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Abstract
Let G be a connected real semisimple Lie group with finite center, and K a maximal
compact subgroup of G. Let (, V) be an irreducible unitary representation of K,
and G XK V the associated vector bundle. In the algebra of invariant differential
operators on C-r X IV the center of the universal enveloping algebra of Lie(G) induces
a certain commutative subalgebra Z. We are able to determine the characters of ZT.
Given such a character we define a Poisson transform from certain principal series
representations to the corresponding space of joint eigensections. We prove that for
most of the characters this map is a bijection, in the spirit of a famous conjecture
by Helgason which corresponds to the trivial representation. The main idea in
the proof is an asymptotic expansion, generalizing the one developed by Ban and
Schlichtkrull.
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§0 Introduction
Let G be a connected real semisimple Lie group with finite center, and K a maximal

compact subgroup of G. Then G/K is a Riemannian symmetric space of noncompact

type. We fix an Iwasawa decomposition G = KAN. Let M be the centralizer of A

in K. Let g and a be the Lie algebras of G and A, respectively, and E(s, a) the root

system for (, a). Let E+(g, a) be the positive roots in E(g, a) for the ordering given

by N. Let D(G/K) be the algebra of invariant differential operators on GIK. It is

well known that the characters of D(G/K) are paramertrized by A E a, the complex

dual space of a. Let £x(G/K) denote the space of joint eigenfunctions corresponding

to A. For each g E G we write g = k(g) exp H(g)n(g) according to G = KAN. For

each E COO((KI/M) we define Px E C°°(G/K) by

PA4(g) = (k)e(A+p)H(g-k)dk.

Here p is the half sum of +(g,a) (including multiplicities). It turns out Px E

£A(G/K). Also one can easily extend the definition of P to the space D'(K/M)

(resp. A'(K/M)) of distributions (resp. analytic functionals) on KIM. In this

paragraph we fix A E a such that 2 <,> -N - {O}, for each a E +(g,a). It

was proved by Helgason in [Helg2] that PA defines a bijection from Coo(K/M)K-finite

onto £x(G/K)K-finite. He also proved in the rank one case P is a bijection from

A'(K/M) onto £A(G/K). He then conjectured this should be true for high rank

case. The conjecture was eventually proved by six Japanese mathematicians in 1979.

See [KKMOOT]. It should be mentioned a representation theoretic proof by Schmid,

starting from the K-finite result, is indicated in [Sch]. Lewis, then a student of

Helgason, made the following observation: Let £,(G/K) be the subspace of £A(G/K)

where each element increases at most exponentially (See §2 for definition), then PA

maps D'(K/M) into £'*(G/K). He was able to prove in the rank one case P is a

bijection from D'(K/M) onto £,(G/K). This result has been generalized to high

rank case by Oshima and Sekiguchi in [OS]. There is an alternative and independent

proof by Wallach. By refining Wallach's idea Ban and Schlichtkrull have a third proof
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in [BS]. They define E£x(G/K) as the subspace of £,(G/K) where each element and

its derivatives increase at most exponentially (uniformly). Then they prove PA is a

bijection from C°(K/M) onto g£ (G/K). The bijectivity of PA from D'(K/M) to

£E(G/K) follows easily.

Let (r, V) be an irreducible unitary representation of K. Let G XK V be the

associated vector bundle over G/K. The space of smooth sections of this vector

bundle can be identified by

CoIndG(r) = {f E Co(G, V) I f(gk) = r(k-l)f(g),Vg E G,Vk E K}.

Let D, denote the algebra of invariant differential operators on COOInd (). Notice

when (r, V) is the trivial representation we go back to the classical case. In the

case where dim V = 1, D, is commutative and its characters can be paramertrized

by A E a. In [Shim] Shimeno is able to characterize the joint eigenspace of D in

terms a Poisson transform for most of A. Gaillard's results about the eigenforms of

the Laplacian on hyperbolic spaces are illuminating. They show considerable variety

even for a simple space. See [Ga] for details. Ven in [Ven] considers vector valued

Poisson transforms in the rank one case, extending Gaillard's results. His emphasis,

however, is on the singular eigenvalues. Minemura in [Min] studies the properties of

D, and obtains a result on the dimension of the spherical eigensections.

One of the difficulties people run into when trying to generalize the classical results

is the complexity of D~, in particular its noncommutativity. The remedy used is either

a condition on r or a condition on G/K. We put a mild condition on g (See beginning

of §4) but no restriction on r. We replace DT with a subalgebra ZT coming from 3(g),

the center of the universal enveloping algebra of c. Then we are able to determine

the characters of Zr. It turns out they are given by A - A, where A E a, and A is

given by the infinitesimal character of an irreducible representation of M contained

in r (See Proposition 1.11).

Let V be the representation space of r, and
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V = DE fV(a)

the isotypic decomposition of V into M-isotypic parts. We say a E r if V(a) 0.

Define

V(A) = aEr,A,=A V()

Here A, is given by the infinitesimal character of a. Let r(A) be the restriction of

7 to M with representation space V(A). We define a Poisson transform (See §1 for

definition)

PA : C°'IndMAN(r(A) 0 (-A) 0 1) --, £_AIndK(r)

by

PA(g) = K r(k)b(gk)dk.

Here C°IndMAN(r(A)0(-A)01) = {q E Cc°(G, V(A)) I (gman) = ax-Pr(m-1)¢(g)},

and £ KAInd (r) is the subspace of the total eigenspace where each element and its

derivatives increase at most exponentially (uniformly). Let C(A) be the generalized

Harish -Chandra's C-function corresponding to r (See §8), and E(sc, !c) as defined

after Remark 1.5.

Theorem Let A - A E f satisfy the conditions

2 < - A > Z, Vca E (gc, c), with ala 0; 2 < , > -N, V E +(g,a).< ,.f > < <,/ >

If in addition det C(A) f O, then Pa is a bijection.

This generalizes the result of Ban and Schlichtkrull mentioned above which cor-

responds to r the trivial representation.

We have similar result about distributions and K-finite sections, Generalizing the

above mentioned results for trivial.

The main idea in the proof is asymptotic expansion developed in [Ban] and [BS].
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§1 Notations and preliminaries
Let G be a connected real semisimple Lie group with finite center and K a maximal

compact subgroup of G. Then G/K is a Riemannian symmetric space. We fix an

Iwasawa decomposition G = KAN, and let M be the centralizer of A in K, M' the

normalizer of 4 in K, W = M'/M the Weyl group. Let g, , a, n, and m be the

corresponding Lie algebras of G, K, A, N, and M, respectively, and U(g), U(t), U(a),

U(n), and U(m) the corresponding universal enveloping algebras of the complexified

Lie algebras. Let E(g, a) be the restricted root system for (g, a), and A = {al, ..., ar}

the set of simple roots for the ordering of E(g, a) given by N. Let 3(g) be the center

of U(g). If g E G we write g = k(g) exp H(g)n(g) according to G = KAN.

Fix once and for all an irreducible unitary representation (r, V) of K. Denote

G XK V the associated vector bundle. Then the space of its smooth sections may be

identified with the following space:

CooindG(r) = {f E C°°(G, V) I f(gk) = r(k)-lf(g), Vg E G, Vk E K}.

Let Dr denote the algebra of differential operators on COOIndK(r) that commute

with the left translations by elements of G. The remaining section will be devoted to

the study of this algebra. First for each X E g and f E Co(G, V) we define Lx and

Rx as follows:

Lxf(g) = ( f(exp(-tX)g))lt=o, Rxf(g) = ( f(gexptX))lt=o,Vg E G.

Then L and R define two representations of g which we extend to representations of

U(g). Let EndV denote the space of linear maps from V to itself. Then U(g) 0 EndV

is an associative algebra with the natural multiplication. Let I(r) be the left ideal of

U(g) 0 EndV generated by {X 1 + 1 0 r(X) I X E }.

Proposition 1.1

U(g) 0 EndV = (U(a) 0 EndV) (nU(g) 0 EndV + I(r)).
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Proof: It suffices to show the left hand side is contained in the right hand side.

Suppose u0T E U(g)0EndV. By Poincar6-Birkhoff-Witt we can assume u = ulu2 u3 ,

where u E U(n), u2 E U(a), and U3 E U(t). If u1 E nU(n) then u®T E nU(g)OEndV.

So we can assume u = u2u3, where u2 E U(a), and u3 E U(t). Let u3 = X1 ...Xj, for

Xi, ... , Xj E . It is easy to show u2u3 0 T E (U(a) 0 EndV) + I(r) by induction on

j. This proves the proposition.

Define a K action on U(g) 0 EndV by

k.(X 0 T) = Ad(k)X r(k)Tr(k)-,

for each k E K.

Let (U(g) 0 EndV)K be the fixed elements under the action.

Proposition 1.2 Let ri: U(g) 0 EndV -, U(a) 0 EndV be the projection map

according to the decomposition in Proposition 1.1. Then rl is a homomorphism from

(U(g) 0 EndV)K into U(a) 0 EndMV, where

EndMV = {T E EndV I (m)T = Tr(m),Vm E M}.

