
Teaching, Learning, and Exploration

by

Yiqun Yin

B.S. Applied Mathematics, Beijing University (1989)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1994

© Massachusetts Institute of Technology 1994. All rights reserved.

Signature of Author............. v v

Department of Mathematics
June 13, 1994

Certified by.
Michael Sipser

Professor of Applied Mathematics
Thesis Supervisor

Accepted by
, .yv rt

David Vogan
Chairman, Departmental Graduate Committee

MASSACHUSETTS INSTITUTE
o T.ran , nv

NOV 01 1994
Science

a .,, a,, ..w:·r |:e

Teaching, Learning, and Exploration

by

Yiqun Yin

Submitted to the Department of Mathematics

on June 13, 1994, in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Abstract
This thesis studies two problems in machine learning: on-line concept learning and
on-line exploration in an unknown environment.

In the first part of the thesis, we study two on-line concept learning models:
teacher-directed learning and self-directed learning. In both models, the learner tries
to identify an unknown concept based on examples of the concept presented one at a
time. The learner predicts whether each example is positive or negative with immedi-
ate feedback, and the objective is to minimize the number of prediction mistakes. The
examples are selected by the teacher in teacher-directed learning and by the learner
itself in self-directed learning.

We explore the power of a helpful teacher by investigating the number of mistakes
in the two models. Roughly, teacher-directed learning reflects the scenario in which
a teacher teaches a class of learners, and self-directed learning reflects the scenario in
which a smart learner learns by itself. For all previously studied concept classes, the
minimum number of mistakes in teacher-directed learning is always larger than that
in self-directed learning. This raises an interesting question of whether teaching is
helpful for all learners including the smart learner. Assuming the existence of one-way
functions, we construct concept classes for which the minimum number of mistakes
is linear in teacher-directed learning but superpolynomial in self-directed learning,
demonstrating the power of a helpful teacher in a learning process.

We next study the tradeoff between the number of mistakes and the number of
queries in self-directed learning. We develop a new technique for reducing the num-
ber of queries significantly as the number of allowable mistakes increases. Using the
technique, we construct self-directed learning algorithms that require only a polyno-
mial number of queries. The results contrast with all previous algorithms that use
O(ICl) queries, which is usually exponential. We also prove a general lower bound
on the minimum number of queries needed when k or fewer mistakes are allowed in
self-directed learning. For some concept classes, the lower bound matches the upper
bound provided by our algorithms.

In the second part of the thesis, we develop on-line strategies for exploring, with

multiple robots, a unique goal that lies on one of many paths joined at an origin. The
objective is to minimize the total distance traveled by all of the robots before the
goal is found. Exploration strategies for a single robot have been studied intensively
in recent years. However, the more challenging problem of exploring with multiple
robots has not been well understood since an optimal algorithm must involve clear
coordination among all robots. We present deterministic algorithms with optimal
competitive ratios and efficient randomized algorithms that are provably optimal in
some special cases. Our results completely characterize the condition under which
randomization can help reduce the competitive ratios, and they settle some open
questions in the literature.

Thesis Supervisor: Michael Sipser

Title: Professor of Applied Mathematics

Acknowledgments

I am indebted to my advisor, Michael Sipser, for all he has taught me and for all his

support and encouragement during my years as a graduate student at MIT. I would

like to express my deepest gratitude for his valuable advice on both mathematics and

philosophy of life.

Special thanks go to Ron Rivest for his constant and insightful advice on my

research. I am very grateful to him for teaching me machine learning and for many

stimulating discussions that made this thesis possible.

Portions of this thesis are products of collaborative efforts: Chapter 2 is joint work

with Ron Rivest, and Chapter 4 is joint work with Ming-Yang Kao, Yuan Ma, and

Michael Sipser. I thank them for allowing me to include our joint work in this thesis.

I would like to thank Hung Cheng for his encouragement during my stay at MIT. I

would like to thank Dan Kleitman for his brilliance and his great sense of humor which

makes mathematics so enjoyable. I would like to thank Silvio Micali for enlightening

discussions in cryptography. I would like to thank Tom Leighton for his generous

financial support during my last year of study.

I am grateful to all the members of the MIT Department of Mathematics and

Theory of Computation Group for providing a supportive and friendly environment.

In particular, I would like to thank Be Hubbard, Maureen Lynch, and Phyllis Ruby

for being such dependable sources of help and information.

Over the years, many people have contributed to my education. Among these

people, I would like to recognize the efforts of my high school mathematics teacher

Renfeng Jiang and Professor Dun Huang in Beijing University.

Finally, I thank my parents and brother for their support and understanding.

Most of all, my greatest thanks go to my husband, Yuan Ma. Without all his love,

help, and encouragement, I could have never made it this far.

Contents

1 Thesis Overview

2 The Power of Teaching

2.1 Introduction.

2.2 Preliminaries

2.3 Teacher-directed and self-directed learning.

2.3.1 The learning models

2.3.2 An example: learning monotone monomials

2.3.3 The number of mistakes in both models . .

2.4 The power of teaching

2.4.1 Some background in cryptography

2.4.2 Polynomial-time inference of functions . . .

2.4.3 Main theorem

2.4.4 Further discussions

2.5 Conclusions and open problems

9

12

12

...... ..14

...... ..16

...... ..16

...... ..17

...... ..18

...... . .19

...... ..20

...... ..23

...... ..25

...... ..32

...... ..33
3 Reducing the Number of Queries in Self-directed Learning 35

3.1 Introduction 35

3.2 Reducing the number of queries 37

3.2.1 A general technique 37

3.2.2 Monotone monomials 39

3.2.3 r-of-t threshold functions 40

3.2.4 Monotone read-once DNF formulas 42

7

3.2.5 Algorithms with a polynomial number of queries 45

3.3 A general lower bound on the number of queries 46

3.4 Some properties of Qk(C) 51

3.5 Conclusions and open problems 53

4 Exploring an Unknown Environment with Multiple Robots 54

4.1 Introduction 54

4.2 Optimal deterministic exploration algorithms 56

4.2.1 The exploration algorithms 57

4.2.2 Lower bounds on the competitive ratios 58

4.3 Randomized exploration algorithms 64

4.3.1 A randomized exploration algorithm for = 1 64

4.3.2 Randomized exploration algorithms for general 65

4.3.3 Lower bounds for = I 66

4.4 Conclusions and open problems 71

A Proofs of Technical Theorems and Lemmas 73

A.1 Proofs of Lemma 4.2.3 73

A.2 Proofs of the lemmas for Theorem 4.3.4 75

8

Chapter 1

Thesis Overview

The ultimate goal of machine learning research is to build robots that learn from their

experience as effectively as humans do. Machine learning has attracted researchers

from different fields, and many interesting approaches have been proposed. The re-

sults in this thesis belong to an area of machine learning known as learning theory in

which problems are investigated in a mathematically-oriented framework. In partic-

ular, we study two problems in learning theory: on-line concept learning and on-line

exploration in an unknown environment.

Learning a concept from examples is one of the most fundamental problems in

learning theory. A great deal of research has been devoted to this problem since

Valiant's [34] pioneer work in 1984. Informally, a concept is a rule that divides

the world into positive and negative examples, and a concept class is a collection of

concepts. In all models for concept learning, the learner tries to identify an unknown

target concept in a known concept class using examples of the target concept. In

Chapters 2 and 3, we study two on-line concept learning models: teacher-directed

learning and self-directed learning. In both models, the learner is presented with one

example at a time in a series of stages. The learner predicts whether each example is

positive or negative with immediate feedback, and the goal is to minimize the number

of prediction mistakes. The examples are selected by the teacher in teacher-directed

learning and by the learner itself in self-directed learning.

In Chapter 2, we study the power of a helpful teacher by investigating the number

9

of mistakes made by the learner in both teacher-directed and self-directed learning.

Roughly, self-directed learning reflects the situation in which a smart learner learns

by itself, and teacher-directed learning reflects the scenario in which a teacher teaches

a class of learners, some of which may be slow. In particular, we compare the per-

formance of the smart learner versus that of the slowest learner with the help of a

powerful teacher. For all previously studied concept classes, the minimum number

of mistakes made by the slowest learner in teacher-directed learning is always larger

than the minimum number of mistakes required in self-directed learning. This fact

raises an interesting question of whether teaching is helpful for all learners including

the smart learner. We answer this question positively in this chapter. Assuming the

existence of one-way functions, we prove that there exist concept classes for which

the number of mistakes is linear in teacher-directed learning but superpolynomial in

self-directed learning. This provides the first set of concept classes in which the min-

imum number of mistakes in teacher-directed learning is strictly smaller than that in

self-directed learning, demonstrating the power of teaching in a learning process.

In Chapter 3, we investigate the tradeoff between the number of mistakes and the

number of queries (which is the number of examples queried before the target concept

is learned) in self-directed learning. All previous self-directed learning algorithms

use O(ICI) queries, which is usually exponential, since they aim to minimize the

number of mistakes. We develop a new technique for reducing the number of queries

significantly as the number of allowable mistakes increases. More specifically, we

construct a family of self-directed learning algorithms {Ak} such that the number

of mistakes in Ak is at most k and the number of queries in Ak is a decreasing

function of k. Using the technique, we design self-directed learning algorithms that

use only a polynomial number of queries. Moreover, the family of algorithms {Ak}

provides a smooth transition from algorithms that minimize the number of mistakes

to algorithms that minimize the number of queries. We also prove a general lower

bound on the minimum number of queries needed for learning a concept class when

k or fewer mistakes are allowed in self-directed learning. For some concept classes,

the lower bound matches the upper bound provided by our algorithms.

10

Exploration in an unknown environment has been an important problem not only

in learning theory but also in many other areas of machine learning such as robotics.

Different structures of environments have been investigated, and various exploration

strategies have been proposed. In the study of on-line exploration algorithms, the

notion of a competitive ratio is often used to measure the efficiency of an on-line

algorithm. In the competitive analysis, the performance of an on-line algorithm is

compared with the best off-line algorithm.

In Chapter 4, we develop on-line strategies for exploring an unknown environment

with multiple robots. The exploration problem that we study is formulated as follows:

At an origin, there are many paths leading off into unknown territories. On one of

the paths, there is a goal at an unknown distance, and none of the other paths has

a goal. Initially, there are multiple robots standing at the origin. The robots can

move back and forth on the paths to search for the goal. The objective is to minimize

the total distance traveled by all of the robots before the goal is found. The single-

robot case has been studied by many researchers. However, the more challenging

problem of exploring with multiple robots has not been well understood since an

optimal algorithm must involve clear coordination among all robots. We construct

deterministic algorithms with optimal competitive ratios and efficient randomized

algorithms that are provably optimal in some special cases. Our results completely

characterize the condition under which randomization can help reduce the competitive

ratios, and they settle some open questions posed by Baeza-Yates, Culberson, and

Rawlins [4] and Kao, Reif, and Tate [21]. We remark that a preliminary version of

the results in this chapter appeared in [20].

11

Chapter 2

The Power of Teaching

2.1 Introduction

In this chapter, we study the power of a teacher in helping students to learn concept

classes. In the literature of learning theory, the teacher has been modeled differently

in various learning frameworks [2, 12, 13, 14, 15, 19, 26, 31, 32], and the impact of

teaching depends on how much the teacher is involved in the learning process. We

study the importance of teaching by investigating two learning models:

* teacher-directed learning in which the learner highly relies on the information

provided by the teacher to accomplish learning, and

* self-directed learning in which the learner actively queries the information needed

and accomplishes learning solely by itself.

Teacher-directed learning and self-directed learning were first introduced by Gold-

man, Rivest, and Schapire [15]. In both models, the learner tries to identify an un-

known concept based on examples of the concept presented one at a time. The learner

predicts whether each example is positive or negative with immediate feedback, and

the objective is to minimize the number of prediction mistakes. The examples are

selected by the teacher in teacher-directed learning and by the learner itself in self-

directed learning. The picture behind the formulation of the two models is roughly

the following. Self-directed learning reflects the situation in which a smart learner

12

learns by itself, and teacher-directed learning reflects the scenario in which a teacher

teaches a class of learners, some of which may be slow. Throughout the chapter, we

use smart learner to denote an optimal self-directed learner for a given concept class.

To study the power of teaching, we compare the number of mistakes made by the

smart learner versus the number of mistakes made by the slowest learner with the

help of a powerful teacher.

Goldman and Kearns [12, 13] studied the teacher-directed learning model and gave

tight bounds on the number of mistakes for several concept classes. Goldman and

Sloan [12, 16] studied the self-directed learning model, and they also derived optimal

bounds on the number of mistakes for several concept classes. For all previously

studied concept classes [12, 13, 15, 16, 38], the minimum number of mistakes made

by the slowest learner in teacher-directed learning is always larger than the minimum

number of mistakes made by the smart learner in self-directed learning. This fact

raises an interesting question of whether teaching is helpful for all learners including

the smart learner. In other words, is it sometimes better for the smart learner to

listen to the lecture prepared by the teacher for a class of general learners instead of

working on its own?

We answer this question positively in this chapter. Assuming the existence of

one-way functions, we construct concept classes for which the minimum number of

mistakes in self-directed learning is strictly larger than that in teacher-directed learn-

ing. More precisely, we prove a much stronger result: the concept classes that we

create have the property that the minimum number of mistakes is superpolynomial

in self-directed learning but only linear in teacher-directed learning. Therefore, with-

out the help from a teacher, the concept classes are not learnable even for the smart

learner. This demonstrates the power of teaching in a learning process.

Our non-learnability result for self-directed learning uses the cryptographic as-

sumption that one-way functions exist. Cryptography has had considerable impact

on learning theory, and virtually every non-learnability result has at its heart a cryp-

tographic construction [1, 5, 22, 23, 29]. However, most of the previous results rely

on the fact that the examples are chosen according to a distribution or by an ad-

13

versary, which might be "malicious" to the learner. Since the examples are selected

by the learner itself in self-directed learning, our result is stronger than previous re-

sults in the sense that the non-learnability of the concept classes is solely inherent in

the structure of the concept classes and does not depend on having the learner see

examples in a way that is less desirable than could have been chosen by itself.

Our results also imply that the minimum number of mistakes for learning a con-

cept class under self-directed learning can be substantially smaller than the Vapnik-

Chervonenkis dimension [35] of the concept class. This answers an open question

posed by Goldman and Sloan [16].

The remainder of the chapter is organized as follows. In §2.2, we review some

basic definitions in learning theory. In §2.3, we give the formal definitions of teacher-

directed learning and self-directed learning. In §2.4, we present the construction of

our concept classes and show that the concept classes have the desired property. We

conclude in §2.5 with some future research directions.

2.2 Preliminaries

In this section, we first review some basic definitions in learning theory. Then we

describe a general on-line learning model that provides the framework for defining

teacher-directed learning and self-directed learning.

A concept c is a Boolean function on some domain of instances X. A concept class

C is a family of concepts. An example is an instance x E X, and, for a given concept

c, a labeled example of c is a pair (x, c(x)). An example x is called a positive example

if c(x) = 1; otherwise, it is called a negative example. An instance domain X is often

decomposed into subsets {Xn} according to some natural dimension measure n. For

example, Xn = {0, 1}n is the Boolean domain containing all the 0-1 vectors of length

n. Accordingly, a concept class C is decomposed into subclasses {Cn}.

In all models for concept learning, the objective of the learner (or the learning

algorithm) is to learn an unknown target concept in a known concept class using

labeled examples of the target concept. The models differ in how examples are selected

14

and how successful learning is defined. Two of the most commonly used models in

learning theory are Valiant's [34] distribution-free model in which examples are chosen

from a fixed but arbitrary distribution and Littlestone's [25] absolute mistake-bound

(on-line) model in which examples are presented in order by an adversary. Since

we are interested in designing computational efficient algorithms, we will focus on

polynomial-time learning algorithms.

