
Interfacial Properties of Surfactant Monolayers in
Microemulsion Systems

by

Daniel Dongyuel Lee

A.B., Harvard University (1990)

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1995

( Massachusetts Institute of Technology 1995. All rights reserved.

A uthor ...... . ....................................
Department of Physics

August 30, 1995

C ertified by .. ......... .....................................
Sow-Hsin Chen

Professor of Nuclear Engineering
Thesis Supervisor

Certified by ......-......................................
Mehran Kardar

Professor of Physics
Thesis Co-Supervisor

Accepted by... ..... ......................................
George F. Koster

Chairman, Dg %4 M1ff5lnittee on Graduate Students
F TECHNOLOGY

SEP 261995 &nu,

LIBRARIES



Interfacial Properties of Surfactant Monolayers in

Microemulsion Systems

by

Daniel Dongyuel Lee

Submitted to the Department of Physics
on August 30, 1995, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Physics

Abstract
Surfactants in solution can spontaneously self-assemble to form interfacial monolayers
which separate mesoscopic regions of water and oil. The statistical mechanics of the
surfactant monolayers can explain the rich phase behavior and novel physical prop-
erties of microemulsion systems. Here we use x-ray reflectivity to study the intrinsic
properties of a single surfactant monolayer at an oil-water interface in equilibrium
with a middle-phase microemulsion. We find that the fluctuations of the monolayer
are described by large capillary waves due to the small interfacial tension and bend-
ing rigidity of the surfactant interface. Next we measure the local geometry of the
surfactant monolayers within a bicontinuous microemulsion using isotopic contrast
variation and small angle neutron scattering. The mean curvature of the surfactant
film is very small and inverts as a function of temperature. We also use neutron
reflectivity to relate the surface correlations of the surfactant monolayers near a solid
interface to the bulk correlations in the microemulsion. A Ginzburg-Landau theory
is employed to interpret our results and to provide further insight into explaining the
behavior of the surfactant monolayers in these complex liquids.
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Chapter 1

Introduction

Since the day when Benjamin Franklin poured oleic acid onto Clapham Pond and

observed its calming action upon the surface of the water, scientists have been fasci-

nated with the interfacial properties of surfactants [1]. The cleansing action of liquid

soap and its ability to form bubbles and films with intricate shapes and colors can be

directly attributed to the unusual molecular composition and statistical mechanics of

the surfactant molecules contained within the detergent [2, 3]. Today, these molecules

are studied with modern spectroscopic and diffraction techniques, and much progress

has been made towards better understanding their chemical and physical properties.

Of particular interest is the behavior of surfactants in solution with water and oil and

the physics of the self-assembled surfactant interfaces that result. In this introduc-

tion, we review a few basic concepts regarding these surfactant films and illustrate

some of the extraordinarily rich phase behavior these systems display [4, 5, 6, 7, 8].

1.1 Surfactants in Solution

Figure 1-1 shows the chemical composition of tetraethylene glycol monodecyl ether,

otherwise simply abbreviated as C10E4 . This molecule is a typical medium-strength,

non-ionic surfactant which is composed of two functionally distinct parts. The ten-

carbon linear hydrocarbon chain forms an aliphatic "tail" region that prefers non-

polar solvents while the ethylene glycol groups form a "head" region that strongly

8



Figure 1-1: Chemical composition of tetraethylene glycol monodecyl ether.

prefers to form hydrogen bonds with water. Thus, when this surfactant is added in

solution with water and oil, the amphiphilic molecules spontaneously self-assemble

to form two-dimensional interfacial monolayers that segregate distinct water and oil

domains rather than disperse into a molecular mixture.

Depending upon various external parameters such as component concentrations,

temperature, and pressure, the surfactant monolayers can exist in a wide variety

of topologically distinct phases. Some examples of these thermodynamically stable

phases are shown in Figure 1-2. The swollen micellar phase consists of oil spheres

surrounded by surfactant film in a continuous water medium. In the reverse micellar

phase, the roles of water and oil are switched and the surfactant coats water droplets

randomly dispersed in oil. Another important example is the lamellar phase which

consists of flat surfactant monolayer sheets separating alternating planar stacks of wa-

ter and oil. In contrast to the geometrical regularity of the lamellar monolayers, the

isotropic, bicontinuous microemulsion exhibits a more complex structure containing

disordered internal surfactant interfaces. The topological conformation of the water

and oil domains in this bicontinuous microemulsion phase resembles the random con-

nectivity of sponges and has led to its characterization as a "plumber's nightmare"

[9]. Additional examples of phases not pictured in Figure 1-2 include ordered cubic

arrays of spheres, hexagonally-packed arrangements of cylinders, and ordered bicon-

tinuous structures where the surfactant monolayers form minimal surfaces in order

to decrease their interfacial areas [10].

These microemulsion systems typically contain water and oil domains with char-

acteristic length scales on the order of hundreds of Angstroms, although their sizes

9
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can easily be varied by tuning the concentrations of the various components. The

mesoscopic scale of the structures makes them optically transparent and their unique

interfacial and viscoelastic properties are valuable for a wide range of technological ap-

plications. In addition to their traditional roles in the detergent, food, cosmetic, and

petroleum industries, these surfactant systems have recently found practical applica-

tions as pharmaceutical delivery agents and as chemical microreactors for nanofabri-

cation purposes. Along with their industrial significance, the relatively simple sample

preparation, rich phase behavior, and intriguing physical characteristics of these com-

plex liquids make them ideally suited for our scientific study.

1.2 Phase Behavior

There are several important factors that determine the phase behavior of microemul-

sion systems. In solutions containing an ionic surfactant, varying the water salinity

can alter the counterion distribution around the surfactants and induce large struc-

tural changes in the conformations of the surfactant monolayers [11]. For non-ionic

surfactant systems, varying temperature has qualitatively the same analogous effects

[12]. Because the structures of non-ionic microemulsions are particularly sensitive

to temperature changes, temperature is very valuable as an experimental tuning pa-

rameter. At low temperatures, the high-energy hydrophilic interactions between the

surfactant head groups and water molecules dominate and the surfactant is more

soluble in water than in oil. However, when the temperature is raised, the direc-

tional hydrogen bonding between the surfactant and water molecules begin to break

apart as thermal fluctuations increase. Entropic effects then drive the surfactant to

preferentially solubilize in the oil rather than the water phase.

The effect of temperature can be more clearly seen in the schematic phase dia-

gram pictured in Figure 1-3 [13]. At each temperature, the compositions of the var-

ious coexisting phases are represented by individual ternary phase triangles [14, 15].

By following the evolution of the phases as a function of temperature, the resulting

triangular prism displaying the overall phase behavior of the surfactant system is

11
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constructed. At low temperatures, we see predominantly a two phase equilibrium

between a lower microemulsion phase and an excess upper oil phase. Because the

surfactant preferentially associates with the water phase, the system is unable to

emulsify all of the oil. The lower coexisting microemulsion phase contains almost

all of the surfactant surrounding small oil droplets within a majority water medium.

This conformation allows the system to maximize the favorable water-surfactant in-

teractions [16]. At higher temperatures, the reverse situation occurs with a lower

excess water phase in equilibrium with an upper microemulsion phase. In this case,

the microemulsion is of the reverse micellar type with water droplets dispersed in an

oil medium.

For a small temperature regime between these two extremes, the hydrophilic

strength of the surfactant head groups is nearly matched with the hydrophobic na-

ture of the surfactant tails. The temperature at which this hydrophilic-hydrophobic

'balance occurs is marked by a maximum in the mutual solubility of the surfactant

in water and oil. For low surfactant concentrations in this temperature region, a

]prominent three phase triangular region is observed in the phase diagram [12]. This

equilibrium consists of three coexisting phases: a lower water-rich phase, an upper

oil-rich phase, and a middle microemulsion phase. Ordered lamellar phases are also

commonly observed at higher surfactant concentrations near these temperatures. We

have primarily focused our investigation of the interfacial properties of surfactant

monolayers under these conditions in the nearly-balanced microemulsion and lamel-

lar phases.

:1.3 Bicontinuous Microemulsion

Figure 1-4 is a reproduction of a freeze-fracture electron micrograph taken of a mi-

croemulsion at a temperature where the hydrophilicity and hydrophobicity of the

surfactant is nearly matched [17]. This picture was taken by rapidly quenching the

liquid microemulsion, fracturing the solid sample, coating and shadowing the cleaved

surface, and imaging the replica using transmission electron microscopy. This process
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Figure 1-4: Freeze-fracture electron micrograph of a bicontinuous microemulsion.
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fortuitously results in an image where the oil regions take on a dimpled texture while

the water regions retain a smooth appearance. The surfactant monolayers exist at

the interfaces between the water and oil domains but are too thin to be resolved.

From this image, we clearly see that the water and oil domains in the microemulsion

exhibit a disordered and intricate microstructure that was previously only sketched

in Figure 1-2. In contrast to the micellar or well-ordered phases, the geometry of this

bicontinuous microemulsion cannot be described in simple geometrical terms. One of

our objectives is to formally characterize this phase and the geometry of its surfactant

interfaces.

A computer simulation can be used to generate a three-dimensional microstructure

for the bicontinuous microemulsion that is consistent with our experimental scattering

measurements to be discussed in more detail in Section 4.3 [18, 19, 20, 21]. This

simulation allows us to get a better perspective on the disordered spatial conformation

of the surfactant monolayers in this phase. First, a Gaussian random field '(r is

generated by summing together a large number N of cosine waves:

( = ?+ cos(ki + i) (1.1)

The phases pi and propagation directions ki of the sinusoidal waves are distributed

uniformly at random, but the magnitudes of their wave vectors Iki[ are chosen from

the following spectral distribution function:

f (k) = (b/T 2)[a2 + (b + C)2]
(k2 + c2)[k4 + 2(b2 - a2)k 2 + (a2 + b2)2]' (1.2)

The parameters a, b, and c are then carefully adjusted in order to fit the experi-

mentally measured small angle scattering data. Once the scalar field L(r) has been

generated in this fashion, the associated surfactant interface is calculated from the

locus of the isosurface equation () = 0. The sixth-order polynomial in Equa-

tion 1.2 is necessary in order to keep the surfactant interface from becoming fractal

[22]. The parameterization of Equation 1.2 is chosen so that ±a-bi and +ci represent

15



the six roots of the polynomial. A representative view of the surfactant monolayer

surfaces obtained using this simulation scheme for a microemulsion with parameters

a = 0.023 A-1, b = 0.007A-1, and c = 0.05 A-l is shown in Figure 1-5.