Proof: Since M preserves n, it is easy to see r l maps (U(g) 0 EndV)K into U(a) 0

EndMV. We now check rl is a homomorphism.

Suppose D1, D2 E (U(g) 0 EndV)K. Then

D - rl(D1) E nU(g) 0 EndV + I(r). Hence

D1 D2 - r1 (D1)D2 E nU(g) 0 EndV + I(r)D2.

Assume D2 = E ui 0 Ti, for ui E U(g), and Ti E EndV. Then for any X E ,

(X 1 + 1 r(X))D2 = (Xui T + ui 0 r(X)Ti)

= E(ad(X)ui 0 Ti + ui 0 [r(X), T,]) + 2(uiX 0 Ti + ui 0 Tr(X)).

The first summation is zero since D2 E (U(g) 0 EndV)K. The second one is just

D2(X 1 + 1 r(X)). So we have proved I(r)D 2 C I(r). Hence
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D1D2 - rF(D1 )D2 E nU(g) 0 EndV + I(r).

However, D2 - rF(D2) E nU(g) 0 EndV + I(r), and

I'(Di)(nU(g) 0 EndV + I(r)) C nU(g) 0 EndV + I(r).

Therefore

D1 D2 - r 1(Dl)r,(D2 ) E nU(g) 0 EndV + I(r).

This proves rF(DID2) = r1 (Dl)r,(D2 ).

For D = Z ui T E U(g) EndV, and f E C°°(G, V), we define

I(D)f = TRUif.

It is not difficult to show for each D E (U(g) 0 EndV)K, and f E CooIndK(r),

p1t(D)f remains in CooIndG.(r). So /l(D) E D,. In fact pui is a surjective homomor-

phism from (U(g) 0 EndV)K onto D,. For a proof see [Deit].

We define pI(D) = pL1 (D 1), for each D E U(g)K. By a theorem of Burnside

which asserts that r(U(?)) = EndV, one can prove tp is a surjective homomorphism

from U(g)K onto D, using the surjectivity of pl. A proof can also be found in [Deit].

For each A E a, we introduce an important function x on G with values in

EndV as follows:

I/A(nak) = a+P7(k)- ,

for n N, a E A, and k E K. Here p is the half sum of the positive roots for (g, a).

Notice that for each v E V, the function: g --+ Ix(g) v belongs to CoIndG(r).

Proposition 1.3 For each D E U(g)K, and v E V,

p/(D)(QxA v) = TA ((D 0 1)(A + p)v).

Proof: Since both sides are left N-invariant and behave in the same way under

the right K-action, it is sufficient to show they are equal when restricted to A. By
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definition

D 1 = D1 + rl(D 1) + D2,

where D1 e nU(g) 0 EndV, and D2 E I(r).

It is easy to see pl(D1)( · v)lA = 0, and pl(D2)(TIAx v) = 0. So

p(D)(qA. v)lA = aA+Pri(D 0 1)(A + p)v.

Corollary 1.4 There exists a homomorphism r': D - U(a) 0 EndMV.

Moreover, for each D E U(g)K, F'(p(D)) = ri(D 0 1).

Remark 1.5 It has been proved in section 3 in [Min] that rF is injective, using

results from [Lep].

In general D, is very complicated. For instance it is not abelian in most of the

cases. For this reason we replace it by yu(3(g)) which we denote by Z.

Choose t a maximal abelian subalgebra in m. Then c = (t + a)c is a Cartan

subalgebra of gc. Let (gc, c) the root system for (gc, c). Let E+(gc, ~c) be the

set of positive roots for some ordering, and g+ (resp. g) the sum of positive (resp.

negative) root spaces. Choose an ordering such that n C g+. We consider each A E a[

(resp. t) an element of fb by the requirement that A be zero in t (resp. a).

Let

P = { E +(gc, c) ala O}, Po = { E +(gc, c) I ala= }.

Define

1 1

2 2a2P cEPo

Let O be the Cartan involution of g with fixed point set t and extend it to an

automorphism of gc. Then a - -Oa is a permutation of P, so pit = O. Hence p can

be viewed as the half sum of positive roots for (, a).

Let y': 3(g) -* U(lc) be defined by
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z - Y'(z) E gcU(g),

for Z E 3(g).

Define y(Z)(y) = -'(A - p - po), for each E ;. This is the usual Harish-

Chandra's homomorphism.

Let V = 3EM*V(a) be the decomposition into the M-isotypic parts. We say

a E r if V(a) $ 0.

For each irreducible representation (a, V,) of M, we get a Lie algebra represen-

tation of m by differentiation. We denote the representation by da. In general this

is not irreducible. Fortunately it is a multiple of an irreducible representation of m.

This fact can be seen in the following way.

Let Mo be the identity component of M. By structure theory (See 1.1.3.8 in

[War]) one can find Z(A), a finite subgroup of M where each element commutes with

every element of Mo.

Choose an irreducible representation (a, V) of Mo in (a, Va). For each z E Z(A),

(a, a(z)Vl) gives an irreducible representation of Mo in (a, V,), which is equivalent to

(a, V). Since a is irreducible, VO = EZEZ(A)a(z)V1.

So by Schur's lemma the center 3(m) of U(m) acts on V, by scalars. The action

is determined by A, E Vi--Tt* as follows: For each Z E 3(m), da(Z) = y(Z)(A,)Iv,,

where y is the Harish-Chandra's homomorphism for (m, t), and Iv. the identity map

of V,. We choose A, the highest weight of a plus po.

Let rF: Dr -+ U(a) 0 EndMV be defined by

r(D)(X) = r'(D)(X + p).

Theorem 1.6 For each Z E 3(g), and A E a,

F((Z))(A)V(a) = 7(Z)(A - A,)Iv(,).

8



We give a proof below using a well known proposition about 3(g). A more self

contained proof is in [Wall].

First for the proof and later use we introduce the definition of Poisson transforms.

Let (6, V6) be a finite dimensional representation of B = MAN, the minimal

parabolic subgroup of G. Let

C°°1nd(6) = { E C°°(G, ) q(gman) = a-P-6(man,)( g), Vg E G,Vman E B}.

Let C°°IndB(6) be endowed with the topology from C°°(G, V). We will specify

the topology on C°°IndGK(r) in the next section.

Definition 1.7 A Poisson transform is a continuous, linear, and G-equivariant

map from C°°IndG(6) into C°°Ind,(r).

Given T E HomM(V 6, V,), and 0 E C°°Ind(6), we define

PT(q)(g) = 1K r(k)T((gk))dk.

One can easily check PT is a Poisson transform.

Proposition 1.8 The map T -+ PT is a bijection from HomM(V6, V,) onto the

space of Poisson transforms.

This result appears in [Ven]. We include a proof for the completeness.

Suppose P is a Poisson transform from C°°IndB(6) into C°°IndGK(r). Define the

Poisson kernel p E [C°°IndB(6)]' 0 V, the strong topological dual of C°IndG(6)

tensored by V, by

< p, 0 >= Po(e), for each d E C°°IndG().

By the G-equivariance of P the Poisson kernel completely determines P by

P(x) =< p, L=-i c >, for any E C°°Ind(6).

Here L,-i (g) = O(xg).

By Section 9 there is a K-equivariant isomorphism between (C°°Ind(6))' and

C-°°IndK([M), where C-°°IndK(6[fM) denotes the space of vector-valued distribu-

tions f: C°°(K, C) - V*, such that

9



Rmf = (m)-' f ,

for any m E M. Here is the dual representation of 6. And Rmf() = f(Rmi - ),

where (Rm-l)(k) = q(km-1).

So p E C-°°IndK(SlM) 0 V. However, for 0 E C°°IndB(6),

< p, Lk >= P(Lk)(e) = Pq(k-) = r(k)(PO(e)) = (k)(< p, >).

Hence p E (C--Ind(6IM) 0 V)K. Let r be the representation of K defined by

7r(k)(v w) = v r(k)w, for v E V', and w E V. Then p E C-°(K, V'* ® W),

and Lkp = r(k - ')p. By Lemma 9.3 p must be smooth. Its transformation properties

imply that p is determined by p(e), which belongs to (V6* 0 V)M - HomM(V 6, V).

Proof of Proposition 1.8: From the definition of PT, it is immediate that the

Poisson kernel of PT evaluated at the identity is T. This shows the map T -, PT is

injective. On the other hand, let P be a Poisson transform, and let p be its Poisson

kernel. Then

PO(x) =< p, L.-li >= fK < p(k), O(xk) > dk = fK r(k)p(e)0(xk)dk.

This proves P = Pp(,), whence the surjectivity.

The following integration formula on K is due to Harish-Chandra. A simplified

proof can be found on p.197 in [Helgl].

Lemma 1.9

F(k(g-lk))dk = I F(k)e-2pH(gk)

Let be a finite dimensional representation of M and A E a. Then ® (-A) 1

defines a representation of B by man -, a-xa(m).

Corollary 1.10

PTB(g) = IK '(k-g)TO(k)dk,

for each E C°°IndG(a ( (-A) 0 1).
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Proof: PTq(g) = K r(k)Tq(gk)dk

= fK r(k)Tq(k(gk) exp H(gk)n(gk))dk = fK e(-p)H(k)r(k)TOb(k(gk))dk.

