dxdy + (,N - £N(f))T N(IfN - LN(f)).

As is apparent, in contrast to the maximum (Shannon) entropy solution in Figure 7, the Burg entropy

solution is known to give "peaked" or "spikey" results [13]. It is interesting to contrast the It-IDR

solutions in the upper right-hand corners of Figures 3, 7, and 8 corresponding to our three different

choices of fo. First of all, since the uniform and Burg entropy priors (in the lower left corners of Figures

7 and 8) do not have high frequency noise, the It-IDR reconstructions in these cases also do not exhibit

such noise. This in contrast to the FBP prior (in the lower left of Figure 3). On the other hand, because

it is far less constrained than the other two priors, the FBP not only exhibits noise, but also far more

accurate delineation of the features in the image. As a result, the It-IDR reconstruction using the FBP

prior has far less distortion in the reconstruction of these figures. On a MSE basis for this example, the

It-IDR solution-for the Burg prior is slightly superior to that using FBP. However, which of these choices

is preferable depends, of course, on the application.

Example II: The second phantom to be reconstructed is a 64 by 64 grayscale image shown in the

upper left corner of Figure 9, chosen to illustrate the capability of the FBP-initialized algorithm to

delineate features of differing size and contrast. Projections were generated from 64 equally-spaced

angles in [0, 7r) and 64 equally spaced samples were collected in each projection. The projection data

were then corrupted by Gaussian white noise so as to produce an overall SNR of 4.35 dB per sample.

In the lower left side, the Filtered Back-Projection (FBP) reconstruction is shown where a Butterworth

filter of order 2 with cutoff frequency of 0.3 (normalized) was used. After proper normalization, the

FBP reconstruction was then used as the initial prior fo in the It-IDR reconstruction algorithm. Using
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estimated moments up to order 10, the result of the It-IDR algorithm after only 1 iterations (i.e. the

IDR solution) is shown in the lower right-hand side of Figure 9, while the final It-IDR solution (reached

after only 11 iterations) is shown in the upper right-hand side of the same Figure. The drastic visual

improvement in the reconstruction quality is again seen.

The It-IDR algorithm performs well even when a much smaller number of projections is available. As

shown in Figure 10, the MSE in the reconstruction using 32 equally-spaced views in [0, 7r) at SNR=4.35

dB is still significantly better than the corresponding MSE value for the normalized FBP reconstruction.

7 Conclusions

In this paper we have shown how the tomographic reconstruction problem can naturally be decomposed

into a two-step process whereby we first compute maximum likelihood estimates of the orthogonal mo-

ments of the underlying image directly from the projections, and then use these estimated moments to

obtain a reconstruction of of the image. In particular, by making a connection to the field of nonpara-

metric probability density estimation, we took advantage of the I-Divergence criterion and its desirable

properties to produce regularized reconstructions of images from from noisy projection data which far

exceed, in quality, those reconstructions produced by classical tomographic reconstruction techniques.

We demonstrated how our proposed algorithm provides an explicit mechanism for controlling the

degrees of freedom in the reconstructions and hence resulting in better results. Also, in contrast to

other divergence- (or entropy-) based algorithms which use the directly measured projection data to

form constraints, the use of moments results in a more efficient algorithm since typically, the number

of moments needed (and used) is far less than the total number of projection measurements (in our

examples this resulted in a reduction in dimensionality by a factor of roughly 90). Moreover, in our
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approach we calculate the error variances in estimating the moments and then make explicit use of this

information in our reconstruction algorithm. Furthermore, and perhaps most importantly, we showed

how our formulations allow for the explicit incorporation of prior information, in terms of prior estimates

of reconstructions, in a very simple way and with minimal increase in computation. In particular, it

is worth noting that other geometric information, beyond that used in our examples, can be directly

incorporated. For instance, assume that after performing some geometric preprocessing on the data,

such as extraction of support information [25, 15], or a preliminary parameterized reconstruction such

as polygonal reconstructions [19], an estimate is obtained of the region of the plane where the object of

interest is may lie (i.e. the spatial support of the object). Then, according to this information, the prior fo

can be chosen as essentially an indicator function over this estimated region. Due to the multiplicative

nature of the solution fIDR , the prior fo in effect nulls out the part of the reconstruction that the

geometric preprocessor eliminated as not being part of the spatial support of the object. This feature

of the IDR (and hence It-IDR) algorithm is uniquely well suited to situations where it is important to

concentrate the reconstruction on a particular region of interest.

Since our proposed algorithms make explicit use of the covariance matrix of the estimated moments,

higher order moments, the estimates of which are more inaccurate, are weighed less than lower order ones.