The water and oil domains seen in Figure 1-5 are each continuously connected in

three dimensions so that this microemulsion can truly be called bicontinuous [23]. The

percolation of both the water and oil domains has been verified experimentally by

electrical conductivity and self-diffusion nuclear magnetic resonance measurements

[13, 24]. The forms of the bulk and surfactant film scattering predicted by Equa-

tion 1.2 also match the observed scattering patterns reasonably well, and taking

two-dimensional cross sections of the generated microstructure yields images that

resemble the experimental freeze-fracture electron micrograph in Figure 1-4. These

results indicate that Figure 1-5 quite accurately represents the actual structure of the

bicontinuous microemulsion.

1.4 Phenomenological Description

One aim of scientific inquiry is to explain seemingly complex phenomena in terms of

simplifying descriptions. In our situation, the complicated geometrical configuration

of the surfactant interfaces in the bicontinuous microemulsion needs to be interpreted

within some physical context. One possibility is a microscopic description. This ap-

proach attempts to incorporate all the important interactions among the surfactant,

water, and oil molecules and then directly calculate the structures of the resulting

phases [25, 26, 27]. Although these models have proven useful in elucidating certain

aspects of the general phase behavior of these systems, they have yielded only limited

insight into the statistical nature of the surfactant film in the bicontinuous phase. Ad-

equately reproducing the long range fluctuations of the surfactant monolayer is quite

difficult because the starting point of the microscopic theory is molecular in length.

Additionally, the necessary computations for a microscopic theory soon become so

complicated that the underlying physics of the system becomes easily obscured.

An approach that is conceptually simple, yet results in a highly detailed descrip-
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Figure 1-5: Gaussian random wave simulation showing the surfactant interfaces in a
bicontinuous microemulsion.
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Figure 1-6: Principal radii of curvature at a point on the surfactant monolayer.

tion of the bicontinuous microemulsion phase, considers the surfactant monolayers as

idealized surfaces that can be characterized by phenomenological energy considera-

tions [28, 29, 30]. The leading order term in the expansion of the surface free energy

is given by the interfacial tension of the monolayer. However, because the surfactant

monolayer spontaneously self-assembles to achieve a minimum in this free energy, the

effective interfacial tension is very small, and higher-order curvature terms need to

be considered. Figure 1-6 depicts a small section of the surfactant film along with

the principal radii of curvature R1 and R 2 at a point on the monolayer. The sign

convention is chosen such that curvature concave towards the oil phase is considered

positive so that R is negative and R 2 is positive as depicted in Figure 1-6. The

mean curvature is defined as the statistical average of the principal curvatures over

all points on the interface:

(1.3)
2 R+ R) (1.3)

The mean curvature describes the tendency of the surfactant monolayer to curve

either towards the oil (C > 0) or towards the water phase (C < 0). On the other

18



hand, the Gaussian curvature is related to the product of the principal curvatures:

K=( R1 R) (1.4)

The Gaussian curvature is important because it is a topological invariant. Accord-

ing to the Gauss-Bonnet theorem, K is simply related to the number of separate

pieces and "handles" in the microemulsion structure [31]. Thus, the Gaussian cur-

vature is positive for spherical microemulsions while it is zero for lamellar phases.

In contrast, bicontinuous microemulsions containing many saddle-like surfaces with

opposing principal curvatures will exhibit a negative Gaussian curvature.

By expanding the free energy to quadratic order in the principal curvatures of the

surfactant monolayer, the following effective interfacial Hamiltonian is obtained [32]:

1 1 2 (1
X f J [+ ( + -2co)2 + (R R)]dS (1.5)

where y is the interfacial tension of the monolayer, n and are phenomenological

bending rigidities associated with the mean and Gaussian curvatures respectively,

and co is the spontaneous curvature of the surfactant monolayer. In principle, all

the relevant physics of the microemulsion is contained within Equation 1.5. Unfortu-

nately, analytically calculating the partition function by summing this Hamiltonian

over all possible interfacial configurations of the surfactant monolayers is currently

intractable. This difficulty necessitates the use of other theoretical approximations

and computer simulations to quantitatively elucidate the statistical mechanics of the

surfactant monolayers in the bicontinuous microemulsion. An example is the Gaus-

sian random field model of Equation 1.1 which has been shown to be equivalent to a

variational approximation for Equation 1.5 [33].

The phenomenological approach can nonetheless be used to qualitatively describe

why under certain conditions, the bicontinuous microemulsion is thermodynamically

more stable than the ordered lamellar phase. Assuming a negligible interfacial tension

7y, the statistical deviations of a surfactant monolayer away from a fiat sheet are

controlled by its bending modes as described by Equation 1.5. By calculating how

19



the surface normals are correlated, the distance over which the interface is essentially

flat is derived [28]:

( = aexp kT . (1.6)

This important quantity is known as the persistence length. The molecular length a

sets the scale for (K and is comparable to the size of a surfactant molecule. Because

small fluctuations have no effect on the topology of the monolayer and thus con-

tribute little to the Gaussian curvature K, the persistence length depends only upon

the bending rigidity and not on . The exponential dependence in Equation 1.6

implies that when the /c is large, the surfactant monolayers are flat over macroscopic

distances and the lamellar phase is preferred. However, if X is comparable to thermal

energies, entropic considerations become more important than the energy cost asso-

ciated with bending the surfactant interfaces. Under these conditions, the random

bicontinuous microemulsion becomes more stable than the lamellar phase. Thus, the

phenomenological description of Equation 1.5 is very useful for a basic understand-

ing of the interfacial properties of surfactant monolayers and the phase behavior of

microemulsion systems.

20



Chapter 2

Small Angle Scattering and

Reflectivity

Imaging microemulsions using standard optical techniques is not possible because of

the mesoscopic sizes of the water and oil domains in these systems. By far the most

detailed information about the structure and dynamics of the surfactant monolayers

within microemulsions has come from x-ray and neutron scattering studies. However,

because the relevant length scales describing the monolayers are hundreds of times

larger than the typical wavelengths of the probes, the most interesting part of the

scattering pattern lies in the region at very small angles from the incident beam.

In this chapter, we present some basic formalism for describing the scattering from

interfaces and illustrate what can be learned by analyzing the scattering patterns in

the small angle regime [34].

2.1 Born Approximation

X-rays and neutrons interact very weakly with most matter. The physics of their

atomic and nuclear interactions are well understood and their strong penetrating

power allows them to effectively probe liquid systems. Figure 2-1 schematically illus-

trates a typical scattering experiment. A beam of x-rays or neutrons is monochro-

mated, collimated, and directed into the sample with a well-defined wavelength A
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Sample

Figure 2-1: Typical configuration for a scattering experiment.

and incident wave vector k. The resulting scattering pattern is then measured using

detectors at various scattering angles 0. Changes in the kinetic energy of the probe

upon passing through the sample can also be determined to deduce information about

time-dependent dynamical fluctuations, but for our purposes we will focus on elastic

scattering events associated with no energy change. The scattered wave vector k'

then has the same magnitude as the incident wave vector k:

k= I= k'=A' (2.1)

and the magnitude of the momentum transfer Q = k' - k depends only upon the

scattering angle:

Q = 2k sin . (2.2)
2

The differential cross section is defined to be the intensity of scattered particles

per unit solid angle divided by the incident flux. Angular variations in the scattered

beam intensity measured by the detector arise from constructive and destructive

interference of scattered spherical waves from atoms in the sample. Consider an atom

located at a position R- relative to an origin in the sample. It has a characteristic

scattering length bi, which for x-rays is directly proportional to its atomic number,

22
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Figure 2-2: Difference in path lengths from scattering in the sample.

and for neutrons is related to its nuclear isotope and spin. As shown in Figure 2-2,

the path difference between scattering from the atom at Ri and from the origin is

given by the expression (k R - k' RZi). The total amplitude of the scattered beam

is calculated by summing up the relative phase contributions from all the atoms in

the sample. The differential cross section is then given by taking the square of the

magnitude of the scattering amplitude:

da
dQ(0)= bi exp [ik(k- k')- Ri (2.3)

2

-IJp() e-i'edF (2.4)

The scattering length density p(r) is defined by statistically averaging the positions

of the atoms in the sample:

p(= bid (r-4 )e (2.5)

Equation 2.4 states that the scattering intensity is related to the square of the

23



Fourier transform of the scattering length density. This important result can also be

derived starting with the time-independent SchrSdinger equation for neutrons [35]:

2 ( + k2)?p(i) = U(Tr)(T3 (2.6)2m

where m is the mass of the neutron, p() is its wave function, and the potential

function is related to the scattering length density U(r = (2rh 2/m)p(r-).

In order to obtain the scattering distribution from Equation 2.6, we first consider

the related differential equation:

( + k2)G(F, T) = -47rS(F- e). (2.7)

Its solution is the Green's function:

eiklr-~T 
G(r, f) = 1I- 'j (2.8)

Equation 2.6 can be converted into an integral equation by summing over the potential

source terms using G(-, f). The wave function can then be expressed as:

. eikljr-0'
( = e - I- r P(e)'(f') d'. (2.9)

The first Born approximation involves replacing the complete wave function i/(f')

in the integral of Equation 2.9 with the incident wave eik'F. For large distances away

from the interaction region (r oo), this substitution yields the expression:

ikr i+(r-) ; e ' e | e-i- p(e) d . (2.10)

From the amplitude of the spherical wave in the second term of Equation 2.10, we see

that the scattering amplitude is equivalent to the Fourier transform of the scattering

length density. Thus, this simple quantum mechanical description also results in the

differential scattering cross section given in Equation 2.4.
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Figure 2-3: Schematic diagram of a small angle neutron scattering instrument.