By Lemma 1.9,

fK e(-P)H(sk)r(k)Tq(k(gk))dk = fK e(A+P)H(k(g-k))r(k(g-1k))TO(k(gk(g - 'k)))dk

= K e-(A+P)H(9-k)(k(g-1k))T(k)dk = fK ,\(k- 19)Tk(k)dk.

Proof of Theorem 1.6: Let 6 be the restriction of to M with V(a) as the

representation space. It is well known that for any b E C°°IndG(6 ® (-A) 0 1), and

each Z E 3(g), LO = (Z)(A, - ). See [Vo]. Let * denote adjoint. By Corollary

5.31 on p. 324 in [Helgl],

RZPT4 = Lz.PTO = PTLz.O

= PT(7(Z*)(A0 - A)O) = P(Z.)(,-A)Tb = P(Z)(-A.+)TO-

On the other hand, by Proposition 1.3 and Corollary 1.10, RzPTO = Pr((z))(A)T.-

So

Pr(Z)(-A,+,)T = Pr(A(Z))()T-

By Proposition 1.8 we conclude

r(y(Z))(A)IV(oa) = 'y(z)(A - Ao)Iv(,).

By definition a character of Z, is a homomorphism from Z, to C.

Proposition 1.11 A character X of Z, is given by A - A, where A E a, and

a E . More specifically, X(p(Z)) = 7(Z)(A - A,), for each Z E 3(g).

Lemma 1.12 Let S be the common zeros of pl, ..., Pm in S(bc). Assume in

addition S is W-invariant, IW denoting the Weyl group for (c, bc). Then one can

find q, ..., qn in I(4c) such that S is the common zeros of ql, ..., qn.

Proof: Define Ri(X) = II.E,(X - p). Then

R1(X) = Xw + pilXt l-1 + ... + piw.

11



Here w = WlI.

It is easy to see we can use pij's as our ql, ..., qn.

Proof of Proposition 1.11: Let A = o -l: I($c) --. Z,. By Theorem 1.6

ker(A) = {p E I(bc) I pl(-A, + a) = 0, for all a E r }. Here we use Remark 1.5

which asserts that F is injective. Suppose X: Z, -- C is a character of Z,. Then

there exists E [, such that X o A = X, where X, is the homomorphism defined by

evaluation at p. Obviously p(,p) = 0, for all p E ker(A). Let

S = UEr,wEWW(-A0 + a*) C 4.

One can find P1, ... , Pm in S(bc) such that S is the common zeros of pi, ... , Pm.

Then by Lemma 1.12 we can find q1, ..., q, in I(bc) such that S is the common zeros

of ql, ..., qn. This shows q, ... , q, are in ker(A). So q(tz) = ... = qn(). Therefore

ji E S, i.e. /p = w(A - A,), for some A E a , a E T, and w E W.

The next proposition is about a property of the generalized Harish-Chandra's

homomorphism. It is a weak version of a conjecture by Lepowsky.

For s E M', define s.(X 0 T) = Ad(s)X 0 r(s)Tr(s-l), for X E U(a), and

T E EndV.

Proposition 1.13 For each s E M'/M, s.r(D) = r(D), for each D E Z,.

For the proof of this result we need more facts about Weyl groups. Let W1 C W

be the subgroup where every element stablizes a. It is well known there is a surjective

homomorphism WI -- M'/M. The kernel Wo is the Weyl group for (m, t).

Lemma 1.14 For each s E M'/M, choose w(s) in W1 in the preimage of s under

the homomorphism above. Then A, = w(s)A,.

Proof (by Vogan): Take a maximal torus T of Mo. sTs - 1 is another maximal torus.

So there is m E Mo0, such that msTs-lm - 1 = T. To avoid cumbersome notations we

assume sTs - l = T. It is easy to see that Ad(s)*, the transpose of Ad(s), preserves

E(m, t). We can also assume Ad(s)* preserves E+(m, t). For Z E 3(m),

Z - y'(Z) E m-U(m). Hence

Ad(s)Z - Ad(s)7'(Z) E m-U(m). So

12



a(Z) = a(Ad(s)Z) = Ad(s)7y(Z)(A^ - Po)

= -'(Z)(Ad(s)*As - po) = (Ad(s)*As).

Hence A,. = Ad(s)*A, = w(s)A,.

Proof of Proposition 1.13: Take Z E 3(g) such that D = P(Z). Then for each

~ E aC, and s E M',

s.r(D)(A)IV(a) = s.r(p(Z))(A)V(a) = 7(Z)(Ad(s)*A - Ao.)Iv(s).

By Lemma 1.14 A,. = w(s)A,. So

s.r(D)(A)lV(a) = r(Z)(Ad(s)*A - w(s)A,)Iv(,)

= 7(Z)(A - As)Iv() = r(#(Z))(A)V(o) = r(D)(A)lV(a).

Now let ii = On. Similarly as in Proposition 1.10 we get

U(g) 0 EndV = U(a) 0 EndV D [-nU(g) 0 EndV + I()].

Then we define F1: U(g) EndV -- U(a) 0 EndV as the projection according to

this decomposition.

Corollary 1.15 For each Z E 3(g), and A E a:,

fl(Z 0 1)(A) = r(ts(Z))(A + p).

Proof: Take s E M', such that Ad(s)*E+(g, a) = -(g, a).

By definition Z 0 1 - FI(Z 0 1) E nU(g) 0 EndV + I(r). Hence

s.(Z 0 1) - s.rl(Z 0 1) E ffU(g) 0 EndV + I(r). So fl(Z 0 1) = S.Pr(Z 0 1).

Hence

Fl(Z 0 1)(A) = r(s)r(Z 0 1)(Ad(s)*A)r(s-1) = r(s)r(I(Z))(Ad(s)*A - p)r(s- 1 )

= r(s)r(,(Z))(Ad(s)*(A + p))r(s-) = r(P(Z))(A + p).
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§2 Some function spaces on G
In this section we introduce a certain growth condition on a function on G with

values in V. It turns out the condition is satisfied by PTq for any b E CooIndG(6),

where 6 is a certain finite dimensional representation of B.

For each g E G, we denote 11911 the operator norm of Ad(g) on g, which is equipped

with the inner product < X, Y >e= -K(X, OY). Here K is the Killing form on g.

Lemma 2.1 (i) Igll = 110gl9 = Ilg'11 > 1

(ii) 1199211 < IIglll91119211,

(iii) if g = klak 2 with kl, k2 E K, a E A, then

IIgll = exp( max a(loga)),
aEE(B,a)

(iv) there are constants C1, C2 > O, such that if x = exp X with X E p, then

eClx l < lixil < eC21x l. Here p is the -1 eigenspace of E, and IXI = f< X,X >e,
(v) Ilall < IlanIl, for a E A, and n E N.

Proof: See [BS].

For any function f: G + V and r E R, we define

IIf ll = sup Igll-r If(g).
gEG

We say f increases at most exponentially if Ilf ll < oo. Let Cr(G, V) denote the

Banach space of continuous functions f on G with values in V with If llr < 00

Example 2.2 Let A E a, and a a finite dimensional representation of M. Let

ClInda(a ® (-A) ® 1) = { E C(G, V,) I (gman) = a-Pa(m-'1)(g)}. Let

r(A) = CIReA - p, where C1 is the constant in Lemma 2.1 (v). Then for any

a E CooIndB(a X (-A) 0 1), PT E Cr(A)(G, V), where T E HomM(V, V). This is

in [BS] when r is trivial and r general does not offer additional difficulties.

Define

C°(G, V) = {f E C°°(G, V) I Lf E Cr(G, V), Vu E U(g)}.

14



We endow Cr(G, V) with its standard topology: Let X 1, ..., Xp be a basis of g, and

XI = X...X'P E U(g) for I = (i,...,ip) E NP. For q E N and f E C(G, V), a q

times continuously differentiable function from G to V, we define

Ilfllq,r = Zlls<qllLxIfllr

Endowed with this norm the space

Cr(G, V) = {f E Cq(G, V) I Ilfllq,r < oo}

is a Banach space. Obviously C C C if q' < q, and C2(G, V) = nqC(G, V). The

topology on C°°(G, V) is given by the family of norms II · IIq,,, q E N on C;'(G, V).

We now consider for each q E N the action of L and R on C7 (G, V). Recall for g,

x E G, and f E Cq(G, V), Lf(g) = f(x-'g), and R.f(g) = f(gx). Obviously L.

leaves Crq(G, V) invariant. In fact IILf llq,,r < ClXlIl t+llf, llq,r for each f E Crq(G, V),

and x E G. Here C and s are constants.

On the other hand, Rxflq ,, < IlXllrllfllq,,r

From Example 2.2, we see PT maps CIndGB(a 0 (-A) 0 1) into Cx(G, V)

continuously.

