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Abstract

The carboxy-terminal domain (CTD) of RNA polymerase II plays a role in
transcription initiation. The isolation and characterization of extragenic
suppressors of Saccharomyces cerevisiae RNA polymerase II CTD truncation
mutations led to the identification of ten genes involved in CTD function in vivo.
Seven of these genes, SRB4, SRB5, SRB6, SRB7, SRB8, SRB9, and RPB2,
were cloned and sequenced. An eighth gene, SRB2, was previously identified
as a suppressor of CTD truncation mutations. The sequences revealed that
SRB4, SRB5, SRB6, SRB7, SRB8, and SRB9 are novel proteins while RPB2 is
the second largest subunit of RNA polymerase II. Genetic analysis suggests
that SRB8 and SRB9 function to negatively regulate CTD function while SRB2
and SRB5 positively regulate CTD function. The CTD, therefore, is influenced
by positively and negatively acting SRB factors.

Antibodies generated against recombinant SRB proteins were produced
and used to monitor the SRBs during purification using column
chromatography. Most of the SRB protein in cells was found to be tightly
associated with a large multisubunit complex containing RNA polymerase II, the
general transcription factors yTFIIB, yTFIIF, and yTFIIH, and substoichiometric
amounts of TATA-binding protein (TBP). This RNA polymerase II holoenzyme is
capable of site-specific initiation when supplemented with purified yTFIIE and
recombinant TBP and is responsive to activators. In vitro transcription and
template commitment assays confirm that SRB2 and SRB5 are components of a
functional preinitiation complex and are required for efficient transcription
initiation.

Although the holoenzyme contains most of the SRB protein in a cell, it
contains only a small fraction of RNA polymerase II. The fraction of genes that
employ the RNA polymerase II holoenzyme in vivo was investigated by studying
the effects of a temperature-sensitive mutation in the SRB4 gene on
transcription of mRNA. Upon transfer to the restrictive temperature, there is a
rapid and general shutdown of mRNA synthesis. These findings suggest a
general requirement for SRB4 and the RNA polymerase II holoenzyme in
transcription.

Thesis Supervisor: Dr. Richard A. Young

Associate Professor of BiologyTitle:
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Chapter 1

Introduction: The RNA Polymerase II Initiation Complex
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Overview
The first step in gene expression, and a major point of gene control, is the

initiation of messenger RNA (mRNA) synthesis. The synthesis of mRNA begins

with the assembly of RNA polymerase II and general transcription factors onto

promoter DNA (Conaway and Conaway, 1993; Zawel and Reinberg, 1993).

RNA polymerase II requires these general transcription factors for selective

promoter recognition and accurate transcription initiation. Additional

transactivating factors regulate the establishment and activity of the transcription

initiation complex. The assembly of the transcription initiation complex and the

factors involved is the focus of this introduction. A portion of the introduction is

also devoted to the carboxy-terminal domain (CTD) of RNA polymerase II. Later

chapters in this thesis describe how analysis of the CTD in yeast led to the

identification of a novel set of proteins required for transcription initiation

complex formation and how these studies led to the identification of the RNA

polymerase II holoenzyme, the form of the enzyme recruited to most promoters

in the cell.

RNA Polymerase II

Eukaryotic cells contain three nuclear DNA-dependent RNA

polymerases: RNA polymerase I (A), RNA polymerase 11 (B), and RNA

polymerase III (C) (Chambon, 1975; Roeder, 1976; Sentenec, 1985). RNA

Polymerase I transcribes ribosomal RNA (rRNA) genes, RNA polymerase II

transcribes protein-coding genes, and RNA polymerase III transcribes the

genes encoding the 5S rRNA and tRNA. These three enzymes were first

purified from sea urchin and rat liver and resolved on the basis of

chromatographic and enzymatic properties (Roeder and Rutter, 1969). They

can be separated by DEAE-Sephadex chromatography and were named 1, II,

and III according to their order of elution by increasing concentrations of

ammonium sulfate. Each of the three enzymes display different salt optima for

activity, different divalent cation and template preferences, and differential
sensitivity to inhibition by a-amanitin.

RNA polymerase II is a multisubunit enzyme approximately 500 kd in

size (Young, 1991). In the yeast Saccharomyces cerevisiae RNA polymerase II
is composed of 12 protein subunits and the genes encoding each of these

subunits have been cloned and sequenced (Young, 1991; Treich et al., 1992;
McKune et al., 1993; Woychick et al., 1993). All of the genes encoding RNA
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polymerase II subunits are essential for wild-type growth rates, and all but two of

these genes are essential for cell viability.
The three largest subunits of RNA polymerase II appear to be

homologues of the three core subunits of E. coli RNA polymerase (Young,
1991). E. coli core RNA polymerase is composed of three different subunits, 3,
O', and a (Mclure, 1985). The core enzyme PV'a2 is responsible for the
synthesis of the RNA transcript. The core enzyme plus a a subunit is called a

holoenzyme and it is this form of the enzyme that specifically recognizes and
binds to promoter sites and initiates RNA synthesis. RPB1 and RPB2, the
largest and second largest subunits of yeast RNA polymerase II, share
extensive sequence similarities with ' and , respectively (Allison et al., 1985;

Sweetser et al., 1987). Features of the third largest subunit of yeast RNA
polymerase II, RPB3, show some similarities to the E. coli a subunit. Both

proteins are similar in size and play similar roles during the assembly of their
respective RNA polymerases (Yura and Ishihama, 1979; Kolodziej and Young,
1989). Furthermore, both RPB3 and a are present in two copies per RNA

polymerase molecule and they share limited spans of amino acid identity
(Kolodziej and Young, 1989; Koledziej et al., 1990; Martindale, 1990). It is not

known, though, if the three largest subunits of RNA polymerase II are sufficient

for core RNA polymerase activity.

Even though RNA polymerase II is a complex, multisubunit enzyme,

purified preparations of polymerase are unable to selectively initiate

transcription (Lewis and Burgess, 1982). Just as E. coli core RNA polymerase
requires the addition of a a subunit for selective promoter recognition (McClure,

1985), RNA polymerase II requires additional factors for selective transcription

initiation. The situation for eukaryotes, however, is far more complex.

General Transcription Factors

Purified RNA polymerase II is unable to properly initiate transcription in
the absence of additional factors. A first step towards defining these factors was

the demonstration that selective and accurate transcription initiation is possible
in a cell-free system consisting of purified RNA polymerase II, template DNA

with the adenovirus major late (AdML) promoter, and human KB cell extract
(Weil et al., 1979). A system dependent only on whole-cell extract derived from
human HeLa cells and template DNA was soon available (Manley et al., 1980).
Investigators soon began fractionating human cell extracts and demonstrated a
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requirement for multiple components distinct from RNA polymerase II for

accurate transcription from the AdML promoter (Matsui, et al., 1980; Samuels et

al., 1982; Dignam et al., 1983). These fractions were designated TFIIA

(Transcription Factor IIA), TFIIB, TFIIC, TFIID, and TFIIE. TFIIC was later shown

to be poly (ADP-ribose) polymerase and not required in more purified systems

(Slattery et al., 1983). The enzyme suppresses random initiation by binding to

nicks in the DNA template.

Continued fractionation and purification has increased the number of

general transcription factors required for RNA polymerase II to selectively

initiate transcription in vitro (Conaway and Conaway, 1993; Zawel and
Reinberg, 1993). Many of these factors (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH,

and TFIIJ) have been purified to homogeneity, characterized in some detail, and

their genes cloned. General transcription factors from different species show a

high degree of structural and functional conservation. TFIID is the only one of

these general factors capable of site-specific DNA binding. The other general

transcription factors and RNA polymerase II assemble into a preinitiation

complex following binding of TFIID to promoter DNA.

TRANSCRIPTION FACTOR lID Using DNAse I footprinting techniques and gel

shift assays TFIID has been shown to specifically bind the TATA element of the

promoter (Sawadogo and Roeder, 1985; Nakajima et al., 1988; Buratowski et

al., 1989). The TATA box is the core element of a eukaryotic promoter and is

located 25 to 120 bases upstream of the start site of transcription (Struhl, 1989).

TFIID is a multisubunit complex composed of the TATA-binding protein (TBP)

and the tightly associated TBP-associated factors (TAFs) (Gill and Tjian, 1992;

Pugh and Tjian, 1992). The TAFs appear to mediate interactions with

transcriptional regulatory proteins and are discussed in more detail below. TBP

was initially purified from yeast because yeast TBP can substitute for human

TFIID in a reconstituted system and bind to the TATA element (Buratowski et al.,

1988; Cavallini et al., 1988). The gene encoding TBP in yeast is the SPT15

gene, originally identified as a suppressor of Ty element insertions (Fassler and

Winston, 1988; Eisenmann et al., 1989; Hahn et al., 1989). cDNAs encoding

TBP from a large number of other species have now been cloned (Hernandez,
1993). The carboxy-terminal core domains are highly conserved (generally

>75% identical to human TBP) while the amino-terminal domain is not
conserved and is variable in size. The structure of Arabidopsis and yeast TBP
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has been determined (Nikolov et al., 1992; Chasman et al., 1993). Co-crystals

of TPB and the TATA element have also recently been described (J.L. Kim et al,
1993; Y. Kim et al, 1993). TBP has a symmetrical saddle shape structure with

the inner surface of the saddle interacting with the minor groove of the TATA
element and the outer surface of the protein exposed to allow contact with other

proteins.

TRANSCRIPTION FACTOR IIA TFIIA stabilizes the interaction between TFIID

and the TATA element (Davison et al., 1983; Fire et al., 1984; Buratowski et al.,
1989). DNA encoding the two subunits of TFIIA from yeast (yTFIIA) has been

cloned (Ranish et al., 1992). Recombinant yTFIIA binds to a TBP-DNA complex
in a gel shift assay and will substitute for purified yeast and mammalian TFIIA in
in vitro transcription assays. However, a requirement for TFIIA in reconstituted

systems is quite variable (Conaway and Conaway, 1993; Zawel and Reinberg,
1993). The influence of TFIIA on transcription in vitro seems to depend a great

deal on the purity of the system. TFIIA is not required in highly purified systems
derived from yeast and rat (Sayre et al., 1992a; Conaway et al., 1990). This is

consistent with the observation that TFIIA is required for in vitro transcription in

the human system when TFIID is used but not when TFIID is substituted with

recombinant TBP (Cortes et al., 1992). This suggests that TFIIA is required to

counteract inhibitory activities in TFIID and is likely to play an essential role in

vivo in preinitiation complex assembly. The issue of TFIIA function should

become easier to resolve with the recent cloning of cDNAs encoding some of
the subunits of human and Drosophila TFIIA (Dejong and Roeder, 1993; Ma et

al., 1993; Yokomori et al., 1993a).

TRANSCRIPTION FACTOR IIB TFIIB activity resides in a single polypeptide

and cDNAs encoding this polypeptide have been cloned from a number of
species (Conaway and Conaway, 1993; Zawel and Reinberg, 1993). TFIIB

appears to play a role in start site selection and is absolutely required for
transcription in vitro. The SUA7 gene in yeast encodes yTFIIB and mutations in
this gene alter start site selection in vivo (Pinto et al., 1992). Mutations in the

largest subunit of yeast RNA polymerase II (RPB1/SUA8) display similar start
site selection defects (Berroteran et al., 1994). A variety of genetic interactions
between sua7 and sua8 mutants suggests close interactions between these two
proteins. This is supported by additional physical and functional data. First,
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both yeast and Drosophila TFIIB can directly interact with RNA polymerase II in

vitro in the absence of DNA (Tschochner et al., 1992; Wampler and Kadonaga,

1992). Second, when components of reconstituted systems were exchanged,

TFIIB and RNA polymerase II were found to be solely responsible for the

differences in start site selection between the yeasts S. pombe and S.

cerevisiae (Li et al, 1994). The role of TFIIB in mediating interactions with

transcriptional regulatory proteins is discussed below.

TRANSCRIPTION FACTOR IIF TFIIF is composed of two polypeptides known

as RAP30 (RNA polymerase 11-associated protein) and RAP74 and binds tightly

to RNA polymerase II in solution (Flores et al., 1989; Price et al., 1989;

Greenblatt, 1991). RAP30 and RAP74 have been purified to homogeneity and

cDNAs isolated (Aso et al., 1992; Finkelstein et al., 1992; Sopta et al., 1989).

Curiously, there is a 70 amino acid stretch in RAP30 with limited sequence
similarity to conserved regions of bacterial and bacteriophage a factors. These

regions of a are thought to contact core RNA polymerase. This similarity is

supported by the observation that TFIIF can bind to E. coli RNA polymerase and
be displaced by c70 (McCracken and Greenblatt, 1991). TFIIF, like , appears

to act as a selectivity factor for RNA polymerase II. Formation of non-specific

RNA polymerase II-DNA complexes is reduced by the presence of TFIIF and

purified TFIIF will disrupt preformed polymerase-DNA complexes (Conaway

and Conaway, 1990; Killeen and Greenblatt, 1992). In addition, TFIIF is

required for selective binding of RNA polymerase II to the promoter complex

(Buratowski et al., 1991; Conaway et al., 1991b; Flores et al., 1991).

In addition to its role in transcription initiation, TFIIF also stimulates

elongation of RNA polymerase II (Flores et al., 1989; Bengal, et al., 1991).

Recently, a set of experiments using recombinant RAP30 and recombinant

RAP74 sought to individually determine their roles in transcription initiation and

elongation (Chang et al., 1993). Sarkosyl eliminates reinitiation by RNA

polymerase II. A sarkosyl resistant complex is formed following the formation of

the first few phosphodiester bonds of the transcript. RAP30 must be added prior

to the addition of sarkosyl, while RAP74 can be added to the transcription

reaction following the addition of sarkosyl. This data is consistent with RAP30

playing a role in bringing RNA polymerase II to the promoter and/or tethering

RAP74 to polymerase. RAP74 appears to act subsequent to initiation, possibly

in assisting RNA polymerase II in clearing the promoter and/or elongation.
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These results are consistent with a prior set of experiments demonstrating that

recombinant RAP30 is sufficient for recruitment of RNA polymerase II to the

promoter (Flores et al., 1991). RAP30, though, may still play a role subsequent
to initiation.

TRANSCRIPTION FACTOR IIH Probably the least understood and perhaps

the most complicated general factor is TFIIH. This factor is a multisubunit

complex whose composition has not yet been clearly defined. Human (Drapkin

et al., 1994a) and rat TFIIH (Conaway et al., 1992a) are composed of at least 8

polypeptides while yeast is composed of at least 5 polypeptides (Feaver et al.,

1993). TFIIH from all three species is closely associated with a protein kinase

that will specifically phosphorylate the carboxy-terminal domain (CTD) of the

largest subunit of RNA polymerase II (Feaver et al., 1991; Lu et al, 1992;

Serizawa et al., 1992). Phosphorylation of the CTD has been proposed to

serve as a switch that regulates the transition from initiation to elongation

(Corden, 1990; Chao and Young, 1991; Peterson and Tjian, 1992). The CTD is
discussed in more detail below.

In addition to its kinase activity, ATPase and DNA helicase activities are

also associated with TFIIH (Feaver et al., 1991; Serizawa et al., 1992; Schaefer

et al., 1993; Serizawa et al., 1993b; Roy et al., 1994). A variety of evidence

suggests that the ATPase and helicase are part of the same activity and this

activity is distinct from the CTD kinase activity. The ATPase and helicase

activities display similar nucleotide substrate specificities. In contrast, the

ATPase and CTD kinase differ in their nucleotide specificities, responses to

DNA, and sensitivities to kinase inhibitors and sarkosyl (Serizawa et al., 1993b;

Roy et al., 1994). In addition, two of the subunits of human TFIIH, ERCC2 and

ERCC3, display ATPase and helicase activities when purified from E. coli or

yeast (Sung et al., 1993; Drapkin et al., 1994a; Roy et al., 1994). Although TFIIH

contains CTD kinase activity a subunit with kinase homologies has not yet been
identified.

In addition to a role in transcription initiation, TFIIH is also involved in

DNA repair (Drabkin et al., 1994b). The largest subunit of human TFIIH is the

excision repair protein ERCC3, the homologue of yeast RAD25/SSL2

(Schaeffer et al., 1993). RAD25, however, does not appear to be a component

of yTFIIH but rather a protein that only interacts with yTFIIH (Feaver et al., 1993;
Bardwell et al., 1994). Two of the subunits of yTFIIH are encoded by the DNA
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repair genes RAD3 and SSL 1 (Feaver et al., 1993). The human homologues of

RAD3 and SSL1 are ERCC2 and p44, respectively, both subunits of TFIIH

(Drapkin et al., 1994a; Humbert et al., 1994). RAD3 and RAD25 are both

essential for transcription by RNA polymerase II in vivo and in vitro (Qiu et al.,

1993; Guzder et al., 1994), and extracts from rad3 mutants are deficient in

nucleotide-excision repair; a defect that can be complemented by purified

yTFIIH (Wang et al., 1994). Furthermore, cell extracts deficient in nucleotide-

excision repair due to mutations in ERCC2 or ERCC3 can be complemented by

human TFIIH (Drapkin et al., 1994a). It is not yet clear if individual components

of TFIIH function in either transcription initiation or DNA repair, respectively, or if

various components serve dual roles in both transcription and repair.

TRANSCRIPTION FACTOR IIE TFIIE has been purified to homogeneity from

HeLa cells (Ohkuma et al, 1990; Inostroza et al, 1990), rat liver (Conaway et al.,

1991a) and yeast (Sayre et al, 1992b) and it is composed of two different

polypeptides. cDNA clones for both of the human TFIIE subunits have been

isolated (Ohkuma et al., 1991; Peterson et al., 1991; Sumimoto et al., 1991).

TFIIE and TFIIH are not always essential for transcription in vitro. A recent

report showed that TFIIE and TFIIH were not required for transcription from the

immunoglobin heavy chain (IgH) promoter while transcription from the AdML

promoter was absolutely dependent upon TFIIE and TFIIH (Parvin et al., 1992).

Transcription in the absence of TFIIE and TFIIH from the IgH promoter is

dependent upon the template being negatively supercoiled (Parvin and Sharp,

1993).

The precise role of TFIIE in transcription is not yet clear. Recent

experiments, however, suggest that at least one thing TFIIE does is regulate

TFIIH. The CTD-kinase and ATPase activities of TFIIH are both stimulated by

the presence of TFIIE (Lu et al., 1992; Ohkuma and Roeder, 1994). Helicase

activity, in contrast, is inhibited by TFIIE (Drapkin et al., 1994a). Stimulation of

ATPase activity and inhibition of helicase activity by TFIIE appears to be

inconsistent with the hypothesis that these two activities of TFIIH are tightly

linked (Serizawa et al., 1993b; Roy et al., 1994). It is possible that the ATPase

activity of TFIIH is provided by one subunit while the helicase activity is provided

by another subunit and they are differentially regulated by TFIIE. Recombinant

ERCC2 and ERCC3, subunits of TFIIH, both have helicase activity, however

only the helicase activity of ERCC3 is inhibited by TFIIE (Drapkin et al., 1994a).
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TFIIH-associated helicase activity may reside with ERCC3 while ATPase activity
may reside with ERCC2 or another subunit of TFIIH. Differences in reagents
and protocols offer a more trivial explanation for these discrepancies.

In vitro transcription experiments suggest that TFIIE and TFIIH play a role
in the transition of an initiation complex to an elongation complex (Goodrich and
Tjian, 1994). The production of a functional initiation complex, assayed by the
formation of short abortive transcripts, was independent of supercoiling of the
template or the presence of TFIIE and TFIIH. The transition to elongation
(promoter clearance), however, was found to depend upon either TFIIE, TFIIH,
and ATP hydrolysis or a supercoiled template. This indicates that the TFIIH-
associated ATPase/helicase activity plays a role in promoter clearance. These
experiments do not address the issue of phosphorylation of the CTD. If TFIIH
contains the physiological CTD kinase then phosphorylation of the CTD may
also occur during promoter clearance.

TRANSCRIPTION FACTOR IIJ TFIIJ appears to be an elongation factor
(Zawel and Reinberg, pers. comm.). Synthesis of short transcripts do not
require the action of TFIIJ. Efficient synthesis of RNA greater than 100
nucleotides in length, however, does require TFIIJ activity. TFIIJ has only been
defined as a separate transcription factor in humans (Cortes et al., 1992).
Curiously, TFIIJ is only required when TBP is used in lieu of TFIID, suggesting

that TFIIJ may be a component of TFIID or a contaminate of the TFIID fraction.

Assembly of the Preinitiation Complex

The formation of a functional preinitiation complex has been proposed to
occur through the ordered assembly of the general transcription factors and
RNA polymerase II onto promoter DNA (Conaway and Conaway, 1993; Zawel
and Reinberg, 1993). This model of initiation complex formation is based upon
DNAse I footprinting techniques and gel shift assays using purified components.
The first step in the formation of the preinitiation complex is the binding of TFIID
or TBP to the TATA element of the promoter (Davison et al., 1983; Fire et al.,
1984; Buratowski et al., 1989). Next, TFIIA binds and stabilizes TFIID binding to

the promoter (Davison et al., 1983; Fire et al., 1984; Buratowski et al., 1989). As

discussed above, however, TFIIA is not an essential factor in a minimal in vitro
transcription system and is not required for formation of a preinitiation complex.
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Gel shift assays indicate that TFIIB recognizes and binds to the TBP-DNA

complex and then recruits an RNA polymerase II-TFIIF complex (Buratowski et

al., 1989; Buratowski et al., 1991; Flores et al., 1991). Template challenge

assays, though, performed under conditions required for transcription in vitro,

indicate that TFIIB does not stably associate with the promoter in the absence of

RNA polymerase II and TFIIF (Conaway et al., 1991b). Furthermore, TFIIB will

stably associate with RNA polymerase II in the absence of a TBP-DNA complex

(Tschochner et al., 1992; Wampler and Kadonaga, 1992). This suggests that a

TFIIB-RNA polymerase II-TFIIF complex is recruited to promoters subsequent to

TBP/TFIID binding.

Following the formation of the DNA-TBP-TFIIB-pol II-TFIIF complex, TFIIE,

TFIIH, and TFIIJ join (Cortes, et al., 1992; Flores et al., 1992). Gel shift assays

indicate that TFIIE incorporation is necessary for subsequent recruitment of

TFIIH, followed by incorporation of TFIIJ. When TFIIE and TFIIH are incubated

together much less TFIIE is required for the formation of a preinitiation complex

than when TFIIE is incubated in the absence of TFIIH, suggesting that

association of TFIIE and TFIIH with the preinitiation complex is cooperative.

Consistent with this result is the observation of a direct interaction between the

largest subunit of TFIIE and the ERCC3 subunit of TFIIH (Drapkin et al., 1994a;

Maxon et al., 1994). TFIIE also appears to directly contact RNA polymerase II in

the absence of DNA as determined by glycerol gradient sedimentation analysis

(Flores et al., 1989). The interaction of TFIIE with polymerase, though, does not

appear to be as strong as the interaction between TFIIF and polymerase.

While RNA polymerase II and general transcription factors can be readily

separated, purified and then assembled onto promoter DNA in a sequential

manner, much of the data described above suggests that RNA polymerase II

and some of the general factors may associate with one another before

assembling at the promoter. Evidence for such a complex was recently

reported (Serizawa et al., 1994). In the absence of DNA, a transcriptionally

active assembly of purified RNA polymerase II, TFIIB, TFIIE, TFIIF, and TFIIH can

be immunoprecipitated with an antibody directed against the RNA polymerase II

CTD. This suggests that there may be multiple ways to assemble a preinitiation

complex in vitro and that the situation in vivo may be equally complex.
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Activation of Transcription
Selective transcription initiation by RNA polymerase II, under most

conditions in vitro, requires the general transcription factors TBP, TFIIB, TFIIE,

TFIIF, and TFIIH (Conaway and Conaway, 1993; Zawel and Reinberg, 1993).

Highly purified preparations of RNA polymerase II and general factors, however,
are not responsive to regulatory signals. These regulatory signals come from
sequence-specific DNA binding proteins (Mitchell and Tjian, 1989). An
individual gene may have nearby binding sites, or enhancers, for many different

activators. A typical transcriptional activator has a sequence-specific DNA

binding domain and an activation domain. Additional factors, broadly defined
as coactivators, are required for the response to these regulatory signals and
are thought to serve as a functional and physical link to the general transcription

apparatus. These include TBP-associated factors (TAFs) (Gill and Tjian, 1992;

Pugh and Tjian, 1992), mediators (Flanagan et al., 1991), and adaptors (Berger

et al., 1992; Pina et al., 1993).

The mediator is a partially purified fraction isolated from yeast that is
required for stimulation of transcription in a reconstituted system (Flanagan et

al., 1991). In the absence of activator, the mediator has no effect on

transcription. It is not clear, though, what the mediator is since its components

have not been identified or purified to homogeneity. Adaptors, on the other

hand, were identified genetically in yeast (Berger et al., 1992). Mutations in

ADA2 and ADA3 relieve the toxicity due to overexpression of the potent acidic

activator GAL4-VP16. In the absence of ADA2 (Berger et al., 1992) or ADA3
(Pina et al., 1993) the ability to respond to some activators, but not others, is

compromised both in vivo and in vitro suggesting that different activators may

use different classes of adaptor molecules. Recent immunoprecipitation

experiments identify ADA2 as a direct target of VP16, a feature expected of

coactivators (N. Silverman and L. Guarente, pers. comm.). In addition,

mutations in ADA2 can be suppressed by mutations in the gene encoding TFIIB,
providing a functional link to the general transcription machinery (R. Knaus and
L. Guarente, pers. comm.).

The best characterized coactivators are the proteins tightly associated
with TBP. TBP together with the TAFs comprises the general transcription factor
TFIID (Gill and Tjian, 1992; Pugh and Tjian, 1992). While recombinant TBP is

able to mediate selective transcription by RNA polymerase II in reconstituted
human and Drosophila systems, the multisubunit TFIID fraction is required for



17

response to activators (Hoey et al., 1990; Pugh and Tjian, 1990). Addition of

TAFs, isolated by treatment of immunopurified TFIID with denaturants, to free

TBP restores the ability of activators to stimulate transcription without

dramatically influencing basal transcription (Dynlacht et al., 1991; Tanese et al.,

1991).
In Drosophila, eight TAFs have been identified and cloned (Yokomori et

al., 1993b; Hori and Carey, 1994; Verrijzer et al., 1994). Characterization of

these proteins has revealed many features expected of factors with coactivating

activity. A partial TFIID complex containing recombinant TBP, TAF110, and the

majority of TAF250 will support activation by the glutamine-rich activator Spl

(Weinzierl et al., 1993). Stimulation by Spl appears to be mediated, at least in

part, via direct interactions with TAF110 (Hoey et al., 1993). Another TAF,

TAF40, can be directly contacted by the acidic activation domain of VP16 as

well as TFIIB (Goodrich et al., 1993). This result is particularly intriguing

because VP16 can also directly contact TFIIB (Lin et al., 1991), suggesting

multiple protein-protein interactions involved in activation. These results also

indicate that different activators contact different TAFs, suggesting that there

may be multiple pathways to leading to activation. Consistent with this is the

recent observation that a cell line containing a temperature-sensitive mutation

in TAF250 has gene-specific defects in transcription (Wang and Tjian, 1994).

It is important to note that while TAFs appear to be necessary for the

optimal response to activators they are not sufficient. A highly purified

reconstituted system will not respond to an activator even when native TFIID is

used (kretzschmar et al., 1994)). This indicates that additional components

present in partially purified preparations of the other general factors are

necessary for the response to activators.

While some of the factors involved in stimulating transcription initiation

have been characterized and a few targets of transcriptional activators have

been potentially identified, we still do not have a very good picture of the

mechanism of activation. An increase in efficiency in any one of a number of

steps in the assembly of the preinitiation complex could lead to an increase in

transcription initiation. Early mechanistic studies on activation focused on

TFIID, the first factor to bind the promoter. Dissociation rate measurements

indicate that the gene-specific activator USF increases the binding efficiency of

TFIID with the promoter by a cooperative mechanism (Sawadogo and Roeder,

1985). DNase I footprint analysis revealed cooperative interactions between
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the ATF and GAL4 activator proteins with TFIID (Horikoshi et al., 1988a;

Horikoshi et al., 1988b). Furthermore, a qualitative change in the binding
pattern of TFIID was observed. ATF and GAL4 stimulated an increase in

protection of the DNA extending beyond the start site of transcription,

suggesting activators directly contact TFIID and induce a conformational

change. Similar conformational changes in TFIID have recently been reported

to be stimulated by the Epstein-Barr virus activator Zta in a TAF-dependent

manner (Lieberman and Berk, 1994). This is consistent with the direct
interactions that have been detected between activators and TAFs (see above)
and a recent report indicating that TAF150 binds specifically to DNA sequences
overlapping the start site of transcription (Verrijzer et al., 1994). Affinity

chromatography has also detected a direct interaction between the acidic

activator VP16 and TBP (Stringer et al., 1990). The significance of this

interaction is supported by the observation that mutants in the activation domain

of VP16 that are defective in activation are also defective in binding to TBP

(Ingles et al., 1991).

TBP is not the only general initiation factor that can interact with

activators under the appropriate conditions in vitro. TFIIB will selectively bind to
the acidic activation domain of VP16 under conditions that do not permit

efficient binding of TBP, indicating a stronger interaction between VP16 and

TFIIB (Lin et al., 1991). This binding is also dependent upon a functional VP16

activation domain. Functional assays, however, offer the most compelling

evidence that TFIIB is a target of transcriptional activators. Using immobilized

template DNA and a transcription assay, Lin and Green (1991) were able to
isolate complexes at various stages of assembly and determine what stage of
preinitiation complex assembly the activator stimulated. They found that

association of TFIIB with the DNA-TFIID complex was greatly enhanced by the
presence of an activator, while TFIID was able to efficiently assemble on the
template in the absence of activator. Recently, mutants in TFIIB have been

identified that are unable to bind to VP16 (Roberts et al., 1993). While these
TFIIB mutants function normally in basal transcription they are unable to support
activated levels of transcription, supporting a functional interaction between
TFIIB and acidic activators.

How can all of the observed physical and functional interactions between
activators and components of the transcription initiation apparatus be
reconciled into a coherent model of activation? A recent report may provide
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some of the answers (Choy and Green, 1993). Immunoblot assays on purified
transcription complexes were used to determine the influence of activators on
the extent of preinitiation complex assembly. While either TFIID or TBP was
sufficient for recruitment of TFIIB in the presence of an activator, recruitment of

the remaining components (RNA polymerase II, TFIIE, TFIIF, and TFIIH) required
TFIID. Activation, therefore, appears to occur in at least two steps. First, TFIIB is

recruited to a DNA-TFIID complex. Second, the remaining general transcription

factors and RNA polymerase II are recruited through a mechanism requiring the
action of TAFs. This second step, if it produces a conformational change in
TFIID, would explain the qualitative change observed in DNA protection by

TFIID in the presence of activators.

The ability of multiply-bound activators to stimulate transcription

synergistically can also be viewed with greater understanding (Ptashne, 1988).

Choy and Green (1993) observed that multiple activators did not have a

synergistic effect on TFIIB recruitment. They did observe, however, a synergistic
effect on complete preinitiation complex formation when TFIID was used.

Synergy, therefore, may be, as some investigators have speculated, a result of
activators contacting different factors. In support of multiple targets for
activators, TFIIF (Zhu et al., 1994) and TFIIH (H. Xiao and J. Greenblatt, pers.

comm.) have recently been reported to interact with some activators as well.

While recruitment of TFIIB and the other general factors can be functionally

dissected into discrete steps, these steps may, in fact, occur simultaneously. As

described above, TFIIB may be associated with RNA polymerase II and other

general factors before joining TFIID at the promoter.

Activation in vivo, of course, is even more complex than in systems

reconstituted in vitro with partially purified factors. Transcription factors in vivo

must compete with nucleosomes for binding to DNA. Activator proteins,
however, may enhance the ability of general transcription factors to compete

with nucleosomes for DNA binding and thus act as antirepressors (Croston et
al., 1992; Adams and Workman, 1993). Similarly, a number of negative
regulators have been identified that appear to interact with the general factors,
particularly TFIID, preventing initiation complex formation (Drapkin et al., 1993).
These effects can also be overcome by activators. Transcriptional activators,
therefore, appear to have a hand in a number of events leading up to the
formation of a complete preinitiation complex. Activators may not be limited,
however, to stimulating preinitiation complex formation. There is no reason to
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believe that steps subsequent to preinitiation complex formation can not be

stimulated by activators.