We next describe a generalization of Littlestone's on-line model in which an agent

(not necessarily an adversary) presents examples to the learner [12]. We will see in

the next section that the agent is the teacher in teacher-directed learning and the

learner itself in self-directed learning.

In the general on-line learning model, the learner learns an unknown target concept

c in a series of stages. In each stage, an agent first presents an unlabeled example x to

the learner. The learner uses the current knowledge of c to predict if x is positive or

negative and is then told the correct answer. The learner makes a prediction mistake

if its prediction differs from the correct answer. The goal of the learner is to minimize

the number of prediction mistakes. We say that the learner learns a concept class

C = {C,} if there exists a polynomial P such that for all target concept c C,

the learner makes at most P(n) mistakes using polynomial time in each stage. The

sequence of examples chosen by the agent is called a query sequence.

It is possible that a learner always predicts arbitrarily no matter what it has seen.

Hence, we want to consider reasonable learners that pay attention to what have been

presented. Formally, a learner is consistent if, in every stage, there is a concept in C,

that agrees with the learner's prediction, as well as with all of the labeled examples

in the previous stages. We define a polynomial-time consistent learner as a learner

that makes consistent predictions using polynomial time in all stages unless there is

no polynomial-time algorithm for computing a concept in C, that is consistent with

all of the previous labeled examples.

15

2.3 Teacher-directed and self-directed learning

2.3.1 The learning models

Based on the general on-line learning model described in the previous section, we

formally define self-directed learning and teacher-directed learning.

In self-directed learning, the learner selects an example in each stage based

on the information given in the previous stages. Therefore, a self-directed learning

algorithm consists of the strategies for both selecting the query sequence and for

making the predictions. The model reflects the scenario in which a smart learner

queries the information needed and accomplishes learning solely by itself.

Given a polynomial-time self-directed learning algorithm A, we use Ms(C,, A) to

denote the worst-case number of mistakes made by algorithm A for any target concept

c C , and we define optMs(Cn) = minA Ms(C,, A). In other words, optMs(Cn) is

the worst-case number of mistakes made by an optimal polynomial-time self-directed

learner.

In teacher-directed learning, the teacher, who knows the target concept, chooses

an example in each stage based on the previous information. In this model, we require

that the teacher can teach any polynomial-time consistent learner (which we will refer

to as the consistent condition). The model reflects the situation in which a teacher

teaches a class of learners who may be slow but pay attention to what the teacher

has presented.

The consistent condition avoids collusions between the teacher and the learner. An

easy collusion strategy is the following: The teacher and the learner agree beforehand

on an "encoding" of the concepts in C, by certain sequences of examples. To teach

a target concept c C, the teacher just presents the sequence of examples, say

7r, that encodes c. The learner can then decode c from 7r, even though there may

be several concepts in C consistent with 7r. The consistent condition ensures that

the teacher must present a sequence of labeled examples that uniquely specifies the

target concept c; otherwise, some polynomial-time consistent learner may still make

prediction mistakes for unseen examples.

16

Let A be an algorithm for the teacher, we define MT(C,, A) as the worst-case

number of mistakes made by any polynomial-time consistent learner for any target

concept c E C when the teacher chooses the query sequence according to A. We

define optMT(C,) = minA MT(C, A). Therefore, optMT(Cn) is the worst-case number

of mistakes made by the slowest learner when the teacher uses an optimal algorithm.

For many concept classes, computing a concept consistent with a given set of la-

beled examples can be done in polynomial time. For such concept classes, optMT(C,)

equals the minimum number of labeled examples needed to uniquely specify a concept

c E C in the worst case. Hence, an optimal algorithm for the teacher is to compute

a sequence of labeled examples of minimum length that uniquely specifies the target

concept.

2.3.2 An example: learning monotone monomials

In this subsection, we illustrate how to learn the concept class of monotone monomials

in both models. The teacher-directed learning algorithm was given by Goldman and

Kearns [13], and the self-directed learning algorithm was given by Goldman and

Sloan [16]. Both of the algorithms are fairly simple, and they provide a clear picture

of how algorithms work in general in both models.

A monotone monomial c over n variables {xl,..., x} is of the form c = xil A xi2 A

*· A xi. Each variable xij (1 < j < r) is called a relevant variable of c.

Theorem 2.3.1 [13] For the concept class Cn of monotone monomials over n vari-

ables, optMT(C,) = n.

We now sketch Goldman and Kearn's algorithm. Note that, given a set of labeled

examples S, it is straightforward to compute a monotone monomial consistent with

S (if there is one). According to the discussion on teacher-directed learning in the

previous subsection, the teacher only needs to present a sequence of labeled examples

that uniquely specifies the target concept. For a monotone monomial c with r relevant

variables, the following sequence of r + 1 labeled examples are sufficient: (1) a single

positive example in which all the relevant variables are set to 1 and the rest are set

17

to 0; (2) r negative examples constructed by flipping a single 1 variable to 0 in the

positive example. The positive example proves that no irrelevant variables are in

c, and the r negative examples prove that each relevant variable is in c. If r = n,

the positive example can be eliminated. Therefore, optMT(Cn) < n. Goldman and

Kearns proved that optMT(Cn) > n by showing that no sequence of length n - 1 or

shorter suffices.

Theorem 2.3.2 [16] For the concept class Cn of monotone monomials over n vari-

ables, optMs(C)= 1.

In Goldman and Sloan's self-directed learning algorithm, the learner uses the

following query sequence: The sequence starts with the instance in which all variables

are 0 followed by the n instances in which a single variable is 1 and then by the ()

instances in which two variables are 1, and so on. The learner always predicts negative

and stops when the first mistake occurs. Note that when the learner makes the first

mistake in some stage t, the t labeled examples seen so far contain the r + 1 labeled

examples that suffice to uniquely specify the target concept. The learning process

finishes after stage t. Therefore, optMs(Cn) = 1.

For the concept class of monotone monomial, optMs(Cn) is less than optMT(C).

The reason is that the smart self-directed learner obtains the useful information about

the r negative examples without making any mistakes.

2.3.3 The number of mistakes in both models

We have seen that the number of mistakes in self-directed learning is smaller than in

teacher-directed learning for the concept class of monotone monomials. In fact, this

is not a special result. For all the natural concept classes that have been previously

studied, optMs(C,) is always less than optMs(C). Some results are listed in the fol-

lowing table. For the first three concept classes, the results for MT(Cn) were obtained

by Goldman and Kearns [13], and the results for Ms(C,) were derived by Goldman

and Sloan [16]. The results for r-of-t threshold functions were given by Yin [38].

18

Concept classes MT(Cn) Ms(Cn)

Monotone monomials n 1

Monomials n + 1 2

Orthogonal rectangles 2d + 2 2

in {0,1,...,n}d

r-of-t threshold functions n + 1 2

As we examine these algorithms, it is always the case that the smart self-directed

learner can obtain some information about the target concept "for free". More specif-

ically, the smart learner can get many useful labeled examples without making any

prediction mistakes. Goldman [12] explained the phenomenon intuitively as follows:

the smart learner may learn quicker working on its own rather than listening to the

lecture designed for the general learners including the slower learners.

We now ask a natural question: Is it sometimes better for the smart learner to

listen to the lecture prepared by the teacher for the general learners instead of working

on its own? In terms of our learning models, the question is the following:

Are there concept classes in which the learner makes fewer mistakes

in teacher-directed learning than in self-directed learning?

We answer this question positively in the next section by constructing such concept

classes, assuming the existence of one-way functions. More precisely, we prove a

much stronger result: the concept classes that we construct have the property that

the number of mistakes is superpolynomial in self-directed learning but only linear in

teacher-directed learning.

2.4 The power of teaching

In this section, we show that there exist concept classes in which the learner makes

substantially fewer mistakes in teacher-directed learning than in self-directed learning

assuming the existence of one-way functions. In §2.4.1, we review some definitions

and notations in the cryptographic literature. In particular, the collection of pseu-

dorandom functions created by Goldreich, Goldwasser, and Micali [17] will be very

19

useful for constructing our concept classes. In §2.4.2, we investigate the problem

of efficiently inferring a function from its input-output values. The problem has

been studied in both the cryptographic and learning literatures, and we show how

polynomial-time inference of functions is closely related to the number of mistakes in

self-directed learning. In §2.4.3, we present the construction of our concept classes

and prove that the concept classes have the desired property. In §2.4.4, we further

study some properties of the concept classes and answer an open question posed by

Goldman and Sloan [16].

2.4.1 Some background in cryptography

One-way functions and CSB generators

Informally, one-way functions are functions that are easy to compute but hard

to invert for some nonnegligible fraction of the instances (see [24, 37]). There are

many functions that are currently believed (not proved) to be one-way (e.g., the

RSA function [30]), and these functions are playing an important role in constructing

many cryptosystems. Informally, a CSB generator (crypotographically strong pseu-

dorandom bit generator) [8] is a deterministic polynomial-time algorithm that, given

a randomly chosen input, generates a longer pseudorandom output. It is not known

whether CSB generators exist, but their existence has been proven to be equivalent

to the existence of one-way functions [18, 24].

There are several equivalent formal definitions of a CSB generator. The definition

that we give below is based on the notion of polynomial-time statistical tests for

strings [37], and it will be most suitable for proving our main results.

If S is a finite set, we use s ER S to denote that s is chosen uniformly at random

from S. We denote the set of all possible 0-1 strings of length n by Rn and let

R = UnRn.

Let Q1 be a polynomial and S = UnSn be a multiset of strings, where Sn consists

of n-bit-long strings. A polynomial-time statistical test for strings is a probabilistic

polynomial-time algorithm T that takes as input Ql(n) strings from Sn and outputs

20

either 0 or 1. We use Pn(T, S) to denote the probability that T outputs 1 on Qi(n)

randomly selected strings in S,. We say that S passes the test T if, for any polynomial

Q and for sufficiently large n,

IP(T, S) - P(T, R)I <
Q(n)'

For a polynomial P, a CSB generator with stretch P is a deterministic polynomial-

time algorithm G with the following properties: (1) on an input string s E {0, 1}n,

G generates a P(n)-bit-long output string; (2) the set of all possible strings that G

generates passes all polynomial-time statistical tests for strings.

Statistical tests for functions

Let Hn denote the set of all possible functions f:{O, 1} n _ {0, 1}n and let H =

{Hn}. Note that Hn = 2n2 . Let F = {Fn} be a collection of functions such that

Fn C Hn for all n. A polynomial-time statistical test for functions is a probabilistic

polynomial-time algorithm T that, given n as input and access to an oracle Of for a

function f, outputs either 0 or 1. We use P,(T, F) to denote the probability that T

outputs 1 if f ER Fn. We say that a collection of functions F passes the test T if, for

any polynomial Q and sufficiently large n:

IPn(T, F)- Pn (T, H)| < (n)'

If F passes all polynomial-time statistical tests for functions, then no polynomial-time

algorithm can distinguish between a function f CR Fn and a function h R Hn with

a 1 probability.
poly(n)

We generalize the idea to any two collections of functions and give the following

definition. We say that two collections of functions F and G are polynomially indis-

tinguishable if, for any probabilistic polynomial-time algorithm T, for any polynomial

Q, and for sufficiently large n:

IPn(T, F)- P(T, G)I < Q(n'

21

We show in the next lemma that polynomial-time indistinguishability is transitive.

Lemma 2.4.1 Let F, F', and F" be collections of functions. If F and F' are poly-

nomially indistinguishable and F' and F" are polynomially indistinguishable, then F

and F" are polynomially indistinguishable.

Proof. We assume, for contradiction, that F and F" are polynomially distinguish-

able. Then there exist a probabilistic polynomial-time algorithm T* and a poly-

nomial Q* such that P(T*,F) - P(T*,F")l > Q for infinitely many n. On

the other hand, we know that F and F' are polynomially indistinguishable and

F' and F" are polynomially indistinguishable. Hence, there exist n and n2 such

that (1) for all n > n, Pn(T*,F) - P(T*,F')[< 12Q*() and (2) for all n > n2,

IP (T*, F')- Pn(T*, F") < 2Ql(n) This implies that IPn(T*, F)- P (T*, F")I < Q*(n

for n > max(nl, n 2), which is a contradiction. [

Remark: We have considered the collections of functions F = {F} in which

each f C F, has both domain and range {0, 1}'. It is straightforward to modify the

above definitions to fit the collections of functions F': {FJn} in which each f Fn

has domain {0, 1 } and range {0, 1 }. This is important since the concepts that we will

consider later have ranges {0, 1}. In particular, corresponding to H, Z, is defined as

the set of all possible functions f:{ 0, I} -- { 0, 1}. Let Z { Z }. Then, a collection

of functions F' passes all polynomial-time statistical tests if and only if F' and Z are

polynomially indistinguishable.

The GGM pseudorandom function construction

We now review the Goldreich, Goldwasser, and Micali pseudorandom function

construction. They created a collection of functions F = {F}, where each F =

{fs}sE{0,}n consists of 2n functions with both domains and ranges {0, 1}'.

The construction uses a CSB generator G that stretches a seed s C {0, 1}n into

a 2n-bit-long sequence G(s) = b b..2. n Let Go(s) be the leftmost n bits b... b[

and Gi(s) be the rightmost n bits b+l ... b2n. For x = l ... xt, let Gx1...x,(s)

G,,(Gt_(G, (s) ...)). Then, on input x = ... xn, the function f:{O, l} --

22

{0, 1}n is defined as

fs(x) = G... n() = Gn(GZn_ (... GXl(S)))

Goldreich et al. showed that the collection of functions F has the following prop-

erties:

(1) Indexing: Each function f, E Fn has a unique n-bit index s associated with it.

Thus, picking a function f ER F, is easy, if n random bits are available.

(2) Polynomial-time Evaluation: There exists a polynomial-time algorithm that on

input x C {0, 1}n computes f(x) for any given s.

(3) Pseudorandomness: F passes all polynomial-time statistical tests for functions.

2.4.2 Polynomial-time inference of functions

Recall that in self-directed learning, a learner aims to efficiently infer (predict) the

label of an unseen example with respect to the unknown target concept after querying

a number of examples. In the cryptographic literature, a similar problem was also

considered when Goldreich et al. [17] further studied the properties of their collection

of pseudorandom functions.

Let F = {Fn} be a collection of functions such that all functions f E F have

domain {0, 1}n and the same range D (D can be either {0, 1}n or {0, 1}). Let A be

a probabilistic polynomial-time algorithm. On input n and with access to an oracle

Of for a function f C F, A carries out a computation during which it queries Of

about xl,..., xj . Then algorithm A chooses x E {0, 1}n such that x xl,. . ., xj. At

this point, A is disconnected from Of and is presented with values f(x) and y CR D

in a random order. Let Q be a polynomial. We say that algorithm A Q-infers the

collection F if, for infinitely many n, A correctly guesses which of the two values is

f(x) with probability at least +).

We say that a collection of functions F can be polynomially inferred if there exist

a polynomial Q and a probabilistic polynomial-time algorithm A that Q-infers F.

In the next theorem, we illustrate a close relation between polynomial-time in-

23

ference of a concept class C and the number of mistakes in self-directed learning for

C. The relation is of separate interest, and it will also be useful in proving our main

results.

Theorem 2.4.1 If a concept class C = {C} cannot be polynomially inferred, then

for any polynomial P and for infinitely many n, optMs(Cs) > P(n).

Proof. We assume, for contradiction, that there exists a polynomial-time self-

directed learning algorithm A* and a polynomial P such that Ms(Cn, A*) < P(n) for

sufficiently large n. Let 7r = (xl, x2, ... , Xt) be the query sequence that A* chooses.