Recall from Proposition 1.11 a character of Z, is given by A - A, where E a,

and A is the infinitesimal character of an irreducible representation of M in r. Let

£XAIndGK(T) denote the corresponding eigenspace of ZT. Let

£._,IndK(r) = SA-_AIndK() n C~(G, V),

4-AIndK(r) = UrEKEA,rIndK(T).

Our goal is to describe £ExAIndK(r) in terms of a Poisson transform, at least for

the "generic" A - A. The following well known result is very important to us.

Proposition 2.3 C(A) = frr(k(n))e-(+P)nH(i-)d is holomorphic on

{( E a I Re < A, a >> 0, for each E +(g, a)}.

15



Moreover there exists a meromorphic continuation to a.

Proposition 2.4 Let A E a such that Re < A, ca >> 0, for ct E E+(g, a). Then

lim e(`+P)(H)PT0(g exp tH) = C(A)TO.

for each H E a+, T E HomM(V, V), and E C°Ind( 0 (-A) 0 1). Here a+ =

{X E a c(X) > 0,Va E E+(,a)}.

Proof: First we observe k -+ r(k)T,(gexptHk) is a function on KIM. By

Theorem 5.20 in Chapter I in [Helgl]

PTq(g exp tH) = fi r(k(n))T(g exp tHk())e 2PH()d1

= fr e -(+)H()r(k(ff))Tq(g(exp tH)f)dn =

e( -p)tH f e-(+P)H(7)r(k(?))Tq(gatna' )dii

Here at = exp tH. So

e-(A-P)tHPT(g exp tH) = f- e-(X+P)H(),r(k())Tq(gat;ia- )dn.

Since at-fa-' -- e, as t - oo. Formally we have PTq(gexptH) - C(A)Tq(g), as

t -- oo. To justify the exchange of two limits we use an argument due to Helgason.

Let A = S + JV-Tv, for , r E a*. Our assumption on A amounts to AE E a+ , where

Ae is given by < , A >= K(, ), for each u E a*.

It was proved by Harish-Chandra that

B(H, H(n)) > 0, B(H, H() - H(atiia-1)) > 0, for each H E a+.

Thus if we choose e such that 0 <e < 1, A - eAt E a+, and put

C = supn , Ir(k(f))T0(gk(atna7-'))j < oo,

then

(()T(an 1) - le~(A+p)H(W)e(X-p)H(atWna-l)r (k(-f))T0(gk(aj-na-1)) [e-(:\+P)"(7)r(k(U))TO(gata ' 1)1 = I e-(X+P)t() e(X-P)"~, *7((A))T(g(ata F~))l

< C e-((+P)H(-)e(e-P)H(a'na7 )l < Cle-((+)H(i)e((-()H(atWa 1)I

< Cle-(+P)H()e(e)H(n) < Cle(-'e-p)H(i)l.

This being integrable over N justifies letting t -, oo under the integral sign and

proves Proposition 2.4.
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§3 Asymptotics

By a formal expansion at a point Ho a+, we mean a formal sum

E (H,t)e't(),
EX

where X is a subset of a: such that the subset X(N) given by

X(N) = { E X I Re,(Ho) > N}

is a finite set for each N E R, where pt is a continuous function defined in a neigh-

borhood of {Ho} x R and polynomial in the last variable.

Let f be a function a+ -- V. If N E R we say the formal sum is asymptotic to

f of order N at Ho, if there exist a neighborhood of Ho in a+, say U, and constants

e > 0 C > 0, such that

If(tH) - E p e(H, ) <Ce(N- )t,
tEX(N)

for each H E U, t > 0.

Moreover, we say the formal expansion is an asymptotic expansion for f at Ho if

for every N E R it is asymptotic to f of order N at Ho. We write this as

f(tH) E p(H, t)ete() (t oo)
tEX

The following result shows that the pt's are essentially unique.

Proposition 3.1 Let X C a, and let SEX pt(H, t)et (H) and CEEX qt(H, t)et(H)

be formal expansions at Ho, both assumed to be asymptotic to f: a+ -- V. Then for

each E X, there is a neighborhood U of Ho, such that p = q on U x R.

Proof: See Proposition 3.1 in [BS].

Let A - A be a character of Z. in the sense of Proposition 1.11, where A E a, and

A is given by the infinitesimal character of an irreducible representation of M. Let
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X(A, A) be the subset of a defined by

X(A,A)= {w(A-A)+A-p-N .A I wEW, a Er, (w(A-A)+A)lt = 0)

Theorem 3.2 (i) For each f E £]~_AIndG(r), x E G, and E X(A,A), there

exists a unique polynomial px,(f,x, ) on a with values in V, such that

f(tH) s y p,(f,x,tH)et(H) (t -- oo)
tEX(A,A)

at every Ho E a+, and the polynomials have degree < d, where d is the number of

elements in E+ (c, c),

(ii) let r E R and E X(A, A), there exists r' E R such that f -- p,(f,., ) is

a continuous map of £o ArIndG(r) into C~(G, V) 0 Pd(a), equivariant for the left
action of G on E, ArInd (r) to C(G, V) 0 Pd(a).

Theorem 3.3 Let Q be an open set in a. Let {fx}AQe be a holomorphic family

in C-Ind G(T) such that f E AA,rIndG(r) for each A E . Fix Ao E and

5o E X(Ao, A). Let

E(A) = {w( - ) + A, - p - E X(A, A) I w(o - A) + A - p - p = o}.

There exist an open neighborhood Qo C Q of A0 and a constant r' E R such that

the map (A, H) -+ E-=() pX,(fx,, H)et(H) is continuous from Q x a+ into C;r°(G, V)

and in addition holomorphic in A.
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§4 Some algebraic results
This section is a necessary preparation for the proof of the theorems stated in last

section. It is strongly influenced by [Ban] and [BS].

Let E be the set of W-harmonic polynomials on a*. It is well known that j:

E 0 I(a) - S(a) is bijective, where j(e 0 h) = eh.

Now let r: I(Ic) I(a) be the restriction map. We assume r is surjective for

the rest of the thesis. According to [Helg3] if G/K is irreducible there are just four

exceptions, and they only occur among symmetric spaces of exceptional groups.

Pick a set of algebraically independent homogeneous generators of I(a), say, P1,

.. , Pm. Choose homogeneous elements q, ..., q, in I('c), such that r(qi) = pi, for

i = 1, ..., m. Define I(Ic) = {P(ql,...qm) I P is any polynomial }.

For any # E l, let

I, = (Top)- I PE Il(c)}

Here T,p(v) = p(p + v), for each v E 4*, and (Tp)-(A) = p(p + A), for each E a*.

Proposition 4.1 The map j,: E 0 I,, - S(a) is bijective, where j,(e 0 h) = eh.

Proof: Observe (T,,qi)- = pi + ri, with degri < degpi. Using the fact that j is

bijective and by induction we are done.

Let 31(g) = -(II(b)). Here y is the Harish-Chandra's homomorphism. For each

A E a, A = A for some a E r, let

I(A, A) = Z E 31(g) I (Z)(A - A) = 0}.

Recall 1(r) is the left ideal of U(g) 0 EndV generated by X 0 1 + 1 0 r(X), for

all X E t. Let J(A, A) be the left ideal generated by I(A, A) and I(r). Let

Vx,, = U(g) 0 EndV/J(A, A).

Our interest in TA,A comes from the fact that for f E £A_AIndK(r), the map

u 0 T -. TRf factors through TA,A since f is killed by J(A, A). We shall find below
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an underlying vector space for Ax,A independent of A.

Define ! = U(i) 0 E 0 EndV. We shall construct a linear bijection of ) with

2JA,A. For this purpose we need the following proposition.

First we identify ) with a subspace of U(g) 0 EndV as follows: u e T -,

(u e) 0 T, for u E U(i), e E E, and T E EndV. Here denotes the multiplication in

U(a+ ii).

Let : 2 0 31(g) U(g) 0 EndV/I(r) be the map defined by

I(y 0 Z) =y (Z 1) + I(r),

for y E 2), Z E 31(g). Here means the multiplication in U(g) 0 EndV.

Proposition 4.2 I is bijective.

Proof: By the Iwasawa decomposition U(g) 0 EndV/I(r) - U(ff) 0 U(a) 0 EndV.

Via this isomorphism the degree on U(a) induces a degree on U(g) 0 EndV/I(r),

denoted by deg,. Let 0 31(g) be filtered by the total degree on E 0 31(g). Notice

dega(Z 0 1 - (Tp- 7(Z))- 1 + I(r)) < deg(Z 0 1),

for Z E 31(g), and each a E r.

So T preserves the filtrations. It also follows that the graded map

gr : U(ii) 0 gr(E 0 3i (g)) 0 EndV --+ U(i) 0 U(a) 0 EndV

associated to T, is given by

u e Z T - u e (T_.A Y(Z))- T,

for u E U(i), e E E, Z E 31(g), and T E Hom(V,, V). Here we use Proposition 1.15.

This is bijective because of Proposition 4.1. So the proposition follows.

Corollary 4.3 (i) I maps 2) 0 I(A, A) onto J(A, A) modulo I(r), (ii) for each

u E U(g) 0 EndV there exists a unique y E 2), such that u - y E J(A, A).