The CTD and Transcription initiation

The carboxy-terminal domain (CTD) is a highly conserved feature of the

largest subunit of RNA polymerase II (Corden, 1990; Chao and Young, 1991;

Young, 1991). The CTD contains 26-52 repeats, depending on the organism, of

the consensus heptapeptide sequence sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser.

This unusual domain is absent from the largest subunit of RNA polymerases I

and ill, viral, and bacterial RNA polymerases. The CTD is essential for cell

viability. Deletion mutants that remove most or all of the CTD are lethal to cells

(Nonet et al., 1987; Allison et al., 1988; Bartolomei et al., 1988; Zehring et al.,

1988). Genetic and biochemical studies indicate that the CTD plays a role in

transcription initiation. CTD partial truncation mutations cause defects in growth

and inducible gene expression in vivo (Nonet et al., 1987; Allison and Ingles,

1989; Scafe et al., 1990) and produce substantial defects in transcription

initiation in vitro (Liao et al., 1991). This defect in gene expression in vivo has

been mapped to upstream activating sequences (Allison and Ingles, 1989;

Scafe et al., 1990).

A subset of the RNA polymerase II molecules in yeast and in mammalian

cells have highly phosphorylated CTDs (Cadena and Dahmus, 1987; Kolodziej

et al., 1990). In vivo, the second and fifth serines are the major sites of

phosphorylation while tyrosine and threonine residues are phosphorylated to a

lesser degree (Zhang and Corden, 1991; Baskaran et al., 1993).

Phosphorylation of the CTD has been proposed to serve as a switch that

regulates the transition of RNA polymerase II from initiation to elongation

(Corden, 1990; Chao and Young, 1991; Peterson and Tjian, 1992). This model

is consistent with the observation that it is the unphosphorylated form of RNA

polymerase II that is recruited into the preinitiation complex (Laybourn and

Dahmus, 1990; Lu et al., 1991; Kang and Dahmus, 1993). Furthermore,

phosphorylation of the CTD is coincident with transcription initiation and it is the

phosphorylated form of RNA polymerase II that is actively engaged in

elongation (Cadena and Dahmus, 1987; Payne et al., 1989; Laybourn and

Dahmus, 1990; Lu et al., 1991; Kang and Dahmus, 1993).

Several kinases have been identified that can phosphorylate the CTD in

vitro (Cisek and Corden, 1989; Lee and Greenleaf, 1989; Feaver et al., 1991; Lu
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et al., 1992; Serizawa et al., 1992; Baskaran et al., 1993; Dvir et al., 1993). A

physiological role, however, for many of these kinases in phosphorylation of the

CTD has not been demonstrated. A deletion of CTK1, the gene encoding the

catalytic subunit of a putative CTD kinase purified from yeast, results in cells that

are slow-growing and cold-sensitive (Lee and Greenleaf, 1989; Lee and

Greenleaf, 1991). Significantly, phosphorylation of the CTD in these cells is

dramatically reduced, suggesting a role for this kinase in CTD phosphorylation

in vivo. As discussed above, the general transcription factor TFIIH contains a

CTD kinase activity (Feaver et al., 1991; Lu et al., 1992; Serizawa et al., 1992).

The association of this kinase with TFIIH and the apparent role TFIIE plays in

regulating this activity (Lu et al., 1992; Ohkuma and Roeder, 1994), makes this

particular kinase an attractive candidate for an in vivo CTD kinase. Which of

these kinases actually phosphorylates the CTD in vivo remains to be

established.

A requirement for the CTD in transcription initiation in vitro has been

quite variable. Transcription in vitro from the mouse DHFR promoter requires

the CTD (Thompson et al., 1989; Buermeyer et al., 1992). In contrast, the CTD

is dispensable for transcription in vitro from the AdML and Drosophila actin 5C

promoters (Zehring et al., 1988; Kim and Dahmus, 1989; Thompson et al., 1989;

Buratowski and Sharp, 1990; Buermeyer et al., 1992). In vivo studies indicate

that the CTD is partially redundant and that certain promoters are more

sensitive to CTD truncations than others (Scafe et al., 1990). It is not clear,

though, if some promoters do not require a CTD at all in vivo. It is possible that

the use of purified factors used in vitro obviates a requirement for the CTD in

transcription. Indeed, yeast RNA polymerase II lacking the CTD is capable of

selective-transcription when supplemented with purified transcription factors (Li

and Kornberg, 1994). This CTD-less polymerase, however, is unable to restore

activity to a crude nuclear extract in which a temperature-sensitive RNA

polymerase II has been inactivated, suggesting the CTD is required to

overcome some inhibitory activity present in crude extracts.

Phosphorylation of the CTD may serve to regulate interactions between

the CTD and inhibitory factors present in crude extracts. A protein kinase

inhibitor, H-8, that inhibits CTD phosphorylation abolishes transcription activity
in crude yeast extracts (Li and Kornberg, 1994). H-8, however, had no effect on

transcription when highly purified factors from yeast or rat were used (Serizawa
et al., 1993a; Li and Kornberg, 1994). The requirement for the CTD may be
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due, at least in part, to components of the TFIID fraction. Monoclonal antibodies

directed against the CTD will specifically inhibit transcription initiation when

native TFIID is used but not if recombinant TBP is used in reconstituted

reactions (Conaway et al, 1992). The interplay of factors that determine the

requirement for the CTD awaits further biochemical analysis. Towards this end

Li and Kornberg (1994) have recently been able to reconstitute CTD-dependent

transcription in a highly purified system by the addition two fractions. One of

these fractions inhibits transcription reconstituted with CTD-less and wild-type

polymerase while the other fraction restores activity of the wild-type polymerase

but has only a small effect on the CTD-less polymerase.

An RNA Polymerase II Holoenzyme

Suppression analysis of conditional CTD truncation mutations in yeast

has been used to identify factors which influence CTD function (Nonet and

Young, 1989; Thompson et al., 1993; Chapter 2). This genetic selection

identified nine novel factors, SRBs (suppressor of RNA polymerase B), which

specifically influence CTD function in vivo. Genetic and biochemical studies

showed that the SRB genes encode positive and negative regulators of CTD

function (Nonet and Young, 1989; Koleske et al., 1992; Thompson et al., 1993;

Chapter 2; Chapter 3).

Purification of the SRB proteins from whole-cell extract led to the

identification of a large multisubunit complex containing RNA polymerase II, the

SRB proteins, and the general transcription factors yTFIIB, yTFIIF, and yTFIIH

(Thompson et al., 1993; Koleske and Young 1994; Chapter 3). This RNA

polymerase II holoenzyme is capable of site-specific initiation when

supplemented with purified yTFIIE and recombinant TBP and transcription by

this holoenzyme is responsive to activator protein. While the majority of SRB

protein in cells is contained within the holoenzyme, only a small fraction of RNA

polymerase II is found in the holoenzyme. The RNA polymerase II holoenzyme,

however, appears to be the form of the enzyme recruited to most promoters in

the cell (Chapter 4). Cells containing a temperature-sensitive mutation in the

SRB4 gene rapidly cease mRNA synthesis upon transfer to the restrictive

temperature. These findings indicate a general requirement for SRB4 and the
RNA polymerase II holoenzyme in transcription.

The holoenzyme probably escaped earlier detection because it only

contains a small fraction of the RNA polymerase II in the cell. In addition, the
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emphasis over the past fifteen years has been on the separation and
purification of factors required for free RNA polymerase II to selectively initiate
transcription. This RNA polymerase II holoenzyme is significant for a couple of
reasons. First, purified yeast RNA polymerase II is not stimulated by
transcriptional activators in the presence of general transcription factors alone
(Flanagan et al., 1991; Flanagan et al., 1992). Some component of the

holoenzyme, possibly the SRBs, is responsible for the ability to respond to
activators. Indeed, an SRB-complex seperated from polymerase stimulates
basal and activated transcription when added to purified factors and RNA
polymerase II (Kim et al., 1994). Second, while others have postulated that
RNA polymerase II enters the initiation complex associated with a subset of the
general transcription factors (see above), this work provides substantial support
for this model as a general mechanism of initiation complex assembly.

The holoenzyme model of preinitiation complex formation is significantly
different than the traditional step-wise assembly model that has been proposed.
The holoenzyme model of preinitiation complex formation proposes that RNA
polymerase II, tightly associated with TFIIB, TFIIF, TFIIH, and additional factors,
assembles onto a TFIID containing promoter. TFIIE then joins the complex.
TFIIE can, however, interact with RNA polymerase II and TFIIH in the absence of
DNA (Flores et al., 1989; Maxon et al., 1994), suggesting that TFIIE may also

assemble at the promoter as a component of the holoenzyme. The step-wise
assembly model of preinitiation complex formation proposes that TFIIB first
recognizes a TFIID containing promoter, then RNA polymerase II, in association
with TFIIF, assembles at the promoter, followed by TFIIE and TFIIH, in that order.

The holoenzyme model of preinitiation complex formation is consistent with
much of the earlier data. The general factors TFIIB, TFIIE, TFIIF, and TFIIH can
all associate with RNA polymerase II in vitro in the absence of DNA (see above).

Furthermore, template challenge assays performed under conditions required
for transcription in vitro suggest that TFIIB associates with RNA polymersase II
and TFIIF before joining TFIID at the promoter (Conaway et al., 1991b). In
contrast, gel shift assays indicate that TFIIB alone is able to assemble with TFIID
at promoters (Buratowski et al., 1989; Flores et al., 1991). Conditions for gel

shift assays, however, may stabilize weak interactions (Fried and Crothers,
1981). Such weak interactions may be very physiologically relevant but may
only occur in the context of a greater RNA polymerase II containing preinitiation
complex.
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The holoenzyme has additional implications for the mechanism of

activation. Choy and Green (1993) have recently dissected activation into two

steps. First, TFIIB is recruited to a TFIID containing promoter (TBP, however,

works equally well in place of TFIID). Second, the remaining general

transcription factors and RNA polymerase II are recruited through a mechanism

requiring the action of TAFs (TFIID is required for this step). The existence of

the holoenzyme suggests that while activation can be functionally dissected into

discrete steps, these steps may, in fact, occur simultaneously. Efficient

recruitment of the holoenzyme may involve the concerted action of TFIIB and

additional regulatory factors, possibly SRBs, in the holoenzyme together with

TAFs at the promoter.

My Contributions to this Project

When I joined the Young laboratory in 1990 Tony Koleske was

characterizing SRB2, the first gene identified as an extragenic suppressor of

CTD truncation mutations. In order to identify additional components of the

transcription machinery that influence CTD function, I, with the assistance of

Sara Okamura, isolated a large collection of suppressors of a CTD truncation

mutation. Initial genetic analysis identified additional dominant alleles of SRB2,

dominant suppressing alleles in SRB4, SRB5, and SRB6, and five

complementation groups among the recessive suppressors. At this point I

focused my efforts on the further characterization of SRB4, SRB5, and SRB6,

while other members of the lab (C. Hengartner, S.-M. Liao, and J. Zhang)

eventually began working on the recessive suppressing alleles.

The dominant suppressing alleles in SRB4, SRB5, and SRB6 suppress

all of the conditional and auxotrophic phenotypes associated with CTD

truncation mutations. In addition, these alleles, SRB4-1, SRB5-1, and SRB6-1,

generally do not suppress the conditional phenotypes associated with RNA

polymerase II mutations outside of the CTD. This is the same type of

suppression specificity shown by SRB2-1, and this argues that SRB2, SRB4,

SRB5, SRB6, and the CTD are involved in the same process in transcription

initiation. For this reason I cloned and sequenced SRB4-1, SRB5-1, SRB6-1,

and their wild-type counterparts. At this time I also constructed a wild-type

genomic library which was later used by other members of the laboratory to

clone the additional SRBs represented by the recessive suppressing alleles.
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Clones of SRB4, SRB5, and SRB6 permitted the purification of
recombinant protein and the production of antibodies. Yeast strains containing
complete knockouts of each of these genes were also generated. SRB4 and
SRB6 are essential for cell viability. SRB5, like SRB2, is not essential, but cells
lacking the gene exhibit the slow growth, cold-sensitive, and temperature-
sensitive phenotypes characteristic of CTD truncations.

I took advantage of the fact that SRB5 is not an essential gene to
investigate the activity of SRB5 in vitro. Previous studies by Tony Koleske had
revealed that SRB2 is required for efficient basal and activated transcription in
vitro and that SRB2 is a component of stable preinitiation complexes. I made
nuclear extracts from wild-type and srb5A 1 cells and tested their ability to direct

synthesis of a specific transcript. Extracts made from cells lacking SRB5 were
unable to synthesize significant levels of transcript in both the presence and
absence of activator protein. I was able to restore activity to near wild-type
levels with the addition of recombinant SRB2 and SRB5; SRB5 alone failed to
complement. Western blot analysis revealed that the level of SRB2 protein is
greatly reduced in extracts prepared from srb5A I cells. A template commitment

assay was used to show that SRB5 promotes efficient preinitiation complex
formation, probably through incorporation into the complex. These results
demonstrate that SRB5, like SRB2, is required for efficient basal and activated
transcription in vitro and that SRB5 is a component of stable preinitiation
complexes.

The fact that SRB2 and SRB5 appeared to be components of the
preinitiation complex and that dominant mutations in SRB2, SRB4, SRB5, and
SRB6 all had exactly the same effect on the viability or growth phenotypes of
cells that contained CTD truncations led Tony and I to propose that these four
proteins may be components of a multisubunit complex. Immunoprecipitation
experiments supported this hypothesis. In collaboration with Tony, cells were
constructed that produced functional, epitope-tagged SRB4, SRB5, or SRB6
protein, nuclear extracts were prepared, and immunoprecipitations performed.
SRB2 coprecipitated in each case.

Using antibodies that Tony and I had generated against SRB2, SRB4,
SRB5, and SRB6, Tony followed the elution profile of these proteins through a
series of purification steps. Most of the SRB protein in cells was found to be
tightly associated with a large multisubunit complex. Additional Western blot
analysis and in vitro transcription assays revealed that this complex also
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contained RNA polymerase II, the general transcription factors yTFIIB, yTFIIF,

and yTFIIH, and substoichiometric amounts of TBP. This RNA polymerase II

holoenzyme is capable of site-specific initiation when supplemented with

purified yTFIIE and recombinant TBP and is responsive to activators.

Tony proposed that the RNA polymerase II holoenzyme is a form of the

enzyme readily recruited to promoters in the cell. However, because only a

small fraction of RNA polymerase II in cells is found in the holoenzyme, it was

unclear if the holoenzyme was preferentially recruited to some promoters while

free RNA polymerase II and general factors were recruited in a step-wise

fashion to others. I reasoned, though, that because the holoenzyme contains

most of the SRB protein in the cell, the fraction of genes that employ the RNA

polymerase II holoenzyme in vivo could be investigated by studying the effects

of a temperature-sensitive mutation in the SRB4 gene on transcription of mRNA.

Upon transfer to the restrictive temperature there is a rapid and general

shutdown of mRNA synthesis. These findings suggest a general requirement

for SRB4 and the RNA polymerase II holoenzyme in transcription.
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Chapter 2

Isolation and Characterization of Extragenic Suppressors of S.
cerevisiae RNA Polymerase II CTD Truncation Mutations
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Summary
The carboxy-terminal domain (CTD) of RNA polymerase II plays a role in

transcription initiation. SRB2, identified as a suppressor of CTD truncation

mutations, encodes a novel transcription factor that is essential for efficient

establishment of the transcription initiation apparatus. We have now isolated a

larger set of extragenic suppressors of CTD truncation mutations and identified

an additional set of genes, SRB4, SRB5, SRB6, SRB7, SRB8, SRB9, SRB10,

SRB 1, and RPB2, which influence CTD activity. Seven of these genes, SRB4,

SRB5, SRB6, SRB7, SRB8, SRB9, and RPB2, were cloned and sequenced.
The sequences revealed that SRB4, SRB5, SRB6, SRB7, SRB8, and SRB9 are

novel proteins while RPB2 is the second largest subunit of RNA polymerase II.

Genetic analysis suggests that SRB8 and SRB9 function to negatively regulate

CTD function. This is in contrast to SRB2 which positively regulates CTD

function. The CTD, therefore, is influenced by positively and negatively acting

SRB factors.
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Introduction

Selective transcription initiation by RNA polymerase II requires the action

of at least five general initiation factors: TATA-binding protein (TBP), TFIIB,

TFIIE, TFIIF, and TFIIH (reviewed in Sawadogo and Sentenac, 1990; Roeder,

1991; Zawel and Reinberg, 1992; Conaway and Conaway, 1993). Highly

purified preparations of RNA polymerase II and general initiation factors,

however, are not responsive to regulatory signals. Coactivating factors are

thought to contribute to the response to regulatory signals, and these include

TBP-associated factors (reviewed in Gill and Tjian, 1992; Pugh and Tjian,

1992), mediators (Flanagan et al., 1991), and adaptors (Berger et al., 1992;

Pina et al., 1993). SRB2 identified through functional studies of the carboxy-

terminal domain (CTD) of RNA polymerase II, may also contribute to the

response to various regulatory signals (Nonet and Young, 1989; Koleske et al.,

1992).

The CTD is a highly conserved and apparently unique feature of the

largest subunit of RNA polymerase II (reviewed in Corden, 1990; Young, 1991).

Depending on the organism, the CTD contains 26 to 52 repeats of the

consensus heptapeptide sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. A subset of

the RNA polymerase II molecules in yeast and mammalian cells have highly

phosphorylated CTDs (Cadena and Dahmus, 1987; Kolodziej et al., 1990).

RNA polymerase II molecules lacking phosphorylation on the CTD are

preferentially recruited into the initiation complex (Laybourn and Dahmus, 1990;

Lu et al., 1991). Deletion mutations that remove most or all of the CTD are

lethal to cells (Nonet et al., 1987; Allison et al., 1988; Zehring et al., 1988;

Bartolomei et al., 1988). CTD partial truncation mutations, however, cause

defects in growth and gene expression in vivo (Nonet et al., 1987b; Bartolomei

et al., 1988; Allison and Ingles, 1989; Scafe et al., 1990a; Peterson et al., 1991)

and produce substantial defects in transcription initiation at multiple promoters

in vitro (Liao et al., 1991).

Suppression analysis of conditional CTD truncation mutations in yeast

has been used to identify a factor which influences CTD function. A dominant

suppressor in the SRB2 (SRB, suppressor of RNA polymerase B) gene and its
product have been characterized (Nonet and Young, 1989; Koleske et al.,

1992). Genetic and biochemical studies showed that SRB2 acts positively to

influence transcription initiation (Koleske et al., 1992). Dominant, gain-of-
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function mutations in SRB2 counters the partial loss of function due to CTD

truncations while cells containing a deletion of SRB2 can survive only if the

CTD is nearly wild-type in length. In vitro transcription assays demonstrate that

SRB2 has an important role in transcription initiation and promotes efficient

establishment of the transcription initiation complex, probably through

incorporation into the complex.

We have now studied additional suppressors of CTD truncations in order

to further investigate CTD function and identify additional components of the

transcription initiation complex. Ten genes were identified with this approach:

SRB2, SRB4, SRB5, SRB6, SRB7, SRB8, SRB9, SRB10, SRB11, and RPB2.

We report here genetic characterization of SRB4-SRB9 and RPB2. RPB2

encodes the second largest subunit of RNA polymerase II (Sweetser et al.,

1987), while SRB4-SRB9 encode proteins not previously identified. Genetic

evidence indicates that two of these genes, SRB8 and SRB9, repress CTD

function. Thus, the CTD is influenced by factors which enhance as well as

repress its activity.
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Results

Suppressors of RNA Polymerase II CTD Truncation Mutations
Extragenic suppressors of a Saccharomyces cerevisiae RNA polymerase

II CTD truncation mutant were isolated to identify components of the

transcription apparatus that affect CTD function. Spontaneous suppressors of

the cold-sensitive phenotype of cells containing plasmid-borne RNA
polymerase II CTDs with only 11 intact heptapeptide repeats (rpb 1 104) were

selected on rich medium at 120C. Suppressors arose at a frequency of

approximately 10-6 . 238 suppressing isolates were further characterized

(Figure 1). 59 of the suppressors are probably petites, as evidenced by their

inability to grow on glycerol/ethanol as a carbon source (YEPG plates), white

color, and slow growth rates. These mutants were not further characterized.
The plasmid encoding the rpblA 104 mutation was isolated from each of the

remaining suppressor strains and reintroduced into a non-suppressed strain

background to test if the suppression phenotype was linked to the original
rpblA104 mutation. 78 of the suppressors were linked to the plasmid,

indicating that the suppressor mutation was intragenic. 101 of the suppressors

were identified as extragenic suppressors and the 83 isolates exhibiting the

strongest suppressing phenotype were further characterized. Analysis of

diploids heterozygous for the suppressor mutations identified approximately

one-third as dominant and two-thirds recessive.

Genetic analysis has revealed that mutations in at least ten genes will

suppress growth defects of cells containing a truncated CTD (Figure 2;

Appendix A). All of the dominant mutations occurred in four SRB genes: SRB2,

SRB4, SRB5 and SRB6 (Thompson et al., 1993). We identified recessive

suppressing mutations in six additional genes: SRB7, SRB8, SRB9, SRB10,

SRB1 1, and RPB2. Recessive suppressing alleles of SRB4 and SRB6 were

also identified.

This selection appears to be nearly saturated since, with the exception of

SRB1 1, more than one independent isolate of each of the ten genes has been

identified. The characterization and cloning of seven of the genes containing

suppressing mutations is presented here. SRB4, SRB5, SRB6, SRB7, SRB8,
and SRB9 are newly identified genes, whereas RPB2 is the gene encoding the
second largest subunit of RNA polymerase II (Sweetser et al., 1987). SRB2 had



45

238 Total Suppressors

I
5

59 Petite
I

101 Extragenic

I

I
78 Intragenic

1
18 Weak 83 Strong

I

2
27 Dominant

5
56 Recessive

Suppressors arose at a frequency of approximately 10 -6

Figure 1
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Figure 1. Classification of Suppressors of the CTD Truncation Mutant
rpb 1A 104.

238 Suppressors of the conditionally viable CTD truncation mutant rpb 1 104

were isolated at the restrictive temperature of 12o0C. These suppressors were
classified as described in the text.
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ULORNA polymeraseII
CTD mutant

81 Spontaneous
extragenic suppressors

Genetic analysis

Dominant Recessive
alleles alleles

SRB2 3 0

SRB4 14 7

SRB5 7 0

SRB6 4 2

SRB7 0 3

SRB8 0 4

SRB9 0 26

SRBI0 0 4

SRB11 0 1

RPB2 0 6

Figure 2
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previously been isolated in a similar genetic selection (Nonet and Young,

1989).

Genetic Analysis of SRB4, SRB5, and SRB6
Two genetic assays were performed to obtain support for a functional

relationship between the SRB gene products and the CTD (Figure 3). The

ability of the suppressing alleles of SRB4, SRB5 and SRB6to suppress all of

the conditional and auxotrophic phenotypes associated with the CTD truncation

mutation rpb ld 104 was investigated. These phenotypes include cold-sensitive

and temperature-sensitive growth, inositol auxotrophy and the inability to utilize

pyruvate as a sole carbon source. Cells containing either SRB4-1, SRB5-1 or

SRB6-1 suppress all of these defective phenotypes (Figure 3B), as does SRB2-

1 (Nonet et al., 1989).

To assess whether the suppressing activities of SRB4-1, SRB5-1 and

SRB6-1 are specific to CTD mutations, the ability of the SRB alleles to suppress

the conditional phenotypes associated with mutations elsewhere in RNA

polymerase II was investigated (Figure 3C). SRB4-1, SRB5-1 and SRB6-1

generally do not suppress the conditional and auxotrophic phenotypes

associated with RPB1 point mutations. SRB4-1, SRB5-1 and SRB6-1 do

suppress the cold-sensitive phenotype of the rpbl-14 mutation. This is the

same type of suppression specificity shown by SRB2-1 and argues that SRB2,

SRB4, SRB5, SRB6 and the CTD are involved in the same process in

transcription initiation.

Cloning and Sequence Analysis of SRB4, SRB5 and SRB6
Genomic DNA clones containing SRB4-1, SRB5-1 and SRB6-1 were

isolated by taking advantage of their ability to dominantly suppress the cold-

sensitive phenotype of a cell containing the CTD truncation mutation rpb lt 104.

Genomic DNA was isolated from strains containing the dominant suppressing
alleles of SRB4, SRB5 and SRB6. Libraries were constructed in a yeast

centromeric plasmid containing the URA3 gene as a selectable marker. These

libraries were transformed into yeast cells containing the cold-sensitive CTD

truncation mutation and genomic clones were isolated from Ura+ transformants

able to grow at 120. The mutant genes were further localized by constructing
subgenomic libraries with fragments of the SRB4-1, SRB5-1 and SRB6-1
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Figure 3. Genetic Characterization of SRB4-1, SRB5-1 and SRB6-1.

(A) Diagram of RPB1 conditional mutations used to isolate and characterize
suppressors of rpb lA 104 mutations. The positions of the conditional mutations

utilized in this study are indicated, except for rpbl-4, 6 and 12, which have not

been determined.

(B) Growth phenotypes of cells containing an RPB1 CTD truncation mutation

and SRB4-1, SRB5-1 and SRB6-1. Cells were spotted on YEPD medium and

incubated at 120 C, 240 C and 380C (first three panels), on SC medium

containing pyruvate as a sole carbon source (fourth panel) and on minimal

medium with or without inositol (fifth and sixth panels). Isogenic wild-type,

SRB4-1, SRB5-1 and SRB6-1 backgrounds contained either wild-type RPB 1
(27 repeat CTD) or rpblA 104 (11 repeat CTD).

(C) Influence of SRB4-1, SRB5-1 and SRB6-1 on the growth phenotypes of

cells containing various conditional RPB1 mutations. Isogenic wild-type, SRB4-

1, SRB5-1 and SRB6-1 backgrounds containing RPB1 alleles indicated on the

left were assayed for growth by spotting on YEPD medium and incubating at

120C, 240 C and 380C. Similar experiments revealed that SRB4-1, SRB5-1

and SRB6-1 do not suppress the growth defects of cells containing rpbl-10,

rpb1-12 or rpb1-18.
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genomic inserts and again selecting for Ura+ transformants able to grow at 120.

Genomic clones with the smallest inserts were identified and sequenced.

The wild-type allele of SRB4 was cloned from a wild-type genomic DNA

library. Wild-type SRB5 and SRB6 alleles were obtained by plasmid gap repair

in vivo (Rothstein, 1991). Plasmids containing the wild type SRB4, SRB5 and

SRB6 genes do not suppress the cold-sensitive phenotype of CTD truncation

mutants, confirming that in each case the correct locus was cloned. SRB4,

SRB5 and SRB6 were physically mapped using the prime X clone grid filters of

the yeast genome (provided by L. Riles and M. Olson, Washington University).

SRB4 maps to the right arm of chromosome V approximately 40 kb from the
centromere ( clones 5961 and 6224). SRB5 maps to the right arm of

chromosome VII approximately 30 kb centromere proximal to SPT6 ( clones

5146 and 4624). SRB6 maps to the right arm of chromosome II approximately
75 kb centromere distal to CDC28 ( clone 4796).

DNA fragments containing SRB4, SRB5 and SRB6 were sequenced and

the open reading frames were established by unidirectional deletion analysis

and identification of the suppressing mutations. The predicted SRB4 protein is

687 aa long and has a molecular mass of 78 kd (Figure 4). SRB5 is predicted

to be 307 aa in length with a molecular mass of 34 kd (Figure 5). The predicted

SRB6 protein is 121 aa long and has a molecular mass of 14 kd (Figure 6). A

search of sequence data banks revealed that SRB4, SRB5 and SRB6 have no

significant sequence similarity to previously identified proteins. One notable
feature of the SRB proteins is their acidic content. The predicted pKa of SRB2,

SRB4, SRB5 and SRB6 is 5.2, 5.1, 4.7 and 4.6 respectively.

The suppressing mutations in all three genes were identified by comparing

the complete sequences of the cloned wild type and suppressing alleles of

SRB4, SRB5 and SRB6. In each case, the alterations were single point

missense mutations. The mutation in SRB4-1 changes glycine 353 to cysteine.

The SRB5-1 mutation changes threonine 22 to isoleucine and the SRB6-1

mutation changes asparagine 86 to lysine.

To determine whether the SRB genes are essential for cell viability, the
entire coding region of each of the SRB genes was deleted to produce srb4A2,

srb5A 1 and srb6A 1 (Figures 4A, 5A and 6A). SRB4 and SRB6 are essential.

SRB5, like SRB2, is not essential but cells lacking the gene exhibit the slow-
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-319 GATCTCGACGATTTGGGATTCTTATAAGGGCGCATAAAAAATAAATAACTACCATTCATAACAGAAATTCATTCGT
-243 ATATACATAAAGTTCTCATAAACGTATATATATATATATATATATACTTATTGATATCAAAGTGTGTTACTTTCT
-168 ACATTCATAGACGGGGAAGAAAAGTGAGGAAAAGTTGTTTTCTCTTGTGCACTGCAGCCCTTTGAAAAAGTAGAA
-93 CTGCAGAAAAAATAACTGAACGTAAAGCATTATTTACTTTTCAAAGGCAAAAGAGATAGAGCCAAAAAAATTGTA
-18 AGCAGCTTAAAAGCCATAATGACAACGGAAGATCCAGATTCAAATCACTTAAGTTCCGAAACTGGCATTAAATTG
1 M T T E D P D S N H L S S E T G I K L

58 GCATTGGACCCGAACTTAATTACATTGGCACTAAGTTCTAATCCAAACTCTAGCCTTCATTCACCAACGTCTGAT
20 A L D P N L I T L A L S S N P N S S L H S P T S D

133 GAACCCGTACCTGAATCTGCAGGAAAAGCAGATACTAGTATTCGACTAGAAGGTGATGAGTTAGAGAATAAAACT
45 E P V P E S A G K A D T S I R L E G D E L E N K T

208 AAGAAAGACAATGATAAGAACTTAAAATTTTTGAAGAATAAAGATTCTCTAGTCAGTAATCCACACGAAATTTAT
70 K K D N D K N L K F L K N K D S L V S N P H E I Y

283 GGCTCCATGCCGTTGGAGCAATTGATCCCAATCATCTTAAGACAGCGTGGTCCAGGCTTTAAATTCGTTGATTTA
95 G S M P L E Q L I P I I L R Q R G P G F K F V D L

358 AATGAAAAAGAATTGCAAAATGAGATTAAGCAGCTTGGTAGTGATAGTAGTGACGGTCATAACAGCGAGAAGAAG
120 N E K E L Q N E I K Q L G S D S S D G H N S E K K

433 GACACTGATGGCGCTGATGAGAATGTACAAATTGGAGAAGATTTCATGGAAGTGGATTATGAAGATAAAGATAAT
145 D T D G A D E N V Q I G E D F M E V D Y E D K D N

508 CCAGTGGATTCACGAAATGAAACAGACCACAAAACGAATGAAAATGGCGAGACCGATGATAATATTGAAACGGTA
170 P V D S R N E T D H K T N E N G E T D D N I E T V

583 ATGACACAGGAACAGTTTTTTAAAAGAAGGAGATATGCTAGAGCATATAAATCTGGCCATGAACGAATCGTCT
195 M T Q E Q F V K R R R D M L E H I N L A M N E S S

658 TTGGCTTTGGAATTCGTTTCTTTGCTACTGTCGAGTGTTAAAGAGTCTACAGGTATGTCATCAATGTCACCATTT
220 L A L E F V S L L L S S V K E S T G M S S M S P F

733 CTTAGGAAAGTTGTTAAACCTTCTAGTTTAAACAGTGATAAAATTCCATATGTTGCACCTACAAAAAAAGAATAT
245 L R K V V K P S S L N S D K I P Y V A P T K K E Y

808 ATCGAGTTGGATATATTGAATAAGGGATGGAAGTTACAAAGTTTAAACGAATCTAAAGATCTCCTACGCGCAAGT
270 I E L D I L N K G W K L Q S L N E S K D L L R A S

883 TTTAATAAACTGAGTTCCATATTACAGAACGAACATGACTATTGGAATAAGATAATGCAGAGTATTAGCAACAAG
295 F N K L S S I L Q N E H D Y W N K I M Q S I S N K

958 GATGTTATTTTTAAGATTAGGGACAGGACTAGTGGTCAAAAGCTGTTGGCAATTAAGTATGGTTACGAAGACTCT
320 D V I F K I R D R T S G Q K L L A I K Y G Y E D S

T (SRB4-1)
1033 GGATCTACCTATAAGCATGACAGAGGTATTGCTAATATAAGGAATAATATAGAATCACAAAATTTGGATTTGATA
345 G S T Y K H D R G I A N I R N N I E S Q N L D L I

1108 CCCCACAGTAGTTCAGTGTTCAA A GAAATTCTATTTCGTATCTTC
370 P H S S S V F K G T D F V H S V K K F L R V R I F

1183 ACAAAAATCGAATCAGAAGATGATTACATATTGAGTGGCGAAAGTGTGATGGATAGGGATAGTGAAAGTGAAGAA
395 T K I E S E D D Y I L S G E S V M D R D S E S E E

1258 GCTGAAACGAAAGATATCAGAAAGCAAATCCAACTTTTGAAAAAGATCATTTTTGAAAAAGAACTGATGTACCAA
420 A E T K D I R K Q I Q L L K K I I F E K E L M Y Q

1333 ATAAAGAAAGAATGCGCTTTGTTGATTTCCTATGGTGTCAGTATTGAAAACGAAAACAAGGTAATAATTGAACTA
445 I K K E C A L L I S Y G V S I E N E N K V I I E L

1408 CCTAACGAAAAATTTGAAATCGAGTTGTTGTCCCTTGACGATGACTCCATTGTCAATCATGAACAAGACTTACCA
470 P N E K F E I E L L S L D D D S I V N H E Q D L P

1483 AAAATCAACGACAAGAGAGCAAATTTAATGCTTGTTATGTTGAGACTATTATTAGTCGTTATATTCAAGAAAACA
495 K I N D K R A N L M L V M L R L L L V V I F K K T

1558 TTACGATCGAGAATAAGCTCACCCCACGGACTGATCAATTTGAATGTTGACGATGATATCTTAATAATACGTCCC
520 L R S R I S S P H G L I N L N V D D D I L I I R P

1633 ATTCTTGGTAAAGTTCGGTTTGCTAATTACAAACTGTTACTAAAAAAAATCATAAAGGATTACGTGCTCGATATA
545 I L G K V R F A N Y K L L L K K I I K D Y V L D I

1708 GTTCCTGGCTCAAGTATAACAGAAACGGAAGTTGAGAGAGAACAACCTCAAGAAAATAAAAACATTGATGATGAA
570 V P G S S I T E T E V E R E Q P Q E N K N I D D E

1783 AATATAACTAAATTAAATAAAGAGATCCGTGCCTTCGATAAACTATTGAATATACCTAGACGTGAACTCAAAATA
595 N I T K L N K E I R A F D K L L N I P R R E L K I

1858 AATCTACCATTAACTGAGCACAAAAGCCCTAATCTAAGTTTAATCTATTGTAACGCACTC
620 N L P L T E H K S P N L S L M L E S P N Y C N A L

1933 ATTCACATCAAGTTTTCAGCTGGTACGGAAGCCAACGCAGTGTCCTTTGACACAACATTTTCTGATTTTAAAGAA
645 I H I K F S A G T E A N A V S F D T T F S D F K E

2008 GTAGAGGACTTCCTACATTTTATTGTCGCTGAGTACATCCAGCAAAAGAAGGTGTAATATCCTGAGTCACTCCTT
670 V E D F L H F I V A E Y I Q Q K K V *

2083 AAACCTACATACATTGCCATAGAATGCCATTTATTACTATATAAAGTCGCATACGTACAAAAGGACAAGATC 2154

Figure 4B
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Figure 4. Map and Sequence of the SRB4 Gene.

