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Abstract

Let G be a connected real semisimple Lie group with finite center, and K a maximal
compact subgroup of GG. Let (7,V") be an irreducible unitary representation of K,
and G xg V the associated vector bundle. In the algebra of invariant differential
operators on (7 X V' the center of the universal enveloping algebra of Lie(G) induces
a certain commutative subalgebra Z,. We are able to determine the characters of Z..
Given such a character we define a Poisson transform from certain principal series
representations to the corresponding space of joint eigensections. We prove that for
most of the characters this map is a bijection, in the spirit of a famous conjecture
by Helgason which corresponds to 7 the trivial representation. The main idea in
the proof is an asymptotic expansion, generalizing the one developed by Ban and

Schlichtkrull.
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§0 Introduction

Let G be a connected real semisimple Lie group with finite center, and K a maximal
compact subgroup of G. Then G/K is a Riemannian symmetric space of noncompact
type. We fix an Iwasawa decomposition G = KAN. Let M be the centralizer of A
in K. Let g and a be the Lie algebras of G and A, respectively, and ¥(g, a) the root
system for (g,a). Let £¥(g,a) be the positive roots in ¥(g,a) for the ordering given
by N. Let D(G/K) be the algebra of invariant differential operators on G/K. It is
well known that the characters of D(G/K) are paramertrized by A € ag, the complex
dual space of a. Let £4,(G/K) denote the space of joint eigenfunctions corresponding
to A. For each g € G we write g = k(g) exp H(g)n(g) according to G = KAN. For
each ¢ € C®°(K/M) we define P\¢ € C*(G/K) by

Pglg) = [ g(k)e R R .

Here p is the half sum of ¥*(g,a) (including multiplicities). It turns out Py¢ €
E\(G/K). Also one can easily extend the definition of P, to the space D'(K/M)
(resp. A'(K/M)) of distributions (resp. analytic functionals) on K/M. In this
paragraph we fix A € ag such that %—%‘% g —N — {0}, for each a € L*(g,a). It
was proved by Helgason in [Helg2] that P, defines a bijection from C*(K/M)k_ finite
onto Ex(G/K)k—finite- He also proved in the rank one case P, is a bijection from
A'(K/M) onto £,(G/K). He then conjectured this should be true for high rank
case. The conjecture was eventually proved by six Japanese mathematicians in 1979.
See [KKMOOT]. It should be mentioned a representation theoretic proof by Schmid,
starting from the K-finite result, is indicated in [Sch]. Lewis, then a student of
Helgason, made the following observation: Let £5(G/K) be the subspace of £,(G/K)
where each element increases at most exponentially (See §2 for definition), then P,
maps D'(K/M) into £;(G/K). He was able to prove in the rank one case P, is a
bijection from D'(K/M) onto £(G/K). This result has been generalized to high
rank case by Oshima and Sekiguchi in [OS]. There is an alternative and independent

proof by Wallach. By refining Wallach’s idea Ban and Schlichtkrull have a third proof



in [BS]. They define £5°(G/K) as the subspace of £,(G/K) where each element and
its derivatives increase at most exponentially (uniformly). Then they prove P, is a
bijection from C®(K /M) onto £°(G/K). The bijectivity of Py from D'(K/M) to
EX(G/K) follows easily.

Let (7,V) be an irreducible unitary representation of K. Let G xx V be the
associated vector bundle over G/K. The space of smooth sections of this vector

bundle can be identified by

C®Indi(r) = {f € C*(G,V) | f(gk)=1(k"")f(g),Vg € G,¥k € K}.

Let D, denote the algebra of invariant differential operators on C*®Ind% (7). Notice
when (7,V) is the trivial representation we go back to the classical case. In the
case where dimV = 1, D, is commutative and its characters can be paramertrized
by A € ag. In [Shim] Shimeno is able to characterize the joint eigenspace of D, in
terms a Poisson transform for most of A. Gaillard’s results about the eigenforms of
the Laplacian on hyperbolic spaces are illuminating. They show considerable variety
even for a simple space. See [Ga] for details. Ven in [Ven] considers vector valued
Poisson transforms in the rank one case, extending Gaillard’s results. His emphasis,
however, is on the singular eigenvalues. Minemura in [Min] studies the properties of
D. and obtains a result on the dimension of the spherical eigensections.

One of the difficulties people run into when trying to generalize the classical results
is the complexity of D, in particular its noncommutativity. The remedy used is either
a condition on 7 or a condition on G/K. We put a mild condition on g (See beginning
of §4) but no restriction on 7. We replace D, with a subalgebra Z, coming from 3(g),
the center of the universal enveloping algebra of gc. Then we are able to determine
the characters of Z,. It turns out they are given by A — A, where A € af, and A is
given by the infinitesimal character of an irreducible representation of M contained
in 7 (See Proposition 1.11).

Let V be the representation space of 7, and



V = @UEMV(U)

the isotypic decomposition of V into M-isotypic parts. We say o € 7 if V(o) # 0.
Define

V(A) = @JGT,A‘,:AV(U)'

Here A, is given by the infinitesimal character of o. Let 7(A) be the restriction of
T to M with representation space V(A). We define a Poisson transform (See §1 for
definition)

Py: C=Ind§ i (r(8) ® (~3) ® 1) — £, Tnd%(r)

by
P(g) = [ T(k)¢(gk)dk.

Here O Ind$; uy (r(\)®(~))81) = {4 € C%(G,V(A)) | ¢lgman) = &*~*r(m=")d(g)},
and £ , Ind$ (1) is the subspace of the total eigenspace where each element and its
derivatives increase at most exponentially (uniformly). Let C()) be the generalized
Harish -Chandra’s C-function corresponding to 7 (See §8), and X(gc, hc) as defined
after Remark 1.5.

Theorem Let A — A € b satisfy the conditions

2<A=Ma> g Va e S(ge, be), with als £0; 2P >

—_— -_ + a).
<a,a> <pB,B8> -N,VB € X7(g,0)

If in addition det C()) # 0, then P, is a bijection.

This generalizes the result of Ban and Schlichtkrull mentioned above which cor-
responds to 7 the trivial representation.

We have similar result about distributions and K-finite sections, Generalizing the
above mentioned results for 7 trivial.

The main idea in the proof is asymptotic expansion developed in [Ban] and [BS].



81 Notations and preliminaries

Let G be a connected real semisimple Lie group with finite center and K a maximal
compact subgroup of G. Then G/K is a Riemannian symmetric space. We fix an
Iwasawa decomposition G = KAN, and let M be the centralizer of A in K, M’ the
normalizer of A in K, W = M’/M the Weyl group. Let g, ¢, a, n, and m be the
corresponding Lie algebras of G, K, A, N, and M, respectively, and U(g), U(¢), U(a),
U(n), and U(m) the corresponding universal enveloping algebras of the complexified
Lie algebras. Let X(g,a) be the restricted root system for (g,a), and A = {ey, ..., a,}
the set of simple roots for the ordering of ¥(g,a) given by N. Let 3(g) be the center
of U(g). If g € G we write g = k(g) exp H(g)n(g) according to G = KAN.

Fix once and for all an irreducible unitary representation (7,V) of K. Denote
G x g V the associated vector bundle. Then the space of its smooth sections may be

identified with the following space:
C*Indi(r) = {f € C%(G,V) | f(gk)= (k)" f(g), Vg€ G, VkeK}.

Let D, denote the algebra of differential operators on C*®Ind%(7) that commute
with the left translations by elements of G. The remaining section will be devoted to

the study of this algebra. First for each X € g and f € C*°(G, V) we define Lx and

Rx as follows:

Lx f(g) = (%f(exp(-tX)g))lmo, Rxf(g) = (%f(g exptX))|t=o, Vg € G.

Then L and R define two representations of g which we extend to representations of
U(g). Let EndV denote the space of linear maps from V to itself. Then U(g) ® EndV
is an associative algebra with the natural multiplication. Let I(7) be the left ideal of
U(s) ® EndV generated by {X @ 1 + 1@ 7(X) | X €t}.

Proposition 1.1

U(g) @ EndV = (U(a) @ EndV) & (nU(g) ® EndV + I(7)).



Proof: It suffices to show the left hand side is contained in the right hand side.
Suppose uQT € U(g)® EndV. By Poincaré-Birkhoff-Witt we can assume u = ujusus,
where u; € U(n), uz € U(a), and uz € U(¥). If u; € nU(n) then u®T € nU(g)®@ EndV.
So we can assume u = ugug, where u; € U(a), and u3 € U(t). Let uz = X;...Xj, for
X1, .y Xj € b It is easy to show uuz ® T € (U(a) ® EndV') 4+ I(7) by induction on
j. This proves the proposition.

Define a K action on U(g) ® EndV by
k(X ®@T) = Ad(k)X ® T(k)Tr(k)™,

for each k € K.

Let (U(g) ® EndV)X be the fixed elements under the action.

Proposition 1.2 Let I';: U(g) @ EndV — U(a) ® EndV be the projection map
according to the decomposition in Proposition 1.1. Then T’y is a homomorphism from

(U(8) ® EndV)¥ into U(a) ® EndpyV, where
EndyV = {T € EndV | 7(m)T = Tr(m),Vm € M}.

