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Abstract

In this thesis we introduce and analyze the influence model, a particular but tractable mathematical

representation of random, dynamical interactions on networks. Specifically, an influence model

consists of a network of nodes, each with a status that evolves over time. The evolution of the

status at a node is according to an internal Markov chain, but with transition probabilities that

depend not only on the current status of that node, but also on the statuses of the neighboring

nodes. Thus, interactions among the nodes occur probabilistically, starting when a change of

status at one node alters the transition probabilities of its neighbors, which then alter those of

their neighbors, and so on.

More technically, the influence model is a discrete-time Markov process whose state space is

the tensor product of the statuses of all the local Markov chains. We show that certain aspects of

the dynamics of the influence model can be studied through the influence matrix, a reduced-order

matrix whose dimension is the sum rather than the product of the local chain dimensions. We

explore the eigenstructure of the influence matrix and explicitly describe how it is related to that

of the full-order transition matrix. From the influence matrix, we also obtain the influence graph,

which allows the recurrent states of the influence model to be found by graph-theoretic analysis

on the reduced-order graph. A nested hierarchy of higher-order influence matrices, obtained from

Kronecker powers of the first-order influence matrix, is exposed. Calculations on these matrices

allow us to obtain progressively more elaborate statistics of the model at the expense of progressively

greater computational burden.

As a particular application of the influence model, we analyze the "to link or not to link"

dilemma. Suppose that a node is either in a 'healthy' or 'failed' status. Given that connecting to

the network makes its status dependent on those of its neighbors, is it worthwhile for a node to

connect to the network at all? If so, which nodes should it connect to in order to maximize the

'healthy' time? We formulate these questions in the framework of the influence model, and obtain

answers within this framework. Finally, we outline potential areas for future research.

Thesis Supervisor: George C. Verghese

Title: Professor of Electrical Engineering
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Introduction and Overview

Consider the following examples, which are typical of those that have motivated this thesis.

What is the common theme running through these different scenarios?

" Power Blackout On August 10, 1996, an electrical transmission line in the western United

States accidentally caused a short circuit by sagging too close to a nearby tree due to ther-

mal expansion [23, 10, 36]. The line was automatically removed from service by a circuit

breaker, with the power flow being rerouted to nearby power lines. However, due to various

circumstances including heavy loading throughout the system, additional line faults, and mal-

functioning equipment, a series of power outages followed. Within seven minutes, the effect of

the initial accident managed to sever the power flow through the important California-Oregon

interties, resulting in power outages for nearly 7.5 million customers along the entire western

United States.

" Traffic Congestion An accident has just occurred at a major street intersection during rush

hour. The accident blocks the traffic flow through that intersection and soon causes an area

of grid lock because the congestion spreads to nearby intersections. Drivers at the perimeter

circumvent the blocked intersections by seeking alternate routes, and eventually the grid lock

eases out.

" Cold Spreading John caught a cold from inadequate rest. The next morning, Mary stopped

by his office and contracted the symptoms. In the evening, her son at home hugged her and

got a cold from her. The next day, a couple of his friends at school caught the cold from him,
and so it went.

" Product Popularity In 1994, the makers of Hush Puppies brand shoes were experiencing

another gloomy year for their products - falling sales, declining popularity, and an ever

decreasing number of store outlets [18]. Then out of the blue came a surge in demand. Without

any advertising or promotional effort from its manufacturer, the shoes became an object of

"haute couture." Starting with a handful of youngsters in New York City's East Village and

Soho who wore the then-anonymous brand just to be different, the shoes caught the eyes of

two fashion stylists, who then brought the shoes to the attention of other famous designers,
who then ignited the Hush Puppies craze throughout the country. Hush Puppies sales went

from 30,000 pairs a year in 1994, to 430,000 in 1995, and to 1,7200,000 in 1996.

In an abstract sense, each example above contains two common elements: nodes, and interactions

among them. Each example involves dynamics on a network, or the dynamics of a network. Power

stations dynamically interact with each other through power flows on the transmission grid. Street

intersections, on the other hand, interact with each other through the traffic flows that connect
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them. And individuals interact with each other through their social networks. In each of these

settings, there are natural questions one might want to answer. For instance:

" A power station is vulnerable to disturbances or failures at its neighbors. On the other hand,

being part of the power grid certainly has its advantages, including the chance for neighboring

plants to help supply power when the local demand is greater than the capacity of the generator.

So, given an existing power grid, should a new station operate alone or should it connect to

the network? If it should connect, which station should it connect to?

* What is the likelihood that street intersections A, B and C would be congested simultaneously?

" Suppose we understand exactly what the vast social network is like in New York City. What

is the probability that a group of Hush Puppies wearers would eventually set off a city-wide

trend?

This thesis introduces and explores a new model for interaction on networks for which we

call the influence model. The model has the potential to represent, in an abstract but tractable

form, scenarios and questions such as those above, and possibly more elaborate situations involving

complex interactions among different networks. Although limited by the quasi-linear interaction

that it restricts the nodes to, the influence model still displays rich structure and behavior, so we

are optimistic about the eventual scope of its application.

1.1 General Description

The quickest way to understand the influence model is through examples, and the one in Figure

1.1 will serve as our illustrative guide in this overview. As this thesis is mainly motivated by power

systems, this particular example of the influence model is a highly simplified representation of

demand and service of some power grid. As is the case for every influence model, it is a stochastic,
dynamical system defined on a graph, and is described at two levels: the network level and the

local level.

At the network level, each node can be treated as one active entity, and is called a site. For

this example, a site can either be a power station (generator) or a load. Each site has a status that

evolves over time. A power station may be represented as being in one of three possible statuses at

any given time: normal, alert or failed. The loads, which can be cities or factories where power is

actually consumed, might be in either high or low status, depending on the present level of demand.

Looking inside each site, we find its local structure. If all the sites are disconnected, each local
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(high low fienormal alert fie

Local / load

Local / power station

Figure 1.1: Example of an influence model

structure is a fixed Markov chain that describes the status of its site. However, with the network

connections, the transition probabilities of each local chain are likely to depend not only on the

current status of its site, but also on those of its neighboring sites.

The influence model is structured in a way that allows this influence of neighboring sites

on the local transitions to be represented, although only in a quasi-linear form. For instance,

we can construct the influence model for the above example such that a power station which is

currently on alert can have a high probability of moving to failed status if it is surrounded by a

combination of high loads and failed generators. On the other hand, if it is being influenced by low

loads and normal generators, then it would have a high probability of reverting to normal status.