(A) Restriction map of a 2.5 kb DNA fragment from pCT15 containing the SRB4

gene. The entire coding region of SRB4 was replaced with a 2.6 kb DNA

fragment containing the HIS3 and kanamycin genes to create the deletion
allele srb4A2.

(B) Sequence of the 2.5 kb DNA fragment containing the SRB4 gene. The

predicted 687 aa sequence of the SRB4 protein is shown below the sequence

of the gene. Positive numbering of the DNA begins with the predicted start site

of translation. The SRB4-1 mutation is a G to T transversion (nt 1057) that

changes aa 353 from Gly to Cys. The genbank accession number for the SRB4

sequence is L12026.
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A

Pstl Sad I Xbal Pstl Pvull EcoRV Sspll Sspl
I I

0.5kb

srb5 1::URA3hisG hisG URA3 Kan r hisG|

0.5 kb

B
-432 GATCTTCAGTATCCTCGCGGAACGCTACAACAATGTAAACGATTAGAACAACATTGGCCATTGCAGCAGCTAAAC
-357 CTCCACTAATTAAGGTATTTGGCGTAAATTGCTGAATAATGAAAAAAGTGAGTACGGGCAGTACCACCATCGCTG
-282 CAGTAAACAGCATAAGTTTATTAATCACCGCACGAGGAACATCTACAGCCATTATTTGATTCTTTTGAAGTCTTG
-207 GTTAGTTTCTACTATTGCTTTCCAGTATTGCGTTCATTTTAGCTTGCAGGTTAGTAATATATAGTGAGAGCTCTT
-132 TTGCCTTTCTTTTATTTGAAAAAAATAAAATAACCTAGAAAATTATCAAATATCGAAGACAAACAACCAAAATAA
-57 AAAAAAAGGTAGAAAATTGAATTTTCCAGCCAAGGTATTCCATATTAAGAAGAAAAGATGGTTCAGCAACTAAGC
1 M V Q Q L S

T (SRB5-1)
19 CTTTTTGGATCTATTGGTGATGACGGCTACGATTTACTAATTTCAACTTTGACCACAATATCAGGTAATCCTCCG
7 L F G S I G D D G Y D L L I S T L T T I S G N P P

94 CTACTGTATAACAGTTTATGCACTGTCTGGAAACCAAATCCATCTTACGACGTCGAGAACGTGAACTCTAGAAAC
32 L L Y N S L C T V W K P N P S Y D V E N V N S R N

169 CAATTGGTTGAACCAAATAGAATAAAACTTTCCAAAGAGGTGCCATTTTCTTACCTGATCGATGAAACAATGATG
57 Q L V E P N R I K L S K E V P F S Y L I D E T M M

244 GATAAGCCATTAAACTTTAGAATCTTGAAATCTTTTACAAACGATAAAATCCCGCTTAACTATGCTATGACACGG
82 D K P L N F R I L K S F T N D K I P L N Y A M T R

319 AATATCTTGCACAACACAGTTCCGCAAGTCACCAACTTCAACAGCACAAACGAAGATCAAAACAACAGTAAGCAT
107 N I L H N T V P Q V T N F N S T N E D Q N N S K H

394 ACAGAAGATACTGTAAATGAAAGTCGAAACAGCGATGACATCATAGATGTCGACATGGATGCAAGTCCCGCCCCT
132 T E D T V N E S R N S D D I I D V D M D A S P A P

469 TCAAACGAGTCATGTTCCCCTTGGTCATTGCAAATTTCAGATATTCCTGCTGCAGGAAACAATAGAAGTGTTTCA
157 S N E S C S P W S L Q I S D I P A A G N N R S V S

544 ATGCAAACGATAGCTGAGACTATCATATTATCTTCAGCTGGCAAAAACTCTTCAGTATCCTCGCTCATGAACGGA
182 M Q T I A E T I I L S S A G K N S S V S S L M N G

619 TTGGGTTATGTATTCGAATTTCAGTATCTTACAATTGGTGTGAAATTTTTTATGAAGCATGGTTTAATACTTGAG
207 L G Y V F E F Q Y L T I G V K F F M K H G L I L E

694 TTACAAAAAATTTGGCAAATAGAAGAAGCAGGCAATTCACAAATAACAAGCGGAGGGTTCCTTTTAAAAGCATAC
232 L Q K I W Q I E E A G N S Q I T S G G F L L K A Y

769 ATCAATGTTAGTAGGGGGACCGATATCGATCGTATAAACTATACAGAGACTGCCTTGATGAACTTAAAAAAGGAA
257 I N V S R G T D I D R I N Y T E T A L M N L K K E

844 CTACAAGGCTATATAGAGTTAAGTGTACCCGATAGACAGTCAATGGACTCGAGGGTAGCACATGGAAATATTCTA
282 L Q G Y I E L S V P D R Q S M D S R V A H G N I L

919 ATATAATCATTGGCACCTGGGCATATTTTTACAAAATTCACTCATATAGTTATACAGAACAACAGTAACCACTTT
307 I *

994 TAATGTACAGGTATTTCTATATCTACAAACAAAAATGTGTAGTTATATATCTAATGTTGCTATACCGAGGAATTA
1069 TAAAGTAATAAAGATGTTAAATTAAAAGACAAAATTTTTGAGAGGCTATTGGAAAAGAAGAGAAAACTATTTCTT
1144 GGAATCTAGTTTATTCAGTTTAGCTTTTTGTTTGGCAATTTGCTTCTTTTTCTTTTTTAAGTTCTCAGCTTGTTC
1219 CTCCTTTTTAGCATTAGAATACTTCATTTTTTTGTAAAGTTTCTTTTGTTTGTTACTCATCATTATCATTTTCAA
1294 TTTCTTTTCTTCTTCTTCTTCATCCACCTTTCTCTTTTTGTTCTTTGACTTATTGACATCCTTATCAGCTTCTGA
1369 AGTTTCAGAATATTTGATACCTTGTGCTTCCAATTCAAGCTCTTTTTGAGCTTGTAGCTCTTCGTCATCGTCATC
1444 ATCTTCTTCTCCAGCAACAACTTCTTGATC 1473

Figure 5
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Figure 5. Map and Sequence of the SRB5 Gene.

(A) Restriction map of a 1.9 kb DNA fragment from pCT39 containing the SRB5

gene. The entire coding region of SRB5 was replaced with a 5.5 kb DNA

fragment containing the URA3 and kanamycin genes flanked by direct repeats
of Salmonella hisG DNA to create the deletion allele srb5A 1.

(B) Sequence of the 1.9 kb DNA fragment containing the SRB5 gene. The

predicted 307 aa sequence of the SRB5 protein is shown below the sequence

of the gene. Positive numbering of the DNA begins with the predicted start site

of translation. The SRB5-1 mutation is a C to T transition (nt 65) that changes

aa 22 from Thr to lie. The genbank accession number for the SRB5 sequence

is L12028.
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A

Accl Ncol I Ball I Ball Xhol Ncol
I I

0.5 kb

srb6Al::URA3hisG hisG URA3 Kan r hisGI

0.5 kb

B
-285 GATCGTTGTTGTAGACTCTCTGGAAGAAAGTGCAAGAGGGGCCGGTGGCTTTGGTAGCACTGGTAACTAACTTAG
-210 TGTATATACTTTGGCACACTTGTATAATGTATAATAAAATCAGGATAAATCCAGTGTGACCCGGACTGAATTACT
-135 GAAACTTTGAAGTGTTAAGGAAATTGTACTGCCATTTAACGCATTTACCTATCACTTAGTAGCATGCATAAGCCA
-60 TGGGCTAATCATAACAGATTGTGATGATAGGCATCCTGTACTCCTTTTTTTTACAAGAAAATGAGCAACCAGGCA
1 M S N Q A

16 CTATATGAGAAACTCGAACAAACCAGGACGATTCTGTCCGTGAAGCTGGCGGAATTGATAAATATGACTACGATA
6 L Y E K L E Q T R T I L S V K L A E L I N M T T I

91 GCCGATAGAAATGATGATGACGAGGGTTCATTCGCACAAGAAAATTCTGAGCTCGCTGTGGCCACGACCAGTGTG
31 A D R N D D D E G S F A Q E N S E L A V A T T S V

166 ATGATGGTGAATAACCAGACCATGCAATTGATTAAAAATGTTCAAGACTTGTTGATCCTGACCAGATCGATAAAA
56 M M V N N Q T M Q L I K N V Q D L L I L T R S I K

G (SRB6-1)
241 GAGAAATGGCTACTGAACCAAATTCCTGTAACGGAACACTCAAAAGTGACTCGTTTTGACGAGAAGCAGATAGAG
81 E K W L L N Q I P V T E H S K V T R F D E K Q I E

316 GAATTACTGGATAACTGTATAGAAACGTTCGTGGCGGAAAAAACTACGTAAAAAGGCGGTATTTATCTATTATTT
106 E L L D N C I E T F V A E K T T *

391 GGCCAAAAAAAAAAAAAAAATACATACTACATATACATATACGCCATAAAAAATCTCTGCATCTATCTTATTTCC
466 CATTATTTGGACAAATGCTTACGTGCTAATGTCCTTACCCTCGAGTCGAATGCCGGGCTCCTAATAGGGTCTGTA
541 ATCTTATAAAACGGGTTCATTAGTGTCTTTACGTATAGTTCGTGTACCTCTTGGTAGAATGACCTCATATTATTG
616 TCGTCAATAACTACGCTACTGTTGGCTGAGTTCCCATGGATCATCACGAACTTCATCCCACTATAGCTAATATAA
691 GCCGTTATTGCTAGTCCATAAAAATGATC 719

Figure 6
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Figure 6. Map and Sequence of the SRB6 Gene.

(A) Restriction map of a 1.0 kb DNA fragment from pCT40 containing the SRB6

gene. The entire coding region of SRB6 was replaced with a 5.5 kb DNA

fragment containing the URA3 and kanamycin genes flanked by direct repeats
of Salmonella hisG DNA to create the deletion allele srb6A 1.

(B) Sequence of the 1.0 kb DNA fragment containing the SRB6 gene. The

predicted 121 aa sequence of the SRB6 protein is shown below the sequence

of the gene. Positive numbering of the DNA begins with the predicted start site

of translation. The SRB6- 1 mutation is a C to G transversion (nt 258) that

changes aa 86 from Asn to Lys. The genbank accession number for the SRB6

sequence is L12027.
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growth, cold-sensitive and temperature-sensitive phenotypes characteristic of

CTD truncations.

Genetic Analysis of SRB7, SRB8, SRB9, and RPB2
The ability of suppressing alleles of SRB7, SRB8, SRB9, and RPB2

(srb7-1, srb8-1, srb9-1, and rpb2-551, respectively) to suppress conditional

phenotypes associated with the CTD truncation mutation rpb 1A 104 was further

investigated (Figure 7). These phenotypes include cold- and temperature-

sensitive growth and the inability to utilize pyruvate as a carbon source. The
srb7-1, srb8-1, srb9-1, or rpb2-551 alleles permit growth of rpbl1A 104 cells at

120C and on media containing pyruvate as a sole carbon source. Cells
containing these suppressing alleles, however, do not suppress the
temperature-sensitivity associated with the CTD truncation mutation. These srb
and rpb2 alleles do not suppress the conditional phenotypes of other mutations
in RPB1 that have been tested. This specificity of suppression argues that
SRB7, SRB8, SRB9, RPB2, and the CTD are involved in the same process in

transcription initiation.

Cloning and Sequence Analysis of SRB7, SRB8, SRB9, and RPB2
Genomic DNA clones containing SRB7, SRB8, SRB9, and RPB2 were

isolated by exploiting their ability to reverse the suppressing phenotype of the

recessive srb or rpb2 alleles. A wild-type genomic DNA library constructed in a

yeast URA3 centromeric plasmid (Thompson et al., 1993) was transformed into

yeast cells containing the CTD truncation mutation rpb 1A 104 and srb7-1, srb8-

1, srb9-1, or rpb2-551. Ura+ transformants were then screened for lack of
growth at 120C and on pyruvate media. When necessary, the wild-type genes
were further localized by subcloning fragments of the genomic inserts and
again screening Ura+ transformants unable to grow at 120C and on pyruvate
media. The clones with the smallest inserts were sequenced. The predicted
SRB7 protein is 140 amino acids long and has a molecular mass of 16 kd

(Figure 8). SRB8 is predicted to be 1226 amino acids in length with a molecular
mass of 144 kd (Figure 9). Partial sequence analysis of SRB8 revealed that it is
ORF YCR81W (Oliver et al., 1992). The predicted SRB9 protein is 1420 amino
acids long and has a molecular mass of 160 kd (Figure 10). Partial sequence
analysis of the fourth clone identified RPB2 as a suppressor of CTD truncations.
A search of the sequence data banks revealed that SRB7, SRB8, and SRB9 do
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Figure 7. Growth phenotypes of cells containing an RPB1 CTD truncation

mutation and srb7-1, srb8-1, srb9-1, or rpb2-551.

Cells were spotted on YEPD medium and incubated at 120C, 300C and 380C

and on SC medium containing pyruvate as a sole carbon source. Isogenic

wild-type, srb7-1, srb8-1, srb9-1, and rpb2-551 backgrounds contained either

wild-type RPB1 (27 repeat CTD) or rpb1A 104 (11 repeat CTD).
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A

/ \XholAfill Hindil / Spel Sphl Hindll Aflll \ EcoRV
0.5 kb /

/ \
srb7A l::URA3hisG hisG URA3 Kan r hisG

0.5 kb

B
-648 TCGATGATGTTCTTTATTCTTTCAACCAGCTCGACCCCTGCAAACTTAAGCTAAGGACA TGAAAAA
-573 AAAAA AAAAAATTCAAAGAATCACTTCTATAAAACATTCATTCGTTTTTT
-498 ACTCGTTAATCTCATTCATTCGTTTCCTCATTCTTTTTTCTTTGTTCTTTATTTCGGCTATTTTTTCCTATTAA
-423 AATAACTAGAGCTAACAATATTATTTCTTCTGCTTTATTACAA C CATTCATTTACTTGCGTTATC
-348 CCATACATTCGTTTATTATATCTTCTTTTAAAACACAATTTCTTTTACAGTTAAACTTTTCTGATTTATTATATA
-273 TTACTTAAGATTGTTCATATAACTAACATTTATATGCTTATATGCBTGAAGTGCGCTTTTGTAGAACATGTGGCT
-198 GTTTCTGTAGAAGCCTTTCTTTCTTGTCTTT CTTTAA TC GTGCTTTACAAGCTTTGTTC
-123 GCATTGCAAGAAAGT TAG AAAAAAAATCAATTC GATATTATAATTAAAAATT AAA
-48 GAGGGACATAACATTTCACTAGTTCAATACATTATATCTCTTTAACAATGACAGATAGATTAACACAATTGCAG

M T D R L T Q L 
A(srb7-1)

28 ATATGTTTAGACCAAATGACGGAGCAATTCTGTGCTACTTTAAACTACATAGATAAGAACCATGGTTTTGAACGA
I C L D Q M T E Q F C A T L N Y I D K N H G F E R

103 TTGACCGTAAATGAACCTCAGATGTCCGATAAGCATGCCACAGTAGTACCTCCTGAGGAATTTTCTAACACGATA
L T V N E P Q M S D K H A T V V P P E E F S N T I

178 GATGAGCTATCCACGGACATTATACTTAAAACAAGACAGATAAACAAGCTTATTGACTCGTTACCTGGTGTTGAC
D E L S T D I I L T R Q I N L I D S L P G V D

253 GTTTCAGCTGAAGAGCAATTAAGGAAGATTGATATGTTGCAGAAAAAGCTAGTTGAAGTGGAAGACGAAAAAATT
V S A E E Q L R I D M L Q K K L V E V D I

328 GAGGCCATCAAAGAAGGAAACTTTTAAGGCACGTTGATTCTTTATTAAGG CAC GAAGATTTTGTAGATGGCATTGCA
E A I K K K L L R H V D S L I E D F V D G I A

403 AACTCAAAAAAGAGCACATAAACTTAAGTTTTACAAAGAAATTTGCGAACAGAGGACAGAAAATGTACTATAGTT
N S K S T *

478 ATATGGCAGAGTTAAGCGTATGTATGTTATTCTTATAAATAATTGTGCTACTCTATTTGTACCGGAGAATTATTG
553 AAGCAATGGGAGAAAAATCATAATGGAGAAAATCTTTCTACGAGTTACTTTGCAAGGCAATCTAACGATTCTAAA
628 AGACACAATACACTAAAGAAAAAACTTTGGAAGTACAGTTTTTTCCCCAAGTTGAAGTGTGGACTCATTGTGAAG
703 ATGTAAAAAAAATGTAAAAACCAACCGACAATGCACTCCCACCAAATTCATTGTAGACCTCCCATTTGATAGAAAAG
778 GAAGGTTCAGCAGTTGTCCACGGATTCCAAGATATCATTCTCTTACATTGCACGCACATGAAAATGATC 846

Figure 8
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Figure 8. Map and Sequence of the SRB7 Gene.

(A) Restriction map of a 2.0 kb DNA fragment from pCH7 containing the SRB7

gene. The entire coding region of SRB7was replaced with a 5.5 kb DNA

fragment containing the URA3 and kanamycin genes flanked by direct repeats
of Salmonella hisG DNA to create the deletion allele srb7A 1::URA3hisG.

(B) Partial sequence of the 2.0 kb DNA fragment containing the SRB7 gene.

The predicted 140 aa sequence of the SRB7 protein is shown below the

sequence of the gene. Positive numbering of the DNA begins with the

predicted start site of translation. The srb7-1 mutation is a G to A transition (nt

61) that changes aa 21 from Ala to Thr.
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Figure 9. Restriction map of a 6.0 kb DNA fragment from pSL311 containing the

SRB8 gene.

Approximately 500 bp upstream of SRB8 there is an inversion, relative to the

genomic DNA used to sequence that region of chromosome III (Oliver et al.,

1992), encompassing greater than 2 kb. The entire coding region of SRB8 was

replaced with a 5.5 kb DNA fragment containing the URA3 and kanamycin

genes flanked by direct repeats of Salmonella hisG DNA to create the deletion
allele srb8A I::URA3hisG.
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-147 GATCAAGTAGTGTAGTATTTATTGTAGTACACTCTTACAACAACCCTTTAAGACGAATGGTGTGAAATCGGAAAT
-72 TACTTTGTTGAAGTAAGGTGTAACTATATTTTAAGAACGTTTAAGCTGGATATCAAGATCTGAGGAGGTAGTATG

M

4 AGTTCTGACGCTTCCACGTACAGACTTGAGGATGTTTTATCCAGCTTCTATAGAGTGGAGAAAATCAAAAAGATC
S S D A S T Y R L E D V L S S F Y R V E K I K K I

79 AACTATCATCAGTACATTTCTAAAGCCCAAACGATCAATGGTCTATCCAAATGGAATTCATGCTACGGAAGCAG
N Y H Q Y I S K A Q N D Q W S I Q M E F M L R K Q

154 GATCCAAAGACTCTAGTTGCGCTGCTTTCAAGGGATTTATGGTGTTTCAGTATAAATGATGATCCGGTACCGACA
D P K T L V A L L S R D L W C F S I N D D P V P T

229 CCTCCTGCGATAGAACATAAACCAGTGAGCCCAGATAAAATCGGAACTTTCACTGCCGATTATTCAAAGCCAAAC
P P A I E H K P V S P D K I G T F T A D Y S K P N

304 TTACCGCCACACTATGCTCTTTTTAAAAGCTTTAAGAAGGAAAATTTACATTAATTTGGCATTAGGTTCACAC
L P P H Y A L F L K A L R R K I Y I N L A L G S H

379 AATAAGCTAATACAATTTGGGAATGCCTGCATATCATTAAGCGGAGTGCCAAATTATCTCGTACAGCTAGAACCA
N K L I Q F G N A C I S L S G V P N Y L V Q L E P

454 CACCTTTTTGTAAACGGAGATCTCACAGTGTCGTTATGTGCCAAGAACATGGGATTAGTACCAATGAAGGAGGAA
H L F V N G D L T V S L C A K N M G L V P M K E E

529 AATTTGGAAGAATCTTTCCTTTCAAAGCATGCGCTTTATTTAGCACCATCTGGAATAAGGATGCATTTGGCCCCT
N L E E S F L S K H A L Y L A P S G I R M H L A P

604 GCTTCCAAGCAAGGATACTTGATAACGCCACCAAAACATACAGAACTTCTCTTGACGACGTTAAGTGTATCTCAT
A S K Q G Y L I T P P K H T E L L L T T L S V S H

679 GGTATAAACTTACAAAATAAAAAAAATTTGAAATGGGTTGCTGTTGTTCCTGACTTAGGACATCTCAACGGCCAC
G I N L Q N K K N L K W V A V V P D L G H L N G H

754 ACACCTACTATAGCTTCGTATTTAACTCCCTTACTTGAAGCAAAGAAGCTAGTATGGCCGCTGCATTTAATCTTC
T P T I A S Y L T P L L E A K K L V W P L H L I F

829 GCCCAACCAGTAGCTGATATAGAAATTCTACTTCCGGAGATCCATCAGAATTTCACTGTTTCCAAGATGCTCTG
A Q P V A D I E N S T S G D P S E F H C L Q D A L

904 GATGCCATTGATGATTTCATACAATTAAAGCAAACAGCTGCCTATAGGACTCCAGGAAGTTCCGGCGTATTGAGC
D A I D D F I Q L K Q T A A Y R T P G S S G V L S

979 AGTAATATTGCTGGTACAAATCCCTTAAGCTCAGATGGAGCATATACAGAACAGTTTCAACATTATAAGAACAAC
S N I A G T N P L S S D G A Y T E Q F Q H Y K N N

1054 TCAATTAGTTCTCAACCCGCTTCTTATCATTCTGTCCAAGAAACTAATAAGATATCTCCGAAAGATTTCTCCCCT
S I S S Q P A S Y H S V Q E T N K I S P K D F S P

1129 AATTTCACAGGCATTGATAAATTAATGCTGTCGCCCAGCGATCAATTTGCTCCAGCTTTCTTAAATACCCCTAAT
N F T G I D K L M L S P S D Q F A P A F L N T P N

1204 AATAACATCAATGAGAATGAATTATTTAATGATAGGAAACAAACTACAGTATCAAATGACTTAGAGAACAGCCCA
N N I N E N E L F N D R K Q T T V S N D L E N S P

1279 CTGAAAACGGAACTGGAGGCAAATGGTAGATCACTCGAAAAGGTAAATAATTCCGTGAGCAAGACAGGAAGCGTA
L K T E L E A N G R S L E K V N N S V S K T G S V

1354 GACACACTTCATAATAAAGAGGGAACACTGGAACAACGAGAACAGAACGAAAATCTGCCAAGTGATAAAAGTGAC
D T L H N K E G T L E Q R E Q N E N L P S D K S D

1429 TCTATGGTAGACAAGGAATTGTTTGGTAATGAGGATGAGGATGTTATTTGGCGATAGCAATAAATCGAATTCT
S M V D K E L F G E D E D E D L F G D S N K S N S

1504 ACAAACGAATCGAACAAAAGTATATCGGACGAAATTACCGAGGATATGTTCGAAATGTCTGATGAAGAAGAAAAT
T N E S N K S I S D E I T E D M F E M S D E E E N

1579 AATAACAATAAAAGCATTAATAAAAATAACAAGGAAATGCATACTGATCTTGGTAAAGATATTCCATTTTTTCCC
N N N K S I N K N N K E M H T D L G K D I P F F P

1654 TCATCTGAAAAACCGAATATCCGTACGATGAGCGGAACTACAAAAAGATTAAATGGAAAGAGGAAATATTTGGAT
S S E K P N I R T M S G T T K R L N G K R K Y L D

1729 ATTCCGATAGATGAAATGACCTTGCCAACGAGTCCATTATATATGGACCCAGGTGCCCACTCCCGTGGAAACA
I P I D E M T L P T S P L Y M D P G A P L P V E T

1804 CCCCGCGATAGACGCAAAAGTGTGTTCGCTCCACTGAATTTTAACCCCATAATAGAAAACAATGTTGATAACAAA
P R D R R K S V F A P L N F N P I I E N N V D N K

1879 TACAAATCTGGAGGGAAATTTTCCTTCAGTCCGTTGCAAAAGGAGGAAGCATTAAACTTTGATATTTCTATGGCG
Y K S G G K F S F S P L Q K E E A L N F D I S M A

1954 GATCTTTCTAGCTCTGAAGAGGAAGAGGATGAAGAAGAGAACGGTAGCAGCGATGAGGATCTAAAGTCATTGAAC
D L S S S E E E E D EE E N G S S D E D L K S L N

2029 GTACGCGACGACATGAAACCTTCTGATAACATCAGTACTAATACTAATATTCATGAGCCTCAATACATAAATTAC
V R D D M K P S D N I S T N T N I H E P Q Y I N Y

2104 TCTTCGATCCCAAGTCTACAAGACTCTATTATAAAGCAAGAAAATTTCAATTCAGTAAACGATGCTAATATCACT
S S I P S L Q D S I I K Q E N F N S V N D A N I T
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2179 AGCAATAAGGAAGGCTTCAACTCTATTTGGAAAATTCCTCAAAATGATATACCACAGACCGAGTCACCACTGAAG
S N K E G F N S I W K I P Q N D I P Q T E S P L K

2254 ACCGTTGATTCATCTATTCAACCCATAGAATCCAATATAAAGATGACCTTGGAAGATAATAATGTTACCAGTAAT
T V D S S I Q P I E S N I K M T L E D N N V T S N

2329 CCGTCCGAATTTACGCCGAATATGGTAAATTCTGAAATTTCTAACCTACCAAAGGACAAGAGTGGTATCCCCGAA
P S E F T P N M V N S E I S N L P K D K S G I P E

2404 TTCACACCGGCGGACCCCAATTTATCTTTTGAATCATCAAGTAGTCTACCGTTTCTATTGAGACACATGCCGCTA
F T P A D P N L S F E S S S S L P F L L R H M P L

2479 GCATCTATACCGGACATTTTCATCACGCCTACTCCCGTTGTTACAATTTCAGAAAAAGAACAAGACATCTTAGAT
A S I P D I F I T P T P V V T I S E K E Q D I L D

2554 TTAATTGCAGAACAAGTCGTCACTGATTATAATATCTTAGGAAACCTCGGTATTCCAAAGATCGCCTATAGGGGA
L I A E Q V V T D Y N I L G N L G I P K I A Y R G

2629 GTTAAAGATTGCCAAGAAGGTTTAATAACAACCACAATGTTACAGTTATTTTCCACTTCGGATAGATTAAATGGC
V K D C Q E G L I T T T M L Q L F S T F D R L N G

2704 AATGATACGATCTCCAAATTCTATAACATGAAGCAGCCGTACGTTTTTGTAAAGAAACATCACGAACTAATCAAA
N D T I S K F Y N M K Q P Y V F V K K H H E L I K

2779 GTCAAACACGACTCTCAGCCATTTATTAAGTTCCTCAATTTTCGCCCTCCAAATGGAATAAAAAACTTCAAATCC
V K H D S Q P F I K F L N F R P P N G I K N F K S

2854 TTATTATTAAGTTCATCTTTCAAAGAAGATTGTCTGTCATTTGCGCCAACTCTATCTCAAACATATATTAATCAA
L L L S S S F K E D C L S F A P T L S Q T Y I N Q

2929 GAGTTAGGGTTTTGTGAGTTGCTTAAACTAACTAATGAAGACCCGCCCGGACTGATGTACTTGAAGGCATTTGAT
E L G F C E L L K L T N E D P P G L M Y L K A F D

3004 AAAAACAAGTTACTGTTGTTAGCTGCGCAGATTGTTTCATACTGTTCTAATAATAAGAACTCCATCAAAAACGTG
K N K L L L L A A Q I V S Y C S N N K N S I K N V

3079 CCACCAATATTAATAATTTTACCCTTGGATAATGCAACTCTGACTGAATTAGTAGACAAGGCGAATATTTTTCAG
P P I L I I L P L D N A T L T E L V D K A N I F Q

3154 GTGATCAAGAACGAAGTTTGTGCCAAGATGCCTAACATTGAACTATATTTGAAAGTTATTCCTATGGATTTCATT
V I K N E V C A K M P N I E L Y L K V I P M D F I

3229 AGAAACGTACTGGTGACAGTGGATCAGTACGTCAACGTAGCAATTTCTATATATAACATGCTGCCGCCAAAATCT
R N V L V T V D Q Y V N V A I S I Y N M L P P K S

3304 GTAAAGTTCACCCACATTGCGCATACGCTGCCGGAGAAAGTGAATTTCAGAACCATGCAGCAACAGCAAATGCAA
V K F T H I A H T L P E K V N F R T M O O M O

3379 CAGCAACAGCAACAGCAACAGCAGCAGCAGAATAACAGTACAGGATCATCTTCTATAATATATTATGACTCGTAC
O O O O O O O O O N N S T G S S S I I Y Y D S Y

3454 ATCCACCTGGCATACTCGCGTAGTGTAGATAAAGAGTGGGTTTTTGCAGCTCTTTCAGATAGCTATGGACAAGGC
I H L A Y S R S V D K E W V F A A L S D S Y G Q G

3529 AGCATGACGAAAACGTGGTACGTCGGGAATTCCAGAGGAAAATTTGACGACGCATGTAATCAAATATGGAATATC
S M T K T W Y V G N S R G K F D D A C N Q I W N I

3604 GCCCTAAATTTAGCGTCTAAAAAATTCGGAAAAATATGTCTAATTTTAACTAGATTGAATGGCATACTGCCGGAT
A L N L A S K K F G K I C L I L T R L N G I L P D

3679 GATGAATTGATGAATTGGAGGAGACTTTCTGGTAGGAATATACATCTTGCTGTGGTGTGTGTGGATGACAACTCT
D E L M N W R R L S G R N I H L A V V C V D D N S

3754 AAAATCTCCTTCATAGATGAGGACAAATTGTACCCTAGTTTCAAGCCGATCTACAAAGACACTAGGTTTGGAGGA
K I S F I D E D K L Y P S F K P I Y K D T R F G G

3829 CGCATGGATATGACCAGATTATACGACTATGAAATAAGGGATATAGACCAGGACATCCATGGAATAGTATTTCAG
R M D M T R L Y D Y E I R D I D Q D I H G I V F Q

3904 CACCCGTTCCCACTGGCACACTCACAGCATCGCTGTGCTATTAGGAGTGGTGCTTTGATCAAATTCAAAAAATGC
H P F P L A H S Q H R C A I R S G A L I K F K K C

3979 GACGGTGATACGGTTTGGGACCTTTTAAACTGTCCCAATTCTGATAGTACACTTGCTG
D G D T V W D K F A V N L L N C P H S D S T Q L L

4054 GAAACCATCTTAGAAGAGTTTCGCAACCTGGCTGCTCTAAACGTGTGGTACGGTCTCTCTGATGGCGAAGATGGC
E T I L E E F R N L A A L N V W Y G L S D G E D G

4129 CATATTCCATGGCATATCCTAGCCGTGAAAAAAATGATGAACACTCTTGTGCACACCAGAGTAAAAATTGCTAAT
H I P W H I L A V K K M M N T L V H T R V K I A N

4204 ACTTCCGCCGCTACTGTGCATACCGCTACTTCTTCATCAATTATTCTCTCGGATAAATAAACTTTTTCCGGCAAC
T S A A T V H T A T S S S I I L S D K

4279 GTTTTCCTGCTCATCTGTAGCCCTATTTACCAGTTTTGGTTTTAGTATTATTCCGGGGTGTAAACCCAGAAGTCT
4354 ATTTCTCCAGTCGGATTTATAAAAACAAAACCGGAAGCGGGGCGGTACGGCATTTTCACTGGTGATGCACGCCCA
4429 GCGTGTAGTCCGAGACAATTTCCACAGAACGCGAATGAGATTGCGTTTAAGGCTGTATTTTCAAGGCACACGAAG
4504 CGGCCACGTGGGTCTGCGATGGTGTGT TGATGTCAAGAATGGTATCATACTCCGTATAAGGTTATGTAATCG
4579 GAAGTCGCGATTCTTTTTCAATTTTTTCTTTTTATTTTTTTCCAGTTTTTTCGTCTCTGCGATGGAAAATTGTTG
4654 AAGTTCTCTTGATTAGCAAGTAGTTCTTACATCGCAGGAATCTTATGTT 4702

Figure 1OB
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Figure 10. Map and Sequence of the SRB9 Gene.

