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ABSTRACT

The focal nature of early atherosclerotic lesions has motivated the
notion of the importance of localizing factors, most notably the detailed flow
field within the affected vessel. Despite extensive study, very few
generalizations regarding the potential role of hemodynamics in atherogenesis
can be made at the present time. The focus of this work has been on
investigating possible relationships between the distribution of focal sites of
enhanced macromolecular permeability in the normal rabbit aorta and the
detailed flow field within the aorta,

A quantitative topographical mapping of the distribution of the enhanced
permeability sites revealed that their highest density occurs in the aortic arch,
decreases as one proceeds distally reaching a minimum in the intercostal
artery region, and then increases again in the abdominal aorta. The sites
occur in streaks, and their density is high in the vicinity of aortic ostia. The
distribution of site density around ostia generally resembles that of early
atherosclerotic lesions experimentally induced in hypercholesterolemic
rabbits.

The flow field in the rabbit aorta was studied in excised natural aortas
made transparent to allow flow visualization. Steady and pulsatile flow were
studied in the aortic arch, while the experiments in the abdominal aorta were
confined to steady flow. The flow visualization results revealed the existence
of a zone of clockwise helical flow along the ventral wall of the aortic arch. In
the abdominal aorta, a pair of slowly-moving recirculation zones was observed
lateral to most ostia. The flow field is generally complex with regions of
boundary layer separation and flow recirculation. Vessels in close anatomic
proximity interact fluid mechanically leading to considerably more complex
flow behavior. No generalizations can be made regarding wall shear stresses
proximal and distal to aortic ostia due to frequent skewness of aortic velocity
profiles. The enhanced permeability site topography around the major
branches of the abdominal aorta does not correlate with any specific features
of steady flow shear stress distribution.
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The velocity profiles in the rabbit abdominal aorta between the celiac
and superior mesenteric arteries were measured in vivo using high resolution
pulsed Doppler ultrasound velocimetry. A 15 MHz system with associated
probes was used. Each probe was equipped with two ultrasonic transducers,
and the information from both transducers could be combined to yield both the
axial and transverse components of the velocity vector within the measurement
volume. The results revealed large transverse velocity components in the
aorta suggesting the presence of extensive secondary flow motion. The
measured velocity profiles are consistent with the presence of multiple zones
of helical flow motion within the aortic cross-section.

Two-dimensional steady and sinusoidal pulsatile flow numerical
simulations were performed in a model of an idealized arterial branching. The
purpose of this study was to elucidate fundamental fluid mechanical
differences between steady and pulsatile flow. Steady flow recirculation zones
periodically appear and disappear with pulsatility. Moreover, additional
recirculation zones not present in steady flow are observed in pulsatile flow.
Pulsatile flow wall shear stresses may be significantly larger or smaller than
their steady flow counterparts depending on the specific portion of the cardiac
cycle. Finally, the steady flow generalization that wall shear stresses within
recirculation zones are always low cannot be made in pulsatile flow.

Thesis Supervisor: Clark K. Colton
Professor of Chemical Engineering
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Position 1 (corresponding to probe 1) axial and transverse
velocity profiles as a function of time during the course of a
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Position 2 (corresponding to probe 2) axial and transverse
velocity profiles as a function of time during the course of a
cardiac cycle in the rabbit abdominal aorta midway between the
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Position 2 (corresponding to probe 2) axial and transverse
velocity profiles as a function of time during the course of a
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Chapter One

Introduction and Motivation

1.1 Introduction

1.1.1 Atherosclerosis: Definition and Characteristics

Atherosclerosis is an arterial disease characterized by the focal

accumulation of a variety of complex lipids, proteins, carbohydrates, cellular

components, and blood constituents within the arterial wall. The pathological

complications of atherosclerosis, namely coronary heart disease and stroke,

represent the leading cause of human death in the western world.

The arterial wall is structurally arranged in three layers. The innermost

layer, the tunica intima, consists of the endothelium and a thin layer of collagen

and elastin fibers. The endothelium is the monolayer of cells lining all blood

vessels and is therefore in constant contact with flowing blood. The

endothelium has a myriad of very complex functions, not all of which are well-

understood at the present time. Two well-established functions of the

endothelium, however, are the provision of a non-thrombogenic surface

compatible with blood and the presentation of a selectively permeable

membrane for substances which get transported from the bloodstream into the

arterial wall. The selective nature of endothelial permeability is determined by

the presence of tight junctions between endothelial cells (EC) as well as

pinocytotic vesicles. Molecules as large as about 2 nm in diameter pass

through endothelial junctions, but much larger molecules can be transported

across the endothelium exclusively by pinocytotic vesicles [1]. The collagen

and elastin fibers within the intima are central to determining the mechanical

properties of the arterial wall.
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The middle layer of the arterial wall, the tunica media, comprises a large

portion of the wall and is generally composed of tight extracellular matrix

interspersed with smooth muscle cells. The outermost layer, the tunica

adventitia, consists primarily of collagen and elastin fibers which merge with

secondary tissue.

The Working Group on Atherosclerosis of the National Heart, Lung, and

Blood Institute in 1981 declared the fatty streak as the first pathological change

in atherosclerosis. Although considerable debate exists over the validity of this

definition, it represents a useful starting point. These fatty streaks contain both

intracellular (foam cells) as well as extracellular lipids, especially in the intima.

This leads to only a minor elevation of the normal intimal surface. An extensive

study of the fatty streaks in individuals from nineteen different countries

spanning a spectrum of racial, ethnic, and economic backgrounds has been

performed [2]. This study established that the fatty streaks develop to virtually

the same extent regardless of the population considered during the first two

decades of life. The streaks found in the coronary arteries tend to be localized

at the same sites where the more advanced fibrous atherosclerotic plaques are

found upon examination of older individuals. In the aorta, on the other hand,

the fatty streaks are found to be most prevalent in the proximal portion, while it

is well-established that the fully-developed plaques tend to be more extensive

in the abdominal region of the aorta. This suggests that fatty streaks develop

into fibrous plaques only under certain conditions or that there are alternate

channels for the development of the plaques other than through the fatty

streaks.

The uncertainties associated with the progression of the disease

present difficult problems in studies of its etiology and pathogenesis. What is

certain about the early stages of atherosclerosis, however, is the existence of
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particular sites of predilection for lesion formation within the vasculature [3]. In

particular, the earliest lesions localize in regions of arterial branching and

curvature. This focal nature of the disease has motivated the notion of the

importance of localizing factors, including arterial hemodynamics and focal

variations in arterial wall structure.

1.1.2 Lipid Hypothesis

The "lipid hypothesis" has dominated the vast majority of atherosclerosis

research to date. This hypothesis, in its simplest form, attributes the disease to

the inability of the arterial wall to fully metabolize the lipids transported into it

from the bloodstream thereby resulting in the net accumulation of these lipids

in the vessel wall. It has been stated that the hallmark of atherosclerosis is the

accumulation of cholesterol in the arterial wall [2]. This cholesterol is derived

virtually entirely from plasma, and it is transported by low density lipoprotein

(LDL). The major mechanism of LDL cholesterol uptake by the cells of the

arterial wall is via the LDL receptor pathway [4] in which LDL binds to the

receptors on the plasma membrane, gets absorbed into the cells by

endocytosis, and is then delivered to lysosomes where the proteins and

cholesteryl esters are hydrolyzed and free cholesterol is released to be used

by the cell. Once the cell has acquired the cholesterol it needs, the synthesis

of LDL receptors is reduced thereby limiting cholesterol uptake by the arterial

wall. This is accompanied by a decrease in the level of cholesterol synthesis

in the blood. An abnormality in any of the steps of this entire process may lead

to cholesterol accumulation within the wall.

In the initial stages of atherosclerosis, cholesteryl esters accumulate

within foam cells, but as the lesions progress into the fibrous plaques, large

amounts of extracellular cholesteryl esters are also found. Moreover, there is

22



an enhancement of unesterified extracellular cholesterol within the fibrous

plaques [5]. Besides the accumulation of cholesterol, there are several other

biochemical changes which take place in the atherosclerotic lesion. These

include an increase in the synthesis and accumulation of phospholipids, an

increase in fatty acid synthesis, an increase in glucose utilization, an increase

in lactate production, an increase in collagen synthesis, and an increase in

collagen content.

1.1.3 Response to Injury Hypothesis

The "response to injury" hypothesis was proposed by Ross and Glomset

[6,7]. This hypothesis postulates that the first event of atherogenesis is caused

by some focal injury to the endothelium. This injury could be induced by a

number of factors of which hyperlipidemia and hemodynamics are examples.

The injury results in EC desquamation which exposes some of the underlying

connective arterial tissue. Platelets then adhere to the exposed EC and

release a mitogen (platelet derived growth factor or PDGF) which stimulates

the proliferation of the smooth muscle cells in the arterial wall. The loss of

endothelial lining also greatly facilitates the transport of macromolecules from

the bloodstream into the vessel wall. LDL itself has been shown to be

mitogenic [6].

The "response to injury" hypothesis as described above considers the

denudation of the endothelium as a prerequisite for atherogenesis.

Experimental mechanical deendothelialization can in some cases result in the

development of atherosclerotic plaques [8-16], and spontaneously-occurring

EC loss, in the few instances in which it has been observed [17-20], has also

been closely correlated with the sites at which plaques localize. However, in

light of pathological evidence that the earliest stages of atherosclerosis occur
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in the presence of an intact endothelium [21], the endothelial injury concept

has evolved into an endothelial dysfunction postulate. This dysfunction may

be caused by mechanical or biochemical mechanisms which alter cell function

without causing any cell loss.

Morrel [1] has considered the following four mechanisms by which

endothelial dysfunction can lead to the development of atherosclerosis: 1)

enhanced arterial permeability, 2) increased production of growth factors by

dysfunctional endothelium, 3) LDL alteration by dysfunctional endothelium,

and 4) attraction of monocytes and macrophages to the site of plaque

development. These four mechanisms may be caused and/or influenced by a

number of physiological factors including arterial hemodynamics, EC turnover,

changes in endothelial structure due to monocytes and macrophages, and

many others.

1 .2 Hemodynamics and Atherogenesis: Background

1.2.1 General Considerations

The notion of hemodynamic involvement in atherosclerosis is motivated

by the focal nature of the disease. One problem is that, depending on the

species investigated, early atherosclerotic lesions are observed at different

sites within the vasculature, and these sites are generally expected to be

exposed to radically different fluid mechanical conditions. This has led to

conflicting explanations and contradictory hypotheses regarding the potential

role of hemodynamics in atherogenesis.

The specific literature on early atherosclerotic lesion localization can be

summed up in the following fashion [22]: In human fetuses, neonates, and

infants [23] and in animal models in which the disease is experimentally

induced [24-26], lesions localize generally distal to major aortic branches. On
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the other hand, in the adult human [27-33] and in the White Carneau pigeon

[34], a species which develops spontaneous atherosclerosis, the early lesions

localize generally proximal to major branches.

A consistent hemodynamic theory must explain these differences in

lesion localization within the various species. The difficulty in formulating such

a theory stems from the tremendous complexity of arterial flow fields. Blood

flow in arteries represents a fluid mechanical system involving the pulsatile

flow of a non-Newtonian fluid within a compliant vessel having a very complex

geometry. In vitro hemodynamic studies, despite their general accuracy, are

always open to the question of how closely they simulate actual physiological

conditions, while in vivo measurements, whether invasive or noninvasive,

generally present access and resolution problems. Next, we briefly discuss the

earliest hemodynamic theories of atherogenesis which were generally based

on pathological evidence. Subsequently, we turn our attention to more recent

work on the cellular response of the endothelium to flow as well as on more

macroscopic aspects of physiological flow fields.

1.2.2 Pathological Observations

The earliest hemodynamic hypotheses concentrated on wall shear

stress levels, and they were based primarily on pathological evidence of lesion

localization in combination with fundamental assumptions on arterial flow

fields. These assumptions had their basis in early fluid mechanical

observations made on idealized models of arterial branching so that it was

generally assumed that regions proximal to arterial branches experienced

lower wall shear stresses than those distal. Hence, the inter-species

differences in lesion localization around branches described above led to two

contradictory hypotheses regarding the role of hemodynamics in

25



atherogenesis. The first implicated regions of high shear stress as the culprit in

the localization of early lesions, and it was initially advanced by Fry [35] and

supported by the pathological observations of several other investigators

[34,36-38]. The second hypothesis implicated low shear stress regions and

was introduced by Caro et al. [39,27]. Pathological evidence in general

support of this hypothesis includes observations made in [31,34,40].

Although wall shear stress hypotheses have dominated the literature on

the relationship of hemodynamics to atherogenesis, several other

hemodynamic mechanisms have been postulated to play an important role.

These include low arterial blood pressure [41], boundary layer separation [42],

turbulence [43], arterial wall fatigue and consequent loss of tensile strength

[44], and impedance mismatching [45].

1.2.3 Endothelial Cell Response to Flow

In the early studies above, the role of arterial fluid mechanics in the

atherogenic process was generally defined in terms of a hemodynamic

damage mechanism to the endothelium. However, the observation that the

earliest stages of atherogenesis occur in the presence of an intact endothelium

[21] has motivated fundamental studies aimed at elucidating EC response to

fluid mechanical stresses. These studies have revealed that the endothelium

is an active structure with sophisticated response mechanisms to stimuli and

an extensive network of communication with both adjacent cells and subjacent

smooth muscle cells. EC exhibit specific humoral, metabolic, and structural

responses which vary with shear stress level. Examples of phenomena that

respond to shear stress are production of interleukin-6 [46]; expression of

endothelin [47]; rate of prostacyclin production, intracellular Ca2+

concentration, and microtubule reaignment [48]; pinocytotic rate, cell
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alignment in flow direction, and redistribution of microfilaments or stress fibers

[49]; EC proliferation and DNA synthesis [50]; deendothelialization and cell

detachment [35]; redistribution of focal adhesion sites [51]; and reorientation of

extracellular fibronectin deposition [52]. These EC phenomena respond to

mechanical stimuli over time scales ranging from seconds to days [53].

Although their direct applicability to physiological situations is uncertain, these

observations suggest that mechanical forces can stimulate EC in vivo.

1.2.4 In Vitro Studies of Physiological Flow Fields

The very different and often contradictory fluid mechanical hypotheses

that have been postulated have motivated detailed in vitro investigations of the

flow field in models of arterial branching. The earliest studies were in idealized

models which failed to account for many of the subtle geometric and

hydrodynamic details that give rise to the tremendous complexity of arterial

flow fields but which nevertheless provided important fundamental fluid

mechanical insight into the effect of various parameters on the flow field.

Examples of these studies are model stenosis and bifurcation investigations in

which steady or pulsatile flow fields and resulting wall shear stress

distributions as well as regions of boundary layer separation and flow

recirculation were visualized at different flow Reynolds numbers and various

vessel dimensions and branching angles [54-68].

The emergence of several studies emphasizing the importance of

incorporating realistic geometric details into arterial flow model studies [69,70]

has led to more recent investigations in glass models, vascular casts, or

excised natural vessels. The emphasis of these studies has been on capturing

true arterial geometry, physiological pulsatility, and even wall compliance, and

they have revealed the existence of complex flow fields, especially in the
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vicinity of arterial branches. For example, flow in models of the human

abdominal aorta [71,72] demonstrated more complex flow patterns in the

infrarenal than in the suprarenal section as well as time-varying helical vortex

motions initiating at the renal arteries and propagating to the iliac bifurcation.

Pulsatile flow experiments in models of the carotid artery [73] have

shown that the common carotid and distal internal carotid arteries undergo

axial, unidirectional flow, while the region within the carotid sinus undergoes

boundary layer separation, helical flow, and reverse flow. Finally, within

coronary arteries, disturbed flow patterns have been observed along the outer

walls of bifurcations, while the inner walls have been found to be generally

exposed to unidirectional flow [74]. These studies have suggested that lesion

development correlates with regions of low or oscillatory wall shear stress,

boundary layer separation, and/or flow reversal.

1.2.5 In Vivo Measurements

A relatively small number of in vivo studies of the flow field and wall

shear stresses have been reported in the literature. Noninvasive pulsed

Doppler [75] and magnetic resonance [76] measurements of velocity profiles

have been made in peripheral arteries; however, the level of detail that can be

resolved remains limited at this point. There have been several studies with

invasive pulsed Doppler ultrasound in dogs, and these studies have shed

some light on the arterial velocity profiles in vivo. For example, Farthing and

Peronneau [77] studied the velocity profiles at several locations in the aortic

arch at various points within the cardiac cycle and estimated wall shear

stresses. Hutchison et al. [78] studied the flow patterns in the dog abdominal

aorta and reported regions of transient flow recirculation opposite the superior

imesenteric and left renal arteries in the post-systolic phase of the cardiac
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cycle. No recirculation was observed at peak systole although the velocity

profiles were asymmetric. Bell et al. [79] examined the velocity profiles in the

left circumflex and left anterior descending coronary arteries and consistently

observed higher wall shear rates along the outer walls than along the inner

walls. However, even with in vivo pulsed Doppler measurements, there is a

large uncertainty in the immediate vicinity of the wall due to wall motion, and it

is this region, unfortunately, that is of most interest from the standpoint of

studies on atherogenesis. In vivo studies also suffer from limitations on spatial

resolution which prevent the study of fluid mechanical interactions with the

arterial wall at a microscopic level.

1.2.6 Numerical Simulations

In principle, numerical simulations of arterial fluid dynamics offer

arbitrarily fine spatial and temporal resolution. The advent of finite element

methods has led to unprecedented versatility in simulating complex

geometries. Moreover, advances in algorithmic techniques and computer

architecture have finally made the simulation of complex flow fields feasible,

leading to an increase in numerical simulations of steady and pulsatile flow

that attempt to shed light onto the details of arterial velocity fields. However,

virtually all published simulations deal with oversimplified geometries, use

idealized and often non-physiological boundary conditions, and rarely

incorporate the effect of wall motion. Despite these limitations, the

computational studies have provided useful insight into fundamental fluid

mechanical phenomena by offering spatial and temporal resolutions that are

far superior to any that could be accessed experimentally.

There are several examples in the literature of two-dimensional steady

and pulsatile flow simulations in the aortic bifurcation [80,81] which produced
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transient flow reversal in the daughter vessels. Thiriet et al. [82] simulated

steady flow through a three-dimensional finite element model of the aortic

bifurcation and demonstrated the existence of secondary helical motion within

the daughter branches. Simulation of steady and pulsatile flow patterns in

three-dimensional models of the carotid artery bifurcation yielded complex

disturbed flow patterns in the carotid sinus [83,84]. Perktold et al. [85]

modeled the three-dimensional unsteady flow in the left main coronary arteries

and have reported secondary flow velocities of 3 to 4% of the maximum axial

velocity.

One important advancement within the field of computational fluid

dynamics within the last decade has been the emergence of fluid dynamic

programs for performing sophisticated simulations. These programs, of which

NEKTON and FIDAP are examples, are generally based on the finite element

method and are in principle capable of solving any time-dependent, three-

dimensional fluid dynamic problem in arbitrarily complex geometries. The

emergence of powerful personal workstations has rendered previously

prohibitively expensive numerical simulations possible. The numerical codes

are also equipped with very powerful and robust pre- and post-processing

packages capable of manipulating the output data and displaying it in very

useful graphical format. Moreover, they can often be easily interfaced with

powerful computer aided design capabilities for generating a wide range of

visualization graphics. These may be very useful in understanding basic fluid

flow phenomena as well as for examining the interactions of the fluid flow with

the walls of the simulated flow domain.

1.3 Focal Phenomena in Rabbits
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The hypercholesterolemic rabbit is a good model in which to study focal

phenomena because it exhibits a relatively predictable pattern of early

atherosclerotic fatty lesions [86-89]. Early lesions occur diffusely in the aortic

arch and ascending aorta, in a streak in the upper descending thoracic aorta

and along the ventral wall between the celiac and superior mesenteric arteries,

and distal and lateral to branch orifices in the abdominal aorta and descending

thoracic aorta. In addition, previous work in our laboratory has led to the

discvery of other focal phenomena in the normal rabbit.

In the course of prior research on mechanisms governing the transport,

accumulation, and metabolism of LDL and other proteins in the aorta of the

normal New Zealand White (NZW) rabbit (and squirrel monkey), we have

found punctate foci of greatly enhanced permeability to various proteins,

including radiolabeled LDL, horseradish peroxidase (HRP), and biotinylated

bovine serum albumin [90-94]. These sites also occur in the

hypercholesterolemic rabbit [95]. After 1-min circulation of HRP, 10-min

circulation of LDL, the enhanced permeability sites range from about 100 to

200 gum in diameter and each site of permeability dysfunction is associated

with one or at most a few EC. About one-third of these sites are associated

with abnormal, enlarged EC or possess other morphological features different

from normal arterial tissue. Others have now replicated our findings

concerning focal sites of increased LDL uptake [96,97]; focal elevation of LDL

degradation in the same regions of normal rabbits has been reported [87].

Focal differences in EC shape have been observed over distances of 100 to

200 .m immediately distal to the aortic branches in the rabbit [98]. Focal sites

of enhanced LDL permeability have also been observed in the rat [99].

1.4 Thesis Objectives and Scope
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We hypothesize that the sites of these highly localized cellular

phenomena are representative of the sites of the earliest atherosclerotic

processes. The objectives of this work were to quantitatively establish the

topography of these sites within the aorta, to compare the topography to that of

early atherosclerotic lesions experimentally induced in hypercholesterolemic

rabbits, and to probe whether the localization of these apparent cellular

dysfunctions is associated with mechanical forces exerted by hemodynamic

phenomena. The specific organization of the thesis is as follows:

Chapter Two is a quantitative topographical mapping study of the

distribution of the enhanced permeability sites on the surface of the normal

rabbit aorta using image analysis. The rabbit experiments and image analysis

data acquisition were performed by Peter A.F. Uhthoff (formerly of our group).

Peter and I collaborated on data analysis and interpretation. This study

revealed reproducible aorta-wide trends in enhanced permeability site

localization as well as preferred radial and angular distributions around

individual aortic ostia. The existence of these preferred distributions is

consistent with the notion of the importance of localizing phenomena,

particularly hemodynamics. This motivated all the fluid mechanical studies

described in subsequent chapters.

We decided to investigate the detailed flow field in the rabbit aorta using

a technique developed by Karino and Motomiya [100] in which the natural

aorta is excised from the animal and rendered transparent to allow flow

visualization. Prior to performing this study, however, we needed information

on the flow divisions in the rabbit aortic branches in vivo, i.e. the fractions of

cardiac output within each of the major aortic branches. The detailed flow field

within the aorta is expected to be sensitive to these flow divisions. Chapter

Three describes a study of these flow divisions using transit-time ultrasound
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flowmetry. The results revealed that the superior mesenteric and celiac

arteries receive the bulk of aortic flow (about 55% combined), while each of the

other branches receives significantly less flow (5 to 8% of the cardiac output).

Another finding was the existence of reverse flow from some of the branches

back into the aorta during a portion of diastole. This reverse flow, when

present, would be expected to have important implications on the in vivo wall

shear stress in the aorta in the immediate vicinity of the branches.

The flow division results of Chapter Three were then imposed on

preparations of transparent rabbit aortas, and the details of the flow

visualization results are described in Chapter Four. Both steady and pulsatile

flow were studied in the aortic arch, while only steady flow was studied in the

abdominal aorta. A zone of clockwise helical motion was observed along the

ventral wall of the aortic arch both in steady and pulsatile flow. Flow

separation was present at the inlets of the aortic arch branches, and helical

flow was observed within the branches. Pulsatility led to periodic appearance

and disappearance of the flow separation zones. Within the abdominal aorta,

a pair of slowly-moving flow recirculation zones were observed lateral to all

ostia. The flow field in the vicinity of the superior mesenteric and right renal

arteries was very complex due to the anatomic proximity of these vessels to

one another. A comparison of the steady flow wall shear stress distribution

with the enhanced permeability site topography around branches revealed no

apparent correlation.

The lack of apparent correlation between the steady flow visualization

results of Chapter Four with the enhanced permeability site distribution

motivated the numerical study detailed in Chapter Five. The computer code

NEKTON was used to study the two-dimensional steady and sinusoidal

pulsatile flow fields in a 90° T-junction representing an idealized model of an
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arterial branching. The purpose of this study was to elucidate fundamental

differences that may exist between steady and pulsatile flow. The results

indicated that steady flow recirculation zones periodically appear and

disappear with pulsatility. Additional recirculation zones not present in steady

flow were observed in pulsatile flow. Depending on the specific time within the

pulsatile cycle, the wall shear stress levels could be significantly larger or

smaller than their steady flow counterparts. Unlike steady flow, shear stress

levels within pulsatile recirculation zones were not necessarily low. The

results therefore suggest important fundamental differences between steady

and pulsatile flow behavior.

The importance of pulsatility and the questions that may be raised

regarding how closely model studies approach the actual physiological

conditions motivated the preliminary study described in Chapter Six. High

resolution 15 MHz pulsed Doppler ultrasound velocimetry was used to

establish the in vivo velocity profiles in the rabbit abdominal aorta between the

celiac and superior mesenteric arteries. The uniqueness of the system used

lies in the design of its perivascular probes each of which is equipped with two

ultrasonic transducers. The information from the two transducers can be

combined to yield both the axial and transverse components of the velocity

vector [101] within the measurement volume.

Measurements were made in two orthogonal midplanes in the aorta.

The axial velocities indicated the presence of forward flow in the aorta during

the entire course of the pulsatile cycle. Large transverse velocity components

were present suggesting extensive secondary flow motion. The measured

velocity profiles are consistent with the presence of multiple zones of forward-

moving helical flow within the aorta.
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The fluid mechanical studies described in this thesis indicate that the

flow field within the rabbit aorta is extremely complex. The steady flow results

did not correlate with the localization of enhanced permeability sites in the

aorta, while the spatial resolution of the in vivo measurements near the wall is

not sufficiently high to allow meaningful comparison of velocity profiles with

localized phenomena. Chapter Seven discusses the conclusions of this work

as well as its contributions to the field and recommends directions for future

investigations.
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Chapter Two

Topographical Mapping of Sites of Enhanced
HRP Permeability in the Normal Rabbit Aorta

2.1 Introduction

The detailed localization of atherosclerotic lesions, both spontaneously

occurring and experimentally induced, has been studied extensively in

postmortem human specimens as well as several animal models. It has long

been established that atherosclerotic plaques do not occur randomly within the

vasculature but rather preferentially in regions of arterial curvature, branching,

and bifurcation [1-4]. This focal nature of the disease has given rise to the

notion of the importance of localizing factors in atherogenesis. Among the

commonly cited localizing factors are variations in hemodynamic phenomena

and in arterial wall structure and function. Indeed, various studies have

reported focal variation in the permeability of the arterial system to protein-

bound dyes or labelled macromolecules [5-9].