The network connections would tell us not only which site can affect which, but also by how much

one site can influence another's status. These influences effectively create a network of interacting

Markov chains. The majority of this thesis is thus spent on analyzing this random system1 .

Our influence model is itself a huge Markov chain -the master Markov chain- in which

each state corresponds to a state of the influence network. However, the order of the master chain

is the product of the orders of the local chains, so the master chain is difficult or impossible to

construct or work with. What we establish is that the particular structure of the influence model

permits a full hierarchy of tractable lower-order models to be constructed, thereby permitting a

very detailed study of the influence model.

'The actual behavior of a power system is, of course, much more complicated; we use this context only as rather
abstract motivation.
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1.2 Comparison to Previous Work

The concept of interactions on networks is not new, and has appeared in various forms in a variety

of fields. These various models have been given an equally diverse list of names, depending on

the applications for which they are intended and their specific structural features. Each model

has a similar basic set-up that consists of a fixed network and some local rule by which the nodes

interact. Some of these models are listed in Table 1.1. There are also references that deal with

evolving rather than fixed networks, but these take us further away from influence models as dealt

with in this thesis (although future work may well address evolving rather than fixed networks.)

Area Model Key References
Physics stochastic Ising model Glauber [19]

cellular automata Wolfram [41]
Mathematics infinite particle system Spitzer [39]

voter model Holley and Liggett [25]
contact process Harris [24]

Biology invasion process Clifford and Sudbury [4]
Sociology threshold model Granovetter [20]

interactive Markov chain Conlisk [5]
Economics local interaction game Ellison [15]

strategy revision process Blume [2]

Table 1.1: Some previous models of interactions on networks

Comparison of the results in this thesis to previous models has to be done with care, because

of the technical differences in the way the models are set up. In general, even a slight change in the

interaction rules can change the system behavior dramatically. Nevertheless, among the models

above, many are different from one another in some fundamental ways: deterministic vs. stochastic,
arbitrary vs. structured grid, etc. Thus, a technical result from one model may only provide a

superficial guide into the behavior of another model. Moreover, as these models are motivated

by different applications, even a qualitative insight obtained from studying one model might not

have a meaningful interpretation in another. With these cautions, we outline below the differences

between the previous models and the influence model.
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1.2.1 Infinite Particle System

The term infinite particle systems [14, 21, 34, 39] or interacting particle systems is actually a general

term that covers several stochastic models of interaction on networks. Some of the more widely

recognized infinite particle systems are the voter model [25, 13], the contact process [22], and the

stochastic Ising model [3, 19]. The standard set-up for each model is as follows. The network is

generally an infinite d-dimensional lattice, with each site having two statuses. Each site has an

"alarm clock" that strikes randomly with an exponential interarrival time. When the clock strikes,

the site switches to the opposite status. The arrival rate of the clock at any given time depends

on the current statuses of the site and its neighbors. The differences among the three models lie in

how the rates depend on the statuses [14].

Voter Model The infinite particle system that most resembles the influence model is the voter

model. The voter model was introduced independently in [25] and in [4]. Despite its name, the voter

model seems to arise from a mathematical interest in [25] rather than from a serious motivation

in sociology or political science. On the other hand, in [4], where the voter model is introduced as

the invasion process, the model was proposed specifically as a model for spatial conflict of different

species. In both versions, each site has a status '1' or '0' at any given time. The arrival rate

of the alarm clock is proportional to the number of neighbors that are currently in the opposite

status. Thus, the more neighbors with the opposite status a site has, the faster it will switch to

the neighbor's value. If the statuses of all the neighbors agree with that of a site, then the status

of that site will not change.

A special case of our influence model can be considered to be a natural discrete-time version

of the voter model. This special case, referred to as the binary influence model, is discussed in

detail in Chapter 3. The differences between the binary influence model and the voter model are

not many, and the two most important ones are as follows. First, our model evolves in discrete

rather than continuous time. Although this might seem like an unimportant difference, it raises the

issue of periodicity in the network graph. In a continuous-time model, the process is guaranteed

to reach a consensus (an all-ones or all-zeros state), whereas in discrete time, convergence to a

consensus is only guaranteed when the underlying graph is aperiodic. Second, the voter model

literature focuses on infinite graphs, or graphs with highly regular structure, such as the lattice

[25, 34], the torus [8, 9], or infinite translation-invariant graphs [35] (graphs that look the same

no matter which node we view them from). Our work, on the other hand, applies to finite but

arbitrarily connected and arbitrarily weighted graphs. Although the results in [13] apply to finite

graphs, the authors investigated only graphs in which the branches have uniform weight and are

undirected. This assumption also brings about an implicit consequence that the graph is irreducible.

Our model allows for arbitrary weights and an arbitrary number of classes in the underlying graph.
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These generalizations could prove to be important degrees of freedom in particular applications.

The major departure from the traditional voter model starts in Chapter 4, where we first

present the general version of our influence model. With the full generality, the influence model

allows us significantly greater freedom in choosing the model parameters. For instance, the site no

longer needs to be binary-valued, the internal Markov chains are (finite but otherwise) arbitrary,
and the manner in which a site's status affects that of another site can also be tuned. This generality

has brought forth several new features and questions. First, the recurrence structure, which reduces

to the all-ones or all-zeros absorbing states in the case of the voter model, is much richer in the

influence model. We explore this structure using a graph-theoretic analysis (Chapter 4). Second,
because of the finiteness of our model, we are able to represent the dynamics of the system with

a single matrix, the influence matrix (Chapter 5), of order equal to the sum of the orders of the

local Markov chains. It turns out that the matrix approach also leads us to a higher-order analysis,
the analysis of the joint-status of arbitrary collections of sites (Chapter 6). To the best of our

knowledge, this type of analysis has only been done for second-order statistics and in a much more

restrictive setting [34].

On the other hand, there are also results in the voter model literature that our analyses

cannot achieve. These are generally results that depend on the fact that the grid is infinite, such

as the rate at which the average cluster size grows (because our model has an upper limit on the

cluster size), or the number of extremal invariant distributions as a function of the dimension of

the lattice (because our model is not a lattice).