(A) Restriction map of a 7.3 kb DNA fragment from pCH47 containing the SRB9

gene. Most of the coding region of SRB9 was replaced with a 5.5 kb DNA

fragment containing the URA3 and kanamycin genes flanked by direct repeats
of Salmonella hisG DNA to create the deletion allele srb9A l::URA3hisG.

(B) Partial sequence of the 7.3 kb DNA fragment containing the SRB9 gene.

The predicted 1420 aa sequence of the SRB9 protein is shown below the

sequence of the gene. Positive numbering of the DNA begins with the

predicted start site of translation. Glutamine-rich region described in text is

underlined.
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not have significant sequence similarity to previously identified proteins. SRB9

does, however, contain a single polyglutamine stretch of 16 residues from

amino acids 1121 to 1136 (Figure 10B).

SRB7 and SRB9 were physically mapped using the prime X clone grid

filters of the yeast genome (provided by L. Riles and M. Olson, Washington

University). SRB7 maps to the right arm of chromosome IV, approximately 45
kb centromere distal to GCN2 ( clone 6118). SRB9 also maps to the right arm

of chromosome IV, approximately 35 kb centromere distal to ADE8 ( clone

5513). SRB8 maps to the right arm of chromosome iIl, approximately 5 kb

centromere proximal to TUP1 (Oliver et al., 1992).

The srb7-1 and rpb2-551 mutant alleles were obtained by plasmid gap

repair in vivo (Rothstein, 1991). Plasmids containing these mutant alleles did

not prevent growth at 120C, unlike their wild-type counterparts, when
transformed into yeast cells containing the CTD truncation mutation rpb l 104

and srb7-1 or rpb2-551, respectively. This confirms that in each case the

correct locus was cloned. The identification of the correct open reading frame is

further supported by identification of the suppressing mutations of srb7-1 and

rpb2-551, identified by comparing the complete sequences of the cloned wild-

type and suppressing alleles. In each case, the alterations were single-point,

missense mutations. The mutation in srb7-1 changes alanine 21 to threonine

(Figure 8B). The rpb2-551 mutation changes alanine 1200 to valine. We did

not identify the suppressing mutations in srb8-1 and srb9-1 for reasons

described below.

SRB8 and SRB9 are Negative Regulators of CTD Function

To determine whether the SRB genes are essential for cell viability, most,

if not the entire coding region of each of the SRB genes was deleted to produce
srb7A 1 (Figure 8A), srb8 1 (Figure 9), and srb9A I (Figure 10A). SRB7, like

RPB2, is essential. SRB8 and SRB9 are not essential, but cells lacking either

one of these genes flocculate and exhibit mild cold- and temperature-sensitive

phenotypes. Significantly, null alleles of SRB8 and SRB9 partially suppress the

conditional phenotypes associated with CTD truncations (Figure 11). The

phenotypes exhibited by deletions of SRB8 or SRB9 are very similar to those
phenotypes exhibited by the suppressing mutant alleles of these genes,
indicating that we have cloned and identified the correct gene. While we have
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Figure 11. Null alleles of SRB8 and SRB9 suppress CTD truncation mutations.

Cells were spotted on YEPD medium and incubated at 12o0C, 300 C and 380C

and on SC medium containing pyruvate as a sole carbon source. Isogenic
wild-type, srb8-1, srb8A 1::hisG, srb9-1, or srb9A 1::hisG backgrounds contained

either wild-type RPB1 (27 repeat CTD) or rpb1A 104 (11 repeat CTD).
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not identified the suppressing mutation in srb8-1 or srb9-1, the mutations are

likely to have partially or completely destroyed gene function.
The influence of srb8A 1 and srb9A 1 on RNA polymerase II CTD function

was further investigated by examining the effect of these deletion alleles on the

growth phenotypes of cells containing a spectrum of CTD truncation mutations.
Figure 12 summarizes the results obtained with srb8A 1 and compares these

results with those of a similar set of experiments performed with SRB2 alleles

(Koleske et al., 1992). Yeast cells lacking SRB8 partially suppressed the

conditional phenotypes associated with CTD truncations containing 10-12
complete heptapeptide repeats. Moreover, the lack of SRB8 allowed cells with

only nine heptapeptide repeats to survive; thus, loss of SRB8 counters the

defects associated with CTD truncation. This pattern of suppression is opposite

to that observed with SRB2 alleles. The dominant, gain-of-function SRB2-1

allele produces the same suppression phenotype as the recessive, loss-of-
function srb8A 1 allele. In contrast, the recessive, loss-of-function srb2A 1 allele,

increases the severity of the defects associated with CTD truncation. The
influence of srb9A 1 on the phenotypes of cells containing CTD truncations is
similar to that of srb8A 1.

Genetic Data suggests that SRB8 and SRB9 behave as negative

regulators of CTD function, while genetic and biochemical data indicates that

SRB2 behaves as a positive regulator of CTD function. Only dominant

mutations in SRB2 have been identified, indicating that SRB2 normally acts to

stimulate CTD activity and that with a truncated CTD wild-type SRB2 is unable

to stimulate enough. Gain-of-function mutations in SRB2 counter the partial

loss of function due to CTD truncations. Cells containing a deletion of SRB2,

however, can survive only if the CTD is nearly wild-type in length, further

suggesting that SRB2 normally acts to augment CTD function. Finally, in vitro

transcription assays demonstrate that SRB2 is required for efficient transcription

initiation. In contrast, only recessive mutations have been identified in SRB8

and SRB9 and deletion of SRB8 or SRB9 can counter the partial loss of function

due to CTD truncations. These data suggest that SRB8 and SRB9 normally

function to repress transcription via functional interactions with the CTD. Further

testing of this hypothesis will require biochemical analysis, possibly in vitro
transcription assays with purified RNA polymerase II and general transcription

factors. Such a reconstituted system should permit the development of SRB-
dependent transcription assays and allow for the further analysis of individual or
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groups of SRB proteins.
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Figure 12. Influence of SRB2 and SRB8 alleles on growth phenotypes of RNA

polymerase II CTD truncation mutants.

Strains containing combinations of SRB2 or SRB8 alleles and CTD truncation

alleles were assayed for growth on YEPD medium at 120C, 300C, and 380C

and on SC medium containing pyruvate as a sole carbon source. The degree

of CTD truncation is shown for each mutant on the horizontal axis, and the

plasmid carrying each CTD truncation allele is indicated (i.e., pN51). The

phenotypes exhibited by each of the CTD truncation mutants in a wild-type,
srb2A 1, SRB2- 1, or srb8A 1 background are shown on left. Nonviable strains

(N) are indicated by a dashed line, conditional strains (C) that were extremely

sensitive to high (380C) and low (120C) temperatures and failed to grow on

pyruvate media are indicated by a thin solid line, and viable (V) strains that

exhibit nearly wild-type growth characteristics under all conditions tested are
indicated by a heavy solid line. Viable/conditional srb8A 1 strains (V/C) were

able to grow at low temperatures and on pyruvate medium but were sensitive to

high temperatures and are indicted by a solid line. Not every CTD truncation

allele was tested in every background, but for each background the phenotypic

boundaries are well established.
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Discussion

We describe here six novel factors, SRB4, SRB5, SRB6, SRB7, SRB8,

and SRB9, which influence the activity of the CTD of RNA polymerase II. These

factors were among ten identified in a genetic selection designed to obtain

transcription factors which play a role in CTD function. Among the SRB proteins

are positive and negative regulators, indicating a dual role for CTD-associated

factors in the initiation of transcription.

Multiple Factors Influence CTD Activity

In order to better define the role of the RNA polymerase II CTD in

transcription initiation, extragenic suppressors of a CTD truncation mutant have

been isolated (Nonet and Young, 1989). Ten genes; SRB2, SRB4-SRB11, and

RPB2, have now been identified in this selection. The observation that the

suppressing mutations in these genes suppress the conditional and

auxotrophic phenotypes associated with CTD truncations, but not similar

phenotypes associated with point mutations outside of the CTD, argues that

these gene products and the CTD are involved in the same process in

transcription initiation. Genomic DNA for eight of the ten genes identified in this

selection has been cloned and sequenced. These SRB factors are necessary

for yeast cells to grow at wild-type rates and for survival throughout the normal

temperature range for cell growth (Table 1).

SRB genes encode positive and negative regulators of CTD function.

Dominant, gain-of-function mutations in SRB2 suppress CTD truncation

mutations (Nonet and Young, 1989; Koleske et al., 1992; Thompson et al.,

1993). Furthermore, cells lacking SRB2 can survive only if the CTD is nearly

wild-type in length. In contrast, it is the absence of SRB8 or SRB9 which

suppress CTD truncation mutations. SRB8 and SRB9 proteins, therefore,

appear to repress CTD activity while the SRB2 protein enhances CTD activity.

Two mutations in RNA polymerase II located outside of the CTD suppress

CTD truncation mutations. An intragenic suppressing mutation in RPB1 outside

of the CTD suppresses truncations of the CTD (Nonet and Young, 1989). In this

study we identified a point mutation in RPB2 that specifically suppresses CTD

truncations. The point mutations in RPB1 and RPB2 are in regions that are
highly conserved among the largest and second largest subunits, respectively,
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of eukaryotic RNA polymerases (Nonet and Young, 1989; Kawagishi et al.,

1993).

A role for the SRBs in Transcription

All of the SRBs influence the activity of the CTD in vivo, arguing that they

play a physiological role in transcription initiation. The CTD and SRB2 have

been implicated in the response of the transcription apparatus to regulatory

signals at promoters in vivo and in vitro (Allison and Ingles, 1989; Scafe et al.,

1990a; Peterson et al., 1991; Liao et al., 1991; Koleske et al., 1992). The SRB

proteins have both positive and negative influences on CTD activity, thus the

SRB proteins may process positive and negative regulatory signals at

promoters and govern the decision to initiate transcription.



Table 1 SRB genes

Gene Protein mass pi Chromosomal Deletion
(kDa) locationa viability

SRB2 23 5.2 VIII conditional

SRB4 78 5.1 V inviable

SRB5 34 4.7 VII conditional
SRB6 14 4.6 11 inviable

SRB7 16 4.8 IV inviable

SRB8 144 5.7 III conditionalb

SRB9 160 5.5 IV conditional b

RPB2 139 6.9 XV inviable

a Precise map locations have been determined

bNull alleles partially suppress conditional phenotypes
associated with CTD truncations

79
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Experimental Procedures

Genetic Manipulations
Yeast strains and plasmids are listed in tables 2 and 3, respectively.

Yeast media was prepared as described (Nonet and Young, 1989), except

pyruvate medium, which consists of synthetic complete medium (SC) with 2%

pyruvic acid (Sigma) as a sole carbon source. Yeast transformations were

done using a lithium acetate procedure (Schiestl and Gietz, 1989). Plasmid

shuffle techniques were performed as described by Boeke et al. (1987) using 5-

fluoro-orotic acid (5-FOA) as a selective agent against URA3-containing

plasmids. Plasmids were recovered from yeast as described by Hoffman and

Winston (1987). Growth assays were performed by suspending similar

numbers of cells in water and transferring equal volumes to agar plates with a

48-prong apparatus. To reduce flocculation of some strains, cells were first

washed in 100 mM EGTA, 10 mM Tris-HCI 7.5.

Extragenic suppressors of the cold sensitive phenotype of Z551 were

isolated as previously described (Nonet and Young, 1989). Dominant and

recessive suppressors were identified by mating to Z26, selecting against the

presence of pRP112 (Nonet et al., 1987b) using 5-FOA and assaying growth at

12oC on YEPD. Diploids able to grow at 120C contained a dominant suppressor.

Diploids unable to grow at 120C contained a recessive suppressor.

Yeast strains of the opposite mating type of approximately half of the

dominant suppressors and half of the recessive suppressors were generated by

inducing a mating type switch by expression of the HO gene placed on a

plasmid under the control of a galactose inducible promoter. Random spore

analysis of the dominantly suppressing mutations was used to determine if two

independent isolates were likely to contain mutations in the same gene.

Haploids were mated to each other, each containing the CTD truncation
mutation rpb l1 104 and an independently isolated SRB mutation, to form

diploids. These diploids were sporulated on plates and a small quantity of
spores scraped off and shaken overnight at 300C in 0.5 ml 30 mM P3-

mercaptoethanol and 100 ng/ml Zymolase 100 T (ICN). 0.5 ml of 1.5% NP-40

and 0.4 g glass beads were added and the mixture held on ice for 15 min. The
suspension was then vortexed 3 min, held on ice 5 min, vortexed 2 min, and the

glass beads allowed to settle for 10 min at room temperature. The supernatant
was removed, spun 2 min, the pellet washed once in water, then resuspended
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in water and a portion plated onto YEPD. Approximately fifty of the haploid

offspring were assayed for their ability to grow at 120C. If all haploids were able

to grow at 120C then the two SRB isolates were assumed to contain mutations

in the same gene. Genetic complementation of the recessive alleles involved

mating haploids to each other, each containing the CTD truncation mutation
rpblA 104 and an independently isolated srb mutation, to form diploids and

assessing the ability of these diploids to grow at 120C. Diploids able to grow at

120C were assumed to contain srb mutations in the same gene. Genomic

clones of each complementation group were used to confirm the identity of each

member of the complementation group and to identify additional members.
Cells containing the CTD truncation mutation rpblA 104 and a recessive srb

allele were unable to grow at 120C and on pyruvate media when transformed

with the corresponding wild-type SRB allele.

Isogenic wild-type, SRB4-1, SRB5-1 and SRB6-1 strains containing

various RPB1 (rpbl-4, rpbl-5, rpbl-6, rpbl-10, rpbl-12, rpbl-13, rpbl-14, rpbl-
15 and rpbl-18) alleles on LEU2 CEN plasmids (Scafe et. al., 1990b) were

constructed using Z26, Z555, Z556 and Z557 and plasmid shuffle techniques.

Isogenic wild-type, SRB4-1, SRB5-1 and SRB6-1 strains containing rpbl-1 on a

URA3 CEN plasmid, pRP1-1 [U] (Nonet et al., 1987a), were constructed by

transforming Z551, Z552, Z553 and Z554 with pRP1-1 [U], followed by growth in

SC-Ura media to permit loss of pC6 (Nonet et al., 1987b).

Deletions of SRB4, SRB5, SRB6, SRB7, SRB8, and SRB9 were created

by a single step disruption method (Rothstein, 1991). Z558 was transformed

with the desired DNA fragment and plated on the proper selective media.

Southern analysis was used to confirm that a single copy of the desired SRB

gene had been deleted. The diploid was sporulated and tetrads dissected

(>20) on YEPD plates and scored for nutritional auxotrophies and growth at a

variety of temperatures. Z565 was created by transformation with the EcoRI-
Xbal fragment of pCT54 containing the srb4A2::HIS3 fragment and plating on

SC-His media. Two or less spores from each tetrad were viable and these

spores were all histidine auxotrophs, indicating that SRB4 is essential. To

confirm that SRB4 is essential, Z565 was transformed with pCT15 (URA3

SRB4), tetrads were dissected, and His+, Ura+ segregants were streaked to 5-
FOA plates. These were unable to grow on 5-FOA-containing media,
confirming that SRB4 is essential. Z559 was created by transformation with the
EcoRI-Sphl fragment of pCT37 containing the srb5A 1::URA3hisG fragment and
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plating on SC-Ura media. Segregants scored 2:2 for uracil prototrophy and all

uracil prototrophs exhibited cold-sensitive, temperature-sensitive and slow

growth phenotypes, indicating that SRB5 deletion strains are conditionally

viable. Z564 was created by transformation with the Bglll-BamHI fragment of

pCT38 containing the srb6A 1::URA3hisG fragment and plating on SC-Ura

media. Two or less spores from each tetrad were viable and these spores were

all uracil auxotrophs, indicating that SRB6 is essential. To confirm that SRB6 is

essential, Z564 was transformed with pCT66 (LEU2 SRB6), tetrads were

dissected and Z566 was created by placing a Ura+, Leu+ segregant onto 5-FOA

to select for the excision of the URA3 gene (Alani et al., 1987). Z566 was

transformed with pCT40 (URA3 SRB6), grown in SC-Ura media to permit loss of

pCT66, then tested for growth on 5-FOA plates. No growth was observed on 5-

FOA, confirming that SRB6 is essential. CHY102 was created by transformation

with the Sphl-EcoRI srb7A 1::URA3hisG fragment from pCH46. Two or less

spores from each tetrad were viable and these spores were uracil auxotrophs,

indicating that SRB7 is essential. SLY35 was created by transformation with

the Sacl srb8A 1::URA3hisG fragment from pSL315 and CHY105 was created

by transformation with the Sall-Notl srb9A 1::URA3hisG fragment from pCH66.

In each case segregants scored 2:2 for uracil prototrophy and all uracil

prototrophs exhibited mild cold-sensitive, temperature-sensitive, and slow

growth phenotypes, indicating that SRB8 and SRB9 deletion strains are
conditionally viable. srb8A 1 and srb9A 1 strains are also flocculent as are the

suppressing isolates of SRB8 and SRB9. Strains containing unmarked

deletions of SRB8 and SRB9 were created by selecting for excision of the URA3

gene by growth on 5-FOA (Alani et al., 1987).

DNA Methods

DNA manipulations were performed according to Sambrook et al. (1989)

and enzymes were purchased from Promega unless otherwise indicated. Site-

directed mutagenesis was performed as described in Kunkel et al. (1987). PCR
amplifications to produce pCT54 (srb4A2), pCT37 (srb5A 1), pCT38 (srb6A 1),

pCH45 (srb7A 1), pSL315 (srb8A 1), and pSL307 (SRB8 in pET-3a)were

performed with Taq DNA polymerase (Perkin Elmer) in 1 00; of buffer (provided

by the manufacturer) supplemented with 1.0 mM MgC12 and 200 IpM dNTP for a

total of 25 cycles. Primer concentrations were 0.5 [iM with 50 ng of DNA and

cycling was at 940C (1.0 min), 500C (1.0 min) and 720C (2.5 min).
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Library Construction and Cloning
Yeast genomic DNA libraries were prepared from strains Z28 (wild-type),

Z552 (SRB4-1), Z553 (SRB5-1) and Z554 (SRB6-1). Genomic DNA was

isolated as described by Phillippsen et al. (1991), partially digested with Sau3A,

separated on a 0.7% agarose gel, 8-12 kb fragments purified by electroelution

and ends partially filled in with d(AG)TP using Klenow. The URA3 centromeric

plasmid pCT3 was digested with Xhol and ends partially filled in with d(CT)TP

to make them compatible with the partially filled in ends of the Sau3A digested
genomic DNA. Following ligation, DH5a cells made competent by the method

of Hanahan (Hanahan et al., 1991) were transformed. Libraries contained

approximately 150,000 individual recombinants with an average insert size of

approximately 10 kb. Subgenomic DNA libraries were prepared from pCT4

(SRB4), pCT14 (SRB5-1) and pCT26 (SRB6-1) in a manner similar to that

described above for the genomic DNA libraries. Plasmid insert DNA was

partially digested with Sau3A, separated on a 1.5% agarose gel, 1-3 kb

fragments purified by gene clean (BIO 101) and ends partially filled in with

d(AG)TP using Klenow. Fragments were ligated with pCT3 prepared as
described above and transformed into DH5a cells. Subgenomic libraries

contained approximately 20,000 individual recombinants with an average insert

size of 2 kb.

Genomic clones of SRB4-1 (pCT8), SRB5-1 (pCT14) and SRB6-1

(pCT26) were isolated by transformation of the respective genomic library into

Z551, plating to SC-Ura media and placing plates at 120C following a 12 hour

recovery period at 300C. Approximately one in 2000 primary transformants

were able to grow at 120C. For each library transformed, the genomic clone

was isolated from >12 Ura+ colonies able to grow at 120C, and retested for the

ability to suppress the cold-sensitive phenotype of Z551. A genomic clone of

SRB4 (pCT4) was isolated from the wild-type Z28 library using a recessive
SRB4 allele which has a severe temperature-sensitive phenotype in

combination with a CTD truncation allele of 11 repeats. The presence of pCT4

restores a leaky ts phenotype to this strain at 380C. pCT4 and pCT8 were

found to contain overlapping inserts by restriction mapping and sequence
analysis. Subgenomic clones from pCT4 (SRB4), pCT14 (SRB5-1) and pCT26
(SRB6-1) were selected as described above for the genomic clones in order to

isolate pCT15 and pCT16 (SRB4), pCT20 (SRB5-1) and pCT29 (SRB6-1)

respectively. pCT15 and pCT16 differ only in the amount of DNA downstream
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of SRB4. pCT48, created by replacing SRB4 in pCT15 with SRB4-1 from pCT8,

suppresses the cold-sensitive phenotype of Z551 confirming that pCT4 and

pCT8 contain SRB4 and SRB4-1 respectively. pCT39 was created from pCT32

in vivo by transforming Z22 with Sacl-Xhol digested pCT32 DNA and isolating

the plasmid from a Ura+ transformant which had repaired the plasmid with wild-

type SRB5 sequences from the chromosome (Rothstein, 1991). Similarly,

SRB6 was isolated using Ball-Sphl digested pCT29 DNA to create pCT40.

Genomic clones of SRB7 (pCH2), SRB8 (pSL301), SRB9 (pCH47), and

RPB2 (pSL401) were isolated as described in text by transformation and

complementation of S242, S358, S363, and S456, respectively. pCH36 was

created from pCH7 in vivo by transforming S242 with linearized pCH7 lacking

SRB7 coding DNA and isolating the plasmid from a Ura+ transformant which

had repaired the plasmid with the mutant srb7-1 sequences from the

chromosome (Rothstein, 1991). Similarly, rpb2-551 (pSL411) was isolated

from S456 using pRP212 (Scafe et al., 1990b).

Sequence Analysis
Insert DNAs from pCT15, pCT20 and pCT29 (containing SRB4, SRB5-1

and SRB6-1, respectively) were completely sequenced on each strand. SRB7

and SRB9 were completely sequenced on each strand using genomic DNA

from pCH7 and pCH47, respectively. Unidirectional deletions were constructed

using the Erase-a-Base system (Promega) and double stranded sequencing

with dideoxynucleotides and Sequenase (US Biochemical) was carried out as

described by the manufacturer using T3 and T7 promoter primers. Gaps in the

sequence were filled in by sequencing with internal oligonucleotide primers.

The suppressing mutations in SRB4, SRB5, SRB6, SRB7, and RPB2 were

deduced by sequencing using oligonucleotide primers that spanned the entire

open reading frames. Sequence comparison analysis was performed at the

National Center for Biotechnology Information using the BLAST network service
(Altschul et al., 1990).
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Table 2. Yeast Strains

Strain Alias Genotype

Z22 N114 Mat a ura3-52 his3A200 leu2-3,112

Z26 N247 Mat a ura3-52 his3A200 leu2-3,112 rpbld 187::HIS3 [pRP112 (URA3

RPB 1)]

Z28 RY4 Mat a/Mat a mal-/mal- gal2/gal2

Z551 N400 Mat a ura3-52 his3A200 leu2-3,112 rpb1A187::HIS3 [pC6 (LEU2

rpb lA 104)]

Z552 CTY3 Mat a ura3-52 his3A200 leu2-3,112 rpb d187::HIS3 SRB4-1 [pC6

(LEU2 rpbl A 104)]

Z553 CTY8 Mat a ura3-52 his3A200 leu2-3,112 rpb1A187::HIS3 SRB5-1 [pC6

(LEU2 rpblA 104)]

Z554 CTY9 Mat a ura3-52 his3A200 leu2-3,112 rpblA 187::HIS3 SRB6-1 [pC6

(LEU2 rpb1A104)]

Z555 CTY15 Mat a ura3-52 his3A200 leu2-3,112 rpbl 187::HIS3 SRB4-1 [pRP112

(URA3 RPB1)]

Z556 CTY20 Mat a ura3-52 his3A200 leu2-3,112 rpbl1A87::HIS3 SRB5-1 [pRP112

(URA3 RPB 1)]

Z557 CTY21 Mat a ura3-52 his3A200 leu2-3,112 rpblA 187::HIS3 SRB6-1 [pRP112

(URA3 RPB1)]

Z558 CTY143 Mat a/Mat a ura3-52/ura3-52 his3A200/his3A200 leu2-3,112/leu2-3,112

Z559 CTY144 Mat a/Mat a ura3-52/ura3-52 his3z200/his3A200 leu2-3,112/leu2-3,112

srb5A 1::URA3hisG/SRB5

Z564 CTY158 Mat a/Mat a ura3-52/ura3-52 his3A200/his3A200 leu2-3,112/leu2-3,112

srb6A 1::URA3hisG/SRB6

Z565 CTY176 Mat a/Mat a ura3-52/ura3-52 his3A200/his3A200 leu2-3,112/leu2-3,112

srb4A2::HIS3/SRB4

Z566 CTY184 Mat a ura3-52 his3A200 leu2-3,112 srb6A 1::hisG [pCT66 (LEU2 SRB6)]

S242 Mat a ura3-52 his3A200 leu2-3,112 rpblA 187::HIS3 srb7-1 [pC6 (LEU2

rpb 1A 104)]

S358 Mat a ura3-52 his3A200 leu2-3,112 rpb1A187::HIS3 srb8-1 [pC6 (LEU2

rpb 1A 104)]

S363 Mat a ura3-52 his3A200 leu2-3,112 rpbl1A87::HIS3 srb9-1 [pC6 (LEU2

rpb 1A 104)]
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S456 Mat a ura3-52 his3z200 leu2-3,112 rpblA 187::HIS3 rpb2-551 [pC6

(LEU2 rpb1A 104)]

CHY1 Mat a ura3-52 his3A200 leu2-3, 112 rpbld187::HIS3 srb7-1 [pRP112

(URA3 RPB1)]

SLY63 Mat a ura3-52 his34200 leu2-3, 112 rpb 1A 187::HIS3 srb8-1 [pRP114

(LEU2 RPB1)]

CHY3 Mat a ura3-52 his3A200 leu2-3, 112 rpblA 187::HIS3 srb9-1 [pRP112

(URA3 RPB 1)]

SLY64 Mat a ura3-52 his3A200 leu2-3,112 rpb1A 187::HIS3 rpb2-551 [pRP114

(LEU2 RPB1)]

CHY102 Mat a/Mat a ura3-52/ura3-52 his3A200/his3A200 leu2-3, 1 12/leu2-3,112

srb7A 1::URA3hisG/SRB7

SLY35 Mat a/Mat a ura3-52/ura3-52 his3A200/his3A200 leu2-3,112/leu2-3,112

srb8 1:: URA3hisG/SRB8

CHY105 Mat a/Mat a ura3-52/ura3-52 his3A200/his3A200 leu2-3,112/leu2-3,112

srb9A 1::URA3hisG/SRB9

SLY61 Mat a ura3-52 his3A200 leu2-3,112 rpb 1A 187::HIS3 srb8A 1::hisG

[pRP114 (LEU2 RPB1)]

SLY76 Mat a ura3-52 his3A200 leu2-3,112 rpblA 187::HIS3 srb8A 1::hisG [pC6

(LEU2 rpbl A 104)]

CHY113 Mat a ura3-52 his3A200 leu2-3,112 rpb 1A 187::HIS3 srb9A 1l::hisG

[pRP114 (LEU2 RPB1)]

CHY116 Mat a ura3-52 his3A200 leu2-3,112 rpblA 187::HIS3 srb9A 1::hisG

[pC6U (URA3 rpblA 104)]
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Table 3. Plasmids

Plasmid Description

pCT3 URA3 CEN plasmid. pUN55 (Elledge and Davis, 1988) with Hpal-Nael fragment

removed, Xhol site in polylinker destroyed by digestion and blunting and Xhol linker

(CCGCTCGAGCGG) inserted into Smal site of polylinker

SRB4

pCT4 pCT3 with 9 kb genomic (Z28) Sau3A fragment containing SRB4 inserted at Xhol site.

pCT8 pCT3 with 8 kb genomic (Z552) Sau3A fragment containing SRB4-1 inserted at Xhol

site.

pCT15 pCT3 with 2.5 kb subgenomic (pCT4) Sau3A fragment containing SRB4 inserted at

Xhol site.

pCT16 pCT3 with 2.8 kb subgenomic (pCT4) Sau3A fragment containing SRB4 inserted at

Xhol site.

pCT48 pCT15 with BstXI-SnaBI SRB4-1 C-terminus fragment from pCT8 replacing same

SRB4 fragment.

pCT54 srb4A2::HIS3, created by ligation of SRB4 Sall-BamHI from pCT16 with Sall-BamHl of

pSP72 (Promega) followed by PCR with the oligos TAATATCCTGAGTCACTCCT and

TATGGCTTTTAAGCTGCTTA and ligation of PCR product with Smal HIS3 kan

fragment from B2179 (G. R. Fink).