Efforts in our laboratory have focused on establishing a fundamental

understanding of the mechanisms governing the transport, accumulation, and

metabolism of low density lipoprotein (LDL) and other proteins in the aorta of

the normal New Zealand White rabbit and squirrel monkey. In the course of

these studies, we have observed punctate foci in the aorta that are highly

permeable to horseradish peroxidase (HRP), an enzyme with molecular weight

of about 40,000 and Stokes-Einstein radius of 3.0 nm, injected into the rabbit

one minute before sacrifice and subsequently visualized en face by reaction

with diaminobenzidine (DAB) and H2 02 [10-12]. These sites, henceforth

referred to as "HRP spots", are also highly permeable to radiolabelled LDL [13-

15], and some of them have been shown to correspond to abnormal, enlarged
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endothelial cellsand to possess other morphological features different from

normal arterial tissue [15].

The objective of the study reported in this paper is to provide a detailed

quantitative description of the distribution of the HRP spots in the aorta of the

normocholesterolemic New Zealand White rabbit. The results are compared

with the localization of experimentally-induced atherosclerotic lesions in

hypercholesterolemic rabbits [16-20].

2.2 Materials and Methods

2.2.1 Animal Experiments

All procedures described here were reviewed and approved by the

Committee on Animal Care at MIT. Eight New Zealand White rabbits (five male

and three female) weighing from 2.1 to 2.9 kg were used in this investigation.

Each rabbit was first placed in a standard animal restraining box, thereby

allowing easy access to the ears. A catheter (22 ga, 8 in Intracath, Deseret

Pharmaceutical Co., Sandy, VT) was inserted through one of the marginal ear

veins and used for administering anesthesia at a dose of 10 mg diazepam (5

mg/ml, Hoffman Laroche, Inc., Nutley, NJ) and 18 mg sodium pentobarbital (1

g/ml, Lemmon Co., Sellersville, PA). Anesthesia was supplemented with

diethyl ether (Mallinckrodt, Inc., Paris, KY) inhalation as needed. The animal

was then placed supine on an operating table, its four extremities secured, and

the neck, thorax, abdomen, and groin shaved. The left common carotid artery

was dissected free and cannulated with a catheter (16 ga, 2 in Angiocath,

Deseret Pharmaceutical Co., Sandy, VT) that was connected to a three-way

valve. One branch of this valve was connected to a 60 ml syringe containing a

50 ml bolus of 2.5% (w/v) glutaraldehyde in 0.1 M sodium cacodylate buffer

(pH 7.4). The other branch was connected to a hanging bottle containing one
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liter of the same glutaraldehyde fixative and positioned 150 cm above the

operating table.

One min before sacrifice, 80 mg/kg HRP (Type II, Sigma, St. Louis, MO),

dissolved in 5 ml of isotonic saline, was injected via the marginal ear vein

catheter with saline flushes prior to and following HRP injection. An HRP

incubation time of 1 min was sufficiently long to yield punctate and well-defined

spots which allowed quantitative topographical analysis but sufficiently short to

avoid large regions of diffuse HRP staining. One minute after HRP injection,

the rabbit was sacrificed with an overdose (>1.25 ml/kg) of sodium

pentobarbital (6 g/ml, Lemmon Co., Sellersville, PA) via the same catheter.

The animal died immediately.

Sacrifice was immediately followed by injecting the 50 ml bolus of 2.5%

glutaraldehyde into the carotid artery catheter and simultaneously opening the

abdomen by midline incision, retracting the mesentery, and isolating and

cutting a segment of the vena cava to provide an outlet for egressing blood and

fixative. The bolus injection was immediately followed by continuous pressure-

driven perfusion at 110 mm Hg of the same fixative from the hanging bottle into

the carotid catheter. The flowrate of the bottle perfusate was maintained at

about 15 ml/min for 10 min, after which it was reduced to about 5 ml/min for an

additional 20 min. The extent of HRP staining was sensitive to the flowrate of

the perfusate from the bottle. Substantial deviations (a factor of two or more) in

either direction of these flowrates led to marked reduction of average spot

density (including no observable spots). Outflowing blood and fixative were

removed from the abdominal cavity by suction.

After 30 min of perfusion fixation, the thorax was opened by midline

incision. Beginning at the heart and proceeding distally, the entire aorta was

excised as far caudally as the iliac bifurcation. In addition, about 1 cm of all the
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major vascular branches was included in the excision. Care was taken to

ensure that the aorta was not cut, torn, or unnecessarily stretched during the

excision process, and the excised vessel was then immersed in 250 ml of

glutaraldehyde/cacodylate fixative. After one hour in this fixative, the heart and

aorta were transferred to a 0.1 M cacodylate (pH 7.4) solution. The heart was

carefully cut away, ensuring that the coronary sinuses and proximal portion of

the ascending thoracic aorta remained intact. The complete aorta from the

sinuses to the proximal portion of the iliac arteries was carefully trimmed of any

fat and loose tissue.

2.2.2 Longitudinal Opening of Aorta

Figure 2.1 illustrates the manner in which the aorta is opened

longitudinally and pinned flat. Figure 2.1A depicts the rabbit aorta and its

major branches. The greater curvature of the aortic arch gives rise to two

vessels, the brachiocephalic and the left subclavian. The brachiocephalic

artery immediately divides into the right subclavian and the two carotid vessels.

The descending thoracic aorta gives rise along its dorsal surface to eight pairs

of intercostal arteries, the most distal of which emerges approximately at the

level of the diaphragm, which anatomically marks the division between the

thoracic and abdominal aorta. Within the abdominal aorta, the celiac, a large

vessel which branches immediately into the left gastric, hepatic, and splenic

arteries, and which supplies the stomach, liver, duodenum, pancreas, and

spleen, emerges ventrally immediately caudal to the diaphragm. A ninth pair

of intercostal (or phrenic) arteries arises along the dorsal surface of the aorta

either slightly proximal or distal to the celiac branch. Downstream of the celiac

is the superior mesenteric, a large ventral artery which supplies the pancreas,

small intestine, and large intestine. Immediately distal to the superior
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mesenteric and emerging laterally is the right renal artery, followed by the left

renal artery on the opposite side of the animal. Some distance downstream of

the renals is the ventral inferior mesenteric artery which supplies the

descending colon and rectum, eventually followed by the aorto-iliac bifurcation

which marks the anatomical termination of the aorta.

The protocol used to longitudinally cut open the aorta is depicted in

Figure 2.1 B. The aorta was positioned in its proper anatomical orientation, and

its dorsal surface at the iliac bifurcation was pinned down while holding the

brachiocephalic trunk with a pair of forceps. Holding the aorta firmly in place,

the ventral surface of the aorta was cut in one continuous motion halfway

between the lesser and greater curvature in the arch and directly opposite the

eight pairs of intercostal arteries in the descending thoracic aorta. Within the

abdominal aorta, the cut was made such that the ostia of all the abdominal

vessels were to the right of the cut. Finally, cuts were made perpendicular to

the main longitudinal cut into the brachiocephalic and left subclavian vessels

so that the curved aortic arch could be pinned flat as illustrated in Figure 2.1C.

To ensure that the aorta was pinned flat, all vascular branches were cut flush

with the adventitial surface of the aorta. The aorta, intimal surface upward, was

then pinned flat with fine insect pins on a Sylgarde silicone mat (Brownell

Electro, Inc., Woburn, MA) inside an insect pinning tray (Cole-Parmer

Instrument Co., Chicago, IL) with care taken to use as few pins as possible to

avoid any unnecessary stretching or distortion.

2.2.3 HRP Processing

The pinned aorta was bathed in a solution of 0.5 mg/ml of DAB (Sigma,

St. Louis, MO) in 0.1 M sodium cacodylate buffer (pH 7.4) for 15 to 20 min.

This solution was aspirated and replaced with a solution of 0.5 mg/ml DAB in
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0.1 M sodium cacodylate (pH 7.4) and 0.1 g/l H202 (Mallinckrodt, Inc., Paris,

KY). This last solution was prepared just prior to use, and the last step was

carried out in the dark by covering the entire pinning tray with aluminum foil

and working in a darkened laboratory to avoid light reactions. After 15 min of

bathing with gentle agitation, the reactants were aspirated and the aorta

washed with three changes of 0.1 M cacodylate buffer. This rendered the sites

of enhanced HRP permeability visible in the form of focal, punctate, circular

brown regions on the intimal surface. Following HRP processing, the aorta

was fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate overnight and

finally immersed in 7% sucrose in 0.1 M sodium cacodylate solution for storing

and imaging purposes.

2.2.4 HRP Spot Localization

The pinning tray was mounted onto an X-Y unislide assembly (Velmax,

Inc., East Bloomfield, NY) that functioned as a large microscope stage

micrometer. It provided accurate linear movement of the tray and a measure of

the extent of movement in two directions (x and y).

Two fiber optic lights (Dolan Jenner, Series 180, Woburn, MA) were

used to illuminate the aorta. These lights did not lead to a temperature rise of

the bathing solution during the prolonged image analysis sessions. VG-9

green filters were placed in the light path in order to increase the resolution

and differentiation between the HRP foci and the unstained light background

tissue of the aortic intima. The HRP spots on the surface of the illuminated

aorta were then examined under a stereomicroscope (Wild Heerbrugg,

M5APO, Heerbrugg, Switzerland) onto which was mounted a video camera

(Panasonic TV WV 1550). The picture from the camera was transferred to an

image analysis system (Zeiss Videoplan 2, West Germany) possessing a
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digitizing tablet and stylus for the manual identification of all aortic

characteristics.

The entire aorta was too large to be analyzed at one time. The

microscopic magnification was set at 7.5; at this setting, the aorta was divided

into 40-50 square segments, roughly 8 mm by 8 mm, which were individually

analyzed. The exact quantitative procedure for each segment consisted of first

recording the exact position of

the segment using the X-Y unislide assembly. Each of the HRP foci within the

segment was then traced, and the Videoplan system automatically determined

the x- and y-centers of gravity, the area, and perimeter of each HRP spot. The

same procedure was followed for all the aortic ostia within the segment. The

exact shape of the aortic segment was recorded by determining the

coordinates of selected points along the perimeter. This entire process was

then repeated for all the segments until the entire aorta was traced, and the

resultant images were printed out and reassembled to reconstruct the entire

aorta with all the relevant information regarding HRP spot size and location,

aortic branch size and location, and overall aortic perimeter information. Each

of the resulting reassembled video printouts was about 8 ft long. The outlines

of the tissue perimeters, HRP spots and aortic ostia were manually darkened

with ink. Segments of these video printouts were then sequentially reduced

xerographically, reassembled, and photographically reduced to yield images

of the pinned aortic surface along with the ostia and the en face spatial

distribution of HRP spots.
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2.3 Results

2.3.1 Size Distribution of HRP Spots

The size distribution of the enhanced HRP permeability sites in all eight

rabbits is shown in Figure 2.2. The mean diameter±SD was 158+30 gm with a

range of 90 to 350 m. Taking 300 gm2 to be the surface area of a typical

rabbit endothelial cell [21-23], an average HRP spot would circumscribe about

65 endothelial cells.

2.3.2 En Face Spatial Distribution of HRP Spots

The reduced images of the eight aortas studied are depicted in Figures

2.3 and 2.4. In the figures, each black dot on the aortic surface corresponds to

an actual HRP spot. A large portion of the aortic arch of rabbit 2 does not

exhibit punctate HRP spots but rather a diffuse staining pattern; therefore, this

region is excluded from all analyses. Furthermore, large blood clots are

observed on the surface of rabbit 2 in the region between the fourth and sixth

pairs of intercostal arteries and on the surfaces of rabbits 6 and 7 in the regions

of the first to third pairs of intercostal arteries. These clot-covered regions are

also excluded from analysis.

The surface area analyzed for each rabbit ranges from about 1270 to

1950 mm2 and totals 13,450 mm2 for all eight rabbits. The average spot

density in all eight rabbits is 0.63 spots/mm2 and ranges from 0.06 to 1.14

spots/mm2 for individual rabbits.

The profile adjacent to each aorta in Figures 2.3 and 2.4 gives the

average spot density in each of five regions of the aorta. Although the overall

average spot density varies from rabbit to rabbit, all of the profiles display a

similar qualitative pattern. The highest density of HRP spots is in the aortic

arch (1.7 spots/mm2, all rabbits; as high as 2.9 in rabbit 4); the density then
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decreases as one proceeds distally, reaches a minimum (0.26, all rabbits; 0.02

in rabbit 7) in the lower descending thoracic aorta (region of intercostal

arteries), and then increases again in the abdominal aorta (0.61, all rabbits).

In addition to gross regional variations, on a smaller scale the HRP

spots have a nonuniform topographical distribution. Within the ascending

aorta, the density of spots (Figures 2.3 and 2.4) is typically highest in the

middle section of the pinned tissue that corresponds to the dorsal wall of the

aorta (Figure 2.1B). In the region immediately distal to the left subclavian

branch, the highest spot density shifts to a region at and near the right edge of

the pinned aorta that corresponds to a region along the greater curvature of the

arch. Finally, in the upper descending thoracic aorta, i.e. in the portion of the

descending aorta proximal to the intercostal ostia, the highest HRP spot

density shifts to a region along the cut edge in the pinned aorta, corresponding

to the ventral wall of the aorta. Therefore, within the aortic arch and the upper

descending thoracic aorta, the region of highest HRP spot density follows a

helical pattern beginning along the dorsal wall, coiling in the clockwise

direction to localize along the greater curvature of the arch immediately distal

to the left subclavian artery, and finally continuing further to the ventral wall in

the upper descending thoracic aorta. The clockwise helical pattern from the

ventral to dorsal walls suggests a persistence down to the level of the second

pair of intercostal arteries in rabbits 6 and 8 and down to much lower levels of

the descending thoracic aorta in rabbits 1,3, and 4.

Outside the aortic arch, the HRP spots occur in patches and streaks that

are primarily oriented in the bulk flow direction. Several streaks occur within

the abdominal aorta as illustrated in Figure 2.5. There is always a streak

proximal to the celiac ostium at a position corresponding to the anatomical

right lateral wall of the uncut aorta. In four (rabbits 1,2,4, and 5) of the eight
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rabbits studied there is a similar streak of elevated spot density proximal to the

celiac ostium and located along the anatomical left lateral wall of the uncut

aorta (the spots along the right cut edge of the tissue are a continuation of this

streak). Additionally, the region directly between the celiac and superior

mesenteric ostia that lies along the ventral wall in the intact vessel contains a

streak of elevated spot density in every rabbit. In five of the eight rabbits

studied (rabbits 1,2,3,6, and 8), the streak is relatively wide and encompasses

the lateral walls proximal to the superior mesenteric ostium.

2.3.3 Spatial Distribution of HRP Spots Around Ostia

The topography of HRP spot staining around aortic ostia is assessed

using three forms of data representation: (1) en face spatial distribution plots

that display the positions of the HRP spots relative to the individual ostia as

obtained from image analysis, (2) radial distribution plots of the density of the

HRP spots as a function of distance from the ostium, and (3) angular

distribution plots that express the HRP spot density in terms of a polar

coordinate system in a fashion similar to the method developed by Cornhill

and Roach [24]. A representative coordinate system around ostia is illustrated

in Figure 2.6. Each ostium in the abdominal aorta is approximated by an

ellipse possessing the same area and perimeter as the actual ostium because

the image analysis revealed that these ostia were not circular and could be

better approximated as ellipses. Ostia of the intercostal vessels are

represented by circles. The perimeters of ostia in the arch are not specified for

reasons described subsequently. In all cases, for each specific vessel the HRP

spot patterns are plotted as the aorta is viewed en face, and the orientations on

each plot are anatomically correct. The HRP spot distributions around ostia
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are next discussed in detail for the abdominal region, the intercostal region,

and the aortic arch region.

2.3.3.1 Abdominal Region

Figures 2.7,2.8, and 2.9 respectively illustrate the en face spatial, radial,

and angular distributions of HRP spots around the four major abdominal ostia.

Each dot in Figure 2.7 represents a single HRP spot, and spots from the eight

rabbits are superimposed. Regions labelled "No Data" and "Incomplete Data"

in the figures represent regions beyond the edge of pinned aortic tissue which

arise because ostia are often located near a cut edge.

Analysis of the distribution of enhanced HRP permeability sites around

the superior mesenteric and right renal arteries is complicated because these

two vessels in the rabbit are in close proximity (Figure 2.10), more so than any

two other major abdominal aortic branches. In the eight rabbits studied, the

average distance between the centers of gravity of these two vessels is 5.1

mm. By comparison, the average distance between the centers of gravity of

the celiac and superior mesenteric arteries is 13.8 mm, and that between the

right and left renal arteries is 7.4 mm. As a consequence, some of the HRP

spots distal to the superior mesenteric artery are simultaneously counted as

being proximal to the right renal artery. The region of overlap thought to be

influenced by the presence of the superior mesenteric artery is so indicated in

Figures 2.7,2.8, and 2.9.

We divide the region within the constructed circles around the

abdominal ostia in Figure 2.7 into a region in the immediate vicinity of ostia

and one in the general vicinity of ostia. The HRP spots are not uniformly

distributed around ostia. In the case of the celiac ostium, the density of HRP

spots in the immediate vicinity of the ostium within the two innermost drawn

54



circles (i.e. d<1 mm) is highest distal to the ostium. In the general vicinity of the

ostium (i.e. 1<d<2 mm), the densities of HRP spots within the proximal and

distal quadrants are comparable and slightly higher than in the lateral

quadrants (Figure 2.8).

In the case of the superior mesenteric artery, the HRP spot density is

also highest within the distal quadrant in the immediate vicinity of the ostium

(d<0.5 mm) as illustrated in Figure 2.8. Within the general vicinity of the ostium

(0.5<d<2 mm), the HRP spot density is substantially higher both proximal and

distal to the branch than in the lateral regions. Figure 2.5 suggests that the

HRP spots proximal to the superior mesenteric are primarily a part of the axial

streak that localizes along the ventral wall between the ostia of the celiac and

superior mesenteric arteries.

In the case of the two renal vessels, the spots in the immediate vicinity of

the ostia localize primarily distal to the ostia with the spot density in the other

three quadrants significantly lower. As the distance from the edge of the ostia

(d) increases beyond the general vicinity of the ostia, the preferred orientations

of HRP spots largely diminish around the celiac and renal arteries, and the

densities in all four quadrants become similar (Figure 2.7). In the case of the

superior mesenteric artery, since the higher spot density in the proximal

quadrant is a part of the ventral streak, it naturally persists for larger distances.

The HRP spot topography in rabbit 2 differs from the other seven

animals. The HRP spots are more randomly distributed, and their densities in

the abdominal aorta are higher than in the other rabbits. It was postulated that

the data from this rabbit may have skewed the findings of spot localization

around ostia. Therefore, the same analysis of HRP spot distribution around

abdominal ostia was repeated with the data from rabbit 2 excluded. Although

the exact values of the spot densities changed, the overall conclusions were
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not affected. The data from rabbit 2 had its largest effect on the findings around

the celiac ostium where the exclusion of that data, despite lowering spot

density in all four quadrants, accentuated the dominance of the distal

component (and to a lesser extent the left lateral component) in the immediate

vicinity of the ostium (i.e. d<1 mm) by lowering the proximal and right lateral

components to a greater extent. The effect on spot localization around the

other ostia was minimal.

Superimposed on Figure 2.9 are the angular distributions of

experimentally-induced fatty atherosclerotic lesion lengths in

hypercholesterolemic rabbits after 83 days (Cornhill and Roach, 1976 [16]) and

28 days (Zeindler et al., 1989 [17]) on atherogenic diets. In the case of [17],

the lesions localized primarily lateral to ostia after 1 wk on the diet and

eventually developed into the 4-wk lesions displayed in Figure 2.8.

Comparison of the HRP spot density with that of lesion lengths indicates

dissimilar trends in the cases of the celiac and superior mesenteric vessels,

although the superior mesenteric data show better agreement with the 1976

study than the 1989 investigation. On the other hand, there is qualitative

agreement in the case of the two renal vessels, since both HRP spots and

lesions exhibit a pronounced predilection for the distal quadrant.

2.3.3.2 Intercostal Region

Figures 2.11, 2.12, and 2.13 respectively depict the en face spatial,

radial, and angular distributions of the HRP spots around the anatomically right

and left intercostal ostia. The data in each of the plots represent HRP spots

around 64 ostia (eight rabbits, each having eight pairs of intercostal arteries).

In the immediate proximity of the ostia defined as the region within the

constructed circles in Figure 2.11, the HRP spot density is highest within the
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distal quadrant. As d increases to a value of 1.5-2 mm and higher, this

preferred orientation of HRP spots disappears. Hence, the angular distribution

was evaluated over the region O<d<l mm. Superimposed on Figure 2.13 are

plots of the lengths of the experimentally-induced lesions of Zeindler et al. [17].

The angular distribution of HRP spot density and lesion length are in

remarkable qualitative agreement.

2.3.3.3 Aortic Arch Region

Figures 2.14 and 2.15 respectively depict the en face spatial and

angular distributions of HRP spots around the two arch branches. In the aortic

arch, the manner in which the aorta was cut open (Figure 2.1B) included cuts

made through the ostia. This led to regions containing no tissue, and hence no

HRP spot data, near the ostia and to the loss of information regarding ostium

shape and size. Consequently, the positions of the ostium centers of the

brachiocephalic and left subclavian vessels were approximated. The analyses

were performed for the region within 4 mm of the approximated center of the

brachiocephalic artery and 3 mm of the approximated center of the left

subclavian ostium. There is no preferred HRP spot orientation in the vicinity of

the brachiocephalic ostium, while the spots tend to localize mostly in the distal

quadrant in the case of the left subclavian vessel.

2.4 Discussion

This study provides a topographical mapping of the distribution of sites

of enhanced permeability to HRP in the aorta of the normal New Zealand White

rabbit after one min circulation. Upon processing, these sites take the form of

punctate brown circular spots about 160 tm in diameter. Essentially the same

size has been reported for HRP spots in Sprague-Dawley rats following one
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min circulation [25]. The average HRP spot density in eight rabbits was 0.63

spots/mm 2. This result is comparable to estimates of about 0.9 and 0.3

spots/mm2 reported for the spot density of Evans Blue dye-albumin conjugates

following 5 min [26] and 10 min [25] circulation, respectively, in the rat. Using

an average value of about 300 pm2 for the surface area of a rabbit endothelial

cell, and assuming that each spot is associated with enhanced permeability

around or through one endothelial cell, leads to an estimate of 1.9x10-4 for the

fraction of all of the endothelial cells that is associated with enhanced transport

during the one min experiment.

Although the average HRP spot density varies substantially and the

density is not uniform throughout the aorta, several qualitative trends in spot

localization are observed in virtually all rabbits studied. Along the length of the

aorta, the spot density is highest in the aortic arch, intermediate in the

abdominal aorta, and lowest in the lower descending thoracic aorta in the

region of the intercostal arteries.

The region of highest spot density in the arch follows a helical turn in the

clockwise direction (from dorsal to ventral surface) into the upper descending

thoracic aorta. In some rabbits, the helical pattern persists throughout the

descending thoracic aorta. Outside the arch, the HRP spots often occur in

streaks oriented in the bulk flow direction. In the abdominal aorta, HRP spots

localize along the dorsal and lateral walls proximal to the celiac ostium, along

the ventral wall in the region between the celiac and superior mesenteric ostia,

and occasionally along the lateral walls proximal to the superior mesenteric

ostium.

The density of spots is also often high in the general vicinity of ostia (0-2

mm from the ostium edge). With the brachiocephalic ostium where no

preferred HRP spot orientation is evident being the sole exception, the density
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is typically highest distally in the immediate vicinity of ostia (0-1 mm). In the

general vicinity of ostia (0-2 mm) in the abdominal aorta, the proximal density

becomes comparably high around the celiac and superior mesenteric arteries

while the distal localization persists in the case of the right and left renal

arteries. The analysis of orientation trends is complicated in the case of the

superior mesenteric and right renal ostia because of their close proximity.

A substantial fraction of the HRP spots are also sites of enhanced

transedothelial LDL transport [13,15]. The helical pattern of highest spot

density in the arch is in qualitative agreement with the distribution of early fatty

atherosclerotic lesions experimentally induced in hypercholesterolemic rabbits

reported by Roach [18] and by Schwenke and Carew [19] but is in

disagreement with the findings of Rodkiewicz [20]. We compared the

distribution of HRP spots around intercostal and abdominal ostia to three

studies of the distribution of early fatty atherosclerotic lesions experimentally

induced in rabbits [16,17,19]. The first two of these studies provided detailed

quantitative information on lesion angular distributions, while the third study

only displayed an en face view of the lesion topography.

The HRP spot density exhibits an angular distribution similar to that of

the length of experimentally induced fatty atherosclerotic lesions in rabbits in

the vicinity of the renal and intercostal ostia but not in the vicinity of the celiac

and superior mesenteric arteries. The two studies [16,17], however, are only

partially consistent with one another.

Scwenke and Carew [19] reported that sudanophilic lesions in

hypercholesterolemic rabbits localized distal to orifices of branch vessels of the

descending thoracic and abdominal aorta although the lateral component was

also significant. In the normocholesterolemic rabbit, focal elevations of arterial

LDL degradation rates and of concentrations of intact LDL occurred at these
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sites. These observations are consistent with our findings that the HRP spot

density in the immediate vicinity of each of the abdominal ostia is highest distal

to the ostium. The relatively good agreement between HRP spot distribution

and the spatial distribution of induced fatty lesions around most ostia provides

support for the notion that a locally high density of enhanced permeability sites

may play a role in atherogenesis.

The presence of streaks and of nonuniform radial and angular HRP spot

distributions around ostia is consistent with an influence of localizing factors

such as local hemodynamic phenomena and/or variations in arterial wall

structure and/or function. It is tempting to implicate hemodynamic phenomena

solely on the basis of the location of observed lesions or enhanced

permeability sites. For example, it is commonly thought that the region distal to

a branch is necessarily a site of higher shear stress than that proximal to the

branch. However, the complexity of arterial fluid mechanics has recently

become more well-understood, and it is evident that such a generalization

cannot be made a priori. The results of Lutz et al. [27] in a model canine artery

demonstrate that regions of high and low shear stress can exist in very close

proximity, and those of Karino and coworkers [28-30] in natural transparent

vessels illustrate the complex flow patterns that can be physiologically

encountered. The area distal to a branch may in fact be an area of lower

shear stress than that proximal to the branch if a sufficiently large fraction of the

parent vessel flow enters the branch. Thus, local fluid mechanical patterns

within the rabbit aorta need to be established before hemodynamic

phenomena can be correlated with the distribution of lesions or enhanced

permeability sites. Studies of this nature are currently underway.

60



2.5 References

1. Rindfleisch E. A Textbook of Pathologic Histology. Translated by
Kloman WC and Miles FT, p. 211, Philadelphia: Lindsay and Blakiston,
1872.

2. Mitchell JRA, Schwartz CJ. Arterial Disease. Philadelphia: FA Davis
Co., 1965.

3. Montenegro MR, Eggen DA. Topography of atherosclerosis in the
coronary arteries. Lab. Invest. 18: 126, 1968.

4. Solberg LA, Eggen DA. Localization and sequence of
development of atherosclerotic lesions in the carotid and vertebral
arteries. Circulation. 43: 711, 1971.