Other Infinite Particle Systems Apart from the voter model, other infinite particle systems

are sufficiently different from the influence model that we only touch on them here. In the Ising

model, if the status of a site i is si E {-1, +1}, then the arrival rate for this site is

exp(- > sisi) for some > ; 0,
iENi

where Ni is the set of neighbors of site i [34]. That is, the rate of the alarm clock decreases

exponentially with the number of neighbors with like statuses. In other words, this arrival rate

favors a configuration in which the sites have uniform statuses.

In the contact process, the status of site i is s i E {0, 1} and the arrival rate of the site is

1 if si = 1, and is otherwise kA, where k is the number of neighbors currently in status 1 and

A is some fixed constant. Intuitively one can think of the contact process as the rate at which a

site contracts a disease from a neighbor. When a site is sick (status '1'), the rate at which it will

recover is constant (rate 1). When it is healthy (status '0'), then the rate at which it becomes sick
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increases linearly with the number of sick neighbors (rate kA).

1.2.2 Interactive Markov Chain

In [5], Conlisk introduces the interactive Markov chain, a deterministic, discrete-time dynamical

system of the form

m[k + 1] = P(m[k])m[k]. (1.1)

Here, the state vector m[k] is a nonnegative vector whose entries sum to 1 at each time k. Motivated

by sociological applications, each entry mi[k] represents the fraction of the population with some

attribute i. The matrix P(m[k]) is a function of m[k] and has columns with nonnegative entries

that sum to 1, i.e., P(.) is a transposed stochastic matrix. The dependence of P(.) on m[k],

Conlisk explains, reflects the interactive nature of sociological dynamics, which takes into account

the current social structure for its evolution. Then the author proceeds to give several forms of

P(.), each with a specific application in the field. Since this evolution is deterministic, one can

consider the interactive Markov chain as a particular deterministic, nonlinear, dynamical system.

Subsequent papers [6, 7] focus exclusively on the mathematical part and discuss the stability of

this nonlinear system for specific examples of P(-). In [33], Lehoczky justified the fact that the

evolution is deterministic by showing that if each person's status evolves according to a Markov

chain with a state transition matrix given by (the transpose of) P(.) above, then by the central

limit theorem, each fraction of the aggregate population can be described by (1.1). Despite the

similar titles, the interactive Markov chain and the influence model are vastly different. Among

other things, in the evolution of the influence model, each site depends on only the status of its

neighbors, as opposed to the aggregate state of the entire system. Thus, we will not pursue the

interactive Markov chain any further.

1.2.3 Threshold Model

Another interesting but unrelated model from Table 1.1 is the threshold model. This model was

first introduced by Granovetter [20] under careful sociological justifications. The model was further

adopted by Morris [37] and Watts [40]. In the threshold model, each site has a status "1" if the

number of I's held by its neighbors exceeds a given threshold; otherwise, it has a status "0". In [20],

the network considered is the complete graph (although this is not explicitly noted in the paper).

Without the network topology being an issue, Granovetter focuses on the effect of the individual

thresholds on the collective behavior, arguing that group behavior can be highly sensitive to the
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exact threshold distribution. In [37], the emphasis is placed on the effect of the network structure

on the global spread of a given status. In [40], most results are drawn from analysis and experiments

on large, randomly generated graphs, where the effect of the graph parameters on the possibility

of network-wide spread is explored.

From the author's personal experience with simulations, threshold switching causes the

system to behave very differently from the influence model. In general, the threshold system has

a very abrupt "all-or-nothing" spreading behavior, especially on random graphs. With a fixed

threshold on a random graph, the spread of the 1-status is either limited to a small subset of the

graph, or so widespread that it covers every site. Indeed, so clear is the distinction in the two cases

that Watts unambiguously refers to the cluster of l's in his paper as "local cascade" and "global

cascade." This all-or-nothing observation hints that the effect of the individual threshold somehow

translates into another "threshold" at the system level. Interesting as it is, the threshold model is

very different from the influence model, and will not be discussed any further in the thesis.

1.2.4 Other Models

The term cellular automata refers to a large collection of models inspired by various applications

in diverse fields, a sample of which is collected in the books [11, 41]. In economics, the paper

[2] studies interaction on lattices from an economic point of view. In [15], Ellison explores the

dynamics of a large population when each individual plays coordination games among neighbors on

a circle network.

1.2.5 Summary of Contribution

While it is relatively easy to set up rules of local interaction, analyzing the system behavior resulting

from a given set of rules is generally hard. The main contribution of this thesis is the proposal

of a network interaction model that is satisfactorily tractable, yet contains some of the desirable

features highlighted below. Another summary with more technical detail is provided in Chapter 7.

* Arbitrary Network Structure By allowing each site to contain an arbitrary (finite) local

chain and the network to have an arbitrary (finite) graph and influence structure, the influence

model gives us an important level of modeling versatility. Previous models generally impose

additional restrictions to simplify the analysis, such as requiring lattice-structure networks, or

allowing only binary-status sites, or needing uniform-weight edges.
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" Graph-Theoretic Analysis of Recurrent States Since the network is allowed to be arbi-

trary, the behavior of the influence model is critically dependent on the underlying structure

of the graph. We will use a graph-theoretic approach to determine the recurrent states of

the influence model. This kind of analysis is usually not done in previous models since they

generally involve only simple network structures such as the lattice grid, or the regular graphs.

" Higher-Order Analysis The influence model is also amenable to the analysis of joint-statuses,

or the statuses of any specified group of sites. This is in contrast to previous models, which

can either describe the status of an individual site, or the collective status of all sites.

" "To Link or not to Link" Dilemma One interesting question naturally arises in the analysis

of the influence model. Suppose each site is either in a 'healthy' or 'failed' status at any given

time. Given that connecting to the network makes the status of a site dependent on its

neighbors, should a site connect to the network or should it operate in isolation in order to

maximize the 'healthy' time? If it should connect to the network, which sites should it connect

to and with what edge weights? It turns out that this question can be framed and answered

nicely because of the way the influence model is defined.

1.3 Chapter Outline

In Chapter 2, we introduce the basic notions - primarily concerning Markov chains - that are

necessary for the rest of the thesis. In Chapter 3, we present a special case of the influence

model called the binary influence model. We derive basic results regarding their convergence on

ergodic graphs, and graphically explain the dual of this process in terms of coalescing random

walk. In Chapter 4, we introduce the general influence model and determine its recurrent classes

by analyzing the structure of the influence graph, with the help of a 'hopping dot' picture. Several

small examples are provided. A concept called product path is also introduced. In Chapter 5,
we analyze the influence matrix, and relate it to the state-transition matrix of the master Markov

chain. Towards the end of the chapter, we raise and answer the "to link or not to link" question.