SRB5

pCT14 pCT3 with 9 kb genomic (Z553) Sau3A fragment containing SRB5-1 inserted at Xhol

site.

pCT20 pCT3 with 1.9 kb subgenomic (pCT14) Sau3A fragment containing SRB5-1 inserted at

Xhol site.

pCT32 pCT20 with unique Sacl site in insert, created by removal of Narl(blunt)-Sacll(blunt)

fragment from vector.

pCT37 srb5Al::URA3hisG, created by ligation of SRB5-1 EcoRI-BamHI from pCT20 with

EcoRI-BamHI of pSP72 (Promega) followed by PCR with the oligos

TAATCATTGGCACCTGGGCA and CTTCTTCTAATATGGAA and ligation of PCR

product with Bglll(blunt)-BamHl(blunt) URA3 kan hisG cassette from B2178 (G. R.

Fink).

pCT39 pCT32 containing SRB5, obtained by gap repair of vector containing fragment of

pCT32 Sacl-Xhol digest.
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SRB6

pCT26 pCT3 with 3 kb genomic (Z554) Sau3A fragment containing SRB6-1 inserted at Xhol

site.

pCT29 pCT3 with 1.0 kb subgenomic (pCT26) Sau3A fragment containing SRB6-1 inserted at

Xhol site.

pCT38 srb6Al::URA3hisG ,created by ligation of SRB6-1 EcoRI-BamHI from pCT29 with

EcoRI-BamHI of pSP72 (Promega) followed by PCR with oligos

TAAAAAGGCGGTATTATCT and CATATAGTGCCTGGTTGCTC and ligation of PCR

product with Bglll(blunt)-BamHl(blunt)URA3 kan hisG cassette from B2178 (G. R. Fink).

pCT40 pCT29 with SRB6, obtained by gap repair of vector containing fragment of pCT29 Ball-

Sphl digest.

pCT66 LEU2 CENpUN105 (Elledge and Davis,1988) with SRB6, created by ligation of SRB6

BamHl(blunt)-Sall(blunt) from pCT40 with Smal digested pUN105.

SRB7

pCH2 SRB7 URA3 CEN. pCT3 with 6.7 kb genomic Sau3AI fragment inserted at Xhol site.

pCH7 SRB7 URA3 CEN. pCT3 with 2.0 kb subgenomic Sau3AI fragment inserted at Xhol

site.

pCH36 srb7-1 URA3 CEN. Obtained by gap repair of vector containing fragment of pCH7 AfIll

digest.

pCH46 srb7Al::URA3hisG. SRB7was subcloned into pSP72 (Promega) and the open

reading frame deleted using PCR and replaced with the URA3 kan hisG cassette from

B2178 (G.R. Fink).

SRB8

pSL301 SRB8 URA3 CEN. pCT3 with 9.0 kb genomic Sau3Al fragment inserted at Xhol site.

pSL31 1 SRB8 URA3 CEN. 6.0 kb Kpnl-Bglll SRB8 fragment from pSL301 in Kpnl-BamHI of

pCT3.

pSL315 srb8A 1::URA3hisG. SRB8 was subcloned into pBSIISK (+) (Stratagene) and the open

reading frame deleted using PCR and replaced with the URA3 kan hisG cassette from

B2178 (G.R. Fink).

SRB9

pCH47 SRB9 URA3 CEN. pCT3 with 7.3 kb genomic Sau3AI fragment inserted at Xhol site.

pCH66 srb9A 1::URA3hisG. SRB9 was subcloned into pSP72 (Promega) and most of the

open reading frame removed by digestion with Sphl and Ball and replaced with the

URA3 kan hisG cassette from B2178 (G.R. Fink).
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RPB2

pSL401 RPB2 URA3 CEN. pCT3 with 10 kb genomic Sau3A fragment inserted at Xhol site.

pSL41 1 rpb2-551 URA3 CEN. Obtained by gap repair of vector containing fragment of

pRP212 (Scafe et. al., 1990) Mlul-Xbal digest.
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Summary

We report biochemical evidence that the RNA polymerase II carboxy-

terminal domain (CTD) interacts with a large multisubunit complex which

contains SRB protein (SRB2, SRB4-SRB9) and TATA-binding protein (TBP)

and is an integral part of the transcription initiation complex. The SRBs are

proteins encoded by genes which we identified previously as extragenic

suppressors of Saccharomyces cerevisiae RNA polymerase II CTD truncation

mutations. One of these SRBs, SRB2, has been shown to encode a 23 kd TBP-

binding protein. Antibodies generated against recombinant SRB proteins were

produced and used to monitor the SRBs during purification using column

chromatography. The SRB proteins, and a portion of cellular TBP, are

components of a high molecular weight multisubunit complex that is tightly

bound to RNA polymerase II. This SRB-TBP complex binds specifically to, and

can be purified via its interaction with, recombinant CTD protein. In vitro

transcription and template commitment assays confirm that SRB2 and SRB5 are

components of a functional preinitiation complex and are required for efficient

transcription initiation.
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Introduction

Regulated transcription initiation by RNA polymerase II in higher

eukaryotes involves the formation of a complex with general transcription

factors at promoters (Reviewed in Sawadogo and Sentenac, 1990; Roeder,

1991; Zawel and Reinberg, 1992; Conaway and Conaway, 1993). One of these

factors, TFIID, contains the TATA-binding protein (TBP), which is able to bind

directly to promoter DNA and permits the ordered assembly of the remaining

components of the transcription initiation complex. These components include

RNA polymerase II and the initiation factors TFIIA, TFIIB, TFIIE, TFIIF, TFIIH, and

TFIIJ. Sequence-specific DNA-binding proteins appear to regulate the

establishment and activity of transcription initiation complexes, possibly through

interactions with TFIIB and TBP and additional factors that comprise TFIID.

Several high molecular weight complexes containing TBP have been

identified in extracts from human and Drosophila cells (reviewed by Gill and

Tjian, 1992; Pugh and Tjian, 1992; Sharp, 1992). One of these complexes is

TFIID, which contains at least 8 TBP-associated factors (TAFs) (Pugh and Tjian,

1991; Tanese et al., 1991; Timmers and Sharp, 1991; Zhou et al., 1992). A

second complex is the RNA polymerase I factor SL1, which contains TBP and 3

TAFs (Comai et al., 1992). A third complex is a component of the RNA

polymerase III factor TFIIIB, which consists of TBP and 2 TAFs (Taggart et al.,

1992; Lobo et al., 1992; White and Jackson, 1992). Some of the TAFs

associated with these complexes appear to function as transcriptional

coactivators by providing a functional link between sequence-specific

regulators and TBP (Pugh and Tjian, 1990; Dynlacht et al., 1991; Pugh and

Tjian, 1991; Tanese et al., 1991; Taggart et al., 1992; Zhou et al., 1992; Hoey et

al., 1993).

The RNA polymerase II carboxy-terminal domain (CTD) is another

component of the transcription apparatus that can bind to TBP (Usheva et al.,

1992). The CTD is a highly conserved and apparently unique feature of the

largest subunit of RNA polymerase II (Reviewed in Corden, 1990; Young, 1991).

The CTD contains 26 to 52 repeats, depending on the organism, of the

consensus heptapeptide sequence Tyr-Ser-Pro-Thr-Ser-Pro-Ser. Deletion

mutations that remove most or all of the CTD are lethal to cells (Nonet et al.,
1987; Allison et al., 1988; Zehring et al., 1988; Bartolomei et al., 1988). CTD

partial truncation mutations cause defects in growth and inducible gene
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expression in vivo (Nonet et al., 1987; Bartolomei et al., 1988; Allison and

Ingles, 1989; Scafe et al., 1990; Peterson et al., 1991) and produce substantial

defects in transcription initiation in vitro (Liao et al., 1991). A subset of the RNA

polymerase II molecules in yeast and in mammalian cells have highly

phosphorylated CTDs (Cadena and Dahmus, 1987; Kolodziej et al., 1990).

RNA polymerase II molecules lacking phosphorylation on the CTD are

preferentially recruited into the initiation complex (Laybourn and Dahmus, 1990;

Lu et al., 1991). Another important feature of RNA polymerase II molecules

recruited into the initiation complex is their association with RAPs (RNA

polymerase associated proteins) (Burton et al., 1988; Buratowski et al., 1991;

Conaway et al., 1991; Flores et al., 1991). Two mammalian proteins, RAP30

and RAP74, have been identified as components of the general transcription

factor TFIIF (Flores et al., 1988).

The transcriptional machinery of higher and lower eukaryotes appears to

be highly conserved. RNA polymerases , II, and III are similar in subunit

structure and function in higher and lower eukaryotes (Young, 1991). The yeast

RNA polymerase II factors b, d, and e (Flanagan et al., 1990; Feaver et al., 1991;

Tschochner et al., 1992) are homologous in structure and function to
mammalian factors TFIIH/8, TBP and TFIIB/a (Peterson et al., 1990; Conaway

and Conaway, 1991; Gerard et al., 1991; Conaway et al., 1991; Ha et al., 1991;

Serizawa et al., 1992; Conaway and Conaway 1993), respectively. Both yeast

and human TBP support activation by both GAL4-VP16 and GCN4 (Kelleher et

al., 1992). As mentioned above, TBP is a component of multisubunit complexes

involved in transcription by all three nuclear RNA polymerases in mammals. In

yeast, TBP has been identified as a component of the RNA polymerase III

transcription factor TFIIIB (Buratowski and Zhou, 1992; Lopez-De-Leon et al.,

1992; Kassavetis et al., 1992), but no yeast counterpart of the TBP-containing

complexes SL1 or TFIID have yet been described.

At least four proteins that associate with TBP have been identified

through genetic approaches in yeast. The product of the SUA7 gene is the

yeast homologue of the mammalian factor TFIIB (Pinto et al., 1992).

TDS4/PCF4/BRF1 is related to TFIIB and is a component of the yeast RNA

polymerase III transcription factor TFIIIB (Buratowski and Zhou, 1992; Colbert
and Hahn, 1992; Lopez-De-Leon et al., 1992; Kassavetis et al., 1992). The

SPT3 gene was identified as a mutation that could suppress the effect of

retrotransposon insertions into RNA polymerase II promoters. Genetic and
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biochemical evidence indicates that SPT3 interacts with TBP (Eisenmann et al.,

1992). An extragenic suppressor of RNA polymerase II carboxy-terminal

domain (CTD) truncation mutations, SRB2-1, encodes a protein that binds TBP

and is incorporated into the RNA polymerase II transcription initiation complex

(Koleske et al., 1992). Because SPT3 and SRB2 both interact physically with

TBP and mutations in these genes affect transcription by RNA polymerase II,

both are good candidates for yeast RNA polymerase II TAFs.

The identification of a putative yeast TAF as a suppressor of an RNA

polymerase II CTD truncation suggests that additional suppressors of CTD

truncation mutations might be used to identify additional TBP-associated

components of the RNA polymerase II transcription initiation complex in yeast.

An additional set of genes, SRB4-SRB11, and RPB2, have been identified as

suppressors of CTD truncation mutations (Thompson et al., 1993; Chapter 2).

Cloning and genetic characterization of SRB4-SRB9 revealed that these SRBs

encode novel proteins that enhance as well as repress CTD function.

We report here biochemical evidence that the yeast RNA polymerase II

carboxy-terminal domain (CTD) interacts with a large multisubunit complex that

contains the SRBs and TATA-binding protein (TBP). Antibodies generated

against recombinant proteins encoded by the SRB genes were used to identify

and purify a high molecular weight complex which contains TBP and at least a

dozen additional polypeptides, all bound to RNA polymerase II. A similar

complex can be purified via its interaction with recombinant CTD protein. We

show that components of this complex are incorporated into the RNA

polymerase II transcription initiation complex.
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Results

SRB2 and SRB5 are Required for Efficient Basal and Activated
Transcription In Vitro

Although yeasts cells lacking SRB4 or SRB6 are not viable, cells lacking

SRB2 or SRB5 are viable despite striking defects in growth (Nonet et al., 1989;

Koleske et al., 1992; Thompson et al., 1993; Chapter 2), and it is this feature that

facilitates investigation of the transcriptional activity of SRB2 and SRB5 proteins

using nuclear extracts in vitro. Previous studies revealed that SRB2 is required

for efficient basal and activated transcription initiation in vitro (Koleske et al.,

1992). The role of SRB5 was investigated similarly, and was also found to be

required for efficient basal and activated transcription initiation in vitro (Figure
1). Nuclear extracts were prepared from wild-type and srb5A 1 cells and tested

for their ability to synthesize a specific transcript in the presence and absence of

purified recombinant SRB5 and GAL4-VP16 proteins. The template contained

a single GAL4 binding site upstream of the CYC1 TATA element that directs

expression of a G-less transcript. As expected, extracts from wild-type cells

produced two specific transcripts of 375 and 350 nt, and the addition of GAL4-

VP16 produced a 35-fold increase in the levels of these transcripts. Extracts
from srb5A 1 cells required additional factors in order to synthesize significant

levels of specific transcripts both in the presence and in the absence of GAL4-
VP16 (Figure 1 B and C). Complementation of the srb5A 1 extract required both

purified recombinant SRB2 and SRB5; the addition of SRB5 alone failed to

complement. Western blot analysis revealed that the level of SRB2 protein is
greatly reduced in nuclear extracts prepared from srb5A 1 cells.

To confirm and extend these results, additional transcription assays were

performed using nuclear extracts prepared from cells lacking SRB2 and SRB5

(Figure 1 D and E). The results obtained using extracts from cells lacking both
SRB proteins were identical to those obtained with extracts from srb5A 1 cells.

These extracts exhibited no defects in promoter-independent transcription

elongation assays. These results demonstrate that both SRB2 and SRB5 are

required for efficient basal and activated transcription initiation in vitro.
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Figure 1. SRB2 and SRB5 are Required for Efficient Transcription In Vitro

(A) The template, pGAL4CG- (Lue et. al., 1989), contains a CYC1 TATA

element downstream of a single GAL4 binding site that directs expression of a

G-less transcript.

(B) and (C) Nuclear extracts made from wild-type cells (Z561) or srb5A mutant

cells (Z562) were tested for their ability to synthesize specific transcripts from

the pGAL4CG- template in the presence or absence of recombinant SRB2 (250

ng) and/or SRB5 (250 ng). Transcription reactions were carried out in the

absence (B) or in the presence (C) of recombinant GAL4-VP16 (150 ng). The

film shown in (B) was exposed five times longer than that in (C). Quantitation of
the results indicates that the level of specific transcripts produced by srb5A

extracts is 50-fold less than that produced by wild-type extracts in the absence
of added SRB proteins. Addition of both SRB2 and SRB5 to srb5 extracts

restored transcript levels to approximately 40% of those observed in wild-type

extracts.

(D) and (E) Nuclear extracts made from wild-type cells (Z561) or srb2A 1,

srb5A 1 mutant cells (Z563) were tested for their ability to synthesize specific

transcripts from the pGAL4CG- template in the presence or absence of

recombinant SRB2 (250 ng) and/or SRB5 (250 ng). Transcription reactions

were carried out in the absence (D) or in the presence (E) of recombinant

GAL4-VP16 (150 ng). The film shown in (D) was exposed five times longer than

that in (E). Quantitation of the results indicates that the level of specific
transcripts produced by srb2A, srb5A extracts is 50-fold less than that produced

by wild-type extracts in the absence of added SRB proteins. Addition of both
SRB2 and SRB5 to srb2A, srb5A extracts restored transcript levels to

approximately 40% of those observed in wild-type extracts.
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Formation of a Stable Preinitiation Complex Involves SRB2 and
SRB5

A template commitment assay was used to investigate if both SRB2 and

SRB5 participate in the formation of a transcription initiation complex (Figure 2).

This assay is performed by preincubating one template with an extract that

contains all the necessary factors for transcription to occur while preincubating

a second template with an extract that is missing a required factor for

transcription. After a preincubation period, the two reactions are mixed

together. Following a variable mixing period, nucleoside triphospate substrates

are added to permit RNA synthesis. Several conclusions can be derived from

this type of experiment. First, if a factor is necessary to assemble a preinitiation

complex, the template preincubated with this factor should be preferentially

transcribed relative to the other template. Alternatively, if the factor is not

involved in preinitiation complex formation, but acts at a later step such as

nucleotide incorporation or polymerase release, the templates would be

transcribed equally well. Finally, by allowing a variable mixing period following

the preincubation, it can be determined if a factor that is required for formation of

a transcription initiation complex acts stoichiometrically or catalytically. If a
factor acts catalytically there should be ample time for this activity to be carried

out on the second template and an increase in the level of transcription from the

second template will be observed. Alternatively, if the factor acts

stoichiometrically there will be little to no increase in second template

transcription due to sequestration of the transcription factor on the first template.

Extracts prepared from cells lacking SRB2 and SRB5 were used to perform

the template commitment assay. Two templates were employed that contained

identical promoters but differed in G-less cassette length. Specific transcripts of

375 and 350 nt are produced from the long (L) template, while transcripts of 275

and 250 nt are produced from the short (S) template.

We first performed an experiment to confirm that SRB2 is required for

efficient formation of a stable preinitiation complex (Figure 2A), as reported

previously (Koleske et al., 1992). The two templates were incubated separately

with nuclear extract and SRB5, and a limiting amount of SRB2 protein was

added to one of the two reaction mixtures. After a 60 min preincubation, the two

reactions were mixed together. Immediately after mixing and every 10 min
thereafter (for 30 min) aliquots were removed and nucleoside triphosphate

substrates were added to permit RNA synthesis. The reaction was then stopped
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after 7 min to minimize multiple rounds of transcription. Control experiments are
shown in lanes 1-4. When srb2A 1, srb5A 1 extracts were preincubated with

SRB2 and SRB5 along with either the long (L) template (lane 1) or short (S)
template (lane 2), transcripts of the predicted size were produced. When both

long and short templates were present in the preincubation mixture, similar

levels of long and short transcripts were obtained (lane 3). Virtually no

transcript was detected when both templates were preincubated with the extract

in the presence of SRB5 alone (lane 4). When SRB2 was added to the long

template mixture, long transcripts were predominant after the two extracts were

mixed (lanes 5-8). There was no appreciable increase in signal from the short

template after 30 min of mixing with the long template. Similarly, when SRB2

was added to the short template mixture, transcripts were produced

predominantly from the short template with no appreciable increase in signal

from the long template after 30 min of mixing (lanes 9-12).

To determine whether SRB5 is required for efficient preinitiation complex

formation, a similar experiment was performed (Figure 2B). This time, the two

templates were incubated separately with nuclear extract and SRB2, and a

limiting amount of SRB5 protein was added to one of the two reaction mixtures.

The remaining steps in the experiment were performed as described above.

The results of the controls (lanes 1-4) were identical to those in Figure 2A.

Lanes 5-12 show that transcripts were predominantly obtained from the
template that was preincubated in the presence of SRB5 and that there was no

significant increase in signal, even after 30 min, from the template incubated in

the absence of SRB5.

The template commitment results indicate that both SRB2 and SRB5 are

required for formation of a stable preinitiation complex and that SRB2 and

SRB5 act stoichiometrically in the initiation reaction. These conclusions are

based upon two observations. First, the template preincubated in the presence

of all necessary factors is preferentially transcribed, upon mixing, relative to the

other template that was incubated in the absence of either SRB2 or SRB5.

Second, following mixing, there is no appreciable increase in signal from the

template incubated in the absence of either SRB2 or SRB5. If SRB2 or SRB5

acted subsequent to initiation the templates would be transcribed equally well;
by allowing up to 30 min of incubation after template mixing, there was ample

time for any catalytic activity to be carried out on the second template. The

observation that there was little to no increase in second template transcription,
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Figure 2. SRB2 and SRB5 are Essential for Efficient Preinitiation Complex

Formation

(A) SRB2 is necessary for formation of a stable preinitiation complex. The

templates used in the template commitment assay each contained a CYC1

TATA element downstream of a single GAL4 binding site that directs expression

of a G-less transcript. The long (L) template (pGAL4CG-) contained a G-less

cassette of 400 nt and the short (S) template (pCT108) contained a G-less

cassette of 300 nt. The two templates were incubated separately with nuclear
extracts from srb2A 1, srb5A 1 cells (Z563), SRB5 (250 ng) and GAL4-VP16 (150

ng). A limiting amount of SRB2 protein (25 ng) was added to one of the two

reaction mixtures. After a 60 min preincubation, the two reactions were mixed

together and aliquots were removed at 10 min intervals and transcriptionally

competent complexes were assayed by the addition of nucleoside

triphosphates. The reactions were terminated after 7 min to minimize
reinitiation. Control experiments are shown in lanes 1-4. Extracts from srb2A 1,

srb5A 1 cells were preincubated with SRB2, SRB5 and GAL4-VP16 along with

S and L template individually (lanes 1-2) or in combination (lane 3). In lane 4

both templates were incubated in the presence of SRB5 and GAL4-VP16, but in

the absence of SRB2. After mixing of preincubation reactions, aliquots were

removed and nucleoside triphosphates were added at the indicated times

(lanes 5-12).

(B) SRB5 is necessary for formation of a stable preinitiation complex. The

template commitment assay was performed as in (A) except preincubations

were performed in the presence or absence of limiting amounts of SRB5 (75 ng)

and excess SRB2 (250ng).
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even after 30 min, indicates that SRB2 and SRB5 became stably associated

with the first template during the preincubation.

When the experiment in Figure 2A was performed using excess SRB2 in

the preinitiation step, transcription increased with time from the template that

was preincubated in the absence of SRB2. Similarly, when the experiment in

Figure 2B was performed using excess SRB5 in the preincubation step,

transcription increased with time from the template that was preincubated in the

absence of SRB5, indicating that much of the template preincubated in the

absence of SRB2 or SRB5 was still available for transcription and that SRB2

and SRB5 continue to be active for an extended period in the reaction mixture.

These data suggest that SRB2 and SRB5 are integral components of the

preinitiation complex.

SRB2, SRB4, SRB5, SRB6, TBP and RNA Polymerase II are
Components of a 1.2 Md Complex

The ability of mutations in SRB2, SRB4, SRB5 and SRB6 to specifically

suppress the growth phenotypes of cells with RNA polymerase II CTD

truncations indicates that the products of these genes are involved in the same

functional process as the CTD. Template commitment assays suggest that

SRB2 and SRB5 are components of the transcription initiation complex. These

functional studies led us to investigate whether the SRB proteins interact

physically with one another. Cells were constructed that produce functional,

epitope-tagged SRB4, SRB5 or SRB6 proteins, and transcriptionally competent
nuclear extracts were prepared from these cells. When SRB4, SRB5 or SRB6

were immunoprecipitated, SRB2 and 5-10% of the TBP in the extract were

coprecipitated, as revealed by immunoblotting (A. J. K., unpublished results).

This observation suggested that the four SRB proteins and TBP are

components of a multisubunit complex and led us to attempt purification of the

SRB proteins from wild-type cells by conventional chromatography.

Whole cell extracts from wild type cells were fractionated through a series

of seven chromatography columns, and rabbit polyclonal antibodies generated

against recombinant SRB2, SRB4, SRB5 and SRB6 proteins and against

recombinant TBP were used to monitor these proteins during purification
(Figure 3). Essentially all of the SRB2, SRB4, SRB5 and SRB6 protein in the

whole cell extract cofractionated through the seven purification steps.

Approximately twenty additional polypeptides, including a portion of the TBP in
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Figure 3. Purification of the SRB Complex.

(A) Fractionation scheme.

(B) Left panel. Silver stained 15% SDS polyacrylamide gel containing
approximately 1 g of protein from each fraction of the SRB complex

purification. M, markers. Lane 1, whole cell extract; lane 2, Biorex 70; lane 3,

DEAE-Sephacel; lane 4, hydroxylapatite; lane 5, Mono Q; lane 6, Mono S; lane

7, DEAE-Sephacel. The positions of RNA polymerase II subunits, SRB proteins,

TBP and additional polypeptides that are candidate subunits of the complex,

are indicated.

Right panel. Western blot analysis of 1 g of SRB complex protein from the

DEAE-Sephacel fraction loaded onto a 15 % SDS polyacrylamide gel and

probed with antibodies against SRB and TBP proteins. The antibody probes

were: lane 1, polyclonal anti-SRB2; lane 2, polyclonal anti-SRB4; lane 3,

polyclonal anti-SRB5; lane 4, polyclonal anti-SRB6; lane 5, polyclonal anti-

TBP.

(C) Western blot analysis reveals that SRB proteins, RNA polymerase II and

TBP coelute from a Mono S column. Semipurified SRB complex (0.8 mg total

protein) from the Mono Q column was loaded onto a Mono S column and eluted

with a 0.1 to 1.0 M gradient of potassium acetate as described in Experimental

Procedures. One twenty-fifth of the onput and flow-through material and one
fiftieth of every other eluate fraction were analyzed by Western Blot for the

presence of RPB1, SRB4, SRB5, SRB2, TBP, and SRB6. The SRB complex

eluted in a peak corresponding to approximately 0.4 M potassium acetate.
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the extract, cofractionated with the four SRB proteins. A subset of these

additional polypeptides were identified as RNA polymerase II subunits by

Western blot analysis.

The high molecular weight complex containing TBP, SRB proteins and

RNA polymerase II appears to be quite stable. The proteins in this complex

remain tightly associated in fractions exposed to a variety of strong ion

exchangers at salt concentrations up to 1.1 M potassium acetate and upon gel

filtration in buffers containing 400 mM potassium acetate. Figure 3C shows, for

example, the elution profile of TBP, SRB proteins and RNA polymerase II from

the mono S column. We estimate that the complex was purified approximately

10,000-fold by quantitative Western blot analysis. The complex appears to be

purified to near homogeneity, since the composition of the complex did not

change on chromatography subsequent to the Mono S column.

Gel filtration on Superose 6 revealed that these approximately two dozen

polypeptides comigrate as a complex at a position corresponding to a native

molecular mass of about 1.2 Md. The sum of the apparent molecular weights of

the polypeptide bands that appear to be components of the complex is 1.4 Md,

consistent with the size predicted by gel filtration. Since RNA polymerase II

accounts for approximately 0.5 Md, the remaining complex has a mass of 0.7-

0.9 Md. The components of the 1.2 Md complex have both SRB and RNA

polymerase activities in vitro. Figure 4 shows that the 1.2 Md complex can

complement a nuclear extract lacking SRB2 and SRB5. The specific activity of

native SRB2 and SRB5 in the complex was 100 fold that of recombinant SRB2

and SRB5 proteins in this assay. The RNA polymerase activity of the complex is

comparable to that obtained with similar amounts of the purified enzyme in

nonspecific transcription assays.

A CTD Column Specifically Retains a TBP-Containing Multisubunit

Complex
The presence of RNA polymerase II and SRB proteins in a TBP-containing

multisubunit complex, together with evidence that the CTD interacts with TBP

(Usheva et al., 1992), suggested that the SRB-TBP complex may physically

interact with RNA polymerase II via the CTD. To investigate this possibility,
yeast whole cell extract was loaded onto columns containing recombinant GST-

CTD fusion protein or GST alone, the columns were washed extensively, and

bound protein was eluted with low concentrations of guanidine hydrochloride
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Figure 4 The purified complex contains SRB2 and SRB5 activities.

Nuclear extracts from wild type (Z561) or srb2A 1, srb5A 1 cells (Z563) were

tested for their ability to synthesize specific transcripts from the pGAL4CG-

template in the presence of recombinant GAL4-VP16 fusion protein (150 ng).

Recombinant SRB2 and SRB5 were added to reactions as follows: lane 3, 500

ng SRB2; lane 4, 500 ng SRB5; lane 5, 62.5 ng of both SRB2 and SRB5; lane 6,

125 ng of SRB2 and SRB5; lane 7, 250 ng of SRB2 and SRB5; lane 8, 500ng of

SRB2 and SRB5. Purified SRB complex was added to reactions as follows:

lane 9, 250 ng; lane 11, 62.5 ng; lane 12, 125 ng; lane 13, 250 ng; lane 14, 500

ng. One gg of SRB complex contained approximately 20 ng of SRB2 and 25 ng

SRB5 as estimated by quantitative Western analysis with known amounts of

recombinant SRB2 and SRB5 proteins.
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Figure 5. A TBP-associated Complex Binds to the RNA polymerase II CTD.

Left panel. Silver stained 15% SDS polyacrylamide gel containing the TBP-

containing complex purified by conventional chromatography (lane 1) and

proteins in a TBP-containing complex purified by CTD affinity chromatography

(lane 2). Yeast whole cell extract was loaded on GST-CTD and GST control
(lane 3) columns, the columns were washed, and proteins were eluted with 0.3
M guanidine hydrochloride. The positions of RNA polymerase II subunits, SRB
proteins, TBP and additional polypeptides that are candidate subunits of the

complex purified by conventional chromatography are indicated.

Right panel. Western blot analysis of proteins isolated by CTD affinity

chromatography. The antibody probes were: lane 1, polyclonal anti-SRB2; lane

2, polyclonal anti-SRB4; lane 3, polyclonal anti-SRB5; lane 4, polyclonal anti-

SRB6; lane 5, polyclonal anti-TBP.
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(Figure 5). Guanidine hydrochloride (0.3 M) was used for elution because

proteins specifically bound to the GST-CTD column could not be eluted with
buffers containing high salt concentrations (2 M potassium acetate). The
proteins that specifically bound the GST-CTD affinity column include the four

SRB polypeptides, TBP and at least a dozen additional polypeptides, many of
which appear to be components of the TBP-containing multisubunit complex

purified by conventional chromatography.

The TBP-containing complex purified by CTD affinity chromatography
differs from the conventionally purified complex principally by lacking
stoichiometric amounts of RNA polymerase II subunits. The additional

differences in the components of the two complexes may be due to proteins that
bind to the CTD but are not components of the SRB complex purified by
conventional chromatography. Identifying the precise number of functional
components and determining whether some components are modified or
processed products of others will require further molecular genetic
characterization. Nonetheless, these data indicate that the four SRB proteins
and TBP are components of a multisubunit complex that interacts physically

with the RNA polymerase II CTD.

SRB-RNA Polymerase II Complex is an RNA Polymerase II
Holoenzyme

Additional western blot analysis and in vitro transcription assays

revealed that the large multisubunt complex purified by conventional
chromatography contained, in addition to SRB2, SRB4, SRB5, and SRB6
protein, RNA polymerase II and small amounts of TBP, the general transcription
factors yTFIIB, yTFIIF, and YTFIIH (Koleske and Young, 1994). This RNA

polymerase II holoenzyme is capable of site-specific initiation when
supplemented with purified yTFIIE and recombinant TBP and is responsive to
activators. TBP levels needed to be supplemented because the purest form of
the holoenzyme contains substoichiometric amounts of TBP.

SRB7, SRB8, and SRB9 are Components of the RNA Polymerase II
Holoenzyme

We investigated whether SRB7, SRB8, and SRB9 are also components
of this holoenzyme. Rabbit polyclonal antibodies were generated against
recombinant SRB7, SRB8, and SRB9. Column fractions from the final



118

purification step of the RNA polymerase II holoenzyme were tested in

reconstituted transcription reactions and subject to Western blot analysis with

antisera specific to RNA polymerase II and SRB proteins (Figure 6).

Transcription activity coeluted with RNA polymerase II and the SRB2, SRB4,

SRB5, SRB6, SRB7, SRB8, and SRB9 proteins.
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Figure 6. SRB2 and SRB4-SRB9 are components of an RNA polymerase II

holoenzyme.

(A) Semipurified holoenzyme that eluted from the Q-sepharose column

(Koleske and Young, 1994) was loaded onto a Mono S column and eluted with

a 0.1 - 1.0 M gradient of potassium acetate. The onput (OP) and flow-through

(FT) and a portion of every other fraction eluting between 0.1 and 0.9 M

potassium acetate were analyzed for holoenzyme activity (top panel). These

samples were also analyzed by Western blot for the presence of RNA

polymerase II and SRB proteins. This figure was prepared from digital replicas

of primary data scanned using a UMAX UC840 Max Vision digital scanner.