2.2 Small Angle Scattering

According to Equation 2.4, relatively large inhomogeneities in the sample result in

scattering variations at small momentum transfers [36]. Sophisticated instrumenta-

tion and specialized techniques have been developed to efficiently collect and analyze

this small angle scattering. Figure 2-3 is a schematic diagram illustrating a typical

small angle neutron scattering (SANS) instrument. Neutrons from the cold source

of a nuclear reactor are monochromated using a mechanical velocity selector and the

resulting flux is monitored with a detector. The neutron beam is then collimated with

a set of pinholes and directed into a thin sample. The resulting scattering is measured

with an area detector which is moved along a set of tracks to capture various ranges

of scattering angles and neutron wave vector transfers. A beam stop is normally

used to protect the detector from the high intensity of the incident beam. It can

be moved out of position after attenuating the neutron beam in order to determine

the unscattered fraction of neutrons transmitted through the sample compared to an

empty scattering cell.

Figure 2-4 displays a scattering pattern that was measured for a sample consisting

of 20% C10E4, 40% D2 0, and 40% octane at T = 22 °C. This data was taken on the 30

m NSF SANS instrument at the National Institute of Standards and Technology at
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a neutron wavelength of A = 5.0 A using a 64 x 64 cm2 area detector at a distance of

4.00 meters. The center of the neutron beam has been offset horizontally in order to

measure a larger range of scattering angles. This particular sample is in the lamellar

phase and the prominent ring of scattered neutrons at an angle 0 ~ 1.8° is due to

Bragg reflections from the lamellar planes in the sample.

Before we can quantitatively analyze this scattering pattern, the data must be cor-

rected by measuring and subtracting the background radiation and scattering from

the quartz sample holder. The efficiency of the detector also needs to determined

using the incoherent scattering of H20. The unreliable data near the edges of the

area detector and around the beam stop are masked out and the pixels are circularly

averaged to give the scattering as a one-dimensional function of the neutron momen-

tum transfer Q. In order to normalize the scattering intensity, standards with known

cross-sections are measured and the appropriate calibration factor for the instrument

is determined [37]. Using this normalization constant and the measured transmission

of the sample, the differential scattering cross section can be reduced to an absolute

scale. We have developed computational routines that allow us to easily and rapidly

implement this background subtraction and normalization for large numbers of ex-

perimental data, sets. For the data shown in Figure 2-4, this reduction procedure

results in the scattering curve plotted in Figure 2-5.

The most prominent feature of Figure 2-5 is the sharp peak at Qma,, - 0.04 A-1

that corresponds to the dark scattering ring in Figure 2-4. The position of this

peak implies a lamellar repeat distance of D = 2r/Qm,, ' 160 , and the limited

resolution of the instrument accounts for the width of the scattering peak. We also

see a relatively slow decay in the scattering at larger Q values. Incoherent scattering

from the hydrogen nuclei in the sample contributes a flat background to the measured

pattern. Subtracting this background level leads to a decay at large angles that is

roughly proportional to Q-4. In order to explain the origin of this scattering, consider

the formula for the differential cross-section derived above in Section 2.1:

s(Q-) = V -Jp(fe iQdr1 (2.11)V dQ V fPl-
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Figure 2-5: Reduced scattering curve for a lamellar sample.

By expanding Equation 2.11, we get:

S(Q) J1 p(?eiQrdr. f p(?)e! df] (2.12)

1 p(p(rp)eiQ ta drugf' (2.13)(2.13)

= F(f' - j ei"Q'( t - ) d(f - (2.14)

where we can define the correlation function [38]:

r(y) = (p(O)p()) _- (p(O))2. (2.15)

The square of the mean scattering length density has been subtracted so that in

disordered phases at large distances, Pr() goes to zero. For isotropic samples, the

correlation function does not contain any angular dependence and depends only upon
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distance so that Equation 2.14 can be written as:

S(Q) = r(R) Q *4rR2dR. (2.16)
QR ' 4RdR

Integrating Equation 2.16 by parts leads to a large Q expansion of the scattering

intensity:

s(Q) = 874() + 16 ) - o(Q-8). (2.17)
Q4 Q6

From this equation, we see that the scattering intensity at large angles is explicitly

related to the behavior of the correlation function at short length scales.

Now suppose that the scattering volume consists of two separate but dispersed

phases with volume fractions 01 and 02, and scattering length densities Pi and P2. The

value of the correlation function at R is related to the probability that two random

points in the medium separated by distance R are either in the same phase or different

phases. For R = 0, we see that the points will always be inside the same phase.

When R is very small, the probability that the two points are in different phases is

proportional to how much interfacial area per volume A/V there is separating the two

phases. In particular, the short range behavior of the correlation function is given by:

r(R) (P1 - P2)2 012 - + (R2)(2.18)

Therefore, from Equation 2.17, the decay in scattering intensity is directly propor-

tional to the interfacial area per volume between the two phases and inversely pro-

portional to the fourth power of the wave vector transfer [39]:

S(Q) - 2 r(pl - p2) 2 ) Q4 (2.19)

Equation 2.19 is known as Porod's law and indicates that by fitting the scattering at

relatively large angles, the interfacial area per volume of a two-phase medium can be

measured. We will use this result later to determine the curvatures of the surfactant

monolayers in a bicontinuous microemulsion.
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Figure 2-6: Geometry for reflection from a single flat surface.

2.3 Reflectivity

In many circumstances, the interfacial structure of samples near flat surfaces is of

particular interest. In these cases, it is more convenient to measure the radiation

reflected off the surface rather than the scattering transmitted through the sample.

Figure 2-6 shows the geometry for reflection at the interface of a uniform medium with

scattering length density p. The incident, reflected, and transmitted wave vectors are

respectively denoted k, k', and kt . The amplitudes of the various wave functions are

similarly given by Ob, 0', and f t .

Due to the higher potential induced by the scattering length density of the reflect-

ing medium, the magnitudes of the incident, reflected, and transmitted momenta are

related according to:

Ik2 I =[ t 2 + 4rp. (2.20)

Continuity of the wave functions above and below the interface demands that the

wave vector components parallel to the interface are equal:

kin= ky= kt (2.21)

k = k= k (2.22)
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while the components perpendicular to the interface are given by:

k = -kz (2.23)

kt = k2 - 47rp. (2.24)

Matching the values of the wave functions and their first derivatives above and below

the interface implies:

1+0 p = it (2.25)

kz( - O') k' t. (2.26)

Solving these equations for the ratio of the reflection to the incident amplitudes results

in the expression:
rF(Q) =-' k - t (2.27)

The intensity of the reflected beam normalized by the incident beam intensity can then

be written in terms of the wave vector transfers Q = 2kz and Qt = 2kt = /Q2 _ 167rp:

RF(Q) IrF(Q) Q - (2.28)

Known as Fresnel's law, Equation 2.28 gives the dependence of the reflected intensity

as a function of the scattering angle.

At small angles, Qt is purely imaginary so that the reflectivity RF is equal to unity.

This condition is known as total external reflection and indicates that because the

transmitted wave is evanescent and non-propagating, all of the incident radiation is

reflected off the interface. Note that at large angles, Equation 2.28 decays according

to the form:

RF(Q) 167r-2 (2.29)

Aside from some geometrical factors, Equation 2.29 is equivalent to Porod's law for

small angle scattering given in Equation 2.19.

Reflectivity can also be used to probe an arbitrary interfacial structure whose
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Figure 2-7: Reflection from a structure with N layers.

scattering length density varies as a function of depth. As shown in Figure 2-7, we

model the interface as consisting of N layers, each described by a thickness di and

scattering length density Pi. The parallel components of the wave vectors in the ith

layer are equal to the parallel components of the incident wave vector ko:

ki,-= ki = ko,x

kiy= ki,y= ko,y.

(2.30)

(2.31)

The perpendicular components are given by:

=-1<, = - 4irplki,. =-ki, = ko z-47rp (2.32)

At the interface between the ith and (i + 1)th layers, continuity of the wave functions

and their first derivatives require that the amplitudes of the wave functions in the
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layers are related according to [40]:

r -1 + riF (2.33)
1 + rj±i~jr

where we define the reflectance ri = '/bi and the Fresnel coefficient:

i ~ki, - ki+l,zrF = 1 , (2.34)
F ki,z + ki+l,z'

Equation 2.33, known as the Parratt formula, describes a recursive relationship

between the reflectance of any layer in terms of reflectance in the layer below. Thus,

in order to obtain the reflectivity ]/4/40l2 from the top surface, we first start at the

bottom interface and calculate the reflectance rN_1 = rN-1 using Fresnel's law. We

then continue upward through the (N - )th layer with thickness dN-1 and phase

shift the reflectance by the factor exp(2ikNl,zdNl). Using the Parratt formula in

Equation 2.33, the reflectance coefficient rN-2 is determined. This coefficient is then

phase shifted and used to calculate rN-3. This process is continued until the top

interface is reached. Thus, given the thicknesses and scattering length densities of an

arbitrary multilayered system, this procedure can be used to determine the reflectivity

at any wave vector transfer Q = 2k0o.

In an actual experiment, the reflectivity is measured at various angles from which

the scattering length density profile of the sample needs to be deduced. Unfortunately,

since only the magnitude of V//o is measured and not its phase, the determination of

the scattering length densities is not unique. Additional information about the sample

must be used to constrain the model parameters and fit the measured reflectivity

data using Equation 2.33. In practice, this procedure works resonably well and the

calculated scattering length density profile is generally quite accurate. This type of

ambiguity often arises in inverse scattering problems, and for small angle scattering

measurements, the lack of phase information in the scattering pattern S(Q) implies

that only the correlation function F(r) and not the scattering length density p(F) can

be uniquely determined.
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Figure 2-8: Diffuse scattering arising from a rough interface.