(Note that for different target concepts, r may be different. So the ith query xi is

actually a function of c.)

By the assumption that Ms(Cn, A*) < P(n), we obtain that, for any fixed target

concept c E Cn, the number of prediction mistakes that A* makes over the first 6P(n)

queries (1 ,... , X6p()) is less than P(n). Therefore, for sufficiently large n, with

probability one, the number of prediction mistakes that algorithm A* makes over the

first 6P(n) queries is less than P(n) if c ER Cn.

On the other hand, we know that C cannot be polynomially inferred. This implies

that, for any polynomial Q and for sufficiently large n, the probability that A* predicts

correctly for xi (1 < i < 6P(n)) is less than + for c ER Cn. Hence, for sufficiently

large n, the probability that A* predicts incorrectly for xi (1 < i < 6P(n)) is at least

-Q(n) > . On average, algorithm A* makes at least . 6P(n) = 2P(n) prediction

mistakes over the first 6P(n) queries. By a simple probabilistic argument, we can

conclude the following: for sufficiently large n, with a positive probability, algorithm

A* must make at least P(n) + 1 prediction mistakes over the first 6P(n) queries if

c ER Cn. We reach a contradiction.

We have presented a close connection between polynomial-time inference of a

concept class and the number of mistakes in self-directed learning for the concept

class. The following theorem by Goldreich et al. gives a relation between polynomial-

time inference of functions and polynomial-time statistical tests for functions.

Theorem 2.4.2 [17] Let F = {Fn} be a collection of functions with the properties of

24

indexing and polynomial-time evaluation. Then F cannot be polynomially inferred if

and only if it passes all polynomial-time statistical tests for functions.

Theorem 2.4.2 immediately implies that the collection of pseudorandom functions

F = F,) constructed by Goldreich et al. cannot be polynomially inferred.

Now, let us consider another collection of pseudorandom functions by taking the

least significant bit of each function in F. More precisely, we define L, = {Is}s{,1}n,

where l(x) = LSB(f(x)), and we let L = {L}. Obviously, the collection of func-

tions L also has the properties of indexing and polynomial-time evaluation, and it

passes all polynomial-time statistical tests for functions. If we consider L = {Ln}

as a concept class, then by Theorems 2.4.2 and 2.4.1, we obtain that optMs(L,) is

superpolynomial. In the next subsection, concept class L will be used as a starting

point for constructing our concept classes with the desired property.

2.4.3 Main theorem

In this subsection, we construct concept classes for which a learner makes much fewer

mistakes in teacher-directed learning than in self-directed learning, assuming that

one-way functions exist.

Theorem 2.4.3 (Main theorem) There exist concept classes such that optMT(C)

is linear but optMs(C) is superpolynomial if one-way functions exist.

The rest of the subsection is devoted to the proof of Theorem 2.4.3. Given any

CSB generator with stretch 2n, we first construct a concept class C* = {(C). Then,

we show that concept class C* has the property stated in Theorem 2.4.3.

In what follows, we construct concept class C* = C}. The instance domain of

C* is the Boolean domain {0, l}. For x C {0, 1)}, we use x(0) to denote x itself and

x(1) to denote the instance in {0, 1n immediately after x in the lexicographic order.

Similarly, we can define x(- 1), x(2), (3), etc. In particular, we define the instance

immediately after 1 ... 1 as 0... 0. Let x = 0... 0. Given a concept c, we call the

25

sequence {C(X),C(X(1))..., C(X(2 -1))} the label sequence of c. Note that the label

sequence of c is a 0-1 sequence of length 2n.

Let G be a CSB generator with stretch 2n. Given G, Goldreich et al. constructed

a collection of pseudorandom functions F = {Fn}. Based on F, we construct our

concept class C* = {Cn}, together with two intermediate concept classes L = {Ln}

and L' = {L'} by the following 3-step procedure.

Step 1: Define Ln = {Is}s{O,1}n, where 1,(x) = LSB(fs(x)).

Step 2: Define L' = {s}s{O,1}n, where

l(x) = { 0 if 1s(X) = ls(Xz()) = = l (z (n- 1)) = 1,

ls(x) otherwise.

Step 3: Define C = {cs}s{o,ln, where

1 if x E {s, s(1),. . . (n-1),

Cs(x): 0 if x C {s(-1),S(n)}

's (x) otherwise.

We next give some insight about the construction. By the discussion in §2.4.2, we

know that optMs(Ln) is superpolynomial. However, by a similar argument, we can

conclude that optMT(Ln) is also superpolynomial. To make teacher-directed learning

easier, we modify Ln in Steps 2 and 3 to obtain C* such that for each c, E C, there

exists a short sequence S of labeled examples that uniquely specifies c and there exists

a polynomial-time algorithm that infers c from S. This ensures that the teacher can

teach C* to any polynomial-time consistent learner using S. Later, we will prove that

optMs(C*) is still superpolynomial after the modification.

In what follows, we continue the proof of Theorem 2.4.3 by showing that for con-

cept class C*, the number of mistakes is linear in teacher-directed learning (Lemma 2.4.2)

and the number of mistakes is superpolynomial in self-directed learning if one-way

functions exist (Lemma 2.4.3).

Lemma 2.4.2 optMT(C*) < n.

26

Proof. For target concept c, E C C, we will prove that the teacher only needs

to present the n labeled examples (s, 1), (s(1),1),.. (s(n-1), 1). Consider Step 2 of

our construction. For each concept, we flip certain l's to 0 in its label sequence to

eliminate all consecutive l's of length n or longer. In Step 3, we further modify the

label sequences so that (1) there is a unique consecutive l's of length n in the label

sequence for each concept, and (2) for any given concept, the starting position of its

unique consecutive 's of length n is different from all of the other concepts. Therefore,

the n labeled examples (s, 1), (s (l), 1), ... (s(n-l), 1) uniquely specify cs. Furthermore,

any polynomial-time consistent learner can infer c from these n labeled examples.

We thus have optMT(C*) < n. [1

Lemma 2.4.3 If one-way functions exist, then for any polynomial P and for in-

finitely many n, optMs(Cn) > P(n).

We will prove Lemma 2.4.3 by 3 lemmas. From the construction of C*, it is easy

to see that C* has the properties of indexing and polynomial-time evaluation. By

Theorems 2.4.1 and 2.4.2, to prove Lemma 2.4.3, we only need to show that C* passes

all polynomial-time statistical tests for functions. Equivalently, we only need to show

that C* and Z = {Zn) are polynomially indistinguishable. Recall that Zn is the set

of all possible functions f:{0, 1 _ {0, 1}. We now modify Z = {Z n } to obtain

Z' = {Zn} in the same way that we modify L to obtain L'. For each f E Z, the

corresponding f' C Zn is defined as follows:

f'(z) = 0 if f(x) = f(x(1)) = .. = f(x(n- 1))= 1,{ f (x) otherwise.

We prove that Z and C* are polynomially indistinguishable in three steps:

* Z and Z' are polynomially indistinguishable (Lemma 2.4.4),

* Z' and L' are polynomially indistinguishable (Lemma 2.4.5), and

* L' and C* are polynomially indistinguishable (Lemma 2.4.6).

27

Lemma 2.4.4 Z and Z' are polynomially indistinguishable.

Proof. We assume, for contradiction, that Z and Z' are polynomially distinguishable.

Then there exist a probabilistic polynomial-time algorithm A and a polynomial Q such

that for infinitely many n,

P (A, Z) - Pn(A, Z') I >

Let Q' be a polynomial such that algorithm A makes at most Q'(n) oracle calls

on input n. Since A can distinguish between a function f ER Z and a function

f' ER Z, A must detect n consecutive 's in the label sequence of f. Since Zn

contains all possible functions f:{O, 1} n - {0, 1}, we know that for a fixed x C {O, 1} n

and f ER Zn,
1

Pr(f(x) = f(x(1)) = = f(x (n- 1)) = 1)

The probability that A detects n consecutive l's using at most Q'(n) queries is less

than Q(n) Therefore, for any polynomial Q and for sufficiently large n, we have

IPn(A, Z)-Pn(A, Z')I <
Q(n)'

which contradicts our assumption. [

Lemma 2.4.5 Z' and L' are polynomially indistinguishable.

The proof of this lemma is technically the most difficult one. However, the basic

idea is simple. We use a standard cryptographic technique described by Yao [37].

Recall that the collection of functions L' is constructed based on CSB generator G.

If a polynomial-time algorithm A can distinguish between Z' and L', then we can use

A to construct a polynomial-time statistical test T for strings such that the set of all

possible sequences generated by G does not pass the test T, which is a contradiction.

Proof. We assume, for contradiction, that Z' and L' are polynomially distinguishable.

Then there exists a probabilistic polynomial-time algorithm A and a polynomial Q

28

such that for infinitely many n,

IP(A,Z')- P(A,L') > Q() (2.1)

From the above inequality, we know that algorithm A can detect a difference

between an oracle Of for a function f ER L' and an oracle Og for a function g R Z

We next construct a sequence of n oracles that is a smooth transition from Of to Og.

Consider the computations of A in which A's oracle calls are answered by one

of the following algorithms Di(i = 0, 1,..., n). Let y be a query of A. Recall that

y(1),... y(n-l) are the n - 1 instances immediately after y in {0, 1)n and y(O) is y itself.

For j =0, 1,..., n - 1, let y(j) = y) ... yn)

Algorithm Di answers A's query y as follows:

For j = 0,1,...,n-1
If the pair (y() y(j), .) has not been stored,

Then Di selects a string r ER {0, l}n,

stores the pair (y() . ..), r), and

computes bj = G () ... (r).
Yi+1Yn

Else Di retrieves the pair (y(i) Y (), v) and

computes bj = G (j) ...y (v)
Yi+l Yn

If bo = bl = . bn-_l = 1,

Then Di answers 0.

Else Di answers bo.

Define pn to be the probability that A outputs 1 when n is given as input and

its queries are answered by algorithm Di, 0 < i < n. Then p = Pn(A, L') and

nn = Pn(A, Z'). Hence, Equation 2.1 is equivalent to jpn pn > Q()

We now use A to construct a polynomial-time statistical test T for strings that

breaks CSB generator G. Let P be a polynomial such that algorithm A makes at

most P(n) queries on input n. The test T works in two stages on input n and a set

Un containing P(n) strings, each of which has 2n bits. In the first stage, T picks

i CR {0, 1,..., n - 1). In the second stage, T answers A's queries using the set U, as

29

follows. Let y be a query of A.

For j=0,1,...,n- 1
If the pair (yi) yi , .) has not been stored,

Then T picks the next string u = uoul in U~,

stores the pairs (y)... yj)O, uo) and (y)... yJi)l, Ul), and

(j)computes bj = G (3).. ()(U), where c = Y+l-
Yi+'..Yn

Else T retrieves the pairs (yi)... y.i, v) and

computes bj = Gy ...y ((v).
Yi+2... Yn

If b = bl = b_l -- 1,

Then T answers 0.

Else T answers b0.

We consider two cases for Un: (1) U consists of (2n)-bit strings output by the

CSB generator G on random seeds, and (2) Un consists of randomly selected (2n)-bit

strings. In case 1, T simulates A with oracle Di. The probability that T outputs 1

is Z=f(1/n). p. In case 2, T simulates A with oracle Di+l. The probability that T

outputs 1 is Z=O i(1/n) . Pn = =l(1/n) pn. Therefore, for infinitely many n, the

probabilities for the two cases differ by at least (1/n). pO -PnI > 1 So the set of- Q(n)

all possible sequences generated by G does not pass the polynomial-time statistical

test T, which is a contradiction. [1

Lemma 2.4.6 L' and C* are polynomially indistinguishable.

Proof. The proof of the lemma is similar to that of Lemma 2.4.4. We assume, for

contradiction, that L' and C* are polynomially distinguishable. Then there exist a

probabilistic polynomial-time algorithm A and a polynomial Q such that for infinitely

many n,
1

IPn (A, L') - P (A, C*)>

Let Q' be a polynomial such that algorithm A makes at most Q'(n) oracle calls

on input n. Since A can distinguish between a function c, ER C and a function

1' ER L, A must query the concept c on at least one instance in the set S =

30

{s(-1), s, (1),... ,s(")}. Since c is chosen uniformly at random in C,, its index s is

uniformly distributed over {0, 1}n. Therefore, the probability that algorithm A sees

at least one instance in S by at most Q'(n) queries is less than (2). This implies

that for any polynomial Q and sufficiently large n,

IPn(A, L')- Pn(A,C*)I <
Q(n)'

which contradicts our assumption. [

By Lemmas 2.4.4, 2.4.5, and 2.4.6 and the fact that polynomial-time indistin-

guishability is transitive (Lemma 2.4.1), we obtain that C* and Z are polynomially

indistinguishable. Equivalently, C* passes all polynomial-time statistical tests. Now,

by Theorems 2.4.2 and 2.4.1, we conclude that optMs(Cn) is superpolynomial, which

completes the proof of Lemma 2.4.3 and hence completes the proof of Theorem 2.4.3.

We have seen that for each concept in C*, there is a small set of labeled examples

that contains the "key" information of the concept. However, the set of key examples

is hard to find by the smart learner for an unknown target concept, and the learner

must make a large number of mistakes without seeing the key examples. We have also

seen that the teacher, who knows the target concept, can easily select and present

the key examples to the learner. This phenomenon also occurs in the real world: A

knowledgeable teacher can help students to learn quickly by providing key points that

are sometimes hard to find by the students themselves. The results demonstrate the

power of teaching in a learning process.

Concept class C* is not learnable in self-directed learning. The non-learnability

result uses the cryptographic assumption that one-way functions exist. In the lit-

erature of learning theory, almost every non-learnability result has at its heart a

cryptographic construction [1, 5, 22, 23, 29]. However, most of the previous results

rely on the fact that the examples are chosen according to a distribution or by an

adversary, which might be "malicious" to the learner. Our result is stronger in the

sense that the non-learnability of concept class C* is solely inherent in the structure

of C* and does not depend on having the learner see examples in a way that is less

31

desirable than could have been chosen by itself.

2.4.4 Further discussions

In this subsection, we further investigate some properties of concept class C* con-

structed in the previous subsection. We first consider the learnability of C* in Little-

stone's [25] absolute mistake-bound model and Valiant's [34] distribution-free model.

We then show that our results answer an open question posed by Goldman and

Sloan [16].

Recall that in the absolute mistake-bound model, the examples are presented to

the learner by an adversary. Let optMA(C) denote the minimum number of mistakes

for learning a concept class C in this model. (The subscript A stands for the adver-

sary.) Obviously, optMA(C) > optMs(C) for any concept class C. By Theorem 2.4.3,

optMA(C*) is also superpolynomial.

Corollary 2.4.1 If one-way functions exist, then concept class C* is not learnable in

the absolute mistake-bound model.

In the distribution-free model, there is some unknown but fixed distribution D over

the labeled examples of the target concept. The learner samples from D and produces

a hypothesis h that approximates the target concept. More formally, an algorithm

A learns in the distribution-free model a concept class C = {Cn} if there exists a

polynomial P such that for any target concept c, distribution D, and error parameters

e and , the algorithm runs in time at most P(n, T,) and finds a hypothesis h (not

necessarily from C) with error at most e with probability at least 1 - 6. (Let c be the

target concept. We say that h has error with respect to c if the probability that

h(x) differs from c(x) is e on a pair (x, c(x)) randomly chosen according to D.)

We have shown that concept class C* passes all polynomial-time statistical tests,

and hence C* cannot be polynomially inferred. If there exists an algorithm A that

learns C* in the distribution-free model, then algorithm A Q-infers C* for some poly-

nomial Q, which is a contradiction. Therefore, concept class C* is not learnable in

this model.