(B) Polypeptide composition of RNA polymerase II holoenzyme. One

microgram of purified holoenzyme was subjected to SDS-PAGE and stained

with silver. Proteins in the holoenzyme preparation that correspond in size to

subunits of RNA polymerase and SRB proteins are indicated. The sizes of

protein molecular weight standards are indicated in kd.
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Discussion
We have obtained genetic and biochemical evidence for functional and

physical interactions between the RNA polymerase II CTD and a high molecular

weight multisubunit complex containing TBP in yeast. Evidence for this TBP-

containing complex was obtained initially through a genetic selection and

subsequently through two independent biochemical purifications. Extragenic

suppressors of RNA polymerase II CTD truncation mutations has indicated that

at least ten gene products are involved in the same function as the RNA

polymerase II CTD (Nonet and Young, 1989; Koleske et al., 1992; Thompson et

al., 1993; Chapter 2). The proteins encoded by these SRB genes positively and

negatively regulate CTD function. Large multisubunit complexes containing a

subset of the SRB proteins and TBP could be purified from yeast, both by

conventional chromatography and by CTD affinity chromatography. The TBP-

containing complexes purified by the two procedures are similar except that the

complex purified by conventional chromatography also contains RNA

polymerase II.

Features of Yeast SRB-TBP Complex

A large multisubunit complex containing TBP, SRB proteins and RNA

polymerase II was identified using conventional purification approaches. RNA

polymerase II, SRB2, SRB4, SRB5, SRB6, and TBP cofractionated with

additional proteins through seven chromatographic purification steps. The

purified complex also contains SRB7, SRB8, and SRB9. This complex behaves

on gel filtration as if it has a native molecular mass of approximately 1.2 Md,

consistent with the combined molecular weights of the roughly thirty protein

components of the complex, which add up to 1.4 Md when assuming a subunit

stoichiometry of one. The complex appears to be quite stable; its components

remain tightly associated even when exposed to strong ion exchangers at salt

concentrations above 1 M. The specific activity of SRB2 and SRB5 in the

purified complex is 100-fold higher than that of recombinant SRB2 and SRB5

proteins and RNA polymerase II within the purified complex has a specific

activity that is comparable to that of purified RNA polymerase II in promoter-

independent transcription elongation assays. These data suggest that the
purified complex represents a physiologically relevant association between

TBP, RNA polymerase II and SRB proteins. Three features of the complex - its
high molecular weight, stability in high salt, and association with TBP - are
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characteristic of some multisubunit TFIID complexes described in mammalian

and Drosophila cells (Samuels et al., 1982; Conaway et al., 1991; Zhou et al.,

1992).

Yeast cells contain approximately 10,000 genes, and at any one time a

portion of these genes contain a transcription initiation complex assembled at

the promoter. Quantitative Western blot analysis suggests that there are about

1000 molecules per cell of each of the SRB proteins and that essentially all of

the SRB proteins in yeast cell lysates are incorporated into the SRB-TBP

complex (Koleske and Young, 1994). The complex contains a molecule of RNA

polymerase II, which accounts for approximately 2% of the total RNA

polymerase II found in these cells; the rest of the enzyme may be actively

engaged in transcript elongation or in recycling. These data suggest that

transcription initiation complexes containing the SRB proteins may occur at as

many as 1000 yeast promoters at any one time. It is not yet clear whether the

SRB complex is involved in transcription initiation at all promoters utilized by

RNA polymerase II.

RNA polymerase II appears to interact with the SRB-TBP complex via the

CTD. A TBP-containing complex lacking RNA polymerase II can be purified by

its ability to bind tightly to the CTD. The CTD was previously shown to interact

directly with TBP (Usheva et al. 1992), and we have confirmed these results.

Thus, the interaction between the CTD and the SRB-TBP complex probably

involves a physical interaction with TBP itself. However, components of the

complex other than TBP may also interact directly with the CTD. In addition,

some components of the conventionally purified complex may interact with RNA

polymerase II at sites other than the CTD; this may account for the some of the

differences in polypeptides associated with the SRB-TBP-RNA polymerase II

complex and those that bind the CTD column.

The mammalian RNA polymerase II CTD also appears to interact

functionally with high molecular weight forms of TFIID. Assembly of a
mammalian initiation complex with native rat TFIID(t) can be blocked by

monoclonal anti-CTD antibodies but is not blocked if initiation complexes are

assembled with recombinant TBP (Conaway et al., 1992). These data imply

that mammalian TBP-associated proteins affect the interaction between the

CTD and TBP when the native form of TFIID is employed. This interpretation is

consistent with our observation that SRB components of the yeast SRB-TBP

complex influence CTD function in vivo.
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Are the yeast SRBs homologues of mammalian and Drosophila TAFs?
At least two criteria have been used to define TBP-Associated Factors. TBP-
Associated Factors can be described simply as proteins tightly associated with
TBP. Although SRB2 can interact directly with TBP (Koleske et al., 1992), the
substoichiometric amounts of TBP in the SRB-TPB-RNA polymerase II complex

suggest that the interactions with TBP are not as strong as the interactions
between mammalian and Drosophila TAFs and TBP. Some mammalian and
Drosophila TBP-Associated Factors can act as coactivators; coactivators are
necessary for high levels of activated but not basal transcription in vitro. While it
is not clear that all TBP-Associated Factors have coactivating activity, some
investigators equate TAFs with coactivating factors. It is not yet clear whether
components of the SRB-TBP complex are coactivators. SRB2 and SRB5
themselves affect both activated and basal transcription in a crude in vitro
transcription system, in contrast to the criteria attributed to coactivators which
have been defined using partially purified factors. Whether or not the yeast
SRBs are "coactivators", the data indicate that SRB proteins are involved in the
regulation of transcription initiation, as the they are required to obtain fully
activated levels of transcription from specific genes in vivo (Koleske et al.,
1992). The SRB proteins identified thus far do not appear to be among the
proteins that are essential for specific transcription initiation in a defined yeast in
vitro transcription system (R. Kornberg, personal communication). However, the
use of purified factors for reconstituted transcription in vitro may obviate a
requirement for factors, like SRB proteins, that play important roles in
transcription initiation in vivo.

An important aspect of the yeast multisubunit complex described here is
the genetic and biochemical evidence indicating it is physiologically significant.
Further analysis has identified this multisubunit complex as an RNA polymerase
II holoenzyme based upon its ability to selectively initiate transcription when
supplemented with yTFIIE and TBP and its responsiveness to activators (Figure
7) (Koleske and Young, 1994). The holoenzyme does not contain detectable
amounts of DNA (A.J.K., unpublished). These data, combined with the fact that
the holenzyme is highly stable, suggests that assembly of the complex occurs
independent of promoter DNA in vivo. Indeed, it is possible that the
holoenzyme is brought to the initiation complex independent of TBP and the
substoichiomentric amounts of TBP in the holoenzyme reflects a weaker,
transient association occurring in the absence of DNA. Re-assembling the
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holoenzyme in vitro from purified components would demonstrate that at least

the holoenzyme can form in the absence of DNA. A recent report is consistant

with the hypothesis that the RNA polymerase II holoenzyme assembles

independent of promoter DNA in vivo. In the absence of DNA, a

transcriptionally active assembly of purified RNA polymerase II, TFIIB, TFIIE,

TFIIF, and TFIIH from rat liver can be immunoprecipitated with an antibody

directed against the RNA polymerase II CTD (Serizawa et al., 1994).

The TBP-Containing Complex as Central Processor
The RNA polymerase II CTD has been implicated in the response of the

transcription apparatus to positive and negative regulatory signals at promoters

in vivo (Allison and Ingles, 1989; Scafe et al., 1990; Peterson et al., 1991;

Buermeyer et al., 1992). CTD truncations magnify transcriptional defects in a

variety of GAL4 activation mutant strains, whereas extension of the CTD

suppresses these defects (Allison and Ingles, 1989). Similarly, there is a

progressive loss in the ability to induce transcription of specific yeast genes,

such as GAL 10, as the CTD is truncated from 27 to 11 repeats; sensitivity to

CTD truncations map to the upstream activating sequences (UASs) (Scafe et

al., 1990). Transcription of the TATA-less mammalian promoter of the

dihydrofolate reductase gene in vitro is CTD dependent, and deletion analysis

suggests that the Spl binding site and the Initiator element confer the

requirement for the CTD (Buermeyer et al., 1992). Elimination of at least one

negative regulatory factor, SIN 1, can partially suppress transcriptional defects

due to CTD truncation (Peterson et al., 1991).

A large multisubunit complex containing TBP could act as a central

processor to receive and act on both positive and negative transcriptional

regulatory signals. Some TAF proteins from higher eukaryotes can function as

transcriptional coactivators, apparently by serving as a link between DNA-

binding activator proteins and TBP. Additional components of TFIID may

respond to negative regulatory signals. In yeast, the CTD and SRB proteins

have been implicated in the response of the transcription apparatus to

regulatory signals at promoters in vivo and in vitro (Allison and Ingles, 1989;

Scafe et al., 1990; Peterson et al., 1991; Liao et al., 1991; Koleske et al., 1992).

The SRB proteins have positive and negative influences on CTD activity

(Koleske et al., 1992; Thompson et al., 1993; Chapter 2). The presence of SRB

proteins in the RNA polymerase II holoenzyme that have opposite influences on
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CTD activity supports the idea that such a large multisubunit complex may
receive and respond to both positive and negative transcriptional regulatory
signals. Thus, the SRBs, together with TBP (TFIID), may process multiple

signals at promoters and govern the decision to initiate transcription.
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Figure 7. Holoenzyme model.

The initiation factors b, e, and g (yTFIIH, yTFIIB, and yTFIIF) and the SRB

proteins are tightly associated with RNA polymerase II to form a holoenzyme.

This holoenzyme and factor a (yTFIIE) associate with a complex of TATA-

binding protein (TBP) and DNA to form an initiation complex. The SRBs may

influence the stability of the holoenzyme or the recruitment of the holoenzyme

into a preinitiation complex, possibly in response to regulatory factors.
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Experimental Procedures

Genetic Manipulations
Yeast strains and plasmids are listed in tables 1 and 2, respectively.

Several strains were constructed for producing yeast nuclear extracts for in vitro

transcription assays. Z425 was mated to Z560 and tetrads dissected to produce
the wild-type Z561, srb5A 1::URA3hisG strain Z562 and srb2A 1::HIS3,

srb5A 1::URA3hisG strain Z563. Z562 and Z563 display identical temperature-

sensitive, cold-sensitive and slow-growth phenotypes.

DNA Methods

DNA manipulations were performed according to Sambrook et al. (1989).

Site-directed mutagenesis was performed as described in Kunkel et al. (1987).

PCR amplifications to produce pSL307 (SRB8 in pET-3a) were performed with
Taq DNA polymerase (Perkin Elmer) in 1002 of buffer (provided by the

manufacturer) supplemented with 1.0 mM MgCI2 and 200 M dNTP for a total of

25 cycles. Primer concentrations were 0.5 pM with 50 ng of DNA and cycling

was at 940C (1.0 min), 500C (1.0 min) and 720 C (2.5 min).

Purification of Recombinant Proteins
Purification of SRB2 has been previously described (Koleske et al.,

1992). SRB5, SRB7, and a portion of SRB8 (amino acids 868 to 1226) were

purified from the bacterial strain BL21(DE3) pLysS (Studier and Moffatt, 1986)

carrying the plasmids pCT98, pCH34, and pSL307, respectively, in the same

manner SRB2 was purified. SRB4, SRB6, and a portion of SRB9 (aa 45 to 501)

were purified as fusions to glutathione-S-transferase from DH5a carrying

pCT107, pCT116, and pCH64, respectively, according to method of Smith and

Johnson (1988). GAL4(1-147)-VP16 protein was purified as described by

Chasman et al. (1989) from XA90 carrying pJL2. GST-fusion proteins for CTD
affinity purification were purified from DH5a carrying pDC127 or pDC130 by

affinity chromatography on glutathione agarose (Sigma) and Ni-NTA agarose

(Qiagen), and then by ion-exchange chromatography on SP Sepharose

(Pharmacia) to an approximate purity of 95%.

In vitro Transcription
Promoter-dependent in vitro transcription using nuclear extracts was

carried out as described by Liao et al. (1991). 300 ng of template were used for
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promoter-dependent in vitro transcription reactions, except the template

commitment assays in which 600 ng of template were used per reaction.
Optimal activity was obtained using 100 gg of Z561 protein, 150 glg of Z562

protein and 150 ug of Z563 protein. Transcripts were quantified using a Fuji

Bio-image analyzer. Promoter-independent transcription assays were

performed according to Nonet et al. (1987). Purified SRB complex used in in

vitro transcription assays was purified as described below. Eluate from the

second Biorex 70 column was dialyzed in Buffer A(50) and concentrated four

fold by centrifugation through Centricon 10 filter units (Amicon). In vitro

transcription assay for holoenzyme activity was performed as described

(Koleske and Young, 1994).

Purification of SRB Complex
Yeast strain BJ926 (Buchman et. al., 1988) was grown at 300C to OD600

of 4.0 to 4.5 in 1X YNB medium (0.15% Difco yeast nitrogen base, 0.5%
ammonium sulfate, 200 FM inositol, 2% glucose). The level of the SRB complex

appears to be elevated in cells grown in minimal medium (A.J.K., unpublished

results), and this observation was exploited to facilitate purification of the TBP-

containing SRB complex. Cells were collected by centrifugation and washed in

ice-cold buffer (20 mM HEPES KOH pH 7.5, 10% glycerol, 50 mM potassium

acetate, 1 mM DTT, and 1 mM EDTA). Whole cell extract was prepared from

480 g of cell paste as described by Sayre et al. (1992). Protease inhibitors used
where indicated were: 1 mM PMSF, 2 mM benzamidine, 2 M pepstatin A, 0.6

M leupeptin, 2 g/ml chymostatin, 5 ig/ml antipain HCI (Sigma).

During purification, the SRB complex was monitored by Western blot

using antibodies to SRB2, SRB4, SRB5, and SRB6. Silver staining of gels was

performed as per Blum et al. (1987) with minor modifications. The gels were

fixed for a minimum of 4 hours and the impregnation with silver nitrate was

performed for 40 minutes.

Whole cell extract (8 g protein in 390 ml) was diluted 1:5 in Buffer A (20%

glycerol, 20 mM Hepes KOH pH 7.5., 1mM DTT, 1 mM EDTA and protease

inhibitors). The extract was loaded onto 5 cm x 17 cm Biorex 70 (Biorad)

column at a flow rate of 5 ml/min. The column was washed with Buffer A (100)
(Buffer A containing 100 mM potassium acetate) until no further protein could be

eluted from the column. The column was then eluted with step washes of Buffer

A (300) and Buffer A (600). The SRB complex eluted in the 600 mM potassium
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acetate step. The Biorex 70 (600) fraction (250 mg in 120 ml) was diluted 1:6

with Buffer B (20% glycerol, 20 mM Tris-acetate pH 7.9, 1 mM DTT, 1 mM EDTA,

0.01% NP40 and protease inhibitors) and was loaded onto a 2.5 cm x 8.5 cm

DEAE-Sephacel (Pharmacia) at a flow rate of 4 ml/ min. The column was

washed extensively with Buffer B (100) and then eluted with step washes of

Buffer B (400) and Buffer B (650). The SRB complex eluted from this column in

the 400 mM potassium acetate step. The DEAE-Sephacel (400) fraction (48 ml)

was dialyzed into Buffer C (20% glycerol, 10 mM potassium phosphate pH 7.7,

100 mM potassium acetate, 1 mM DTT, 0.25 mM EDTA, 0.01% NP40 and

protease inhibitors). The dialysate was spun in Sorvall SS34 rotor at 10,000

rpm for 20 min and the supernatant (50 mg protein in 50 ml) was loaded onto a

1.5 x 6.5 cm Bio-Gel HTP Hydroxylapatite at a flow rate of 1 m/min. The column

was washed with 20 ml of loading buffer and eluted with a 120 ml linear

gradient of Buffer C to Buffer D (Buffer D is identical to Buffer C except that it

contains 300 mM potassium phosphate pH 7.7). The SRB complex eluted from

this column in a peak corresponding to 68 mM to 112 mM potassium

phosphate. The 20 ml of eluate from the Bio-Gel HTP (Biorad) was dialyzed

against Buffer E (same as Buffer B except 0.25 mM EDTA) containing 100 mM

potassium acetate. The dialyzed material was spun in a Sorvall SS34 rotor at

10,000 rpm for 20 min and the supernatant (11 mg protein in 20 ml) was loaded

onto a Mono Q HR 5/5 FPLC column (Pharmacia) and eluted with a 15 ml linear

gradient from Buffer E (100) to Buffer E (2000) at a flow rate of 0.5 ml/min. The

SRB complex eluted from this column at 0.95 M potassium acetate. Peak

fractions containing SRB activity were diluted 1:6 with Buffer F (same as Buffer

A except 0.25 mM EDTA). This material (1.1 mg protein in 10 mis) was loaded

onto a Mono S HR 5/5 FPLC column (Pharmacia) and eluted with a 10 ml

gradient from Buffer F (100) to Buffer F (1000) at a flow rate of 0.5 ml/min. The

SRB complex eluted from this column at 450 mM potassium acetate. This

material (0.6 mg in 8 ml) was diluted 1:4 in Buffer E (0) and loaded onto a 1.5

cm x 1.5 cm DEAE-Sephacel column and eluted with a 20 ml gradient from

Buffer E (100) to Buffer E (1000) at a flow rate of 0.3 ml/min. The SRB complex

eluted from this column at 400 mM potassium acetate. (Further chromatography

revealed that this material was approximately 90% pure). This material (0.5 mg
protein in 2 ml) was diluted 1:4 in Buffer F (0) and loaded onto a 1.5 cm x 1 cm

Biorex 70 column and was eluted with a 10 ml gradient from Buffer F (100) to

Buffer F (1000). The SRB complex eluted from this column at 600 mM



132

potassium acetate. The SRB complex eluted from this column was

approximately 95% pure. The total yield of the SRB complex was 0.5 mg and

purification was estimated to be 10,000 fold.

The SRB complex was subjected to gel filtration chromatography in

Buffer F (400) on a Superose 6 HR 10/30 FPLC column (Pharmacia). The

estimated molecular size of the SRB complex was determined by extrapolation

of a calibration curve performed with thyroglobulin (669 kD), apoferritin (443

kD), bovine serum albumin (132 kD, 66 kD), carbonic anhydrase (29 kD).

CTD Affinity Purification
Whole cell extracts were prepared by adding 1.6 liters of 4% glucose to

800 g of Red Star Dry Yeast, incubating the mixture at room temperature for 45

minutes, and adding 800 ml of disruption buffer [1.2M ammonium sulfate, 0.16M

K-HEPES pH 7.3, 4 mM DTT, protease inhibitors (as in the conventional

purification above)]. 200 ml aliquots were frozen dropwise in liquid nitrogen

and blended for 5 to 10 minutes in a Waring blender. After thawing at 550C,

viscosity was reduced by brief blending. Disrupted cells were centrifuged 30

min at 12,000 rpm in a Sorvall GSA rotor, and the clarified supernatant was

filtered through cheesecloth. One-twentieth volume of a 10% solution of

Polymin P was added, the extract was incubated on ice for 30 min, and the

solution was centrifuged 30 min at 12,000 rpm in a Sorvall GSA rotor. The

supernatant was collected and brought to 70% saturation with solid ammonium

sulfate and stored at 4°C.

An aliquot of the suspension was removed from storage and centrifuged

at 12,000 rpm in a Sorvall GSA rotor for 30 minutes. The pellet was

resuspended in 1.5 volumes of 1X Transcription Buffer (Liao et al., 1991) +

protease inhibitors and centrifuged at 17,000 rpm in a Sorvall SS-34 rotor for

20 min. The supernatant was then diluted 1:6 in 1 X Transcription Buffer +

protease inhibitors, and centrifuged at 12,000 rpm in a Sorvall GSA rotor for 30

minutes. The supernatant was incubated with 10g/100 ml of Cell Debris

Remover (Whatman Labsales) for 15 min. The Cell Debris Remover was
removed by centrifugation and filtration. The cleared supernatant was then

centrifuged at 40,000 rpm in a Beckman 50.2Ti rotor for 1 to 2 hours.

GST fusion proteins were coupled to Pharmacia Activated CH

Sepharose according to manufacturer's directions at a concentration of 5 mg

protein/ml matrix. The affinity matrices were washed with 6M guanidine
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hydrochloride followed by 1X Transcription Buffer before use. 20 ml of yeast

whole cell extract were mixed with 1/10 volume of 1X Transcription Buffer +
10% Triton X-100 and applied to 100 gl of either GST-Sepharose or GST-CTD

Sepharose. The columns were washed with 20 ml of 1X Transcription Buffer +

1% Triton X-100, followed by 5 ml of 1 X Transcription Buffer without Triton X-

100. Bound proteins were eluted with 1 X Transcription Buffer containing

various concentrations of guanidine hydrochloride.

Western Blot Analysis
Western blotting of fractions was performed with polyclonal rabbit antisera

raised against TBP, SRB2, GST-SRB4, SRB5, GST-SRB6, SRB7, SRB8 (aa

868 to 1226), and GST-SRB9 (aa 45 to 501) by standard methods (Harlow and

Lane, 1989). RPB1 was detected via the CTD with 8WG16 monoclonal

antibody ascites fluid (Thompson et al., 1989). In all cases, bands were

visualized by secondary probing with alkaline phosphatase conjugate

secondary antibodies (Promega).



Table 1. Yeast Strains

Strain Alias

BJ926

Z425

Z560

Z561

Z562

Z563

YTK73

CTY148

CTY151

CTY153

CTY154

Genotype

Mat a/Mat a trp 1l/RP1 prcl-126/prcl-126 pep4-3/pep4-3 prb l-

1122/prbl-1122 canl/can 1

Mat a his3A200 leu2-3,112 ura3-52 trplA 1 lys2-801 srb2A 1::HIS3

Mat a ura3-52 his3A200 leu2-3,112 srb5A 1::URA3hisG

Mat a ura3-52 his3A200 leu2-3,112 lys2-801

Mat a ura3-52 his3A200 leu2-3,112 lys2-801 srb5A 1::URA3,hisG

Mat a ura3-52 his3A200 leu2-3,112 lys2-801 srb2A 1::HIS3

srb5A 1::URA3hisG

134
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Table 2. Plasmids

Plasmid Description

pCH34 SRB7 in pET-3a (Studier and Moffat, 1986). Ndel site at ATG created by site directed

mutagenesis followed by insertion of SRB7 into Ndel of pET-3a.

pCH64 SRB9 (encoding aa 45 to 501) in pGEX-1 (Smith and Johnson, 1988). 1.4 kb EcoRI

fragment from pCH47(Thompson, 1994) encoding aa 45 to 501 ligated to EcoRI of

pGEX-1.

pCT98 pET-3a (Studier and Moffat, 1986) with SRB5. Ndel site at ATG of SRB5 created by

ligation of SRB5 EcoRI-BamHI from pCT39 (Thompson et al., 1993) with EcoRI-BamHI

of pBSIISK(-) (Stratagene) followed by site directed mutagenesis. Ndel-

EcoRl(blunt)SRB5 containing fragment was then ligated with Ndel-BamHl(blunt)

digested pET-3a.

pCT107 pGEX-2T (Smith and Johnson, 1988) with GST-SRB4 fusion. Ndel site at ATG of

SRB4 created by ligation of SRB4 Sall-Xbal from pCT15 (Thompson et al., 1993) with

Sall-Xbal of pBSIISK(-) (Stratagene) followed by site directed mutagenesis.

Ndel(partial/blunt)-SnaBI SRB4 containing fragment was then ligated with BamHl(blunt)

digested pGEX-2T.

pCT108 pGAL4CG- (Lue et. al., 1989) with 300 bp G-less cassette created by ligating Smal G-

less cassette from pJJ460 (Woontner et al., 1991) with Smal vector fragment of

pGAL4CG-.

pCT1 16 pGEX-2T (Smith and Johnson, 1988) with GST-SRB6 fusion. Ndel site at ATG of

SRB6 created by ligation of SRB6 Sall-Xbal from pCT40 (Thompson et al., 1993) with

Sall-Xbal of pBSIISK(+) (Stratagene) followed by site directed mutagenesis.

Ndel(blunt)-Xbal SRB6 containing fragment was then ligated with BamHl(blunt)

digested pGEX-2T.

pDC127 pQE9 (Qiagen) with 6xHIS-GST-12CA5 fusion. An oligonucleotide encoding the

12CA5 epitope flanked by a Bglll and a BamHI site was cloned into same of pSP72

(Promega) followed by insertion into BamHI of pGEX-2T (Pharmacia). GST-12CA5

fusion was amplified by PCR and inserted into BamHI-Sall digested pSP72. GST-

12CA5 fusion was then cloned into pQE9.
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pDC130 pQE9 (Qiagen) with 6xHIS-GST-12CA5-CTD fusion. A Kpnl RPB1 containing

fragment from pV14 (Nonet, et. al., 1987b) was inserted into same of pSP72

(Promega) followed by insertion of the BamHl fragment encoding the CTD and 98 N-

terminal adjoining amino acids of RPB1 into pDC127.

pSL307 SRB8 (encoding aa 868 to 1226) in pET-3a (Studier and Moffat, 1986). DNA

encoding aa 868 to 1226 was PCR amplified and inserted into BamHl of pET-3a.
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Chapter 4

General Requirement for RNA Polymerase II Holoenzyme In Vivo
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Summary

The RNA polymerase II holoenzyme is a multisubunit complex containing

RNA polymerase II, a subset of general transcription factors, and SRB

regulatory proteins. We reasoned that because the holoenzyme contains most

of the SRB protein in the cell, the fraction of genes that employ the RNA

polymerase II holoenzyme in vivo could be investigated by studying the effects

of a temperature-sensitive (ts) mutation in the SRB4 gene on transcription of

mRNA. Upon transfer to the restrictive temperature, there is a rapid and general

shutdown of mRNA synthesis in srb4 mutants. These findings indicate a

general requirement for SRB4 and the RNA polymerase II holoenzyme in

transcription.
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Introduction

Selective transcription initiation by RNA polymerase II requires the action

of at least five general transcription factors: TATA-binding protein (TBP), TFIIB,

TFIIE, TFIIF, and TFIIH (reviewed in Sawadogo and Sentenac, 1990; Zawel and

Reinberg, 1992; Conaway and Conaway, 1993). These factors and RNA

polymerase II can assemble in an ordered fashion onto promoter DNA in vitro

(Van Dyke et al., 1988; Buratowski et al., 1989; Sawadogo and Sentenac, 1990;

Flores et al., 1992; Zawel and Reinberg, 1992; Conaway and Conaway, 1993).

We recently described a large multisubunit complex containing RNA

polymerase II, the general transcription factors yTFIIB, yTFIIF, and yTFIIH, and

seven SRB proteins (SRB2, SRB4, SRB5, SRB6, SRB7, SRB8, SRB9)

(Thompson et al., 1993; Koleske and Young, 1994; Chapter 3). This RNA

polymerase II holoenzyme is capable of site-specific initiation when

supplemented with yTFIIE and TBP and is responsive to activators (Koleske and

Young, 1994). We proposed that the RNA polymerase II holoenzyme is a form

of the enzyme that is readily recruited to promoters in vivo. However, because

only a small fraction of RNA polymerase II in cells is found in the holoenzyme, it

was unclear what fraction of genes require the holoenzyme for transcription

initiation.

We now report a set of experiments demonstrating a general requirement

for the SRBs in RNA polymerase II transcription in vivo. These data, combined

with the observation that most of the SRB protein in cells is contained within the

holoenzyme (Thompson et al., 1993; Koleske and Young, 1994), argue that the

RNA polymerase II holoenzyme is the form of the enzyme recruited to most

promoters in the cell.
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Results

Conditional srb4 Mutant Rapidly Ceases Growth

Conditional ts mutations in the transcription initiation apparatus have

previously been used to investigate the influence of specific factors on mRNA

synthesis in vivo and to study the fraction of promoters that require these factors

in the yeast Saccharomyces cerevisiae (Nonet et al., 1987; Cormack and

Struhl, 1992; Guzder et al., 1993; Qui et al., 1993). This approach, in which

transcript levels are monitored in cells undergoing a shift to the restrictive

temperature, was followed with cells containing a recessive ts mutation in the

SRB4 gene. SRB4 is essential for cell viability (Thompson et al., 1993) and we

found that mutations in this gene can produce a very tight ts phenotype. An

especially stringent mutant, srb4-138, was chosen for this study. Mutant cells

grew normally at the permissive temperature of 300C but failed to grow at the

restrictive temperature of 370C (Figure 1A). Upon shifting a growing culture of

srb4-138 cells to the restrictive temperature, cell growth rapidly decreased,

failing to double before growth ceased altogether (Figure 1 B).

mRNA Levels Rapidly Decline in Conditional srb4 Mutant Cells at

the Restrictive Temperature

The effect of the srb4-138 mutation on mRNA synthesis was investigated

by growing wild-type and mutant cells at the permissive temperature, then

shifting the cultures to the restrictive temperature. Aliquots were taken

immediately before and at various times after the shift and total RNA was

prepared. The amount of poly(A)+ mRNA for each sample was determined by

slot blot analysis (Figure 2). Equal amounts of total RNA were blotted and

probed with labeled poly(T). The standardization of samples with respect to

total RNA is adequate to permit comparisons of mRNA accumulation because

the vast majority of the RNA in a typical eukaryotic cell is composed of highly

stable rRNA (75%) and tRNA (15%), while less than 5% of the total RNA is

composed of relatively unstable mRNA (Brandhorst and McConkey, 1974).

Following the shift to the restrictive temperature, mRNA levels decline

dramatically and rapidly in mutant cells relative to wild-type, indicating a
general defect in RNA polymerase II transcription at the restrictive temperature
in srb4-138 cells.
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Figure 1. Conditional srb4 mutant rapidly ceases growth.

(A) Growth of isogenic wild-type (Z579) and srb4-138 (Z628) strains on YPD

plates at 300C (left panel) and 370C (Right panel).

(B) Growth of wild-type and srb4-138 strains in YPD medium as determined by
measuring OD600 at various times. At the time indicated by the arrow, cultures

growing at 300C were divided and half the culture was left at 300C (left panel)

while the other half was shifted to 370C (right panel).



/-o

Time at 370 C
0' 15' 30' lh 2h 4h

srb4-138 I I 

0 1 2 3 4

Hours at 370C

1

z
Z
E1

0
.

0

0
E

0
(r
U)

-



151

Figure 2. mRNA levels rapidly decline in srb4-138 cells at the restrictive

temperature.

At the times indicated, immediately before and following the shift from 300C to

370C, aliquots of cells were removed and total RNA prepared. Equivalent
amounts of RNA (2 g) were slot blotted, in duplicate, onto nitrocellulose and

the filter probed with [32 P]poly(T) (top panel). The results were quantified using

a Fuji Bio-lmage Analyzer and plotted (lower panel). Each point represents the

average value of the duplicate slots, normalized to a value of 100 for wild-type

cells at time 0'.
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Conditional srb4 Mutant Rapidly Ceases mRNA Synthesis

The defect in RNA polymerase II transcription was examined in more

detail by investigating the effect of a temperature shift on synthesis of selected

mRNAs. Total RNA from wild-type and mutant cells was hybridized with an

excess of labeled oligonucleotides complementary to specific transcripts, and

the resulting products were treated with S1 nuclease and subjected to

denaturing polyacrylamide gel electrophoresis (Figure 3). The nine messages

selected for analysis, ACT1, CDC7, DED1, HIS3, MET19, RAD23, STE2, TCM1

and TRP3, represent a broad spectrum of genes affecting diverse cellular

processes. Since this approach measures steady-state levels of mRNAs, the

absence of new mRNA synthesis would lead to reduced transcript levels, the

rate of reduction reflecting the mRNA decay rate. In srb4 mutant cells, the levels

of all of the mRNAs declined after temperature shift at a rate that correlates well

with decay rates observed by other investigators (Nonet et al., 1987; Herrick et

al., 1990; Cormack and Struhl, 1992; Guzder et al., 1993; Qui et al., 1993). In

contrast, the data indicate that these transcripts continue to be synthesized in

wild-type cells throughout the entire 4-hour period at 370C. These results are

consistent with those obtained by analyzing total poly(A)+ RNA and indicate a

general shutdown in mRNA synthesis in srb4 mutant cells at the restrictive

temperature.