2.4 Rough Interfaces

In the previous section, reflection from perfectly flat interfaces was described. Here we

consider the reflectivity and diffuse scattering arising from a rough interface. Figure 2-

8 depicts a rough surface which is described in terms of its deviations away from the

average flat surface z(x, y) = 0. We assume that the function z(x, y) is relatively

small and single-valued so that the interface is not too rough and does not contain

any overhangs. The incoming beam makes an incident angle c with the surface and

the scattered wave is measured at angle 3. If the interface were perfectly smooth,

the only scattered radiation would be the specular reflected beam at / = a. A rough

interface, on the other hand, gives rise to diffuse scattering at all angles in addition

to the specular reflection.

The scattering from the interface can be described in terms of the Born approx-

imation. In this case, Equation 2.4 is first converted to a surface integral over the

z = 0 plane using Gauss's theorem:

1 p
S(Q) - ?- J C dx dy e-i[Qx +Qy z zQ( I 'y)] (2.35)

s(Q~~~~~~~) =~ ~ ~ 1
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Expanding the square yields the more useful expression:

S(Q) = Q2 dx dy dx' dy' e-i[Q(x-x')+Q(Y-Y)]e-iQ[z(y)-z(xY')] (2.36)

z2 dx dy e-i[Qx+QY]e- Q 2[z( X y)- z(o)] 2/2 (237)

= p2 () Q 2 dx dy e-i[Q+Qyz]eQ(z(xy) z(OO)) (2.38)
2 V dx dy e- n2 (238)

where A is the area of the interface and a2 = (z(O, 0)2) is the mean square rough-

ness of the interface. Equation 2.38 can be decomposed into a specular and diffuse

component. The scattering concentrated at the specular condition a = / is given by:

s( 2 A \ e-_2Q]2

S(Q) = p2 (vi) e 2 6(Q.)6(QY) (2.39)

Expressed in terms of the ratio of reflected to incident beam intensities, the specular

reflectivity is written:

R(Q) = 16i2P e-2 Q2 "" RF(Q)e- e 2 Q2 (2.40)
Q4

Thus, the main effect of roughness is to attenuate the magnitude of the reflectivity

at large angles with a Debye-Waller factor.

In most measurements of the diffuse scattering component of Equation 2.38, the

instrumental resolution is usually very wide in the transverse x direction, effectively

integrating over the wave vector components Q,. The diffuse scattering within the

Born approximation can then be written:

S(Q, Qz) = p2 () Q2 / dy eiQy [exp (Qz2([z(0)z(y))) - 1]. (2.41)

A more complete treatment using a distorted wave Born approximation results in the

slightly more complicated expression [41, 42]:

A e-a [Re(Q )2-Im(Qt)2]
S(Qy, Qz) = p2 It 2 Itpl2 () e iRQzl zSPY, Qz) = P j&12
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x Jdye-iQYY [exp (Q 2 (z(0) ())) ] (2.42)

where t = 1-- rF(a) and t = 1 - rF(!) are the Fresnel transmission coefficients

for a flat interface at incident angles a and 3. Equation 2.42 states that the diffuse

scattering of the interface is related to the Fourier transform of its correlation function

(z(O) z(y)). Thus, the scattering from a rough interface depends upon the correlations

in height along its surface. We will use this result in the next chapter to study the

properties of a saturated surfactant monolayer.
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Chapter 3

X-ray Reflectivity from a

Surfactant Monolayer in

Equilibrium with a Middle-Phase

Micro emulsion

In order to study some of the intrinsic properties of surfactant monolayers, we decided

to isolate and measure a single oil-water interface saturated with surfactant that is in

equilibrium with a bicontinuous microemulsion. This chapter includes a description

of the experimental procedure we used to prepare and measure this system and an

analysis of the resulting reflectivity and diffuse scattering arising from the surfactant

monolayer [43].

3.1 Experimental Setup

Figure 3-1 displays the ternary phase diagram for the triethylene glycol monooctyl

ether (C8E3), water, and decane system at T = 22°C, the temperature at which

the surfactant is most mutually soluble in the water and oil. As discussed above in

Section 1.2, the phase diagram at low surfactant concentrations exhibits a prominent

three-phase equilibrium. When a solution is prepared with concentrations inside this
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Figure 3-1: Ternary phase diagram for the C8E3-water-decane system at T = 22 °C.
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triangular three-phase region, a surfactant-rich bicontinuous microemulsion forms in

coexistence with an oil-rich upper phase and a water-rich lower phase. The middle-

phase microemulsion is quite remarkable in that it does not wet the other two phases.

Therefore, when most of the microemulsion phase is withdrawn with a syringe, the

remainder does not spread out and cover the whole oil-water interface. Instead, it

condenses to form a lens which is situated between the upper oil phase and lower water

phase with finite contact angles. This formation indicates that the water-oil interfacial

tension is less than the sum of the small water-microemulsion and oil-microemulsion

interfacial tensions. When the solution is gently swirled in a polycarbonate tube,

the microemulsion lens can preferentially attach itself to the walls of the container

and form a ring along the edge of the tube. At the oil-water interfacial region inside

of this ring, there is a single, macroscopically flat surfactant monolayer that is in

thermal equilibrium and at the same chemical potential as the surfactant monolayers

contained within the surrounding microemulsion ring.

We used x-ray reflectivity to study the statistical fluctuations of this saturated

surfactant monolayer, because it is a particularly sensitive probe of structure through

and across the liquid interface. Previously, the x-ray reflectivity technique has been

used to study the fluctuations of vapor-liquid interfaces and the layering of a liquid

crystal at a liquid-solid interface [44, 45, 46, 47, 48]. Before we could apply this

technique to the oil-water interface, however, a number of technical issues and details

had to be addressed. One problem with scattering from a liquid-liquid surface is

that the critical angle for total external x-ray reflection is very small, typically only

hundredths of a degree. Such low angles required both tight instrumental resolution

and relatively large sample areas to contain the x-ray "footprint" within the area

of interest. Another concern is the upper liquid phase itself which attenuates the

incident and reflected x-ray beams. To overcome this difficulty, high energy x-rays

of wavelength A = 0.714 A, corresponding to an energy of 17.4 keV, were used to

traverse the upper decane phase. The resultant absorption length was approximately

2.5 cm, which determined the optimal sample size. At this x-ray wavelength, the

critical angle for total external reflection from the oil-water interface was measured
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Figure 3-2: Experimental setup for measuring the x-ray scattering.

to be 0.03°.

The experiments were performed on the X20B beam line at the National Syn-

chrotron Light Source using a specially constructed reflectometer [49]. The experi-

mental setup and scattering geometry are shown in Figure 3-2. The incoming beam

was tilted downward by an angle a using the Bragg reflection from a Ge(111) crys-

tal. As the incident angle was changed, the vertical position of the sample stage was

adjusted so that the incoming beam always hit the center of the surfactant interface.

The detector was located on a second vertical stage that was adjusted so that the

x-ray signal scattered at the desired angle was sampled. A pair of slits located just

in front of the sample were used to define the vertical (5 m) and horizontal (1 mm)
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width of the beam and thus the illuminated sample area. The beam footprint on the

sample at the critical angle was then small enough to reside completely within the

oil-water interfacial region. The collimation of the incident beam corresponded to

an angular deviation of only Aa = 1.8 x 10-6 radians half-width-at-half-maximum

(HWHM). A second pair of slits placed just before the detector defined the verti-

cal angular acceptance to be A8 = 1.9 x 10-5 radians (HWHM) while leaving the

horizontal angular acceptance essentially wide open.

3.2 Scattering Results

By varying both the incident angle a and exit angle , the scattering signal from

the surfactant monolayer can be systematically mapped out. We define Qz to be the

component of the wave vector transfer normal to oil-water interface:

Q = - (sin a + sin), (3.1)

while Qy is the component parallel to the interface in the plane of the scattering:

Q = A(cos - cos a). (3.2)

Due to the large angular acceptance of the instrument in the out-of-plane direction,

the measured scattering is essentially integrated over the remaining transverse com-

ponent Q,. Figure 3-3 shows some of our raw experimental scattering data from the

oil-water interface as a function of Qy and Qz.

3.2.1 Specular Reflectivity

The sharply peaked ridge in the scattering at Qy = 0 in Figure 3-3 corresponds to the

angular condition a = ,. This ridge thus contains the signal from x-rays specularly

reflected off of the oil-water interface. In order to isolate this specular reflectivity

component, the background due to small angle scattering from bulk phases and diffuse
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Figure 3-3: Raw x-ray scattering data as a function of Q and Q.
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Figure 3-4: Specular reflectivity from the oil-water interface.

scattering from the interface is measured by offsetting the detector arm 100 /Lm in

height. This background term is subtracted from the signal at Qy = 0 and the data

is rescaled so that it is equal to unity below the critical angle. The resulting true

specular reflectivity is plotted as a function of Q, in Figure 3-4. The circles represent

our data, and the dashed line is the theoretical Fresnel prediction for a perfectly flat

interface according to Equation 2.28.

The critical wave vector for total external reflection is measured to be Qc =

0.0105 A- 1. For increasing values of Q, above Q,, the experimentally measured re-

flectivity becomes progressively much less than the Fresnel prediction. This rapid

decay in the specular reflectivity is due to roughness caused by large thermal fluctu-

ations in the surfactant monolayer at the oil-water interface. In order to determine

the interfacial roughness of the monolayer, we use a slightly modified form of Equa-
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tion 2.40 to model the specular reflectivity [50, 42]:

R(QZ) = RF(Q) exp(-u 2 QzQt) (3.3)

where a is the root mean square roughness, and Qt _ -/Q ZQ2 is the z-component

of the wave vector transfer with respect to the lower water phase. Equation 3.3 is

slightly superior to Equation 2.40 in the region around the critical edge, but the two

expressions are essentially equivalent at large Qz.