Hence our proposed algorithms essentially make use of a finite and modestly small number of moments

to efficiently produce superior reconstructions. This feature, along with the the overall robustness

of the It-IDR algorithm to noise and the number of available views, make it particularly useful for

computationally efficient tomographic reconstruction for low signal-to-noise ratio scenarios and when

the number of available projections may be small.
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A Proof of Proposition 1

This result is most easily proved using the nonorthogonal geometric moments

H(k)(0) = J g(t,O)tkdt (37)

Hp,q = ID f( y)XPyqdxdy (38)

Define 7tN(O) = [H(O)(0), H(1)(0), ***, H(N)(O)]T, I(k) = [ok,O, /*k-l,1, '", k01,] T , and MN

[/O(O)T, p(1)T, /1(N)T]T . Then there is a (lower-triangular) invertible relationship between the geometric

moments -tN(O) and the Legendre moments gN(O), and an analogous one between MN and £N. Thus

what we need to show is that given 1LN(0j) for j = 1, 2, * , m, we can uniquely determine MN if and

only if N < mn- 1.

To begin, note that, thanks to (2), there is a block-diagonal relationship between the geometric

moments of g(t, 0) and f(x, y), namely

H(k)(G) = D(k)(9)IL(k) (39)

D(k)(0) = [-Yk,cosk(O), 7k,1 cosk-l (0) sin(8), , k,k-1 cos(O) sink-l(0), 7k,k sink(0)] (40)

where 7k,j = k are the binomial coefficients. Because the kth order geometric moment of g(t, 0) is

only a function of the vector of kth order geometric moments of f(x, y), we need only show that p(N) is

uniquely determined by H(N) = [H(N)(01 ), H(N)(02 ), ... , H(N)(Om)]T if and only if N < m - 1.

Note that H(N) = DNIZ(N), where the m x (N + 1) matrix DN has rows D(N)(01), D(N)(82), ....

D(N)(O,). Note first that for DN to have full column rank (equal to N + 1), we obviously must have

N < m- 1. Thus we must only show that if N < m- 1, then the columns of DN are linearly independent.

From (40) we find that this will be the case if and only if there is no set of ai (not all zero) such that

for 0 = Oi, , :
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PN(O) = ao cosN(0) + al cosN-1(0) sin(O) + + aN-1 cos(O) sinN-1(o) + aN sinN(0) = 0 (41)

To see that this cannot happen for any such PN(0) for any N and m satisfying N < m - 1, we proceed

by induction on both N and m. Specifically, note first that for N = 0, po(O) = a 0 , which is nonzero for

any nonzero choice of a 0 . That is, the result is verified for m = 1 and all N < m - 1 (i.e. N = 0) and

for any m > 1 and N = 0. Thus suppose by induction that the result is true for all N < m - 1 and for

all mrn p - 1 and also for all N < k - 1 for m = p; where k < p - 1. What we need to show is that it is

also true for N = k, m = p. So take any nonzero pk(O). Note first that if pk(7r/2) = 0, then from (41)

(with N = k), we see that

pk(7r/2) = ak sink(7r/2) = ak = 0. (42)

Therefore we have that

Pk(O) = cos(0)(a0 cosk- 1 (0) + . ± ak-1 sin k- '()) = cos(0)pk-l1(0) (43)

If one of the Oj, say Op = 7r/2, then what we want is that Pk- (0j) can not vanish for all j = 1,..., p - 1;

but this is exactly verified by part of the induction hypothesis. If none of the Oj = 7r/2, then we need to

ensure that pk-l (9j) can not vanish for j = 1, ... ,p, which is also part of the induction hypothesis.

Finally, if pk(7r/2) 4 O, we can write pk(O) as

Pk(O) = COSk(O)qk(0) (44)

where

qk(O) = ao + al tan(O) + ... + ak-1 tank-l(0) + ak tank(8). (45)

Letting u = tan(O) we observe that the right hand side of (45) is simply a polynomial of order k in u.

By the Fundamental Theorem of Algebra [17], this polynomial has at most k real roots. Since tan(O)
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is one-to-one over the interval [0, ir), we have that Pk(0j) can vanish for at most k of the p values of Oj,

proving the result.

B How It-IDR Solves (33)

In this appendix, we show that if the It-IDR converges, it indeed solves (33). We first consider the case

when £2 N E 7Za(fN). It is well known [14, 32, 6] that the unique solution to (33) has the form7

f(;, y) = fo(;, y) exp($(;(x, y)KN), (46)

where the vector of constants KN is chosen such that

£N(f)= =N (47)

In fact, if a function of the form (46) exists and satisfies the constraints given by (47), then it is necessarily

the unique solution of (33). Hence, to show that fIt-IDR solves (33), it suffices to show that it has the

form given by (46) and moments given by (47). From (30) we see that

k+l

fk+l = fo exp('T (x, Y) CE C)), (48)
i=l

Recall that we have assumed that the It-IDR algorithm converges to a finite limit point (namely 0).