20



Proof: See Corollary 5.2 in [BS].

From the corollary we obtain a linear bijection b of (A, A) onto A, defined by

u - b(u + J(A, A)) C J(A, A). Through this bijection ) is equipped with a (g, K)

module structure from (A, A), by making b a morphism of modules. Recall the g

action on 23(A, A) is induced from the left multiplication in U(g), and the K action is

induced from the following K action on U(g) 0 EndV.

k.(u 0 T) = Ad(k)u 0 Tr(k-1),

for each k E K, u E U(g), and T E EndV. Notice the difference from the action we

use to define U(g)K.

Let rx denote the resulting g action on 23. Notice the action of ii on is just

the left multiplication. The action of a can be determined as follows: Let y E E C

U(g) 0 EndV, H E a, then H y can be written (modulo I(r)) as (Eyi 0 Zi)

according to Proposition 4.2. Then by the definition of Tr we have

(*) rx(H)y = y 7(Zi)(A - A)y,.

For each k E N, let -nk be the linear span of k times product of ii in U(-i). Then

xA induces a representation rk of a + m on the finite dimensional space 2/k2). In

particular r is a representation of a + m on 2/-n " E 0 EndV. By (*) we know rx

and r are holomorphic in A.

Let {A1,..., Al} be the set of weights of r,\ restricted to a, and Ak C -N A an

enumeration of the weights of the a-module U(-f)/i-kU(i-).

Proposition 4.4 For each k E N, k > 1, the set of weights of (rk, a) is

{Ai+/ I i=l,...,l,/EAk}.

Proof: By induction on k. It is trivial for k = 1. For k > 1, the induction step is

a consequence of the following two exact sequences of a-modules.

O - iikU()/kU()® 2 (A, A)/12(A, A) --+ ,(A, A)/k 2 (A, A) -- 2)(A, A)/k- 2 (A, A) 0
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--n u()lkU(o) ,nk() _, Tk-lU() , 0

Let Vk = /nk¢, and 17k be a finite dimensional subspace of ) mapped bijectively

onto Vk by the canonical projection. Let r: k - Vk be the restriction of the

canonical projection. Define m: -- U(g) 0 EndV by

m(u e T) = (u e) T

for u E U(n), e E E, and T E EndV.

Let Vk be the image of Vk under m. Let r7: Vk --+ Vk be the inverse of mlVk.

Proposition 4.5 For k E N, k > 1, there exist

(i) an algebra homomorphism bk(A, ): 3(a + m) -- EndVk,

(ii) a linear map y: 3(a + m) 0 Vk _ ikU(a + i) 0 EndV, both depending polyno-

mially on A, such that for all A E a, D E 3(a + m), and v E Vk,

Dv - bk(A, D)v - y(D, v) E J(A, A).

Proof: Let pA: U(g) 0 EndV --, 2 be the map defined by

pA(u 0 T) = A(u)(1 1 T)

for u E U(g), and T E EndV.

Define for D E 3(a + m), V E Vk the maps

bk(A, D) = 7r- 0 Tk o 7r Edk,

yA(D, ) = pA((D 1) m()) - m(bk(A, D)v) E T.

Then bk(A, ) and yx are defined by
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bk(A, D) = m o bk(A, D) o ,

yA(D, v) = m(gx(D, r(v))),

for D E 3(a + m), v E Vk.

Corollary 4.6 As a representation of a, bk(A, ) has the same weights as (, a),

i.e. {i + I i=1,...,l, E Ak}.

Proof: By definition bk(A, D) = m o bk(A, D) o T, and 1 = (mlVk)- 1. So bk(A,.)

has the same weights as bk(A, ). Since bk(A, ) = r - o rxk o r the proof is complete.

Let Vk be the dual space of Vk, and b(A, ) be the transpose of bk(A, .). For each

weight of b(A, ) we denote P, the projection map from Vk onto the generalized

weight space of , along the remaining generalized weight spaces. We now consider

the holomorphic dependence of P, on A.

Proposition 4.7 There exists for each A E a, and each weight a unique poly-

nomial q,, on a with values in EndVk, such that

Px,\,q,,(H)P, = q,(H),

exp bk(A, H) = eC(H)q,,(H),

for H E a.

Proof: Let Vk*(~) be the generalized weight space of . Then the restriction of

b(A,-) to V*(~) gives a representation of a. a is abelian so in particular solvable.

Hence by Lie's theorem one can find a basis such that b(A, H)IVk () corresponds to

an upper triangular matrix, for each H E a. The diagonal entries are (H). So there

exists a unique polynomial q,(H) on a with values in EndVk,, such that

exp b;(A, H) IVk*() = e()q,(H),
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Fix A0 E a, and o a weight of b((Ao, .). For each A E a, let

(A) = {w(-A)+A, - p - X(, ) I w(Ao-A)+ A - p-p = o}

Proposition 4.8 There exist a neighborhood Q0(A) of Ao and a neighborhood

V(o) of o, such that

P(A) = P, E EndVk
tEV(fo)

is holomorphic in Qo(Ao), and {E E V( 0o) I is a weight of b*(A, .)} n X(A, A) C E(A).

Proof: It follows at once from Lemma 4.9 below.

Let F be an N-dimensional complex vector space, and rz a family of represen-

tations of a in F, depending on a parameter z E Cn . For each weight of Tr let

Pz, be the projection map from F onto the generalized weight space V((), along the

remaining generalized weight spaces. Fix zo E Cn, and b a weight of %rz

Lemma 4.9 Given any neighborhood N(~o) of do there exist a neighborhood V(o)

of o0 in N(o), and a neighborhood Q(zo) of zo, such that

P(z)= E P, E EndF

is holomorphic in z in £Q(zo).

Proof: We use the argument in Chapter II in [Kato]. First let us consider the case

where dima = 1.

Pick a nonzero element Ho E a. Let

T(z) = 7r(Ho) E EndF.

Then Ao = o(Ho) is an eigenvalue of T(zo) = r 0o(Ho). Define

R(z, A) = (T(z)- )-',
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for z E C' , and A E C. By Theorem 1.5 in Section 3 of Chapter II in [Kato], R(z, A) is

holomorphic in the two variables z and A in each domain where A is not an eigenvalue

of T(z). Moreover, for each (zl, A) in such a domain,

R(z, A) = R(zl, A) + E R-(A)(z -zl),
IENn

where R1(A) are determined by R(zl, A), and they are holomorphic in A.

This is called the second Neumann series for the resolvent. It is uniformly conver-

gent for sufficiently small z - zl and A E r if r is a compact subset of the resolvent

set of T(zl).

Let r be a closed positively oriented curve in the resolvent set of T(zo) enclosing

A0 but no other eigenvalues of T(zo). Then

P(z) = -2i7 r R(, )dA

is holomorphic in z, for z - z0o sufficiently small.

It is easy to see P(z) is equal to the sum of the eigenprojections for all eigenvalues

of T(z) lying inside r. This basically takes care of the case dima = 1. In general we

choose a basis el, ..., e, for a. We can duplicate the above process to Ti(z) = r,(ei),

for i = 1, ..., m. Thus we get Pi(z), i = 1, ..., m. Then the composition of Pi's is our

P(z).
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§5 Existence of asymptotic expansion
The methods we use in this section are similar to those used in [Ban], Section 12.

Also see [BS], Section 6.

Fix A E a, Ho E a+ and r E R. If Al, A 2 are Banach spaces we denote B(A 1, A 2)

the Banach space of bounded linear operators from Al to A 2.

Proposition 5.1 There eist, for each N E R,

(a) open neighborhoods (Q of Ao E a and U of Ho E a+,

(b) constants k, q E N, r' > r, and C, e > 0,

(c) a continuous map

.: x U - B(Cq(G, V), Vk; Cr,(G, V)),

holomorphic in the first variable, and

(d) a linear form 77 E (Vk*)*, such that

(i) $(A, H) intertwines the left actions of G on Cq(G, V) and C,(G, V), for

all (A, H) E x U, and

(ii)

IIRexptHf - ( o exp b*(A, tH) 0 1)$(A, H)f ll, < Clf llq,,e(N- ')

for f E _AAIndGK(r) n Cq(G, V), A E Q, H E U, t > O.

Proof: In the same way as for Proposition 12.6 in [Ban].

We now begin the proof of Theorem 3.3. Using Proposition 4.7 we can write

(7 o exp b;(A, tH) 0 1) (A, H) = , pA,i(H, t)et' (H),

for A E , H E U, t > 0, where the summation extends to the weights of b(A,.)

which by Corollary 4.6 is the set

{jA + I i = 1, ... ,1, A},
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and where px,t(H, t) = ( o q,(tH) 0 1)((A, H) E B(C q, Cr,), which is continuous in

H and polynomial in t.

From (d) (ii) of Proposition 5.1 we have

IIRexptHf - et (H)px,(H, t)fllr < I Cllfllq, e t(N - )

for f E _-AIlnd(Tr) n Cq(G, V).