32

Corollary 2.4.2 If one-way functions exist, then concept class C* is not learnable in

the distribution-free model.

We next explore the relation between optMs(C) and the Vapnik-Chervonenkis

dimension (VC-dimension) of C. Let C be a concept class over an instance domain X.

We say that a finite set Y C X is shattered by C if {c Y I c E C} = 2Y. The Vapnik-

Chervonenkis dimension of C [35], denoted by vc(C), is defined to be the smallest d

for which no set of d + 1 instances is shattered by C. Note that for any finite concept

class C, vc(C) < log ICI. It has been shown [9] that the VC-dimension of a concept

class characterizes the number of examples required for learning the concept class in

the distribution-free model.

Goldman and Sloan [16] investigated the relation between vc(C) and optMs(C)

and presented concept classes for which vc(C) can be arbitrarily larger than optMs(C).

They also constructed a concept class C for which vc(C) = 2 and optMs(C) = 3.

Since this was the only known concept class for which vc(C) is strictly smaller than

optMs(C), they posed the following question: Is there a concept class C for which

optMs(C) = (vc(C))? Our results imply that concept class C* = {C~} is such a

concept class since optMs(C*) is superpolynomial in n and vc(C*) < log IC* = n.

This answers Goldman and Sloan's open question in the affirmative.

Corollary 2.4.3 If one-way functions exist, then there are concept classes for which

optMs(C) = w(vc(C)).

2.5 Conclusions and open problems

In this chapter, we have studied the power of a teacher by investigating teacher-

directed and self-directed learning. Assuming the existence of one-way functions,

we have proved that there exist concept classes for which the number of mistakes is

superpolynomial in self-directed learning but only linear in teacher-directed learning.

We have seen that, for all the natural concept classes that have been previously

studied, the number of mistakes in teacher-directed learning is always larger than that

in self-directed learning. For these concept classes, the smart self-directed learner can

33

always get useful information for the target concept without making many mistakes.

Can we characterize such a property in a rigorous way?

Another open question concerns the cryptographic assumption used in proving

our main theorem. For example, is it possible to prove that optMs(C) > optMT(C)

for some concept class C using a weaker assumption such as P - NP? Our results

and most of the previous work rely on cryptographic assumptions to prove the non-

learnability of certain concept classes. There has been some recent research [6] in the

reverse direction: Provably secure cryptosystems are constructed assuming certain

concept classes are hard to learn in the distribution-free model. Can we construct

cryptosystems based on concept classes that are easy to learn in teacher-directed

learning but hard to learn in self-directed learning?

Finally, it is important to develop good teaching models. A weakness of all previ-

ously proposed teaching models (including teacher-directed learning) is their lack of

active interaction between the teacher and the learner. Obviously, such interaction

is common and important in the real world. Recently, Goldman and Mathias [14]

developed a new teaching model that allows the teacher and the learner to cooperate.

In their model, the number of mistakes made by the learner is always smaller than

that in self-directed learning. However, this is achieved by tailoring the teacher to a

particular learner rather than to a class of learners. An interesting research direction

would be to develop new teaching models that lead to a deeper understanding of the

power of teaching.

34

Chapter 3

Reducing the Number of Queries

in Self-directed Learning

3.1 Introduction

In the self-directed learning model, learning is done on-line in a sequence of stages.

In each stage, the learner selects an example, predicts the label of the example,

and is then told the correct answer. The selection and prediction are accomplished

in polynomial time in each stage. The objective of the learner is to make as few

prediction mistakes as possible before the target concept is learned. The number of

queries used in self-directed learning is defined as the number of examples queried by

the learner before the target concept is learned.

The model was first introduced by Goldman, Rivest, and Schapire [15] to study

the problem of learning binary relations and total orders. Goldman and Sloan [12, 16]

further investigated the problem of learning concept classes under this model, and

they constructed self-directed learning algorithms for several concept classes in which

the number of mistakes is minimized. However, all of their algorithms use (ICI)

queries, which is usually exponential. Since a self-directed learner is restricted to

use polynomial time in each stage, it might be unreasonable to allow the learner to

make a superpolynomial number of queries. Hence, Goldman and Sloan posed an

open question on designing self-directed algorithms with only a polynomial number

35

of queries if more mistakes are allowed.

In this chapter, we study the tradeoff between the number of mistakes and the

number of queries in self-directed learning and develop a new technique for reducing

the number of queries significantly as the number of allowable mistakes increases.

More specifically, we construct a family of self-directed learning algorithms {Ak}

such that the number of mistakes in Ak is at most k and the number of queries in

Ak is a decreasing function of k. Using the technique, we construct new self-directed

learning algorithms for several concept classes. In particular, these algorithms require

only a polynomial number of queries over a certain range of k. This answers the open

question posed by Goldman and Sloan. We also prove a general lower bound on

Qk(C), which is defined as the minimum number of queries needed for learning C

when k or fewer mistakes are allowed in self-directed learning. For some concept

classes, the lower bound matches the upper bound provided by our algorithms.

Our self-directed learning algorithms {Ak} provide a smooth transition from algo-

rithms that minimize the number of mistakes to algorithms that minimize the number

of queries. Goldman and Sloan's self-directed learning algorithms are a special case

of our algorithms with k equal to the minimum number of mistakes required in self-

directed learning. Moreover, when k is equal to the number of queries, our algorithms

actually use the minimum number of queries. Therefore, our algorithms {Ak} gen-

eralize not only algorithms that aim to minimize the number of mistakes but also

algorithms that aim to minimize the number of queries.

The rest of the chapter is organized as follows. In §3.2, we present our technique

for reducing the number of queries and apply the technique to design self-directed

learning algorithms for several concept classes. In §3.3, we prove a general lower

bound on Qk(C) for any concept class C. In §3.4, we further investigate properties of

Qk(C) as a function of k. In §3.5, we discuss some open problems.

36

3.2 Reducing the number of queries

In this section, we develop a new technique for designing self-directed learning al-

gorithms such that the number of queries reduces significantly as the number of

allowable mistakes increases. In §3.2.1, we describe the key idea in the technique.

We then apply the technique to design new self-directed learning algorithms for the

concept classes of monotone monomials (§3.2.2), r-of-t threshold functions (§3.2.3),

and monotone read-once DNF formulas (§3.2.4). In §3.2.5, we explore the trade-

off between the number of mistakes and the number of queries and show that our

algorithms use only a polynomial number of queries when the number of allowable

mistakes is in a certain range.

3.2.1 A general technique

Before describing our technique for reducing the number of queries, we recall Goldman

and Sloan's [16] self-directed learning algorithm for learning monotone monomials (see

§2.3.2 for a detailed description). In this algorithm, the learner queries a sequence of

instances and stops when the first mistake occurs. In the worst case, the learner has

to query every instance (except the instance 1 ... 1) in the domain {0, 1}n, and hence

the total number of queries used is 2 - 1, which is exponential in n.

Our new technique proceeds in a "divide-and-conquer" fashion. In particular, we

will construct a family of self-directed learning algorithms {Ak} such that the number

of mistakes in Ak is at most k and the number of queries in Ak is a decreasing function

of k. For any given k, algorithm Ak roughly works as follows:

* Define a set {X, X 2,.. ., Xp} such that each Xi is a subset of {0, 1}n.

* For each i {1,...p}, find a "partial" target concept with respect to Xi.

* Combine the partial target concepts to get the original target concept.

We will see later how to define Xi's for a given concept class such that the family of

algorithms {Ak} has the desired properties. In what follows, we describe the form of

the subsets Xi's and the form of the partial target concepts that we will consider.

37

The Xi's are subsets of the instance domain X = {O, l}n obtained by fixing certain

variables in each instance to be either 0 or 1. Let ca = (, a 2, . ., an) E {0, 1, *}'n

We define the subset of X induced by a, denoted by XI, as follows:

XIc = {x = (1,..., xn) E X: xi = 1 if a = 1 and xi = O if ai = 0}.

Note that XI, is isomorphic to {0, l}m, where m is the number of *'s in a.

The partial target concepts are minterms and maxterms of the original target

concept restricted on XI, for certain a. We first introduce the definitions of a minterm

and a maxterm of a Boolean function. Let f be a Boolean function over {0, l} n and

S be a subset of {x, x2 ,... .,xn}. We say that S is a minterm of f if f(x) = 1 for

every x E X that assigns 1 to every variable in S, and this property does not hold

for any proper subset S' of S. We say that S is a maxterm of f if f(x) = 0 for every

x E X that assigns 0 to every variable in S, and this property does not hold for any

proper subset S' of S. Let a = (a,c a 2,..., an) {0, 1, *}n and S be a subset of the

variables {xi : ai = *}. We say that S is a minterm of f restricted on XI, if f(x) = 1

for every x E XI, that assigns 1 to every variable in S, and this property does not

hold for any proper subset S' of S. A maxterm of f restricted on XI, can be similarly

defined.

We next present two procedures FINDMINTERM(a, f) and FINDMAXTERM(a, f).

Both procedures will be used as basic subroutines in the construction of our self-

directed learning algorithms. For ease of notation, we define an order on all of the

instances in XI, based on their Hamming weights. The Hamming weight hw(x)

of an instance x is defined as the number of 's in x. We call {y1, Y2, ... , 2m} an

increasing sequence of XI, if hw(yi) < hw(yi+l) for 1 < i < 2m - 1. Similarly, we call

{Y1, Y2, ...) 2m} a decreasing sequence of XI, if hw(yi) > hw(yi+l) for 1 < i < 2 -1.

Procedure FINDMINTERM(a, f) (in Figure 3-1) is a self-directed learning algo-

rithm for finding a minterm of f restricted on XI,. The output I is the index set

of the variables in the minterm. The dual procedure FINDMAXTERM(ca, f) is given

in Figure 3-2. It is easy to see that in both procedures, the learner makes a single

38

Figure 3-1: Algorithm for finding a minterm of f restricted XI,.

FINDMAXTERM(a, f)
Choose a decreasing sequence of XI, as the query sequence.
Always predict positive and stop when predicting incorrectly for some instance x.
Let x = (l,X2,...,xn).
Output I = {i : cei = * and xi = 0}.

Figure 3-2: Algorithm for finding a maxterm of f restricted on XI,.

mistake and at most 2 m - 1 queries, where m is the number of *'s in a.

3.2.2 Monotone monomials

A monotone monomial f is the conjunction of a subset of variables. For example,

f = xi A x3 is a monotone monomial. Goldman and Sloan [16] gave a self-directed

learning algorithm for the concept class of monotone monomials over n variables in

which the learner only makes a single mistake. Their algorithm requires 2 - 1 queries

in the worst case.

We now apply the technique developed in the previous subsection to design a fam-

ily of new self-directed learning algorithms {SDL-MMk} (in Figure 3-3) for monotone

monomials. Algorithm SDL-MMk outputs a set I, which is the index set of the rel-

evant variables in the target monotone monomial f. For simplicity, we assume that

k divides n. We remark that the number of queries used in algorithm SDL-MMk is

optimal, and the optimality proof is given in §3.3 (see Corollary 3.3.1).

39

FINDMINTERM(c, f)
Choose an increasing sequence of XI, as the query sequence.
Always predict negative and stop when predicting incorrectly for some instance x.
Let x = (l, 2,..., Xn).
Output I = {i: ki = * and xi = 1).

Figure 3-3: A new self-directed learning algorithm for monotone monomials.

Theorem 3.2.1 The number of queries used in algorithm SDL-MMk is less than

k.(2 - 1).

Proof. The correctness of the algorithm is straightforward. For each i such that

1 < i < k, Ii is the index set of the relevant variables in Vi. Therefore, the output

I = I U 2 U ... U Ik is the index set of the relevant variables in the target monotone

monomial f.

We next analyze the number of mistakes and the number of queries in SDL-MMk.

Note that the number of *'s in each ac is Vil = 5. Therefore, in each execution of

procedure FINDMINTERM(ac, f), the learner makes at most one mistake and at most

2 - 1 queries. Since the procedure is executed k times, the learner makes at most k

mistakes and at most k. (2k - 1) queries total.

3.2.3 r-of-t threshold functions

An r-of-t threshold function f over n variables can be represented by a pair {R, r},

where R C {1,2,...,n} and 1 < r < IRI < n. Given x {O,1 } n, f(x) = 1 if and

only if EiER xi > r. The set R is the index set of the relevant variables in f, and the

integer r is the threshold.

For the concept class of r-of-t threshold functions, we first construct a self-directed

learning algorithm LEARNTF in which the learner makes the minimum number of

40

SDL-MMk(f)
Divide { 1, 2,.. ., n} into k equal-size subsets V1 ,..., Vk.
Fori=1,2,...,k

Define a = (1, a2, .. , an) as
, if j E Vi,

=t |{ 1 otherwise.

Ii = FINDMINTERM(, f).
Output I = 1 U 2 U.. U Ik.

mistakes. The idea in LEARNTF is useful in designing general algorithms in which

the learner is allowed to make k mistakes for any given k. For ease of notation, we

use flip(a) to denote the vector in which the first "1" variable in a is flipped to "O"

for any given a E {0, 1, *}'. If no such variable exists in a, then flip(a) = a.

LEARNTF(f)

Define a = (*, *,..., ,*).

R' = FIND MINTERM(a, f).

Define a' = (ca, c2, .. , a) as

* if El{1,...,n}-R',
1 if E R1.

Define a" = flip(a').

R" = FINDMAXTERM(a", f).

Output R = R' U R" and r = R'.

In algorithm LEARNTF, the learner makes at most two mistakes, since both

procedures FINDMINTERM and FINDMAXTERM are used once. The optimality of

LEARNTF in terms of the number of mistakes is proved in §3.3 (see Corollary 3.3.2).

Just as Goldman and Sloan's self-directed learning algorithm for the concept class of

monotone monomials, algorithm LEARNTF also uses 2n - 1 queries in the worst case

in order to minimize the number of mistakes.

We now develop a family of self-directed learning algorithms {SDL-TFk} for r-

of-t threshold functions in which the number of queries decreases significantly as the

number of allowable mistakes increases. The algorithms are given in Figure 3-4. For

simplicity, we let k' = k - 2 and assume that k' divides n.

Theorem 3.2.2 The number of queries used in algorithm SDL-TFk is less than

(k - 2). 2k-2.

Proof. We first explain each step of the algorithm. Let R be the index set of the

relevant variables in the target r-of-t threshold function f. Algorithm SDL-TFk

proceeds by finding the index set Rj = R n Vj for each j = 1,..., k'. In Step 1, an

index i is found such that y(i -1) is a positive example and y(i) is a negative example.

41

This ensures that Ri is nonempty. In Step 2, Ri is learned using the similar idea as

in LEARNTF. The key observation is that when procedure FINDMINTERM is used to

obtain RI C Ri, the threshold r of the target concept f satisfies

k'

r = lR' + Rj. (3.1)
j=i+l

Therefore, each Rj (j > i + 1) can be easily learned in Step 3 by procedure FIND-

MINTERM, and each Rj (j < i- 1) can be easily learned in Step 4 by procedure

FIND MAXTERM.

We next analyze the number of mistakes and the number of queries in SDL-TFk.

In Step 1, the learner makes one mistake and at most k' - 1 queries. In Steps 2-4,

the learner makes at most k' + 1 mistakes and k' (2k - 1) queries. Therefore, the

total number of mistakes is less than 1 + (k' + 1) = k' + 2 = k, and the total number

of queries is less than (k' - 1)+ (k' (2 - 1)) < k' 2 =(k- 2) 2 - .

3.2.4 Monotone read-once DNF formulas

A monotone DNF formula f is the disjunction of several monotone monomials, and

it can be represented by (T 1,...,Tw), where w is the number of terms in f and

Ti C {1,2,..., n} is the index set of the relevant variables in the ith term of f.