5. Packham MA, Rowsell HC, Jorgensen L, Mustard JG. Localized protein
accumulation in the wall of the aorta. Exp. Mol. Pathol. 7: 214, 1967.

6. Somer JB, Schwartz CJ. Focal 3 H-cholesterol uptake in the pig aorta.
Atherosclerosis. 13: 293, 1971.

7. Bell FP, Adamson IL, Schwartz CJ. Aortic endothelial permeability to
albumin: Focal and regional patterns of uptake and transmural
distribution of 12 5 1-albumin in the young pig. Exp. Mol. Pathol. 20: 57,
1974.

8. Bell FP, Day AJ, Gent M, Schwartz CJ. Differing patterns of cholesterol
accumulation and 3 H-cholesterol influx in areas of the cholesterol-fed
pig aorta identified by Evans Blue Dye. Exp. Mol. Pathol. 22: 366,
1975.

9. McGill HC, Geer JC, Holman RL. Sites of vascular vulnerability in dogs
demonstrated by Evans Blue. Arch. Pathol. 64: 303, 1957.

10. Stemerman MB. Effects of moderate hypercholesterolemia on rabbit
endothelium. Arteriosclerosis. 1: 25, 1981.

11. Stemerman MB, Colton CK, Morrel E. Perturbations of the
endothelium. In Progress in Hemostasis and Thrombosis, Vol. 7, p.
289, Grune and Stratton, Inc., 1984.

12. Morrel EM, Holland JA, Pritchard KA, Colton CK, Stemerman MB.
Endothelial cell perturbation and low density lipoproteins: Quantitative
autoradiography. Ann. N. Y. Acad. Sci. 516: 412, 1987.

13. Stemerman MB, Morrel EM, Burke KR, Colton CK, Smith KA, Lees RS.
Local variation in arterial wall permeability to low density lipoprotein in
normal rabbit aorta. Arteriosclerosis. 6: 64, 1986.

61



14. Tompkins RG, Yarmush ML, Schnitzer JJ, Colton CK, Smith KA,
Stemerman MB. Low-density lipoprotein transport in blood vessel walls
of squirrel monkeys. Amer. Physiol. Soc. (Heart Circ. Physiol.). 26:
H452-H464, 1989.

15. Morrel EM. Sites of enhanced 1251-low density lipoprotein permeability
in the rabbit aorta in vivo. Ph.D. Thesis, MIT, 1987.

16. Cornhill JF, Roach MR. A quantitative study of the localization of
atherosclerotic lesions in the rabbit aorta. Atherosclerosis. 23: 489,
1976.

17. Zeindler CM, Kratky RG, Roach MR. Quantitative measurements of early
atherosclerotic lesions on rabbit aortae from vascular casts.
Atherosclerosis. 76: 245, 1989.

18. Roach MR. The effects of bifurcations and stenoses on arterial
disease. InCardiovascular Flow Dynamics and Measurements, p.
489, University Press, 1977.

19. Schwenke DC, Carew TE. Initiation of atherosclerotic lesions in
cholesterol-fed rabbits. I. Focal increases in arterial LDL
concentration precede development of fatty streak lesions.
Arteriosclerosis. 9: 895, 1989.

20. Rodkiewicz CM. Localization of early atherosclerotic lesions in the
aortic arch in light of fluid flow. J. Biomechanics. 8: 149, 1975.

21. Goode TB, Davies PF, Reidy MA, Bowyer DE. Aortic endothelial cell
morphology observed in situ by scanning electron microscopy during
atherogenesis in the rabbit. Atherosclerosis. 27: 235, 1977.

22. Reidy MA, Bowyer DE. Distortion of endothelial repair: The effect of
hypercholesterolemia on regeneration of aortic endothelium following
injury by endotoxin. Atherosclerosis. 29: 459, 1978.

23. Ramsay MM, Walker LN, Bowyer DE. Narrow superficial injury to rabbit
aortic endothelium: The healing process as observed by scanning
electron microscopy. Atherosclerosis. 43: 233, 1982.

24. Cornhill JF, Roach MR. Quantitative method for the evaluation of
atherosclerotic lesions. Atherosclerosis. 20: 245, 1974.

25. Chuang P-T, Cheng H-J, Lin S-J, Jan K-M, Lee MML, Chien S.
Macromolecular transport across arterial and venous endothelium in
rats, studies with Evans Blue-albumin and horseradish peroxidase.
Arteriosclerosis. 10: 188, 1990.

62



26. Lin S-J, Jan K-M, Schuessler G, Weinbaum S, Chien S. Enhanced
macromolecular permeability of aortic endothelial cells in association
with mitosis. Atherosclerosis. 73: 223, 1988.

27. Lutz RJ, Cannon JN, Bischoff KB, Dedrick RL, Stiles RK, Fry DL. Wall
shear stress distribution in a model canine artery during steady flow.
Circ. Res. 41: 391, 1977.

28. Sohara Y, Karino T. Secondary flows in the dog aortic arch. Fluid
Control and Measurement, p. 143, 1985.

29. Asakura T, Karino T. Flow patterns and spatial distribution of
atherosclerotic lesions in human coronary arteries. Circ. Res. 66:
1045, 1990.

30. Karino T, Goldsmith HL, Motomiya M, Mabuchi S, Sohara Y. Flow
patterns in vessels of simple and complex geometries. In Blood in
Contact with Natural and Artificial Surfaces, p. 422, 1987.

63



Figure Captions

Figure 2.1

Figure 2.2

Figure 2.3

(A) Anatomy of a typical rabbit aorta illustrating the major
branches. (B) Pattern of cuts used to longitudinally open aorta
after branches have been cut flush with adventitial surface. (C)
Aorta pinned flat, illustrating typical relative positions of major
branches.

Size distribution of enhanced HRP permeability sites (pooled
data from eight rabbits). An equivalent circular diameter was
calculated from the area of each HRP spot.

En face spatial distribution of enhanced HRP permeability sites
in aortas of rabbits 1-4 as reconstructed by image analysis. Each
dot on the aorta represents an actual HRP spot. At the right of
each aorta is plotted the spot density in the five regions into which
each aorta was divided: (1) arch, (2) upper descending thoracic,
(3) middle descending thoracic, (4) lower descending thoracic
(intercostal region), and (5) abdominal. The average spot density
over the enire aorta is tabulated at the bottom of each aorta. The
extent of xerographic/photographic reduction of the aortic image
varies from rabbit to rabbit.

Figure 2.4 En face spatial distribution of enhanced
in aortas of rabbits 5-8 as reconstructed
caption for Figure 2.3 for further details.

HRP permeability sites
by image analysis. See

Figure 2.5

Figure 2.6

En face spatial distribution of enhanced HRP permeability sites
in portions of abdominal aortas of rabbits 4 and 5. Three regions
of HRP streaks are observed: (1) proximal to the celiac ostium
along the anatomical right lateral wall of the aorta; (2) proximal to
the celiac ostium along the anatomical left lateral wall of the
aorta; and (3) between the celiac and superior mesenteric ostia
spanning the anatomical ventral and left lateral walls of the aorta.
Streak numbers on figure correspond to these regions.

Representative polar coordinate system around ostia. The center
of the coordinate system is the center of gravity of the ostium
under consideration. The angle 0 is measured in the clockwise
direction. 0=00 is proximal; 0=180 ° is distal; 0=900 is anatomical
right for a ventral ostium, anatomical left for a dorsal ostium,
dorsal for a lateral ostium on the right side, and ventral for a
lateral ostium on the left side; 0=2700 is anatomically opposite to
90°. The two dashed lines divide the domain into four 900
quadrants centered about 0=00, 900, 1800, and 2700. Spot
patterns are plotted as aorta is viewed en face and lateral
orientations shown here are anatomically correct for the case of a
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vessel on the ventral surface or on the right side. The coordinate
axes are marked off by tick marks in 1 mm increments, and each
axis goes out to a maximum of 6 mm. The coordinate "d" denotes
the distance from the ostium edge along the major axis of the
ellipse, and the circles represent equally spaced increments
along coordinate d.

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

En face spatial distribution of HRP spots around abdominal ostia
(pooled data from eight rabbits). Region of "No Data" denotes
end of aortic tissue at cut edge. Region labelled "Influenced by
Sup. Mes." denotes region of probable HRP spot overlap
between the superior mesenteric and right renal branches.
Region labelled "Influenced by Ventral Streak" denotes region
believed to be associated with streak between celiac and
superior mesenteric ostia. The outline of each ostium represents
an ellipse whose major and minor axes are determined by
averaging the eight pairs of major and minor axes obtained by
image analysis. Circles drawn around the ostia correspond to 1/2
mm increments in d, the distance from the ostium edge along the
major axis of the elliptical ostium; therefore, the innermost circle
corresponds to d=0.5 mm, the next circle to d=1.0 mm, the third to
d=1.5 mm, and the outermost circle to d=2.0 mm.

Radial distribution of HRP spots around abdominal ostia as a
function of the distance from ostium edge d (pooled data from
eight rabbits). Regions labelled "Incomplete Data" are associated
with end of aortic tissue at cut edge. Region labelled "Part of
Ventral Streak" refers to spots believed to be primarily associated
with the streak seen en face in the region between the celiac and
superior mesenteric ostia. Each data point represents all the data
from eight rabbits in a single quadrant. The data points at d=0.5
mm correspond to all the spots between the periphery of the
ostium and the first circle in Figure 2.7. The data points at d=1.0
mm correpsond to all of the spots between the first and second
circles in Figure 2.7, and so forth.

Angular distribution of HRP spots around abdominal ostia for the
region O<d<2 mm (pooled data from eight rabbits). Also plotted is
the distribution of length of experimentally-induced
atherosclerotic lesions in rabbits [16,17].

En face spatial distribution of HRP spots around the superior
mesenteric and right renal ostia in each of the eight rabbits
studied. Both vessels and their corresponding HRP spots are
shown on the same plot in their relative anatomical locations.
Dashed contours represent actual shapes of ostia; solid contours
represent ellipses used to approximate shapes of ostia.
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Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

En face spatial distribution of HRP spots around anatomically
right and left intercostal ostia (pooled data from eight rabbits,
eight pairs per rabbit). Innermost circle represents ostium.
Additional circles correspond to d=0.5 and 1.0 mm.

Radial distribution of HRP spots around anatomically right and
left intercostal ostia as a function of the distance from ostium
edge d (pooled data from eight rabbits, eight pairs per rabbit).
Each data point represents all the data from eight rabbits in a
single quadrant. The data points at d=0.5 mm correspond to all
the spots between the periphery of the ostium and the first circle
in Figure 2.11. The data points at d=1.0 mm correpsond to all of
the spots between the first and second circles in Figure 2.11.

Angular distribution of HRP spots around anatomically right and
left intercostal ostia for the region O<d<1 mm (pooled data from
eight rabbits, eight pairs per rabbit). Also plotted is the
distribution of length of experimentally-induced atherosclerotic
lesions in rabbits [17].

En face spatial distribution of HRP spots around aortic arch ostia
(pooled data from seven rabbits). Exact location and size of
ostia are unknown. Circles with radii of 4 mm around the
brachiocephalic center of gravity and 3 mm around the left
subclavian center of gravity are drawn to define the region of
interest. Regions of "No Data" arise as a result of manner in
which aortic arch is cut and pinned flat.

Angular distribution of HRP spots around aortic arch ostia
(pooled data from seven rabbits). HRP spots within 4 mm of the
center of gravity of the brachiocephalic artery and 3 mm of the
center of gravity of the left subclavian are used to construct the
figure. Regions of "Incomplete Data" are associated with regions
of "No Data" in Figure 2.14.
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Chapter Three

Measurement of Flowrates Through Aortic
Branches in the Rabbit In Vivo

3.1 Introduction

3.1.1 Background

A knowledge of the relative flowrates in the major branches of the aorta

in-vivo is important in studies of hemodynamics, drug delivery, and

pharmacokinetics among others. Our specific interest in this problem is

motivated by ongoing studies on the potential relationship of hemodynamics to

atherosclerosis. We had previously reported the existence of punctate sites in

the normal New Zealand White rabbit aorta that are highly permeable to

horseradish peroxidase (HRP), an enzyme of molecular weight 40,000 and

Stokes-Einstein radius about 3.0 nm, which is injected into the rabbit one

minute before sacrifice and subsequently visualized en face by reaction with

diaminobenzidine (DAB) and H202 [1]. These nearly-circular sites, referred to

as "HRP spots", are approximately 160 Ctm in diameter, and they have been

shown to be highly permeable to radio-labelled LDL [1]. Moreover, some of

these HRP spots have been shown to correspond to abnormal, enlarged

endothelial cells and to possess morphological features different from normal

tissue [2]. More recently, we have used quantitative image analysis to perform

a detailed mapping of the spatial distribution of the HRP spots on the aortic

lumenal surface and to compute the density of the spots around the major

aortic ostia [3]. That study revealed the existence of a non-random and

qualitatively reproducible spot topographical distribution as well as preferred

spot orientations around ostia, and these findings are consistent with an
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influence of localizing factors such as detailed hemodynamics and/or arterial

wall structural variations.

The experimental results of Karino and coworkers in glass models of

arterial branching [4,5] and in transparent natural vessels [6-10] have revealed

that the flow field within the aorta is sensitive to the values of the aortic flow

splits, i.e. the fraction of the aortic flow entering each of the branches. Our

interest in relating the topography of the HRP spots to the flow patterns in the

rabbit aorta motivated the current study of the flow splits in the rabbit in-vivo. A

knowledge of the flow areas of the various branches is not in itself sufficient for

establishing the resulting flow splits because the actual flowrates within the

various branches are primarily determined by the downstream resistance to

flow in the microvasculature (the arterioles and capillaries) and hence may

yield results significantly different from the geometric flow splits that are based

solely on arterial dimensions. Under the assumption of Poiseuille flow, it has

been shown that the arterial system accounts for only about 25% of the total

resistance to flow in the human vascular bed, while the arterioles account for

about 41% and the capillaries for about 27% (the entire venous system

accounts for only 7%) [11].

Cardiac output and the fractions thereof comprising the cerebral,

coronary, renal, and splanchnic circulation have been reported by several

investigators [11-16]. Moreover, there exist data on flowrates in some of the

major aortic branches of the dog [17-22]. The situation in the case of the rabbit,

however, is entirely different. A detailed computerized literature search

spanning the time period between 1970 and the present revealed that data on

aortic flow splits in the rabbit is very sparse and scattered. Such paucity of

measurements was surprising especially in view of the fact that the rabbit has

long been used as an animal model in various areas of biomedical research. It
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is therefore hoped that the results reported in this study may provide useful

information to investigators not only in the field of atherosclerosis research,

which is our group's major impetus, but also in other medical areas in which

the rabbit represents an appropriate animal model.

3.1.2 Rabbit Aortic Anatomy

The anatomy of the rabbit aorta and its branches is depicted in Figure

3.1. The aorta emerges from the left ventricle and ascends dorsal to the

sternum. The ascending aorta merges into the aortic arch which in turn leads

to the descending thoracic aorta. The greater curvature of the aortic arch gives

rise to two branches, the brachiocephalic, which shortly divides into the right

subclavian and the two common carotid branches, and the left subclavian. The

descending thoracic aorta gives rise along its dorsal surface to eight pairs of

intercostal arteries, the most distal of which emerges approximately at the level

of the diaphragm, which anatomically marks the division between the thoracic

and abdominal aorta. Within the abdominal aorta, the celiac artery, a large

vessel which branches into the left gastric, hepatic, and splenic arteries,

emerges ventrally immediately caudal to the diaphragm. A ninth pair of dorsal

intercostal (or phrenic) arteries arises either slightly proximal or distal to the

celiac branch. Downstream of the celiac, the ventral superior mesenteric

artery, typically the largest aortic branch, is encountered. Immediately distal to

the superior mesenteric and emerging laterally is the right renal artery,

followed by the left renal artery on the opposite side of the animal. Some

distance downstream of the left renal is the ventral inferior mesenteric artery,

and this is immediately followed by a pair of gonadal arteries which in the male

rabbit are the internal spermatic arteries and in the female are the ovarian

arteries. A pair of lumbar arteries is encountered some distance downstream
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of the gonadal arteries, and these are eventually followed by the aorto-iliac

bifurcation whose daughter vessels are the right and left common iliac arteries

and which marks the anatomical termination of the aorta.

3.2 Materials and Methods

3.2.1 Flowrate Measurement System

A transit-time ultrasonic flowmeter and associated perivascular probes

(Transonic Systems Inc., Ithaca, NY) was used for measuring the volumetric

flowrates through the rabbit aorta and the major aortic branches in-vivo. Two

perivascular probes were used, a larger 4S probe for the ascending thoracic

aorta and a smaller 2R probe for all other locations. According to the

manufacturer, the absolute accuracy was +15% for the 4S prbe and +10% for

the 2R probe, and both probes were calibrated by the manufacturer. Each

probe consisted of a body containing two ultrasonic transducers positioned on

one side of a vessel and a fixed acoustic reflector bracket located on the

opposite side of the vessel midway between the two transducers. The probes

were connected to a single channel transit-time volume flowmeter (T101D)

which displayed a digital reading of the mean flowrate. Analog outputs of both

mean and pulsatile flowrates were recorded on a strip-chart recorder

(Superscribe 4990, Houston Instruments, Austin, TX).

The vessel usually fit loosely within the probe window. Because the

ultrasound wave must be transmitted throughout its course through a medium

possessing similar acoustic properties to arterial tissue in order to yield

accurate measurements, an acoustic couplant (H-R Lubricating Jelly,

Transonic Systems Inc.) was applied to the window of the bracket through a 10

cc syringe.
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3.2.2 Animal Experiments

3.2.2.1 Animal Preparation

Nine specific pathogen-free male, New Zealand White rabbits

Hra:(NZW) SPF, Onyctolagus Cunniculus (Hazleton Research Products, Inc.,

Denver, PA) ranging in weight from 2.3 to 2.6 kg were used. The rabbits were

individually housed in stainless steel cages (24"x30"x17"), fed a commercial

rabbit diet (Purina Rabbit Chow HF5326, Ralston Purina Company, St. Louis,

MO) and water ad libitum, and maintained in a controlled environment of 68-72

OF, relative humidity of 40-65%, and 12 hours light/12 hours dark. Ventilation

was 100% fresh air with 12 complete room air changes per hour. The animals

were fasted for 1 day prior to the experiments.

Initial anesthesia was induced by the intramuscular injection of 50

mg/kg ketamine and 10 mg/kg xylazine. After the rabbit lost consciousness,

the left ear was shaved, and a catheter (24 ga, 2 in Intracath, Deseret

Pharmaceutical Co., Sandy, VT) was inserted through one of the marginal ear

veins, secured in place with tape, and tightly capped. The ventral surface of

the rabbit was shaved, prepped with 70% isopropyl alcohol, and secured with

limb ties in dorsal recumbancy. The catheter was then connected to a bag of

sterile lactated Ringer's solution positioned about 100 cm above the operating

table that provided continuous fluid administration averaging 10 ml/kg/hr

throughout the experiment. Animals were maintained on circulating hot water

heating pads (37.8 C). ECG electrodes connected to the animal's four limbs

provided continuous monitoring of heart rate.

3.2.2.2 Surgical Procedures

All procedures described here were reviewed and approved by the

Committee on Animal Care at MIT. The right common carotid artery was
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isolated through a 3 cm right paratracheal skin incision and cannulated with a

catheter (16 ga, 2 in Angiocath, Deseret Pharmaceutical Co.). The catheter

was fixed to the carotid artery with encircling ligatures of 3-0 silk and then

connected to a pressure transducer (Statham Gould P231D, Gould Inc.,

Medical Products Division, Oxnard, CA) and monitor (Statham Gould Model

SP14053, Gould Inc.) for continuous blood pressure monitoring. A

tracheotomy was performed, and an uncuffed endotracheal tube (3 mm

internal diameter) was inserted approximately 4 cm into the trachea, secured in

place with encircling ligatures of 3-0 silk, and then connected to a respirator

providing oxygen at about 1.5 liters/min. The respirator delivered a tidal

volume of 25-50 ml of oxygen containing 0.5 to 2% isoflurane at 30 breaths per

minute. Attempts were made to maintain heart rate and blood pressure

constant by decreasing the administration rate of isoflurane and increasing the

rate of lactated Ringer's solution infusion in response to decreased heart rate

and blood pressure.

A ventral midline laperotomy was performed. The abdominal contents

were retracted to the rabbit's left side and maintained moist by covering them

with saline-soaked gauze. Various sections of the aorta and aortic branches

were isolated with a combination of blunt and sharp dissections. A portion of

the abdominal aorta a short distance proximal to the iliac bifurcation and the

right and left iliac vessels were first isolated. Proceeding proximally, the right

renal artery, superior mesenteric, and celiac arteries were isolated. The

abdominal contents were then shifted to the animal's right side, and the left

renal artery was isolated. The most difficult abdominal vessels to isolate were

the right renal and the celiac branches. The right renal artery often lay

immediately dorsal to the larger and more fragile right renal vein; on several

occasions, the vein had to be retracted to provide access to the artery.
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Moreover, perirenal fat often obscured the location of the artery. The primary

difficulty with the celiac stemmed from access to the vessel being limited by its

close proximity to the liver and stomach. Furthermore, only a short length was

available for positioning the flow probe because the artery often branched

immediately into its daughter vessels.

After the abdominal vessels were isolated, the abdomen was closed

with a simple continuous pattern of 3-0 nylon to minimize evaporative heat and

fluid losses. A sternotomy was then performed and a self-retaining retractor

used to facilitate isolation of the thoracic vessels. The pericardium was

incised, and a thymactomy was performed to expose the aortic arch and its

branches. A section of the ascending aorta

was then isolated, followed by the brachiocephalic and the left subclavian

arteries. Because the right common carotid artery was cannulated for blood

pressure measurements, blood from the brachiocephalic vessel flowed only

into the left common carotid and the right subclavian arteries.

Within the thoracic aorta, the most difficult branch to isolate was the left

subclavian because it has intimate fascial attachments and a short length

available for isolation prior to entering the rabbit's left foreleg. No attempt was

made to isolate the inferior mesenteric, phrenic, intercostal, gonadal, or lumbar

branches of the aorta, all of which were much smaller vessels.

3.2.2.3 Flowrate Measurements

Mean and instantaneous (pulsatile) flowrate measurements were

performed after the vessels were isolated. The 4S probe was first used to

measure the total flowrate entering the ascending aorta. The flowrates through

the brachiocephalic and left subclavian vessels were next measured using the

2R probe. The abdomen was then reopened and the abdominal contents
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again retracted to the animal's side to regain access to the abdominal vessels

previously isolated. Flowrates were measured sequentially in the superior

mesenteric and celiac arteries, the abdominal aorta proximal to the iliac

bifurcation, and the right iliac, left iliac, right renal, and left renal arteries.

Because arteries vasoconstrict upon handling, which may significantly alter the

resistance to flow within a vessel, a vasodilator, 0.5% Lidocaine (Phoenix

Pharmaceutical, St. Joseph, MO), was applied topically through a 5 cc syringe

to the periphery of each vessel before mounting the perivascular ultrasonic

probe. In addition to mounting the probe and applying the vasodilator and

acoustic couplant, time was needed for the flow reading to equilibrate at every

step and for recording both the mean and pulsatile flow signals. The

procedure at each site averaged about 15 min, and the complete set of

measurements took about 150 min. During this period, the ascending aorta

flowrate decreased with time. Therefore, additional measurements of the

flowrate through the ascending aorta were made at various stages during the

abdominal measurement procedures to establish a more accurate assessment

of the instantaneous flowrate entering the aorta.

The measured flowrates were somewhat sensitive to the angle at which

the perivascular probes were mounted on the surface of the vessel. This was

particularly the case in the curved aortic arch. In order to establish

consistency, the probe was typically rotated through a wide range of angles,

and the maximum flowrate detected was taken as the actual flowrate through

the vessel. Furthermore, in certain instances, the weight of the ultrasonic

probe induced a kink or bend in the vessel and hence partially obstructed the

flow. This problem was most pronounced in the renal arteries where the length

of the artery (i.e. the length of the vessel between the aorta and the kidney)

was large, and the arteries were loosely attached to surrounding perirenal
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tissue so that they could become bent easily. This problem was circumvented

by ascertaining that the probe fit loosely around the vessel, and this in some

instances necessitated resting the connection cable of the probe on an

additional support so that its weight was primarily borne by this support and not

by the artery.

Following completion of the measurements, the animal was euthanized

with an overdose (about 3 ml) of sodium pentobarbital (6 g/ml, Lemmon Co.,

Sellersville, PA) injected either into the marginal ear vein catheter or directly

into the left ventricle. The animal died immediately.

3.3 Results

3.3.1 Blood Pressure and Heart Rate

The nine-rabbit average variation of mean blood pressure and of heart

rate with time from the beginning of surgery are shown in Figures 3.2 and 3.3,

respectively. Blood pressure and heart rate decreased progressively with time

during the course of the measurements, presumably as a result of the

combined effects of evaporative fluid and heat losses and anesthesia-induced

myocardial depression. These decreases were partially compensated for by

increasing the lactated Ringer's solution infusion rate and by decreasing the

amount of isoflurane administered. Changes in administration occasionally

led to sudden jumps in both blood pressure and heart rate. However, there

were limitations on the maximum fluid infusion rate imposed by the reluctance

to alter the flow properties of blood and on the decrease of isoflurane imposed

by the need for a sufficient amount to maintain deep anesthesia throughout the

procedure. Heart rate was generally more easily maintained than blood

pressure, and the flow rate measurements at branches were always collected

before excessive blood pressure drop was encountered.

90



3.3.2 Variation of Aortic Flowrate with Time

Table 3.1 summarizes measurements of the mean volumetric flowrate in

the ascending aorta for each of the nine rabbits studied. The flowrate into the

aorta decreased with time throughout the course of the lengthy data acquisition

sessions. The exact times at which the flowrates were measured were not

recorded, and each flowrate is tabulated at its sequential measurement

number. For example, the ascending aorta flowrate measurements in rabbit 1

were the first and tenth measurements made with eight branch flowrate

measurements in between. The measurement number representation in Table

3.1 is roughly equivalent to displaying the data as a function of time, since

each measurement took approximately 15 min.

3.3.3 Mean Flow Splits

Table 3.2 summarizes the mean aortic flow splits for the nine rabbits.

The measured flowrate in each of the isolated aortic branches was divided by

the flowrate in the ascending thoracic aorta of the same rabbit and expressed

as per cent. The total aortic flowrate appropriate to each branch measurement

was estimated by interpolating between the two nearest ascending aorta

flowrate measurements in Table 3.1. Although there is considerable scatter in

the flow split data among the individual rabbits, the general trends are

reproducible. The flowrate through the superior mesenteric artery is the

highest (32% of the total), followed by the flowrate through the celiac artery

(24%). The two flow splits are significantly different (p<0.05). These two

vessels receive on average about 56% of the total aortic flowrate. Each of the

other major branches receives a much smaller fraction of the total aortic

flowrate, ranging from about 5 to 8%. Flow splits for paired vessels were
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symmetric. The mean flow splits through the right and left renal arteries were

not significantly different (p>0.05), nor were those through the right and left

common iliac branches. Because the right carotid artery was cannulated for

blood pressure measurement, the flowrate through the brachiocephalic artery

may have been significantly underestimated.