Effect of Loss of SRB4 Activity on Transcription by RNA

Polymerases I, II, and III

The SRBs were identified by the ability of mutations in these genes to

specifically suppress conditional and auxotrophic phenotypes associated with

truncations of the carboxy-terminal domain (CTD) of RNA polymerase II (Nonet

and Young, 1989; Koleske et al., 1992; Chapter 2) and the vast majority of SRB

protein in the cell is tightly associated with RNA polymerase II (Thompson et al.,

1993; Koleske and Young, 1994). Nonetheless, we investigated the influence

of the srb4-138 mutation on rRNA synthesis by RNA polymerase I and tRNA

synthesis by RNA polymerase Ill. tRNAs are extremely stable but their

transcripts contain introns which are rapidly processed with half-lives of less

than 3 minutes (Knapp et al., 1978; Cormack and Struhl, 1992). SI nuclease

analysis with an oligonucleotide complementary to the 5' intron-exon junction of

the tryptophan family of tRNA transcripts was used to measure RNA polymerase
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III activity (Figure 4). There is no appreciable effect on the RNA polymerase III

synthesis of tRNA by the srb4-138 mutant.

The shutdown of RNA polymerase I rRNA synthesis under conditions

when mRNA synthesis is affected is well established and is thought to be a

consequence of a stringent response (Nonet et al., 1987; Cormack and Struhl,

1992; Guzder et al., 1993; Qui et al., 1993). As expected, rRNA synthesis is

significantly reduced in srb4-138 mutant cells following the shift to the restrictive

temperature (Figure 4). rRNA synthesis was investigated using S1 nuclease

analysis with an oligonucleotide complimentary to the 3' processing junction of

the short lived ribosomal precursor RNA (Kempers-Veenstra et al., 1986;

Cormack and Struhl, 1992). This decrease in RNA polymerase I activity is

similar to that observed in cells containing the ts rpbl-1 allele of RPB1, the gene

encoding the largest subunit of RNA polymerase II (Figure 4) (Nonet et al.,

1987; Cormack and Struhl, 1992). RNA polymerases II and III activities in srb4-

138 and rpbl-1 cells are also nearly identical. For both of these mutants the

synthesis of MET19 and RAD23 transcripts is dramatically reduced while the

synthesis of tRNA is largely unaffected (Figure 4).
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Figure 3. Conditional srb4 mutant rapidly ceases mRNA synthesis.

At the times indicated, immediately before and following the shift from 300C to

370C, aliquots of cells were removed and total RNA prepared. Equivalent

amounts of RNA were hybridized with an excess of 3 2 P-labeled oligonucleotide

complementary to the indicated transcripts, treated with S1 nuclease, and

subjected to denaturing polyacrylamide gel electrophoresis. The HIS3

oligonucleotide is complementary to the 5' end of the message and detects

transcripts initiated from the +1 and +13 sites. The transient decrease in the

levels of some of the transcripts from wild-type cells is due to a mild heat shock

response (Nicolet and Craig, 1991).
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Figure 4. Effect of loss of SRB4 activity on transcription by RNA polymerases I,

II, and Ill.

At the times indicated, immediately before and following the shift from 300 C to

370C, aliquots of cells were removed and total RNA prepared. Equivalent

amounts of RNA were hybridized with an excess of 32 P-labeled oligonucleotide

complementary to the indicated transcripts, treated with S1 nuclease, and

subjected to denaturing polyacrylamide gel electrophoresis. Z676 (rpbl-1) is

an isogenic strain of Z579 (WT) and Z628 (srb4-138).
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Discussion
The general cessation of mRNA synthesis in srb4-138 cells is likely to be

a direct result of loss of SRB4 activity. The possibility that rapid cessation of

global mRNA synthesis was due to an indirect effect, such as a general

shutdown in metabolic activity as cells stopped growing, was addressed by

Cormack and Struhl (1992). These investigators performed a similar set of

temperature-shift experiments using a strain containing a ts mutation in CDC28,

the gene encoding the cyclin-associated protein kinase that mediates entry into

the cell cycle. No appreciable effects on general RNA polymerase II

transcription were observed. Another possibility, that the cessation of mRNA

synthesis is due to loss of a highly unstable protein that is encoded by an

unstable RNA whose synthesis is dependent on SRB4, can also be eliminated.

Cormack and Struhl examined the effects of cycloheximide, a potent inhibitor of

cellular translation, on transcription of a subset of messages in wild-type cells

and found no effect on the synthesis of these transcripts. If there was a highly

unstable factor required for general mRNA synthesis in the presence of

cycloheximide mRNA synthesis should have rapidly ceased. A third possibility,

that the general shutdown in mRNA synthesis is due to the small fraction of

srb4-containing RNA polymerase II molecules blocking promoters at the

restrictive temperature, thereby preventing other polymerase molecules from

binding, is also unlikely. An SRB4 mutant that resulted in blocked promoters at

the restrictive temperature would be expected to be dominant to wild-type

SRB4. The mutant described here, srb4-138, is recessive to wild-type SRB4.

We previously estimated that less than 10% of the RNA polymerase II in

the cell was in the holoenzyme, adequate amounts to initiate transcription at

active promoters (Koleske and Young, 1994). It was unclear, however, if the

holoenzyme was preferentially recruited to some promoters while free RNA

polymerase II and general factors were recruited in a step-wise fashion to

others. It appears now that the holoenzyme is the form of RNA polymerase II

utilized at most promoters. This conclusion is based upon the demonstration

that SRB4 plays a general role in RNA polymerase II transcription and our

previous observation that the majority of SRB4 in the cell is tightly associated

with RNA polymerase II in the holoenzyme (Thompson et al., 1993; Koleske and
Young, 1994). Essentially all of the SRB2, SRB4, SRB5, and SRB6 protein in
whole cell extracts copurifies as a single peak through a series of purification

steps (Thompson et al., 1993) and, after five purification steps, we recover
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approximately 65% of the SRB2 and SRB5 from extracts as part of the

holoenzyme (Koleske and Young, 1994). A large fraction of the SRB protein not

recovered in the purified holoenzyme can be attributed to losses that occur at

each step of the purification. Although a small fraction of SRB protein must, of

course, be in the process of assembly in vivo. An alternative form of the RNA

polymerase II holoenzyme has recently been described (Kim et al., 1994).

While this form of the enzyme contains RNA polymerase II, SRB proteins, and

TFIIF, it differs in that it lacks the general transcription factors TFIIB and TFIIH.

These differences in holoenzyme composition appear to be due to differences

in yeast strains and growth conditions, factors which seem to affect holoenzyme

stability during purification.

These results have additional implications for the mechanisms involved

in regulation of transcription initiation. The SRB proteins accumulate to

approximately one-tenth the levels of total cellular RNA polymerase II and TFIIB

(Koleske and Young, 1994). Thus, the assembly of an RNA polymerase II

holoenzyme is limited by the levels of SRB proteins. The SRBs, therefore, may

play a key regulatory role in holoenzyme formation leading to initiation complex

assembly.
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Experimental Procedures

Isolation of Conditional srb4 Mutants
A PCR-based mutagenesis strategy was used to construct a

mutagenized library of the SRB4 gene (Leung et al., 1989). The plasmid

pCT127 (SRB4 LEU2 CEN) contains a unique Ndel site at the SRB4 ATG and a

unique Xbal site following the SRB4 stop codon, both created by site-specific

mutagenesis (Kunkle et al., 1987). PCR of SRB4 from pCT127 with

oligonucleotides flanking the open reading frame was performed in buffer

containing 0.1 mM, 0.2 mM, and 0.4 mM Mn2 + . Reactions were pooled, DNA

digested with Ndel-Xbal, ligated with Ndel-Xbal digested pCT127 vector
fragment, and transformed into DH5a. Approximately 30,000 transformants

were obtained. Plasmid shuffle techniques (Boeke et al., 1987) were then used

to identify ts alleles of SRB4. The DNA molecules containing LEU2 and

mutagenized SRB4 genes were transformed into a yeast strain (Z572) deleted

for the chromosomal copy of SRB4, but carrying a URA3 centromeric plasmid

encoding a wild-type copy of the gene. Approximately 20% of the transformants

were unable to grow in the presence of 5-FOA, indicating a lethal mutation in

the LEU2 plasmid-borne SRB4 gene. Approximately 0.5% of the transformants

were able to grow on 5-FOA plates at 300C but not at 370C, indicating a ts

allele in the LEU2 plasmid-borne SRB4 gene. The LEU2 plasmids from these

transformants were recovered and reintroduced into Z572 to verify the ts

phenotype. The plasmid pCT181 contains the srb4-138 mutant allele.

RNA Analysis

Total RNA from cells was isolated using hot acidic phenol extraction

(Ausubel et al., 1993). RNA was quantified by absorbance at 260 nm and the

integrity of the RNA confirmed by ethidium bromide staining of RNA in agarose

gels. Slot blot analysis to determine the amount of poly(A)+ mRNA was

performed as described (Choder, 1991). S1 nuclease protection assays were
carried out with 5-30 !zg of RNA and DED1, HIS3, TRP3, rRNA, and tRNAW

oligonucleotide probes as previously described (Cormack and Struhl). The

sequences for the other oligonucleotide probes are:

ACT1 GGAAGAGTACAAGGACAAAACGGCTTGGATGGAAACGTAGAAGGCATTCCA,

CDC7 GGGGCTACTCTCGAAGATCCCGTCATTATGTACAGCAGGTTGAGCATGCCT,

MET19 GCCTTACCGGCACGCATCATGATGGGGACGCCCTCCCAACGCTCGACACTT,
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RAD23 GCAGTGGCTGCAGGAGCTGCAGAAGCATCGGTACTGGGGGATGCAATCCA,

STE2 GTCGACGGGTTCAACTTCTCCCTCITGTAACTTGCATCAGCAAACGGATGACA,

TCM 1 GGAGTGTCAACAACGGTGACAGCTTCGACAAC TTCACGCTTGTGGTGAGCT.

Oligonucleotides are written in the 5' to 3' direction and contain 6 residues at

their 3' ends that are not complementary to the RNA, permitting distinction

between bands due to appropriate RNA-DNA hybrids and undigested probe.
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Appendix A

List of Extragenic Suppressors of a CTD Truncation Mutation
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Summary
Table 1 is a list of the 83 strongest extragenic suppressors of the CTD

truncation mutation rpb l1 104. These suppressors were isolated and initially

characterized as described in chapter 2. The list is organized by

complementation groups and includes the suppressing isolate number and

allele designation. Recessive suppressing isolates were placed into

complementation groups using a combination of standard genetic

complementation analysis and plasmid complementation analysis with the

cloned wild-type genes. Three of the reccessive suppressing mutations were

unable to be placed into a complementation group. Dominant suppressing

isolates were grouped using random spore analysis. SRB2 was originally

identified and cloned by Mike Nonet in a similar selection scheme (Nonet and

Young, Genetics 123, 715-724 (1989)). The genetic background for these

suppressing isolates is:

N400/Z551 Mata ura3-52 leu2-3, 112 his3A200

rpb 1 A187: :HIS3 [RY2204 (rpb1 104 CEN LEU2)]
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Table 1. Extragenic Suppressors of CTD Truncation Mutations

Allele
Designation

Suppressing
Isolate

Allele
Designation

Suppressing
Isolate

SRB5 (cont.)

SRB5-4

SRB5-5

SRB5-6

SRB5-7

SRB6

SRB6-1*

SRB6-2

srb6-3

srb6-4

SRB6-5

SRB6-6

SRB7

srb7-1*

srb7-2

srb7-3

SRB8

srb8- 1*

srb8-2

srb8-3

srb8-4

SRB9
srb9- 1*

srb9-2

srb9-3

srb9-4

srb9-5

SRB2

SRB2-2

SRB2-3

SRB4

SRB4-1*

srb4-2*

SRB4-3

SRB4-4

srb4-5
srb4-6
SRB4-7

SRB4-8

SRB4-9

srb4- 10

srb4-1 1

srb4-12

srb4-13
SRB4-14

SRB4-15

SRB4-16

SRB4-17

SRB4- 18

SRB4- 19

SRB4-20

SRB4-21

SRB5
SRB5-1*

SRB5-2

SRB5-3

s211

s217

s25

s346

s214

s305

s315

s108

s12-2

s45
s102
s113
s156
s173
s184
s215

s303
s304
s307
s316
s318
s407

s424

s148

s31

s112

s117

s191

s207

s400

s429

s14
s38-2
s258

s319

s406

s242
s419
s129

s358

s18

s276

s374

s363

s452

s366

sl-2

s16-2
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Table 1. Extragenic Suppressors of CTD Truncation Mutations (Continued)

Allele
Designation

Suppressing
Isolate

Allele
Designation

Suppressing
Isolate

SRB9 (cont.)

srb9-6
srb9-7
srb9-8
srb9-9

srb9- 10

srb9-11

srb9- 12

srb9-13

srb9-14

srb9-15
srb9-16
srb9-17
srb9-18

srb9-19

srb9-20

srb9-21

srb9-22

srb9-23

srb9-24

srb9-25
srb9-26

s17-2

s28-3
s33
s40-2
s43-2
s218-2
s219
s326-2
s329-2

s332-2
s347-2
s362
s402
s408
s415
s416
s418
s420
s421

s440
s455

* Allele used to clone corresponding gene.

SRB10

srb10-1*

srb 10-2

srb 10-3

srbl0-4

SRB 11

srbl 1-1*

RPB2

rpb2-551*

rpb2-552

rpb2-553

rpb2-554

rpb2-555

rpb2-556

unknown

?

?

?

s449
s425
s53
s229

s199

s456
s368
s431

s120
s210
s404-2

s74
s83
s141
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Experimental Procedures
Yeast strains of the opposite mating type of approximately half of the

dominant suppressors and half of the recessive suppressors were generated by

inducing a mating type switch by expression of the HO gene placed on a

plasmid under the control of a galactose inducible promoter. Random spore

analysis of the dominantly suppressing mutations was used to determine if two

independent isolates were likely to contain mutations in the same gene.

Haploids were mated to each other, each containing the CTD truncation
mutation rpb 1A 104 and an independently isolated SRB mutation, to form

diploids. These diploids were sporulated on plates and a small quantity of

spores scraped off and shaken overnight at 300C in 0.5 ml 30 mM P-

mercaptoethanol and 100 ng/ml Zymolase 100 T (ICN). 0.5 ml of 1.5% NP-40

and 0.4 g glass beads were added and the mixture held on ice for 15 min. The

suspension was then vortexed 3 min, held on ice 5 min, vortexed 2 min, and the

glass beads allowed to settle for 10 min at room temperature. The supernatant

was removed, spun 2 min, the pellet washed once in water, then resuspended

in water and a portion plated onto YEPD. Approximately fifty of the haploid

offspring were assayed for their ability to grow at 120C. If all haploids were able

to grow at 1 20C then the two SRB isolates were assumed to contain mutations

in the same gene. Genetic complementation of the recessive alleles involved

mating haploids to each other, each containing the CTD truncation mutation
rpb lA 104 and an independently isolated srb mutation, to form diploids and

assessing the ability of these diploids to grow at 120C. Diploids able to grow at

120C were assumed to contain srb mutations in the same gene. Genomic

clones of each complementation group were used to confirm the identity of each

member of the complementation group and to identify additional members.

Cells containing the CTD truncation mutation rpb 1A 104 and a recessive srb

allele were unable to grow at 120C and on pyruvate media when transformed

with the corresponding wild-type SRB allele.
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Appendix B

Conditional srb4 and srb6 Alleles
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Summary

SRB4 and SRB6 are essential genes (Thompson et al., 1993). A PCR-

based mutagenesis strategy (Leung et al., 1989) was used to construct

mutagenized libraries of these genes. Plasmid shuffle techniques (Boeke et al.,

1987) were then used to identify temperature-sensitive (ts) alleles of SRB4

(Figure 1) and SRB6 (Figure 2). All of these ts alleles are recessive and, in

general, do not display significant cold-sensitive phenotypes. Conditional

alleles of SRB4 and SRB6 will be useful for in vivo analysis of SRB function,

second-site suppressor analysis, cloning SRB homologs from other species by

complementation, and developing in vitro assays. In addition, the mutagenized

libraries can be used to identify mutations in SRB4 and SRB6 that will suppress

defects in other components of the transcription initiation apparatus.
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Figure 1. Conditional srb4 mutants.

Cells were spotted, in duplicate, onto YEPD medium and incubated at 120C,

240C, 300C, 340C, 360C, and 370C.

SRB4 srb4-1

srb4-121 srb4-122 s/
srb4-124 s
srb4-126 srb4-127 st
srb4-129 srb4-130 s
srb4-132 srb4-133 si
srb4-135 srb4-136

srb4-137

SRB4 srb4-101
srb4-102 srb4-103 srb4-104

* srb4-105 srb4-106
srb4-107 srb4-108 srb4-109
srb4-110 srb4-111 *
srb4-112 srb4-113 srb4-114
srb4-115 srb4-116 srb4-117

srb4-118 srb4-119
20 SRB4 srb4-138
rb4-123 srb4-139 srb4-140
rb4-125 srb4-141 srb4-142 srb4
rb4-128 srb4-144 srb4-145 srb4
rb4-131 srb4-147 srb4-148 srb4
rb4-134 srb4-150 srb4-151 srb4

* srb4-153 srb4-154 srb4
srb4-156

*This allele was not tight enough to keep.

-143
'-146

[-149

1-152

f-155



240C

340C

360C 37UC

O-r

120C

300C
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Figure 2. Conditional srb6 mutants.

Cells were spotted, in duplicate, onto YEPD medium and incubated at 120 C,

240C, 300C, 340C, 360 C, and 370 C.

SRB6 srb6-101
srb6-102 srb6-103
srb6-104 srb6-105
srb6-106 srb6-107
srb6-108 srb6-109
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Experimental Procedures

Conditional srb4 alleles are listed in Table 1. The plasmid pCT127

(SRB4 LEU2 CEN) contains a unique Ndel site at the SRB4 ATG and a unique

Xbal site following the SRB4 stop codon, both created by site-specific

mutagenesis (Kunkle et al., 1987). PCR of SRB4 from pCT127 with

oligonucleotides flanking the open reading frame was performed in buffer

containing 0.1 mM, 0.2 mM, and 0.4 mM Mn 2 + . Reactions were pooled, DNA

digested with Ndel-Xbal, ligated with Ndel-Xbal digested pCT127 vector
fragment, and transformed into DH5a. Approximately 30,000 transformants

were obtained. Twelve clones were randomly selected and partially

sequenced. A mutation frequency of approximately one per kilobase was found

(four mutations in 3.5 kb). The DNA molecules containing LEU2 and

mutagenized SRB4 genes were transformed into a yeast strain (Z572) deleted

for the chromosomal copy of SRB4, but carrying a URA3 centromeric plasmid

encoding a wild-type copy of the gene. Approximately 20% of the transformants

were unable to grow in the presence of 5-FOA, indicating a lethal mutation in

the LEU2 plasmid-borne SRB4 gene. Approximately 0.5% of the transformants

were able to grow on 5-FOA plates at 300C but not at 370C, indicating a ts
allele in the LEU2 plasmid-borne SRB4 gene. The LEU2 plasmids from these

transformants were recovered and reintroduced into Z572 to verify the ts

phenotype.

Conditional srb6 alleles are listed in Table 2. The complete 1.0 kb SRB6

genomic DNA fragment from pCT66 (SRB6 LEU2 CEN) was PCR amplified with
olignucleotides flanking the insert DNA. PCR Reactions were performed in

buffer containing 0.3 mM, 0.5 mM, and 0.7 mM Mn2 +. Pooled reactions were

digested with BamHI-Sall, ligated with BamHI-Sall digested RY2631 (LEU2
CEN), and transformed into DH5a. Approximately 35,000 transformants were

obtained. Thirteen clones were randomly selected and partially sequenced. A
mutation frequency of approximately one per 200 bp was found (over 4 kb

sequenced). DNA molecules containing LEU2 and mutagenized SRB6 genes

were transformed into a yeast strain (Z661) deleted for the chromosomal copy of
SRB6, but carrying a URA3 centromeric plasmid encoding a wild-type copy of
the gene. Approximately 15% of the transformants were unable to grow in the
presence of 5-FOA, indicating a lethal mutation in the LEU2 plasmid-borne
SRB6 gene. Approximately 0.1% of the transformants were able to grow on 5-
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FOA plates at 300C but not at 370C, indicating a ts allele in the LEU2 plasmid-

borne SRB6 gene. The LEU2 plasmids from these transformants were

recovered and reintroduced into Z661 to verify the ts phenotype.
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Table 1. Conditional srb4 Alleles

SRB4
Allele

SRB4

srb4-101

srb4-102

srb4-103

srb4-104

srb4-105

srb4- 106

srb4-107

srb4-108

srb4-109

srb4-1 10

srb4-111

srb4-112

srb4-113

srb4-114

srb4-115

srb4- 116

srb4-117

srb4-118

srb4-119

srb4- 120

Plasmid

pCT127

pCT144

pCT145

pCT146

pCT147

pCT148

pCT149

pCT150

pCT151

pCT152

pCT153

pCT154

pCT155

pCT156

pCT157

pCT158

pCT159

pCT160

pCT161

pCT162

pCT163

Yeasta

CTY233

CTY234

CTY235

CTY236

CTY237

CTY238

CTY239

CTY240

CTY241

CTY242

CTY243

CTY244

CTY245

CTY246

CTY247

CTY248

CTY249

CTY250

CTY251

CTY252

CTY253

SRB4
Allele

srb4-122

srb4-123

srb4-124

srb4-125

srb4- 126

srb4-127b

srb4- 128

srb4- 129

srb4-130

srb4-131

srb4-132

srb4-133

srb4- 134 b

srb4-135

srb4- 136

srb4- 137

srb4- 138 b

srb4-139

srb4-140

srb4-141

srb4-142

Plasmid

pCT165

pCT166

pCT167

pCT168

pCT169

pCT170

pCT171

pCT172

pCT173

pCT174

pCT175

pCT176

pCT177

pCT178

pCT179

pCT180

pCT181

pCT182

pCT183

pCT184

pCT185

Yeasta

CTY255

CTY256

CTY257

CTY258

CTY259

CTY260

CTY261

CTY262

CTY263

CTY264

CTY265

CTY266

CTY267

CTY268

CTY269

CTY270

CTY271

CTY272

CTY273

CTY274

CTY275

CTY254 srb4- 1 4 3 b pCT1 86srb4- 121 pCT 64 CTY276
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Table 1. Conditional srb4 Alleles (Continued)

SRB4
Allele

srb4-144

srb4- 145

srb4- 146

srb4-147

srb4- 148

srb4- 149

srb4-150

Plasmid

pCT187

pCT188

pCT189

pCT190

pCT191

pCT192

pCT193

Yeasta

CTY277

CTY278

CTY279

CTY280

CTY281

CTY282

CTY283

SRB4
Allele

srb4-151

srb4-152

srb4-153

srb4-154

srb4-155

srb4-156

Plasmid

pCT194

pCT195

pCT196

pCT197

pCT198

pCT199

Yeasta

CTY284

CTY285

CTY286

CTY287

CTY288

CTY289

aStrain background: mata his3A200 leu2-3, 112 ura3-52
srb4A2::HIS3

bSequence analysis by Ellen Gadbois identified multiple mutations.
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Table 2. Conditional srb6 Alleles

SRB6
Allele Plasmid Yeasta

SRB6
Allele Plasmid Yeasta

SRB6 pCT66 CTY1 84 srb6- 105 pCT204 CTY294

srb6-101 pCT200 CTY290 srb6-106 pCT205 CTY295

srb6- 102 pCT201 CTY291 srb6-107 pCT206 CTY296

srb6-103 pCT202 CTY292 srb6-108 pCT207 CTY297

srb6-104 pCT203 CTY293 srb6-109 pCT208 CTY298

aStrain background: mata his3A200 leu2-3,
srb6A 1::hisG

112 ura3-52
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Appendix C

SRB4 Reagents
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Summary

This section includes inventories of potentially useful SRB4 reagents

including yeast strains (Table 1), plasmids (Table 2), and oligonucleotides

(Table 3). Figure 1 is a numbered sequence of SRB4 with the numbers

corresponding to the positions given for the oligonucleotides. Details of

plasmid constructs can be found in the Young lab plasmid list.
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Table 1. SRB4 Yeast Strains

Strain Genotype

CTY3 Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3 SRB4-1

[RY2204 (rpb1A 104 LEU2 CEN)]

CTY4 Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3 srb4-2

[RY2204 (rpb lA 104 LEU2 CEN)]

CTY10 Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3 SRB4-1

[RY2191 (rpb1A 104 URA3 CEN)]

CTY11 Matoc his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3 srb4-2

[RY2191 (rpb1A 104 URA3 CEN)]

CTY15 Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3 SRB4-1

[RY2112 (RPB1 URA3 CEN)]

CTY16 Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3 srb4-2

[RY2112 (RPB1 URA3 CEN)]

CTY32 Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3 SRB4-1

[RY2128 (RPB1 LEU2 CEN)]

CTY 176 a/oc (his3A200 leu2-3, 112 ura3-52)X2 srb4A2::HIS3/SRB4

CTY182 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT15 (SRB4 URA3 CEN)]

CTY 183 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT15 (SRB4 URA3 CEN)]

CTY200 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT65 (SRB4 LEU2 CEN)]

CTY201 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT97 (SRB4-12CA5 URA3 CEN)]



Mata his3A200 leu2-3, 112 ura3-52 lys2A201 srb4A2::HIS3

[pCT15 (SRB4 URA3 CEN)]

Mata his3A200 leu2-3, 112 ura3-52 lys2A201 srb4A2::HIS3

[pCT15 (SRB4 URA3 CEN)]

Mata his3A200 leu2-3, 112 ura3-52 lys2A201 srb4A2::HIS3

[pCT124 (SRB4 LEU2 L YS2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT127 (SRB4 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT144 (srb4-101 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT145 (srb4-102 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT146 (srb4-103 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT147 (srb4-104 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT148 (srb4-105 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT149 (srb4-106 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT150 (srb4-107 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT151 (srb4-108 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT152 (srb4-109 LEU2 CEN)]

srb4A2:.:HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

CTY227

CTY228

CTY231

185

CTY233

CTY234

CTY235

CTY236

CTY237

CTY238

CTY239

CTY240

CTY241

CTY242
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CTY243 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT153 (srb4-110 LEU2 CEN)]

CTY244 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT154 (srb4- 111 LEU2 CEN)]

CTY245 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT155 (srb4- 112 LEU2 CEN)]

CTY246 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT156 (srb4- 113 LEU2 CEN)]

CTY247 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT157 (srb4-114LEU2 CEN)]

CTY248 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT158 (srb4- 115 LEU2 CEN)]

CTY249 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT159 (srb4- 116 LEU2 CEN)]

CTY250 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT160 (srb4- 117 LEU2 CEN)]

CTY251 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT161 (srb4-118 LEU2 CEN)]

CTY252 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT 162 (srb4-119 LEU2 CEN)]

CTY253 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT163 (srb4-120 LEU2 CEN)]

CTY254 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT164 (srb4-121 LEU2 CEN)]

CTY255 Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT165 (srb4-122 LEU2 CEN)]



Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT166 (srb4-123 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT167 (srb4-124 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT168 (srb4-125 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT169 (srb4-126 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT170 (srb4-127 LEU2 CEN)]

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT171 (srb4-128 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT172 (srb4-129 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT173 (srb4-130 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT174 (srb4-131 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52
[pCT175 (srb4-132 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT176 (srb4-133 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT177 (srb4-134 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT178 (srb4-135 LEU2 CEN)]

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

CTY256

187

CTY257

CTY258

CTY259

CTY260

CTY261

CTY262

CTY263

CTY264

CTY265

CTY266

CTY267

CTY268



Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HS3

[pCT1 79 (srb4-136 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT180 (srb4-137 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT181 (srb4-138 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT182 (srb4-139 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT183 (srb4-140 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT184 (srb4-141 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT185 (srb4-142 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT186 (srb4-143 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT187 (srb4-144 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT188 (srb4-145 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT189 (srb4-146 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT190 (srb4-147 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT191 (srb4-148 LEU2 CEN)]

srb4A2::HIS3

srb4A2:.:HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

CTY269

188

CTY270

CTY271

CTY272

CTY273

CTY274

CTY275

CTY276

CTY277

CTY278

CTY279

CTY280

CTY281



Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT192 (srb4-149 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT1 93 (srb4-150 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT194 (srb4-151 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT195 (srb4-152 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT196 (srb4-153 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT197 (srb4-154 LEU2 CEN)]

srb4A2::HIS3

srb42:.:HI1S3

srb4A2::HIS3

srb4A2::HIS3

srb4A2::HIS3

Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT198 (srb4-155 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52 srb4A2::HIS3

[pCT199 (srb4-156 LEU2 CEN)]

CTY282
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CTY283

CTY284

CTY285

CTY286

CTY287

CTY288

CTY289
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Table 2. SRB4 Plasmids

Plasmid Description

pCT4 SRB4 (9 kb) URA3 CEN.

pCT8 SRB4-1 (8 kb) URA3 CEN.

pCT15 SRB4 (2.5 kb) URA3 CEN.

pCT16 SRB4 (2.8 kb) URA3 CEN. Same as pCT15, except longer 3' flank.

pCT33 SRB4 (2.5 kb) in pSP72 (Promega).

pCT42 srb4-2 (2.5 kb) in URA3 CEN.

pCT48 SRB4-1 (2.5 kb) URA3 CEN.

pCT52 SRB4 (2.8 kb) in pSP72 (Promega).

pCT54 srb4A2::HIS3 in pSP72 (Promega). Made from pCT52.

pCT65 SRB4 LEU2 CEN.

pCT69 SRB4 in pBSIISK(-) (Stratagene). Used for isolating (-) strand

SRB4 ssDNA.

pCT96 SRB4 (12CA5 epitope at C-terminus) in pBSIISK(-) (Stratagene).

pCT97 SRB4 (12CA5 epitope at C-terminus) URA3 CEN.

pCT99 SRB4 (Ndel at ATG) in pBSIISK(-) (Stratagene).

pCT100 SRB4 (Ndel at ATG) URA3 CEN.

pCT101 SRB4 in pET-3a. SRB4 protein expression plasmid.

pCT107 SRB4 in pGEX-2T. GST-SRB4 fusion protein expression plasmid.

pCT119 SRB4 (Xbal at end of ORF) in pBSIISK(-) (Stratagene).
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pCT123 SRB4 (Xbal at end of ORF, Ndel removed from ORF) in pBSIISK(-)

(Stratagene).

pCT124 SRB4 LEU2 L YS2 CEN.

pCT127 SRB4 (unique Ndel at ATG and Xbal at end of ORF) LEU2 CEN.

pCT144 srb4-101 LEU2 CEN.

pCT145 srb4-102 LEU2 CEN.

pCT146 srb4-103 LEU2 CEN.

pCT147 srb4-104 LEU2 CEN.

pCT148 srb4-105 LEU2 CEN.

pCT149 srb4-106 LEU2 CEN.

pCT150 srb4-107 LEU2 CEN.

pCT151 srb4-108 LEU2 CEN.

pCT152 srb4-109 LEU2 CEN.

pCT153 srb4-110 LEU2 CEN.

pCT154 srb4-1 11 LEU2 CEN.

pCT155 srb4-112 LEU2 CEN.

pCT156 srb4-113 LEU2 CEN.

pCT157 srb4-114 LEU2 CEN.

pCT158 srb4-115 LEU2 CEN.

pCT159 srb4-116 LEU2 CEN.

pCT160 srb4-117 LEU2 CEN.

pCT161 srb4-118 LEU2 CEN.
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pCT162 srb4-119 LEU2 CEN.

pCT163 srb4-120 LEU2 CEN.

pCT164 srb4-121 LEU2 CEN.

pCT165 srb4-122 LEU2 CEN.

pCT166 srb4-123 LEU2 CEN.

pCT167 srb4-124 LEU2 CEN.

pCT168 srb4-125 LEU2 CEN.

pCT169 srb4-126 LEU2 CEN.

pCT170 srb4- 127 LEU2 CEN.

pCT171 srb4-128 LEU2 CEN.

pCT172 srb4-129 LEU2 CEN.

pCT173 srb4-130 LEU2 CEN.

pCT174 srb4-131 LEU2 CEN.

pCT175 srb4-132 LEU2 CEN.

pCT176 srb4-133 LEU2 CEN.

pCT177 srb4-134 LEU2 CEN.

pCT178 srb4-135 LEU2 CEN.

pCT179 srb4-136 LEU2 CEN.

pCT180 srb4-137 LEU2 CEN.

pCT181 srb4-138 LEU2 CEN.

pCT182 srb4-139 LEU2 CEN.

pCT183 srb4-140 LEU2 CEN.



srb4-141 LEU2 CEN.

srb4-142 LEU2 CEN.

srb4-143 LEU2 CEN.

srb4-144 LEU2 CEN.

srb4-145 LEU2 CEN.

srb4-146 LEU2 CEN.

srb4-147 LEU2 CEN.

srb4-148 LEU2 CEN.

srb4-149 LEU2 CEN.

srb4-150 LEU2 CEN.

srb4-151 LEU2 CEN.

srb4-152 LEU2 CEN.

srb4-153 LEU2 CEN.

srb4-154 LEU2 CEN.

srb4-155 LEU2 CEN.

pCT199 srb4-156 LEU2 CEN.
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pCT184

pCT185

pCT186

pCT187

pCT188

pCT189

pCT190

pCT191

pCT192

pCT193

pCT194

pCT195

pCT196

pCT197

pCT198
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Table 3. SRB4 Oligonucleotides

Sequence Description

SRB4p1 CTCGATCGTAATGTT (-)

SRB4p2 AAGAACTGATGTACC (+)

SRB4p3 CCTCTGTCATGCTTA (-)

SRB4p4 TCAGTAATCCACACG (+)

SRB4p5 TAATATCCTGAGTCACTCCT (+)

SRB4p6 TATGGCTTTTAAGCTGCTTA (-)

SRB4p7 GGGGATCC (-)

GATCTTGTCCTTTTGTACGT wil

SRB4p8 CCTCTAGA (+)

GATCTCGACGATTTGGGATT wit

SRB4p9 AACTGAACGTAAAGC (+)

SRB4p10O CAGAACGAACATGAC (+)

SRB4- CAGCAAAAGAAGGTG

C-tag [TACCCATACGACGTCCCAGACTACGCT]

TAATATCCTGAGTCA

SRB4-

Ndel

GCAGCTTAAAAGCC CA TA TG

ACAACGGAAG
(+)

Cre

at 

bas

strand, 1568 to 1554.

strand, 1316 to 1330.

strand, 1058 to 1044.

strand, 260 to 274.

strand, 2062 to 2081.

strand,-1 to -20.

strand, 2154 to 2135

:h BamHI linker (italics).

strand, -319 to -300

h Xbal linker (italics).

strand, -80 to -66.

strand, 907 to 921.