Proof: Since M preserves n, it is easy to see I'y maps (U(g) @ EndV)¥ into U(a)®
Endp V. We now check I'; is a homomorphism.

Suppose Dy, D; € (U(g) ® EndV)¥X. Then

D, —T1(D1) € wU(g) ® EndV + I(7). Hence

DDy —T'1(D1)D, € wU(g) @ EndV + I(1)D,.
Assume D; = Y u; @ T;, for u; € U(g), and T; € EndV. Then for any X € ¢,

(X®1+1Q@7(X))D: =X(Xui®Ti + w; @ 7(X)T3)
= Y(ad(X)u; ® T; + u; @ [1(X), Ti]) + T(w: X @ T + w; ® Tir(X)).

The first summation is zero since D; € (U(g) ® EndV)™. The second one is just
Dy(X ®1+1® 7(X)). So we have proved I(t)D; C I(7). Hence



Dy Dy — T4(Dy)D; € nUU(a) ® EndV + I(r).
However, Dy — I'1(D2) € nU(g) ® EndV + I(1), and
I'y(D1)(nU(5) ® EndV + I(r)) C nUU(s) ® EndV + I(r).
Therefore
Dy D; — T1(D1)T1(D;) € nU(g) ® EndV + I(7).

This proves ['y(D1D;) = I'1(Dy)T1(Ds).
For D=Yu; ®T; € U(g) ® EndV, and f € C*(G,V), we define

m(D)f = Y T:Ru.f.

It is not difficult to show for each D € (U(g) ® EndV)K | and f € C®Ind$(7),
p1(D)f remains in C*°Ind§(r). So p1(D) € D;. In fact g, is a surjective homomor-
phism from (U(g) ® EndV)¥ onto D,. For a proof see [Deit].

We define u(D) = (D ® 1), for each D € U(g)®. By a theorem of Burnside
which asserts that 7(U(¢)) = EndV, one can prove y is a surjective homomorphism
from U(g)" onto D, using the surjectivity of y;. A proof can also be found in [Deit)].

For each A € af, we introduce an important function ¥, on G with values in

EndV as follows:
Uy (nak) = a***7(k)7?,

forn € N,a € A, and k € K. Here p is the half sum of the positive roots for (g, a).
Notice that for each v € V, the function: ¢ — ¥,(g) - v belongs to C®Ind$(r).
Proposition 1.3 For each D € U(g)K, andv €V,

#(D)(¥x-v) = ¥y - (T1(D @ 1)(A + p)v).

Proof: Since both sides are left N-invariant and behave in the same way under

the right K-action, it is sufficient to show they are equal when restricted to A. By
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definition

D®1=D1+F1(D®l)+D2,

where Dy € nU(g) ® EndV, and D, € I(T).
It is easy to see p1(D1)(¥ - v)|A =0, and p1(D2)(¥x-v) =0. So

#(D)(Ts - v)|A = a***T1(D @ 1)(A + p)o.

Corollary 1.4 There exists a homomorphism I': D, — U(a) @ EndpV .
Moreover, for each D € U(g)", I'(u(D)) = T1(D @ 1).

Remark 1.5 It has been proved in section 3 in [Min] that " is injective, using
results from [Lep].

In general D, is very complicated. For instance it is not abelian in most of the
cases. For this reason we replace it by u(3(g)) which we denote by Z,.

Choose t a maximal abelian subalgebra in m. Then h¢ = (t+a). is a Cartan
subalgebra of gc. Let X(gc, hc) the root system for (gc,bhc). Let £¥(ge,be) be the
set of positive roots for some ordering, and gf (resp. gg) the sum of positive (resp.
negative) root spaces. Choose an ordering such that n C g&. We consider each A € af
(resp. t¢) an element of hg by the requirement that A be zero in t (resp. a).

Let
P ={a€X*(c,bc) | ala#0}, Po={a€X¥(gc,bc) | ala=0}.

Define

1 1
P=§Eaa Po=§za-
a€P a€Py

Let © be the Cartan involution of g with fixed point set ¢ and extend it to an
automorphism of gc. Then a — —0Oa is a permutation of P, so p|t = 0. Hence p can

be viewed as the half sum of positive roots for (g, a).

Let 4": 3(g) — U(hc) be defined by



Z —~'(2) € 9cU(a),

for Z € 3(g).

Define v(Z)(p) = v'(A — p — po), for each g € bg. This is the usual Harish-
Chandra’s homomorphism.

Let V = @,y V(o) be the decomposition into the M-isotypic parts. We say
cerif V(o) #0.

For each irreducible representation (o,V,) of M, we get a Lie algebra represen-
tation of m by differentiation. We denote the representation by do. In general this
is not irreducible. Fortunately it is a multiple of an irreducible representation of m.
This fact can be seen in the following way.

Let My be the identity component of M. By structure theory (See 1.1.3.8 in
[War]) one can find Z(A), a finite subgroup of M where each element commutes with
every element of M.

Choose an irreducible representation (o, V;) of My in (o, V,). For each z € Z(A),
(0,0(2)V1) gives an irreducible representation of M in (o, V), which is equivalent to
(o, V1). Since o is irreducible, V; = 3,cz(4)0(2)V1.

So by Schur’s lemma the center 3(m) of U(m) acts on V, by scalars. The action
is determined by A, € v/—1t* as follows: For each Z € 3(m), do(Z) = v(Z)(A,)1Iv,,
where « is the Harish-Chandra’s homomorphism for (m,t), and Iy, the identity map
of V,. We choose A, the highest weight of o plus po.

Let I': D, — U(a) @ EndpV be defined by

[(D)(A) = I'(D)(A + p).

Theorem 1.6 For each Z € 3(g), and A € a,

L(u(2)) NIV (o) = 1(2)(A = Ao) v (o).



We give a proof below using a well known proposition about 3(g). A more self
contained proof is in [Wall].

First for the proof and later use we introduce the definition of Poisson transforms.

Let (8,Vs) be a finite dimensional representation of B = M AN, the minimal
parabolic subgroup of G. Let

C*Ind5(6) = {¢ € C=(G,V;) | ¢(gman)= a6 (man)¢(g),Vg € G,Yman € B}.

Let C*Ind$(6) be endowed with the topology from C*(G,V;). We will specify
the topology on C*®Ind%(r) in the next section.

Definition 1.7 A Poisson transform is a continuous, linear, and G-equivariant
map from C*Ind$(6) into C*IndS(r).

Given T € Homp(V;,V;), and ¢ € C°Ind$(6), we define

Pr(#)(9) = [ (OT(¢(gk)dk.

One can easily check Pr is a Poisson transform.

Proposition 1.8 The map T — Pr is a bijection from Homp(Vs,V;) onto the
space of Poisson transforms.

This result appears in [Ven]. We include a proof for the completeness.

Suppose P is a Poisson transform from C*®Ind$(6) into C*®Ind$(r). Define the
Poisson kernel p € [C®Ind$(6)]' ® V, the strong topological dual of C*®Ind$(6)
tensored by V, by

< p, ¢ >= Pé(e), for each ¢ € C®Ind§(6).

By the G-equivariance of P the Poisson kernel completely determines P by

Pé(z) =< p,Ly-1¢ >, for any ¢ € C*Indg(8).

Here L,-1¢4(g) = ¢(zg).

By Section 9 there is a K-equivariant isomorphism between (C*Ind$(6))’ and
C~°Ind¥ (8| M), where C~*Ind% (6] M) denotes the space of vector-valued distribu-
tions f: C°(K,C) — Vj*, such that



Rnf = é(m)7'f,

for any m € M. Here § is the dual representation of §. And R, f(¢) = f(Rn-14),
where (Rp,-19)(k) = ¢(km™1).
So p € C~*Ind¥ (8| M) ® V. However, for ¢ € C®Ind$(é),

< p,Lip >= P(Lig)(e) = Po(k™") = 7(k)(Pé(e)) = (k)(< p, ¢ >).

Hence p € (C~*IndX(8|M) ® V)K. Let = be the representation of K defined by
(k) (v @ w) = v Q T(k)w, for v € V;*, and w € V. Then p € C~°(K,V; @ W),
and Lip = n(k~1)p. By Lemma 9.3 p must be smooth. Its transformation properties
imply that p is determined by p(e), which belongs to (V;* ® V)u = Homum(Vs, V).
Proof of Proposition 1.8: From the definition of Pr, it is immediate that the
Poisson kernel of Pr evaluated at the identity is T. This shows the map T' — Pr is
injective. On the other hand, let P be a Poisson transform, and let p be its Poisson

kernel. Then

Pé(z) =< p, Lz-1¢ >= [ < p(k), $(zk) > dk = [ T(k)p(e)¢(zk)dk.

This proves P = P,,), whence the surjectivity.
The following integration formula on K is due to Harish-Chandra. A simplified
proof can be found on p.197 in [Helgl].

Lemma 1.9

/K F(k(g™'k))dk = /K F(k)e~20HGR),

Let o be a finite dimensional representation of M and A € ag. Then e ® (—A)®1
defines a representation of B by man — a=*a(m).

Corollary 1.10
Pro(e) = [ UA(kg)T4(k)dk,

for each ¢ € C®Ind§(c @ (-A) ®1).