The sum of the flowrates through all eight vessels studied averaged

94+12% of the total aortic flow. Therefore, an average of only about 6% of the

mean aortic flow goes into the eight pairs of intercostal arteries and the nferior

mesenteric, phrenic, gonadal arteries, and lumbar arteries all together

although the distribution among these vessels is not known.

The nine experiments reported here were performed on rabbits that had

been fasted for about 24 hours prior to surgery and with the topical addition of

a vasodilator immediately before mounting the perivascular flow probes during

surgery. In addition, three exploratory experiments were performed on rabbits

that had not been fasted and without vasodilator application. The absence of

vasodilator had its most pronounced effect on the renal arteries for which

vasoconstriction upon handling was easily observed visually. Without

vasodilator, flow splits within the two renal arteries averaged 1.5%, about one-

fourth of the value measured with vasodilator (Table 3.2). The effect of the

vasodilator on the other vessels was not nearly as pronouned.

3.3.4 Pulsatile Flowrate Profiles

Figure 3.4 illustrates typical instantaneous pulsatile flowrate profiles in

the ascending aorta, the isolated abdominal aortic section proximal to the iliac

bifurcation, and each of the eight aortic branches studied. Reverse flow during

diastole was always observed in the ascending thoracic aorta, was never

observed in the section of the lower abdominal aorta proximal to the iliac
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bifurcation or in the renal or iliac arteries, and was observed with varying

frequencies in the aortic branches. Specifically, reverse flow during diastole

was observed in the brachiocephalic artery in three of the nine rabbits studied

(rabbits 4,6, and 9), in the left subclavian artery in one of the nine rabbits

(rabbit 4), in the celiac and superior mesenteric arteries in five of the nine

rabbits (rabbits 1,3,4,6, and 8 in the celiac and 2,4,5,6, and 8 in the superior

mesenteric), and never in the renal or iliac arteries.

3.3.5 Peak Pulsatile Flow Splits

Flow splits in terms of the peak pulsatile flowrates are tabulated in Table

3.3. As in Table 3.2, there was considerable variability among animals. The

highest flow splits were in the superior mesenteric and celiac arteries (30 and

23%, respectively) with the remaining branches receiving considerably smaller

fractions (about 3 to 6%) of the aortic flowrate. The renal and iliac flow splits

were substantially lower than their mean flow counterparts. Only 78% of the

total peak pulsatile aortic flowrate was accounted for by the peak flowrate in

the eight major branches, as compared to 94% for the mean flowrate. As in the

case of mean flowrate, the peak pulsatile flow splits in paired vessels were

symmetric. The right and left renal flow splits were not different (p>0.05), nor

were the flow splits for the right and left iliac arteries (p>0.05).

3.3.6 Peak Pulsatile to Mean Flowrate Ratios

The occurrence of reverse flow in diastole within the aortic arch and in

some of the aortic branches, but not in the abdominal aorta proximal to the iliac

bifurcation or in the renal or iliac arteries, may be attributable, at least in part, to

variations in the elastic properties of the arterial wall at these various locations.

As an indicator of relative wall distensibility, we calculated the ratio of peak
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pulsatile to mean flowrates shown in Table 3.4. The ratios of peak pulsatile to

mean flowrates divide into two general groups, namely those of the ascending

aorta and aortic branches down to the superior mesenteric artery, in which the

ratio is higher, and those of the lower abdominal aorta and the renal and iliac

branches, in which the ratio is lower. Although the superior mesenteric and

right renal arteries are generally very close to one another in the rabbit, the

peak pulsatile to mean flowrate ratios associated with the superior mesenteric

and right renal arteries are significantly different (p<0.05), thereby suggesting

the existence of a sharp decrease in wall distensibility beyond the superior

mesenteric artery.

3.4 Discussion

This paper has reported the first known detailed in-vivo measurements

of mean and peak pulsatile aortic flow splits in the rabbit. This information is

considered vital for formulating physiologically-accurate experimental and

numerical models of the flow field in the rabbit aorta which are of interest from

the standpoint of investigating potential relationships between arterial

hemodynamics and early atherosclerosis in the rabbit.

The measurements have demonstrated that the largest abdominal

vessels, namely the superior mesenteric and celiac arteries, receive the bulk of

the aortic flow (about 56% combined in mean flow), while each of the

remaining aortic branches receives a significantly smaller flowrate (about 5-8%

each). The flow splits in paired vessels are symmetric. Additionally, we found

flow reversal from the aortic branches back into the aorta during diastole with

varying frequency in the brachiocephalic, left subclavian, celiac, and superior

mesenteric arteries. Reverse flow was never observed in the renal or the iliac

arteries.
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The peak pulsatile flow splits were also largest in the celiac and

superior mesenteric arteries (about 53% combined), while the other vessels

received considerably less flow (3-6% each). The finding that the peak

pulsatile flow splits in the renal and iliac arteries are smaller than their mean

flow counterparts is consistent with the observation that the renal and iliac

arteries do not undergo reverse flow in the diastolic phase of the cardiac cycle.

As flow in the celiac and superior mesenteric arteries reverses direction in

diastole, blood reenters the aorta through these vessels, and some of this

reverse flow probably enters the renal and iliac branches which do not

undergo flow reversal. Therefore, the flow splits in the renal and iliac arteries

have to be relatively large during the diastolic phase. Consequently, in order

to yield the mean flow splits reported in Table 3.2, the flow splits in the renal

and iliac arteries have to be relatively small during systole. This, however, only

partially explains the relatively smaller renal and iliac peak pulsatile flow splits

shown in Table 3.3. Another point in this regard is that the renal and iliac

arteries are significantly less elastic than the other aortic branches. Therefore,

at peak pulsatility the diameters of the renal and iliac arteries increase by a

smaller amount than the diameters of the other branches so that the renal and

iliac arteries become sites of relatively increased resistance to flow thereby

leading to the smaller flow splits through them at peak pulsatility.

The ratio of peak pulsatile to mean flowrates has been used as a

criterion for the assessment of vessel wall elasticity and has demonstrated that

the abdominal aorta is considerably less elastic than the ascending thoracic

aorta, and that the renal and iliac arteries are considerably less distensible

than the other aortic branches. Harkness et al.23 measured the elastin to

collagen ratio in various parts of the dog aorta and aortic branches and
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demonstrated an abrupt decrease in aortic distensibility at the level of the

diaphragm.

In the current study, a vasodilator has been applied to the periphery of

vessels prior to making the in vivo flowrate measurements in order to avoid

problems with vessel vasoconstriction. This is particularly important in view of

the fact that various vessels do not vasoconstrict equally. The effect of the

vasodilator is most pronounced in the case of the renal arteries but is not

nearly as significant in the other vessels. Fasting the animal prior to

performing the measurements is important so as not to bias the data by having

a situation where an inordinately large fraction of the aortic flow rushes to the

stomach through the mesenteric vessels in order to digest freshly-consumed

food. There is experimental evidence that splanchnic blood flow is higher in

the fed than in the fasted animal [19,24,25] and that vessel autoregulation is

somewhat sensitive to whether or not the animal has been fasted [20,21].

The relatively wide range of mean and peak pulsatile flow split values in

the nine animals studied is probably a consequence of several factors. Chief

among these factors is inherent variability in animal response to anesthesia as

well as variations in metabolic characteristics and rates of evaporative heat

and fluid losses. The flow splits associated with the celiac and superior

mesenteric arteries span a larger range than those associated with the other

vessels since these two vessels supply the abdominal contents of the animal,

and during the course of the measurements the abdominal contents were

retracted to the animal's side to gain access to the aorta. Since the retraction

of the mesentery cannot be performed exactly reproducibly, the pull imposed

by the mesentery on the celiac and superior mesenteric vessels was

somewhat different for each animal, and therefore the measured flowrates

were undoubtedly affected.
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It remains unclear at this time how truly physiological the measurements

reported here are for several reasons. Firstly, the animal was maintained in

dorsal recumbancy throughout the course of the measurements, and this

posture is clearly not physiological although it is not obvious how posture may

affect flow splits. Secondly, the animal was under continuous anesthesia, and

this is associated with significant decreases in blood pressure and heart rate.

A conscious rabbit normally has a mean arterial blood pressure of 90-100 mm

Hg, a heart rate of 250-300 beats per minute, and a respiratory rate of 250-300

respirations per minute [26,29]. The blood pressure and heart rate values

shown in Figures 3.2 and 3.3 and the 30 respirations per minute imposed by

the respirator setting are dramatically different from the conditions associated

with the conscious state. There is experimental evidence that anesthetics can

alter hemodynamics directly via a vascular effect or indirectly through an effect

on the heart and/or neurohumoral control mechanisms [30]. Furthermore,

anesthesia affects the flowrates through the various aortic branches unequally

so that it probably has an effect on flow splits30. Lastly, the influences of

evaporative heat and fluid loss, possible alterations in serum electrolytes, and

potential disruptions in the integrity of vasopressor reflexes upon flow splits are

unknown and should be investigated.

Comparison of the abdominal flow splits in the rabbit to those in man

under resting conditions reveals that the combination of renal and iliac flow in

the rabbit is about half that in man (24% vs. about 50%), while the flow splits

into the superior mesenteric and celiac branches are considerably larger in the

rabbit (56% vs. about 25%). It is uncertain how much of this discrepancy is

attributable to true species differences and how much is due to the effects of

anesthesia and surgical manipulation; however, the results point to the

importance of performing in-vivo experiments of the type reported here.
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Figure Captions

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Anatomy of a typical rabbit aorta illustrating the major aortic
branches.

Mean blood pressure as a function of time from the beginning of
surgery. Mean blood pressure in each animal was calculated as
one-third of the maximum systolic value plus two-thirds of the
minimum diastolic value; the result agreed with the time-mean
blood pressure displayed by the pressure monitor. Data
represent mean+standard deviation of measurements from the
nine rabbits studied.

Heart rate as a function of time from the beginning of surgery.
Data represent mean±standard deviation of measurements from
the nine rabbits studied.

Typical pulsatile volumetric flowrate profiles in the ascending
aorta, the isolated section of the abdominal aorta proximal to the
iliac bifurcation, and each of the eight aortic branches studied.
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Chapter Four

Detailed Flow Patterns in the
Transparent Rabbit Aorta

4.1 Introduction

4.1.1 Background and Motivation

The preferred localization of early atherosclerotic lesions in regions of

arterial branching, curvature, and bifurcation has given rise to the notion of the

importance of localizing factors in the etiology and pathogenesis of the

disease. The most frequently cited localizing factor is the detailed flow field

within the affected vessels, since the flow patterns in these regions are

expected to be disturbed and generally non-unidirectional. We have

previously reported the existence of punctate sites of substantially enhanced

permeability to macromolecules on the aortic lumenal surface of the normal

New Zealand White (NZW) rabbit [1,2]. More recently, we have performed a

detailed quantitative topographical mapping of these sites [3] and have

demonstrated that their density is highest in the vicinity of aortic ostia and that

they exhibit preferred radial and angular distributions around branches

consistent with the notion of the importance of localizing factors such as

detailed hemodynamics. These distributions bear some similarity to those of

experimentally-induced atherosclerotic lesions in hypercholesterolemic rabbits

[4-7].

Despite extensive efforts within the past 25 years to elucidate the

potential role of hemodynamics in the atherogenic process, very few

generalizations can be made. A detailed in-vivo experimental description of

arterial flow patterns remains elusive due to the fluid mechanical complexity
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dictated by the very tortuous vessel geometry, the very complex viscoelastic

characteristics of the arterial wall, and the limited spatial resolution of flow

measurement systems. The geometry and wall motion issues along with the

complex non-Newtonian properties of blood and the flow pulsatility pose

technical and economic constraints on the formulation of accurate predictive

numerical models of arterial flow fields. There have been numerous

experimental flow visualization studies in glass models and polymeric casts

which, despite inherent limitations, have shed some light on the details of

arterial flows (see, for example, [8-11]). More recently, with the advent of very

fast computers, very efficient algorithms, and the use of the finite element

method for the mathematical description of complex geometries, there has

been a surge in the number of two- and three-dimensional numerical

simulations of arterial fluid mechanics [12-16]. Although these computations

offer superb spatial and temporal resolution as well as the ability to investigate

the effects of various parameters on the resulting flow field, they remain

generally confined to studies within over-simplified geometries. The objective

of the study reported here is to investigate the detailed flow field in the normal

rabbit aorta. The experiments were carried out on isolated natural aortas

rendered transparent to allow flow visualization.

4.1.2 Rabbit Aortic Anatomy

Figure 4.1 depicts an anatomical schematic of the rabbit aorta and its

major branches. A detailed description of the anatomy can be found

elsewhere [17]. Briefly, the ascending aorta emerges from the left ventricle,

and it merges into the aortic arch. The greater curvature of the arch gives rise

to two vessels, the brachiocephalic and the left subclavian arteries. The

brachiocephalic artery immediately divides into the right subclavian and the
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two carotid vessels. The descending thoracic aorta gives rise along its dorsal

surface to eight pairs of intercostal arteries, the most distal of which emerges

approximately at the level of the diaphragm, which anatomically marks the

division between the thoracic and abdominal aorta. Within the abdominal

aorta, the celiac, a large vessel which branches immediately into the left

gastric, hepatic, and splenic arteries, and which supplies the stomach, liver,

duodenum, pancreas, and spleen emerges ventrally immediately caudal to the

diaphragm. A ninth pair of intercostal (or phrenic) arteries arises along the

dorsal surface of the aorta either slightly proximal or distal to the celiac branch.

Downstream of the celiac is the superior mesenteric, a large ventral artery

which supplies the pancreas as well as the small and large intestines.

Immediately distal to the superior mesenteric and emerging laterally is the right

renal artery, followed by the left renal artery on the opposite side of the animal.

Some distance downstream of the renals is the ventral inferior mesenteric

artery which supplies the descending colon and rectum, eventually followed by

the aorto-iliac bifurcation which marks the anatomical termination of the aorta.

4.2 Materials and Methods

4.2.1 Preparation of Transparent Aorta

Transparent rabbit aortas were prepared according to the method of

Karino and Motomiya [18]. Entire aortic trees including the hearts, the full

lengths of the aortas, and segments of all major aortic branches were isolated

from the bodies of normal NZW rabbits shortly after sacrifice. Excess

connective tissue was trimmed; the eight pairs of intercostal arteries, the

inferior mesenteric artery, and the lumbar and gonadal arteries in each aorta

were ligated with 6-0 nylon suture paying special attention not to alter the

shape of the aortic lumen as a result of the ligations. Smaller microvessels on
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the aortic surfaces were occluded by ligation and/or coagulation with a

fulgurator. The major aortic branches including the brachiocephalic, left

subclavian, celiac, superior mesenteric, right and left renal, and right and left

iliac arteries were cannulated with 2-2.5 cm long square-cut, thin-walled

stainless steel catheters (8 to 16 ga) whose outer diameters approximately

matched the inner diameters of the branches. The catheters were tied firmly in

place with 3-0 silk suture. The left ventricles were then incised with 5-cm long

6-ga stainless steel catheters to provide inlet ports into the aortas, and the

pulmonary arteries and veins were ligated with 3-0 silk suture. The catheters

of the major branches were then capped, and the vessels were subjected to a

water or normal saline (0.9 w/o) hydrostatic head at a physiological pressure of

about 100 mm Hg at which point the vessels took on their natural physiological

shapes. The entire aortic trees were then mounted in their physiological

configurations onto three-dimensional stainless steel frames constructed

specifically for this purpose. The frames consisted of 3 mm outer diameter

stainless steel tubing which was bent and shaped so that it made firm contact

with all the catheters and hence provided solid support for the aortic trees.

The tissue was fixed for about 24 hrs by pressure perfusion at about 100

mm Hg with and immersion in a solution of 2% glutaraldehyde and 4%

formaldehyde in isotonic saline. Subsequently, the tissue was dehydrated

over 2 to 3 days by simultaneously pressure perfusing it with and immersing it

in ethanol-saline mixtures of progressively increasing ethanol concentration,

and finally suspending it in pure ethanol. The cannulated branches of each

aorta were then connected to flexible polyethylene tubing (Intramedic) whose

inner diameter matched the outer diameter of the cannulae. The lengths of the

various connection tubes were adjusted so that the fraction of total inlet

flowrate into each of the aortic branches matched mean flowrates previously
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measured in the rabbit in-vivo using transit-time ultrasound flowmetry [19].

Finally, the tissue was rendered transparent by pressure perfusion with and

immersion in methyl salicylate (oil of wintergreen) containing 5% ethanol.

4.2.2 Experimental Procedure and Data Analysis

Each of the mounted transparent vessels was placed in a large square

glass chamber filled with oil of wintergreen containing 5% ethanol. This

chamber was then placed on a vertically-moveable horizontal stage, and the

areas of interest within the aortas were trans-illuminated with condensed

parallel light provided by a Reichert Binolax twin-lamp assembly supplying

either low intensity light from a tungsten filament lamp or high intensity light

from a 200W dc mercury arc lamp with a filter to eliminate UV illumination.

Each vessel was then subjected to the flow of a dilute suspension of 50-

165 gm diameter polystyrene microspheres (s.g. 1.06, Particle Information

Services, Bremerton, WA) in oil of wintergreen containing 5% ethanol (s.g.

1.16, dynamic viscosity 2.64x10-3 kg-m/s, and refractive index n=1.53). Steady

flow was provided by gravity-feed from a head tank, while pulsatile flow studies

were performed using the same head tank in combination with a sinusoidal

oscillatory flow pump. The process of rendering the aortas transparent led to a

complete loss of tissue compliance. This prevented performing pulsatile flow

experiments in the abdominal aorta since the relatively thin wall of the

abdominal aorta collapsed when a pulsatile pressure wave was imposed. In

the aortic arch, on the other hand, the wall was sufficiently thick that there was

no vessel collapse, and the pulsatility was imparted to the fluid thereby

allowing pulsatile flow visualization. Detailed flow field visualization through

various regions of interest within the transparent vessel was performed by

photographing the trajectories of the suspended tracer microspheres on 16
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mm cine film (Kodak double X-negative) at film speeds of 800 to 1400 frames

per sec using a high-speed 16 mm cine camera (Hycam, Red Lake Labs,

Santa Clara, CA) to which a zoom lens (x to 5x) had been attached.

Whenever possible, two perpendicular views of the same flow section were

photographed in order to fully visualize the three-dimensional structure of the

flow field. In certain cases, however, this was not possible due to anatomical

geometric complexities or due to obstruction caused by the stainless steel

frame on which the vessel was mounted.

Following the completion of the flow visualization procedure, each of the

transparent vessels, still in the glass chamber and under physiological

pressure, was trans-illuminated with condensed parallel light from a 200W ac

tungsten filament white lamp through a pair of 16 cm diameter pano-convex

lenses aligned in series. The arterial segments of interest were then

photographed, together with a scale at the same focus, on 35 mm color or

black and white film using a Nikon FE 35 mm camera equipped with close-up

lenses. These photographs were used to obtain pertinent geometric data

including the lengths and diameters of the various sections as well as the

various branching angles.

The developed 16 mm cine films were projected on a drafting table, and

the trajectories of individual tracer microspheres were analyzed frame by frame

with the aid of a stop-motion 16 mm movie analyzer (Vanguard Instrument

Corp., Melville, NY) to yield detailed flow patterns as well as quantitative

information on fluid velocity and and resulting wall shear stress.
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4.3 Results

4.3.1 Aortic Arch

4.3.1.1 Steady Flow

Figure 4.2 depicts a typical transparent rabbit aortic arch and its two

major branches, the brachiocephalic and the left subclavian arteries. In this

preparation, the inner diameter of the ascending thoracic aorta shortly after

emerging from the left ventricle is about 6.3 mm, increases to about 6.8 mm at

the apex of the aortic arch, and then tapers to about 5.5 mm in the upper

descending thoracic aorta. The brachiocephalic artery has an inner diameter

of about 4.6 mm at its trunk, but it divides quickly (after a length of about 4.6

mm) into the right and left carotid arteries which have inner diameters of about

2.7 and 2.4 mm, respectively. The left subclavian artery has an inner diameter

of about 2.0 mm, and it emerges from the arch at an angle of approximately 60

degrees from the horizontal.

Steady flow was studied in the arch at an inlet flowrate of 305 ml/min

corresponding to a Reynolds number (based on the inlet diameter of 6.3 mm

and the assumption of a circular aortic cross-section) of about 440. The flow

splits into the brachiocephalic artery, the left subclavian artery, and the

descending thoracic aorta were 17, 7, and 76% of the inlet flowrate,

respectively. The resulting detailed flow patterns are depicted in Figure 4.3,

and they can be described in terms of four general streamline categories.

These four categories are combined in the central portion of the figure, while

the four surrounding panels display each streamline category individually for

added clarity. In this and all subsequent flow pattern drawings, there are three

line patterns that are used to give a sense of the three-dimensionality of the

flow field. Solid lines denote streamlines in the common median plane, i.e. in
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the plane of the figure; long dashed lines represent streamlines some distance

either above or below the common median plane; and small dashed lines

correspond to streamlines that are furthest away from the common median

plane near the top and bottom walls.

The first category (Panel A) consists of relatively undeflected flow

originating in or near the common median plane and flowing into the

descending thoracic aorta; the tracer microspheres follow trajectories that are

virtually parallel to the walls of the aortic arch. The second category (Panel B)

consists of particles originating in or slightly above the common median plane

and which trace helical clockwise spiral motion along the ventral (i.e. top)

aspect of the arch prior to rejoining the flow in the common median plane at the

level of the descending thoracic aorta. This represents a secondary flow

component induced by the curvature of the aortic arch. The third category

(Panel C) consists of fluid entering the brachiocephalic artery. This fluid

originates in or slightly below the common median plane, and it includes

streamlines which directly enter the two carotid arteries (streamlines B,C,D) as

well as ones that trace helical motion into the right carotid artery (streamlines

A,E). This helical motion is comprised of fluid streamlines which approach the

distal (i.e. downstream) lip of the brachiocephalic branch, get deflected by the

presence of the flow divider onto the lateral sides of the branch, and proceed

slowly in a counter-clockwise helical fashion along the periphery of the branch

before finally joining the main parallel flow within the branch. Finally, the fourth

streamline category (Panel D) is comprised of both direct (streamlines A,B) and

helical deflected (streamline C) flow into the left subclavian artery as well as a

recirculating flow streamline into the brachiocephalic artery (streamline D).

These streamlines originate in, slightly below, or far below the common

median plane (at the dorsal, i.e. bottom, wall). Figure 4.3 also contains
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cutaway plane A-A' which depicts a cross-sectional view of the ascending

aorta proximal to (i.e. upstream of) the brachiocephalic artery illustrating

schematically the approximate regions of origin of the four flow categories.

Flow separation was observed at the lesser curvature of the aortic arch

slightly downsteram of the apex, but the region of separated flow was not

occupied by recirculating fluid streamlines but rather by the induced helical

secondary motion within the arch described above (Panel B). In addition,

regions of flow separation were observed at the proximal lips of both the

brachiocephalic and left subclavian arteries; the separated flow zone

contained recirculating flow in the case of the brachiocephalic artery

(streamline D of Panel D), while the separation zone associated with the left

subclavian artery was primarily occupied by the deflected streamlines off the

flow divider which spiral into the branch as described above (streamline C of

Panel D). A region of strong and rather chaotic flow recirculation was

observed at the entrance of the aorta slightly downstream of the aortic sinus,

but this region is believed to be an artefact of the preparation caused by a

partially opened aortic valve and has therefore not been shown in Figure 4.3.

Figure 4.4 depicts the steady flow velocity profiles and resulting wall

shear stresses in the common median plane at various locations of the aortic

arch and its branches. Flow enters the aorta slightly skewed towards the outer

wall. This skewness becomes more pronounced as the flow approaches the

brachiocephalic artery. Immediately distal to the brachiocephalic branch, the

outer wall skewness is minimal and remains so until it becomes very marked

once again immediately distal to the left subclavian artery. The sharp

skewness persists for the entire section of the descending thoracic aorta

photographed. The wall shear stress distal to both arch branches exceeds that

proximal although the ratio of distal to proximal shear stress is significantly

118



larger in the case of the left subclavian artery than that of the brachiocephalic

(4.1 compared to 1.6).

The shear stress along the outer wall at the entrance of the

brachiocephalic artery has a small negative value due to the presence of the

flow recirculation zone referred to previously within which the fluid moves very

slowly. This zone has a width of 0.4 mm (9% of the branch diameter) in the

common median plane. The velocity profiles in both carotid branches are

skewed towards the outer walls. Within the left subclavian artery, there is a

very pronounced skewness in the velocity profile towards the downstream wall

as the region in the vicinity of the upstream wall corresponds to a flow

separation zone that is occupied primarily by slowly-moving helical flow that is

deflected off the left subclavian flow divider. The shear stress at the

downstream wall within the left subclavian artery corresponds to the maximum

value of shear stress observed in the entire flow field. The wall shear stress

data in Figure 4.4 also indicate that the spatial shear stress gradients are

generally larger along the lesser curvature of the arch than along the greater

curvature.

4.3.1.2 Pulsatile Flow

Pulsatile flow in which a sinusoidal component with an oscillatory

frequency of 2.5 Hz and displacement volume of 0.8 ml was superimposed on

the steady flow component was also studied in the aortic arch. In general, the

same four flow categories observed in steady flow persisted in pulsatile flow.

At peak systole, the ventral helical flow motion (category 2 in steady flow

description) was very pronounced. The flow separation zones, both the ones

occupied by the forward-moving helical streamlines along the lesser curvature

of the arch and proximal to the left subclavian artery as well as the one
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exhibiting recirculation flow at the entrance of the brachiocephalic artery,

periodically appeared and disappeared attaining their maximum extent at peak

systole and disappearing completely during portions of diastole. Finally, near

the end of the diastolic phase of the cardiac cycle, the flow along the lesser

curvature of the arch reversed direction and flowed towards the heart. Flow

along the greater curvature of the arch was much less likely to reverse

direction and continued in the forward direction throughout most of the flow

field. Flow within the two arch branches remained in the forward direction

throughout the course of the cardiac cycle.