Since N is arbitrary we have for each g E G,

f(gexptH) E Yj (px,(H, t)f)(g)et(H), (t -+ oo)

Here X(A, A) = {Ai + I| i= 1,..., I, / E -N A}

Lemma 5.2 Let X C a[ and f: a+ -- V. Assume that for each Ho E a+ there is

a given formal expansion

E PH (H. t)e (H)
tEX

which is an asymptotic expansion for f at Ho. Then for each g E X there exists

a unique continuous function p~: a+ -, V such that for each Ho E a+ there is a

neighborhood U with

pt,Ho(H, t) = p (tH),

for H E U, and t > 0.

Proof: See Corollary 3.4 in [BS].

As can be seen in the proof of Proposition 12.6 in [Ban], I(A, tH) = t(A, H),

for t > 0, H E U with tH E U. Thus (px,(H,t)f)(g) = (p,e(tH,1)f)(g), for

t > 0, H E U with tH E U. By Lemma 5.2, for each A E a, E X(A,A), and

r E R, there exist constants r' E R, q E N, and a unique continuous map p,e(-,.,.):

a+ -- B(EAAInd (r) n Cq (G, V), C,(G, V)), such that
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f(gexptH) ~ E px,\(f,g,tH)e t(H ), (t --+ o)
CEX(A,A)

at every Ho E a, for f E £xAIndG(T) n Cq(G, V).

To complete the proof of Theorem 3.3 it remains to show

(1) we can replace fX(, A) by X(A, A),

(2) px,,(f,g, H) is a polynomial in H with order < d.

We shall finish the proof in the next section. We now consider the holomorphic

dependence in A in order to prove Theorem 3.4.

Let r E R and Q be an open set in a. Let {fA,}En be a holomorphic family in

C°°(G, V), and f E E_AIndGK(r), for each A E Ql. We now study the asymptotic

expansion of f. Fix Ao E Q, and o E (Ao, A)

Proposition 5.3 There exist a neighborhood Q(Ao) of Ao in Q and a neighborhood

V(~O) of o in a, such that

(A,H) px,e(fA,,.,H)ec (H)

CEV(o)

is continuous from Q(Ao) x U to C, (G, V) for some q' E N, r' E R, and in addition

holomorphic in A. Moreover, we can choose V(~o) such that V(o) n X(A, A) C E(A).

Proof: It follows from Proposition 4.8.
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§6 Differential equations for the coefficients
In this section we derive certain differential equations for the vector-valued func-

tions p,,(f,g,.) on a+, where f E £°_AIndG(r), and g E G.

Fix Z E 3(g), and D = p(Z) E ZT. We can choose finitely many xi E iiU(i), and

vi E U(a) 0 EndV, such that

z - r'(Z 1) - E Zivi E I(r),

and ad(a) acts on xi by a weight -Pi 0 0, where ri E N.A. v, F1(Z®1) E U(a)®EndV

can be interpreted as differential operators with constant coefficients on C-°(a, V).

Proposition 6.1 Let f E £°a_AIndG(T). Then the functions p~,\(f, ., )ee from

G x a+ to V satisfy the following recursive equations

l®a(i(zl)-7(Z)(A-A))(p , E(f, . , .)eR) = - E Rxie-"'O(vi)(px,+n7i(f ,. )et+i),
i,t+mj Ef(AA)

for all ~ E X(A, A).

The proof is the same as for Proposition 7.1 in [BS].

Proof of Theorem 3.3: Let

V = EAlEtV(A1),

where V(A1) = E3E,,A,=A V(O).

Let P(A 1) be the projection from V to V(Al). By Corollary 1.15 i (Z®l)IV(Al) =

(Tp-A (Z)) IV(A 1,).

For (l, 6 E a, we say (l -q 2 if there exists r E N A such that 2 = l + Q7. This

defines a partial order on a.

For each f E £_AIndG(r), define E(A, A, f) by

E(A, A, f) = {( E X(A, A) I Pxt(f,,) 0

Let EL(A, A, f) denote the set of maximal elements in E(A, A, f). Suppose E
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EL(A,A,f). Then p,,(f,.) O. So one can find g E G, A1 E t, such that

P(Al)p,(f,g,.) O.

Since the right hand side of the equation in Proposition 6.1 is zero because is

maximal in E(A, A, f),

(rix(z ® 1) - (Z)(A - A))(p,(f,g, .)et) = 0.

So

9((T-A,+P(Z))- - (Z)() - A))(P(Al)p,(f, g, .)et) = O.

We extend p~,\(f, g, .)et to a function on a+ + vT-t C = a + vtat, by abuse of

notation still denoted by px,,(f, g, .)et, by the requirement that it be constant in the

t direction. Hence

((T_-A +pr(Z)) - 7(Z)( - A))(P(A1 )p,,(f, g, )et) = 0.

So

9((Z)) - -(Z)( - A))(P(Al)pA, (f, g, .)e - Al+p) = 0.

By Theorem 3.13, Chapter III in [Helgl], P(Al)p,e(f,g,.)e&Aj+P = Eqiei,

where q are polynomials on , #i E . Recall that pA,,(f,g,tH) is a polynomial

in t. We conclude P(Al)pA,(f, g,.) is a polynomial on , and

-Al + p = w( - A),

for some w E W. Also P(Al)px,g(f, g, ) is a W(w(A - A))-harmonic, where W(p) =

{w E W w = }, for each E . So

deg(P(Al)pf,e(f,g,)) < d.

Here d is the number of elements in +(gc, c).
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It follows that we can replace X(A, A) by X(A, A) since EL(A, A, f) C X(A, A).

By induction on C using Proposition 6.1 one can easily show p,,e(f, g, .) is a poly-

nomial with degree < d. Note we only need to show it for g = e. So this completes

the proof of Theorem 3.3.

The proof of Theorem 3.4 follows from Proposition 5.3.
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§7 Leading exponents
We further consider the properties of a leading term in the asymptotic expansion

of f E_AIndGK(r).

Proposition 7.1 For each , E EL(A, A, f), man E B, H E a, and g E G,

p,(f, gman, H) = e(l°ga)r(m)-lp,f(f, g, H + log a)

Proof: The same as for Theorem 8.4 in [BS].

Let aV = 2 . We introduce conditions on A - A and A as follows:

A = {- A I A E ,A E t, < A - A, av >~ Z, Vca E E(gc, bc), la # 0}.

22 = {A E aI <A,/8v > -N,V/ E E+(g,a)}.

Let Wvo= wEW I wla=id},and W1 = {wE I wa=a}.

Proposition 7.2 Suppose A - A E 21.

(i) If w(A - A) = A - A, for some w E W, then w E Wo,

(ii) if there eist w E W, a E r such that

(w(A -A) A)t = 0,

then w E W 1, and A, = wA.

Proof: (i) Since w(A - A) = A - A, w = w, ...w,,, where caj E (gc,0 c), and

< A - A, a i >= 0. Then we conclude ajla = O0 from 211. So w E VWo. (ii) For any E

E(gc, c) with .3la = 0, we have < w(A - A)+A,, 3 >= 0 since (w(A -A)+AO)It = 0.

Hence

2 < A - A,w-1 > 2 < A,O >

< 3, > - </,/ > 
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2 < A - A,w- > 2 < A,O >
< w-10,w-l > - P,>

The right hand side being integral forces w- 1/la = 0. This shows w preserves t.

Therefore w preserves a. Trivially A, = wA.

Proposition 7.3 Let f E E£_AIndK(T). Suppose A-A E 21a, and E EL(A, A, f).

Then E WA - p, and px,,(f, g, ) is constant in a for each g E G.

Proof: In the last section we showed if P(Aa)px(f,g,.) g O, then there exists

w E W, such that A - As + p = w(A - A). So

(w( -A) + A)lt = 0.

By Proposition 7.2 (ii) w E W1. So + p = wA. Hence ~ E WA - p.

We also showed P(A,)px,(f,g, ) is WV(w(A-A))-harmonic. Since w E WI1V, w(A-

A) E 2tq. By Proposition 7.2 (i) W(w(A - A)) C o We conclude P(A,)px,(f,g, ) is

constant in a This shows px,(f, g,) is constant in a since a E T is arbitrary. In this

case we denote it by px,,(f,g).

Corollary 7.4 If A - p E EL(A,A, f), and in addition A is regular, i.e., W(A)=

{w E W wA = A} = e, then

pA,,-_p(f, g) = P(A)p,_p(f,g).

Proof: If for some a E r, such that P(A)p,\,(f,g) ' O, then there exists w E W1,

with

wA = (A - p) + p, wAs = A.

A being regular implies w E fW0o. But then P(A) = P(A,) by definition.

By Appendix II in [KKMOOT] if A E 2t2, then A - p is always maximal in WA - p,

hence always in EL(A, A, f). So we have the following definition.
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Definition 7.5 Let - A E 1, and A E A2. For f E EA_AIndK(r), i(f) is

defined by

A,(f) = PAA-p(f, ).

we call /r the boundary value map.

Theorem 7.6 Let A - A E Qtl, A E %22. Then

(i) /3A maps £A_ , rIndG (r) linearly, continuously, and G-equivariantly into C°°IndG(r(A)®

(-A) 0 1) for each r E R, where T(A) is the restriction of r to M with representation

space V(A),

(ii) let Q C a be open, and {fx},An be a holomorphic family in £ _^lndG(r),

then A -O !A(fh) is holomorphic in Q n 12.
Proof: (i) comes from Theorem 3.3; (ii) is a result of Theorem 3.4.