10



Proof: Pré(g) = [x 7(k)T¢(gk)dk
= [k T(k)T $(k(gk) exp H(gk)n(gk))dk = [x eX=HEOr (k)T $(k(gk))dk.
By Lemma 1.9,

ic €O=AHGRIT (KT $(k(gk))dk = fyc eX+AHGHG N7 k(g™ k)T §(k(gk(g~k)))dk
= [ic e"O+HG R (K(g )T @(k)dk = [ic Wa(k~2g) T $(k)dk.

Proof of Theorem 1.6: Let é be the restriction of 7 to M with V(o) as the
representation space. It is well known that for any ¢ € C*Ind§(6 ® (—A) ® 1), and
each Z € 3(g), Lz¢ = 7(Z)(As — A)@. See [Vo]. Let * denote adjoint. By Corollary
5.31 on p. 324 in [Helgl],

RzPr¢ = Lz+Pr¢ = PrLz.¢
= Pr(7(Z*)(As = A)8) = Pyz+)(ae=N)TP = Poy(z)(-As+))TP-
On the other hand, by Proposition 1.3 and Corollary 1.10, RzPr¢ = Pru(z))())19-
So
Pyz)(-Ae+ T = Priuz)(r-

By Proposition 1.8 we conclude

L(u(2))NIV(0) = 1(2)(A = Ao)v(o).-

By definition a character of Z, is a homomorphism from Z, to C.

Proposition 1.11 A character x of Z, is given by X — A,, where A € o, and
o € 7. More specifically, x(u(Z)) = ¥(Z)(A — A,), for each Z € 3(g).

Lemma 1.12 Let S be the common zeros of py, ..., pm in S(bc). Assume in
addition S is W-invariant, W denoting the Weyl group for (gc,be). Then one can
find qq, ..., gn in I(bc) such that S is the common zeros of qi, ..., qn.

Proof: Define R;(X) = I, (X — pf). Then

Ri(X) = X"+ pa X" + ... 4 Piw-

11



Here w = |W|.

It is easy to see we can use p;;’s as our qi, ..., gn.

Proof of Proposition 1.11: Let A = po~~': I(h¢) — Z,. By Theorem 1.6
ker(A) = {p € I(hc) | p|(=As + ag) = 0, for all o € 7 }. Here we use Remark 1.5
which asserts that I' is injective. Suppose x: Z, — C is a character of Z,. Then
there exists pu € bg, such that y o A = x,, where x, is the homomorphism defined by
evaluation at y. Obviously p(u) = 0, for all p € ker(A). Let

S= Ua’E‘r,wGWw(_AU + U::) - b::

One can find py, ..., pm in S(h¢) such that S is the common zeros of py, ..., pm.
Then by Lemma 1.12 we can find ¢y, ..., ¢, in I(h¢) such that S is the common zeros
of q1, ..., gn. This shows ¢y, ... , g, are in ker(A). So q1(g) = ... = gn(u). Therefore
peS, ie p=w—A,), for some ) €as,0€7, and weW.

The next proposition is about a property of the generalized Harish-Chandra’s
homomorphism. It is a weak version of a conjecture by Lepowsky.

For s € M’, define s.(X @ T) = Ad(s)X ® 7(s)T7(s7!), for X € U(a), and
T € EndV.

Proposition 1.13 For each s € M'/M, s.T'(D) =I'(D), for each D € Z,.

For the proof of this result we need more facts about Weyl groups. Let Wy ¢ W
be the subgroup where every element stablizes a. It is well known there is a surjective
homomorphism W; — M '/M. The kernel W, is the Weyl group for (m, t).

Lemma 1.14 For each s € M'/M, choose w(s) in W in the preimage of s under
the homomorphism above. Then A, = w(s)A,.

Proof (by Vogan): Take a maximal torus T of My. sT's™! is another maximal torus.
So there is m € My, such that msTs™'m™! = T. To avoid cumbersome notations we
assume sT's™' = T. It is easy to see that Ad(s)*, the transpose of Ad(s), preserves
E(m,t). We can also assume Ad(s)* preserves L*(m,t). For Z € 3(m),

Z —~'(Z) € m™U(m). Hence

Ad(s)Z — Ad(s)¥'(Z) € m~U(m). So

12



o*(2) = o(Ad(s)Z) = Ad(s)Y(Z)(As ~ po)
= 7(2)(Ad(s)"As — po) = Y(Ad(s)"A,).

Hence A,. = Ad(s)*A, = w(s)A,.
Proof of Proposition 1.13: Take Z € 3(g) such that D = u(Z). Then for each
A € at, and s € M’,

ST(DYNIV(9) = sT(WZ)NIV(0) = 1Z)(Ad(s)') = Aso)lv(o)
By Lemma 1.14 A,. = w(s)A,. So

sT(D)N)IV (o) = 7(Z2)(Ad(s)"A — w(s)As)Iv()
= Y(Z)(A = Ao)Iv(e) = T(p(2))(V)IV (o) = T(D)(A)|V (9).

Now let 7 = On. Similarly as in Proposition 1.10 we get
U(g) ® EndV = U(a) ® EndV & [WU(g) ® EndV + I(1)].

Then we define I'y: U(g) ® EndV — U(a) ® EndV as the projection according to

this decomposition.

Corollary 1.15 For each Z € 3(g), and X € ag,

['1(Z ® 1)(A) = T(u(Z))(A + p)-

Proof: Take s € M', such that Ad(s)*L*(g,a) = £ (g,q).
By definition Z ® 1 —T'1(Z ® 1) € wU(g) @ EndV + I(7). Hence
s(Z®1)—sT1(Z®1) € W(g) ® EndV + I(r). SoI'(Z®1) = sT1(Z®1).

Hence

I'(Z @ 1)(A) = 7(s)[1(Z ® 1)(Ad(s)"N)7(s7") = 7(s)T((2))(Ad()"A = p)7(s7")
= 7(s)T(#(2))(Ad(s)* (A + p))7(s7") = T(s(2))(A + p)-

13



§2 Some function spaces on G

In this section we introduce a certain growth condition on a function on G with
values in V. It turns out the condition is satisfied by Pr¢ for any ¢ € C*Ind§(6),
where 4 is a certain finite dimensional representation of B.

For each g € G, we denote ||g|| the operator norm of Ad(g) on g, which is equipped
with the inner product < X,Y >¢= —K(X,0Y). Here K is the Killing form on g.

Lemma 2.1 (i) |lg]| = |®g]| = llg7*|| 2 1,

(it) llg1921l < llgallllg=|l,

(1i1) if g = kraks with k1, k; € K, a € A, then

= exp( max |a(loga)l),
Igll = exp(_max_[a(loga))

(iv) there are constants Cy, Cy > 0, such that if ¢ = exp X with X € p, then
Sl < ||z|| < €92 X1. Here p is the —1 eigenspace of ©, and | X| = V< X, X >e,

(v) ||le]| £ |lan||, fora € A, and n € N.

Proof: See [BS].

For any function f: G — V and r € R, we define

I1£ll- = sup ligli "1/ (9)]-
g€eG

We say f increases at most exponentially if || f||, < oo. Let C,(G,V) denote the
Banach space of continuous functions f on G with values in V with || f||, < co

Example 2.2 Let A € ag, and o a finite dimensional representation of M. Let
C*Indg(c ® (-1) ®1) = {¢ € C=(G,V;) | d(gman) = a*~*o(m~")¢(g)}. Let
r(A) = CTY|Re) — p|, where Cy is the constant in Lemma 2.1 (v). Then for any
¢ € C*Ind§(c ® (—\) ® 1), Pré € C,»)(G,V), where T € Homp(V,,V). This is
in [BS] when 7 is trivial and T general does not offer additional difficulties.

Define

Cr(G,V)={f €C>®G,V) | L.f € C.(G,V), YueU(g)}.
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We endow C,(G, V) with its standard topology: Let X, ..., X, be a basis of g, and
X' = X", X% € U(g) for I = (iy,...,i,) € N’. For ¢ € Nand f € CY(G,V), a g

times continuously differentiable function from G to V, we define

1fllor = X I Sl

Endowed with this norm the space
CHG,V)={f e CY(G,V) | lIfllor < o0}

is a Banach space. Obviously C? C C? if ¢’ < ¢, and C®(G,V) = N,CYG, V). The
topology on C7°(G, V) is given by the family of norms || - || ., ¢ € N on C(G, V).
We now consider for each ¢ € N the action of L and R on C®(G, V). Recall for g,
z € G, and f € CG,V), Lzf(9) = f(zg), and R.f(g) = f(gz). Obviously L,
leaves C{(G,V) invariant. In fact ||L.f||,, < C||:z:||"+"||f||q'r, for each f € C3(G,V),

and z € G. Here C and s are constants.

On the other hand, ||Rzfl[,, < |lz|["|| fll,-

From Example 2.2, we see Pr maps C*®Ind§(c ® (=) ® 1) into ro)(G: V)
continuously.

Recall from Proposition 1.11 a character of Z, is given by A — A, where X € af,
and A is the infinitesimal character of an irreducible representation of M in 7. Let

Ex-aInd(7) denote the corresponding eigenspace of Z,. Let
EX A, IndG (1) = Ex_aIndG(T) N CS(G, V),

EX AIndE(7) = Uren€ia, Ind§(r).