Fitting the measured reflectivity with Equation 3.3 results in the solid line shown

iin Figure 3-4. The roughness of the interface is determined to be equal to a =

85 ± 3 A. The large value for a indicates that this surface is indeed quite rough

and that fluctuations are important in determining the behavior of the surfactant

monolayer at this interface.

3.2.2 Capillary Wave Model

We hypothesize that the large roughness of the oil-water interface can be directly

attributed to capillary wave fluctuations in the surfactant monolayer. As previously

illustrated in Figure 2-8, the interface is modelled as a height function z(x, y) which

describes the deviation of the monolayer away from an average flat surface. A Hamil-

tonian which incorporates the leading order interfacial tension term and gravitational

effects can then be written [51]:

1 dz 2 / \2'7-{z(xy)} - dxdy gAz2 \j 1+ ( + (y (3.4)
-'yA + dx dy [gA z2 + (Vz)2] (3.5)

where g is the gravitational acceleration, Aq is the mass density difference between

the upper and lower phases, y is the interfacial tension, and A is the area of a perfectly

flat interface. From Equation 3.5, the surface height-height correlation function can
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be calculated:

(z(O)z(r)) = kBT] (d k2) e + kBT= 2 K° r) (3.6)

where kBT is the thermal energy, and Ko(x) is a modified Bessel function of the first

kind.

The function Ko(x) in Equation 3.6 diverges logarithmically for small arguments

x. Therefore the correlation function (z(O) z(r)) increases without bound for small r

and so the roughness a = (z(0)2) is predicted to be infinite. This is a shortcoming

of the Gaussian approximation used in Equation 3.5. In fact, at short length scales,

the interfacial bending rigidity, higher-order interfacial tension terms, or possibly the

molecular spacing between surfactant molecules prevents the ultraviolet divergence.

Accordingly, we introduce a length scale r that explicitly cuts off the correlation

function:

(z(O) z(r)) = - K(2 + ) (3.7)

The cutoff length scale ro is then related to the mean square roughness of the interface:

2 kBTa2 = k Ko(ro gAi/Y). (3.8)

3.2.3 Diffuse Scattering

We tested the validity of the capillary wave model by analyzing the form of the surface

diffuse scattering from the surfactant monolayer. In contrast to specular reflectivity

which yields information about the average density variation through the interface,

the diffuse scattering is related to the Fourier transform of the correlation function

(z(O) z(r)) and is therefore sensitive to height variations along the surface of the

oil-water interface. We measured this scattering by performing a series of transverse

scans at several different values of Qz. In each of these scans, the wave vector transfer

is no longer fixed to be normal to the interface; instead, Qy is systematically varied

at constant Qz by "rocking" the incident angle a and exit angle P. Bulk small angle
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Figure 3-5: Surface scattering from transverse scans.

scattering from the oil-rich and water-rich phases contributes a flat background to

these scans. This small angle scattering was measured independently by offsetting

the sample vertically so that the beam avoided the interface and traversed only the

upper or lower phase. Figure 3-5 shows the measured transverse scans taken at four

different Q, values with the background bulk scattering subtracted out.

The specularly reflected signal accounts for the large central peaks at Qy = 0.

The other peaks at nonzero Qy occur when either a or P is equal to the critical angle.

These so-called "Yoneda wings" arise from an enhancement of the electric field at the

interface due to an increase in the transmission factors near the critical edge [52]. The

general decrease in the scattering intensity with increasing Qy is due to a reduction

in the interfacial area illuminated by the x-rays for larger incident angles a.

We use the distorted wave Born approximation of Equation 2.42 along with the

correlation function in Equation 3.7 to calculate the theoretical form of the interfa-

46



cial diffuse scattering arising from capillary waves [41]. Additionally, the interfacial

roughness of the surfactant monolayer is fixed to be a = 85 A as determined from the

specular reflectivity. Modelling the specular peaks with Gaussian resolution functions

and fitting the measured diffuse scattering scans with the single adjustable parameter

y results in the theoretical curves shown as solid lines in Figure 3-5. We find that the

diffuse scattering intensities in the Yoneda wings are approximately inversely related

to the interfacial tension; the best fit value is given by y = 0.11 ± 0.02 dyne/cm.

Although the theoretical lines match the experimental data reasonably well, some

discrepancies occur at large values of Qy and Qz. These are probably due to the

presence of some excess microemulsion phase attached to the sample tube which is

causing some spurious scattering at small exit angles 3.

3.3 Discussion

The overall agreement between the experimental data and the model predictions in

Figure 3-5 indicates that the capillary wave model provides an accurate description

for the statistical fluctuations of the interface. The measured interfacial tension 

is very low and is almost three orders of magnitude smaller than that of the bare

oil-water interface, indicating the interface is truly saturated with surfactant. We

assume that the large reduction in interfacial tension is due to a saturated surfactant

monolayer at this oil-water interface. Any structure other than a monolayer is highly

unlikely since a bilayer would be energetically unfavorable and any larger structures

would drastically affect the form of the observed surface scattering.

We should note that the interfacial tension of the surfactant monolayer is also

much smaller than those of the vapor-liquid interfaces measured by previous x-ray

reflectivity experiments [44, 45, 46, 47]. The intrinsic width of the diffuse scattering

is given by the inverse capillary length:

~g = 5.2 x 10-7 A-1 . (3.9)
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Since is so small, the intrinsic width of the diffuse scattering from the surfactant

monolayer is relatively quite large. In fact, the diffuse scattering width is even larger

than the transverse resolution of the experiment, AQy = Qz,(Aa + IAp) 1.5 x

10- 7 A-1 (HWHM). This indicates that the true specular scattering can be readily

distinguished from the diffuse scattering and the instrumental resolution need not be

convolved in the calculation of the diffuse scattering. Thus, our measured values for

a and y represent true intrinsic interfacial properties of the surfactant monolayer and

are not dependent upon the instrumental resolution.

The measured interfacial roughness a and interfacial tension 'y are similar to those

found in optical studies on this system [13, 53]. Additionally, these values may be used

to deduce a cutoff length scale with the bounds 0.5 A < r < 40 A. Unfortunately, the

logarithmic dependence in Equation 3.8 prevents us from making a more precise esti-

mate for r. This cutoff length scale can, however, be related to an effective bending

rigidity n, using the transformation n _ yr2 which yields the inequality , < 0.5 kBT.

Because the estimate for the bending rigidity is so low, the associated persistence

length for the surfactant monolayer G in Equation 1.6 must be quite small. Thus,

the very small interfacial tension and bending rigidity of the surfactant monolayer

can account for the thermodynamic stability of the middle-phase microemulsion at

this temperature.
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Chapter 4

Local Geometry of the Surfactant

Monolayers in Microemulsions

In the last chapter, we saw that the fluctuations of a surfactant monolayer in equilib-

rium with a microemulsion are characterized by an extremely low intrinsic interfacial

tension and effective bending rigidity. We now turn our attention towards character-

izing the complex three-dimensional geometry of the surfactant monolayers contained

within the bicontinuous microemulsion phase. We use a contrast variation technique

in order to determine the interfacial areas and deduce the curvature of the monolay-

ers. Our small angle neutron scattering results show that the mean curvature of the

surfactant film inverts as a function of temperature [54].

4.1 Geometrical Considerations

Figure 4-1 illustrates a representative cross section of the surfactant monolayer in a

microemulsion. Because the surfactant film has a finite thickness d, several distinct

interfacial regions can be defined: the water-surfactant interfacial area A,, the oil-

surfactant interfacial area A, and the surface area A, measured at the midpoints of

the surfactant molecules. When the surfactant monolayer is bent, the three interfacial

areas need not be equivalent. These three areas are, however, related to each other

through the principal radii of curvature R1 and R2 of the monolayer shown in Figure 1-

49



T
d
A-

/Ao

Figure 4-1: Three distinct interfacial areas defined on the surfactant monolayer.

6 [55]. The interfacial areas can be written as surface integrals over the surface

through the middle of the surfactant film:

As = JldS (4.1)

A = J (R1+ )(R2+ 2) dS (4.2)

A | (R1- )(R2 - dS (4.2)
R1R2

These geometrical relations can be simplified using the definitions of the mean cur-

vature C and Gaussian curvature K in Equations 1.3 and 1.4:

A = A ( + dC + K) (4.4)

Ao = A(1-dC + K) (4.5)

Equations 4.4 and 4.5 imply that if the surfactant monolayer preferentially curves

towards either the water or oil phase, there will be a significant splitting in the water-

surfactant and oil-surfactant interfacial areas depending upon the mean curvature of
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Figure 4-2: Differences in the interfacial areas for curved phases.

the film. This difference in the interfacial areas for some simple examples is illustrated

in Figure 4-2. For a spherical oil-in-water microemulsion, the interfacial area on the

water side of the monolayer is larger than the interfacial area on the oil side of

the monolayer. On the other hand, the water interfacial area is less than the oil

interfacial area in a reverse water-in-oil microemulsion. For lamellar or bicontinuous

microemulsions with no preferential curvature, the two interfacial areas should be

approximately the same. Thus, differences in the interfacial areas of the surfactant

film can be used to deduce information about the overall curvatures of the monolayers

in the microemulsion structure [56, 57].