Goldman and Sloan [16] presented a self-directed learning algorithm for the concept

class of monotone DNF formulas over n variables in which the learner makes at most

w mistakes, where w is the number of terms in the target DNF. Their algorithm uses

2n - 1 queries in the worst case.

Using our new technique for reducing the number of queries, we now develop self-

directed learning algorithms for the class of monotone read-once DNF formulas, which

is a subclass of monotone DNF formulas. A formula f is read-once if each variable

appears in at most one term of f. The family of algorithms {SDL-MRDNFk} is

shown in Figure 3-5. To make the algorithm simplier, we assume that we know in

advance the number of terms w in the target formula f. This assumption can be

easily eliminated. For simplicity, we let k' = k and assume that w divides k and k'

42

SDL-TFk (f)
Step 1: Let k' = k - 2.

Divide {1, 2,...
For j = 1,2,...

Y(j) = {

,n} into k' equal-size subsets V1, V2 ,.. ., Vk,.
,k', define y(j) = (yl(j),.. . ,yn (j)) where
O if I c V1 ,...,Vj,
1 if I E Vj+l,..., Vk,.

i-=1.
While i < k'- 1

Query instance y(i) and predict
If the prediction is incorrect, go
i=i + 1.

Step 2: Define a = (ca, c2 ,..., an) where
.* if 1C V,

aSl= 0 if IcVl,...,V_,
1 if IE Vi+1,...,Vk,.

R' = FINDMINTERM(a, f).
Define a' = (aL, ,..., a) where

* if 1 E V - R'i,
CYl = 0 if I C V1,...,V/ - ~,

1 if IC Ri, V+1,...,Vk.
Define a" = flip(a').
R'' = FINDMAXTERM(a/", f).

Step 3: For j = i + 1,...,k'
Define a = (a, a 2,. . , an) where

* if I E Vj,
al 0 if I E Vl,...,Vi-l,Vi -

1 if E Ri,V+,...,Vj_
Rj = FINDMINTERM(a/,f).

Step 4: For j = 1,...,i- 1
Define a = (a1, a2,.. , a n) where

* if 1E Vj,
al= 1 if jGR', R i+l ... , Rk',

0 otherwise.
Define a' = flip(a).
R = FINDMAXTERM(ca',f).

Step 5: Output R= R1 U ... u R- 1 U R'U R'' U
and r = IR'l + Zj=i+ I Rjl.

Ri,.
, Vj+l, Vk

Figure 3-4: A new self-directed learning algorithm for r-of-t threshold functions.

43

positive.
to Step 2.

F1;i1l U... Rk'

SDL-MRDNFk(w, f)
Step 1: Let k' k

Divide {1, 2, ... , n} into k' equal-size subsets V1, V2,. . ., Vk,.
S = 0. (S is the set of variables in the terms that have been output.)
count = O. (count is the number of terms that have been output.)

Step 2: For j =1, 2,..., k'
Define y(j) = (yl(j),...y ,y(j)) as follows:

If 1 C S, yl(i)= O.

Otherwise,
0 if I V1,...,Vj,
1 if IE Vj+l,...,Vk.

i=1.
While i < k'- 1

Query the instance y(i) and predict negative.
If the prediction is correct, go to Step 3.
i=i+ 1.

Step 3: Define a = (& 1, C2,..., a,) as follows:
If 1 C S, ci = 0.
Otherwise,

* if 1 G V,
a1 = 0 if IE V1,

1 if I c VI+
T = FINDMINTERM(a, f).

Step 4: For j = i + 1,..., k'
Define a (al, ca2,...

If 1 E S, cl = 0.
Otherwise,

if I

cal = O if I

1 if I

T' = FINDMINTERM(c, f).
T= TUT'.

Step 5: Output T as a term of f.
count = count + 1.
If count = w, terminate.
Otherwise, let S = S U T an

. .,Vi-1,
1,..., Vk'.

, a,) as follows:

E Vj,

C V1, go to Step 2.Vi, i,
E Ri, V+,..., Vj-1, Vj+i., ,Vk.

id go to Step 2.

Figure 3-5:
formulas.

A new self-directed learning algorithm for monotone read-once DNF

44

yi10)

divides n.

Theorem 3.2.3 The number of queries used in algorithm SDL-MRDNFk is less

than k 2 k, where w is the number of terms in the target concept.

Proof. The algorithm SDL-MRDNFk executes Steps 2-5 w times and outputs a

single term of the target concept after each execution. We now analyze the number of

mistakes and the number of queries during each execution of Steps 2-5. The learner

makes i - 1 mistakes in Step 2, one mistake in Step 3, and k'- i mistakes in Step 4.

These mistakes sum to k'. The learner makes at most k' queries in Step 2 and at

most k'. (2'k - 1) queries in Steps 3 and 4 since procedure FINDMINTERM is used

at most k' times in Steps 3 and 4. Therefore, the total number of queries in each

execution is at most k' 2k. Overall, the learner makes at most w. k' = k mistakes

and at most w. (k' 2,) = k 2 queries.

3.2.5 Algorithms with a polynomial number of queries

For several concept classes, we have constructed self-directed learning algorithms

{Ak} such that the number of mistakes in Ak is at most k and the number of queries

in Ak is a decreasing function of k. The algorithms illustrate the tradeoff between

the number of mistakes and the number of queries in self-directed learning. In this

subsection, we further explore two aspects of the tradeoff.

We first show that over a certain range of k, the number of queries used in Ak is

indeed polynomial. Consider the family of self-directed learning algorithms {SDL-

MMk} for monotone monomials. From Theorem 3.2.1, the number of queries used

in SDL-MMk is at most k (2k -1) < k . 2k. If k = n for some constant
c log n

c > 0, then the number of queries used is less than n 2 clogn nC which isclogn clogn i

a polynomial in n. If k = d n for some constant 0 < d < 1, then the number of

queries used is less than dn 2 = d2d . n, which is linear in n. We remark that

when the number of queries decreases from exponential to polynomial, the number

of mistakes only increases from constant to linear. For the other concept classes that

we have studied, we can also obtain self-directed learning algorithms that use only a

45

polynomial number of queries by certain choices of k. The results answer the open

question posed by Goldman and Sloan.

We next investigate our algorithms {Ak} as the index k varies. Note that the

possible values of k range between the minimum number of mistakes needed and the

number of queries used in self-directed learning. Consider again the family of algo-

rithms {SDL-MMk} for monotone monomials. When k = 1, which is the minimum

number of mistakes needed, algorithm SDL-MM 1. is exactly Goldman and Sloan's

self-directed learning algorithm for monotone monomials. When k = n, the number

of queries in SDL-MMn also reduces to n, and algorithm SDL-MMn actually uses

the minimum number of queries. Similar results can be obtained for the other concept

classes considered. Therefore, our self-directed learning algorithms {Ak} generalize

not only algorithms that aim to minimize the number of mistakes but also algorithms

that aim to minimize the number of queries. Moreover, our algorithms {Ak} pro-

vide a smooth transition from algorithms that minimize the number of mistakes to

algorithms that minimize the number of queries.

3.3 A general lower bound on the number of queries

In this section, we first illustrate a correspondence between self-directed learning algo-

rithms and binary trees. Then, we derive an inequality relating the height, the rank,

and the maximum number of leaves in a binary tree. Based on the correspondence

and the inequality, we prove a general lower bound on Qk(C) for any concept class C.

Recall that Qk(C) is defined as the minimum number of queries needed for learning

C when k or fewer mistakes are allowed in self-directed learning.

Littlestone [25] introduced the notion of a mistake tree to study the number of

mistakes in the absolute mistake-bound model. This model differs from the self-

directed learning model in that an adversary, instead of the learner, selects the query

sequence. In what follows, we adapt Littlestone's mistake-tree construction to give

the correspondence between self-directed learning algorithms and binary trees.

We first introduce some simple notations for binary trees. For a binary tree T,

46

we use h(T) to denote the height of T and (T) to denote the number of leaves in T.

The rank of T, denoted by r(T), is recursively defined as follows: If T contains only

one node, then r(T) = 0. Otherwise, let ro be the rank of the left subtree of T and

rl be the rank of the right subtree of T. Then

(T) { max(ro, r) if ro rl,

ro + if r0 = rl.

Given a self-directed learning algorithm A for a concept class C, we construct

a corresponding binary tree TA that simulates the execution of algorithm A. In

particular, each internal node of TA is labeled by a pair {S, y}, where S is a subset

of C and y is an instance in X, and each leaf of TA is labeled by a single concept in

C. More specifically, TA is constructed from the root down to each leaf as follows:

* The root of TA is labeled by {C, x}, where x is the first instance selected by A.

* For an internal node v with label {S, y}, let

So = {c C S: c(y) = 0} and S1 = {c E S: c(y) = 1}.

If ISo > 1, then the left child of v is labeled by {So, y'}, where y' is the first

instance selected by A after receiving the feedback c(y) = 0. If ISol = 1, then

the left child of v is labeled by the single concept in So and becomes a leaf. The

right child of v is defined in a similar way.

We next study the number of mistakes and the number of queries in algorithm A

using the corresponding binary tree TA. If c is the target concept, then the execution

of algorithm A starts at the root of TA and ends at the leaf labeled by concept c.

Hence, the worst-case number of queries made by A is the height h(TA). Consider an

internal node v of TA labeled by {S, y}. We know that instance y is selected in the

corresponding stage of A. In general, algorithm A may predict the label of y as either

0 or 1. However, we can always convert A into a standard optimal algorithm [25] that

predicts the label of y as follows: If the rank of the left subtree rooted at v is strictly

47

larger than the rank of the right subtree rooted at v, then A predicts 0; otherwise, A

predicts 1. We can easily see that the worst-case number of mistakes made by A is

exactly rank r(TA) using the above prediction strategy.

Lemma 3.3.1 Let A be a standard optimal self-directed learning algorithm for C and

let TA be the corresponding binary tree. Then

(1) h(TA) = the worst-case number of queries used in algorithm A,

(2) r(TA) = the worst-case number of mistakes made by algorithm A, and

(3) (TA) = the cardinality of C.

The above lemma illustrates the correspondence between self-directed learning

algorithms and binary trees. Using the correspondence, we can explore the tradeoff

between the number of mistakes and the number of queries from another viewpoint:

If we restrict the number of mistakes for learning C to be less than k, then the number

of necessary queries Qk(C) must be large enough so that there exists a binary tree

with height Qk(C) and rank k that contains at least CI leaves. This motivates us to

study the maximum number of leaves that can be contained in a binary tree with

height h and rank r binary tree, which we denote by ml(h, r). We will give an exact

formula for ml(h, r) in Lemma 3.3.2 and an upper bound for ml(h, r) in terms of h

and r in Lemma 3.3.3.

Lemma 3.3.2 ml(h, r) = E;= ().

Proof. We prove the lemma by induction on r and h. Consider the base case

r = 1. Any binary tree with height h and rank one has h + 1 leaves. Therefore,

ml(h, 1) = = (E). Assume that the equality in the lemma holds for r- 1. We now

compute ml(h, r). If h = r, then T is a complete binary tree with 2 leaves. Since

E;=0 (r) = 2 r, we have ml(r, r)= Ei=o (i). If h > r, then the number of leaves in a

binary tree with rank r is maximized when one of its subtrees has rank r - 1 and the

other has rank r since ml(h, r) is an increasing function of r for fixed h. Hence,

ml(h, r) = ml(h -1, r-1) + ml(h- 1, r) (3.2)

48

=: (h x)
i~[(f-)) (')] (

i=O (Z)r)hO~~~~~=

Lemma 3.3.3 ml(h, r)< (h~r

i=O

(h- l)
2

(By the induction hypothesis)

1)

Proof. We prove the lemma by induction on r and h. The base case where r = 1 is

trivial since (h, 1) = h + 1 < eh. Assume that the inequality in the lemma holds for

r- 1, i.e.,

ml(i, r - 1) (ei
r-1

r-l

We next compute ml(h, r). If h = r, then ml(r, r) = 2r < er

repeatly apply Equation 3.2 and obtain

ml(h, r) = ml(h - 1, r - 1) + ml(h - 1, r)

If h > r, then we

= ml(h-1,r-1) + ml(h-2, r-1) + ml(h-2, r)

h-1
=- ml(i, r-1) + ml(r, r)

-=r
h-1

i=r

eZ

- r - 1

(r- r

(r - 1) 1 r

< (eh)
r

r-1
+ 2r

Jh xr-ldx +
hr _ rr

+ 2
r

r-1 ,
r(L

(By the induction hypothesis)

2r

r-1
2r

49

The last inequality is obtained by the following two inequalities

r-1 er r-e erand - r - + 2r <
(r - 1)r-ir - rr r - I

which follow from the simple inequality 2 < (1 + 1 -)1 < e.

Theorem 3.3.1 For any concept class C, Qk(C) > k. IClk.

Proof. The theorem follows from Lemma 3.3.1 and Lemma 3.3.3.

Corollary 3.3.1 Let C be the concept class of monotone monomials over n variables.

Then Qk(C) = O(k 2).

Proof. For the concept class of monotone monomials over n variables, we have

JC = 2. By Theorem 3.3.1, Qk(C) > 2n. Recall our self-directed learning

algorithm SDL-MMk (in §3.2.2) for monotone monomials. We show in Theorem 3.2.1

that the learner makes at most k mistakes and at most k (2k - 1) < k 2n queries.

This implies that Qk(C) k 2k. Therefore, Qk(C) = O(k. 2k). E1

By the above corollary, the lower bound on the minimum number of queries given

in Theorem 3.3.1 matches the upper bound provided by our self-directed learning

algorithms for monotone monomials. This also proves that the number of queries

used in our algorithms {SDL-MMk} is optimal.

Besides providing lower bounds on the minimum number of queries, Theorem 3.3.1

can also be used to obtain lower bounds on the minimum number of mistakes in self-

directed learning.

Corollary 3.3.2 In algorithm LEARNTF, the number of mistakes made by the self-

directed learner is minimized.

Proof. In algorithm LEARNTF (in §3.2.3), the self-directed learner makes at most

two mistakes. Note that lJ = n2n for the concept class of r-of-t threshold functions

over n variables. If there exists a self-directed learning algorithm A that makes

only one mistake, then, by Theorem 3.3.1, the number of queries needed is at least

50

Qk(C) > 1 (n) = 2n > 2 for algorithm A. This is impossible since there are

only 2 instances in the instance domain {O, l}n. Therefore, any self-directed learner

must make at least two mistakes for learning the class of r-of-t threshold functions.

3.4 Some properties of Qk(C)

In this section, we further study some properties of Qk(C) as a function of k. We

show in §3.2 that the number of queries needed can be reduced significantly for

several concept classes when more mistakes are allowed. Recall that optMs(C) is the

minimum number of mistakes that a self-directed learner must make for learning C

(see §2.3 for the precise definition of optMs(C)). A natural question is that if we can

always reduce the number of queries when the number of mistakes is allowed to be

more than optMs(C).

We now show that for certain concept classes, the number of queries cannot be

reduced no matter how many mistakes are allowed. Let X be an instance domain.

For any integer t such that 1 < t < IXI - 1, we define SMALLt as the concept class

consisting of all concepts c such that l{x E X: c(x) = 1 = t. In other words, each

concept in SMALLt has exactly t positive examples.

Theorem 3.4.1 Let C be the concept class SMALLt over X. Then optMs(C) <

min(t, IXI - t), and Qk(C) = IXI - 1 for all k > min(t, IXi - t).

Proof. Without loss of generality, we assume that t < x1. We first prove that

optMs(C) < t. The learner chooses any query sequence, predicts negative all the

time, and stops immediately after the tth mistake. The t instances for which the

learner predicts incorrectly are the t positive examples of the target concept. Hence,

the learner learns the target concept after making t mistakes.