(+) strand, 2047 to 2076.

27mer 12CA5 epitope tag

(brackets) between 2060

and 2061. Contains Aatll

site (italics).

strand, -17 to +13.

;ates inframe Ndel site (italics)

kTG by changing underlined

;es.

Oligo



GTGATAAAATTC

CATACGTTGCACCTAC

GAAGGTGTAATAT r TCTAGA]
CCTGAGTCACTCC

CAGCAAAAGAAGGTG

[CATCATCATCATCATCAT]

TAATATTCTGAGTCA

GCAGCTTAAAAGCCCATATG

CAGGTCTAGAATATTACACC

(+) strand, 767 to 794

Removes Ndel site by changing

underlined base and creates

Maell site.

(+) strand, 2055 to 2080.

Inserts Xbal site (brackets)

between 2067 and 2068 and

creates Sspl site (underlined).

(+) strand, 2047 to 2076.

18mer 6XHIS tag between 2060

and 2061 (brackets). Sspl site

created (italics).

(+)strand, -17 to +3.

Ndel site in italics. For use in

SRB4 mutagenesis. ATG

underlined.

(-) strand, 2071 to 2058.

Xbal site (italics) between

2068 and 2067. For use in

SRB4 mutagenesis. TAA

underlined.
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SRB4-

XNdel

SRB4-

Xbal

SRB4-

6XHIS

SRB4-

Nmut

SRB4-

Cmut
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-319 GATCTCGACGATTTGGGATTCTTATAAGGGCGCATAAAAAATAAATAACTACCATTCATAACAGAAATTCATTCGT

-243 ATATACATAAAGTTCTCATAAACGTATATATATATATATATATATACTTATTGATATCAAAGTGTGTTACTTTCT

-168 ACATTCATAGACGGGGAAGAAAAGTGAGGAAAAGTTGTTTTCTCTTGTGCACTGCAGCCCTTTGAAAAAGTAGAA

-93 CTGCAGAAAAAATAACTGAACGTAAAGCATTATTTACTTTTCAAAGGCAAAAGAGATAGAGCCAAAAAAATTGTA

-18 AGCAGCTTAAAAGCCATAATGACAACGGAAGATCCAGATTCAAATCACTTAAGTTCCGAAACTGGCATTAAATTG
M T T E D P D S N H L S S E T G I K L

58 GCATTGGACCCGAACTTAATTACATTGGCACTAAGTTCTAATCCAAACTCTAGCCTTCATTCACCAACGTCTGAT
A L D P N L I T L A L S S N P N S S L H S P T S D

133 GAACCCGTACCTGAATCTGCAGGAAAGCAGATACTAGTATTCGACTAGTATTCGACT
E P V P E S A G K A D T S I R L E G D E L E N K T

208 AAGAAAGACAATGATAAGAACTTAAAATTTTTGAAGAATAAAGATTCTCTAGTCAGTAATCCACACGAAATTTAT
K K D N D K N L K F L K N K D S L V S N P H E I Y

283 GGCTCCATGCCGTTGGAGCAATTGATCCCAATCATCTTAAGACAGCGTGGTCCAGGCTTTAAATTCGTTGATTTA

G S M P L E Q L I P I I L R Q R G P G F K F V D L

358 AATGAAAAAGAATTGCAAAATGAGATTAAGCAGCTTGGTAGTGATAGTAGTGACGGTCATAACAGCGAGAAGAAG
N E K E L Q N E I K Q L G S D S S D G H N S E K K

433 GACACTGATGGCGCTGATGAGAATGTACAAATTGGAGAAGATTTCATGGAAGTGGATTATGAAGATAAAGATAAT
D T D G A D E N V Q I G E D F M E V D Y E D K D N

508 CCAGTGGATTCACGAAATGAAACAGACCACAAAACGAATGAAAATGGCGAGACCGATGATAATATTGAAACGGTA
P V D S R N E T D H K T N E N G E T D D N I E T V

583 ATGACACAGGAACAGTTTGTTAAAAGAAGGAGGGATATGCTAGAGCATATAAATCTGGCCATGAACGAATCGTCT
M T Q E Q F V K R R R D M L E H I N L A M N E S S

658 TTGGCTTTGGAATTCGTTTCTTTGCTACTGTCGAGTGTTAAAGAGTCTACAGGTATGTCATCAATGTCACCATTT
L A L E F V S L L L S S V K E S T G M S S M S P F

733 CTTAGGAAAGTTGTTAAACCTTCTAGTTTAAACAGTGATAAAATTCCATATGTTGCACCTACAAAAAAAGAATAT
L R K V V K P S S L N S D K I P Y V A P T K K E Y

808 ATCGAGTTGGATATATTGAATAAGGGATGGAAGTTACAAAGTTTAAACGAATCTAAAGATCTCCTACGCGCAAGT
I E L D I L N K G W K L Q S L N E S K D L L R A S

883 TTTAATAAACTGAGTTCCATATTACAGAACGAACATGACTATTGGAATAAGATAATGCAGAGTATTAGCAACAAG
F N K L S S I L Q N E H D Y W N K I M Q S I S N K

958 GATGTTATTTTTAAGATTAGGGACAGGACTAGTGGTCAAAAGCTGTTGGCAATTAAGTATGGTTACGAAGACTCT
D V I F K I R D R T S G Q K L L A I K Y G Y E D S

1033 GGATCTACCTATAAGCATGACAGAGGTATTGCTAATATAAGGAATAATATAGAATCACAAAATTTGGATTTGATA
G S T Y K H D R G I A N I R N N I E S Q N L D L I

1108 CCCCACAGTAGTTCAGTGTTCAAAGGCACT GAT TTCGTACTCTTC
P H S S S V F K G T D F V H S V K K F L R V R I F

1183 ACAAAAATCGAATCAGAAGATGATTACATATTGAGTGGCGAAAGTGTGATGGATAGGGATAGTGAAAGTGAAGAA
T K I E S E D D Y I L S G E S V M D R D S E S E E

Figure 1. SRB4 sequence
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1258 GCTGAAACGAAAGATATCAGAAAGCAAATCCAACTTTTGAAAAAGATCATTTTTGAAAAAGAACTGATGTACCAA
A E T K D I R K Q I Q L L K K I I F E K E L M Y Q

1333 ATAAAGAAAGAATGCGCTTTGTTGATTTCCTATGGTGTCAGTATTGAAAACGAAAACAAGGTAATAATTGAACTA
I K K E C A L L I S Y G V S I E N E N K V I I E L

1408 CCTAACGAAAAATTTGAAATCGAGTTGTTGTCCCTTGACGAGTCCATTGTCAATCCCTTGACGTTACCA
P N E K F E I E L L S L D D D S I V N H E Q D L P

1483 AAAATCAACGACAAGAGAGCAAATTTAATGCTTGTTATGTTGAGACTATTATTAGTCGTTATATTCAAGAAAACA
K I N D K R A N L M L V M L R L L L V V I F K K T

1558 TTACGATCGAGAATAAGCTCACCCCACGGACTGATCAATTTGAATGTTGACGATGATATCTTAATAATACGTCCC
L R S R I S S P H G L I N L N V D D D I L I I R P

1633 ATTCTTGGTAAAGTTCGGTTTGCTAATTACAAACTGTTACTAAAAAAAATCATAAAGGATTACGTGCTCGATATA
I L G K V R F A N Y K L L L K K I I K D Y V L D I

1708 GTTCCTGGCTCAAGTATAACAGAAACGGAAGTTGAGAGAGAACAACCTCAAGAAAATAAAAACATTGATGATGAA
V P G S S I T E T E V E R E Q P Q E N K N I D D E

1783 AATATAACTAAATTAAATAAAGAGATCCGTGCCTTCGATAAACTATTGAATATACCTAGACGTGAACTCAAAATA
N I T K L N K E I R A F D K L L N I P R R E L K I

1858 AATCTACCATTAACTGAGCACAAAAGCCCTAATCTAAGTTTAATGCTCGAAAGTCCTAACTATTGTAACGCACTC
N L P L T E H K S P N L S L M L E S P N Y C N A L

1933 ATTCACATCAAGTTTTCAGCTGGTACGGAAGCCAACGCAGTGTCCTTTGACACAACATTTTCTGATTTTAAAGAA
I H I K F S A G T E A N A V S F D T T F S D F K E

2008 GTAGAGGACTTCCTACATTTTATTGTCGCTGAGTACATCCAGCAAAAGAAGGTGTAATATCCTGAGTCACTCCTT
V E D F L H F I V A E Y I Q Q K K V *

2083 AAACCTACATACATTGCCATAGAATGCCATTTATTACTATATAAAGTCGCATACGTACAAAAGGACAAGATC 2154

Figure 1. SRB4 sequence (Continued)
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Appendix D

SRB5 Reagents



199

Summary

This section includes inventories of potentially useful SRB5 reagents

including yeast strains (Table 1), plasmids (Table 2), and oligonucleotides

(Table 3). Figure 1 is a numbered sequence of SRB5 with the numbers

corresponding to the positions given for the oligonucleotides. Details of

plasmid constructs can be found in the Young lab plasmid list.



SRB5 Yeast Strains

Genotype

CTY8

CTY13

CTY20

CTY34

CTY 144

CTY1

CTY 145

CTY 146

CTY147

CTY 148

CTY 149

Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3 SRB5-1

[RY2204 (rpb 1d 104 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3 SRB5-1

[RY2191 (rpb1 104 URA3 CEN)]

Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3 SRB5-1

[RY2112 (RPB1 URA3 CEN)]

Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3 SRB5-1

[RY2128 (RPB1 LEU2 CEN)]

a/a (his3A200 leu2-3, 112 ura3-52)X2

srb5A 1::URA3, hisG/SRB5

45 through CYT148 are from a single tetrad of CTY144.

Mata his3A200 leu2-3, 112 ura3-52

Mata his3A200 leu2-3, 112 ura3-52

Mata his3A200 leu2-3, 112 ura3-52 srb5A 1::URA3, hisG

Mata his3A200 leu2-3, 112 ura3-52 srb5A 1::URA3, hisG

a/la his3A200 /his3A200 leu2-3, 112/leu2-3, 112 lys2-801/L YS2

trpA 1/TRP1 ura3-52/ura3-52 srb2A 1::HIS3/SRB2

srb5A1::URA3, hisG/SRB5

CTY151 through CTY154 are segregants of CTY149.

CTY151 Mata his3A200 leu2-3, 112 lys2-801 ura3-52

CTY152 Mata his3A200 leu2-3, 112 lys2-801 ura3-52 srb2A 1::HIS3

Table 1.

Strain

200
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CTY153 Mata his3A200 leu2-3, 112 lys2-801 ura3-52
srb5A ::URA3, hisG

CTY154 Mata his3A200 leu2-3, 112 lys2-801 ura3-52 srb2A 1::HIS3

srb5A I::URA3, hisG

CTY171 Mata his3A200 leu2-3, 112 lys2-801 ura3-52 srb5Al::hisG

CTY223 Mata his3A200 leu2-3, 112 ura3-52 srb5Al1::hisG
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Table 2. SRB5 Plasmids

Plasmid Description

pCT14 SRB5-1 (9 kb) URA3 CEN.

pCT20 SRB5-1 (1.9 kb) URA3 CEN.

pCT32 SRB5-1 (1.9 kb) URA3 CEN. Modified pCT20 used for gap-repair.

pCT34 SRB5-1 (1.9 kb) in pSP72 (Promega).

pCT37 srb5A 1::URA3, hisG in pSP72 (Promega).

pCT39 SRB5 URA3 CEN.

pCT61 SRB5 LEU2 CEN.

pCT62 SRB5-1 LEU2 CEN.

pCT63 SRB5 LEU2 2.

pCT64 SRB5-1 LEU2 2#.

pCT71 SRB5 in pBSIISK(-) (Stratagene). Used for isolating (-) strand

SRB5 ssDNA.

pCT75 SRB5 (Ndel at ATG) in pBSIISK(-) (Stratagene).

pCT77 SRB5 (12CA5 epitope at C-terminus) in pBSIISK(-) (Stratagene).

pCT79 SRB5 (12CA5 epitope at C-terminus) URA3 CEN.

pCT81 SRB5 (Ndel at ATG) URA3 CEN.

pCT83 SRB5 (Ndel at ATG, 12CA5 epitope at C-terminus) URA3 CEN.

pCT85 SRB5 (12CA5 epitope at C-terminus)in pET-3a. SRB5-12CA5

protein expression plasmid.

pCT94 SRB5 (12CA5 epitope at C-terminus) LEU2 2.



203

pCT98 SRB5 in pET-3a. SRB5 protein expression plasmid.

pCT140 SRB5 in pET-15b (Novagen). 6XHIS-SRB5 protein expression

plasmid with thrombin cleavage site.
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Table 3. SRB5 Oligonucleotides

Sequence Description

GGTGGATGAAGAAGA

AACAACAGTAACCAC

GAATACCTTGGCTGG

GTTTGGCAATTTGCT

TAATCATTGGCACCTGGGCA

CTTTTCTTCTTAATATGGAA

CGAAGACAAACAACC

AATGATGGATAAGCC

CAAACGATAGCTGAG

GGAAATATTCTAATA
[TACCCATACGACGTCCCAGACTACG
TAATCATTGGCACCT

CATATTAAGAAGAACATATG
GTTCAGCAAC

GGAAATATTCTAATA
[CATCATCATCATCATCAT]
TAATAATTGGCACCT

(-) strand, 1321 to 1307.

(+) strand, 976 to 990.

(-) strand, -18 to -32.

(+) strand, 1173 to 1187.

(+) strand, 922 to 941.

(-) strand, -1 to -20.

(+) strand, -79 to -65.

(+) strand, 237 to 251.

(+) strand, 547 to 561.

(+) strand, 907 to 936.
CT] 27mer 12CA5 epitope tag

between 920 and 921
(brackets). Contains Aatll
site (italics).

(+) strand, -17 to +13.
Creates inframe Ndel site (italics)
at ATG by changing underlined
bases.

(+) strand, 907 to 936.
18mer 6XHIS tag between 920
and 921 (brackets).

Oligo

SRB5p1

SRB5p2

SRB5p3

SRB5p4

SRB5p5

SRB5p6

SRB5p7

SRB5p8

SRB5p9

SRB5-
C-tag

SRB5-
Ndel

SRB5-
6XHIS
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-432 GATCTTCAGTATCCTCGCGGAACGCTACAACAATGTAAACGATTAGAACAACATTGGCCATTGCAGCAGCTAAAC

-357 CTCCACTAATTAAGGTATTTGGCGTAAATTGCTGAATAATGAAAAAAGTGAGTACGGGCAGTACCACCATCGCTG

-282 CAGTAAACAGCATAAGTTTATTAATCACCGCACGAGGAACATCTACAGCCATTATTTGATTCTTTTGAAGTCTTG

-207 GTTAGTTTCTACTATTGCTTTCCAGTATTGCGTTCATTTTAGCTTGCAGGTTAGTAATATATAGTGAGAGCTCTT

-132 TTGCCTTTCTTTTATTTGAAAAAAATAAAATAACCTAGAAAATTATCAAATATCGAAGACAAACAACCAAAATAA

-57 AAAAAAAGGTAGAAAATTGAATTTTCCAGCCAAGGTATTCCATATTAAGAAGAAAAGATGGTTCAGCAACTAAGC
M V Q Q L S

19 CTTTTTGGATCTATTGGTGATGACGGCTACGATTTACTAATTTCAACTTTGACCACAATATCAGGTAATCCTCCG
L F G S I G D D G Y D L L I S T L T T I S G N P P

94 CTACTGTATAACAGTTTATGCACTGTCTGGAAACCAAATCCATCTTACGACGTCGAGAACGTGAACTCTAGAAAC
L L Y N S L C T V W K P N P S Y D V E N V N S R N

169 CAATTGGTTGAACCAAATAGAATAAAACTTTCCAAAGAGGTGCCATTTTCTTACCTGATCGATGAAACAATGATG
Q L V E P N R I K L S K E V P F S Y L I D E T M M

244 GATAAGCCATTAAACTTTAGAATCTTGAAATCTTTTACAAACGATAAAATCCCGCTTAACTATGCTATGACACGG
D K P L N F R I L K S F T N D K I P L N Y A M T R

319 AATATCTTGCACAACACAGTTCCGCAAGTCACCAACTTCAACAGCACAAACGAAGATCAAAACAACAGTAAGCAT
N I L H N T V P Q V T N F N S T N E D Q N N S K H

394 ACAGAAGATACTGTAAATGAAAGTCGAAACAGCGATGACATCATAGATGTCGACATGGATGCAAGTCCCGCCCCT
T E D T V N E S R N S D D I I D V D M D A S P A P

469 TCAAACGAGTCATGTTCCCCTTGGTCATTGCAAATTTCAGATATTCCTGCTGCAGGAAACAATAGAAGTGTTTCA
S N E S C S P W S L Q I S D I P A A G N N R S V S

544 ATGCAAACGATAGCTGAGACTATCATATTATCTTCAGCTGGCAAAAACTCTTCAGTATCCTCGCTCATGAACGGA
M Q T I A E T I I L S S A G K N S S V S S L M N G

619 TTGGGTTATGTATTCGAATTTCAGTATCTTACAATTGGTGTGAAATTTTTTATGAAGCATGGTTTAATACTTGAG
L G Y V F E F Q Y L T I G V K F F M K H G L I L E

694 TTACAAAAAATTTGGCAAATAGAAGAAGCAGGCAATTCACAAATAACAAGCGGAGGGTTCCTTTTAAAAGCATAC
L Q K I W Q I E E A G N S Q I T S G G F L L K A Y

769 ATCAATGTTAGTAGGGGGACCGATATCGATCGTATAAACTATACAGAGACTGCCTTGATGAACTTAAAAAAGGAA
I N V S R G T D I D R I N Y T E T A L M N L K K E

844 CTACAAGGCTATATAGAGTTAAGTGTACCCGATAGACAGTCAATGGACTCGAGGGTAGCACATGGAAATATTCTA
L Q G Y I E L S V P D R Q S M D S R V A H G N I L

919 ATATAATCATTGGCACCTGGGCATATTTACAAAATTCACTCATATAGTTATACAGAACAACAGTAACCACTTT
I *

Figure 1. SRB5sequence



206

994 TAATGTACAGGTATTTCTATATCTACAAACAAATGTGTGTTTTTCTAATGTTGCTATACCGAGGAATTA

1069 TAAAGTAATAAAGATGTTAAATTAAAAGACAAAATTTTTGAGAGGCTATTGGAAAAGAAGAGAAAACTATTTCTT

1144 GGAATCTAGTTTATTCAGTTTAGCTTTTTGTTTGGCAATTTGCTTCTTTTTCTTTTTTAAGTTCTCAGCTTGTTC

1219 CTCCTTTTTAGCATTAGAATACTTCATTTTTTTGTAAAGTTTCTTTTGTTTGTTACTCATCATTATCATTTTCAA

1294 TTTCTTTTCTTCTTCTTCTTCATCCACCTTTCTCTTTTTGTTCTTTGACTTATTGACATCCTTATCAGCTTCTGA

1369 AGTTTCAGAATATTTGATACCTTGTGCTTCCAATTCAAGCTCTTTTTGAGCTTGTAGCTCTTCGTCATCGTCATC

1444 ATCTTCTTCTCCAGCAACAACTTCTTGATC 1473

Figure 1. SRB5 sequence (Continued)



207

Appendix E

SRB6 Reagents
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Summary

This section includes inventories of potentially useful SRB6 reagents

including yeast strains (Table 1), plasmids (Table 2), and oligonucleotides

(Table 3). Figure 1 is a numbered sequence of SRB6 with the numbers

corresponding to the positions given for the oligonucleotides. Details of

plasmid constructs can be found in the Young lab plasmid list.
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Table 1. SRB6 Yeast Strains

Strain

CTY9

CTY14

CTY21

CTY35

CTY 158

Genotype

Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3

[RY2204 (rpblA 104 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3

[RY2191 (rpb1A 104 URA3 CEN)]

Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3

[RY2112 (RPB1 URA3 CEN)]

Mata his3A200 leu2-3, 112 ura3-52 rpb1A187::HIS3

[RY2128 (RPB1 LEU2 CEN)]

SRB6-1

SRB6-1

SRB6-1

SRB6-1

ala (his3A200 leu2-3, 112 ura3-52)X2

srb6A I::URA3, hisG/SRB6

Mata his3A200 leu2-3, 112 ura3-52

[pCT66 (SRB6 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT66 (SRB6 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT66 (SRB6 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT66 (SRB6 LEU2 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT40 (SRB6 URA3 CEN)]

Mata his3A200 leu2-3, 112 ura3-52

[pCT40 (SRB6 URA3 CEN)]

srb6A 1::URA3, hisG

srb6A 1::URA3, hisG

srb6A 1::hisG

srb6A 1::hisG

srb6A 1::hisG

srb6A 1::hisG

Mata his3A200 leu2-3, 112 ura3-52 srb6A 1::hisG

[pCT109 (SRB6-12CA5 URA3 CEN)]

CTY 172

CTY 173

CTY184

CTY185

CTY 186

CTY187

CTY202
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CTY229 Mata his3A200 leu2-3, 112 ura3-52 lys2A201 srb6A 1::hisG

[pCT40 (SRB6 URA3 CEN)]

CTY230 Mata his3A200 leu2-3, 112 ura3-52 lys2A201 srb6A 1::hisG

[pCT40 (SRB6 URA3 CEN)]

CTY232 Mata his3A200 leu2-3, 112 ura3-52 lys2A201 srb6A 1::hisG

[pCT125 (SRB6 LEU2 LYS2 CEN)]

CTY290 Mata his3A200 leu2-3, 112 ura3-52 srb6A 1::hisG

[pCT200 (srb6 -101 LEU2 CEN)]

CTY291 Mata his3A200 leu2-3, 112 ura3-52 srb6A 1::hisG

[pCT201 (srb6 -102 LEU2 CEN)]

CTY292 Mata his3A200 leu2-3, 112 ura3-52 srb6A 1::hisG

[pCT202 (srb6 -103 LEU2 CEN)]

CTY293 Mata his3A200 leu2-3, 112 ura3-52 srb6A 1::hisG

[pCT203 (srb6 -104 LEU2 CEN)]

CTY294 Mata his3A200 leu2-3, 112 ura3-52 srb6A 1::hisG

[pCT204 (srb6 -105 LEU2 CEN)]

CTY295 Mata his3A200 leu2-3, 112 ura3-52 srb6A 1::hisG

[pCT205 (srb6 -106 LEU2 CEN)]

CTY296 Mata his3A200 leu2-3, 112 ura3-52 srb6Al::hisG

[pCT206 (srb6 -107 LEU2 CEN)]

CTY297 Mata his3A200 leu2-3, 112 ura3-52 srb6A 1::hisG

[pCT207 (srb6 -108 LEU2 CEN)]

CTY298 Mata his3A200 leu2-3, 112 ura3-52 srb6A 1::hisG
[pCT208 (srb6 -109 LEU2 CEN)]
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Table 2. SRB6 Plasmids

Plasmid Description

pCT26 SRB6-1 (3 kb) URA3 CEN.

pCT29 SRB6-1 (1 kb) URA3 CEN.

pCT35 SRB6-1 (1 kb) in pSP72 (Promega).

pCT38 srb6Al::URA3, hisG in pSP72 (Promega).

pCT40 SRB6 URA3 CEN.

pCT66 SRB6 LEU2 CEN.

pCT73 SRB6 in pBSIISK(+) (Stratagene). Used for isolating (-) strand

SRB6 ssDNA.

pCT95 SRB6 (12CA5 epitope at C-terminus) in pBSIISK(+) (Stratagene).

pCT102 SRB6 LEU2 2#.

pCT1 03 SRB6 URA3 2#.

pCT104 SRB6 (Ndel at ATG) in pBSIISK(+) (Stratagene).

pCT105 SRB6 -1 LEU2 CEN.

pCT109 SRB6 (12CA5 epitope at C-terminus) URA3 CEN.

pCT1 10 SRB6 (Sall at end of ORF) in pBSIISK(+) (Stratagene).

pCT111 SRB6 in pET-3a. SRB6 protein expression plasmid.

pCT1 12 SRB6 (Ndel at ATG and Sail at end of ORF) in pBSIISK(+)

(Stratagene).

pCT1 13 SRB6 (Ndel at ATG and 12CA5 epitope at C-terminus) in

pBSIISK(+) (Stratagene).
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pCT1 14 SRB6 (Ndel at ATG and Sail at end of ORF) URA3 CEN.

pCT115 SRB6 (12CA5 epitope at C-terminus) in pET-3a. SRB6-12CA5

protein expression plasmid.

pCT116 SRB6 in pGEX-2T. GST-SRB6 fusion protein expression plasmid.

pCT1 17 SRB6 in pQE-9 (Qiagen). 6XHIS-SRB6 protein expression

plasmid.

pCT120 SRB6 (Ndel at ATG and 6XHIS tag at C-terminus) in pBSIISK(+)

(Stratagene).

pCT121 SRB6 (unique Ndel at ATG and Sail at end of ORF)LEU2 CEN.

pCT125 SRB6 LEU2 LYS2 CEN.

pCT142 SRB6 in pET-15b (Novagen). 6XHIS-SRB6 protein expression

plasmid with thrombin cleavage site.

pCT200 srb6-101 LEU2 CEN.

pCT201 srb6-102 LEU2 CEN.

pCT202 srb6-103 LEU2 CEN.

pCT203 srb6-104 LEU2 CEN.

pCT204 srb6-105 LEU2 CEN.

pCT205 srb6-106 LEU2 CEN.

pCT206 srb6-107 LEU2 CEN.

pCT207 srb6-108 LEU2 CEN.

pCT208 srb6-109 LEU2 CEN.
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Table 3. SRB6 Oligonucleotides

Sequence Description

GTGGCCACAGCGAGC

GCATGCTACTAAGTGATAGG

TAAAAAGGCGGTATTTATCT

CATATAGTGCCTGGTTGCTC

GGCATCCTGTACTCC

GGACATTAGCACGTAAGC

GCGGAAAAAACTACG

[TACCCATACGACGTCCCAGACTACG

GGCATCCTGTACTCCTTTTTTTT

ACAAGCATATGAGCAACCAGGC

CCTTTTTTTTACAAGAAAATG

[TACCCATACGACGTCCCAGACTAC(

AGCAACCAGGCACTATATG

GGCGGAAAAAACTACGTAAAAA

[GTCGAC]GGCGGTATTTATCTA

(-) strand, 155 to 141.

(-) strand, -69 to -88.

(+) strand, 364 to 383.

(-) strand, 22 to 3.

(+) strand, -31 to -17.

(-) strand, 499 to 482.

(+) strand, 349 to 378.

CT] 27mer 12CA5 epitope tag

between 362 and 363

(brackets). Contains Aatll

site (italics).

(+) strand, -31 to +14.

Creates inframe Ndel site at ATG

by changing underlined bases.

(+) strand, -18 to +22.

;CT] 27mer 12CA5 epitope tag

between 3 and 4

(brackets). Contains Aatll

site (italics).

(+) strand, 348 to 384.

Creates Sail site between 369

and 370 (italics in brackets).

Oligo

SRB6pl

SRB6p2

SRB6p3

SRB6p4

SRB6p5

SRB6p6

SRB6-

C-tag

SRB6-

Ndel

SRB6-

N-tag

SRB6-

Sail



GCGGAAAAAACTACG

[CATCATCATCATCATCAT]

TAAAAAGGCGGTATT

CCTTTTTTTTACAAGCATATG

CCGCCGTCGACTTTTTACG

(+) strand, 349 to 378.

18mer 6XHIS tag between 362

and 363 (brackets). SnaBI site

destroyed by 6XHIS insert.

(+) strand, -18 to +3.

Ndel site in italics. For use in

SRB6 mutagenesis. ATG

underlined.

(-) strand, 374 to 362.

Contains Sail site between 369

and 370 (italics). For use in

SRB6 mutagenesis. TAA

underlined.

214

SRB6-

6XHIS

SRB6-

Nmut

SRB6-

Cmut
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-285 GATCGTTGTTGTAGACTCTCTGGAAGAAAGTGCAAGAGGGGCCGGTGGCTTTGGTAGCACTGGTAACTAACTTAG

-210 TGTATATACTTTGGCACACTTGTATAATGTATAATAAAATCAGGATAAATCCAGTGTGACCCGGACTGAATTACT

-135 GAAACTTTGAAGTGTTAAGGAAATTGTACTGCCATTTAACGCATTTACCTATCACTTAGTAGCATGCATAAGCCA

-60 TGGGCTAATCATAACAGATTGTGATGATAGGCATCCTGTACTCCTTTTTTTTACAAGAAAATGAGCAACCAGGCA
M S N Q A

16 CTATATGAGAAACTCGAACAAACCAGGACGATTCTGTCCGTGAAGCTGGCGGAATTGATAAATATGACTACGATA
L Y E K L E Q T R T I L S V K L A E L I N M T T I

91 GCCGATAGAAATGATGATGACGAGGGTTCATTCGCACAAGAAAATTCTGAGCTCGCTGTGGCCACGACCAGTGTG
A D R N D D D E G S F A Q E N S E L A V A T T S V

166 ATGATGGTGAATAACCAGACCATGCAATTGATTAAAAATGTTCAAGACTTGTTGATCCTGACCAGATCGATAAAA
M M V N N Q T M Q L I K N V Q D L L I L T R S I K

241 GAGAAATGGCTACTGAACCAAATTCCTGTAACGGAACACTCAAAAGTGACTCGTTTTGACGAGAAGCAGATAGAG
E K W L L N Q I P V T E H S K V T R F D E K Q I E

316 GAATTACTGGATAACTGTATAGAAACGTTCGTGGCGGAAAAAACTACGTAAAAAGGCGGTATTTATCTATTATTT
E L L D N C I E T F V A E K T T *

391 GGCCAAAAAAAAAAAAAATAATATAATATACATAC TACAAAAATATACATCTATCTTATTTCC

466 CATTATTTGGACAAATGCTTACGTGCTAATGTCCTTACCCTCGAGTCGAATGCCGGGCTCCTAATAGGGTCTGTA

541 ATCTTATAAAACGGGTTCATTAGTGTCTTTACGTATAGTTCGTGTACCTCTTGGTAGAATGACCTCATATTATTG

616 TCGTCAATAACTACGCTACTGTTGGCTGAGTTCCCATGGATCATCACGAACTTCATCCCACTATAGCTAATATAA

691 GCCGTTATTGCTAGTCCATAAAAATGATC 719

Figure 1. SRB6 sequence