4.2 Contrast Variation

Experimentally determining the geometry of the surfactant monolayer becomes a mat-

ter of measuring the various interfacial areas of the surfactant film. We used contrast

variation in conjunction with small angle neutron scattering (SANS) to highlight and

measure the areas of the different interfaces [58]. The microemulsion containing the

surfactant monolayers is a ternary solution composed of water, oil, and surfactant,

and its scattering length density can be linearly decomposed into three parts [59, 60]:

P(0 = Pw w( + PoC0 o(b + Pss.(. (4.6)
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The scattering length densities of the pure water, oil, and surfactant are denoted

Pw, Po, and Ps, respectively, while the local volume fractions of the three compo-

nents are given by kw((, o(r), and s(r. Assuming that the microemulsion is an

incompressible liquid, the local volume fractions satisfy the following constraint:

O(f) + qo(r + s(0 = 1. (4.7)

To obtain the scattering function in terms of the scattering length densities and

local volume fractions of the three phases, we substitute Equation 4.6 for the scat-

tering length density in Equation 2.4. Using Equation 4.7 to eliminate various cross

terms, we arrive at the following expression:

S(Q) = (Pw - Po)(Pw - Ps)xww(Q) + (Po - Pw)(Po - Ps)Xoo(Q) +

(Ps - Pw)(Ps - Po)Xss(Q). (4.8)

The partial structure factors Xj (Q) where i, j = {w, o, s} are defined by the Fourier

transforms of the appropriate correlation functions:

Xij(Q) = V J (i(0) j5(r)) eiQ 'd3 r. (4.9)

Note that Equation 4.8 is written in terms of the three structure factors xww(Q),

Xoo(Q), and X,ss(Q). All the other cross correlations xij(Q) where i j are depen-

dent upon these three direct correlations. For instance, the water-surfactant cross

correlation term that has been used to analyze earlier neutron scattering experiments

is equivalent to the combination [56, 57]:

XWS(Q) = 2 [xoo(Q)- xww(Q)- xs(Q)] (4.10)

The three structure factors xWW(Q), xoo(Q), and X,,(Q) can all be independently

measured by varying the water scattering length density Pw and the oil scattering

length density po. If the oil scattering length density is matched to the surfactant
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scattering length density (Po = Ps), the oil-oil and surfactact-surfactant correlation

functions will not contribute to Equation 4.8. In this case, the scattering function

S(Q) is proportional to only the water-water partial structure factor Xww(Q). Sim-

ilarly, when the contrast of the water is matched to the surfactant (pw = p), the

scattering is determined by simply the correlations between the oil regions X,,oo(Q).

The third possibility is to isolate the surfactant-surfactant partial structure Xss(Q)

by setting the water and oil scattering length densities equal to each other (pw = Po).

The advantage of using neutrons as a scattering probe is that the scattering length

densities of both the water and oil phases can be easily varied by substituting deu-

terium atoms for hydrogen atoms. This isotopic substitution effectively changes the

contrast of the system because the coherent neutron scattering length of deuterium

is bD = 6.7 x 10- 5 A while the coherent neutron scattering length of hydrogen is

actually negative bH = -3.7 x 10 - 5 A [61]. Thus, the scattering length densities of

D20 and perdeuterated oil are vastly different from that of H2 0 and hydrogeneous

oil. As shown in Figure 4-3, the water-water, oil-oil, and surfactant-surfactant partial

structure factors of a microemulsion can then be isolated and determined by system-

atically replacing the water and oil with their deuterated counterparts. Each of the

three contrasts pictured describes essentially a two-phase medium. Scattering from

the water-water contrast is related to the water-surfactant interfacial area A,,, while

scattering from the oil-oil contrast depends upon the oil-surfactant interfacial area

,40. Scattering from the surfactant-surfactant contrast highlights only the surfactant

film and is related to the surface area As.

4.3 Small Angle Neutron Scattering

We used a microemulsion system consisting of water, octane, and tetraethylene glycol

monodecyl ether (C10 E4). Figure 4-4 shows the phase diagram of this system as a

function of temperature and surfactant volume fraction qs when the water and oc-

tane volume fractions are equal to each other (,, = 0,o). The temperature at which

the hydrophilicity and hydrophobicity of the surfactant is balanced is approximately
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Figure 4-3: Contrast variation can highlight different regions in the microemulsion.
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given by the location of the intersection of the three-phase region (3q4) with the sin-

gle phase region (I) in the phase diagram (T 25 °C) [62]. At lower temperatures,

a microemulsion phase coexists with an excess oil phase (2I), while at higher tem-

peratures, a microemulsion coexists with an excess water phase (2) as described in

Section 1.2. At large surfactant concentrations q0, a lamellar phase (L) becomes ther-

modynamically stable. The lamellar phase coexists with an isotropic microemulsion

phase within the shaded regions.

H20 (reverse-osmosis and polished with a Millipore Milli-Q system to 18 MQ-cm),

D20 (Cambridge Isotope Laboratory, 99.9%), octane (Aldrich, 99+%), perdeuterated

octane (Cambridge Isotope Laboratory, 99%), and C10E4 (Fluka, 97%) were used to

prepare the samples for this set of experiments. These ingredients were weighed with

an accuracy of 0.1% and mixed to yield a series of solutions where the scattering length

densities of the water and oil varied between -0.1 x 10-6 < p,,, po < 6.5 x 10-6 - 2 .

The samples were measured in a range of temperatures spanning the bicontinuous

microemulsion and lamellar phase regions. The small angle neutron scattering data

were taken on the 30 m NSF SANS instrument at the National Institute of Standards

and Technology (wavelength A = 6.0 A and wavelength spread AA/A = 15%) and

the H9B diffractometer at Brookhaven National Laboratory (A = 5.0 A and AA/A =

10%). This data was corrected for background scattering and reduced to an absolute

scale as detailed in Section 2.2.

The phase diagrams for the samples were found to be shifted downward in tem-

perature by up to 2 °C upon the substitution of deuterium for hydrogen. The tem-

perature shift is due to the mass difference between deuterium and hydrogen and

has been seen in studies on similar microemulsion systems [63]. To take this isotopic

effect into account, the different solutions in a contrast-varied series were measured

in the same relative position within their respective phase diagrams. Three of the

measured scattering curves were used to determine the three partial structure factors.

The other scattering curves were found to be related to the partial structure factors

according to Equation 4.8. The consistency between the various scattering curves

indicate that aside from the temperature shift in the phase diagrams, there is very
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Figure 4-5: SANS curves for the three different contrasts.

little effect of isotopic substitution on the structure of the monolayers.

Let us first consider the scattering results for a microemulsion consisting of 13.2%

C10E4, 43.4% water, and 43.4% octane by volume. After subtracting the background

due to incoherent scattering, the three measured structure factors corresponding to

a temperature T = 24.0 °C are plotted in Figure 4-5. The water-water correlations

in S, (Q) and the oil-oil correlations in S,,(Q) are very similar to each other, and

both scattering curves show a broad peak near Qmax 0.02 i-. From the location

of this peak, we get a rough estimate for the size of the water and oil domains in this

microemulsion: D 7r/Qma,, = 145 ± 5 A.

The thickness and various interfacial areas of the surfactant monolayer can be

determined from the behavior of the scattering functions at relatively large values of

Q. In principle, the structure factors X, (Q) and Xo(Q) are related to the interfacial

areas A, and Ao according to Equation 2.19. However, because the water and oil

molecules penetrate significantly into the surfactant film, the interfaces between the

57

' ' . . I ' ' ' ' ' " I 1 , .....

000

_ * *

AX A& 

I I II I I I 11111 I I I I I I I:



surfactant film and the water and oil phases are not perfectly sharp. In order to

account for the diffuse water-surfactant and oil-surfactant interfaces, Equation 2.19

is modified to include the effects of solvent penetration [63]:

Xww(Q) = 27r V Q (4.11)V Q4

Xoo(Q) = 2i V Q4. (4.12)

The penetration length of the water into the monolayer is equal to 2aw, and the

penetration length of the oil is given by 2o. Thus, when the penetration of water

or oil into the surfactant monolayer is large, the corresponding structure factor de-

cays much more rapidly than predicted that by Equation 2.19. Also, because the

water-surfactant and oil-surfactant interfaces are diffuse, the transverse profile of the

surfactant monolayer can be modelled with a Gaussian function. Then at large wave

vectors, the scattering from the film takes the simple form:

V e- d 2Q 2/ 2 7r
xss(Q) = 20 Q2(4.13)

where the effective thickness of the surfactant film is d = (V/As)Ob.

We use Equation 4.13 to fit the experimental scattering curve Sss(Q) at wave

vectors Q > 0.1 A-1 . The thickness of the surfactant film is found to be d = 13.8 ±

0.7 A and the surface to volume ratio is As/V = 0.0095 ± 0.0001 A-1 . This surface

area corresponds to an interfacial area per surfactant molecule of about 41 A2. The

measured structure factors S,,(Q) and Soo,,(Q) are analyzed using Equations 4.11 and

4.12, and the scattering curves and their corresponding fits are shown in Figure 4-6.

By plotting the data in this fashion, the slopes of the fitted lines are proportional to

the water and oil penetration lengths while the locations of the intercepts are related

to the interfacial areas. The best fit parameters for the water-surfactant interface are

cr = 2.0 + 0.3 A and AW/V = .01106 ± .00005 A-1. The corresponding values for the

oil-surfactant interface are ao = 3.8 ± 0.3 A and Ao/V = .01069 ± .00005 A-1.

There are several sources of error that appear in the determination of the in-
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Figure 4-6: Large Q behavior of the water-water and oil-oil scattering curves.

terfacial areas A, and A,. The transmission factors used to calibrate the scat-

tering curves are typically only accurate to about 5%. Fortunately, the invariant

(1/27r2 ) f S(Q) 4rQ 2dQ can be used to normalize the measured scattering in order

to effectively factor out this uncertainty. For a two-phase medium with a diffuse

interface, the invariant is equal to:

S(Q) 4rQ 2dQ = (P1 - 2 -)2 () ]. (4.14)

Thus, using the invariant to normalize the scattering also eliminates any errors asso-

ciated with lowering of the scattering length density of the oil phase due to dissolved

surfactant monomers.

The effects of the finite instrumental resolution are also not negligible. The fi-

nite collimation of the instrument is relatively unimportant at large Q, but the large

wavelength spread of the neutrons causes a significant broadening of the scattering

curve [64]. Multiple coherent scattering in the sample also smears the observed scat-
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tering pattern [65]. A calculation that includes these effects indicates that although

the functional form of the scattering in Equations 4.11 and 4.12 remains relatively

unchanged, the apparent values for the interfacial areas A, and Ao are elevated by

a few percent. However, because the structure factors S,,(Q) and Soo(Q) have very

similar magnitudes and shapes, the effects of smearing are nearly equal in the two

curves. Thus, by taking the following ratio to calculate the mean curvature of the

surfactant monolayer, corrections due to smearing are virtually eliminated:

i Ao - A = (-1.2 + 0.5) x 10-3 -1. (4.15)
d A,+A,

Compared with the inverse of the domain size in the microemulsion 1/D 

0.007 A- 1 , the mean curvature of the surfactant monolayer is very small. These sam-

ples were measured near the temperature where the hydrophilicity and hydrophobicity

of the surfactant are balanced. Thus, the surfactant monolayers in the microemulsion

preferentially curve neither towards the water nor towards the oil phase, resulting in

the nearly zero mean curvature.