We next prove that Qk(C) = IXi- 1. Suppose that the learner has queried X I- 2

instances. Let y,y' E X be the two instances that have not been queried. Then

there exist two concepts c, c' SMALLt such that c(y) c'(y), c(y') c'(y'), and

51

c(x) = c'(x) for all x E X - {y, y'). Therefore, after the IXI - 2 queries, the learner

cannot distinguish between c and c', and this fact is independent of the number of

mistakes that the learner has made. Note that the learner can query either y or y' to

learn the target concept. Hence, Qk(C) = (IXI - 2) + 1 = XI - 1 for all k > t.

We next explore an interesting property of Qk(C) for the concept classes such that

optMs(C) = 1. For such concept classes, an optimal self-directed learner can make

only one mistake before learning the target concept. We show that if the number of

queries cannot be reduced when the learner is allowed to make two mistakes, then

the number of queries cannot be reduced when the learner is allowed to make three

or more mistakes.

Theorem 3.4.2 Let C be a concept class such that optMs(C) = 1. If Q2(C) = Q1(C),

then Qk(C) = Q1(C) for all k > 3.

Proof. Since optMs(C) = 1, there exists a self-directed learning algorithm A in

which the learner makes only one mistake. If TA is the corresponding binary tree of

A, then TA has rank 1. For any internal node of TA, one of the subtrees is a leaf.

Hence, h(TA) = (TA)- 1 and Q1 (C) = ICI - 1.

We prove the lemma by contradiction. Assume that there exists some k > 3 such

that Qk(C) < Q1 (C). Then there exists a self-directed learning algorithm B in which

the learner makes at most k mistakes and at most q queries such that q < Q1(C). If

TB is the corresponding binary tree of B, we know that h(TB) < h(TA). Hence, there

exists an internal node in TB such that neither of its subtrees is a leaf. Let b be such

a node with the minimum distance to the root of TB, and let {Sb, Xb} be the label of

b. We now define a self-directed learning algorithm E with two mistakes and strictly

less than Q1 (C) queries. Algorithm E works as follows:

* Choose the query sequence using TB until instance Xb. Suppose the internal

node of TB is labeled by {S, x}. Then one of the subtrees is a leaf labeled by

some concept c E C. Select instance x and predict the value 1 - c(x).

* After being told the label of xb, simulate algorithm A.

52

It is easy to see that the learner makes at most two mistakes in algorithm E.

Consider the corresponding binary decision tree TE of E. Since both subtrees rooted

at the internal node with label {Sb, Xb} contain at least two nodes, we have Q2(C) <

h(TE) < IC - 2 < Q1(C). This contradicts Q2 (C) = Q1(C). Therefore, we conclude

that Qk(C) = Q1(C) for all k > 3.

3.5 Conclusions and open problems

In this chapter, we have studied the tradeoff between the number of mistakes and

the number of queries in self-directed learning. We have developed a new technique

for reducing the number of queries as the number of allowable mistakes increases

and used the technique to construct algorithms for several concept classes. We have

also seen that for some non-monotone concept classes such as SMALLt, the number

of queries cannot be reduced when more mistakes are allowed. An open question is

to investigate how far our new technique can be extended. In particular, can it be

applied to all monotone concept classes?

For any concept class C, we have proved a general lower bound on Qk(C), the

minimum number of queries needed for learning C when at most k mistakes are allowed

in self-directed learning. For some concept classes, the lower bound matches the

upper bound provided by our algorithms. We have also investigated some properties

of Qk(C) as a function of k for the concept classes such that optMs(C) = 1. It

would be interesting to explore properties of Qk(C) for the concept classes such that

optMs(C) > 1.

53

Chapter 4

Exploring an Unknown

Environment with Multiple Robots

4.1 Introduction

In this chapter, we investigate on-line strategies for exploring an unknown environ-

ment with multiple robots. The exploration problem that we study is formulated as

follows (see Figure 4-1) [3, 7, 11, 28]: At an origin, there are w paths leading off into

unknown territories. On one of the paths, there is a goal at an unknown distance n,

and none of the other paths has a goal. Initially, there are A robots standing at the

origin. The robots can move back and forth on the paths to search for the goal. The

objective is to minimize the total distance traveled by all of the robots before the

goal is found.

We use the notion of a competitive ratio, introduced by Sleator and Tarjan [33],

to measure the efficiency of an exploration algorithm A. More specifically, we define

cost(A) to be the (worst-case or expected) total distance traveled by all of the robots

using algorithm A. We say that A has a constant competitive ratio c if

cost(A) < cn + d

for some constants c and d independent of n.

54

origin

Figure 4-1: The exploration problem.

An extreme case where there is only one robot (A = 1) has been studied by

many researchers. In particular, Baeza-Yates, Culberson, and Rawlins [4] presented

an optimal deterministic algorithm. Kao, Reif, and Tate [21] reported a randomized

algorithm and proved that their algorithm is optimal for w = 2. They also conjectured

that their algorithm is optimal for all w > 2. Roughly, in both the deterministic

algorithm and the randomized algorithm, the single robot searches the w paths in a

cyclic fashion, and the returning positions on the paths form a geometric sequence.

Another extreme case where the number of robots equals the number of paths

(A = w) was studied by Azar, Broder, and Manasse [3], who showed that the optimal

competitive ratios are w for both deterministic and randomized algorithms. Note that

the ratio w can be achieved by the simple algorithm in which each robot explores a

single path and keeps moving forward until the goal is found.

The general case where 1 < A < w has not been well understood since the difficulty

in designing optimal exploration algorithms is twofold. First, when A < w, some

robots have to move back on a path in order to explore another path, and the returning

positions are crucial for an algorithm to be optimal. Second, when A > 1, an algorithm

must involve clear coordination among all robots in order to achieve optimality.

55

i

-F�

The main results of this chapter are the following. For all values of A and w, we

construct

* deterministic algorithms with optimal competitive ratios, and

* efficient randomized algorithms that are provably optimal for A = 1.

Our deterministic algorithms resolve an open question posed by Baeza-Yates, Cul-

berson, and Rawlin [4] on the design of optimal exploration algorithms for multiple

robots. The optimality proof for our randomized algorithms with A = 1 settles the

conjecture of Kao, Reif, and Tate [21] in the affirmative. Our results also imply that

randomization can help reduce the competitive ratios if and only if A < w.

The remainder of the chapter is organized as follows. In §4.2, we describe our

deterministic exploration algorithms and prove their optimality. In §4.3, we describe

our randomized exploration algorithms and prove their optimality for A = 1. We

conclude in §4.4 with some remarks on future research directions.

4.2 Optimal deterministic exploration algorithms

In this section, we present our deterministic exploration algorithms and prove their

optimality. Let D(w, A) denote the optimal competitive ratios for deterministic algo-

rithms. The main result of this section is the next theorem.

Theorem 4.2.1 D(w, A) = A + 2. (~-+l)~-

The case where A = 1 was first studied by Baeza-Yates et al. [4]. Their results

can be restated as

ww
D(w, 1) = +2 (w 1) (4.1)

Theorem 4.2.1 generalizes Equation 4.1 and answers the open question of [4] on op-

timal exploration algorithms with multiple robots. The rest of the section is devoted

56

to the proof of Theorem 4.2.1. §4.2.1 contains the description of the exploration al-

gorithms, and §4.2.2 contains the lower bound proof. For ease of reference, we label

the w paths by 0, 1,..., w- 1 and the A robots by 1, 2,... A.

4.2.1 The exploration algorithms

We first describe the exploration algorithm for A = 1, which was given by Baeza-Yates

et al. [4]. This algorithm, which we refer to as D(w, 1), will be used as an important

subroutine in our algorithms for general A. For all i, let

f(wi) | (Ul)t for i > 0
0 for i < 0.

In algorithm D(w, 1), the single robot searches the w paths in a fixed cyclic order.

The search is done in stages. In stage i (i > 1), the robot searches path i mod w

until position f(w, i) and moves back if the goal is not found by then. If the goal

is at position f(w, i) + 1, then the robot finds it in stage i + w. The total distance

traveled by the robot is f(w, i) + 1 + 2 Ej+ '-l f(w,j). Baeza-Yates et al. showed

that the competitive ratio of D(w, 1) is

f(w,i) + 1 + 2 : f(w,j) < 2. ((4.2)
zimk,, j=1 1I2 (4.2)f(w, i) + 1 - -

We now construct our exploration algorithm for general A by using D(., 1) as a

subroutine. For each i < A, the ith robot only searches path i. These A - 1 robots

simply move forward on their own paths, and they never need to move back. The Ath

robot explores the remaining w - A + 1 paths according to D(w - A + 1, 1). Given the

algorithm for each individual robot, we now describe how the A robots coordinate.

For simplicity, we define

w' = w-A + 1.

The exploration algorithm proceeds in rounds until the goal is found. In the ith

round, the robots move in the following way:

57

* The Ath robot chooses a path (with label p) according to D(w', 1) and searches

path p from the origin until position f(w', i - w').

* All of the robots then move in parallel from position f(w', i - w') to position

f(w', i + 1 - w') on the paths that they stand.

* The Ath robot continues to search path p from position f(w',i + 1 - w') to

position f(w','i) and then moves back to the origin.

We next analyze the competitive ratio of the above algorithm. If the goal is

located at position f(w', i - w') + 1 on some path, then one of the robots finds it

in round i. By the time that the goal is found, the ith (1 < i < A - 1) robot has

traveled a distance of f(w', i- w') + 1, and the Ath robot has traveled a distance

of (f(w', i - w') + 1) + 2 lf(w',j). Hence, the competitive ratio of the above

exploration algorithm is

_ (f(w',i -w')+ 1)+2 -1f(w'j)limiO f ,f(w', i - w') + 1

By Equation 4.2, the above formula is upper bounded by

Aw +' (w- A +)w - A+l

A+2 . =A+2.
(w' - 1)w'-1 (w - A)w- X

which is equal to the competitive ratio stated in Theorem 4.2.1.

4.2.2 Lower bounds on the competitive ratios

In this subsection, we prove that the deterministic algorithm constructed in §4.2.1 is

optimal by deriving a matching lower bound on the competitive ratios.

In what follows, let A(w, A) denote a deterministic exploration algorithm with w

paths and A robots, and let rA denote the competitive ratio of A(w, A). For any given

2A(w, A), let t be the ith time when a robot starts moving back on some path (assume

to to be the time when A(w, A) starts). A(w, A) can be partitioned into phases where

58

phase i starts at ti-1 and ends at t. Note that the notion of a phase is different from

that of a round used in §4.2.1.

The proof of the next lemma is straightforward.

Lemma 4.2.1 Any given deterministic exploration algorithm A(w, A) can be con-

verted into another deterministic exploration algorithm A'(w, A) such that r < rA

and A'(w, A) satisfies the following properties:

(1) No two robots search the same path in the same phase.

(2) No robot moves back if some robot remains unmoved at the origin.

(3) As soon as a robot R has started moving back on some path p, all of the other

robots stop moving until robot R moves back to the origin and then searches another

path p' and reaches an unsearched area.

When there is only one robot, an exploration algorithm A(w, 1) can be charac-

terized by a sequence {(hi, ai), i 1 where ai is the index of the path on which the

robot starts moving back in phase i and hi is the distance that the robot searches on

path ai in phase i. Simple calculations show that the competitive ratio of A(w, 1) is

equal to

1+2 limi hi + + h+i,-) (4.3)

where i' > i is the smallest index such that ai, = ai. Motivated by this fact, for any

sequence (hi, ai), i > 1, we define the corresponding ratio sequence {Hi, i 1 by

letting

Hi = h + + hi-(4.4)
hi

where i' > i is the smallest index such that a = ai. Using Hi, Expression 4.3 can be

written as

1 + 2 limiooH

We define a sequence (hi,ai), i 1 to be a w-sequence if (1) hi > 0 and ai is

an integer for all i; (2) for at least w j's, {(i: ai = j) = oo. We define a w-sequence

59

{(hi,ai), i 1} to be a cyclic sequence if a = i mod w. Since a's are uniquely

specified in a cyclic sequence, we will represent such sequence by {si, i > 1}. The

corresponding ratio sequence denoted by {Si, i > 1} is defined as

Si = S1 + +- . (4.5)
Si

The following two lemmas will be very useful for proving the optimality of our explo-

ration algorithms.

Lemma 4.2.2 [4] For any cyclic w-sequence, limi,,ooSi > W ,

Lemma 4.2.3 For any w-sequence {(hi, ai), i > 1}, there exists a cyclic w-sequence

{s, i > 1} such that lim-ooH > limi,,oSi.

Lemma 4.2.3 shows that we can convert any given deterministic exploration algo-

rithm into a cyclic algorithm without increasing the competitive ratio. The proof of

the lemma will be given in the Appendix.

Lemma 4.2.4 Assume that A(w, A) is a deterministic exploration algorithm with

a finite competitive ratio and that A(w, A) satisfies the properties of Lemma 4.2.1.

Then, there exists a (w - A + 1)-sequence {(hi, ai), i > 1} such that

rA > A +2limi-,ooHi,

where {Hi, i > 1} is the corresponding ratio sequence of {(hi, ai), i > 1} defined in

Expression 4.4.

Proof. The proof has two major steps. First, we inductively define the sequence

{(hi, ai), i > 1} together with a sequence of w-dimensional vectors ri = (ri(O),..., 7ri(w-

1)). Then, we prove the inequality claimed in the lemma.

We first define (hl, a,) and r1 by looking at the first phase of A(w, A). Assume

that at time t1 , a robot starts moving back on path j. Let h be the distance that

the robot has searched on path j. Define

r = (0,1,2,...,w-1) andal =r1 (j).

60

Assume that 7ri-l is defined. We define (hi, ai) and 7ri by looking at phase i of A(w, A).

Recall that phase i starts at time ti-1 and ends at time ti. Assume that path I is the

unique path that is not searched in phase i- 1 but are searched in phase i. Also,

assume that at time ti, a robot starts moving back on path k. Let hi be the distance

that the robot has searched on path k. For j = ... , w - 1, define

ri-i (l) if j = k,

7ri(j) = 7ri-(k) if5 = I,

7ri-(j) if j k and j 1.

In other words, we switch the kth entry and the Ith entry of 7ril to obtain 7ri. Let

ai = 7ri(k).

Clearly, {(hi,ai), i > 1} must be an infinite sequence since A(w, A) is assumed

to have a finite competitive ratio. For any i > 1, ti is the time when a robot starts

moving back on some path p. Let i' > i be the index such that phase i' is the first

phase that path p is searched again after ti. It is easy to see that i' exists and is finite

since A(w, A) is assumed to have a finite competitive ratio.

Claim 4.2.1 For all i > 1, ai, = ai and aj ai for j = i + 1,..., i'-1.

We next prove the correctness of the claim. Assume ai = ri(k). By the definition

of ai, this means that a robot starts moving back on path k immediately after ti. In

phase i + 1, the robot moves back on path k to the origin and then searches another

path (1 $ k). Then, a robot starts moving back on path k (kl $ k) right after ti+l.

Since k $ 1 and k $ k1, by the definition of 7ri+,

7ri+l(k) = iri(k).

By the choice of i', Ak must be idle from ti+l to tj for j = i + 1,..., i' - 1. Hence,

7rj(k) = 7jl(k) = ... = 7ri+l(k) = 7i(k) = ai. (4.6)

61

Moreover, rj(k) cannot be chosen to be aj, i.e.,

aj ~ rj(k). (4.7)

From Equations 4.6 and 4.7,

aj ai for j = i + 1,...,i'-1. (4.8)

By the choice of i', Ak is reused in phase i'. Assume that a robot searches path k2

immediately after ti,. By the inductive procedure for defining iri and ai,,

ri,(k2) = 7ri1_l(k) and ai, = 7ir(k 2). (4.9)

Combining Equations 4.6 and 4.9, we have ai, = ai. This together with Inequality 4.8

concludes the proof of the claim.