Figure 4.5 depicts the pulsatile flow velocity profiles and resulting wall

shear stresses in the common median plane of the aortic arch and its branches

at five equally-spaced time points within the cardiac cycle. At the beginning of

the cycle, t=O, the velocity profile at the inlet of the aorta is relatively flat and

unskewed. Immediately proximal to the brachiocephalic artery, the velocity

becomes sharply skewed towards the lesser curvature, and this skewness

persists throughout the remainder of the aortic arch. The recirculation zone at

the entrance of the brachiocephalic artery is absent at this time point. By the

next time point, t=0.2r (where denotes the period of the pulsatile cycle), the

flow has undergone sharp acceleration. The inlet profile remains relatively flat

and unskewed, while the profile proximal to the brachiocephalic artery

becomes mildly skewed towards the greater curvature of the arch. Distal to the

brachiocephalic, the skewness shifts towards the lesser curvature, and this

condition persists throughout the remaining portion of the arch. The

recirculation zone at the entrance of the brachiocephalic artery is present at

this time point and has a width of about 0.5 mm. At the next time point, t=0.4',

the inlet flow is mildly skewed towards the lesser curvature, and this skewness

persists until the plane immediately proximal to the brachiocephalic artery.
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Distal to the brachiocephalic, the skewness shifts to the greater curvature but

then shifts back to the lesser curvature distal to the left subclavian artery and at

subsequent positions. The recirculation zone at the inlet of the

brachiocephalic artery has a width of about 0.6 mm at this time point. By the

next time point, 0.6r, the flow has begun decelerating. Flow enters the aorta

sharply skewed towards the greater curvature, and this skewness persists until

the plane immediately distal to the left subclavian artery where the skewness

shifts towards the lesser curvature and remains so thereafter. The flow

recirculation zone is absent at this point. Finally, at t=0.8t corresponding to a

point near the end of the pulsatile cycle, the flow throughout most of the arch is

in the reverse direction. Forward flow exists, however, in a narrow region

along the greater curvature around the brachiocephalic artery and proximal to

the left subclavian artery. The two arch branches remain in forward flow.

Figure 4.6 illustrates the distal to proximal shear stress ratio as a

function of time for both the brachiocephalic and left subclavian arteries during

the course of a single pulsatile cycle. The constant steady flow values are also

indicated in the figure. The results indicate that the ratio may be greater or

smaller than unity depending on the portion of the cycle so that no

generalizations can be made regarding the relative magnitudes of the shear

stresses distal and proximal to branches in pulsatile flow. Figure 4.7 depicts

the pulsatile to steady wall shear stress ratio as a function of time for one

pulsatile cycle at selected planes along both the greater and lesser curvature

of the arch and the right and left sides of the two aortic branches. The results

show that at any one point in the flow field, the pulsatile flow shear stress may

be greater or smaller than and of the same or opposite sign of its steady flow

counterpart depending on the portion of the cardiac cycle. This indicates once
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again that no a priori conclusions can be made regarding pulsatile flow shear

stresses.

4.3.2 Abdominal Aorta

Steady flow in the abdominal aorta was studied in the vicinity of the four

major branches - the celiac, superior mesenteric, right renal, and left renal

arteries.

4.3.2.1 Celiac Artery

Figure 4.8 illustrates a typical aorto-celiac junction after it had been

rendered transparent. Since the detailed geometric features are expected to

play a role in determining the specific flow patterns, it is important to make

several geometric observations. The celiac artery emerges from the ventral

aspect of the aorta virtually symmetrically relative to the two lateral sides of the

animal. The common median plane of the celiac artery forms an angle of

slightly less than 90 degrees (85 degrees in the example shown in Fig. 4.8)

with the horizontal. In the rabbit, the celiac artery is typically several aortic

diameters away from its nearest major abdominal neighbor, the superior

mesenteric artery; therefore, flow distal to the celiac artery has sufficient

distance to recover from any perturbation caused by flow into the ostium of the

celiac before entering the superior mesenteric artery, and there is little chance

of fluid mechanical interaction between the two vessels. In the example shown

in Figure 4.8, there is some tapering of the aorta distal to the celiac artery.

Specifically, the aortic inner diameter immediately proximal to the celiac

branch is about 4.4 mm and that immediately distal is about 3.8 mm. Finally,

while the curvature of the branching at the celiac junction is very sharp at the

distal lip of the branch, it is gently rounded at the proximal lip.
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Steady flow at an inlet flowrate of 260 ml/min corresponding to a

Reynolds number at the inlet of the abdominal aorta (based on the assumption

of a circular vessel cross-section) of 570 and a celiac to total abdominal aortic

flowrate ratio of 0.30 was studied. The general flow patterns are illustrated in

Figure 4.9 which depicts a composite of representative particle trajectories

from four streamline categories comprising the flow field as well as a

breakdown of the individual categories in the four peripheral panels. The

same line weight convention as described previously applies in this case.

The flow field in the aorta in the vicinity of the celiac artery is generally

symmetric about the common median plane, and the detailed behavior of the

four flow categories can be described as follows. Panel A represents relatively

undisturbed flow in or near the common median plane which proceeds into or

past the celiac branch. The fluid streamlines follow trajectories that are more

or less parallel to the aortic walls. Panel B represents an annulus of flow

slightly above and below the common median plane which is deflected

towards the ventral aspect due to the presence of the celiac artery but whose

streamlines proceed past the branch. Panel C corresponds to an annulus of

flow originating at a region between the common median plane and the top

and bottom walls of the aorta (corresponding to the anatomical right and left

lateral walls, respectively) which encircles the core flow of Panels A and B

before entering the branch, usually tracing helical trajectories. Finally, Panel D

represents a flow component originating at both lateral walls which gets

deflected by the flow divider and recirculates along the lateral walls at the level

of the celiac before finally moving in a helical fashion into the celiac artery.

This last flow category leads to the formation of a pair of thin-layered spiral

secondary flow cells along the lateral walls of the aorta at the level of the celiac

artery. Under the conditions illustrated in Figure 4.9, the maximum penetration
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depth of the recirculation zones of Panel D into the aorta is about 2.4 mm.

Figure 4.9 also depicts a cutaway cross-sectional view (A-A') of the aorta

shortly proximal to the celiac artery illustrating the approximate regions of

origin of each of the four flow categories described. There is a region of

boundary layer separation at the proximal lip of the celiac artery, but this region

does not undergo flow recirculation. Rather, the separated flow zone is

occupied by the helical streamlines into the celiac branch (Panels C and D).

Figure 4.10 illustrates the velocity profiles and resulting wall shear

stresses in the common median plane at various locations within the aorta in

the general vicinity of the celiac artery and within the celiac artery itself. Flow

approaches the celiac artery with a profile skewed towards the dorsal aspect of

the vessel. The wall shear stress at the dorsal wall is 30 dyne/cm2 , while that

at the ventral wall is 13 dyne/cm2, and the peak fluid velocity is 455 mm/s.

Immediately proximal to the celiac and as the fluid prepares to enter the

branch, the flow skewness shifts towards the ventral wall where the shear

stress is 25 dyne/cm2, while that at the dorsal wall is 10 dyne/cm2. The ventral

skewness is even more pronounced immediately distal to the branch where

the ventral shear stress is 51 dyne/cm 2 (the maximum value in this aortic

segment), while the dorsal wall experiences a shear stress of only 6 dyne/cm2.

The extent of ventral skewness distal to the celiac artery decreases with

distance away from the branch although it persists for the entire length of the

section under study. In spite of the very low flow velocities along the dorsal

wall (as low as 50 mm/s), the boundary layer does not separate from the wall,

and the wall experiences forward fluid motion at all spatial locations. Within

the celiac artery itself, flow is heavily skewed towards the distal wall, and this

skewness persists throughout the photographed length of the celiac artery.
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4.3.2.2 Superior Mesenteric Artery

Figure 4.11 shows a typical transparent aorto-superior mesenteric

junction. In the rabbit, the superior mesenteric artery is typically the largest

abdominal branch, and it, like the celiac, emerges ventrally from the aorta. The

superior mesenteric artery is geometrically similar to the celiac artery in that it

forms an angle of virtually 90 degrees (exactly 90 degrees in Figure 4.11) with

the horizontal and that the curvature of the junction is very sharp at the distal lip

but gently rounded at the proximal lip. The extent of aortic taper distal to the

superior mesenteric artery exceeds that of the celiac; the aortic inner diameter

proximal to the superior mesenteric artery in Figure 4.11 is 4.0 mm, while that

distal to the branch is 3.1 mm.

In some rabbits, the superior mesenteric and right renal arteries are

sufficiently far from one another that limited fluid mechanical interactions occur

betwen the two vessels. In this case, the flow field in the vicinity of the superior

mesenteric artery resembles that observed near the celiac artery, and it

generally exhibits the same streamline groups described previously. In most

rabbits, however, the superior mesenteric and right renal arteries are

anatomically very close, leading to a considerably more complex and highly

asymmetric flow field. An example of a typical flow field resulting from such a

situation is illustrated in Figure 4.12 which depicts steady flow with a flowrate

shortly proximal to the superior mesenteric artery of 180 ml/min thereby

leading to a Reynolds number of 480, a superior mesenteric to inlet flowrate

ratio of 0.63, and a right renal to inlet flowrate ratio of 0.11.

The resulting flow patterns divide into the six flow categories

represented in the four peripheral panels of Figure 4.12. Panel A contains flow

which originates in or very near the common median plane and which either

proceeds down the aorta past both the superior mesenteric and right renal
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arteries (streamlines A and B), enters the superior mesenteric artery directly

(streamlines E,F,G), or traces helical patterns into the superior mesenteric

artery (streamlines C and D). Panel B contains two groups of fluid streamlines

- the first (streamlines K and L) represents flow originating slightly below (i.e. to

the anatomical left of) the common median plane and which gets deflected

towards the ventral wall due to the presence of the superior mesenteric artery

but which then continues downstream into the aorta past both the superior

mesenteric and right renal arteries, and the second (streamlines H,I,J) depicts

flow originating at the dorsal wall of the aorta and which encircles the core flow

before entering the superior mesenteric artery. Panel C also combines two

groups of streamlines - the first (streamlines O,P) represents flow originating

near the common median plane and which passes the superior mesenteric

artery before entering the right renal artery, and the second (streamlines

M,N,Q,R) depicts flow originating at the left lateral wall of the aorta which curls

in the counterclockwise direction onto the dorsal wall before continuing on to

reach the right lateral wall where it proceeds upstream until it enters the

superior mesenteric artery along the right lateral wall. This last streamline

group thus leads to flow recirculation along the right lateral wall. Finally, Panel

D contains flow originating near the left lateral wall which curls in the clockwise

direction onto the ventral wall and then continues its clockwise helical motion

until it reaches the right lateral wall where it attains its maximum distal

penetration. The flow then continues its clockwise helical motion until it

reaches the left lateral wall while at the same time moving upstream, and it

finally enters the sup'erior mesenteric artery from the left lateral side where it

spirals quickly into the branch. This flow component therefore leads to flow

recirculation zones along both the dorsal and left lateral walls of the aorta.

Figure 4.12 also shows a cutaway plane (A-A') proximal to the superior
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mesenteric artery illustrating the regions of origin of the various streamline

groups within the vessel cross-section.

A large region of flow separation is observed at the level of and distal to

the superior mesenteric artery along the dorsal wall of the aorta. This

separated flow zone is caused by the relatively large flowrate through the

superior mesenteric artery, and it is occupied by the recirculating flow

streamlines shown in Panel D of Figure 4.12. Moreover, there is a region of

flow separation along the ventral wall at the proximal lip of the superior

mesenteric artery, but, as in the case of the celiac artery, this region is

occupied by helical flow motion from the aorta (streamlines S and T in Figure

4.12, for example) into the branch and not by recirculating fluid streamlines

within the superior mesenteric artery.

Figure 4.13 illustrates the velocity profiles in the common median plane

at different locations within the aorta in the vicinity of the superior mesenteric

artery and within the superior mesenteric artery itself. The relatively long and

straight distance between the celiac and superior mesenteric arteries allows

the flow distal to the celiac to recover and hence to approach the superior

mesenteric artery possessing a near-parabolic profile. Immediately proximal to

the superior mesenteric artery the velocity profile becomes skewed towards the

ventral aspect of the aorta due to the presence of the branch. Immediately

distal to the superior mesenteric artery, the ventral skewness persists so that

the shear stress is relatively high (26 dyne/cm2) along the ventral wall of the

aorta, while the dorsal wall experiences flow recirculation and hence negative

values of wall shear stress (-7 dyne/cm 2). The flow past the superior

mesenteric artery immediately encounters the right renal artery. Distal to the

right renal artery, the ventral wall experiences a relatively high shear stress (33

dyne/cm 2), while the dorsal wall remains exposed to reverse recirculating flow
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(-4 dyne/cm2). Within the superior mesenteric artery itself, the shear stress is

considerably higher along the distal wall (53 dyne/cm 2) than along the

proximal wall (33 dyne/cm2) as the flow negotiates the curvature of the branch.

4.3.2.3 Right and Left Renal Arteries

Figure 4.14 shows a typical transparent aorto-renal junction. In most

rabbits, the right and left renal arteries emerge exactly from the lateral walls of

the aorta, but in some rabbits they emerge slightly ventrally. The right renal

artery is always proximal to the left renal artery. The two renal arteries usually

have about the same diameter, and like the celiac and superior mesenteric

arteries, the curvature of the renal junctions is sharper at the distal lips than at

the proximal lips. In the sample studied, there is virtually no aortic taper distal

to the right renal artery; the aortic diameter both proximal and distal to the right

renal branch is about 3.8 mm. There is some taper, however, distal to the left

renal ostium; the diameter proximal to the left renal artery is about 3.9 mm,

while that immediately distal is about 3.4 mm.

As in the case of the superior mesenteric artery, a distinction has to be

drawn between the situation where the superior mesenteric and right renal

arteries are in close proximity and that where they are separated by a

sufficiently large distance for fluid mechanical interactions to be minimal. A

representative flow field in a sample within which the two vessels do not fluid

mechanically interact significantly is shown in Figure 4.15. Steady flow at an

inlet flowrate of 180 ml/min corresponding to a Reynolds number proximal to

the right renal artery of 245, right renal to inlet flowrate ratio of 0.23, and left

renal to inlet flowrate ratio of 0.22 has been studied. Representative

streamlines are depicted in the central figure, and these streamlines divide into

the eight groups represented in the three peripheral panels. Panel A consists
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of a group of streamlines (streamlines A,B,C) in the common median plane

which flow past the right and left renal arteries and continue downstream into

the lower abdominal aorta and a second group (streamlines D,E,F) originating

near the left lateral wall of the aorta and flowing directly into the left renal

artery. Panel B contains two streamline groups - the first (streamlines G,H,J)

contains streamlines originating near the right lateral wall of the aorta which

get deflected at the right renal artery flow divider before entering the right renal

branch. Streamline J in this group actually follows a small recirculation loop

within the aorta after getting deflected off the flow divider and before entering

the right renal artery. This trajectory is similar to the lateral recirculation zones

that have already been reported in the case of the celiac and superior

mesenteric arteries, but the recirculation loop in this case is significantly

smaller in size because the flow Reynolds number at the level of the renal

arteries is considerably smaller than that at the levels of the celiac and superior

mesenteric arteries. The second group (strteamlines I,K) consists of

streamlines originating below the common median plane (i.e. towards the

dorsal aspect of the aorta) which get deflected onto the right lateral wall due to

the presence of the right renal artery and then traverse the width of the aorta

within the dorsal half before finally entering the left renal artery. Panel C

contains four streamline groups - the first group (steramlines L and 0) depicts

flow originating near the right lateral wall and flowing virtually undeflected into

the right renal artery. The second group (streamline R) represents flow along

the top (i.e. anatomically ventral) wall which enters the right renal artery where

it traces a helical trajectory. The third group (streamlines N,P) represents

streamlines which originate between the common median plane and the

bottom (i.e. anatomical dorsal) wall and end up in the left renal artery/. Finally,

the fourth group (streamlines M,Q,S) represents flow slightly above and below
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the common median plane which gets deflected towards the right lateral wall

due to the presence of the right renal artery, continues past the right renal

branch, gets deflected towards the left lateral wall of the aorta due to the

presence of the left renal ostium, and finally continues past this branch into the

lower abdominal aorta. Figure 4.15 also depicts a cutaway plane (A-A')

proximal to the right renal ostium which illustrates the approximate origin of the

various streamline groups within the aortic cross-section.

Figure 4.16 depicts the velocity profiles and wall shear stresses in the

common median plane at various locations in the vicinity of the aorto-renal

junctions and within the two renal arteries themselves. The velocity profile

proximal to the right renal artery is sharply skewed towards the right lateral wall

due to the presence of the right renal branch; the wall shear stress at the right

lateral wall is 27 dyne/cm2, while that at the left lateral wall is only 3 dyne/cm2.

This skewness becomes even sharper distal to the right renal branch as the

shear stress along the right lateral wall is 44 dyne/cm2, while that along the left

lateral wall is 3 dyne/cm2. As the flow prepares to enter the left renal artery, the

skewness towards the right lateral wall decreases (27 dyne/cm 2 along right

lateral wall and 15 dyne/cm2 along left lateral wall). Beyond the left renal

branch, the flow remains skewed towards the right lateral wall (17 dyne/cm2

along right lateral wall and 4 dyne/cm2 along left lateral wall), and this

skewness slowly decreases as flow proceeds into the lower abdominal aorta.

Within the two renal branches, the velocity profile is skewed towards the distal

side of each branch although the skewness in the right renal artery is

significantly more pronounced than that in the left renal artery.

As has already been mentioned, the flow field at the renal branches

reported here represents a situation where the superior mesenteric and right

renal arteries are anatomically relatively far apart. An example of an aorta
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where these two vessels are in very close proximity (such as in Figure 4.12)

has been studied (data not shown). The velocity profile and wall shear stress

results follow the same general trends observed in Figure 4.16. One

difference, however, is the presence of a flow recirculation zone distal to the

right renal artery along the aortic left lateral wall so that the wall shear stress

immediately distal to the right renal artery along the left lateral wall is negative.

4.4 Discussion

The detailed flow field has been studied in the normal rabbit aorta using

microcinematographic flow visualization techniques in natural isolated aortas

that had been rendered transparent. A high level of fluid mechanical detail can

be obtained using this technique, and this is crucial in investigating potential

relationships between arterial flow patterns and very localized phenomena

within the aortic wall such as focal enhanced permeability sites or early

atherosclerotic lesions.

4.4.1 Aortic Arch

Both steady and sinusoidal pulsatile flow fields have been studied in the

aortic arch. The steady flow results reveal the presence of a single clockwise-

rotating helical cell along the ventral wall of the arch. While induced

secondary flow motion in a curved tube generally leads to a pair of counter-

rotating helical cells, the presence of the two arch branches alters the flow field

and leads to a single helical cell in the arch. Flow within the two arch branches

contains helical components originating from fluid streamlines deflected off the

branch flow dividers. Flow separation is observed at the lesser curvature of the

aortic arch and proximal to both arch branches. The flow separation zones at

the lesser curvature of the arch and at the entrance of the left subclavian artery
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are occupied by spiral helical streamlines, while that at the entrance of the

brachiocephalic artery is filled in by a recirculation zone. The velocity profiles

in the entire arch in the common median plane are skewed towards the greater

curvature, and the wall shear stresses distal to both branches exceed their

proximal counterparts.

In the case of sinusoidal pulsatile flow, the ventral helical motion

becomes very pronounced at peak systole, the flow separation zones along

the inner curvature of the arch and proximal to the left subclavian artery as well

as the recirculation flow zone at the entrance of the brachiocephalic artery

periodically appear and disappear with pulsatility, and considerably more

reverse flow is observed along the lesser curvature than along the greater

curvature during the diastolic phase of the pulsatile cycle. Very few

generalizations regarding the relative magnitudes of wall shear stress proximal

and distal to branches can be made in pulsatile flow, and at any given point

within the flow field, the pulsatile flow shear stress may be higher or lower than

its steady flow counterpart depending on the specific time point within the

cardiac cycle.

The steady flow results obtained here are in general agreement with the

qualitative data of Rodkiewicz [20] in scaled-up plastic models of the rabbit

aortic arch; however, since Rodkiewicz' models are two-dimensional, all his

flow separation areas are occupied by recirculating flow streamlines. Our

results indicate that most separated flow zones are actually occupied by

induced secondary helical flow motion. Rodkiewicz also notes that in pulsatile

flow, the general flow behavior is similar to that in steady flow but that the

boundaries of the flow separation zones oscillate with pulsatility. Our results

indicate that while the flow separation zones are present in systole, they

disappear completely during a portion of the diastolic phase. Sohara and
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Karino [21] used the method of microcinematography in transparent vessels to

study the steady flow field in the dog aortic arch. Their results are qualitatively

very similar to the ones we have observed in the rabbit. Our pulsatile flow

results are consistent with the in-vivo pulsed Doppler ultrasound results of

Farthing and Peronneau [22] in the dog. These results indicate reverse flow

primarily along the lesser curvature of the arch during the diastolic phase,

while the flow within the arch branches remains in the forward direction

throughout the course of the cardiac cycle.

With the exception of the results of Rodkiewicz [20], sites of early

atherosclerotic lesions experimentally induced in the aortic arch of the

hypercholesterolemic rabbit follow a helical pattern [6,7]. Moreover, our

previous topographical mapping studies of enhanced permeability sites in the

normal rabbit aorta [3] have demonstrated that within the aortic arch and the

upper descending thoracic aorta, the region of highest enhanced permeability

site density follows a helical pattern beginning along the dorsal wall, coiling in

the clockwise direction to localize along the greater curvature of the arch

immediately distal to the left subclavian artery, and finally continuing further to

the ventral wall in the upper descending thoracic aorta. The flow patterns

reported in this paper have revealed the existence of a single clockwise helical

secondary flow cell within the aortic arch. However, this helical motion is

confined to the ventral wall of the aortic arch in steady flow. In pulsatile flow,

the flow field is significantly more complicated, and the helical flow motion may

well extend to the dorsal wall of the aortic arch. The exact relationship, if any,

between the helical flow in the arch and the helical pattern of enhanced

permeability sites and early atherosclerotic lesions remains unclear at this

point.
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4.4.2 Abdominal Aorta

Steady flow was studied in the abdominal aorta in the vicinity of the

major aortic branches - the celiac, superior mesenteric, right renal, and left

renal arteries. The results revealed the existence of very complex flow fields

consisting of a number of streamline groups that exhibit drastically different

behavior. In virtually every case, there are streamlines which deflect off the

branch flow divider and then follow very slowly-moving recirculation

trajectories within the aorta lateral to the branches before finally tracing helical

paths into the branches. Boundary layer separation and consequent flow

recirculation has been observed along the dorsal wall of the aorta opposite the

superior mesenteric artery. Furthermore, since the superior mesenteric and

right renal arteries are often in close anatomical proximity, the flow fields

associated with these vessels interact thereby resulting in considerably more

complex flow patterns. Finally, flow separation is frequently observed at the

entrance of branches, and these separation zones are typically occupied by

streamlines originating from the slowly-moving latreral recirculation cells.

Wall shear stresses are commonly higher distal to branches than

proximal; however, very few generalizations can be made a priori in this

regard. In the case of sharply skewed velocity profiles, for instance, the

proximal shear stress levels may exceed their distal counterparts as was

observed in the case of the left renal artery studied here.

Only steady flow was studied in the abdominal aorta; therefore, it

remains unclear at this point whether or not the flow recirculation zones

observed (both ones lateral to ostia and those along the dorsal wall of the

aorta whenever they exist) periodically appear and disappear within the

course of a cardiac cycle as was observed in the aortic arch. If this were to

occur, then the aortic wall within the recirculation zones which are exposed to
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very low levels of shear stress in steady flow would be exposed to shear

stresses of periodically changing magnitudes and directions and hence to

potentially large spatial and temporal gradients of shear stress.

The results reported here are qualitatively very similar to those of Karino

et al. in glass models [23,24] and in the dog abdominal aorta [25]. Hutchison et

al. [26] performed in-vivo pulsed Doppler ultrasound measurements on the dog

abdominal aorta and reported small regions of lateral recirculation during

systole and large regions of flow reversal opposite to ostia during diastole.

The literature on experimentally induced atherosclerosis in

hypercholesterolemic rabbits reveals that in the abdominal aorta early lesions

localize virtually exclusively around branches, and that they exhibit a

characteristic crescent shape spanning the lateral and distal regions around

branches [7]. Zeindler et al. [5] followed the progression of early lesions

around aortic branches in rabbits and demonstrated that the earliest deposits

occur laterally with the distal involvement eventually catching up with or even

exceeding the lateral component. The regions lateral to branches are the

same regions where the lateral recirculation zones were observed in this study

although the precise connection between specific fluid mechanical

characteristics and early lesion development remains unidentified.

A direct comparison of the steady flow patterns and wall shear stresses

obtained here with the topography of enhanced permeability sites in [3] reveals

no correlation. For instance, the enhanced permeability sites localize distal to

both right and left renal arteries. Figure 4.16 illustrates that this corresponds to

a region of high wall shear stress in the case of the right renal artery and low

shear stress in the case of the left renal artery. It is deemed important to

establish whether or not the same conclusions apply under pulsatile flow

conditions.
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The method of flow visualization used here offers distinct advantages

over other flow visualization techniques. Firstly, the experiments are

performed on natural aortas so the exact tortuous arterial geometry is

maintained. This is a very important advantage in view of the expected

dependence of the flow field on geometric details. Glass models and even

polymeric casts often fail to reproduce exact geometric features due to

difficulties of manufacturing or polymer shrinkage. Secondly, the flow inlet

conditions into the aorta are more phsiologically realistic than in other models

because the hearts remain attached to the aortas in these preparations. Inlet

flow conditions through the left ventricle and the aortic valve are expected to be

different from those that would be obtained had an infusion tube been

connected directly to the ascending thoracic aorta. Sohara and Karino [21]

have demonstrated that the flow patterns in the aortic arch of the dog are

sensitive to whether or not the heart remains attached to the aorta. They, in

fact, have postulated that the left ventricle and/or the aortic valve is the major

source of the the helical ventral flow observed. Thirdly, the vessel walls in our

preparations are fully soaked in the working fluid (oil of wintergreen) and the

vessel itself is placed in a large reservoir of the same fluid during the flow

visualization procedure; therefore, discrepancies induced by optical distortion

are minimal. Finally, the method offers a high level of spatial resolution and

tremendous fluid mechanical detail with the capability to perform quantitative

analyses of fluid velocities and resulting wall shear stress levels.

On the other hand, the method has specific limitations. The process of

rendering the aorta transparent causes a complete loss of arterial wall

compliance. In fact, the loss of compliance prevented performing pulsatile flow

experiments in the abdominal aorta. Moreover, in spite of experimental
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evidence that changes in aortic cross-sectional area within the cardiac cycle

are only on the order of +5% (3% in the dog descending aorta [27]), there is

evidence that wall compliance reduces the sizes of recirculation zones distal to

stenoses [28]. Therefore, loss of compliance may be an important limitation of

the method. Another disadvantage is that the measurements are performed in

a vessel that has been excised from the body of the animal, so that the

question of how closely they approximate actual in-vivo conditions remains

unanswered. However, the qualitative agreement obtained here with the in-

vivo data in the dog aortic arch [22] lends support to the soundness of the

technique. The fact that oil of wintergreen is a Newtonian, single phase fluid

which is obviously different from blood, a non-Newtonian, two-phase

suspension, is not expected to be a restrictive limitation since blood at shear

rates of above 100 s-1 has been shown to behave like a Newtonian fluid [29],

and the high flowrates in the aorta generally lead to shear rates which

considerably exceed 100 s-1. The sole exception in this regard is within

regions of flow recirculation where the fluid may move very slowly, and hence

the non-Newtonian characteristics of blood may be important. Finally, the

pulsatile flow studies that have been performed in the aortic arch have been

based on a sinusoidal pulse shape which is non-physiological; however, since

the pulsatile cycle incorporates a portion of reverse flow, the fundamental fluid

mechanical phenomena are expected to be captured.