Now through (32), this implies that the sum also converges as k o. Hence, as k o, in

the limit, the It-IDR solution has the same form as (46), with KN = x, CN). At the fixed point of

(30), the solution fIt-IDR satisfies

fit-IDR(x, Y) = fIt-IDR(;, y) exp('(, y)C(o)), (49)

which, since the elements of the vector PN(a, y) are linearly independent, implies that CN ) = 0. This,

in turn, through (31), implies that

L(fit-IDR) = EN- (50)

7Note that the existence of the solution is guaranteed by the assumption that Nv E Za(fQN)

22



Therefore, fItIDR(X, y) is the unique solution of (33) in the case /ZN E RZa(fN).

If ZN is not in the range of aN, we simply write EN in terms of its orthogonal decomposition with

respect to the inner product < , >EN

LCN: = JC(N + (N) (51)

where (r ) 6 R7a(QN) and £L-) is orthogonal to lZa(QN). Then we may write

fk+l = arg jin7kD(f, f) + II£N(f)- ( N)IIN + IIEZNII2N (52)

Now clearly, ZN(fk) Ra(ON) at every iteration k. Hence, the estimates fk do not depend on the

inconsistent part of the estimated moments C), and we may drop the last term on the right hand side

of (52) without changing the solution of the optimization problem (52). This implies that the It-IDR

algorithm converges to the solution of (33).

C A Convergence Result for It-IDR

We find a sufficient condition for the local asymptotic convergence of the It-IDR algorithm by first

assuming that fk and 7k-1 are given for some k > 1. To solve for fk+l, we compute (k+l) by finding

the solution of (26). Solving (26) iteratively we have

NC(A + l)= lNH(C )(j)) (53)
7k

Linearizing H(C('+l)(j)) about CN = 0 we have

(k+l)(j + 1) -1SN('lN(fk) - Dk +I)(j) + EN) (54)

where Dk = f fo fk(X, Y)IN(X, y)IT(X, y) dx dy. Hence, for the iteration (53) to be locally asymptoti-

cally stable about CN = 0, it suffices that the eigenvalues of 1 -NDk have magnitude strictly less than

one. i.e.
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Condition 1: A (-ENDk) <1 (55)

If Condition 1 is satisfied, then from (54) we have a linear approximation to C(k+l) given by

N(+1) (-kI + ENDk)- ErN(N - CN(f)) (56)

From the definition of C(k) from (31), we have that k__lC(k) -= N(N- £N(fk)), which after substi-

tution in (56) yields

( ) = k-l(7kI + I±NDk)- 1C() = TkC(k) (57)

A sufficient condition for the asymptotic convergence of (57) is that for all k > 1, some c > 0, and some

O< a <1,

Condition 2: 11 n TjlI2 < cak (58)
j=1

Therefore, by carefully choosing 7k to satisfy conditions 1 and 2 simultaneously at each iteration, the

overall It-IDR algorithm can be made locally asymptotically convergent.
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Figure 3: Counter-clockwise from upper left:
Figure 1: The Radon transform Phantom, fo based on FBP (% MSE=69.1), It-

IDR solution after 3 iter. (% MSE=38.1), It-IDR
solution after 10 iter. (% MSE=11.1). Data: 64
proj. w/ 64 samples per proj. SNR = 4.35 dB;
moments up to order 8 used.
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Figure 2: Trace of covariance matrix versus mo-
ment order up to order 10 Figure 4: MSE versus SNR (dB) in reconstruct-

ing the phantom of Figure 3: Moments up to
order 8 used.
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Figure 5: MSE versus number of moments used
in It-IDR reconstruction of the phantom of Fig-
ure 3 with SNR=4.35 dB

Figure 7: Counter-clockwise from upper
left: Phantom, uniform initial estimate (%
MSE=65.7), IDR solution (% MSE=55.9), It-
IDR solution (% MSE=15.8). Data: 64 projec-
tions w/ 64 samples per projection at SNR= 4.35
dB; moments up to order 8 were used.

Figure 6: Counter-clockwise from upper left: re-
constructions using moments up to order 2, 5, 8,
and 11. Data: 64 projections w/64 samples per
projection at SNR= 4.35 dB. Initial guess was
based on FBP in every case.
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Figure 9: Counter-clockwise from top left: Phan-
tom, Initial Estimate from FBP, IDR reconstruc-
tion, Final It-IDR reconstruction (64 views, 64
samples per view, SNR =4.3 dB, moments up to
order 10 used)
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Figure 8: Counter-clockwise from upper left:
Phantom, Initialization computed using Burg 30

entropy (% MSE=39.8), IDR solution (%
MSE=31), It-IDR solution (% MSE=10.3). ,25

Data: 64 projections, 64 samples per projection .

with SNR=4.35 dB; moments up to order 8 used. 20 -x
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Figure 10: MSE versus number of views for "ad-
justed" FBP prior, IDR solution and It-IDR so-
lution, SNR=4.3 dB, moments up to order 10
used
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