Our goal is to describe £§° 4 Ind$(7) in terms of a Poisson transform, at least for

the “generic” A — A. The following well known result is very important to us.

Proposition 2.3 C(\) = fg7(k(R))e~*+AH@dr is holomorphic on
{A€ag | Re< X a>>0, for each « € T*(g,a)}.
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Moreover there ezists a meromorphic continuation to ag.

Proposition 2.4 Let A € ag such that Re < A\,a >> 0, for a € £*(g,a). Then
lim et=2+)H) prg(gexptH) = C(A\)T4.

for each H € o*, T € Homum(V,,V), and ¢ € C®Ind§(0c ® (—A) ® 1). Here ot =
{X€a | a(X)>0,YVa€ L*(g,a)}.

Proof: First we observe k — 7(k)T¢(gexptHEk) is a function on K/M. By
Theorem 5.20 in Chapter I in [Helgl]

Pro(gexptH) = fr7(k(m))T4(g expt Hk())e~H P dm
= fr = +AH 7 (k(m))T §(g(exp tHY)dm =
eP=OMH [ e~ O4PH 7 (k(7))T §{gaiia; )dn

Here a; = exptH. So
e~ G-PtH pro(gexptH) = fe~WtIHE) 1 (k(7))T $(ga.a; ! )dn.

Since a;na; ' — e, as t — co. Formally we have Pro(gexptH) — C(A\)T¢(g), as
t — oo. To justify the exchange of two limits we use an argument due to Helgason.

Let A = £ ++/=1p, for ¢, n € a*. Our assumption on A amounts to A; € a*, where
A is given by < u, A >= K (&, p), for each y € a*.

It was proved by Harish-Chandra that

B(H,H(m)) > 0, B(H, H(%) — H(a;ma;')) > 0, for each H € a*.
Thus if we choose € such that 0 < e < 1, A, — €A¢ € a*, and put

C = supg, |7(k(%))T ¢(gk(ama;))| < oo,
then

|e=CHAH 1 (k(7)) T ¢(gasma; )| = |e=MHAHM A= H ) k(7)) T§(gk(aimar?))|
< Cle~E+nH® e(e-p)H(a.ﬁa:I)l < C|e-(e+p)H(ﬁ)e(i—cE)H(acﬁafl)|
< Cle~E+nHm((-<)H(T) < Cle(-«-2H@),

This being integrable over N justifies letting t — oo under the integral sign and

proves Proposition 2.4.
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§3 Asymptotics

By a formal expansion at a point Hp € a*, we mean a formal sum

E pe(H, t)eti(ﬂ)’
teX

where X is a subset of ag such that the subset X(N) given by

X(N)={{ € X | Ref{(Ho) 2 N}

is a finite set for each N € R, where p¢ is a continuous function defined in a neigh-
borhood of {Hp} x R and polynomial in the last variable.

Let f be a function a* — V. If N € R we say the formal sum is asymptotic to
f of order N at Hy, if there exist a neighborhood of Hp in a*, say U, and constants

e >0, C >0, such that

f(tH) = % pe(H, 1)) < ceW-or,
¢EX(N)
foreach He U, t > 0.
Moreover, we say the formal expansion is an asymptotic expansion for f at Hy if

for every N € R it is asymptotic to f of order N at H,. We write this as

f(tH) ~ Y pe(H, 1)) (t — o)
¢exX

The following result shows that the p¢’s are essentially unique.

Proposition 3.1 Let X C af, and let Yccx pe(H,1)e®H) and Tecx ge(H, t)eH)
be formal expansions at Hy, both assumed to be asymptotic to f: a* — V. Then for
each { € X, there is a neighborhood U of Hy, such that p; = ¢¢ on U X R.

Proof: See Proposition 3.1 in [BS].

Let A — A be a character of Z, in the sense of Proposition 1.11, where A € ag, and

A is given by the infinitesimal character of an irreducible representation of M. Let
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X (A, A) be the subset of ag defined by
XA ={wA=A)+A, —p—N-A | weW, cger, (wA—A)+A,)|t=0}

Theorem 3.2 (i) For each f € £ ,\Ind%(7), z € G, and ¢ € X()\,A), there

ezists a unique polynomial pr¢(f,x,-) on a with values in V, such that

fRH) ~ 3" pre(f,z, tH)eH (t — o)
EEX (AN A)

at every Hy € a*, and the polynomials have degree < d, where d is the number of
elements in ¥ (gc, be),

(i1) let 1 € R and £ € X(A,A), there exists v’ € R such that f — pre(f,-,-) is
a continuous map of 2, Indf(7) into C2*(G,V) @ Py(a), equivariant for the left
action of G on £, Ind%(7) to CF(G,V) ® Py(a).

Theorem 3.3 Let Q be an open set in ag. Let {f1},cq be a holomorphic family
in C°IndG(r) such that fy € E2, . Indf(r) for each X € Q. Fiz Ay € Q and
Eo € X(Xo,A). Let

ZA) ={wA=A)+A; —p—p € X(MA) | w(lo=A)+As—p—p=1b}.
There exist an open neighborhood Qo C Q of A and a constant ' € R such that

the map (A, H) = Yeez(n) Pre(fr H)et ™M) is continuous from Q x at into CX(G,V)

and in addition holomorphic in \.
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§4 Some algebraic results

This section is a necessary preparation for the proof of the theorems stated in last
section. It is strongly influenced by [Ban] and [BS].

Let E be the set of W-harmonic polynomials on a*. It is well known that j:
E ® I(a) — S(a) is bijective, where j(e ® h) = eh.

Now let r: I(hc) — I(a) be the restriction map. We assume r is surjective for
the rest of the thesis. According to [Helg3] if G/K is irreducible there are just four
exceptions, and they only occur among symmetric spaces of exceptional groups.

Pick a set of algebraically independent homogeneous generators of I(a), say, p;,
.-y Pm- Choose homogeneous elements qi, ..., gm in I(hc), such that r(¢;) = p;, for
i =1, ..., m. Define I1(bc) = {P(q1,.--gm) | P is any polynomial }.

For any p € hg, let

It = {(Tup)™ | p € h(be)}

Here T,,p(v) = p(p + v), for each v € bg, and (T,p)~(A) = p(u + A), for each A € a*.
Proposition 4.1 The map j,: EQ® IT, — S(a) is bijective, where j,(e ® h) = eh.
Proof: Observe (T,¢;)~ = pi + ri, with degr; < degp;. Using the fact that j is

bijective and by induction we are done.

Let 3:(g) = v~'(11(h)). Here v is the Harish-Chandra’s homomorphism. For each

A €ag, A=A, for some o € 7, let

I, A)={Z € 31(s) | 7(2)(A—A)=0}.

Recall I(7) is the left ideal of U(g) ® EndV generated by X ® 1 + 1 ® 7(X), for
all X €t. Let J(A, A) be the left ideal generated by I(A,A) and I(7). Let

Dan = U(g) ® EndV/J(),A).

Our interest in 9, o comes from the fact that for f € Ex_pInd$(7), the map
u®T — TR, f factors through 9, 4 since f is killed by J(A, A). We shall find below
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an underlying vector space for 9, independent of .

Define 9 = U(R) @ E ® EndV. We shall construct a linear bijection of 9 with
Pa. For this purpose we need the following proposition.

First we identify 9 with a subspace of U(g) ® EndV as follows: u®@ e Q® T —
(u-e)®T, for u € U(W), e € E,and T € EndV. Here - denotes the multiplication in
U(a+ 7).

Let ¥: 9 ® 3:1(s) — U(g) ® EndV/I(7) be the map defined by

V(y®2)=y-(Z201)+1(r),

for y € 9, Z € 3:(g). Here - means the multiplication in U(g) ® EndV.
Proposition 4.2 VU is bijective.
Proof: By the Iwasawa decomposition U(g) ® EndV/I(7) = U(7) @ U(a) ® EndV .
Via this isomorphism the degree on U(a) induces a degree on U(g) ® EndV/I(1),
denoted by deg,. Let 9 ® 3:(g) be filtered by the total degree on E ® 3;(g). Notice

deg(Z @1 = (Tp-2,7(2))” ® 1 + I(1)) < deg(Z ® 1),

for Z € 3:(g), and each o € 7.

So W preserves the filtrations. It also follows that the graded map

gr¥ : U(n) égr(E ® 31(g)) ® EndV — U(®) @ U(a) @ EndV

associated to W, is given by

u®eR@ZQQT —u-e-(Tp-a,7(Z2))" QT,

foru e U(n), e € E, Z € 3,(g), and T € Hom(V,,V). Here we use Proposition 1.15.
This is bijective because of Proposition 4.1. So the proposition follows.
Corollary 4.3 (i) ¥ maps 9 ® I(A,A) onto J(A,A) modulo I(7), (ii) for each

u € U(g) @ EndV there exists a unique y € 9, such that u —y € J(A\,A).

20



Proof: See Corollary 5.2 in [BS].