In addition to the specific flow visualization method limitations outlined

above, there is a number of inherent assumptions made in the process of data

analysis and reduction. A central assumption is that the tracer microspheres

exactly follow the fluid streamlines. Although this assumption is generally

believed to be valid since the microsphere Reynolds number (i.e. Reynolds

number based on microsphere diameter, mean fluid velocity, and fluid
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viscosity) is usually small, there are zones at regions of sharp curvature that

remain particle-free or that only the smaller microspheres can penetrate due to

the larger inertia of the larger microspheres. Another important assumption

made in the analysis of the velocity profiles in the common median planes of

the various aortic sections photographed is that at each spatial position the

maximum particle velocity occurs in the common median plane. This would be

exactly true in the case of a straight vessel; however, whenever there is

curvature, the velocity profiles may be skewed so that the maximum velocity

may not occur exactly in the common median plane. The limitations of the

method accentuate the need for in-vivo flow field data in the rabbit.

Experiments in this regard are currently under way.

It is interesting that the results of Karino and coworkers in the dog

[21,25] and the human [30] are qualitatively similar to the findings reported

here in the rabbit despite differences in aortic geometric details. The detailed

quantitative data such as exact values of wall shear stress, fluid velocity, and

sizes of specific recirculation zones naturally vary. In view of the fact that the

patterns of early atherosclerotic lesion localization vary drastically among

these species, it may very well be that the microscopic details are all-important

in defining a potential role for hemodynamics, if such a role exists, in

atherogenesis.
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Figure Captions

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Anatomical schematic of the rabbit aorta and its major branches.

Typical transparent aortic arch and branches.

Detailed steady flow patterns in the aortic arch. The different line
weights give a sense of three-dimensionality: solid lines
represent streamlines in, long dashed lines represent streamlines
slightly above or below, and short dashed lines represent
streamlines furthest from the common median plane. The central
figure is a composite of the various streamline categories, while
the surrounding panels depict a breakup of these categories.
The trajectories of the individual streamline categories have been
described in the text. Plane A-A' shows a view of the aortic cross-
section illustrating the approximate origin of the various
streamline categories.

Steady flow velocity profiles in the common median plane at
selected locations of the aortic arch and its branches. Numbers
on the aortic wall are wall shear stresses in dyne/cm2, while
numbers on the profiles at every plane are the maximum
velocities in mm/sec in that plane. Negative values of shear
stress denote flow in the direction opposite to that of the bulk flow.

Pulsatile flow velocity profiles in the common median plane at
selected locations of the aortic arch and its branches at five
equally-spaced time points within a single pulsatile cycle. t=O
corresponds to the beginning of the cycle. See caption for
Figure 4.4 for further details. This vessel is the same one shown
in Fig. 4.4 but photographed from a slightly different angle.

Distal to proximal shear stress ratio at the brachiocephalic and
left subclavian arteries as a function of time for one pulsatile
cycle. The steady flow values are also indicated.

Pulsatile to steady flow shear stress ratio as a function of time for
one pulsatile cycle at both the lesser and greater curvature of the
aortic arch at selected locations. The straight unity lines indicate
where the pulsatile and steady flow shear stresses are equal.

Typical transparent aorto-celiac junction. The curvature is
sharper at the distal tip of the branch than at the proximal tip.

Detailed steady flow patterns in the vicinity of the celiac artery.
See caption for Figure 4.3 for further details.
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Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Steady flow velocity profiles in the common median plane at
selected locations in the vicinity of the celiac artery. See caption
for Figure 4.4 for further details.

Typical transparent aorto-superior mesenteric junction illustrating
the close anatomical proximity to the right renal artery. The
superior mesenteric and right renal arteries emerge from the
aorta almost at right angles to one another; therefore, the portion
of the right renal artery shown is the projection of the right renal
artery in the plane of the superior mesenteric artery. The
curvature is sharper at the distal tip of the branch than at the
proximal tip.

Detailed steady flow patterns in the vicinity of the superior
mesenteric artery. See caption for Figure 4.3 for further details.

Steady flow velocity profiles in the common median plane at
selected locations in the vicinity of the superior mesenteric artery.
See caption for Figure 4.4 for further details.

Typical transparent aorto-renal junction. The curvature is sharper
at the distal tips of the branches than at the proximal tips.

Detailed steady flow patterns in the vicinity of the right and left
renal arteries. See caption for Figure 4.3 for further details.

Steady flow velocity profiles in the common median plane at
selected locations in the vicinity of the right and left renal arteries.
See caption for Figure 4.4 for further details.
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Chapter Five

Simulation of the Two-Dimensional Steady and Pulsatile
Flow Field in a Model Arterial Branching

5.1 Introduction

The role that detailed arterial flow patterns may potentially play in the

etiology and pathogenesis of atherosclerosis has motivated numerous

experimental and numerical studies of the flow field in model arterial systems.

Although these studies have shed some light on the complexity of arterial flow

fields, very few generalizations regarding possible relationships between

hemodynamics and atherosclerosis can be made. Atherosclerosis involves

processes of macromolecular influx into and efflux from the arterial wall;

therefore, it is generally assumed that any effect of bloodstream fluid dynamics

on arterial endothelial function is mediated by the shear stresses imposed on

the endothelium due to the motion of adjacent blood. Indeed, endothelial cells

have been shown to exhibit humoral [1-3], metabolic [4-7], and structural

responses [4,8-10] to various levels of shear stress. Disagreement persists,

however, as to whether high [11], low [12,13], or rapidly changing [14] levels of

shear stress represent the relevant hemodynamic culprit. The difficulty in

making firm conclusions stems from the complexity of arterial fluid mechanics

which has its basis in the very tortuous nature of arterial geometry, the

pulsatility and hence time-unsteadiness of the flow, the complex viscoelastic

motion of the arterial wall in response to physiological pressure pulses, and

the non-Newtonian characteristics of blood. The possibility of the existence of

bursts of turbulence at the end of the systolic phase of the cardiac cycle in

larger animals further complicates the situation.
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The limited spatial resolution of experimental techniques such as pulsed

Doppler ultrasound velocimetry and magnetic resonance imaging in

measuring the details of arterial flow fields has led to heightened interest in the

formulation of sound numerical models. In addition to arbitrarily fine spatial

and temporal resolution, a computational model allows the investigation of the

effect of a wide range of geometric and fluid mechanical parameters on the

details of the flow field. The advent of the finite element method has allowed

the accurate modeling of complex geometries, and the spread of ultra-fast

computers has rendered the solution of the inherently very computationally-

intensive non-linear governing momentum equations feasible. Consequently,

a number of computational investigations of the flow field in model arterial

systems has recently emerged, and these models have progressively been

made more sophisticated.

The vast majority of the computational studies in the literature are in

models of either arterial stenoses of various degrees of severity or of

bifurcations of different branching angles. The earliest studies were two-

dimensional, steady flow computations which investigated regions of possible

boundary layer separation and consequent flow recirculation as well as the

wall shear stress distribution [15-20]. More recently, pulsatile flow simulations

have become more common [21-27] as have three-dimensional models

[28,29]. These studies have highlighted certain differences between steady

and pulsatile flow behavior, and the three-dimensional investigations have

demonstrated the existence of complex, secondary flow motion induced by

regions of vessel curvature.

This paper involves the two-dimensional finite element simulation of the

steady and pulsatile flow field in a 900 T-junction representing an idealized

model of an arterial branching. The primary objective of the study is to
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demonstrate fundamental differences that exist between steady and pulsatile

flow conditions with regard to flow field details and resulting wall shear stress

distribution. Important implications regarding the possible physiological

relevance of the results are also discussed.

5.2 Numerical Model and Solution Procedure

The geometry in which the flow field is computed is the rigid-wall 90° T-

junction shown in Figure 5.1. This specific geometry has been selected due to

the availability of detailed experimental data in a glass model of an identical

system [30]. Specifically, the parent vessel has a diameter of 3 mm, as do the

two daughter branches. Flow enters the system with a fully-developed,

parabolic profile at a mean velocity of 63.6 mm/s. The two daughter branches

are sufficiently long for the establishment of parabolic flow at the outlets [31].

The total x-direction length simulated is 5.1 cm which corresponds to 17 tube

diameters, while the y-direction simulation field spans a length of 2.7 cm

corresponding to 9 tube diameters. 20% of the inlet flow is imposed into

daughter branch 1, while branch 2 receives the remaining 80%. The working

fluid is incompressible and Newtonian with a density of 1060 kg/m3 and a

dynamic viscosity of 2.0x10-3 kg/m-s (2.0 cP); therefore, the channel inlet

Reynolds number is about 100. Both steady and sinusoidal pulsatile flows are

simulated. The governing equations to be solved in the simulations are the

two-dimensional equations of mass and momentum conservation given by:
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where u and v are respectively the x- and y-components of the fluid velocity

vector, p is the fluid pressure, t is time, and I. is the fluid dynamic viscosity.

Under the assumption of parabolic velocity profiles at the flow inlet and both

flow outlets and for the given values of channel diameter, relative flow splits,

fluid density, and fluid dynamic viscosity, the flow boundary conditions are as

shown in Figure 5.1.

In the steady flow simulations, the sinusoidal time-dependent term in the

boundary conditions (cos cot) is identically zero. In the pulsatile flow

simulations, however, this term ranges from -1 to 1 so that the overall term

(1+cos cot) ranges from 0 to 2. This leads to a situation where there is no

reverse flow at the fluid boundaries during any part of the pulsatile cycle. The

value of the frequency of pulsatility co is taken at a constant value of 15.7 s-1.

This value is not physiologically realistic; however, it is sufficiently high to allow

the simulation of several pulsatile cycles during the course of a relatively short

real simulation time. Moreover, this value of co leads to a a value of the

Womersley parameter a (defined as D(o/v) 1/ 2, where D is the channel diameter

and v is the fluid kinematic viscosity) of 6.1 which is typical of conditions in the

abdominal aorta [32]. The fact that the pulsatile velocity shapes at all

boundaries are in-phase reflects the situation that the simulation is performed

on a rigid-wall system in which pressure pulses propagate infinitely fast

through the flow system.
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The computations are performed using the finite element computer code

NEKTON [33,34]. NEKTON is a very robust and efficient code which is capable

of solving the full unsteady, incompressible fluid, three-dimensional Navier-

Stokes equations with forced or natural convection heat transfer in both

stationary and time-dependent geometries. NEKTON possesses powerful pre-

and post-processing packages which provide the capability to easily define the

geometry in which the computations are to be performed and which allow the

display of a wide array of parameters in multiple forms after the computations

are completed. The code runs on a wide variety of computers ranging from

personal workstations to supercomputers.

Briefly, the spatial discretization in NEKTON is based on the spectral

element method, a high-order finite element method for partial differential

equations. The computational domain is represented as a set of of disjoint

macro-elements, with the solution, data, and geometry represented by high-

order polynomial expansions within each macro-element. This approach

offers high-order (spectral) accuracy, while maintaining the geometric flexibility

of low-order finite-element techniques. In our two-dimensional computational

domain, the isoparametric spectral element spatial discretization proceeds by

first breaking the domain up into (non-degenerate) quadrangles, denoted as

"macro-" or "spectral" elements. Within each element, a local Cartesian mesh

is constructed corresponding to an NxN tensor-product Gauss-Lobatto

Legendre collocation points. The Gauss-Lobatto points are clustered near

elemental boundaries, and are chosen because of their accurate

approximation, interpolation, and quadrature properties. Dependent variables

are expanded in terms of (N-1)th order polynomial Lagrangian interpolants

(through the Gauss-Lobatto Legendre collocation points).
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Spatially discrete equations are generated by inserting assumed forms

of the dependent variables into the governing equations and requiring that the

residual vanish in some integral and weighted sense. The computed

numerical variables correspond to values occurring at the collocation points of

the mesh. Convergence is obtained by increasing the number of macro-

elements (K) or the order of the interpolants (N) in the elements. The error

decreases algebraically (like K-N) as K is increased and exponentially for

smooth solutions (like e-KN) as N is increased. Further details on the code

structure and numerical techniques can be found elsewhere [33,34].

In the computations reported in this paper, convergence is obtained in a

domain that is divided into 96 macro-elements as shown in Figure 5.1 and with

interpolants of order 7 in both the x- and y-directions. This leads to a situation

where the field variables are computed at 49 independent nodes within each

element thereby yielding a total problem size of 4704 nodes. The

computations are performed on the MIT CRAY-II. The division of the

computational domain into macro-elements has been selected to provide a

high level of fluid mechanical detail in the immediate vicinity of the branching

(defined as one channel diameter upstream and downstream of the branching

within the horizontal portion of the T-junction and one channel diameter into

the vertical portion) because it is this region that is of most interest within the

context of potential relevance of the results to atherosclerosis.

5.3 Results

5.3.1 Steady Flow Simulations

The steady state computations are regarded by NEKTON as evolving

transients so that the full time-dependent form of the governing equations is

solved. The steady state solution is achieved as the time-asymptotic result of
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the transient calculation. Convergence is attained when time changes in fluid

velocity and pressure at selected points within the flow field become small. At

the point of convergence in the steady flow simulations reported, the maximum

change in the x-component of the velocity vector between the two last time

steps is 0.34%, that in the y-component of the velocity is 0.79%, and that in

pressure is 0.086%. The total cpu-time required to attain convergence is about

130 minutes.

The results of the steady state solution of the overall flow field in the two-

dimensional system simulated under the conditions defined above is

schematically shown in Figure 5.2. Inlet flow with a parabolic profile (imposed

by the inlet boundary conditions) enters the T-junction. This velocity profile

remains virtually unchanged until a short distance (about 2.1 D) upstream of

the branching where the velocity profile becomes skewed towards the top wall

of the parent vessel due to the presence of the branch. Downstream of the

branch, the flow skewness persists for a length of about 3.9 D before becoming

parabolic again. Within the branch, the velocity profile is skewed towards the

downstream wall, and this skewness persists for a length of about 3.9 D.

Overall, the flow field contains two zones of boundary layer separation

and consequent flow recirculation, labeled zones A and B in Figure 5.2. Figure

5.3 is a close-up view of the flow patterns in the high resolution region in the

immediate vicinity of the branching. This figure more clearly illustrates the

details of the two recirculation zones. Zone A results from flow separation at

the upstream end of the branch as the fluid tries to negotiate its way around the

sharp bend, while zone B has its origin in the deflection of the fluid due to the

presence of the branch thereby leading to flow separation. Both these zones

are closed, i.e. the fluid within the two zones does not communicate with fluid

outside them, and the fluid velocity within the recirculation zones is significantly
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lower than that outside. Recirculation zone A extends to a length of 2.0 D from

the point of separation to the point of reattachment and has a maximum width

of about 0.2 D. Zone B has a length of 1.5 D and a peak width of about 0.3 D.

Since the wall shear stress, or equivalently the shear rate since the fluid

viscosity is constant, is the main parameter of interest, it is important to

investigate the wall shear stress distribution in the simulation domain. Figure

5.4 illustrates the wall shear rate field in the horizontal section of the T-junction.

Figure 5.4A represents the wall shear rate along the bottom wall of the

channel. The flow at the inlet has a shear rate of about 129 s-1, and this value

remains relatively constant until a distance of about 2.1 D upstream of the

branch where the shear rate begins dropping sharply as the fluid gets

deflected towards the upper wall due to the presence of the branch. This

decrease in shear rate continues until the shear rate drops to zero at a point

about 0.3 D downstream of the proximal end of the branch at which point the

flow separates from the wall and the shear rate values become negative due to

fluid recirculation in the direction opposite to the main flow direction. The flow

separation zone has a total length of about 1.5 D so that at a distance of about

1.8 D from the proximal (i.e. upstream) end of the branch, the flow reattaches

(denoted by the second zero shear rate point). Beyond the reattachment point,

the shear rate increases sharply until it attains a value of about 26 s-1 at a

distance of about 3.0 D from the proximal end of the branch, and this value

remains more or less constant until the channel outlet. One important

observation regarding the shear rate field along the bottom wall is that

practically all the changes in shear rate occur over a total length of about 5.1 D

around the position of the branch (2.1 D upstream and 3.0 D downstream of

the branch) although the total simulated length is 17 D. Moreover, the

magnitude of the shear rate change over this length is large so that the spatial
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shear rate gradients are very large. Specifically, proximal to the recirculation

zone, the shear rate gradient is about 64.1 s-1/mm, while that immediately

distal to the recirculation zone is about 42.1 s-1/mm. Since the fluid viscosity is

constant at 2.0x10-3 kg/m-s, the corresponding shear stress gradients are 1.3

dyne/cm2 /mm proximal to and 0.8 dyne/cm2/mm distal to the recirculation zone.

These values should be compared to spatial gradients of about zero s-1/mm in

the straight flow regions away from the branch. Within recirculation zone B, the

fluid moves very slowly, and the resulting wall shear rates are small (peak

value of 15.6 s-1). The spatial gradients of the shear rate, however, may be as

large as about 25.3 s-1/mm, which corresponds to a shear stress gradient of

about 0.5 dyne/cm2/mm.

Figure 5.4B illustrates the variation of wall shear rate along the top wall

of the horizontal section in the region proximal to the branch. The shear rate

remains relatively constant at about 126 s-1 until a distance of about 1.6 D

proximal to the branch where it increases relatively slowly until a distance of

about 0.5 D proximal to the branch where the shear rate begins increasing

rapidly until it finally attains a peak value of 1326 s-1 at the proximal tip of the

branch. The region of 0.5 D proximal to the branch exhibits a very large shear

rate gradient of about 708.2 s-1/mm (corresponding to a shear stress gradient

of 14.2 dyne/cm2/mm). Figure 5.4C displays the variation of upper wall shear

rate with distance in the region distal to the branch. The point immediately

distal to the branch has the highest shear rate, 245.9 s- 1. The shear rate then

decreases rapidly so that by a distance of about 1 D from the branch apex, it

attains a value of about 26 s-1 at which it remains virtually constant thereafter.

The shear rate gradient within the distance of 1 D is therefore about 73.3 s-

l/mm (1.5 dyne/cm 2 /mm).
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Figure 5.5 illustrates the shear rate variation within the vertical section of

the T-junction. Figure 5.5A exhibits the variation along the left (proximal) wall,

while Figure 5.5B depicts the shear rate along the right (distal) wall. Along the

left wall, the shear rate has a large positive value (393.0 s -1) at the corner

(point (0,0) in Figure 5.1) as this point lies just outside recirculation zone A. At

a point 0.09 D from the corner, the recirculation zone is encountered, and the

shear rate becomes negative and remains so for a distance of about 2 D at

which point the separated fluid streamlines reattach. The shear rate then

increases slowly until it attains its asymptotic value of about 101 s-1 at a

distance of about 3.8 D. The sharp transition from positive to negative shear

rate within a very short distance at point (0,0) leads to a very high spatial shear

rate gradient of about 1836.9 s-1/mm (36.7 dyne/cm 2/mm).

Along the right wall, the shear rate initially increases sharply as the

curved incoming fluid streamlines bend to become parallel to the wall. The

shear rate attains a peak value of 424.5 s-1 at a distance of 0.45 D from the

corner (point (0.003,0) in Figure 5.1), and it then decreases gradually as the

flow skewness towards the right wall progressively disappears and parabolic

flow is reestablished. The asymptotic value of 101 s-1 is reached at a distance

of about 2 D from the corner point.

5.3.2 Pulsatile Flow Simulations

In pulsatile flow, convergence is attained when changes in fluid

mechanical conditions (velocities and pressure) at the same time points within

consecutive pulsatile cycles are small. The total cpu-time required to simulate

a single pulsatile cycle (about 0.4 seconds long since the angular frequency is

15.7 s-1) is about 4 hours.
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The details of the flow field under sinusoidal pulsatile conditions are

significantly different from those in steady flow. The pulsatile flow cycle can be

divided into the deceleration phase (0cot<7) and the acceleration phase

(n<ot<27). Figure 5.6 represents a closeup-view of the flow field in the

immediate vicinity of the branching during the course of a single pulsatile cycle

which has been divided into 20 equally-spaced time intervals. The figure

illustrates that recirculation zone A within the vertical branch is present

throughout the course of the cycle although its length and width periodically

increase and decrease. Specifically, this zone attains its maximum length of

2.4 D at cot=0.5n and its minimum length of 0.05 D at ot=1.3n. Recirculation

zone B along the bottom wall of the horizontal section disappears completely

in the time interval 1.5x<ct<1.7K after which it appears and progressively

increases in length until it spans virtually the entire bottom wall at t=0.9K.

While the two recirculation zones discussed here have also been

observed in steady flow, there are additional periodically appearing and

disappearing flow reversal zones observed in the pulsatile flow simulations

which never occur under steady flow conditions. Specifically, in the interval

0.4x<ot<1 .3n, there is flow reversal along the top wall of the horizontal portion

of the T-junction distal to the branching. This reversal region initiates at

ot=0.4n at a distance of 1 D downstream of the branching and proceeds

upstream with time to reach a point about 0.4 D distal to the branch at the end

of deceleration (t=K). This represents the point of farthest flow reversal

penetration beyond which the region of flow reversal begins moving

downstream, and it disappears completely at ot=1.3K. Therefore, the region

between 0.4 D and 1 D distal to the branching is exposed to successive

periods of forward and reverse flow within the course of a pulsatile cycle. The
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0.4 D-long section immediately distal to the branching is exposed to forward

flow throughout the pulsatile cycle.

In addition to this flow reversal region distal to the branch, the top wall of

the horizontal section proximal to the branch is exposed to reverse flow in the

interval 0.7~<ot<I. Flow reversal begins at a distance of 1 D proximal to the

branch at ot=0.7, extends downstream to a maximum penetration of 0.4 D

proximal to the branch at wt=0.9, and then disappears at ot=x. Consequently,

while the length of 0.4 D immediately proximal to the branch is exposed to

forward flow throughout the course of the pulsatile cycle, the 0.6 D-long section

between 0.4 D and 1 D proximal to the branch undergoes periodic flow

reversal.

The periodic appearance and disappearance of recirculation and flow

reversal zones in pulsatile flow leads to very interesting wall shear rate

behavior. Within the context of a possible role of arterial fluid mechanics in

atherosclerosis, the shear rate immediately proximal to and distal to branches

is of interest due to conflicting experimental evidence of early lesion

localization either proximal to or distal to aortic ostia in various species [35-38].

Figure 5.7 illustrates the time variation of the NEKTON-computed shear rates at

both the proximal and distal corners of the T-junction (points (0,0) and

(0.003,0)) during a single sinusoidal pulsatile cycle. The results indicate that

the proximal shear rates vary over about four orders of magnitude during the

course of the cycle, while the distal shear rates vary over about two orders of

magnitude. Therefore, the temporal shear rate gradients are very steep. Also

shown in Figure 5.7 are the constant proximal and distal shear rate values

computed under steady flow conditions. Comparison of the pulsatile to steady

conditions illustrates that, depending on the specific portion of the pulsatile
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cycle under investigation, the pulsatile shear rates may be much larger or

much smaller than their steady flow counterparts.

Figure 5.8 illustrates the variation of the magnitude of the distal to

proximal shear rate ratio with time as well as the steady state value for this

ratio. The results further emphasize the large differences that exist between

steady and pulsatile flow conditions since at various points within the pulsatile

cycle, the distal shear rate may be either much larger or much smaller than the

proximal shear rate so that very few a priori generalizations regarding the

relative magnitudes of these shear rates can be made in pulsatile flow (unlike

the situation in steady flow where the distal to proximal shear rate ratio for the

flow conditions studied has a constant value of 0.19).

In addition to the large time variations in shear rates proximal and distal

to the branch, the spatial shear rate gradients and their variations with time are

very large within the course of a single cycle. Figure 5.9 illustrates the

magnitudes of the spatial shear rate and shear stress gradients during the

pulsatile cycle immediately proximal and distal to the branch as well as the

steady flow values for these gradients. The results indicate that the proximal

gradient is generally larger than its distal counterpart except in the interval

0.8x<ot<0.9iT. Furthermore, the extent of shear rate variation is much larger

proximal than distal to the branch.

An additional parameter of interest is the global maximum shear rate

within the horizontal section of the simulated flow field. This maximum always

occurs at a point along the top wall of the horizontal section and is at the

proximal tip of the branch during 80% of the pulsatile cycle ( 0<cot<0.6 and

1.1 x<cot<2n) but shifts to the distal tip during the interval 0.7X<cot<X. These

results are depicted in Figure 5.10 along with the constant steady state global

maximum which occurs at the proximal tip. The results indicate that the
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maximum shear rate changes over about two orders of magnitude during the

course of the cycle and that it may be either significantly larger or smaller than

its steady flow counterpart. Furthermore, the maximum always occurs in the

immediate vicinity of the branch, and the periodic shift in its localization from

the proximal to the distal tip during a portion of the pulsatile cycle further

emphasizes the difficulty in making any a priori generalizations on the shear

rates in pulsatile flow.

Figure 5.11 depicts the variation of the maximum value of the shear rate

along the bottom wall of the horizontal section with time over a single cycle

along with the constant steady flow value. The maximum always occurs in the

vicinity of the branch. Moreover, during the interval 0.5xi<ot<1.17, the value of

the maximum shear rate is actually within recirculation zone B. Figure 5.12

depicts the time variation of the ratio of the shear rate within recirculation zone

B in pulsatile flow to the constant value of this parameter in steady flow (this

constant value is 15.6 s-1). The results indicate that flow pulsatility may lead to

shear rates within the recirculation zone that are an order of magnitude larger

than their steady flow counterparts.

5.4 Discussion

This paper has reported the two-dimensional numerical simulation of

the steady and sinusoidal pulsatile flow field in a 90° T-junction using the finite

element code NEKTON. Although this system has been studied by other

investigators [26,27], there is a number of findings reported here which have

not previously been reported in the literature.

The specific flow conditions (i.e. vessel dimensions, flow Reynolds

number, and flow split ratios) simulated have been selected due to the

availability of equivalent steady state experimental data in a glass model [30].
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A comparison between the numerical and experimental results allows an

overall assessment of the accuracy and predictive capabilities of the numerical

model. This comparison illustrates that the computations accurately predict the

overall qualitative nature of the flow field. Specifically, the velocity profiles

upstream of the branch are significantly altered only a short distance proximal

to the branch, where the flow gets skewed upwards due to the presence of the

branch. Downstream of the branch, flow disturbance due to the branch

persists for a longer length. The extent of upward skewness proximal to the

branch in the simulations is significantly larger than its experimental

counterpart; however, skewness in three-dimensional flows is typically smaller

than that in two-dimensional flows [39].