4.4 Temperature Dependence

As discussed in Section 1.2 and shown in Figure 4-4, varying the temperature has a

large effect on the interaction strengths and phase behavior of this microemulsion sys-

tem. There should also be corresponding changes in the structure and geometry of the

surfactant monolayers within the microemulsion phase [66]. We investigated the effect

of temperature changes on microemulsion samples consisting of 20.0% CloE4, 40.0%

water, and 40.0% octane. The scattering from a contrast-varied series of solutions

were measured at various temperatures in the range 16 °C < T < 31 °C. By fitting

the partial structure factors at each temperature, the interfacial areas of the surfac-

tant film were determined and used to calculate the mean curvature of the monolayer.

The mean curvature is shown as a function of temperature in Figure 4-7 along with

the isotropic-lamellar coexistence regions and phase separation boundaries.

60



nrn VJ.V1

0.008

o; 0.006

e 0.004
"I 0.002

O0

o -0.002

-0.004

-n n(0

10 15 20 25 30 35

Temperature (C)

Figure 4-7: Mean curvature of the surfactant monolayer as a function of temperature.

Figure 4-7 shows that the mean curvature depends almost linearly with tem-

perature in the isotropic microemulsion phases: C = 6 (T - To) where 6 = 9.0 x

10-4 A-1 /°C and To = 24.4 °C. The surfactant film is curved towards the oil at the

lower temperatures and curved towards the water at the higher temperatures. There

is some indication that the mean curvature of the surfactant monolayers within the

lamellar phase is also changing with temperature. The errors for measuring the mean

curvature of lamellar phases are greater because the presence of quasi-long range order

leads to anisotropic averaging of the experimental scattering patterns. Nevertheless,

it is clear that the mean curvature of the lamellar phase is much closer to zero than

that of the neighboring isotropic phases.

The measurements of the water penetration length (a, = 2.0 A) and the oil pene-

tration length (,, = 3.8 A) into the surfactant monolayer do not change considerably

for the different solutions. We initially expected water molecules to hydrogen bond

with oxygen atoms all along the length of the hydrophilic head group of the surfac-

tant. The low penetration of the water compared to the oil indicates that perhaps the
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surfactant head groups form a compact molecular structure while the surfactant tails

are free to intedigitate with the oil. This interaction may explain why the surfactant

exhibits a greater critical micellar concentration in the oil than in water.

Equations 4.4 and 4.5 suggest that the Gaussian curvature K of the monolayers

may be determined by careful measuring the three interfacial areas A,, A,, and

As,. Unfortunately, the difference in the three interfacial areas due to the Gaussian

curvature term is much smaller than the splitting due to the mean curvature. Thus, in

order to determine K, the three interfacial areas need to be measured very accurately

and effects due to smearing would have to be carefully corrected. Another possible

way to measure the Gaussian curvature is to use the Q-6 correction term to Porod's

law in Equation 2.17 [67]. But in most microemulsion systems, the diffuse nature of

the interfaces seems to mask any effects the curvature correction might have on the

form of the scattering. At present, measuring the higher-order curvature statistics of

the monolayer appears to be very difficult due to intrumental resolution effects and

experimental errors.

Information about the interfacial areas AW and Ao has, however, enabled us to

quantify the small mean curvature of the surfactant monolayers in the isotropic mi-

croemulsion and lamellar phases. Although the topology of the surfactant film in the

bicontinuous microemulsion phase is quite complex, we see a clear inversion in the

mean curvature about the expected hydrophilic-hydrophobic balance temperature.

Contrast variation in conjuction with small angle neutron scattering thus allows us

to obtain detailed information about the local geometry of the surfactant monolayers

in solution.
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Chapter 5

Bulk and Surface Correlations in

Microemulsions

The surfactant monolayers in a bicontinuous microemulsion are very disordered and

separate oddly-shaped water and oil regions. In this chapter, we consider how to

quantitatively measure the size of the water and oil domains and characterize the

amount of disorder in the structure of the microemulsion. We also investigate whether

the fluctuations of the surfactant monolayers in a microemulsion near a solid interface

are similar to those inside the bulk phase.

5.1 Ginzburg-Landau Theory

In Section 1.4, we saw how the surfactant monolayers in a microemulsion could be

described by an effective interfacial Hamiltonian. Here we motivate a Ginzburg-

Landau theory that is analytically solvable and can be used to make quantitative

predictions about the behavior of the surfactant monolayers. We represent the local

concentration difference between water and oil in the microemulsion by a scalar field

4V(r). By considering the rotational and translational symmetries of the microemul-

sion, a Ginzburg-Landau Hamiltonian can be written in terms of powers of 4' and its
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gradients. We initially consider the simple form:

7o {(} [a0i + a2 (V) 2 + a4 (V2P)2] d3F (.1)

Because there is a macroscopic amount of internal surfactant interfaces separating

the water and oil regions, low energy spatial variations in the order parameter Ob(r are

necessary in order to describe the microemulsion. Gradient interactions are therefore

generally favorable and are associated with a negative coefficient in the Ginzburg-

Landau expansion (a2 < 0). The Laplacian interaction term corresponding to the

parameter a4 is then required for thermodynamic stability. Because Equation 5.1 is

harmonic, the bulk correlation function can be easily calculated analytically:

sin(27rr/db)(0b(0) 0J(r)) = exp(-r/b) (2r/db (5.2)(27rr/db)

The parameter associated with the oscillatory component in Equation 5.2 is

11

db 2r1 ao 1a2 (5 3)
[2 a4J 4 a(5.3)

and can be considered the characteristic size of the water and oil domains in the

microemulsion. The other parameter describing the exponential decay is given by

1

6b o-- 2 + 1 a(5.4)
b [2 a4 ) 4 a4 ]

and is the length scale over which the water and oil domains are correlated. This

simple description therefore characterizes the bulk microemulsion in terms of two

distinct lengths scales: a domain size db and correlation length b.

Ginzburg-Landau theory can also be used to predict the structure of the mi-

croemulsion near an interface [68, 69, 70]. The presence of a flat planar surface at

z = 0 gives rise to surface fields that are expressed as:

1s = + S ' O zzX, y, 0) + d S22(X, y, O) dx dy. (5.5)1 az~~~~~~~~~~~55
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The structure of the microemulsion is given by minimizing the Hamiltonian in Equa-

tion 5.1 with the boundary condition terms in Equation 5.5. We find that the profile

of the order parameter in the microemulsion depends upon the distance z away from

the interface and is of the following form:

(6(z)) exp(-z/~%) cos( d + 9p). (5.6)

The surface domain size d describes the oscillatory component of the profile and

should be identical to the corresponding bulk parameter db. Similarly, the surface

correlation length ¢, associated with the exponential decay term in Equation 5.6

should also be equal to the bulk correlation length b. The phase factor 9o is an

additional parameter that is needed to accomodate relative differences in the surface

field strengths sl, s, and 2. In other words, the boundary conditions on the value

of the order parameter at the interface ((0)) and its first derivative ('(0)) will

determine the phase factor p.

5.2 Bulk SANS

We use small angle neutron scattering to determine the bulk domain sizes and cor-

relation lengths in microemulsion systems. Figure 5-1 shows a small angle neutron

scattering measurement of a ternary microemulsion consisting of 13.2% C1 0E4 , 43.4%

D 20, and 43.4% octane at T = 23 C. This data was taken on the 30m NG7 SANS

instrument at the National Institute of Standards and Technology (NIST) with wave-

length A = 5.0 A and wavelength spread IAA/A = 14%. The experimental scattering

data is almost identical to the water-water scattering function S,,(Q) previously

measured in Figure 4-5. We use the bulk correlation function derived in Section 5.1

to interpret our scattering results. The theoretical form for the scattering associated

with this bulk correlation function is given by [71]:

kBTS(Q) = (2)3 5.7)
ao + a2Q2 + a4Q 4'
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Figure 5-1: Small angle neutron scattering from the bulk microemulsion.
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Figure 5-2: Experimental setup for reflection from the silicon-microemulsion interface.

Equation 5.7 is convoluted with the instrumental resolution function and fitted to the

measured scattering from the microemulsion. The resulting fit is shown as the solid

line in Figure 5-1 and corresponds to a bulk domain size db = 278 2 A and a correla-

tion length 6b = 168 7 A. The general agreement between the theoretical prediction

of Equation 5.7 and the experimental data in this limited scattering regime seems to

indicate that the Ginzburg-Landau theory adequately describes the bulk behavior of

the microemulsion. The experimental errors associated with this measurement can be

attributed to smearing effects due to the relaxed collimation and wavelength spread

of the neutron beam [64].

5.3 Neutron Reflectivity

We next tested the prediction from the simple Ginzburg-Landau theory that the bulk

and surface length scales in the microemulsion are equivalent to each other by inves-

tigating the interfacial structure of the microemulsion induced by a flat solid surface.

We used neutron reflectivity to determine the interfacial profile of the microemulsion

near the solid-liquid interface. Our experiments were performed on the BT7 diffrac-

tometer in the NIST reactor with the sample cell and scattering geometry shown in

Figure 5-2. The liquid microemulsion sample was sandwiched between a single-crystal

silicon block and a Teflon holder. A monochromated neutron beam with wavelenth

A = 2.37 A and wavelength spread AA/A = 1% was sent through the silicon block at
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an incident angle a. Because silicon is almost transparent to neutron radiation, there

was very little attenuation of the neutron beam as it traversed the solid silicon. The

portion of the beam that scattered off the solid-liquid interface with an exit angle 3

was subsequently measured with a He3 detector.