From the corollary we obtain a linear bijection by of (A, A) onto 9, defined by
u — bx(u + J(X A)) C J(A A). Through this bijection 9 is equipped with a (g, K)
module structure from 9(A, A), by making by a morphism of modules. Recall the g
action on (A, A) is induced from the left multiplication in U(g), and the K action is
induced from the following K action on U(g) @ EndV'.

k(u®T) = Ad(k)u ® Tr(k™1),

for each k € K, u € U(g), and T € EndV. Notice the difference from the action we
use to define U(g)K.

Let 7, denote the resulting g action on 9. Notice the action of @ on 9 is just
the left multiplication. The action of a can be determined as follows: Let y € 9 C
U(g) @ EndV, H € a, then H -y can be written (modulo I(7)) as ¥(_ y: ® Z;)

according to Proposition 4.2. Then by the definition of 7, we have

(*) n(H)y =Y 7(Z:)(A = Ay

For each k € N, let 7 be the linear span of k times product of @ in U(®). Then
7\ induces a representation 7§ of a + m on the finite dimensional space 9/7*9. In
particular 7 is a representation of a+ mon 9/79 = E ® EndV. By (*) we know 7,
and 7 are holomorphic in .

Let {)1,..., A/} be the set of weights of 7} restricted to a, and Ay C —N- A an
enumeration of the weights of the a-module U(s)/7*U ().

Proposition 4.4 For each k € N, k > 1, the set of weights of (15, a) is
{/\i-{-;t | e=1,...,LLp€ Ak}

Proof: By induction on k. It is trivial for ¥ = 1. For k£ > 1, the induction step is

a consequence of the following two exact sequences of a-modules.

0 = FLUE) FU®BD(, A) /DA, A) = D, A)/FD(A, A) — DA, A)/FE19(A, A) — 0
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0 - w WU®E)/FU®R) = wUGE) - 7 UE) — 0

Let Vi, = 9/79, and V, be a finite dimensional subspace of 9 mapped bijectively
onto Vj by the canonical projection. Let =: Vk — Vi be the restriction of the

canonical projection. Define m: 9 — U(g) ® EndV by

mu®e®T)=(u-e)QT

forue U(n), e € E,and T € EndV.
Let Vi be the image of Vi under m. Let n: Vi — Vi be the inverse of mlffk
Proposition 4.5 For k € N, k > 1, there ezist

(1) an algebra homomorphism bg(A,-): 3(a + m) — EndV,
(ii) a linear map yx: 3(a+m)® Vi — iU (a+7) ® EndV, both depending polyno-
mially on A, such that for all A € ag, D € 3(a+ m), and v € Vj,

Dv — bi(A, D)v — ya(D,v) € J(A,A).
Proof: Let px: U(g) @ EndV — 9 be the map defined by

pudT)=n)(1818T)

for u € U(g), and T € EndV.
Define for D € 3(a + m), & € Vi the maps

be(\,D) ="' or¥ o7 € EndV4,

ix(D, ) = pa((D ® 1) - m(5)) — m(be(X, D)9) € 9.

Then bg(A, ) and y, are defined by
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be(A, D) = mo bi(A, D) o7,

yA(D,v) = m(§r(D,1(v))),

for D € 3(a+m), v € V,.

Corollary 4.6 As a representation of a, bi(),-) has the same weights as (7§, a),
te. {Mi+p | i=1,...,L,p € A}

Proof: By definition bx(), D) = m o b(), D) o n, and 5 = (m|Vi)~1. So bi(A,-)
has the same weights as bi(),-). Since b(},:) = 7~1 o ¥ o 7 the proof is complete.

Let V;* be the dual space of Vi, and b;(A,-) be the transpose of bg(},-). For each
weight £ of b;(),:) we denote P, the projection map from V;® onto the generalized
weight space of £, along the remaining generalized weight spaces. We now consider
the holomorphic dependence of P, on A.

Proposition 4.7 There exists for each X € ag, and each weight £ a unique poly-

nomial gy ¢ on a with values in EndV)’, such that

Preare(H)Prg = qr¢(H),

expby(\ H) =) Mg, o(H),
13

for H € a.

Proof: Let V;*(€) be the generalized weight space of £. Then the restriction of
bi(A,-) to Vi*(€) gives a representation of a. a is abelian so in particular solvable.
Hence by Lie’s theorem one can find a basis such that d;(\, H)|V;#(€) corresponds to
an upper triangular matrix, for each H € a. The diagonal entries are {(H). So there

exists a unique polynomial ¢y ¢(H) on a with values in EndV}*, such that
exp bi(A, H)|V(€) = CE(H)‘L\,&(H)’
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Fix Ao € ag, and & a weight of b;(Ao,-). For each X € ag, let

EA) ={wA=-A)+As—p—p € XMA) | wro—A)+A, —p—p=E&}

Proposition 4.8 There ezxist a neighborhood Q(Ao) of Ao and a neighborhood
V(&) of &o, such that

P(A)= Y P.¢€EndVy
€V (éo)
is holomorphic in Qo(Ao), and {€ € V(&) | € is a weight of bj(A,-)} N X(A,A) C Z(N).

Proof: It follows at once from Lemma 4.9 below.

Let F be an N-dimensional complex vector space, and 7, a family of represen-
tations of a in F', depending on a parameter z € C*. For each weight ¢ of 7, let
P, ¢ be the projection map from F onto the generalized weight space V(¢), along the
remaining generalized weight spaces. Fix zo € C", and £, a weight of 7,

Lemma 4.9 Given any neighborhood N (&) of & there ezist a neighborhood V(&)
of €0 in N(&o), and a neighborhood Q(zo) of zo, such that

P(2) = Z P, € EndF
£€V (&)

is holomorphic in z in Q(z).
Proof: We use the argument in Chapter II in [Kato]. First let us consider the case
where dima = 1.

Pick a nonzero element Hy € a. Let
T(z) = 7,(Ho) € EndF.
Then Ao = §o(Ho) is an eigenvalue of T'(zp) = 7,,(Hp). Define

R(z,)) = (T(z) = \),
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for z € C*, and X € C. By Theorem 1.5 in Section 3 of Chapter II in [Kato], R(z, ) is
holomorphic in the two variables z and A in each domain where ) is not an eigenvalue

of T'(z). Moreover, for each (z,) in such a domain,

R(z,)A) = R(z1,A\) + Y Ri(A)(z — z1)',
Ien®
where R/()\) are determined by R(z1, ), and they are holomorphic in .

This is called the second Neumann series for the resolvent. It is uniformly conver-
gent for sufficiently small z — z; and A € T if T is a compact subset of the resolvent
set of T'(z1).

Let I' be a closed positively oriented curve in the resolvent set of T'(2) enclosing

Ao but no other eigenvalues of T(z). Then

P(z) = -% [ Bz, 2)ax

is holomorphic in z, for z — 2z sufficiently small.

It is easy to see P(z) is equal to the sum of the eigenprojections for all eigenvalues
of T'(z) lying inside I'. This basically takes care of the case dima = 1. In general we
choose a basis ¢y, ..., e, for a. We can duplicate the above process to T;(z) = 7,(e;),

for i =1, ..., m. Thus we get P;(2),i =1, ..., m. Then the composition of P,’s is our

P(z).
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§5 Existence of asymptotic expansion

The methods we use in this section are similar to those used in [Ban], Section 12
Also see [BS], Section 6.

Fix X € ag, Ho € at and r € R. If A;, A; are Banach spaces we denote B(A;, 4;)

the Banach space of bounded linear operators from A, to A;.
Proposition 5.1 There ezist, for each N € R,
(a) open neighborhoods Q of Ao € o and U of H, € at,
(b) constants k, q €N, ' > r, and C, € > 0,

(¢) a continuous map

$:Qx U — B(CYG,V),V; ® Cu(G,V)),

holomorphic in the first variable, and
(d) a linear form n € (V{')*, such that

(i) ®(A, H) intertwines the left actions of G on C3(G,V) and C.(G,V), for
all (M, H) e Q@ x U, and

(i)
| Rexpisaf = (10 exp (A, tH) @ S\, H)f[ < Ol fll vV

for f € Ex_aIndE(T)NCYG, V), eQ, HeU,t>0.
Proof: In the same way as for Proposition 12.6 in [Ban)].

We now begin the proof of Theorem 3.3. Using Proposition 4.7 we can write
(noexpbi(M\tH)®@1)®(\, H) =) _ pre(H, t)eté(H),
£

for A € Q, H € U, t > 0, where the summation extends to the weights ¢ of b%(1,-)
which by Corollary 4.6 is the set

{Ai +u ' 1= 13'"al’/‘ € Ak},
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and where py¢(H,t) = (noqr¢(tH) @ 1)®(A, H) € B(C?,C,s), which is continuous in
H and polynomial in t.

From (d) (ii) of Proposition 5.1 we have
| Rexperr f = 3 €“py e (H, 1) fller < C||fllg,re" ™9
£

for f € Ex_aInd% ()N CUG,V).

Since N is arbitrary we have for each g € G,

flgexptH) ~ 3 (pag(H,1)f)(g)e" (™, (t— o)
€eX(MA)
Here X(MA)={di+u | i=1,..,,pe -N-A}
Lemma 5.2 Let X C o and f: ot — V. Assume that for each Ho € at there is

a given formal ezpansion

Z pf.Ho(H’t)etf(H)
ceX

which is an asymptotic expansion for f at Hy. Then for each £ € X there erists
a unique continuous function pe: ot — V such that for each Ho € at there is a

neighborhood U with

pe.Ho(H,t) = pe(tH),

for He U, andt > 0.