The answer to this question leads naturally to Chapter 6, which discusses the higher-order influence

matrices. Finally Chapter 7 concludes the thesis and outlines directions for future research.
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This chapter defines the necessary basics on directed graphs and Markov chains. These

results will be used extensively in later chapters when we discuss influence models. The material

presented can be found in standard textbooks such as Horn and Johnson [26], Gallager [16] and

Bremaud [3]. Only the topics that are relevant to later discussions are covered here.

Notation: Throughout this thesis, vectors are either denoted as boldfaced lower-case letters

(a, b, x 1 , y2), or as Greek letters (a, p3). All vectors are column vectors. Matrices are written

as upper-case Roman letters (A) and their entries denoted by the corresponding lower-case letters

with subscripts to indicate the row and column (a2 3 ). The entries of sums and products of matrices

are denoted by brackets and subscripts ([A + B]ij and [AB]ij). The transpose of a matrix A is

denoted A'. The symbols 1m and 0 m denote the length-m all-ones and all-zeros column vectors

respectively. When it is clear from the context, we will simply write 1 and 0 to reduce notational

clutter. The n x n identity matrix is denoted by In.

2.1 Directed Graphs

In this section, we cover certain fundamental characterizations of directed graphs that will be used

throughout the thesis, primarily in the analyses of Markov chains and influence graphs. Most

terminology to be introduced is standard. Readers who are already familiar with Markov chains

may skip this section and only return to it when the need arises in subsequent chapters.

Let A = [aij] be an n x n matrix. Define the directed graph of A, denoted by F(A), as the

directed graph on nodes I to n, where a directed edge from i to j, denoted by (i, j), exists if and

only if aij # 0. The edge weight is given by aij.

A path p is an ordered sequence of nodes p = (Ji, J2,... ,jk) such that edge (ji, ji+i) exists

for all 1 < i < k. Node ji is called the source and jA the destination node of path p. The length

of path p, denoted f(p), is the number of edges on it, in this case k - 1. Note that an edge may

be counted towards the length multiple times if it appears more than once. A path is cyclic if the

source and destination nodes are the same. We will also refer to cyclic paths as cycles. Note that a

self-loop or a cycle that contains only one edge such as (i, i) can also occur (precisely when agi # 0).

THEOREM 2.1

Let A be a square matrix with all nonnegative entries. There exists a path of exactly length k from

node i to j on F(A) if and only if [Ak],j > 0

Proof. See [26], Theorem 6.2.16. E
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2.1.1 Classes

Definition Node j is accessible to node i if there exists a path in which i is the source and j the

destination. It should be noted that accessibility is a property that depends merely on the existence

of a path, not on its length or its edge weights. Two nodes i and j are said to communicate if both

nodes are accessible to each other. It then follows that communication is an equivalence relation.

Using this equivalence relation, we can partition the nodes into disjoint sets called classes, which

have the following properties:

" every node in a class communicates with every other, and

" a node outside of a class does not communicate with any node inside the class.

The graph F(A) is called irreducible if it has only one class. A matrix A is termed irreducible if

r(A) is irreducible. The partition of a graph into classes does not depend on the specific weights

on the edges. So we will use a '1' to denote a nonzero entry in the following examples.

Example 1: These examples show directed graphs and their classes for the given matrices.

(a) In this example, 1(A) is irreducible.

A~ ~
1 0

(b) In this example, IF(A) has 4 classes: {1, 2}, {3}, {4, 5}, and {6}.

0 1 0 0 0 0

1 1 1 1 0 0

0 0 0 0 0 1 (2.1)

0 0 0 0 1 0

0 0 0 1 0 1

0 0 0 0 0 1
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For every directed graph with a finite number of nodes, the partitioning of its nodes into

classes is unique. Furthermore, the interconnection among the classes must be acyclic. That is,
any path that leaves a class cannot return to it. If we consider the macroscopic view of a graph

obtained by lumping each class into a single node, then we will get a graph such as in Figure 2.1.

Here multiple edges from one class to another are lumped into a single edge for easy visualization.

Class 2

Class 1 Class 4

Class 3

Figure 2.1: A macroscopic view of a directed graph where each class is represented as a node.

Classes that have only incoming edges are called recurrent. A class that is not recurrent is

called transient. Classes that have only outgoing edges are called autonomous. Classes that are not

autonomous are called dependent. In Figure 2.1, Class 4 is recurrent, while Classes 1, 2 and 3 are

transient. On the other hand, Class 1 is autonomous, while Classes 2,3, and 4 are dependent. Any

directed graph with a finite number of nodes must have at least one autonomous and one recurrent

class. Unless there is only one class in the graph, a recurrent class is not autonomous. Intuitively,

these two types of classes are the ones at the extreme ends of the graph.

2.1.2 Classes and Matrices

A permutation matrix P is an n x n matrix in which each entry is either a 0 or a 1, and every row

and every column contains precisely a single 1. For a given m x n matrix A, multiplication by P on

the right has the effect of permuting the columns of A. Specifically, if pij = 1, then the ith column

of A is equal to the jth column of AP. In contrast, for a given n x m matrix B, multiplication

by P on the left permutes the row of B; if pji = 1, then the ith row of B is equal to the jth row
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of PB. Thus, for any given square matrix A and two permutation matrices P1 , P2 , the product

P1 AP 2 simultaneously permutes the rows and the columns of A. In order to permute the rows and

columns by the same reordering, P and P2 must satisfy [P1]i = [P 2 ]ji for all i, j. That is, P = P2.

In general, when P is a permutation matrix, we refer to the product of the form P'AP a cogredient

of A ([1], Definition 1.2). Because a cogredient P'AP is similar to A, they share the same set of

eigenvalues. The set of permutation matrices is closed under multiplication. That is, a product of

two permutation matrices is also a permutation matrix.