Claim 4.2.2 {(hi, ai), i > 1} is a (w - A + 1)-sequence.

To prove the correctness of the claim, the only nontrivial property that we need to

verify for the sequence is that there are at least (w - A + 1) j's such that I{i: ai =

i}l = +oo. By Claim 4.2.1, it suffices to prove that there exist (w - A + 1) j's such

that

ai = j for some i. (4.10)

Without loss of generality, we label the w paths in a way such that (1) the label of

the path on which a robot starts moving back immediately after t is 0; (2) path

1,2,..., w - A are have not been searched before t; (3) i < i2 < ... < i,_x where

ij is the first phase in which path j is searched. By the assumption on Ao and the

definition of al,

al = 0. (4.11)

For j = 1,..., w - A, let j* be label of the path on which a robot starts moving back

62

immediately after ti,. By the definitions of {ri, i > 1} and {(hi, ai), i > 1},

7i(j*) = = = = j.

Therefore,

ai = i(j*) = j for 1 < w - A. (4.12)

By Equations 4.11 and 4.12, there are at least (w-A+1) j's that satisfy Equation 4.10.

This concludes the proof of the claim.

Continuing the proof of Lemma 4.2.4, for each i > 1, let p be the path on which a

robot starts moving back right after ti. Let T be the first point of time at which path p

is searched for exactly distance hi in phase i'. By the properties stated in Lemma 4.2.1,

the A robots must be standing at different paths at time T. Let d, d2 ,..., d-1i be,

respectively, the distance that other A- 1 robots from the origin at time T. Let

di = min{dl,d 2,... ,dx-1}. There are two cases.

Case 1: dj > hi. If the goal is on path p at distance hi + 1, then the ratio of

A4(w, A) at the time when the goal is found is at least

dl + d2 +- + d-1 2(hi + -+ hi-l)+ hi + 1
hi + 1 hi +1

hi 1 (+ (h1+ +hiil)) (4.13)

Case 2: dj < hi. Let p' be a path that has been searched until distance dj until

time T. If the goal is on path p' at distance dj + 1, then the ratio of A(w, A) at the

time when the goal is found is at least

dl + d2+ d + 1 ++ + d-1 2(h + + hi'-l) + hi
dj + 1 dj + 1

> d+ (+ 2(h + +hX,-). (4.14)
d; ~~~~~hi

63

Notice that A(w, A) would have an infinite competitive ratio unless

lim hi = lim dj = +oo. (4.15)
i +00 3-+00

Therefore, by Inequalities 4.13, 4.14, and 4.15,

rAA > lims 00 (A + 2(h + ;+ hi,-,l)

= A+2limi0oHi.

This, together with Claims 4.2.1 and 4.2.2, concludes the proof of Lemma 4.2.4

Combining Lemmas 4.2.1, 4.2.2 4.2.3, and 4.2.4, we finish the lower bound proof

for Theorem 4.2.1.

4.3 Randomized exploration algorithms

In this section, we present our results for randomized exploration algorithms. We

use R(w, A) to denote the optimal competitive ratios for randomized algorithms. In

§4.3.1, we describe the randomized algorithm for A = 1 given by Kao et al. [21]. In

§4.3.2, we describe our randomized exploration algorithms for general A. In §4.3.3,

we prove that the algorithms are optimal for A = 1. The results in this section,

together with the optimality results of §4.2, imply that randomization can improve

the competitive ratios for A < w.

4.3.1 A randomized exploration algorithm for A = 1

In this subsection, we describe the randomized search algorithm for A = 1 given by

Kao et al. [21]. We refer to the algorithm as R(w, 1). As in the deterministic case,

we label the w paths by 0, 1,..., w-1.

Choose r > 1 such that

w(rw-)Inrw r> (- 1)lnr

64

It was proved in [21] that such r exists and is unique for all w > 2. The following is

the description of R(w, 1).

1. a a random permutation of {O,..., w - 1};

2. a random real number uniformly chosen from [0, 1);

3. da r-;

4. i 1;

5. repeat

explore path a(i) up to distance d;

if goal not found then return to origin;

d - d r,,;

i - (i + 1) mod w;

until the goal is found.

Theorem 4.3.1 [21] R(w, 1) < 1 + 2 I-·Lw (rw-1)lnrw'

4.3.2 Randomized exploration algorithms for general A

IIn this subsection, we construct randomized exploration algorithms for general A by

using R(w, 1), the randomized algorithm described in §4.3.1.

First, we choose a random permutation oa of {0, 1,..., w - 1}. For 1 <i < A - 1,

we assign the ith robot to search path a(i) only. We assign the Ath robot to search

the remaining w - A + 1 paths according to R(w - A + 1, 1). In order to achieve a

good competitive ratio, we assign a fixed speed v such that when the robots move in

parallel on all the paths, the total distance traveled by the Ath robot is v times the

distance traveled by each of the other robots. By choosing an appropriate v, we can

prove the following theorem.

Theorem 4.3.2 R(w,A) < (-1) + (w + 1) R(w - + 1), where R(w) =
1+2 r-1

w (rw-1)ln rw

Proof. The exploration algorithm we have just described has a competitive ratio of

65

at most

-((-1) + v) + -- +1 R(w-A+I).

The above expression assumes its minimum value-((_)+ /(-+ 1) R(w - +1))

whenv= /(w-A+l) R(w-A+1). 1

Combining Theorem 4.2.1 and 4.3.2, we can prove the following corollary.

Corollary 4.3.1 When A < w, the optimal competitive ratios of randomized algo-

rithms are always smaller than those of deterministic algorithms.

Proof. By Theorem 4.2.1 and 4.3.2, we only need to prove

() /(w - A + 1) R(w - A + 1) <A + 2 (w A +)w-+ 4.16)
w (w- A)w-A

Let a = R(w - A + 1) and b = 1 + 2 (w-'+))w'-+. Then a and b are the competitive

ratios of randomized and deterministic algorithms for one robot and w - A + 1 paths.

It was shown in [21] that a < b. Therefore, to prove Inequality 4.16, it is suffice to

show that

- (A-)+ (w-A+ 1) a <A-1 + a.

Rearranging the terms, we obtain that the above inequality is equivalent to (a -

vw _- + 1)2 > 0, which is always true.

4.3.3 Lower bounds for A = 1

In this subsection, we show that our randomized algorithms are indeed optimal for

A = 1. This settles the conjecture of Kao et al. [21] in the affirmative. The proof is

mathematically very involved.

Theorem 4.3.3 R(w, 1) > 1 + 2. rw-- w (rw-1)lnrw '

66

Using Yao's theorem derived from von Neumann's minimax principle [36], we only

need to give a lower bound on the competitive ratio of any deterministic algorithm

against a chosen probability distribution. In [21], Kao et al. considered the following

probability distribution for the position of the goal on each of the w paths:

1 ex-(l+e) if x > 1
PCW=

0 otherwise.

They proved a lower bound on the competitive ratio of any cyclic algorithm A char-

acterized by {si, i > 0}, which is stated in the following lemma. In this lemma,

we let ' = si}°O denote an infinite sequence of positive numbers, and let S, =

{{ Si} =0 limi_00 si = o0, so = 1, and for all i > 0, si+, > Si}. Also, we let

G(c, S~ -$i + .. + si+w-Gw(,4 SI= 00 1+E
i=O Si

for any e > 0 and any sequence s = {si}=o E S,,

Lemma 4.3.1 [21] rA > supo>0infs.f{1 + G,(,).

Using this lemma, Kao et al. proved a tight lower bound for w = 2. Moreover,

they indicated that general lower bounds on the competitive ratios for w > 3 might be

obtained by lower-bounding the RHS of the formula in the lemma. In their proof for

w = 2, they used the lower bound for a cyclic algorithm, as provided in Lemma 4.3.1,

to obtain a general lower bound for an arbitrary algorithm. Such a method proceeded

without any problems for w = 2 since it is easy to see that, when w = 2, an optimal

algorithm must move in a cyclic fashion. However, when w > 3, proving that an

optimal algorithm must move in a cyclic fashion becomes highly nontrivial, and it is

not clear if lower bounds for the RHS of the formula in Lemma 4.3.1 always yield

lower bounds for an arbitrary algorithm. We believe that we have found a proof that

an optimal algorithm, against distribution p, must search the w paths in a fixed

cyclic order. Details of this part will appear in a later technical report, and readers

interested in the proof should contact the author. Under the assumption that an

67

optimal algorithm, against distribution p~, must search the w paths in a fixed cyclic

order, we only need to prove the following theorem in order to prove Theorem 4.3.3.

Theorem 4.3.4 sup,>0 inf.Es. G,(e, S > Cw where C,, =

The remainder of the subsection is devoted to the proof of Theorem 4.3.4. The

proof is divided into three subsubsections. First, we lower bound the infinite sum

G,(e, S) by the finite sum H(k, 5(e)) defined to be

H(k, (E)) =
_f + pk-1 si(e)++si+w-l (e)

i=On s())
In k(EC)

for E > 0 and 9(e) = {si(e)}O0 E SW. Next, we lower bound the finite sum H(k, 5(e))

by C. Then, we complete the proof of Theorem 4.3.4.

Lower Bounding G,,(e,s) by H(k,s(e))

Lemma 4.3.2 For all e > O, there exists {si(e)})=O E S,o such that for all k with

Sk(C) > 1,

inf G,(E,s > H(k, 9(e)).
sESw

Proof. By the definition of infimum, for all e > 0, there exists l(e) = {si(e)} 0 E Sw

such that

inf G(, + 2
S'ESw

> Gw(E, (E))

k-1 Si(E) + + Si+w-1(C)

i=O (5 ()+i=o SO)+

+ ...+ i+w-1 ()
sk(C) Sk(C)

Sk (e))

(k
i=k

Since (e) = {s(e) = () }=o is in S,, we obtain

Si(E) + - - + Si+w-1(C) ,
inf G(e, + 2

gS~s (Si()l + E

Si(e) +'' + * Si+-1(C)
) 1r

) WL

(Si())l +e / I

68

i=O

i=O

(Sk())-Gw(c S)

(SkC))-' inf G,s).
9'ESw

Since Sk(e) > 1 and for all x > 1, 1 > we obtain__- ~-;,i we obtain

inf G,(e,s
g6s~

k-1 Si(e) + . + Si+w-1(i))

i=O (Sk(f)) J1 - (k(e)) - -e +

> 1n, (1 Si- + .(.) +' + ,+-1()

ln Sk(e) + (Sk()

Lemma 4.3.3 There is a strictly increasing integer sequence {pi}i°°o and a sequence

S(e,) such that limn00 H(k,, s(e,)) exists and is finite, and sups>0 infgs, G,(e, s >

liMn oo H(kns(n)), where e = , 0 < p, < k < pn + w - 1, and Skn(e) =

miax{Sp (n), .SPn+_ -l(n) }

Proof. This lemma follows from the fact that by Lemma 4.3.1 and 4.3.2, H(k, s(e))

is bounded.

Lower Bounding H(k, (e)) by C,,

This is the most difficult part of the proof of Theorem 4.3.4. The proofs for the six

technical lemmas (Lemmas 4.3.4 - 4.3.9) will be given in the Appendix.

We first rewrite

kn-1

i=O

_ 1
in sk(en)

Si(6n) + : -+ Si+ -l (n)

(Si(cn)) 1 t- n

1

In sk(e,)

w-1 kn-1

j=O i=O

Hence, by Lemma 4.3.1 and Lemma 4.3.2, and the above discussion, there exists a

constant C such that

C > H(kn, (cn)) > -en + Ew-J Ln(j)
in sk(en)

k-1
Ln(O) =

i=O

69

H(kn, 9(6n)

where

(4.17)

1

(Si('n))"n

Si+j (n)

and
kn- si+j(en)

i() (S (En))1+cn

for j = 1,...,w - 1. (Note that Skn > 1 implies lnskn > O.) We now proceed by

providing lower bounds for each Ln(j). We first work on the first term Ln(O) and

show that k,(En) -- o00 as n - oo. Then, we work on the second term Ln(1) and

show that s,(e,) grows somewhat smoothly at a rate exponential in n. Finally, we

give lower bounds for all Ln(j).

The next lemma will be frequently used in this subsection.

Lemma 4.3.4 For every positive integer m and for all e, xo,..., Xm > 0,

X_ 1XXm m m e(m)
x x2 +...+ Xm > m m

X1+E - Xl -1 + (1 +)m o

where E,(m)= = l+)m

The next two lemmas give some properties of the sequence {skn(en))k°=0.

Lemma 4.3.5 limn,,o skkn(en) = 00.

For all n, pick hn E {k - w + 1,...,kn - 1} such that

hn (n) = min{skn_ -+l (e),..., skn-1 (En)}.

(Since p -+ oo00 as n - o, we assume without loss of generality that k - w + 1 > 0.)

We choose v such that

Shn(6n) = (Sk.(n))l

Since skn(en) > 1, we know that vn exists and is unique. By the choice of kn and the

monotonicity of S,, we have Skn(e) > 5h,(en) and thus v, > 0.

Lemma 4.3.6 limn_,, v, = 0. For some finite A > 1, limn-oo(Sk,(En))k = A.

The next three lemmas estimate Ln(j).

70

Lskn(n) and lin oo lnSkn(fn)- 1n

We now proceed to estimate Ln(2),... L,(w - 1). For all integers n > 0, let

bn = C + ClnSk,(Cn). In light of Lemma 4.3.5, we assume that lnsk,(en) > 1 and

thus b > 1; otherwise we can replace {p,}, 0 with a subsequence for which these

bounds hold.

Lemma 4.3.8 For all i E {0,1, ... , w-1} and for all n > O, b(w-1)(1+") > i(n).

Lemma 4.3.9 For each j = 2,..., w -1 and each u = 0,..., - 1, limno,, Ln(j) >
Ai
In A

Proof of Theorem 4.3.4

By Inequality 4.17 and Lemmas 4.3.7 and 4.3.9, limn,,, H(k, g(6n)) > l+nA++a-

By the fact that A > 1 (from Lemma 4.3.6) and the definition of r,o, +lna+ =

Aw-~1 > C,. Combining this with Lemma 4.3.3, we complete the proof of Theo-(A-1)lnA -

rem 4.3.4 and thus the proof of Theorem 4.3.3.

4.4 Conclusions and open problems

In this chapter, we have studied an on-line exploration problem, and we have provided

optimal deterministic and efficient randomized exploration algorithms. We have also

shown that our randomized algorithms are optimal for A = 1.

In general, our randomized algorithms may not be optimal. Better competitive

ratios might be obtained by coordinating the robots in the way similar to that of

the deterministic case: If one robot starts moving back, all of the other robots stop

moving. In fact, this technique is not essential for the design of optimal deterministic

algorithms, but there is some evidence that this may be important in the randomized

case. A clever construction along this direction may lead to optimal randomized algo-

rithms. We conjecture that there exists an optimal randomized exploration algorithm

71

in which one robot searches w - A + 1 paths and each of the other robots is assigned

to search one of the remaining paths.

We have studied how to minimize the total distance traveled by all of the robots.

It would be an interesting problem to study how to minimize the total (parallel)

exploration time. We conjecture that the optimal competitive ratios, in terms of

time, are achieved when the paths are partitioned as even as possible.

Another related problem is the so-called layered graph traversal problem (see [10,

27]). In the layered graph traversal problem, one robot searches for a certain goal in

a graph, but the robot can shortcut between paths without going through the origin,

and when exploring one path, the robot can obtain free information about the other

paths. An analog of our work would be to study how to search a layered graph with

multiple robots.