Finally we notice for certain A we can obtain the boundary value map by a simple

limit procedure.

Lemma 7.7 Let A - A E 1. If Re < A, a >> 0, for each a E E+(g, a), then

O/3 f(g) = lim e(-A+P)(tH)f(g exp tH),
t--oo

for f E EA IndG(r) and H E a+.

Proof: The condition on A implies that Re~(H) < Re(A-p)(H) for all ~ E X(A, A)

with 5# A - p. Then the result follows from Theorem 3.3 and the very definition of

asymptotic expansion.

For each E C°°IndG(r(A) 0 (-A) 0 1), we define PA by

PAb(g) = K r(k)(gk)dk.

From the proof of Theorem 1.6 we conclude P E A_A,,Ind G(r). By Example

2.2 PAb E l_,Ar Ind (r).

Corollary 7.8 Under the same condition as in Lemma 7.7, Pxq = C(AX),

for each E C°IndG(r(A) 0 (-A) 0 1).

Proof: By Proposition 2.4 and Lemma 7.7.
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§8 The inversion of the Poisson transform
Let C(A) be the generalized Harish-Chandra's C-function given by

C(A) = e-(A+p)H(W)r(k())dn.

Recall PA: C°°Ind'(r(A) 0 (-A) 0 1) - E, Ind(r) is defined by

PAq(g) = K 7(k)O(gk)dk

Theorem 8.1 Let A - A E Qt1, and A E 212. Then

,APAO = C(A)+,

for each 0 E C~IndG(r(A) 0 (-A) 0 1).

Proof: If Re < A, a >> 0, for all a E E(, a), then by Corollary 7.8

03PA\ = C(A)O.

Since P~As is a holomorphic family in £_^IndG(r), by Theorem 7.6 the left hand

side is holomorphic . The right hand side is meromorphic on a. Hence two sides

must coincide.

Corollary 8.2 If in addition we assume detC(A) # O, then 3xA is surjective.

Hence PA is injective.

Theorem 8.3 Let A-A E 2l, and A E 212, and det C(A) O. Then PA is bijective,

and the inverse of P, is given by C(A)- 1/A.

For the proof we introduce a definition which can be found in [Wall], Section 11.6.

Let 2J be a finitely generated (g, K)-module.

Definition 8.4 Q*od denotes the set of all E T*, such that there exists d, E R

and for each v E 2J there exist an analytic function f,,, and a constant C,, > 0 with

the following properties:

(i) LUf,,(k) = ,L(k-1.(u.v)), for u E U(g), k E K,
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(ii) If,.(g)l < C,.vllld,j, for each g E G.

Recall (C-IndG(a 0 (-A) 0 1))' is the strong topological dual of COOIndB(a 0

(-A) 0 1). The following result can also be found in [Wall], Section 11.7.

Proposition 8.5 [(C°IndG(oa 0 (-A) 0 l))K-finite]od = (C'IndB( 0 (-A) 0

1))'. Here (C°IndG(a X (-A) 0 1))K-finitc denotes the space of K-finite elements in

C°°Ind~(a 0 (-A) 0 1), and a is any finite dimensional representation of M.

Before we go ahead with the proof of Theorem 8.3, we mention the following result

about the irreducibility of the principal series representations. Let a E M.

Lemma 8.6 As a (, K) module Co°IndB(a 0 (-A) 0 1)K-finite is irreducible if

A-A E i.

Proof: This is a direct consequence of Theorem 1.1 in [SV].

Proof of Theorem 8.3: It suffices to show /x is injective. Assume the opposite.

Then there exists fo E £x_AIndK(r), such that /fo = 0, and fo # O. We can assume

fo(e) 0 since p is G-equivariant.

Define fK by

fK(g) = K Trr(k)fo(kg)dk.

Then fK is K-finite, and fK(e) = fo(e) 0. Let

= LU()LKfK-

Then W2 is a finitely generated (g, K)-module. Let Ml be an irreducible submodule

of 2. By the subrepresentation theorem and Lemma 8.4 there exists E M, such

that 2I - Co°Ind (or®(-A)0 1)K-finitc, So there is a (g,K) map P,: C°°IndBG(oa

(-A) 0 1)K-finite -- W. It is easy to see A = A,.

Define p E 11* 0 V by

y(v) = (e),
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for each v E .

Taking f, = Lo E £,_AIndG(r) in Definition 8.4, we can verify that (i) and

(ii) are satisfied. So p E 2 od 0 V. Hence pI = p o P E [(COIndG(oa (-A) 0

1))K-finite]Mod 0 V. Then by Proposition 8.5 p E (C°°Ind(a ® (-A) 0 1))' 0 V.

Now define PO: Co°Indo(a 0 (-A) 0 1) - C-IndK(r)

P q!(g) = py(Lg-1 0).

Since PO is a g map and eigensections are analytic we can show PO = PO, for

E C°°IndBG(a 0 (-A) 1)K-finite, by showing they are identical at e along with

their derivatives.

We observe PO is a linear, continuous, and G-equivariant map from CooIndB(a 0

(-A) 0 1) to C-°IndK(r). By Proposition 1.8 we conclude a E , and there exists

T E HomM(V,, V), such that P = PT. Hence

P, = PT: C Ind(a 0 (-A) 1)K-finite 211

Pick any E CIndG(a 0 (-A) 0 1)K-finite such that 0 f = PTq. Then

f = Px(T4). Notice TO E C°°Indg(r(A) 0 (-A) 0 1)K-finite So

tff = 03PA(TO) = C(A)T4 5 O.

This contradicts to f E 21 C ker(#A).
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§9 Vector-valued distributions
Suppose K is a Lie group and V a finite dimensional space over C. Let C-°°(K, V)

denote all continuous C-linear maps from Cr(K, C) to V.

Let M be a compact subgroup of K, and (r, V) a finite dimensional representation

of M. Let

C-°IndK(r) = {f E C-°°(K, V) I R,,,f() = 7r(m-l)f(b), V E Cc0(K,C),Vm E M.}

Here Rmf( d) = f(Rm,,-), where Rm-¢4(k) = q(km-').

Let (r, V*) be the dual representation of (r, V), and <,> the nondegenerate

bilinear form on V x V*. Let (CrIndK(7r))' the strong dual of CrIndK(r). For

each T E (Cc Ind (7))', q E Cc00 (K, C), and v E V, we define 41(T)(4) E V* by

< , 41(T)(+) >= T(gj(4, v)),

where 1(, v)(k) = fM (km) r(m)vdm. It is easy to show 41(T) E C-°Ind(*).

Proposition 9.1 The map 1: (CrIndK(r))' - C-°°IndK(i) is bijective.

Proof: Define r,: C-°°IndK(*) (CIndK(r))' as follows: for each f E

C-°°IndK (*), and b EQ CQcIndK(7r), the map

f, : u -- f(< q,u >)

is a linear map from V* to V*. Then we define

?71(f) = Tr(f,).

It is a long but rather straightforward calculation to show 1 and 71 are inverses

to each other.

Now let G = KAN, and (, V6) a finite dimensional representation of B = MAN.

Let
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C°IndG() = {f E CO(G, Vs) I R,,f = a-"6-'(man)f, Vman E B.}.

C-°°Ind(6) = {f E C-°°(G, V) I Rnf = a-6-'l(man)f, Vman E B.}.

For T E (C°°IndB())', (T) is defined by

< v, (T)(O) >= T((O, v)),

for each v E V6, and q E C,"°(G, C). Here (, v)(g) = fMAN q(gman)a(man)vdmdadn.

Next we show (T) E C-oInd(). By definition, < ,(T)(R(man)-1) >=

T((R(man)-1i, v)). However, it is a simple calculation to see (R(man)-1l,v) =

(O, a-P6(man)v). Hence

< Rman.(T)(O) >=< v,7(T)(R(man)-1) >= T((O, a-O6(man)v))

=< a-Pi(man)v,g(T)(O) >=< v,a-PS((man)-l)T(O) >.

This proves (T) E C-°IndG(,).

Theorem 9.2 Let be defined as above. Then is G-equivariant bijection from

(C°Ind(6))' to C-°°Ind().
Lemma 9.3 Let L be a Lie group and (, V) a finite dimensional representation

of L on V. Suppose f E C-°°(L, V), satisfying

Rlf = r(l-)f,

for each I E L. Let dl be the right invariant Haar measure on L. Then there exists a

unique vector v E V, such that

f() = j .(1)7r(l- )vdl,

for each E C°°(L, C).
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Proof: We use an argument due to Helgason. For b and 0b in C°°(L, C), we define

b ·* in C-(L, C) by

* +() = L q(1)(Xt- 1).

Then

f( * k) = fL (l)f(R-il,)dl = fL 0(1)7r(l-1 )f(Ob)dl.