There is a natural interpretation of a cogredient in terms of directed graphs. The graph

I(P'AP) can be obtained from I(A) by relabeling the index of each node according to the permu-

tation P. That is, if pij = 1, the node with index i on 1F(A) would be relabeled as index j on the

graph 1F(P'AP). For instance, if

2 .4 1 1.5

A [.1 , and P= 1 so that P'AP= 1 .2 .4 (2.2)

- .5 -1 -. 1

then the graphs 1(A) and r(P'AP) are shown in Figure 2.2. Notice how the graph topology and

the edge weights are unchanged by node renumbering (although only two edge weights are shown

to reduce figure clutter).

0.2 0.2

(2 1 3) 3 )

A PAP

Figure 2.2: Graph r(A) and its renumbered version F(P'AP).

On the graph 1(A) where A is an n x n matrix, each node has its own unique integer index,
which could be any number from 1 to n. So for any two subsets B and C of nodes on F(A),
define ABC as the JBI x 1C submatrix of A obtained by selecting the rows and columns of A that

correspond to the indices of the nodes in B and in C respectively. For instance, for the A in eq.

(2.2), if B = {2,3} and C = {1, 2}, then ABC .5]. A submatrix of the form ABB is termed a

principal submatrix of A and is simply denoted by AB.

THEOREM 2.2

For a given square matrix A, let R 1 ,... , Rt be the partition of the nodes of F(A) into classes.

Then there exists a cogredient P'AP of A such that P'AP is in the block-triangular form with the
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matrices ARj 's on the diagonal, i.e.,

AR1

P'AP [ 2- . (2.3)

- * Ant,

Here * represents some entries that are possibly nonzero (but are not of concern to us).

Proof. Let R1 ,... , R, be the recurrent classes of IF(A) and let RC be the union of all its transient

classes.

There must be a cogredient PjAP in the (hollowed) lower block-triangular form:

AR,

PjAP1 = 1 (2.4)
AR,

_ARcR1  ... ARcR, ARC_

This can be done by renumbering the nodes in the recurrent classes sequentially from the first class

to the rth one, and then numbering nodes in the transient classes last. In (2.4), the entries on the

left and right of submatrices AR,,... , Aan are zero because each Ri is a recurrent class; there can

be no edge that connects a node inside a recurrent class into another node outside of it. In the

bottom rows in (2.4), each ARcRj represents the edges from the transient classes to class Ri, and

the block ARc represents the connections within the transient classes.

Now consider the bottom-right block ARC as a matrix in its own right. If it is irreducible,
then we have proved the claim above. If it is reducible, then we can renumber it into the block-

triangular form as well. Suppose the recurrent classes of IF(ARc) are S1, ... , S, and the transient

classes are collectively represented by SC, then there is a cogredient P'ARcP, which is block-

triangular and has the submatrices As 1 ,... , As, and Asc on the diagonal. Define the permutation

matrix P 2 = diag(Il1R,... , IRI, P) (i.e., P 2 is a block-diagonal matrix with the given matrices on
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the diagonal). Then we have

AR1

[AR1 
AR,

P2(PI'AP1)P2  - * ... * As 1  (2.5)

... * P'ARCP
As,

L... * Ase_

Note that each Si is also a transient class of r(A), so to have the As,'s on the diagonal in eq.

(2.5) is still consistent with the claim in the Theorem. By renumbering the bottom-right blocks

(such as ARc and Asc) recursively until an irreducible submatrix appears, we will have obtained a

matrix P'AP (where P is a product of permutation matrices) in lower block-triangular form that

satisfies the form in (2.3). Since permutation matrices are closed under multiplication, P is a valid

permutation matrix, and, therefore, P'AP is a valid cogredient as claimed. E

COROLLARY 2.3
For a given square matrix A, let {Rj} be the classes of F(A), then the eigenvalues of A are those

of all the ARj 's, counting multiplicities.

Proof. Let P'AP be a cogredient described in Theorem 2.2. By [26], p. 62, Prob. 5, the eigenvalues

of P'AP are those of all the AR 's, counting multiplicities. Because A and P'AP are similar, they

have the same eigenvalues. El

Consider the relation between F(A) and 1F(A'). Each of these two graphs can be derived

from the other by reversing the direction of every edge. Note that the communication relations

between nodes are still unchanged by the reversal of the edges. Therefore, the class partition must

still be the same for both graphs. The difference, however, is that through the edge reversal, an

autonomous class is turned into a recurrent class, and vice versa, because all the outgoing edges

become incoming edges. Thus, we have essentially arrived at the following corollary.

COROLLARY 2.4

A class R is autonomous with respect to F(A) if and only if R is recurrent with respect to 1(A').
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2.1.3 Periods

The next fundamental characteristic that is of importance to our later discussion is the period of
a class. To define it, consider a node i and all the cycles in that class that pass through it. Call
these cycles {Pi P2,... }. Such cycles always exists, unless the class consists of a single node with
no self-loop, in which case the period is undefined for that node. Then the period of node i is
defined as the greatest common divisor of the lengths {f(pi), f(P2),... }. A node with a period of
1 is aperiodic. Otherwise it is periodic.

For example, in Figure 2.3, node 2 has a period of 1, because the cycle (2, 4, 2) has length 2,
while the cycle (2, 3, 1, 2) has length 3. In Figure 2.4, node 2 has a period of 2, because all cycles

( 1 '2
4 5

3 4

Figure 2.3: A directed graph with two classes. The dashed line shows the grouping of the nodes
into two classes, both aperiodic. The right class is autonomous, while the left recurrent.

that pass through it have even length. In fact, the equivalent diagram on the right of Figure 2.4

makes clear that every node in that graph must have a period of 2.

3

2 4

5

1 1

I 3
2

Figure 2.4: A directed graph with one single class. Rearranging the graph into the
on the right makes evident its period is 2.

equivalent one

In practice, nodes are almost always aperiodic, unless they reside on a very small or a large

but highly structured graph. The more cycles that pass through a node, the more likely it will be
aperiodic. For instance, having both odd and even cycles passing through it is enough to guarantee

the aperiodicity of a node. In particular, any node that has a self-loop is aperiodic. The following

theorem shows that periodicity is a class property.
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THEOREM 2.5

Every node in a give class has the same period.

Proof. See [16], p. 106.

THEOREM 2.6

Within a class of period d, one can divide the nodes into d subclasses T 1 ,... ,Td such that the

subclasses are connected in a circle. That is, every edge must connect from a node in some subclass

T to another node in Ti+1, or from Td to T 1 .