It was necessary to study the silicon-microemulsion interface because the BT7

reflectometer employs a horizontal scattering geometry and cannot be used to probe

free liquid surfaces. One advantage of our experimental setup is that it eliminated

problems due to sample evaporation that were present in an earlier reflectivity study

[72]. Another advantage of studying the solid-liquid interface is that we are able to

treat the silicon surface in order to systematically vary the surface potential fields.

For this experiment, 1,1,1,3,3,3-hexamethyldisilizane was used to coat the silicon with

a chemisorbed monolayer in order to make it strongly hydrophobic.

Figure 5-3 shows the rocking curve taken at total wave vector transfer Q =

0.024 i- for a microemulsion with the same volume concentrations and at the same

temperature as the bulk sample in Figure 5-1. This measurement shows the sharply-

peaked specular reflectivity component at a = 0.23° in addition to a broad back-

ground due to small angle scattering from the bulk of the microemulsion. We separate

the specular reflectivity component by subtracting the average background measured

by tilting the sample 0.1° in both directions. The reflectivity curve obtained in this

fashion is plotted as a function of wave vector transfer Q in Figure 5-4. The cir-

cles represent the measured data points, and the dashed line shows the expected

smooth decay if the microemulsion had not exhibited any surface structure. In order

to obtain a measurable critical reflection edge, D20 and a mixture of hydrogenous

and perdeuterated octane were used to prepare the microemulsion sample. The crit-

ical reflection edge (Qc ~ 0.011 A) in Figure 5-4 corresponds to an average neutron

scattering length density in the microemulsion of p = 4.3 x 10-6 A-2
Due to an absorbed surfactant monolayer at the hydrophobic silicon surface, there

is an effective interfacial roughness of 7 A at the silicon-microemulsion interface. In

order to model our experimental reflectivity data, we use the surface profile derived

in Equation 5.6. We divide this profile into many small layers and calculate the
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Figure 5-3: Rocking curve at Q = 0.024 A-1 .

theoretical reflectivity curve using the recursion relation in Equation 2.33. Fitting

the measured reflectivity data results in the scattering length density profile shown in

the inset of Figure 5-4. This profile generates the reflectivity curve shown as the solid

line in the main figure and corresponds to a surface domain size d, = 270 ± 2 A and

correlation length ' = 217 6 A. The slight discrepancies between the experimental

data and the theoretical fit at Q - 0.05 - 1 are due to higher-order Fourier modes in

the scattering length density profile and do not significantly affect the determination

of the surface domain size and correlation length.

Compared with the bulk parameters found from Figure 5-1, d is slightly smaller

than db while & is significantly larger than its respective bulk value &b. These results

are surprising and demonstrate that the interfacial structure of a microemulsion can-

not be quantitatively inferred from its bulk correlation function. Thus, we need to

look beyond the simple Ginzburg-Landau Hamiltonian of Equation 5.1 in order to

explain the surface structure of the microemulsion.

69



1IV

100

10'-
.? 10-2
. -·

C)

1004

10 -5

U

'E 5

- 4
3

"2
0 500 10000

-B '0 500 1000 1500 

I I I I , I , ,
.I 

0 0.02 0.04 0.06 0.08 0.1

Q (A-')
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Figure 5-5: Variation of the bulk and surface length scales with temperature.

5.4 Curvature Effects

We next measured microemulsion samples composed of 20.0% surfactant, 40.0% wa-

ter, and 40.0% oil with small angle neutron scattering and neutron reflectivity in the

temperature range 26 < T < 28 °C. As discussed earlier in Figure 4-7, the surfactant

monolayers in these microemulsions preferentially curve towards the water domains

and the mean curvature of the surfactant film varies linearly with temperature in

this range. To see the effect of curvature on the bulk and surface correlations of

these microemulsions, the bulk domain sizes and correlation lengths and the sur-

face domain sizes and correlation lengths were determined from the scattering and

reflectivity data. Figure 5-5 shows the corresponding changes in the bulk and sur-

face length scales as a function of temperature. The bulk and surface lengths show

the same general trends as the temperature is decreased and the first-order lamellar

transition is approached: both domain sizes decrease while the correlation lengths

71

r l

o 
o 

0 04

- 04 t

. 'l
W MI

I 

' I I I l I ' T I ) ' I l ' 1 '

-d -

~---- -

1- --- -d
s

, ,_ ,,

- - -- \



increase. However, it is apparent that the curvature of the monolayers modifies the

surface structure of the microemulsion to a far greater extent than it affects the bulk

correlations.

There are several possible reasons as to why the fluctuations of the surfactant

monolayers near the silicon surface are quantitatively different than their behavior

in the bulk phase. Long-range van der Waals forces between the solid and the mi-

croemulsion may modulate the decay of surface correlations. But such interactions

are relatively insensitive to temperature changes whereas the surface domain sizes and

correlation lengths vary greatly with temperature in Figure 5-5. Another possibility

is that the harmonic Hamiltonian does not adequately describe the physics of the sur-

factant monolayers in the microemulsion. Equation (5.1) was derived assuming only

small deviations in Ob( and its derivatives whereas the surfactant monolayers in the

microemulsion strongly segregate distinct water and oil domains. Thus, as evidenced

by the fluctuation-induced description of the first-order lamellar phase transitions,

higher-order terms must be taken into account [73].

Anharmonic terms become especially important when the curvature of the surfac-

tant monolayer breaks the symmetry between the water and oil in the microemulsion.

The Hamiltonian in Eq. (5.1) only contains square terms that display 0b -+ - sym-

metry. In order to describe spontaneous curvature in the monolayer, additional terms

of odd order will be needed. Because the overall volume fractions of water and oil in

these microemulsions are the same, the Ginzburg-Landau expansion should continue

to exhibit a minimum at Vi = 0 which precludes the term linear in 'b. The Lapla-

cian term V24, is completely integrable and is actually equivalent to the surface field

associated with s in Equation 5.5. Thus, the lowest order terms that need to be

considered are cubic ones:

I= [c3+ c'2( 2 p)] d3r. (5.8)

The effects of the cubic terms in Equation 5.8 can be treated perturbatively.

In the calculation of the bulk correlation function and of ((ql V)(-q), the leading
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Figure 5-6: Diagrammatic representations of the curvature corrections to the (a) bulk
and (b) surface correlations.

perturbative diagrams are of the form shown in Figure 5-6(a) [74]. The corrections

are quadratic in c and c', and for small curvatures they will have only a slight effect on

the bulk correlation function. On the other hand, terms due to spontaneous curvature

can enter the surface profile calculation for ((qz)) to linear order as illustrated in

Figure 5-6(b). The cubic terms in Equation (5.8) couple with surface field terms

represented by lines attached with "x" markers to yield corrections on the order

of cs', c's2 , etc. These diagrams explain the significant influence curvature has on

renormalizing the surface domain size and correlation length in the microemulsion

while at the same time only weakly perturbing the parameters of the bulk correlation

function.

To make this analysis of the curvature corrections more quantitative and complete,

additional measurements of the bulk and surface structure of microemulsions will

have to be made. A wider range of temperature would be useful in determining how

large of an effect curvature has on the surface and bulk correlations. Systematically

varying the surface potentials using different silicon surface treatments and studying

the resulting changes in the interfacial structure of the microemulsion would also be

very valuable.

Nevertheless, we have seen that although the simple Ginzburg-Landau Hamilto-

nian can qualitatively describe the bulk and surface correlations in a microemulsion,

the fluctuations of the surfactant monolayers near a solid surface are quantitatively

different than those in the bulk microemulsion. By breaking the symmetry between
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the water and oil domains in the microemulsion, curvature plays an important role in

determining the interfacial properties of the surfactant monolayers in the microemul-

sion.
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Chapter 6

Conclusions

We have seen that the surfactant monolayers in microemulsions exhibit an exceed-

ingly rich phase behavior and represent a very complex statistical mechanical system.

Here we studied some of the intrinsic characteristics of a single surfactant monolayer

that was prepared at an oil-water interface in equilibrium with a middle-phase mi-

croemulsion. Using x-ray reflectivity, we obtained a scattering spectrum from the

monolayer that was described in terms of a capillary wave model. We discovered that

the interfacial tension and effective bending rigidity is very small, indicating that the

statistical fluctuations of the oil-water interface are due to the interfacial properties

of a saturated surfactant monolayer.

We also deduced the geometry of the surfactant monolayers residing within a

bicontinuous microemulsion by determining the various interfacial areas of the sur-

factant film. Using contrast variation and small angle neutron scattering, we mea-

sured the different interfacial areas and calculated the curvature of the monolayers

in the microemulsion. We found that at the temperature where the hydrophilic-

ity and hydrophobicity of the surfactant is balanced, the monolayer has nearly zero

mean curvature. When the temperature is varied, the surfactant monolayers curves

preferentially towards either the water or oil phase.

We could characterize the size of the water and oil domains and the disorder of

the monolayers inside a microemulsion using a Ginzburg-Landau theory. A simple

harmonic Hamiltonian predicted that the structure of the surfactant monolayers near
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a surface should be related to the bulk correlation function. When we measured the

surface structure of the microemulsion using neutron reflectivity, we found the surface

correlation lengths to be significantly different from the bulk correlation lengths.

Accounting for spontaneous curvature in the surfactant monolayer, we attributed

this effect to higher order terms in the Ginzburg-Landau theory.

Thus, we have seen that the properties of surfactant monolayers in solution with

water and oil can generally be understood in terms of simple physical principles.

However, until recently, we had very little quantitative information about their mi-

croscopic behavior in microemulsions. We show here that x-ray and neutron scattering

techniques can be used to provide detailed knowledge about the statistical fluctua-

tions and interfacial properties of surfactant monolayers in microemulsion systems.

We believe that continuing work with scattering and similar techniques will provide

even greater insight into the behavior of these complex fluids.
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