Proof: See Corollary 3.4 in [BS].

As can be seen in the proof of Proposition 12.6 in [Ban], ®(A,tH) = ®(}, H),
for t > 0, H € U with tH € U. Thus (pr¢(H,t)f)(9) = (pre(tH,1)f)(g), for
t >0, He U with tH € U. By Lemma 5.2, for each A € a%, ¢ € X(\,A), and
r € R, there exist constants ' € R, ¢ € N, and a unique continuous map py¢(-,-,):

at = B(Ex_aInd%(t) N CHG,V),Cr(G,V)), such that
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flgexptH) ~ 3 pae(f,g,tH)e ™), (t = o)
EEX(MA)
at every Hy € a, for f € Ex_aIndE(r)NCIG,V).

To complete the proof of Theorem 3.3 it remains to show

(1) we can replace X (), A) by X(\, A),

(2) pre(f, 9, H) is a polynomial in H with order < d.

We shall finish the proof in the next section. We now consider the holomorphic
dependence in A in order to prove Theorem 3.4.

Let 7 € R and € be an open set in agz. Let {fi}req be a holomorphic family in
C*®(G,V), and fy € £ ,Ind$ (), for each A € . We now study the asymptotic
expansion of fx. Fix A € Q, and & € X (Do, A)

Proposition 5.3 There ezxist a neighborhood (o) of Ao in Q and a neighborhood
V(&) of & in ag, such that

(A H) — Z Pre(s H)ef(H)
€€V (é0)

is continuous from Qo) x U to C%(G, V) for some ¢ € N, r' € R, and in addition
holomorphic in A. Moreover, we can choose V(o) such that V(&) N X (X, A) C E(N).

Proof: It follows from Proposition 4.8.
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§6 Differential equations for the coefficients

In this section we derive certain differential equations for the vector-valued func-
tions px¢(f,9,°) on at, where f € £, Ind$(7), and g € G.

Fix Z € 3(g), and D = u(Z) € Z,. We can choose finitely many z; € wU(%), and
v; € U(a) ® EndV, such that

Z-T1(Z®1)-Y zw; € I(r),

and ad(a) acts on z; by a weight —g; # 0, where 7; € N-A. v;, 1 (Z®1) € U(a)Q EndV
can be interpreted as differential operators with constant coefficients on C*(a, V).
Proposition 6.1 Let f € £ ,IndS (7). Then the functions pr¢(f,-,-)eé from

G x a* to V satisfy the following recursive equations

1@3(T1(Z01)—1(Z)A=A)(prg(f, ) == X Rui®e () (prgan(f s -)et™™),
i1€+7’iex.(/\vA)
for all € € X()\,A).
The proof is the same as for Proposition 7.1 in [BS].
Proof of Theorem 3.3: Let

V = ®preeV (M),

where V(A1) = @oera,=2, V(0).

Let P(A;) be the projection from V to V(A;). By Corollary 1.15 T (Z®1)|V(A,) =
(Tp-1,7(2))” ® Iv(ay).-

For 1, & € ag, we say & < & if there exists n € N- A such that & = & +7. This
defines a partial order on ag.

For each f € £Q ,Ind$ (), define E(\, A, f) by

E\A, f) ={€ € X(A\,A) | pre(f,-,-) #0}

Let EL() A, f) denote the set of maximal elements in E(A, A, f). Suppose ¢ €
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EL(M A, f). Then pre(f,-:) Z 0. So one can find ¢ € G, A; € t*, such that
P(Al)p/\;ﬁ(f’gv') 5—6 0.

Since the right hand side of the equation in Proposition 6.1 is zero because £ is

maximal in E(), A, f),

A[1(Z ®1) = AZ)(A = A))(prg(f,g,)et) = 0.

So
O((T-a,407(2))™ = Y(Z)(A = N))(P(A1)prg(f,9,-)ef) = 0.

We extend py ¢(f, g,-)ef to a function on a* + /=1t C h = a + /—1t, by abuse of
notation still denoted by py¢(f,g,)e®, by the requirement that it be constant in the

t direction. Hence
O((T-n+57(2)) = 1(2)(A = A))(P(A1)pre(f, 9,)ef) = 0.
So
0(v(2)) = 1(Z)(A = ) (P(Ar)prg(f, g,-)e = 1+%) = 0.

By Theorem 3.13, Chapter III in [Helgl], P(A1)pre(f,g,-)ef~ 212 = 3 qiet,
where ¢; are polynomials on b, u; € h¢. Recall that py¢(f,g,tH) is a polynomial
in . We conclude P(A,)py¢(f,9,) is a polynomial on §, and

for some w € W. Also P(A1)prg(f,g,) is a W(w() — A))-harmonic, where W(p) =
{fweW | wp = p}, for each p € bg. So

deg(P(A1)prg(f,9,°)) < d.
Here d is the number of elements in £*(g¢, be)-
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It follows that we can replace X(\,A) by X(),A) since Er(\, A, f) C X(A\A).

By induction on { using Proposition 6.1 one can easily show py¢(f,g,-) is a poly-
nomial with degree < d. Note we only need to show it for ¢ = e. So this completes
the proof of Theorem 3.3.

The proof of Theorem 3.4 follows from Proposition 5.3.
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§7 Leading exponents

We further consider the properties of a leading term in the asymptotic expansion
of f € EP \IndS (7).

Proposition 7.1 For each £ € EL(\ A, f), man € B, H € q, and g € G,

pAyE(fa gman, H) = e{(loga)r(m)—lp/\,e(f’ g, H+ 108 a)

Proof: The same as for Theorem 8.4 in [BS].

Let oV = <3°(;>. We introduce conditions on A — A and ) as follows:

W={A—A | A€ai,A€tg,<A—A,a" >€Z,Va € X(gc, be), ala # 0}.

f%={A€ag | <ABY>¢-NVBeL*(g,a)}.

Let Wo={weW | wa=id},and Wy ={weW | wa=a}.
Proposition 7.2 Suppose A — A € 9.

(i) If w(A — A) = X — A, for some w € W, then w € W,

(i3) if there ezist w € W, o € T such that

(w(A = A) +A,)t =0,

then w € Wl, and A, = wA.

Proof: (i) Since w(A — A) = A — A, w = wy,...w,,, where a; € X(gc, be), and
< A= A,a; >=0. Then we conclude a;|a = 0 from %;. So w € Wp. (ii) For any 8 €
Y(gc, be) with Bla = 0, we have < w(A—A)+A,, B >= 0since (w(A—A)+A,)|t=0.

Hence

2<A—A,w'1ﬂ>__2<A,,,6>
<B,B> T <BB>
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2<A—A,w'1ﬂ>__2<A,,ﬂ>
<wlBwlf> = <B,B>

The right hand side being integral forces w™'8|a = 0. This shows w preserves t.
Therefore w preserves a. Trivially A, = wA.

Proposition 7.3 Let f € £, Indg(7). Suppose \—A € %, and £ € Er(\ A, f).
Then £ € WX — p, and pr¢(f,9,:) is constant in a for each g € G.

Proof: In the last section we showed if P(A,)pare(f,9g,:) # 0, then there exists
w € W, such that £ — A, + p = w(A — A). So

(w(A — A) + A,)|t = 0.

By Proposition 7.2 (ii) w € W;. So £ + p = w). Hence £ € WA — p.

We also showed P(A,)prg(f,9,) is W(w(A— A))-harmonic. Since w € Wy, w(A -
A) € %;. By Proposition 7.2 (i) W(w(A — A)) C Wy We conclude P(A,)px¢(f,9,-) is
constant in a This shows py¢(f,g,-) is constant in a since o € 7 is arbitrary. In this
case we denote it by p) ¢(f, 9).

Corollary 7.4 If A — p € EL () A, f), and in addition ) is regular, i.e., W()) =
{weW | wh=2A}=ce, then

p,\,,\—p(f, g) = P(A)PA.,\—p(f, 9)-

Proof: If for some o € 7, such that P(A,)px¢(f,g) # 0, then there exists w € W,
with

wA = (A —p) + p,wA, = A.

X being regular implies w € Wy. But then P(A) = P(A,) by definition.
By Appendix II in [KKMOOT] if A € 22, then A — p is always maximal in WA —p,
hence always in Ep (), A, f). So we have the following definition.
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Definition 7.5 Let A — A € %, and A\ € %,. For f € E2,Ind%(7), Br(f) is
defined by
/3/\(f) = Pf\,/\—p(f»‘)-

we call B the boundary value map.
Theorem 7.6 Let \ — A € %y, A € %y. Then
(i) By maps 8,‘\":A,,Ind§(7') linearly, continuously, and G-equivariantly into C*Ind§(1(A)®
(=A)®1) for each r € R, where T(A) is the restriction of T to M with representation
space V(A),
(ii) let Q C ag be open, and {fi}req be a holomorphic family in £, Ind$ (1),
then A — Bx(f)) is holomorphic in QN A,.
Proof: (i) comes from Theorem 3.3; (ii) is a result of Theorem 3.4.
Finally we notice for certain A we can obtain the boundary value map by a simple
limit procedure.