Proof. See [16], p. 107. LI

In the following, we will refer to the sets T as subclasses. The graph in Figure 2.4 has one

class and two subclasses; that in Figure 2.5 has one class and three subclasses. If we assume that

one class,
period = 3

Figure 2.5: A graph that contains a single class with a period of 3, divided into its three subclasses.

in numbering the nodes, we enumerate those in Ti before those in T±i+, then the matrix A that

defines the graph of the corresponding class of period d can be written as

0 R1

0

Rd

It is easy to show that Ad has a block diagonal form:

Q[
Ad = -.

(2.6)
Rd-]

(2.7)

Qr I
- 33 -
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where Qi = R- ... RdR1 - - - Ri 1 . If we recall Theorem 2.1, then the block-diagonal form of (2.7) is

not surprising, because any path of length d must terminate at a node that belongs to the subclass

from which it originates.

To summarize, the nodes on a general directed graph can be partitioned into classes, and

within each class, one can further partition them into subclasses. A graph that comprises just a

single aperiodic class is called ergodic.

2.2 Perron-Frobenius Theory

The Perron-Frobenius Theorem describes some special features of the eigenstructure of nonnegative

matrices. This theorem and its corollaries will be critical to our later discussion of the dynamics

of Markov chains and influence matrices. For more details on nonnegative matrices, see [1] or [26],
for example.

A matrix A is positive, denoted A > 0, if all of its entries are real and strictly positive. A

matrix A is nonnegative, denoted A > 0, if all of its entries are real and nonnegative. For two

matrices A and B, A > B means A - B > 0. For any square matrix A, we refer to the set of

eigenvalues of A as its spectrum and denote it by -(A). The spectral radius of A is the real and

nonnegative scalar

A
p(A) = max |Al.

Ao-(A)

It is worth noting that for a general square matrix A, p(A) may or may not be one of its eigenvalues.

However, in the case of nonnegative square matrices, the spectral radius p(A) is always an eigenvalue

itself, as precisely stated in the following theorem.

THEOREM 2.7 (Perron-Frobenius)

Let A > 0 be a square and irreducible matrix. Then p(A) E or(A). There is a positive right
A

eigenvector v > 0 corresponding to eigenvalue p = p(A) such that the following properties hold:

(1) For any x > 0, if Ax > px, then Ax = px.

(2) If Ax = px, then x = cv for some constant c.

Proof. See [16], Theorem 5, p. 115. E
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Note that Theorem 2.7 does not exclude the possibility of an irreducible matrix having

more than one eigenvalue with the magnitude p(A). For instance, if the matrix A in (2.6) is

nonnegative, then it always contains d eigenvalues with magnitude equal to its spectral radius.

What the theorem states is that there exists an eigenvalue that is both largest in magnitude and

positive, and through property (2), that this eigenvalue has a geometric multiplicity of 1; we show

shortly that its algebraic multiplicity is also 1. We can, therefore, unambiguously refer to it as the

dominant eigenvalue of an irreducible nonnegative matrix A.

COROLLARY 2.8

The dominant eigenvalue p of an irreducible matrix A > 0 has a left eigenvector r > 0. w is the

unique (within a scale factor) eigenvector of A and is the only nonnegative, nonzero vector (within

a scale factor) that satisfies r' A > pir'.

Proof. By applying Theorem 2.7 to A', and by recognizing that 0-(A) = -(A'), we have the above

corollary. E

COROLLARY 2.9

Let p be the dominant eigenvalue of an irreducible matrix A > 0 and let the right and left eigenvec-

tors be v > 0 and ir > 0 respectively. Then, within a scale factor, v is the only nonnegative right

eigenvector of A, i.e., no other eigenvalue has a nonnegative eigenvector. Similarly, within a scale

factor, ir is the only nonnegative left eigenvector of A.

Proof. See [16], Corollary 2, p. 116. E

COROLLARY 2.10

The dominant eigenvalue of an irreducible matrix A > 0 has algebraic multiplicity 1.

Proof. If not, then there must be, from Jordan form theory ([26]), a vector w such that (A -pI)w

v, the right eigenvector of p. Pre-multiplying both sides by ir', the left eigenvector of p, and noting

that -r'(A - pI) = 0, we get ir'v = 0. But since ir'v > 0, we arrive at a contradiction. l

COROLLARY 2.11

The dominant eigenvalue of an irreducible matrix A > 0 is a strictly increasing function of every

entry of A.

Proof. See [16], Corollary 5, p. 116.
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COROLLARY 2.12

If A > 0, Av = Av and v is real and positive, then A = p(A).

Proof. See [26] Corollary 8.1.30. FI

Note that Corollary 2.12 is different from the theorems that precede it in that it does not require

A to be irreducible.

2.3 Markov Chains

Our review of background material culminates in this section with the basic theory of Markov

chains. The exposition to follow, although self-contained, will be brief, because its purpose is not

to educate a reader about the subject, but rather to set up the language and results to be used in

this thesis.

A square matrix A is stochastic if it is nonnegative and each row sums to 1, i.e., Al = 1,
where 1 is the all-ones vector. A matrix A is substochastic if Al < 1 with the inequality being

strict in at least one row. Because each row of a stochastic matrix A sums to 1, one distinctive

feature of its graph F(A) is that the sum of all the edge weights leaving a node is 1.

The graph F(A) of a stochastic matrix A corresponds to a Markov chain. We will abuse the

terminology slightly by referring to F(A), or sometimes even A itself as the Markov chain. Each

node on 1F(A) can be interpreted as a status of some system that evolves randomly over time, as

described next. At any given time, the system is assumed to be in one of the n possible statuses

(or at one of the n nodes of the graph), which are represented by integers 1 to n. At time k, the

status of the system is captured in the status vector

s[k] =[0 ... 0 1 0 .0]'. (2.8)

This length-n vector is an indicator vector whose only nonzero entry is a 1 in the position corre-

sponding to the current status of the system.

A Probability Mass Function vector, or PMF vector, is a vector p > 0 such that p'1 = 1.

Given a length-n PMF vector p, we denote by

s = Realize(p) (2.9)
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the random realization of the status of the chain according the PMF provided in p. We can think

of the actions performed by (2.9) as rolling an n-faced die whose probability of turning up face i is

pi, and assigning the actual face that comes up to s in the format given in (2.8).