72

Appendix A

Proofs of Technical Theorems and

Lemmas

In this appendix, we prove of Lemma 4.2.3 and some technical lemmas for Theo-

rem 4.3.4.

A.1 Proofs of Lemma 4.2.3

Lemma 4.2.3 For any w-sequence {(hi, a), i > 1}, there exists a cyclic w-sequence

{si,i > 1} such that limi.oHi > limi .Si.

We have shown that a sequence {(hi, ai), i 1 characterizes a deterministic

exploration algorithm and the competitive ratio of the algorithm is 1 + 2 limi nHi.

If the algorithm has an infinite competitive ratio, then Lemma 4.2.3 holds trivially.

Therefore, we will assume that the algorithm has a finite competitive ratio. This

implies that the sequence {hi, i 1 is unbounded, i.e.,

limo,, hi = °o. (A.1)

In fact, we can prove the following stronger property of the sequence {hi, i > 1}.

Claim A.1.1 lim/_.~ hi = oo.

73

Proof. Assume for contradiction that the claim does not hold, then there exist a

subsequence {hik, 1} of {hi, i > 1} and a constant M < oo such that hik < M

for all k. Therefore,

lmi-. Hi > limk,0Hik
hi + + hi,-1

= limkm ° k
hi,

> limkoo (hi + . + hi_ 1)

00,

where the last equality follows from Equation A.1.

From the above claim, we know that for any M < oo, I{hi: hi < M}I is finite.

Hence, we can sort the infinite sequence {hi, i > 1} to get a sorted sequence {si, i > 1}.

Since {si,i > 1} is the sorted sequence of {hi,i > 1}, we have

5 + - $ i <* * hi + - . + hi, for all i 1. (A.2)

With {si, i > 1} regarded as a cyclic w-sequence, the corresponding ratio sequence

{Si, i > 1} is uniquely defined.

In what follows, we prove that limrnioHi > limoo,,Si. By the definition of upper

limit, we only need to show that for each sufficiently large j, there exists a j* such

that

Sj < H and j* - oo as j --+ oo. (A.3)

For any fixed j that is sufficiently large, we consider two cases.

Case 1: There exists a t j + w- 1 such that ht < sj.

Since t' > t is defined to be the least index such that at, = at, we have t' -1 >

t > j + w - 1. Hence, by Inequality A.2,

S l + .' + 5sj+,- < hi + + hj+_l < hi + + ht,_l = H. (A.4)
S= -h (A.4)
Si 83 -t

74

Let j* = t. Inequality A.3 follows from Inequality A.4 and the fact that j* > j.

Case 2: h > sj for all t > j +w -1.

In this case, the set {hl,...,hj+w-2} contains all the ht's such that h < sj.

Therefore, {h, ... , hj+w-2) contains {si,... sj) as a subset, which implies

1{ht : ht > sj and 1< t < j +w-2}1 < (j +w-2) -j = w-2. (A.5)

Since {(hi, ai), i > 1} is a w-sequence, there are w distinct integers v1, v2 ,..., Vw,

each of which appears infinitely many times in the sequence {ai, i > 1}. Since j

is sufficiently large, we can assume without loss of generality that each of the vk's

appears at least once in {a l,..., aj}. For 1 < k < w, let j(k) < j + w -2 be the

largest index such that aj(k) = Vk. Consider the values of hj(,),..., hj(w). According

to Inequality A.5, at least two of them, say hj(k,) and hj(k 2), are less than sj. By the

choices of j(k) and j(k 2), both j'(k) and j'(k 2) are greater than or equal to j + w-1.

Without loss of generality, we assume j'(k 1) > j + w - 1. By Inequality A.2,

S + + sj+w-1 < hi + - + hj+w-1 < h1 + +hj(k,)-1 = H3(k). (A.6)
sj -sj --h 1

Now, let j* = j(k 1). Since vk, appears infinitely many times in the sequence {aj, i >

1}, j(kl) goes to infinity as j goes to infinity. Together with Inequality A.6, we obtain

Inequality A.3.

Combining cases 1 and 2, we complete the proof of Lemma 4.2.3.

A.2 Proofs of the lemmas for Theorem 4.3.4

Recall that the most difficult part of the proof of Theorem 4.3.4 is to lower bound

H(k, (e)) by C,, which contains six technical lemmas (Lemmas 4.3.4 - 4.3.9). In

this section, we give the proofs of these lemmas.

75

lemma 4.3.4 For every positive integer m and for all e, xo,..., Xm > 0,

E'(m)
X1 X2

_+ +
X0

where EE(m) = (+')m(1+e)m-1 '

Proof. The idea is that the arithmetic mean is no less than the geometric mean.

Xl+e + .+ + l+e
O 1 rm-1

> 1 (1 1 x()

E(m) XO

Em m (m)

(l+e) m_

(because 1 + > 1)

(arithmetic mean > geometric mean)

(because (1 +)m > 1 + me)

Lemma 4.3.5 limn_ skn(en) = 00.

Proof. By the choice of kn and the monotonicity of S,, we have skn(n) > s(e) for

all i = O,..., k. Hence,

L, (O) Ž ,k
(Sk (n) n

(A.7)

Then, the lemma follows from the facts that k - oo and e - 0 as n - oo and that

by Inequalities 4.17 and A.7

C>
- , + kLL

(k + (n())n

In Skn (6n)

Lemma 4.3.6 lim, _o v, = 0. For some finite A > 1, lim,,oo(skn(e,))n = A.

Proof. First, we have that

Ln(1) = (S))l+
i=O (Si(Cn))

76

Xm"[-''' '-]- 1+ m
(1 + E)m

kn- S+1 (C.)
+

i=hn (iE)1'

Applying Lemma 4.3.4 to the two summations above (and noticing that SO(n,) = 1),

we have

Ln(1) > L (1) + L (1), (A.8)

where

L'(1) = (1 + e
(1 E)h - ((Shn(En))(C ln)hnEen(hn))

1)kn-hn Een (kn-hn)

and

L(1) = (1 + hn
(1 + En)kn-hn

Now, we can rewrite L (1) as

Now +k, - hn
L((1) = (Sk +(±())kn

where

f = ((1)kn-hn _ 1 + vn)E n(kn
1 + E

Also, we can rewrite L(1) as:

hL n
L (1) = h (Sk.(Cn)) ,(1 +)hn

(A.9)

where

On = (1 - v)(+)h En(hn)

By Lemma 4.3.5 and the fact that by Inequalities 4.17 and A.8,

C > - n --,) + Lnl
ln Sk (n)

we conclude that, for some constant c,

0 < n(1) < c and 0 < L(1) < c for all n.
- ln Skn (E) - ln Skn (E)

(A.10)

Since 1 < kn - hn < w - 1 and v, > 0, no subsequence of {,#n}- can approach

-:o or converge to a finite negative number. On the other hand, by Lemma 4.3.5

77

and Inequality A.10, no subsequence of {f/l'}I can approach +oo or converge to a

finite positive number. Thus, lim, On/ = 0 and consequently, limnO vn = 0. By

Equation A.9, we have

L(1) M (n(k (en)) kn)

In Sk (n) (1 + e n ln(skn (en)) kn

Since 1 < k - h < w - 1 and 0 < k - < -1,

hn LI I ()
lim (1 n = 1, lim kno = 1, and thus lim ln(l) -lim (n))
n (1 + En oo n) oo ln(skn (,)) n

Using Lemma 4.3.5 and Inequality A.10 and an argument similar to the proof for

limn,oo v,n = 0, we can show that for some constant A

1
lim (Skn (en)) > 1.

n-noo

Lemma 4.3.7 limne Ln () > -- and li'n L(l) >
lSk n (En) -In A 8kn(n) - InA

Proof. This lemma follows from Lemma 4.3.6 and the fact that 1 < k - h <

w - 1 and 0 < k - <w - 1. The calculations are similar to those for proving

Lemma 4.3.6.

Lemma 4.3.8 For all i e {0, 1,... , w- 1} and for all n > 0 b(w-)(l + e)w- 1 > si(n)

Proof. Since b > 1, it suffices to show that for all i,

bdi > Si(Cn) (A.ll)

where di = Zi-l(l + En)i'. We prove inequality A.11 by induction on i. The base

case follows from the facts that so(en) = 1 and b > 1. The induction step follows

78

from the fact that by Lemma 4.3.1 and Lemma 4.3.2,

S+ i+ (E.n)

C> (si(n))1+ n
ln Skn (en)

Lemma 4.3.9 For each j = 2,..., w - 1 and each u = O,...,j - , lirn, O Ln(j) >

In A'

Proof.

Ln(j)
j-l

= E E
U=O O<i<kn--iiu (mod)

j-1
> L'(j,u),

u=O

where
) kn - Ug(j, u)=[[~I

J

and

L'(j, u) g(j,u)
L (3,u=(1 + C)g(Ju)

The term L'(j, u) is obtained by applying Lemma 4.3.4 to the inner summation in

the right-hand side of the above equalities. The derivation also uses the facts that

because k - w + 1 < u + g(j, u)j k,

Su+g(j,u)j(En) > hn (E-)

and that by Lemma 4.3.8

b(-)(l+n") - > su-(e

79

Su+(i'+l)j (En)

(Su+ij (,)) C n

(1 pqpz>>u) Efn(9(3'sU))

= O (j = 0

On the other hand, for each j = 2,..., w - 1 and each u = 0,..., j -1,

L(j, u) _ Aj

n--o In Skn (En) j In A'

This can be checked by using Lemma 4.3.6 and the fact that 1 < k - h < w - 1

and 0 < k - < w- 1. The calculations are similar to those in the proof of

Lemma 4.3.6. [I

80

Bibliography

[1] D. Angluin and M. Kharitonov. When won't membership queries help? In Pro-

ceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing,

pages 444-454, 1991.

[2] D. Angluin and D. K. Slonim. Randomly fallible teachers: Learning monotone

DNF with an incomplete membership oracle. Machine Learning, 14(1):7-26,

January 1994. A preliminary version of this paper appeared in COLT '91.

[3] Y. Azar, A. Z. Broder, and M. S. Manasse. On-line choice of on-line algorithms.

In Proceedings of the 4th Annual A CM-SIAM Symposium on Discrete Algorithms,

pages 432-440, 1993.

[4] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins. Searching in the

plane. Information and Computation, 106:234-252, 1993. A preliminary version

appeared in Proceedings SWAT 88, First Scandinavian Workshop on Algorithm

Theory, Lecture Notes in Computer Science 318, pages 176-189, Halmstad, Swe-

den, July 1988.

[5] A. Blum. Separating distribution-free and mistake-bound learning models over

the Boolean domain. In Proceedings of the Thirty-First Annual Symposium on

Foundations of Computer Science, volume I, pages 211-218. IEEE, 1990.

[6] A. Blum, M. Furst, M. Kearns, and R. Lipton. Cryptographic primitives based

on hard learning problems. Research manuscript, 1993.

81

[7] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric

terrain. In Proceeding of the 23rd Annual ACM Symposium on the Theory of

Computing, pages 494-504, 1991.

[8] M. Blum and S. Micali. How to generate cryptographically strong sequences

of pseudo-random bits. SIAM Journal of Computing, 13(4):850-863, November

1984.

[9] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and

the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929-965, 1989.

[10] A. Fiat, D. P. Foster, H. Karloff, Y. Rabani, Y. Ravid, and S. Vishwanathan.

Competitive algorithms for layered graph traversal. In Proceedings of the 32nd

Annual IEEE Symposium on Foundations of Computer Science, pages 288-297,

1991.

[11] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. In Proceed-

ings of the 31th Annual IEEE Symposium on Foundations of Computer Science,

pages 454-463, 1990.

[12] S. Goldman. Learning Binary Relations, Total Orders, and Read-Once For-

mulas. PhD thesis, MIT Dept. of Electrical Engineering and Computer Sci-

ence, September 1990. (MIT Laboratory for Computer Science Technical Report

MIT/LCS/TR-483, July 1990).

[13] S. Goldman and M. Kearns. On the complexity of teaching. In Proceedings of

COLT '91, pages 303-314. Morgan Kaufmann, 1991.

[14] S. Goldman and D. Mathias. Teaching a smart learner. In Proceedings of the

5th Annual ACM Conference on Computational Learning Theory, pages 67-76,

1993.

[15] S. Goldman, R. Rivest, and R. Schapire. Learning binary relations and total

orders. In Proceeding of the 30th IEEE Symposium on the Foundations of Com-

puter Science, pages 46-51, 1989.

82

[16] S. Goldman and R. Sloan. The power of self-directed learning. Technical Report

WUCS-92-49, Washington University in St. Louis, November 1992.

[17] 0. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.

Journal of the ACM, 33(4):792-807, October 1986.

[18] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-

way functions. In Proceeding of the 21st Annual ACM Symposium on the Theory

of Computing, pages 12-24, Seattle, 1989.

[19] J. Jackson and A. Tompkins. A computational model of teaching. In Proceedings

of the 5th Annual ACM Workshp on Computational Learning Theory, pages 319-

326, 1992.

[20] M. Y. Kao, Y. Ma, M. Sipser, and Y. Yin. Optimal constructions of hybrid

algorithms. In Proceedings of the 5th Annual A CM-SIAM Symposium on Discrete

Algorithms, pages 372-381, 1994.

[21] M. Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment:

An optimal randomized algorithm for the cow-path problem. In Proceedings of

the 4th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 441-447,

1993.

[22] M. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean

formulae and finite automata. In Proceedings of the Twenty-First Annual ACM

Symposium on Theory of Computing, pages 433-444, 1989.

[23] M. Kharitonov. Cryptographic hardness of distribution-specific learning. In

Proceedings of the 25th Annual ACM Symposium on the Theory of Computing,

pages 372-381, 1993.

[24] L. A. Levin. One-way functions and pseudorandom generators. In Proceeding of

the 17th Annual ACM Symposium on the Theory of Computing, pages 363-365,

Providence, 1985.

83

[25] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-

threshold algorithm. Machine Learning, 2:285-318, 1988.

[26] B. K. Natarajan. On learning boolean functions. In Proceedings of the Nineteenth

Annual ACM Symposium on Theory of Computing, pages 296-304, 1987.

[27] C. H. Papadimitriou and M. Yannakakis. Shortest path without a map. In

Proceedings of the 16th International Colloquium on Automata, Languages, and

Programming, pages 610-620, 1989.

[28] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, Reading, MA, 1984.

[29] L. Pitt and M. K. Warmuth. Reductions among prediction problems: On the

difficulty of predicting automata (extended abstract). In 3rd IEEE Conference

on Structure in Commplexity Theory, pages 60-69, 1988.

[30] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2):120-126,

1978.

[31] S. Salzberg, A. Delcher, D. Heath, and S. Kasif. Learning with a helpful teacher.

In Proceedings of IJCAI-91, pages 705-711, 1991.

[32] A. Shinohara and S. Miyano. Teachability in computational learning. New

Generation Computing, 8:337-347, 1991.

[33] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging

rules. Communications of the ACM, 28:202-208, 1985.

[34] L. G. Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134-1142, November 1984.

[35] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of rela-

tive frequencies of events to their probabilities. Theory of Probability and its

applications, XVI(2):264-280, 1971.

84

[36] A. C. Yao. Probabilistic computations: Towards a unified measure of complexity.

In Proceedings of the 18th Annual IEEE Symposium on Foundations of Computer

Science, pages 222-227, 1977.

[37] A. C. Yao. Theory and application of trapdoor functions. In Proceedings of

the 23rd Annual IEEE Symposium on Foundations of Computer Science, pages

80-91, Chicago, 1982.

[38] Y. Yin. On learning r-of-t threshold functions. Research manuscript, 1993.

85