Choose a sequence O, such that n, - 6, the delta function, as n - +oo. Here

?n(l) = On(l-') Let v, = f(n,). Then

(*) f( * On) = j r(l)(l-)vndl.

We can choose an appropriate q (e.g. close to 6), such that fL +(l)r(l-1') is invert-

ible. Since O * n, -n 4, by letting n -, +oo in (*), we conclude there exists v E V,

such that v, -- v, and

f(q) = jq(1)i)r(i-)vdl.
the uniqueness follows from the fact that there is 0 such that fL q(l)r(l-) is invertible.

Proof of Theorem 9.2: First we construct the inverse of ~ as follows:

Take f E C-°°Ind(6), and E C(K,C). Then & - f(O 0 b) defines a

continuous linear map from Cc (A x N, C) to V, where

(4 0 k)(kan) = O(k)o(an).

It is easy to check this map satisfies all the conditions as in Lemma 9.3 if we take

L = AN, 7r(an) = aP(an). So there exists a unique element in V*, which we denote

by f- (), such that

®+ ( ) = JAxN 0(an)aP-l(an)f-()dadn.
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Notice a2Pdadn gives a right invariant Haar measure on AN.

It is fairly easy to see f- E C-oInd'(IM). Then by Proposition 9.1 rl(f-)

gives an element in (CoInd(6IM))'. Since CoIndK(6IM) - CoInd(6), one can

view 7l7(f-) as an element in (CoIndG(6))'. Finally we define q(f) by

/(f) = 771(f-)

The final step of the proof is to show 71 o = id, and 77 o = id.

For each T E (CooIndG(6))', , E C°°(K, C), and 0 E C(A x N, C),

~(T)(O 0 ) = JAxN (an)a-6 1(an)((T))dadn.

So for each v E V,

(**) < v, ((T)(b 0 b) >=< v, LxN (an)aP-l'(an)((T))-()dadn >.

By definition

'(O 0 , v)(k) = fMAN(O 0 4)(kman)aS(man)vdmdadn

= fMAN /(km)(m)4(an)a"5(an)vdmdadn = (k, vl),

where v = fAxN aPb(an)6(an)vdadn. So by (**)

< , (T)(V X ) >= T(61( , vl)) =< , ((T)(+) >

=< v, fAxN (an)aP-l (an)6 (T)dadn >

By comparing both sides of (**) we have 41(T) = ((T))-. So

T = 6-(((T)) - ) = 0((~(T))-) = 7((T)).

Similarly we can verify o = id, Note it is enough to check on functions of the

form 1 ' 0 . So this completes the proof.

Now suppose V is a Hilbert space. Let 6* be the representation defined as follows:

for each g E G, w, v E V6, we have < 6(g)v, w >=< v, 6(g)'w >, then 6*(g) = 6(g-')t.
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Let C-°°Ind(6 ' ) be the space of conjugate linear maps f from CO(G, C) to V6, such

that

Rm,,f = a-6'*((man)-')f.

For each T E (CO°Ind(6))', and b E Cc (G, R), ,(T)(q) is defined by < v, e(T)(q) >=

T(¢(O, v)), for each v E Vs. Here

E(, V)(g) =IMAN J (gman)aP(man)vdmdadn.

Corollary 9.4 is a bijection from (COOIndB(6))' to C-°°IndG(6*).

Let be a unitary representation of M and A E a. a ® A 1 is the representation

of B defined by man -- aAo(m). Then (a o X ® 1)* = a (-A) 1

Corollary 9.5 The map

: (C'°°Ind(a 1))' C-°°Ind(a (-A) 1)

is a bijection.
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§10 Distribution boundary values
In this section we introduce a weak growth condition in the eigenspace £-A IndK(r).

Recall from Section 2 we have

C,q(G, V) = {f E Cq(G, V) I Ifllfq,r < }),

q E N and r E R. C (G, V) = NqC,q(G, V). We define the a to be the space

a = nrC(G, V) = nq,,.C,(G, V).

endowed with the projective limit topology for the intersection over q and r (i.e., the

topology given by the family of forms 11' Ilq,,).

Using the same argument as on p.142 in [BS] we conclude a is a Frechet space. It

follows from Section 2 that L and R act smoothly on $.

Let Y' be the space dual to 3, equipped with the strong dual topology. For each

T E j, q E N, and r E R, we define

IITII,, = sup{T(p) I E $, I1k1pI,r < 1}

The space.C,(G, V)' = {T E Y' I IITll,r < oo} with this norm is the dual space

of CQ(G, V). Moreover, we have Y = U,,,Cr(G, V)'. By duality Y is the inductive

limit of these spaces.

Using Lemma 2.1 we can prove that for some b E R, fG Ilgllbdg < oo. It follows

that there is a continuous injection of C,°(G, V) into Cb_,(G, V)' defined by integration

over G. Hence there is a continuous injection of C°(G, V) into A.

Let q' > q, and r E R. For each T E C(G, V)', and yO E C,' (G, R), we define an

element LV(q)T in Cq'-q(G, V) by

< v, LV(o)T(x) >= T(RC-G ) t v).

Note if f C(G, V), and y E C_r(G, C)), then
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LV()f (x) = (g) F(gx)dg.

Lemma 10.1 Let q, q' E N with q < q'. There exist s > 0 and C > 0 such that

for all r E R, I' E Cq(G, V)', and p E C,(G, R).

Proof: See Lemma 11.1 in [BS].

Let £_AlIn.dG(r) denote the closed subspace £_AInd G(r) n '. We call the

elements of £,_AInd G(r) eigensections of weak moderate growth. Notice if f E

£_AAIndK(r), and qo E C, (G,R), then LV(p)f E E£_AInd (r) by Lemma 10.1.

For A - A lE h, A E 2i2, and f E £_AIndG(r), we define a vector-valued distri-

bution /xf on G by

OA f() = x(LV(q )f)(e),

for each E C 0(G,R).

Proposition 10.2 3xAf is a linear, continuous, and G-equivariant map from

£_AIndK(r) to C-Ind(r(A) 0 (-A) 0 1).

Proof: It suffices to show pxf E C-°Ind(r(A) 0 (-A) 0 1). By definition,

LV(R(ma)-lp)f(X) = f(Rx-R(man)-1Sp)

= f(R_-iR(manxz)-,1) = LV(V)(manx).

However, p/ is G-equivariant, so

;A(LV(R(man)-1p)f)

= /x(Lv(V)f)(man) = r(A)(m-1)aX-PxA(LV(o)f)(e).

This proves Pxf E C-°°IndSG(r(A) (-A) 0 1).

For each T E (Cc°IndB(r(A) 0 A 0 1))', we define PAT as follows:
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< v, PT(g) >= T(P(A)L4.A v) >,

for each v E V. Here 6\(x) is the transpose of Ix(z- 1 ), and P(A) the projection

from V to V(A). The motivation of this definition is from Corollary 1.10.

Proposition 10.3 PT E £A_.AIndGK(r), for all T E (C-IndB(r(A) 0 A ® 1))'.

And P, is linear, continuous, and G-equivariant.

Proof: Similar to the proof for Corollary 11.3 in [BS].

Lemma 10.4 Let T E (C°°IndG(r(A) 0 A 0 1))', and E C (G,R). Then

LV(W)PAT = P(LV(p)~(T)). Here is the isomorphism in Corollary 9.5, and

LV(p)~(T)(x) = ~(T)(R-ip).

Proof: LV(cp), Px, and P are continuous. So it is enough to check for T E

C°°IndBG(r(A) 0 (-A) 0 1). The proof follows from the G-equivariance of PA.

By a similar argument we get

Lemma 10.5 Let f E £A_AIndG(r), and o E Cc° (G, R). Then

LV(V)xAf = PA(LV(p)f).

Theorem 10.6 Under the same condition as in Theorem 8.3, PA is a G-equivariant

topological isomorphism from (CIndBG(r(A) 0 A 0 1))' to EC_AIndK(r). And

7r o C(A)- 1 o ~x gives the inverse of Px.

Proof: By Theorem 8.1 and Lemma 10.4, 10.5, for T E (C°°Ind G(r(A) 0 A 0 1))'

LV(W)3PAT = PPAL((p)((T) = C(A)LV(p)((T).

Similarly for each f E £x_alnd(r)

LV(W)Px7(C(A)-xlxf) = PxC(A)-,xLV(qp)f = LV(p)f.
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So we have

X, o Px = C(A) o 5, Pa o7o C(A)-1 3, = id.

Remark 10.7 Let £x-A,, = xA-A U Cr(G, V) be equipped with the Banach space

topology inherited from C,(G, V). Then £A_A is identical with the inductive limit

topology for the union s-A = UrX-A,r. See Page 146 in [BS].

By a classical result the left K-finite elements in £_\AIndGK(T) increase at most

exponentially. So by the remark above we easily get

Corollary 10.8 Under the same condition as in Theorem 8.3, PA is a bijection

from C°°IndG(r(A) 0 (-A) ) 1)K-finite to x-aIndK(r)K-finite.

Remark 10.9 I think by Schmid's method which is indicated in [Sch] one should

be able to get a bijection on the level of hyperfunctions from Corollary 10.8.
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