We assume that the initial status s[0] is independently realized from some given PMF. Given

a realization of s[0], the Markov chain generates a sequence of random vectors {s[k]} according to

the following evolution equations:

p'[k + 1] = s'[k]A (2.10)

s[k + 1] = Realize(p[k + 1]) (2.11)

The sequence {s[k]} is a Markov process, and A is referred to as the state-transition matrix for the

process. The vector p[k + 1] in (2.10) is a valid PMF because it is nonnegative and

p'[k + 1l = s'[k]A1 = s'[k]l = 1.

If s[k] is given, then p[k + 1] is fully determined. Otherwise, p[k + 1] is in general random.

Example 2: Suppose a power station's status at any given time is in one of the following three

statuses: normal, alert or failed. We may model its operating conditions with a 3 x 3 stochastic

matrix A whose Markov chain is shown in Figure 2.6. Here 1'(A) is ergodic, because all nodes

a 1

1 2 3
(normal) (alert) (failed)

a13

Figure 2.6: A 3-status Markov chain modeling a power station's operating conditions

communicate and are aperiodic. The outgoing edge weights sum to 1, so in particular, a11 + a12 +
a 13 = 1. Suppose the system starts from a normal status, i.e., s[0] = [1 0 0]' and evolves according

to (2.10)-(2.11). We can imagine the 'life' of the system being represented by a dot (or token)

that hops from one node to the next. When in node i, the dot will hop to node j with probability

aij. Whichever node the dot lies on at time k is the system status at that time. This hopping-dot

picture will be useful later on when discussing the influence model and its recurrent states. El
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2.3.1 Status Probabilities

In this section, we address the following questions: given an arbitrary stochastic matrix A and a

distribution on the initial status s[O], what is the probability that the system will be in a given

status at a given time? What can be predicted about s[k] as k -+ oc?

The following proposition is straightforward, but fundamental to our answers to the above

questions. The notation E(-) will be used for expectation or expected value.

PROPOSITION 2.13

E(si[k]) = Prob(system is in status i at time k).

Proof. This follows from the fact that each si[k] is a binary random variable, so its expected value

must equal the probability of its being 1.

Given the initial status s[O], the closed-form expression for the conditional expectation

E(s[k] s[0]) is given by

E(s'[k] I s[0]) = s'[O]A , (2.12)

We can show this relation by induction. First, we see that (2.12) holds for k = 1 because

where p[l] = A's[O]

(2.13)

(2.14)

0 1:
E(s[1] Is[0]) =i [1]. + P2 [1] + -+ Pn[1] 1

: : 0

= p[1]

A's[O].

Now given that (2.12) holds up to k < m, we can write

E(s[m + 1] s[0]) = E(E(s[m + 1] s[mi]) s[O])

= E(A's[m] s[01)

= A'(A) m s[O]

= (A')m+ls[O]

by iterated expectation

by the same reasoning as (2.14)

by linearity of expectation operator

(2.15)
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By induction, this shows (2.12) must hold for all k. Taking the expectation of (2.15) with respect

to s[0], we then get

E(s[k]) = (A' )kE(s[0]), or E(s'[k]) = E(s'[0])Ak (2.16)

In view of Proposition 2.13, eq. (2.16) thus provides a closed-form expression for the PMF governing

the system at all time instants k.

The behavior of Ak as k -+ oc is best explained in connection with the structure of F(A).
We will present the result for the most important case first, namely that of ergodic graphs or the

associated (ergodic) chains, and then proceed to more general structures.

2.3.2 Case I: Ergodic Markov Chains

If 1F(A) is ergodic, then A = 1 is the dominant eigenvalue and all other eigenvalues have strictly

smaller magnitude (see [16] p. 117). The right eigenvector of A = 1 is clearly 1, because Al = 1.

The left eigenvector 7r, which is positive, is assumed to be normalized so that 7r'l = 1. Then the

ergodicity of A implies that

lim Ak l 7r'.
k->oo

Therefore,

E(s'[k]I s[0]) = s'[0]Ak s'[0]17r=' =r'. (2.17)

That is, regardless of s[0], the system will eventually be in state i with probability iri. The PMF

vector 7r is generally called the vector of steady-state probabilities of A.

In terms of the hopping-dot picture of Example 2, the ergodicity of F(A) ensures the dot

will forever roam about F(A) without ever being trapped inside any group of nodes. Also, the fact

that the same steady-state probabilities are reached regardless of the starting status means that if

the dot has hopped around long enough, then it will look as though any node could have been the

starting status.

2.3.3 Case II: Irreducible Periodic Chains

Now we assume that F(A) consists of a single class of period d > 1. Recall from Theorem 2.6 that

the nodes in this case can be partitioned into d subclasses. Assume that nodes within the same
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subclass have consecutive indices so that eq. (2.7) applies, i.e.,

Q1
Ad= Q-. (2.18)

Each Qj corresponds to an ergodic Markov chain (see [16], Ex. 4.13) and thus has its own vector

of steady state probabilities 7F(j). Hence,

lim Adk (2.19)
k-+oo

lnd7r(d)l

where ni is the dimension of Qj.

Eq. (2.19) shows that if we take snapshots of the system every d steps, then F(A) can be

effectively viewed as d disconnected, ergodic Markov chains. As explained in Theorem 2.6, the

structure of F(A) is such that the system status cycles around the loop of subclasses every d steps.

Thus, whichever subclass s[O] starts from will be the subclass within which s[kd] lies for all k.

2.3.4 Case III: General Markov Chains

For general Markov chains r(A), there are many possibilities for the asymptotic behavior of Ak,
depending on the structure of F(A). In particular, Ak might or might not converge, or only certain

submatrices of Ak may converge, but not others.

To illustrate this, suppose there are r recurrent classes F(A) with periods di, .- , d, respec-

tively. Assume without loss of generality that nodes are numbered in the form in (2.4):

A,

A=
Ar

--L C_j
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The kth power of A is then of the following form

'Ak

Ak -kA c . (2.20)

L - * CkI

The block-diagonal form in the top part of (2.20) implies that if s[0] is such that the chain

starts in a recurrent status, i.e. a status inside some recurrent class, then it will remain in that

class for all time. In the hopping dot analogy from Example 2, this is the situation in which the dot

starts and thus remains inside some recurrent class Ai permanently, because, by definition, there

is no path to lead the dot out of a recurrent class. Within the recurrent class Aj, the probability

of occupying each status at any given time can be analyzed in the same way as in Secs. 2.3.2 and

2.3.3, because the matrix Ai is stochastic. Thus, if its period di is greater than 1, then Ak will not

converge to a constant matrix but will rather converge to a periodic loop.