The two recirculation zones A and B observed in the simulations are

also observed experimentally, and their positions within the flow field are also

accurately predicted. However, the lengths of the two recirculation zones are

not correctly predicted as zones A and B are experimentally observed to have

lengths of 0.7 D and 2.0 D, respectively (compared to 1.5 D and 2 D in the

simulations). Another difference between the computations and the

experiments is that while recirculation zones A and B are closed in the

simulations, they are not in the experiments. Specifically, the experimental

results indicate that the two recirculation zones interact as fluid from zone B

recirculates within the common median plane of the test section for a given

period of time before getting deflected out of the plane and tracing helical

trajectories to enter zone A. This difference between simulations and

experiments is not unexpected due to the two-dimensional nature of the

computations where only the common median plane is simulated.

The higher upward skewness in the simulations proximal to the branch

leads to a higher wall shear rate in that region. Specifically, the shear rate
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along the upper wall immediately upstream of the branch is 1326 s-1, while that

experimentally observed is only 320 s- 1. The computed and experimentally

observed distal shear rates are 246 and 310 s -1, respectively. The maximum

fluid velocity along the common median plane proximal to the branch is 97

mm/s in the simulations and 140 mm/s in the experiments, that distal is 33

mm/s in the simulations and 86 mm/s in the experiments. Finally, within

recirculation zone B, the magnitude of the maximum shear rate computed is 16

s- 1, while a value of 50 s-1 is observed experimentally.

It is believed that the quantitative differences between the computational

results and the experimental results are primarily due to differences between

two-dimensional and three-dimensional flow conditions. Hence, although the

two-dimensional simulations do not reproduce the exact quantitative values

observed experimentally, the qualitative nature of the flow field is accurately

predicted, and the essential features are captured.

The simulations have revealed some very fundamental differences

between steady and pulsatile flow. Recirculation zones present in steady flow

periodically appear and disappear in pulsatile flow. Furthermore, pulsatile flow

reveals the presence of additional recirculation or flow reversal zones which

are never observed in steady flow.

In pulsatile flow, shear rates and spatial shear rate gradients in the

immediate vicinity of a branching vary over several orders of magnitude during

the course of a single pulsatile cycle. The fact that the shear rates may be

significantly larger or smaller than their constant steady flow counterparts

emphasizes the need for incorporating pulsatility in model studies of possible

relationships between hemodynamic phenomena and atherosclerosis. It also

demonstrates the difficulty in making generalizations regarding the relative

magnitudes of shear stresses proximal and distal to branches. In fact, it has
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been demonstrated that the maximum shear rate within the simulated flow field

oscillates between immediately proximal to and immediately distal to the

branching during the course of a single cycle.

Whereas the wall shear rates within steady flow recirculation zones are

always small, periodically appearing and disappearing recirculation zones in

pulsatile flow exhibit shear rates that are comparable to the global maximum

shear rates in the flow field.

If the same flow phenomena observed in our two-dimensional

simulations occur in-vivo, then the results have important implications towards

a potential role of arterial hemodynamics in the atherogenic process. The

large variations in the magnitudes of shear rate to which underlying

endothelial cells would be exposed within the course of a single cycle as well

as the frequent reversal of flow direction that the cells "see" as a result of the

periodic appearance and disappearance of recirculation and flow reversal

zones may have important implications on details of endothelial cell molecular

function. It is well-established that specific endothelial cell responses such as

the activation of a K+-selective ion channel and consequent cell membrane

hyperpolarization occur over the course of very short time scales (milliseconds)

[6] so that the sharp temporal gradients due to the quickly-varying

hemodynamic conditions may be important in this regard. Furthermore, it has

been shown that the cytoskeletal rearrangement of cultured endothelial cells in

response to fluid flow depends strongly on whether the flow is unidirectional or

directionally-unsteady [40]. Therefore, the periodic appearance and

disappearance of recirculation and flow reversal zones may be important in

influencing underlying endothelial cell cytoskeletal structure and hence

possibly impacting permeability and metabolic characteristics of these cells.
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One specific result of the computations that is of particular interest in

view of existing physiological evidence is the presence of the periodically

appearing and disappearing flow reversal zone a short distance distal to the

branch. Okano and Yoshida [41] have studied the morphology of the

endothelial cells in the normocholesterolemic rabbit aortic arch in the area

distal to the brachiocephalic and left subclavian arteries. They have also

investigated the localization of sudanophilic regions distal to these same

branches in hypercholesterolemic rabbits. Their results indicate the presence

of a region of long fusiform endothelial cells that spans a few hundred microns

distal to the branches. Beyond this region, the cells become more ellipsoidal

in shape. The region of ellipsoidal cells was typically sudanophilic, while the

long fusiform cell zone was generally spared. These findings are consistent

with the presence of a small flow reversal zone distal to the branches since

experiments on cultured endothelial cells have shown that cells exposed to

recirculating or non-unidirectional flow tend to be more ellipsoidal in shape,

whereas those exposed to unidirectional flow tend to align in the bulk flow

direction [4]. The length of the flow reversal zone observed in the

computations (0.6 D or 1800 m) is larger than the few hundred microns

reported in [41], but the exact sizes depend on many flow and geometric

parameters. The small size of this flow reversal zone emphasizes the difficulty

of obtaining accurate experimental data on in-vivo flow fields since such a

small recirculation zone will most likely be missed by the standard in-vivo

velocity measurement techniques such as pulsed Doppler ultrasound

velocimetry or magnetic resonance imaging. This, in turn, lends further support

to the value of a sound numerical model.

The physiological relevance of the simulation results reported here

remains unknown. The simulations are two-dimensional, the geometry is
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idealized, the wall is rigid, and the pulse has a non-physiological sinusoidal

shape. However, the results obtained provide insight into fundamental fluid

mechanical differences that exist between steady and pulsatile flow. Efforts

are under way to relax some of the simulation assumptions in order to render

the computations more physiologically realistic.
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Figure Captions:

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Flow field simulation geometry illustrating the division of the
computational domain into 96 macro-elements and the imposed
parabolic velocity profile boundary conditions.

Steady state flow field illustrating the two recirculation zones A
and B.

Close-up view of steady state fluid streamlines in the immediate
vicinity of the branching.

Steady state wall shear rate field in the horizontal section of the
T-junction along the bottom wall (4a), top wall proximal to the
branching (4b), and top wall distal to the branching (4c). Positive
values denote forward flow along the bottom wall and backward
flow along the towall. Negative values denote backward flow
along the bottom wall and forward flow along the top wall.

Steady state shear rate field in the vertical section of the T-
junction along the left (5a) and right (5b) walls. Positive values
denote forward flow along the left wall and backward flow along
the right wall, while negative values denote backward flow along
the left wall and forward flow along the right wall.

Close-up view of fluid streamlines in the immediate vicinity of the
branching at 20 equally-spaced time intervals within the pulsatile
cycle.

Time variation of shear rate at the proximal and distal corners of
the branching during the course of the pulsatile cycle. Also
shown are the constant values computed under steady flow
conditions.

Time variation of the magnitude of the distal to proximal shear
rate ratio during the course of the pulsatile cycle. Also shown is
the constant value computed under steady flow conditions.

Magnitudes of the spatial shear rate and shear stress gradients in
the immediate vicinity of the branching during the course of the
pulsatile cycle.

Time variation of the global maximum shear rate within the
horizontal section of the flow field during the course of the
pulsatile cycle. Also shown is the constant value computed under
steady flow conditions.
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Figure 5.11

Figure 5.12

Time variation of the maximum shear rate along the bottom wall
of the horizontal section of the T-junction during the course of the
pulsatile cycle. Also shown is the constant value computed under
steady flow conditions.

Time variation of the ratio of the shear rate within recirculation
zone B in pulsatile flow to the constant value of this parameter in
steady flow during the course of the pulsatile cycle.
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Chapter Six

In Vivo Velocity Profiles in the Rabbit Abdominal Aorta

6.1 Introduction

Atherosclerosis is an arterial disease characterized by the focal

accumulation of fatty and fibrous deposits within the arterial wall. The

complicated lesions of atherosclerosis are thought to evolve from localized

fatty streaks which progress to calcified fibrous plaques. It has long been

recognized that atherosclerotic lesions do not occur randomly within the

vasculature but rather preferentially in regions of arterial branching and

curvature [1,2]. This focal nature has given rise to the notion of localizing

factors in atherogenesis, most notably hemodynamics within the affected

vessel [3,4].

Despite extensive study over the past three decades, very few

generalizations can be made at this time regarding the potential role of

hemodynamics in atherogenesis. The earliest theories expressed this role in

terms of a response of the endothelium to hemodynamic injury caused by a

wide range of fluid mechanical phenomena including high or low wall shear

stress [5,6], low arterial blood pressure [7], boundary layer separation [8],

turbulence [9], arterial wall fatigue and consequent loss of tensile strength [10],

impedance mismatching [11], among other mechanisms. These studies,

however, often failed to account for many of the subtle geometric and

hemodynamic details which give rise to the tremendous complexity of arterial

flow fields.

In light of pathological evidence that the earliest stages of

atherosclerosis occur in the presence of an intact endothelium [12], the

hemodynamic theories have evolved to a hypothesis of hemodynamic
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endothelial dysfunction, thereby motivating a wide range of fundamental

studies aims at elucidating endothelial cell response to fluid mechanical

stresses. These studies have revealed that the endothelium, rather than being

simply a non-thrombogenic surface and a selective barrier to macromolecular

transport, is an active structure with sophisticated response mechanisms to

stimuli. It possesses an extensive network of communication both with

adjacent endothelial cells and subjacent smooth muscle cells. Endothelial

cells exhibit specific humoral, metabolic, and structural responses which vary

with shear stress level. Examples of phenomena that respond to shear stress

are production of interleukin-6 [13]; expression of endothelin [14]; rate of

prostacyclin production, intracellular Ca2+ concentration, and microtubule

realignment [15]; pinocytotic rate, cell alignment in the flow direction, and

redistribution of microfilaments or stress fibers [16]; endothelial cell

proliferation and DNA synthesis [17]; deendothelialization and cell detachment

[5]; redistribution of focal adhesion sites [18]; and reorientation of extracellular

fibronectin deposition [19]. The endothelial cell responses to mechanical

stimuli occur over time scales ranging from seconds to days [20]. Although

their direct applicability to physiological situations is uncertain, these

observations suggest that mechanical forces can stimulate endothelial cells in

vivo.

Recent experimental investigations in glass models, vascular casts, and

excised natural vessels have concentrated on capturing true arterial geometry,

physiological pulsatility, and even wall compliance in some instances and

have revealed the existence of complex flow fields, especially in the vicinity of

arterial branches. For example, flow in models of the human abdominal aorta

[21,22] demonstrated more complex flow patterns in the infrarenal than in the

suprarenal section as well as time-varying helical vortex motion initiating at the
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renal arteries and propagating to the iliac bifurcation. Furthermore, a region of

boundary layer separation was observed along the posterior wall of the aorta

extending from the renal arteries to the iliac bifurcation. Pulsatile flow

experiments in models of the carotid artery [23,24] have shown that the

common carotid and distal internal carotid arteries undergo axial,

unidirectional flow, while the region within the carotid sinus undergoes

boundary layer separation, helical flow, and reverse flow. Finally, within

coronary arteries, disturbed flow patterns have been observed along the outer

walls of bifurcations, while the inner walls remained generally exposed to

unidirectional flow [25]. Comparison of the results of these hemodynamic

investigations with the localization of early atherosclerotic lesions has

suggested that lesion development correlates with regions of low or oscillatory

wall shear stress, boundary layer separation, and/or flow reversal.

A relatively small number of in vivo studies of the flow and wall shear

stress fields have been reported in the literature. Noninvasive pulsed Doppler

[261 and magnetic resonance [27] measurements of velocity profiles have been

made in peripheral arteries; however, the level of detail that can be resolved

remains limited at this point. There have been several studies with invasive

pulsed Doppler ultrasound in dogs, and these studies have shed some light on

the arterial velocity profiles in vivo. For example, Farthing and Peronneau [28]

studied the velocity profiles at several locations in the aortic arch at various

points within the cardiac cycle and estimated wall shear stresses. Hutchison et

al. [29] studied the flow patterns in the dog abdominal aorta and reported

regions of transient flow recirculation opposite the superior mesenteric and left

renal arteries in the post-systolic phase of the cardiac cycle. No recirculation

was observed at peak systole although the velocity profiles were asymmetric.

Bell et al. [30] examined the velocity profiles in the left cicumflex and left
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anterior descending coronary arteries and consistently observed higher wall

shear rates along the outer walls than along the inner walls.

The objective of this paper is to obtain quantitative information on the

details of the flow field in the rabbit abdominal aorta in vivo using pulsed

Doppler ultrasound velocimetry. In this preliminary study, we have

concentrated exclusively on the region of the aorta between the celiac and

superior mesenteric arteries because the ventral (i.e. anterior) wall within this

region has previously been shown to reproducibly exhibit a streak of focal

enhanced permeability sites to low density lipoprotein and other

macromolecules [31]. The dorsal wall within this region is generally free of the

enhanced permeability sites. It is desired to investigate whether or not this

preferred localization has its basis in details of the in vivo flow field.

6.2 Materials and Methods

6.2.1 Flow Rate Measurement System

The system used for measuring the in vivo velocity profiles in the rabbit

abdominal aorta is a high resolution pulsed Doppler ultrasound velocimeter

and associated perivascular probes [32]. The velocimeter has a transmission

frequency of 15 MHz, and a pulse repetition frequency of 60 kHz. The quoted

spatial resolution of the system is 0.1 mm. The uniqueness of this system lies

in the design of the probes each of which is equipped with two transducers.

Each transducer is oriented at an angle of approximately 600 relative to the

bulk flow direction. This double-transducer probe design permits the

measurement of both the axial and transverse components of the velocity

vector within the measurement volume [33,34]. Commercially available pulsed

Doppler systems are equipped with single-transducer probes which measure

only the component of the velocity parallel to the ultrasound beam. Each
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transducer has a diameter of 2 mm, and the center-to-center distance between

the two transducers is 5 mm. The total width of each probe, i.e. the two

transducers and their support bracket, is 8 mm.

The details of pulsed Doppler ultrasound velocimetry can be found

elsewhere [35,36], but the basic principle is that the two ferro-electric

transducers are successively activated by a series of ultrasound pulses. These

pulses penetrate the vessel and are partially reflected by the various objects

within their paths, namely the vessel walls and the cells within the

bloodstream. Between pulses, each transducer acts as a receiver for the

reflected signals. An electronic gate is used to specify the distance from the

transducer of a measurement volume within which data are collected, so that

the radial position or depth sampled within the vessel is known. The Doppler

frequency shift of the recorded reflected signal is proportional to the fluid

velocity within the measurement volume. The generation of a velocity profile

within a vessel thus consists of scanning the entire depth of the vessel along

the ultrasonic beam by electronically displacing the measurement volume from

the near wall to the far wall in successive intervals (i.e. at various radial

positions) and measuring the Doppler frequency at each radial position. This

process is followed for each of the two transducers, and the measurements

from the two transducers are combined to yield the axial and transverse

components of the velocity vector. One fundamental assumption made in

using this technique is that the fluid velocity does not change appreciably over

the separation distance between the two transducers.
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6.2.2 Animal Experiments

6.2.2.1 Animal Preparation

Five specific pathogen-free male, New Zealand White rabbits Hra:(NZW)

SPF, Onyctolagus Cunniculus (Hazleton Research Products, Inc., Denver, PA)

ranging in weight from 2.6 to 3.8 kg were used. The rabbits were individually

housed in stainless steel cages (24"x30"x17"), fed a commercial rabbit diet

(Purina Rabbit Chow HF5326, Ralston Purina Company, St. Louis, MO) and

water ad libitum, and maintained in a controlled environment of 68-72 °F,

relative humidity of 40-65%, and 12 hours light/12 hours dark. Ventilation was

100% fresh air with 12 complete room air changes per hour. Initial anesthesia

was induced by the intramuscular injection of 50 mg/kg ketamine and 10 mg/kg

xylazine. After the rabbit lost consciousness, both ears were shaved. A 24 ga

catheter (2 in Intracath, Deseret Pharmaceutical Co., Sandy, VT) was inserted

through one of the marginal ear veins of the left ear, and a 22 ga catheter (2 in

Intracath, Deseret Pharmaceutical Co., Sandy, VT) was inserted through the

central artery of the right ear. Both catheters were secured in place with tape

and tightly capped. The animal was then intubated with an uncuffed

endotracheal tube (3 mm internal diameter) which was inserted approximately

4 cm into the trachea. The ventral surface of the rabbit was shaved, prepped

with 70% isopropyl alcohol, and secured with limb ties in dorsal recumbancy.

The ear vein catheter was then connected to a bag of warm, sterile lactated

Ringer's solution positioned about 100 cm above the operating table that

provided continuous fluid administration averaging 10 ml/kg/hr throughout the

experiment. The ear artery catheter was connected to a pressure transducer

(Statham Gould P231D, Gould Inc., Medical Products Division, Oxnard, CA)

and monitor (Statham Gould Model SP14053, Gould Inc.) for continuous blood

pressure monitoring. Animals were maintained on circulating hot water
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heating pads (37.8 oC). ECG electrodes connected to the animal's four limbs

provided continuous monitoring of heart rate.

6.2.2.2 Surgical Procedures

All procedures described here were reviewed and approved by the

Committee on Animal Care at MIT. The intubation tube was connected to a

respirator providing oxygen at about 1.5 liters/min. The respirator delivered a

tidal volume of 25-50 ml of oxygen containing 0.5 to 2% isoflurane at 30

breaths per minute. Attempts were made to maintain heart rate and blood

pressure constant by decreasing the administration rate of isoflurane and

increasing the rate of lactated Ringer's solution infusion in response to

decreased heart rate and blood pressure.

A ventral midline laperotomy was performed. The abdominal contents

were retracted to the rabbit's left side and maintained moist by covering them

with saline-soaked gauze. The portion of the abdominal aorta between the

celiac and superior mesenteric arteries was isolated with a combination of

blunt and sharp dissections, as were lengths of the celiac and superior

mesenteric arteries.

6.2.2.3 Velocity Profile Measurements

Within the aortic segment between the celiac and superior mesenteric

arteries, velocity profiles have been recorded at three different axial positions:

a short distance distal to the celiac artery, a point about halfway between the

two branches, and a short distance proximal to the superior mesenteric artery.

Figure 6.1 illustrates how the velocity profile measurements in the abdominal

aorta at each of these three locations are made. Two probes, 1 and 2 in the

figure, are used, each for a different position. Probe 1 is placed along the
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ventral surface of the aorta, and it measures the velocity profile along the

midplane of the vessel from the ventral to the dorsal walls. Probe 2 is

positioned along the right lateral wall of the aorta, and it measures the velocity

profile in the midplane connecting the right lateral to the left lateral walls. Each

probe contains two transducers, and information from both transducers is

combined to yield the axial and transverse components of the velocity vectors

along the two orthogonal planes of measurement. The sign convention for

each probe is that velocity is positive in the direction away from the probe and

negative in the direction toward the probe.

The probes are actually not mounted on the aortic wall. Rather, they are

mounted on a mechanical micromanipulator which allows great flexibility in

accurately positioning the probes and which avoids any problems that may

result from the probes being in direct contact with the aorta. An acoustic

couplant (aquasonic gel) was used to ensure that the ultrasound beam travels

continuously through a medium whose acoustic properties resemble those of

animal tissue.

Briefly, the measurement procedure is as follows: the zero baseline and

voltage calibration signals are initially recorded. Probe 1 is then positioned

along the ventral wall of the aorta, and the positions of the near and far, i.e.

anatomical ventral and dorsal, walls are established for each of the two

transducers. This is accomplished by adjusting the electronic gate of the

velocimeter so that the frequency signal at each wall is virtually zero. The

rabbit aorta is a small-diameter vessel; therefore, it is difficult to ascertain that

the probe positioning is exactly along the midplane of the vessel. In order to

verify this positioning, the micromanipulator is used to displace the probe

laterally in small intervals, and at each interval the positions of the near and far

walls are recorded using the electronic gate. The position corresponding to
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the maximum value of the distance between the two walls, i.e. the diameter of

the aorta, is taken as the midplane position. Once the positions of the two

walls are established for each transducer, the electronic gate is used to

progressively displace the measurement volume in small intervals within the

vessel lumen until the entire diameter of the aorta is scanned. At each interval,

the Doppler frequency is recorded over 15 to 25 cardiac cycles, and these

frequencies, after being converted to fluid velocities, then yield the desired

profile in the midplane connecting the ventral and dorsal walls. The process is

then repeated for probe 2 to construct the velocity profile in the plane

connecting the right and left lateral walls.

All data recording was performed automatically using a PC-based data

acquisition software (Datalog, National Software, CA) loaded onto an IBM 386-

PC. Two recording channels were used: the first recorded the voltages

corresponding to the Doppler frequencies, while the second recorded a pulse

signal of an ECG trigger which demarcated the beginning of every recorded

cardiac cycle. The probe positioning and data recording for each of the two

orthogonal positions at each axial location between the celiac and superior

mesenteric arteries required about one hour.

Following completion of the measurements, the animal was euthanized

with an overdose (about 3 ml) of sodium pentobarbital (6 g/ml, Lemmon Co.,

Sellersville, PA) injected either into the marginal ear vein catheter. The animal

died immediately.

6.3 Results

6.3.1 Straight Tube Velocity Profiles

A number of control experiments were performed to validate the

performance of the pulsed Doppler system. We studied steady, fully
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developed flow in a straight tube. Polyethylene tubing with an inner diameter

of about 4.2 mm was used in these experiments. Steady flow was imposed

using a small tubing pump. The working fluid was water seeded with starch

which acted as the reflecting medium for the ultrasound pulses. The flow rate

tested was 420 ml/min which corresponds to a flow Reynolds number of about

2100 (assuming the viscosity of water is unchanged by the added starch). The

measurements were made at an axial position 18 cm (about 43 tube

diameters) downstream of the tube entrance, so that the flow was fully

developed [37]. Both probes 1 and 2 were used to measure the velocity

profiles in two orthogonal midplanes of the tube.

Figure 6.2 illustrates the probe 1 axial and transverse velocity profiles

within the tube. The axial velocity profile is nearly parabolic, the shape that

would be expected for steady, laminar, fully developed flow in a straight tube.

The transverse velocity profile exhibits no systematic structure, and the

transverse velocities are small relative to the axial velocities (peak transverse

velocity is about 13% of the peak axial velocity) indicating the presence of

predominantly axial flow with limited secondary flow motion. The small

secondary flow components may have been caused by electronic noise in the

measurement system, by small-scale disturbances in the flow field induced by

the pump's inability to deliver perfectly steady flow, or by the flow Reynolds

number being close to transition to turbulence.

Figure 6.3 illustrates the probe 2 axial and transverse velocity profiles in

the straight tube. The peak transverse velocity is about 7% of the peak axial

velocity, and the same general conclusions described in the case of the probe

1 profiles apply in this case.
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6.3.2 Abdominal Aorta Velocity Profiles

The velocity profiles in the abdominal aortas of five rabbits have been

studied in this preliminary effort. As has already been mentioned, we have

chosen to focus our attention on the region of the abdominal aorta between the

celiac and superior mesenteric arteries. We have measured the in vivo

velocity profiles in two orthogonal midplanes at three axial positions within the

region of interest: shortly distal to the celiac artery, midway between the celiac

and superior mesenteric arteries, and shortly proximal to the superior

mesenteric artery.

Figure 6.4 illustrates typical probe 1 axial and transverse velocity

profiles within the aorta shortly distal to the celiac artery as a function of time for

a single "average" cardiac cycle. The profiles actually represent data

averaged over 16 cardiac cycles, and 28 separate time points were recorded

within each cycle. Data have been acquired at 13 radial positions within the

vessel lumen (in addition to the two wall data points). The peak axial velocity

is reached at the 9th time point, and the axial profiles demonstrate that the flow

is skewed towards the ventral wall of the aorta during a portion of the cardiac

cycle. The axial velocities are positive throughout the cardiac cycle indicating

that the flow in the midplane connecting the ventral and dorsal walls is in the

forward direction throughout the cycle with no regions of flow recirculation

along either wall.

The transverse velocity profiles indicate that the transverse velocities

are relatively large; the peak transverse velocity is about 25% of the peak axial

velocity. This indicates significant secondary flow motion within the flow field.

Moreover, at the beginning of the cardiac cycle and until the 7th recorded time

point (corresponding to one-fourth of the cardiac cycle), the transverse velocity

has a negative value along the entire midplane connecting the ventral and
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dorsal walls of the aorta indicating the presence of secondary flow motion

directed towards the ventral wall (since the sign convention, as has already

been described, is positive in the direction away from the probe and negative

toward it). At the 8th time point, the transverse velocity becomes positive within

a small distance near the ventral wall but remains negative along most of the

midplane. This indicates secondary flow motion near the ventral wall that is

directed toward the dorsal wall, while the secondary flow motion throughout

the remainder of the midplane remains directed toward the ventral wall. The

extent of the region of positive transverse velocity increases with time until it

spans the entire midplane at about the 19th time point and remains so until the

end of the cycle although its magnitude progressively decreases until it

disappears completely at the end of the cycle before becoming negative again

at the start of the next cycle.

Figure 6.5 illustrates typical probe 2 axial and transverse velocity

profiles within the aorta shortly distal to the celiac artery as a function of time for

a single "average" cardiac cycle (average of 16 recorded cycles). 28 time

points have been recorded within the course of each cycle, and measurements

have been made at 15 radial positions within the vessel lumen (in addition to

the two wall measurements). The peak axial velocity is attained at the 12th

time point. The axial velocity profiles are skewed towards the right lateral wall

during a large portion of the cycle, and, as in the case of the probe 1 data, the

axial velocities are always positive indicating forward flow in the midplane

connecting the right and left lateral walls of the aorta.

The transverse velocities are once again relatively large (maximum

transverse velocity is 16% of the maximum axial velocity) indicating the

existence of extensive helical motion. The transverse velocity is negative

along the entire midplane at the beginning of the cycle indicating secondary
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flow motion directed toward the right lateral wall. This continues to be the case

until the 9th time point when the transverse velocity remains negative near the

right lateral wall but becomes positive near the left lateral wall. This behavior

continues until the 12th time point when the transverse velocity becomes

positive throughout the entire midplane thereby indicating secondary flow

directed toward the left lateral wall. The transverse velocity remains fully

positive until the 24th time point when it becomes positive near the right wall

and negative near the left wall and remains so until the end of the cycle at

which point it disappears completely before becoming fully negative to begin

the next cycle.

The combination of the transverse velocity data from both probes leads

to complex secondary flow behavior within the vessel cross-section during the

course of a cycle. Figure 6.6 illustrates vessel cross-sections at four time

points within the cycle along with the directions of the transverse velocities

measured in the two orthogonal midplanes at those time points. Also shown

are the simplest flow patterns within the vessel cross-section that are

consistent with the measured midplane information. The results indicate the

presence of multiple cells of vortical motion within the aorta, and the exact

structure of this vortical flow behavior undergoes several changes within the

course of a single cardiac cycle. Given that the axial velocities are in the

forward direction throughout the course of the cycle, the secondary flow results

represent forward-moving helical zones. The four time points displayed in

Figure 6.6 represent selected points at which the flow field is most structured.