Lemma 7.7 Let A\ — A € %,. If Re < \,a >> 0, for each a € £*(g,a), then

Baflg) = Jim = f(gexp tH),

for f € E2 4 Ind%(7), and H € at.
Proof: The condition on A implies that Ref(H) < Re(A—p)(H) for all £ € X (A, A)
with £ # A — p. Then the result follows from Theorem 3.3 and the very definition of

asymptotic expansion.

For each ¢ € C*®Ind$(7(A) ® (—)) ® 1), we define P\ by

Pu(g) = [ (k)élgk)dk.

From the proof of Theorem 1.6 we conclude Py¢ € Ex_pIndE (7). By Example
2.2 Pyg € £, Ind3(r).

Corollary 7.8 Under the same condition as in Lemma 7.7, BaPr¢ = C(N\)9,
for each ¢ € C*IndG(T(A) ® (=)) ®1).

Proof: By Proposition 2.4 and Lemma 7.7.

34



§8 The inversion of the Poisson transform
Let C()) be the generalized Harish-Chandra’s C-function given by

C\) = [ em 4o (k(m)dr.

Recall P\: C®Ind$(1(A) @ (=A) ® 1) — E° ,IndS(7) is defined by

Pi(g) = [ (k)6(gk)dk

Theorem 8.1 Let A — A € Y,, and X € A;. Then

BrPrgd = C(A)4,

for each ¢ € C®Indg(T(A) @ (=A) ® 1).
Proof: If Re < A\,a >> 0, for all @ € ¥(g, a), then by Corollary 7.8

BrPrd = C(A)¢.

Since Py¢ is a holomorphic family in £ , Ind%(7), by Theorem 7.6 the left hand
side is holomorphic . The right hand side is meromorphic on ag. Hence two sides
must coincide. A

Corollary 8.2 If in addition we assume det C(\) # 0, then B\ is surjective.
Hence P, is injective.

Theorem 8.3 Let \—A € %, and A € A,, and det C(A) # 0. Then P, is bijective,
and the inverse of Py is given by C(\)™'By.

For the proof we introduce a definition which can be found in [Wall], Section 11.6.
Let 0 be a finitely generated (g, K )-module.

Definition 8.4 U} , denotes the set of all p € T, such that there exists d, € R
and for each v € U there exist an analytic function f,, and a constant C,, > 0 with
the following properties:

(i) Lufuk) = u(k™(u0)), for u € Ulg), k € K,
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(1) 1 £ (9)] < Cunllgll®, for cach g € G.

Recall (C*Indg(oc ® (—A) ® 1)) is the strong topological dual of C®Ind§(c ®
(=A) ® 1). The following result can also be found in [Wall], Section 11.7.

Proposition 8.5 [(C®Ind§(0 ® (=) ® 1)) k- finite]5oa = (C®Ind$(c ® (—A) ®
1)). Here (C*®IndG(0 ® (—A) ® 1))k—sinite denotes the space of K -finite elements in
C*®Ind§(c ® (—)\) ® 1), and o is any finite dimensional representation of M.

Before we go ahead with the proof of Theorem 8.3, we mention the following result
about the irreducibility of the principal series representations. Let o € M.

Lemma 8.6 As a (g, K) module C®Ind§(oc ® (—A) ® 1)k—finite is irreducible if
A—Aen,.

Proof: This is a direct consequence of Theorem 1.1 in [SV].

Proof of Theorem 8.3: It suffices to show ) is injective. Assume the opposite.
Then there exists fo € £2 , IndE(7), such that B, fp = 0, and fo #Z 0. We can assume
fo(e) # 0 since B is G-equivariant.

Define fx by

fi(g) = [ Trr(k)folkg)dk.

Then fx is K-finite, and fx(e) = @fo(e) #0. Let

W = Ly(g)Lk fk-

Then 20 is a finitely generated (g, K')-module. Let 20, be an irreducible submodule
of 20. By the subrepresentation theorem and Lemma 8.4 there exists o € M , such
that 20, & C*°Indg(0 ® (—A) ® 1)k finite- So there is a (g, K) map P,: C*®Ind§(c®
(=) ® 1)K —finite — 0. It is easy to see A = A,.

Define p € W0* ® V by

p(v) = v(e),
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for each v € 2.

Taking f,, = v € EL,Indg(r) in Definition 8.4, we can verify that (i) and
(i) are satisfied. So p € W},,; ® V. Hence p! = po P, € [(C®Ind§(c @ (-)) ®
1)) K~ finite)og ® V. Then by Proposition 8.5 ! € (C*IndS(c @ (<) ®1)) Q@ V.

Now define P!: C®Ind§(o ® (=) ® 1) = C®IndE(r)

Pl¢(g) = #'(Le-19).

Since P, is a g map and eigensections are analytic we can show P,¢ = P!¢, for
¢ € C®Ind§(o ® (=) ® 1)K~ finite, by showing they are identical at e along with
their derivatives.

We observe P! is a linear, continuous, and G-equivariant map from C*Ind$(c ®
(=) ® 1) to C*Ind$ (7). By Proposition 1.8 we conclude o € 7, and there exists
T € Homp(V,,V), such that P! = Pr. Hence

P, = Pr: C®°Ind$(0 ® (=) ® 1)k_finite — 2.

Pick any ¢ € C”Indg(a ® (—A) ® 1)Kk—finite such that 0 # f = Pr¢. Then
f = P\(T¢). Notice T¢ € C“Indg('r(A) ® (=) ® 1)k finite- S0

Brf = BPA(T¢) = C(\)Té # 0.

This contradicts to f € 20 C ker(8).
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§9 Vector-valued distributions
Suppose K is a Lie group and V a finite dimensional space over C. Let C~*(K, V)
denote all continuous C-linear maps from C®(K,C) to V.

Let M be a compact subgroup of K, and (, V) a finite dimensional representation

of M. Let
C~*Indy(r) = {f € C°(K,V) | Rnf(¢)=n(m™")f(¢),Vé € CX(K,C),Ym € M.}

Here R, f(#) = f(Rm-1¢), where R,-1é(k) = ¢(km™1).

Let (#,V*) be the dual representation of (x,V), and <,> the nondegenerate
bilinear form on V x V*. Let (C*®IndX (7)) the strong dual of C®Indf(r). For
each T € (C®Ind% (7)), ¢ € C°(K,C), and v € V, we define &,(T)(4) € V* by

< vaél(T)(¢) >= T(€1(¢1v))’

where £,(#,v)(k) = [y #(km)m(m)vdm. It is easy to show & (T) € C~<Indk (%).
Proposition 9.1 The map &: (C®Ind¥ (7)) — C~*Indf (%) is bijective.
Proof: Define ;: C~®IndK (%) — (C®Indyy(r)) as follows: for each f €
C~°Ind¥ (), and ¢ € C*Indk (r), the map

f¢: u—»f(<¢,u>)

is a linear map from V* to V*. Then we define

m(f) = Tr(fs)-

It is a long but rather straightforward calculation to show &; and 7, are inverses
to each other.

Now let G = KAN, and (6, V) a finite dimensional representation of B = MAN.
Let
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C®Ind§(8) = {f € C*(G,Vs) | Rmanf = a~?67}(man)f,Vman € B.}.

C~*Ind§(6) = {f € C°(G,Vs) | Rmanf =a?6 ' (man)f,Vman € B.}.

For T € (C®Ind$(6)Y, £(T) is defined by

<v,{(T)(¢) >=T(£(¢,v)),

foreach v € V5, and ¢ € C°(G, C). Here (4, v)(9) = [pran #(gman)a’§(man)vdmdadn.

Next we show £(T) € C~Ind§(6). By definition, < v,&(T)(Rman)-19) >=
T(&(R(man)-14,v)). However, it is a simple calculation to see £(R(man)-1¢,v) =
é(#,a"?6(man)v). Hence

< v,Rmanf(T)(¢) >=< v7£(T)(R(man)'l¢) >= T(€(¢, a_p6(man)v))
=< a~?§(man)v,£(T)(4) >=< v,a~?§((man) )T () >.

This proves ¢(T) € C~*Ind$(d).

Theorem 9.2 Let £ be defined as above. Then & is G-equivariant bijection from
(C®Ind§(8)) to C~*Ind$(d).

Lemma 9.3 Let L be a Lie group and (x,V) a finite dimensional representation

of L on V. Suppose f € C~*°(L,V), satisfying

le = 7l'(l-_l)f’

for each l € L. Let dl be the right invariant Haar measure on L. Then there ezists a

unique vector v € V, such that

£9) = [ oy,

for each ¢ € C*(L,C).
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Proof: We use an argument due to Helgason. For ¢ and ¢ in C°(L,C), we define

¢ * ¢ in C(L,C) by

d*Y(z) = /Lqﬁ(l)d)(ml'l).
Then

f(¢*9) = [ d() f(Ri-rgp)dl = f, ¢()w(I71) f()dl.

Choose a sequence 1, such that ¥, — &, the delta function, as n — +oo. Here

J’n(l) = ¥,(I"1). Let v, = f(¥). Then

(+) f(dx) = /L $(D)r(I"YYvndl.

We can choose an appropriate ¢ (e.g. close to §), such that [; ¢(I)x({~?) is invert-
ible. Since ¢ * ¥, — ¢, by letting n — 400 in (%), we conclude there exists v € V,

such that v, — v, and

£(9) = /L SOy (IY)vdl.

the uniqueness follows from the fact that there is ¢ such that f; #({)x(I=?) is invertible.
Proof of Theorem 9.2: First we construct the inverse 5 of £ as follows:
Take f € C~°Ind§(d), and ¢ € C*(K,C). Then ¢ — f(b ® ¢) defines a

continuous linear map from C*(A x N, C) to V{*, where

(¥ ® ¢)(kan) = P(k)¢(an).

It is easy to check this map satisfies all the conditions as in Lemma 9.3 if we take

L = AN, w(an) = a?§(an). So there exists a unique element in V;*, which we denote

by f~ (), such that

f®¢) = /A  9(an)a?5 an) £~ (¢)dadn.
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Notice a®**dadn gives a right invariant Haar measure on AN.

It is fairly easy to see f~ € C~°Ind(6|M). Then by Proposition 9.1 n,(f")
gives an element in (C®Indy (8| M)). Since C®Ind¥ (6|M) = C*Ind$(6), one can
view 7;1(f~) as an element in (C*Ind§(6))". Finally we define 5(f) by

n(f) =m(f7).

The final step of the proof is to show 70§ = id, and no ¢ = id.
For each T € (C*Ind$(8)), v € C*(K,C), and ¢ € CZ(A x N,C),

(D)W@)= [ d(an)a’8™(an)(¢(T)) dadn.

So for eachv € V,

(+%) < 0,6(T) (% ® ¢) >=< v, /A _ $(an)a8~" (an)(§(T))"(¥)dadn > .

By definition

E(¥ ® ¢,v)(k) = fpran(¥ ® ¢)(kman)a®é(man)vdmdadn
= Jman Y(km)é(m)g(an)a’é(an)vdmdadn = & (1, v1),

where v; = [,y a’@(an)é(an)vdadn. So by (*x)

< v, {(T)(¥ ® ¢) >= T(&u(¥, 1)) =< v1, &(T)(¥) >
=< v, [ixn #(an)a?d(an)é(T)dadn >

By comparing both sides of (**) we have &,(T') = (¢(T))~. So

T =&~ ((¢(T))7) = m((&(T))7) = n(&(T)).

Similarly we can verify £ o n = id, Note it is enough to check on functions of the
form ¢ ® ¢. So this completes the proof.
Now suppose V; is a Hilbert space. Let 6* be the representation defined as follows:

for each g € G, w,v € Vs, we have < §(g)v,w >=< v,6(g)'w >, then §*(g) = 6(g7!)".
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Let C~*°Ind$(6") be the space of conjugate linear maps f from C®(G,C) to Vs, such
that

Rpanf = a?6*((man)™1){.

Foreach T € (C*Ind$(6))’, and ¢ € CX(G,R), &(T)(¢) is defined by < v,£(T)(4) >=
T(é(#,v)), for each v € V;. Here

&(d,v)(9) = /MAN #(gman)a’§(man)vdmdadn.

Corollary 9.4 ¢ is a bijection from (C®Ind$(6)) to C~°Ind$(6*).

Let o be a unitary representation of M and )\ € ai.. 0 ® X®1 is the representation
of B defined by man — a*o(m). Then (c @A Q@ 1)* =0 ® (-A)®1

Corollary 9.5 The map

£: (C®Indj(c®A®1)) = C~*Inds(c ® (-)) @ 1)

is a bijection.
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§10 Distribution boundary values
In this section we introduce a weak growth condition in the eigenspace €y_ Ind$ (7).

Recall from Section 2 we have
CHG,V)={f € CUG,V) | fllgr < o0},

g€Nand r €R. C*(G,V)=n,CG,V). We define the F to be the space
3’ = an:Q(G, V) = nq'rer(G, V)-

endowed with the projective limit topology for the intersection over ¢ and r (i.e., the
topology given by the family of forms || - |[4.r).

Using the same argument as on p.142 in [BS] we conclude §F is a Fréchet space. It
follows from Section 2 that L and R act smoothly on J.

Let § be the space dual to §, equipped with the strong dual topology. For each
T e€F,q€N, and r € R, we define

Ty, = sup{T(¢) | ¢ €& lloller <1}

The space. C3(G,V) = {T € § | ||T||qr < oo} with this norm is the dual space
of C4(G,V). Moreover, we have § = U,.C¥G,V)'. By duality §' is the inductive
limit of these spaces.

Using Lemma 2.1 we can prove that for some b € R, [;||g]|’dg < oco. It follows
that there is a continuous injection of C2(G, V) into CP_,(G, V)’ defined by integration
over G. Hence there is a continuous injection of C2(G, V) into §'.

Let ¢’ > ¢, and r € R. For each T € C¥(G, V), and ¢ € C?(G,R), we define an
element LV()T in C¥~9(G, V) by

<v,LY(o)T(z) >= T(Rz~1¢¢p - v).
Note if f € CY(G,V), and ¢ € CY_,(G,C)), then

43



L(9)f(2) = [ ¢(g)F(ge)dy.

Lemma 10.1 Let q, ¢ € N with ¢ < q'. There exist s > 0 and C > 0 such that

1LY (@) Tllg=qr < CIT N, llellerr—s,

forallr €R, T € CYG, VY, and ¢ € CI_,(G,R).

Proof: See Lemma 11.1 in [BS].

Let £_,Ind$(r) denote the closed subspace Ey-pIndZ(r) N F. We call the
elements of £;_,Ind%(r) eigensections of weak moderate growth. Notice if f €
E;_aInd% (1), and ¢ € C*(G,R), then LV(p)f € €2, IndS(r) by Lemma 10.1.

For A — A € %, A € %y, and f € E_,Ind(7), we define a vector-valued distri-
bution G, f on G by

Brf(#) = BA(LY (#)f)(e),

for each ¢ € CZ(G,R).

Proposition 10.2 G, f is a linear , continuous, and G-equivariant map from
Er_yInd%(1) to C~Ind§(1(A) @ (=) ®1).

Proof: It suffices to show B, f € C~*Ind%(T(A) ® (—=A) ® 1). By definition,

LV(R(man)‘”P)f(x) = f(Rz‘l R(man)'lso)
= f(Re-1 R(manz)-1p) = L¥(p)(manz).

However, () is G-equivariant, so

ﬁz\(LV(R(man)"lso)f)
= Br(LY(p)f)(man) = 7(A)(m™1)a**Br(LY(#) f)(e)-

This proves B, f € C~*Ind§(1(A) ® (-)) ® 1).
For each T € (C*Ind§(7(A) ® A ® 1))’, we define P,T as follows:
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< v, P\T(g) >=T(P(A)L,®) - v) >,

for each v € V. Here ®,(z) is the transpose of ¥»(z~!), and P(A) the projection
from V to V(A). The motivation of this definition is from Corollary 1.10.

Proposition 10.3 P,T € £;_,Ind$(7), for all T € (C*Indg(r(A) ® A ® 1))'.
And P, is linear, continuous, and G-equivariant.

Proof: Similar to the proof for Corollary 11.3 in [BS].

Lemma 10.4 Let T € (C®Ind§(t(A) @ A ® 1)), and ¢ € C®(G,R). Then
LY(@)P,\T = P\(LV(p)¢(T)). Here ¢ is the isomorphism in Corollary 9.5, and
LY(@)¢(T)(z) = &(T)(Rz-19).

Proof: LY(yp), Py, and Py are continuous. So it is enough to check for T €
C>Indg(r(A) ® (—A) ® 1). The proof follows from the G-equivariance of P;.

By a similar argument we get

Lemma 10.5 Let f € £_,Ind$(7), and ¢ € CZ(G,R). Then

LY()Brf = Br(LY () ).

Theorem 10.6 Under the same condition as in Theorem 8.3, Py, is a G-equivariant
topological isomorphism from (C®Ind§(T(A) @ A ® 1))’ to E_,IndE (). And

n0oC(A)"o B, gives the inverse of P,.

Proof: By Theorem 8.1 and Lemma 10.4, 10.5, for T € (C*Indg(r(A) @ A ® 1))’

LY(p)B\PAT = BrPALY (9)E(T) = C(A) LY (9)&(T).

Similarly for each f € £_,Ind$(7)

LY(p)Pan(C(A)'Brf) = PC(N)'BALY(9)f = LY (9)f.
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So we have

B,oPy=C(\)o& PronoC(A)'B,=1id

Remark 10.7 Let Ex-a, = Ex-a U C,(G,V) be equipped with the Banach space
topology inherited from C.(G,V). Then £5_, is identical with the inductive limit
topology for the union Ex_p = U;Ex-a,r- See Page 146 in [BS].

By a classical result the left K -finite elements in Ex-al ndﬁ('r) increase at most
exponentially. So by the remark above we easily get

Corollary 10.8 Under the same condition as in Theorem 8.3, Py is a bijection
from C®Ind§(T(A) @ (—A) ® 1)k-sinite 0 Ex-aIndZ(T) K- finite-

Remark 10.9 I think by Schmid’s method which is indicated in [Sch] one should
be able to get a bijection on the level of hyperfunctions from Corollary 10.8.
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