Intermediate time points may include additional zones of helical motion as the

flow undergoes transition from one of the structures shown in Figure 6.6 to a

subsequent one.
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Figures 6.7 and 6.8 depict respectively the probe 1 and probe 2 axial

and transverse velocity profiles within the abdominal aorta midway between

the celiac and superior mesenteric arteries. The probe 1 data are the average

of 15 cycles with 30 time points per cycle, while the probe 2 data are the

average of 16 cycles with 28 time points per cycle. Measurements have been

made at 12 radial points within the vessel lumen (in addition to the two wall

data points) for both probes 1 and 2. Generally similar observations are made

at this location to those at the region shortly distal to the celiac artery. In

particular, the axial velocities in the two orthogonal midplanes measured are in

the forward direction throughout the course of the cardiac cycle, and the

transverse velocities are large indicating extensive secondary flow motion.

The details of the transverse velocity behavior are somewhat different than

those discussed in the region shortly distal to the celiac artery, and the helical

motion structures consistent with the specific results are illustrated in Figure

6.9. Finally, Figures 6.10 and 6.11 illustrate the probe 1 and probe 2 axial and

transverse velocity profiles during the course of a cardiac cycle shortly

proximal to the superior mesenteric artery. The probe 1 data represent the

average of 19 cycles with 28 time points per cycle, while the probe 2 data are

the average of 24 cycles with 22 time points per cycle. Probe 1 measurements

have been made at 14 radial positions within the vessel lumen (in addition to

the two wall data points), while the probe two measurements have been made

at 12 radial positions (in addition to the two wall data points). The general

conclusions are similar to the other two cases, and the structures depicting the

flow field helical motion at selected time points are shown in Figure 6.12.

Figures 6.13, 6.14, and 6.15 illustrate the in vivo wall axial shear stress

as a function of time during the course of a cardiac cycle at the ventral, dorsal,

right lateral, and left lateral walls at the three axial measurement locations

245



between the celiac and superior mesenteric arteries. In these computations,

the shear rate at each wall is computed as the slope of a straight line

connecting the measured velocity at the wall to that at the point within the

bloodstream closest to the wall, and the blood viscosity is assumed constant at

4 cP. The results indicate that the axial shear stresses to which the four walls

are exposed are not significantly different in magnitude or overall behavior.

The shear stresses generally increase as the flow accelerates, and then

decrease as the flow decelerates. The ventral wall shear stress may be

smaller or larger than that at the dorsal wall, and the right lateral wall shear

stress may likewise be smaller or larger than the left lateral wall shear stress.

Therefore, no generalizations regarding relative magnitudes can be made. As

has already been mentioned, enhanced permeability sites in the region

between the celiac and superior mesenteric arteries consistently localize along

the ventral wall of the aorta. The lack of a clear distinction in axial wall shear

stress behavior between the ventral and dorsal walls indicates that no

correlation can be drawn at this point between the axial wall shear stress

behavior and enhanced permeability site localization.

The existence of prominent transverse velocity components suggests

the presence of significant circumferential shear stresses. These, however,

cannot be directly inferred from the current measurements.

In addition to the measurements in the abdominal aorta, the velocity

profiles within the superior mesenteric artery of one rabbit was studied. The

axial and transverse velocity profiles in the superior mesenteric artery as a

function of time are illustrated in Figure 6.16. The most interesting feature of

the axial velocity profiles is that they become negative for a small portion of

diastole. This indicates reverse flow from the superior mesenteric artery into

the aorta. This reverse flow will have important implications on the wall shear
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stress in the aorta in the immediate vicinity of the superior mesenteric artery.

Although the preliminary data reported here on branch flow reversal are

limited, they are supportive of previous observations we have made in studies

of in vivo flow rates in the rabbit aortic branches using transit-time ultrasound

flowmetry [38]. The relatively large transverse velocities within the superior

mesenteric artery are consistent with the presence of extensive helical motion

within the branch. This is also in agreement with previous results we have

obtained in flow visualization studies in rabbit aortas that had been rendered

transparent [39].

6.4 Discussion

The study reported here is the first known investigation of in vivo

velocity profiles in the rabbit aorta. This represents important information in

trying to understand the physiological aortic flow field and how it may relate to

the localization of enhanced permeability sites and early atherosclerotic

lesions. We have used a high resolution pulsed Doppler ultrasound system to

measure the velocity profiles in two orthogonal midplanes at three locations

within the abdominal aortas of five rabbits in the regions between the celiac

and superior mesenteric arteries. The uniqueness of the system used here lies

in the design of the perivascular probes each of which is equipped with two

ultrasonic transducers. The combination of recorded information from both

transducers allows the deduction of both the axial and transverse velocities in

the plane of measurement. Commercially available systems permit the

measurement of only the axial component of the velocity vector.

The axial velocity results have consistently revealed the presence of

forward flow in the aortic segment under investigation throughout the course of

the cardiac cycle. The axial velocity profiles are occasionally skewed towards
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one of the aortic walls. Relatively large transverse velocities have been

measured in the aortas of all five rabbits indicating the presence of extensive

secondary flow motion. The transverse velocity information from the two

orthogonal planes of measurement at each site is consistent with the existence

of multiple zones of forrward-moving helical motion within the aortic cross-

section. The exact structure of this motion changes significantly within the

course of a single cardiac cycle. Specific helical zones appear at particular

points within the cycle, grow with flow acceleration until they reach a maximum

size after which they begin decreasing in size and eventually disappear

entirely.

Axial wall shear stresses have been computed along the ventral, dorsal,

right lateral, and left lateral walls of the aorta as a function of time. No clear

differences in axial shear stress behavior is observed among the four aortic

walls. Furthermore, the relative magnitudes of the shear stresses depend on

the specific portion of the pulsatile cycle investigated. The extensive helical

motion in the aorta in all likelihood leads to significant circumferential wall

shear stresses, but these shear stresses could not be measured in this study.

It should be noted that the magnitudes of the axial wall shear stress

measured here are significantly smaller than those obtained from steady flow

visualization studies previously performed in rabbit aortas that had been made

transparent while the peak velocities are comparable [39]. It is well-

established that Doppler velocimetry measurements are least accurate very

close to the aortic wall. As the vessel lumen is scanned by the electronic

displacement of the measurement volume in order to construct the velocity

profile, the situation is frequently encountered near the vessel wall that the

measurement volume straddles both fluid and wall so that the measurements

become muddled. The wall motion adds further noise to the recorded signals.
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Unfortunately, it is precisely the near-wall fluid mechanical conditions that are

believed to be relevant in investigating a potential role for hemodynamics in

atherogenesis. Therefore, the shear stresses reported here are considered

questionable. Further system validation experiments on well-behaved flows in

straight tubes should be performed before confidence is established in the in

vivo wall shear stress levels.

The axial and transverse velocity profiles within the superior mesenteric

artery of one rabbit were measured, and the preliminary results revealed the

presence of extensive helical motion within the superior mesenteric artery as

well as the occurrence of reverse flow from the branch back into the aorta

during a portion of diastole. This reverse flow is expected to have a significant

effect on the shear stress to which the aortic wall is exposed during the course

of a cardiac cycle.

The segment of the abdominal aorta between the celiac and superior

mesenteric arteries has been selected for these initial studies because the

ventral wall within this region is a site of localization of early atherosclerotic

lesions experimentally induced in hypercholesterolemic rabbits [40].

Moreover, in the normocholesterolemic rabbit, this region reproducibly exhibits

predilection for the occurrence of focal sites of enhanced macromolecular

permeability [31]. The dorsal wall within this region is invariably spared of

similar localization. The finding of no clear differences in the magnitudes or

the temporal gradients of axial shear stresses between the ventral and dorsal

walls suggests that, if hemodynamics play a role in the localization of early

lesions, then it may be the circumferential components of the wall shear stress

that may be most relevant.

Although no previous data have been reported on the rabbit, there exist

limited data on the in vivo flow field in the dog abdominal aorta. Hutchison et
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al. [29] used pulsed Doppler ultrasound velocimetry to measure the axial

velocity profiles in the dog abdominal aorta shortly distal to the superior

mesenteric and left renal arteries. They reported the existence of flow

recirculation in diastole along the walls opposite to the branches. No flow

recirculation was observed during systole although the velocity profiles were

asymmetric. Moore et al. [21] and Pedersen et al. [22] performed dye injection

flow visualization studies of the steady and pulsatile flow fields in models of the

human aorta and reported complex vortical flow behavior. No quantitative

information on the magnitudes and exact nature of the transverse velocities

were reported. Thiriet et al. [41] performed three-dimensional steady flow

finite element simulations of the flow field in a model of the aortic bifurcation

and observed prominent secondary flow motion within the two iliac branches.

Our results indicate that this secondary flow motion is also prominent in the

rabbit aorta in vivo, and our measurement technique allows the quantitation of

the transverse velocity components within the planes of measurement.

In addition to measurement inaccuracy near the wall, a limitation of the

measurements reported here is the difficulty of making measurements in the

immediate vicinity of branches. Okano and Yoshida [42] have reported

significant endothelial cell shape differences distal to the rabbit

brachiocephalic and left subclavian arteries over length scales of 100-200 gim.

Although the probes used here are relatively miniature and are mounted on a

micromanipulator, it remains very difficult to make accurate measurements

within such small length scales. It is believed that the results here provide an

understanding of the macroscopic structure of the in vivo aortic flow field, and

this would then need to be combined with more microscopic studies to

investigate very localized phenomena. Finally, the measurements reported

here were made on two orthogonal midplanes in the aorta. The inference of
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the entire three-dimensional flow field from sparse two-plane data is both

difficult and inaccurate; therefore, data in additional orthogonal planes at each

measurement site are desirable. Efforts in this direction are currently

underway.

251



6.5 References

1. Schwartz CJ, Mitchell JRA. Observations on localizations of arterial
plaques. Circ. Res. 11: 63, 1972.

2. Spain DM. Atherosclerosis. Scientific American. 215: 48, 1966.

3. Nerem RM. Vascular fluid mechanics, the arterial wall, and
atherosclerosis. J. Biomech. Eng. 114: 274, 1992.

4. Nerem RM, Levesque MJ. Fluid dynamics as a factor in the localization
of atherogenesis. Annals of the New York Academy of Science. 416:
719, 1983.

5. Fry DL. Acute vascular endothelial changes associated with increased
blood velocity gradients. Circ. Res. 22: 165, 1968.

6. Caro CG, Fitzgerald JM, Schroter RC. Arterial wall shear and
distribution of early atheroma in man. Nature. 223: 1159, 1969.

7. Texon M. Hemodynamic Basis of Atherosclerosis. Washington:
Hemisphere Publishing Corp., 1980.

8. Fox JA, Hugh AE. Localization of atheroma: A theory based on
boundary layer separation. Br. Heart J. 28: 388, 1966.

9. Wesolowski SA, Fries CC, Sabini AM, Sawyer PN. The significance of
turbulence in hemic systems and in the distribution of the atherosclerotic
lesion. Surgery. 57: 155, 1965.

10. Stehbens WE. Hemodynamics and atherosclerosis. Biorheology. 19:
95, 1982.

11. Gosling RG, Newman DL, Bowden NLR, Twinn KW. The area ratio of
normal aortic junctions: aortic configuration and pulse-wave reflection.
Brit. J. Radiol. 44: 850, 1971.

12. Goode TS, Davies PF, Reidy MA, Bowyer DE. Aortic endothelial cell
morphology observed in situ by scanning electron microscopy during
atherogenesis in the rabbit. Atherosclerosis. 27: 235, 1977.

13. Massop DW, Wright JG, Smead WL, Sadoun ET, Cornhill JF.
Interleukin-6 production by human aortic endothelial cells is regulated
by shear stress. Arteriosclerosis. 10: 760a, 1990.

14. Malek A, Izumo S. Physiological fluid shear stress causes
downregulation of endothelin-1 mRNA in bovine aortic endothelium.
Am. J. Physiol. 263 (Cell Physiol. 32): C389, 1992.

252



15. Frangos JA, Eskin SG, Mcintyre LV, Ives CL. Flow effects on
prostacyclin production by cultured human endothelial cells. Science.
227: 1477, 1989.

16. Dewey CF, Bussolari SR, Gimbrone MA, Davies PF. The dynamic
response of vascular endothelial cells to fluid shear stress. J Biomech.
Eng. 103: 177,1981.

17. Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Gimbrone MA. Turbulent
fluid shear stress induces vascular endothelial turnover in vitro. Proc.
Natl. Acad. Sci. USA. 83: 2114, 1986.

18. Davies PF. Mechanical sensing mechanisms: Shear stress and
endothelial cells. J. Vasc.Surg. 13: 729-731,1991.

19. Wick TM, Doty SD, Nerem RM. Influence of fluid mechanical stresses on
vascular cell adhesion. Biomedical Transport Processes, NY: Plenum
Press, pp.283-292, 1990.

20. Davies PF, Tripathi SC. Mechanical stress mechanisms and the cell: An
endothelial paradigm. Circ. Res. 72: 239-245, 1993.

21. Moore JE, Ku DN, Zarins CK, Glagov S. Pulsatile flow visualization in
the abdominal aorta under differing physiologic conditions: Implications
for increased susceptibility to atherosclerosis. J. Biomech. Eng. 114:
391, 1991.

22. Pedersen EM, Yoganathan AP, Lefebvre XP. Pulsatile flow visualization
in a model of the human abdominal aorta and aortic bifurcations. J.
Biomechanics. 25: 935, 1992.

23. Ku DN, Giddens DP. Pulsatile flow in a model carotid bifurcation.
Arteriosclerosis. 3: 31, 1983.

24. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov
S. Carotid bifurcation atherosclerosis: Quantitative correlation of plaque
localization with flow velocity profiles and wall shear stress. Circ. Res.
53: 502, 1983.

25. Asakura T, Karino T. Flow patterns and spatial distribution of
atherosclerotic lesions in human coronary arteries. Circ. Res. 66: 1045,
1990.

26. Simon AC, Levenson J, Flaud P. Pulsatile flow and oscillating wall
shear stress in the brachial artery of normotensive and hypertensive
subjects. Cardiovascular Res. 24: 129, 1990.

253



27. Moore JE, Ku DN. Wall shear stress measurements in model abdominal
aorta using magnetic resonance imaging. ASME BED Advances in
Bioengineering. 20: 375, 1991.

28. Farthing S, Peronneau P. Flow in thoracic aorta. Cardiovascular Res.
13: 607, 1979.

29. Hutchison KJ, Karpinski E, Campbell JD, Potemkowski AP. Aortic
velocity contours at abdominal branches in anesthetized dogs. J.
Biomechanics. 21: 277,1988.

30. Bell DR, Sabbah HN, Stein PD. Profiles of velocity in coronary arteries
of dogs indicate lower shear rate along inner arterial curvature.
Arteriosclerosis. 9: 167, 1989.

31 Barakat Al, Uhthoff PAF, Colton CK. Topographical mapping of sites of
enhanced HRP permeability in the normal rabbit aorta. J. Biomech.
Eng. 114: 283, 1992.

32. Delouche A, Dimicoli JL, Peronneau P. In vitro study of modifications of
blood flow patterns induced by a bifurcation. Biorheology. 22: 55,
1985.

33. Peronneau P. Analyse de I'ecoulement sanguin dans les gros
vaisseaux par methode ultrasonore. These Science Nat. Universite
de Paris, 1977.

34. Peronneau P, Nakache M. Relationship between hydrodynamic forces
and vascular wall phenomena - I. Measurement of parietal friction by
pulse type Doppler velocimeter. Biorheology. 16: 257, 1979.

35. Baker DW. Pulsed ultrasonic doppler blood flow sensing. I. E.E. E.
Trans. Sonics Ultrason.. 17: 170, 1970.

36. Peronneau P, Delouche A, Bui-Mong-Hung, Hinglais J. Debitmetrie
sanguine par ultrasons. Developpement et applications experimentales.
Eur. Surg. Res. 1: 147, 1969.

37. Bejan A. Convection heat transfer. John Wiley and Sons, NY, 1984.

38. Barakat Al, Marini RP, Colton CK. Measurement of flowrates through
aortic branches in the rabbit in vivo. (Manuscript in preparation).

39. Barakat Al, Colton CK. Detailed flow pattern in the transparent rabbit
aorta. (Manuscript in preparation).

40. Schwenke DC, Carew TE. Quantification in vivo of increased LDL
content and rate of LDL degradation in normal rabbit aorta occuring at

254



sites susceptible to early atherosclerotic lesions. Circ. Res. 62: 699,
1988.

41. Thiriet M, Pares C, Saltel E, Hecht F. Numerical simulations of steady
flow in a model of the aortic bifurcation. J. Biomech. Eng. 114: 40,
1992.

42. Okano M, Yoshida Y. Endothelial cell morphometry of atherosclerotic
lesions and flow profiles at aortic bifurcations in cholesterol fed rabbits.
J. Biomech. Eng. 114: 301, 1992.

255



Figure Captions

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Method of velocity measurement in two orthogonal midplanes of
the aorta. Two probes (1 and 2), each equipped with two
transducers, are used. Data from the two transducers are
combined to yield both axial and transverse velocity components.

Probe 1 axial and transverse velocity profiles for steady, fully
developed flow in a straignt polyethylene tube.

Probe 2 axial and transverse velocity profiles for steady, fully
developed flow in a straignt polyethylene tube.

Position 1 (corresponding to probe 1) axial and transverse
velocity profiles as a function of time during the course of a
cardiac cycle in the rabbit abdominal aorta shortly distal to the
celiac artery. "V" refers to the ventral wall of the aorta and "D" to
the dorsal wall.

Position 2 (corresponding to probe 2) axial and transverse
velocity profiles as a function of time during the course of a
cardiac cycle in the rabbit abdominal aorta shortly distal to the
celiac artery. "R" refers to the right lateral wall of the aorta and "L"
to the left lateral wall.

Aortic cross-sections indicating directions of transverse velocities
in the two orthogonal measurement midplanes at selected time
points within the cardiac cycle shortly distal to the celiac artery.
Also shown are helical flow patterns consistent with the
measured transverse velocities.

Position 1 (corresponding to probe 1) axial and transverse
velocity profiles as a function of time during the course of a
cardiac cycle in the rabbit abdominal aorta midway between the
celiac and superior mesenteric arteries. "V" refers to the ventral
wall of the aorta and "D" to the dorsal wall.

Position 2 (corresponding to probe 2) axial and transverse
velocity profiles as a function of time during the course of a
cardiac cycle in the rabbit abdominal aorta midway between the
celiac and superior mesenteric arteries. "R" refers to the right
lateral wall of the aorta and "L" to the left lateral wall.

Aortic cross-sections indicating directions of transverse velocities
in the two orthogonal measurement midplanes at selected time
points within the cardiac cycle midway between the celiac and
superior mesenteric arteries . Also shown are helical flow
patterns consistent with the measured transverse velocities.
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Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Position 1 (corresponding to probe 1) axial and transverse
velocity profiles as a function of time during the course of a
cardiac cycle in the rabbit abdominal aorta shortly proximal to the
superior mesenteric artery. "V" refers to the ventral wall of the
aorta and "D" to the dorsal wall.

Position 2 (corresponding to probe 2) axial and transverse
velocity profiles as a function of time during the course of a
cardiac cycle in the rabbit abdominal aorta shortly proximal to the
superior mesenteric artery. "R" refers to the right lateral wall of
the aorta and "L" to the left lateral wall.

Aortic cross-sections indicating directions of transverse velocities
in the two orthogonal measurement midplanes at selected time
points within the cardiac cycle shortly proximal to the superior
mesenteric artery. Also shown are helical flow patterns
consistent with the measured transverse velocities.

Axial velocity shear stresses at the ventral, dorsal, right lateral,
and left lateral aortic walls shortly distal to celiac artery as a
function of time during the course of a cardiac cycle.

Axial velocity shear stresses at the ventral, dorsal, right lateral,
and left lateral aortic walls midway between the celiac and
superior mesenteric arteris as a function of time during the course
of a cardiac cycle.

Axial velocity shear stresses at the ventral, dorsal, right lateral,
and left lateral aortic walls shortly proximal to superior mesenteric
artery as a function of time during the course of a cardiac cycle.

Axial and transverse velocity profiles in the superior mesenteric
artery. Note that the axial velocity becomes negative during a
portion of diastole indicating reverse flow from the branch into the
aorta.
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Chapter Seven

Conclusions and Recommendations for Future Work

7.1 Conclusions

The focal nature of early atherosclerotic lesions has motivated the

notion of the importance of localizing factors including detailed hemodynamics

within the affected vessel. Despite a large number of investigations, very few

generalizations regarding the potential role of arterial fluid mechanics in

atherogenesis can be made at the present time.

The overall objectives of this thesis were to quantitatively establish the

topography of sites of enhanced macromolecular permeability previously

identified in the normal rabbit aorta, to compare this topography with that of

early atherosclerotic lesions experimentally induced in hypercholesterolemic

rabbits, and to investigate whether the localization of the enhanced

permeability sites is associated with specific features of the macroscopic flow

field in the rabbit aorta. The flow field in the aorta was studied both in excised

natural aortas rendered transparent to allow high speed cinematographic flow

visualization and in vivo by high resolution pulsed Doppler ultrasound

velocimetry. Numerical simulations in idealized models of arterial branching

were performed to provide additional fundamental fluid mechanical insight.

The specific contributions of the various studies are next described.

The topographical mapping study revealed that the density of the

enhanced permeability sites is consistently highest in the region of the aortic

arch, decreases as one proceeds distally reaching a minimum in the region of

the intercostal arteries, and then increases again in the abdominal aorta. The

region of highest site density in the arch follows a clockwise helical pattern.

Outside the arch, the enhanced permeability sites occur in streaks oriented in
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the bulk flow direction. The density of the enhanced permeability sites is

elevated in the vicinity of aortic ostia with the region of highest density being

distal to most ostia. The distribution of the enhanced permeability sites around

most ostia is similar to that of early atherosclerotic lesions experimentally

induced in the hypercholesterolemic rabbit. This study represents the most

extensive quantitative investigation to date of the localization of focal sites in

the rabbit aorta.

High speed cinematographic flow studies were performed in excised

natural rabbit aortas rendered transparent to allow flow visualization. The

details of the flow field in the cinematographic experiments are expected to be

sensitive to the flowrates imposed through the various aortic branches. Hence,

prior to performing the flow visualization experiments, these flowrates were

studied in the rabbit in vivo using transit-time ultrasound flowmetry. These

studies established that the celiac and superior mesenteric arteries receive the

bulk of the aortic flow, while the other branches receive significantly less flow.

An additional observation was the occurrence of reverse flow from some of the

branches back into the aorta during a portion of diastole. This reverse flow

may have important implications on the time-varying aortic wall shear stress in

the immediate vicinity of the branches.

The measured branch flowrates were imposed on the transparent aorta

preparations to visualize the flow field. Both steady and pulsatile flow

experiments were performed in the aortic arch, while studies in the abdominal

aorta were confined to steady flow. The steady flow results revealed a very

complex flow field including regions of boundary layer separation and flow

recirculation. Clockwise helical motion is present at the ventral wall of the

aortic arch, and a pair of slowly-moving recirculation zones is observed lateral

to most aortic ostia. Flow separation generally occurs at the entrance of aortic
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branches, but the flow separation zones are most commonly occupied by

helical motion originating from the lateral recirculation zones. Vessels in close

anatomic proximity exhibit extensive fluid mechanical interaction resulting in

very complex flow patterns. Pulsatility in the aortic arch leads to the periodic

appearance and disappearance of flow recirculation zones as well as to

reverse flow primarily along the lesser curvature of the arch. No

generalizations can be made regarding the relative magnitudes of wall shear

stress proximal and distal to ostia due to the complexity and asymmetry of the

flow field. No correlation is observed between the steady flow wall shear

stress behavior and the distribution of enhanced permeability sites. This study

represents the most extensive investigation to date of the flow field in the rabbit

aorta.

The velocity profiles in the rabbit abdominal aorta between the celiac

and superior mesenteric arteries were also studied in vivo using a high

resolution 15 MHz pulsed Doppler ultrasound velocimeter and associated

perivascular probes. This region between the celiac and superior mesenteric

arteries is of particular interest due to the consistent observation of a streak of

enhanced permeability sites along the ventral wall within this region. Each

probe was equipped with two transducers thereby allowing the resolution of

the velocity vector within the measurement volume into its axial and transverse

components. The results revealed the presence of large transverse velocity

components indicative of extensive secondary flow motion within the aorta.

The measured velocity profiles are consistent with the presence of multiple

zones of helical flow within the aortic cross-section. Wall shear stresses based

on the axial component of the velocity are not significantly different along the

ventral, dorsal, right lateral, and left lateral walls and hence do not correlate

with the localization of enhanced permeability sites. However, the presence of
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extensive helical flow points to significant circumferential wall shear stresses

which could not be measured in this study. The reported results provide the

first in vivo data on the velocity profiles in the rabbit aorta.

Finally, two-dimensional finite element simulations using the computer

code NEKTON were performed in an idealized model of an arterial branching.

Both steady and sinusoidal pulsatile computations were performed. The

results revealed important fundamental differences between steady and

pulsatile flow. In particular, steady flow recirculation zones periodically appear

and disappear with pulsatility. Moreover, additional recirculation zones not

present in steady flow are observed in pulsatile flow. Pulsatile wall shear

stresses may be significantly larger or smaller than their steady flow

counterparts depending on the specific portion of the pulsatile cycle under

consideration. Finally, while steady flow wall shear stresses within

recirculation zones are always low, no such generalization can be made in the

case of pulsatile flow.

7.2 Recommendations for Future Work

There is a number of natural extensions to the work reported in this

thesis. Additional in vivo pulsed Doppler measurements need to be made

within the other regions of the aorta. Moreover, the numerical simulations

need to be extended to the three-dimensional case in order to make the results

more physiologically relevant. The incorporation of aortic geometric details as

well as the imposition of physiological pulsatility are examples of possible

additional improvements on the computational model.

The results of this thesis suggest that the flow field in the rabbit aorta

needs to be probed at a microscopic level in order to establish meaningful

correlations with localized aortic wall phenomena. Two possible approaches
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to accomplish this goal are suggested. The first is the performance of detailed

numerical simulations which, in principle, offer arbitrarily fine spatial and

temporal resolution. Hence, the formulation of a sound predictive numerical

model will allow probing the hemodynamic environment at very localized

levels. The more macroscopic flow field information obtained in this thesis will

provide appropriate flow boundary conditions as well as important data for the

validation of any such computational model. The second approach is based

on the sensitivity of endothelial cell shape to imposed fluid mechanical

stresses so that cell shape can be used as a local marker for the near-wall flow

field in the regions of interest. This approach, however, is an indirect way of

deducing the flow field and hence has limitations. In particular, various

hemodynamic environments may lead to generally similar cell shapes which

makes it very difficult to draw conclusions on the potential role of specific

hemodynamic phenomena in atherogenesis.
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