If the hopping dot initially starts in one of the transient classes, then it will eventually drift

into one of the recurrent classes that are accessible from its starting point. This is confirmed by

the fact that Ck approaches zero ([16], Ex. 4.9 and 4.10), which means that the probability of the

system being in a status inside a transient class decreases to zero over time.
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We now introduce the binary influence model, which generates a Markov process that models

propagation on a network. The binary influence model is a special case of the general influence

model to be introduced in subsequent chapters. We study this simplified version first, because it is

easier to understand and serves well as a motivation for the full model.

3.1 Introduction

In the binary influence model, each node of the network graph has a status value that varies over

time as it is 'influenced' by its neighbors. The status of each node at any given time step is assumed

to be 0 or 1, which may represent any two different statuses such as 'on' vs. 'off', 'healthy' vs.

'sick', or 'normal' vs. 'failed'. Interaction only occurs between neighboring nodes as each node is

influenced to imitate the status of its neighbors.

Because of the general way in which it is defined, the binary influence model can potentially

illuminate our understanding of the qualitative behavior of a number of systems. In power systems,
this model can be used as a highly simplified paradigm for cascading blackouts. Here the network

graph would represent the power grid, and each node would be a substation or a power plant whose

status value is amenable to a binary label. To simulate cascading failure, we can start with a

network in which every node is in 'normal' state and then initiate a node failure by turning the

status at some node to 'failed'. Cascading failure occurs when a failed node causes its neighbors to

fail, and those neighbors induce more failures, and so on.

This same model can also be used to model an election process with two candidates. Each

node is now a person, and the network graph represents the social connections that influence a

person's opinion. The candidate whom he or she favors constitutes the status value. At each

time step, the voter re-evaluates his or her choice, taking into account the current opinion of the

neighbors. Our model will be general enough to take into account the various degrees to which

a voter believes in his or her own previous decision and the degree to which a voter is influenced

by his or her neighbors. As we shall see, for certain social networks, there will eventually be a

consensus among the voters and only one candidate wins, regardless of the initial state.

The influence model can also provide a highly abstracted representation of other systems

in diverse applications such as territorial species invasion, product popularity in marketing or the

collapse of an economy system (where each node is a financial institution).

In the following sections, we will first define the binary influence model formally. Then we

proceed to characterize different structures of the associated graphs, which will determine whether
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all nodes will ultimately reach a common value, or whether the state will wander indefinitely. The

probability of the nodes reaching a certain consensus will be calculated using an efficient method.

Finally we explore further variations and extensions of the model.

3.2 Model Description

Assume that we are given an n x n stochastic matrix D, called the network influence matrix, or

simply the network matrix. Notice that if D were being used to describe a Markov chain, it would

have been called the state-transition matrix of the chain, but we assign it a different name because

we are using it for a different purpose. The graph F(D') will be called the network influence graph,

or simply the network graph. Its nodes are referred to as sites. Since it is defined from D' as

opposed to D, the network graph is just like a Markov chain, except all the edges are reversed.

Thus, instead of having the sum of outgoing edges equal to 1, the sum of edges pointing into a

site is 1. As we will see, this feature allows us to treat each edge weight as the relative amount of

influence from the source node to the destination. An example of a network matrix and its graph

is shown in Example 1.

Example 1: This is an example of a 3-site network graph. Notice that the sum of the edge weights

into any site is 1.

.2 .4 0-

D = .7 0 1

.1 .6 0-

0.2
0.7

1 2
0.4

0.1 0.6

03

Figure 3.1: Example of a network graph F(D').

At each time index k, site i has a status, denoted by s[k], which can be either 0 or 1. The
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vector

s[k] [ s1[k] ... s,,[k] ]

is called the state vector of the graph at time k.

Convention on Terminology: Nodes, Sites, Statuses and States Since this thesis

will introduce various kinds of graphs, we use different terms to refer to different types of graphs

as well as their nodes. The term node is generic and applies to all types of graphs. A node on a

network influence graph is called a site, and each site has a status that varies over time. A state

refer to the collection of all statuses on a network graph at a given time. On Markov chains, a node

is also called a status. The reason that the term status is used for both types of graphs is that in

later chapters, we will allow an internal Markov chain to exist within each site. Hence, the status

of a site will be the status of its Markov chain.L

The binary influence model refers to the following two evolution equations for calculating

the vector r[k + 1] of probabilities, and the realization of s[k + 1]:

r[k+11 = Ds[k] (3.1)

s[k + 1] = Bernoulli(r[k + 1]) (3.2)

The initial state s[O] is independently realized from some given distribution, yielding a status of 0

or 1 for each site. The sequence of random vectors {s[k]} generated by (3.1)-(3.2) will be referred to

as the binary influence process. In (3.1), r[k + 1] is the length-n vector whose ith entry represents

the probability that si[k + 1] = 1. In (3.2), the actual status of each site (and hence the state of

the network) is randomly realized. The operation Bernoulli(r[k + 1]) can be thought of as flipping

n independent coins to realize the entries of s[k + 1], where the probability of the ith coin turning

up heads (status 1) is ri[k + 1]. Each ri[k + 1] is a valid probability. To see this, we notice that

ri[k + 1] > 0 because both D and s[k] are nonnegative, and ri[k + 1] < 1 because

ri[k +1]=( dijsj[k] < dij = 1.

since each sj [k] K 1.

The one-step dynamics of the binary influence model can be easily understood once viewed

on the network graph r'(D'). An edge (i, j) exists on this graph if the status of j can be influenced

by the status of i. The weight on edge (i, j) can be interpreted as the amount of influence that i

exerts on j relative to the total amount of influence that j receives. The total amount of influence
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received by any site is thus equal to the sum of incoming edge weights, which is 1 because D is

a stochastic matrix. The probability of a site having status 1 at the next stage is the sum of the

weights on the edges from the neighbors whose statuses are currently 1. This sum, therefore, always

has a value ranging between 0 and 1. The following example shows a particular run of the model.

Example 2: Figure 3.2 gives an example showing the first few steps of a particular run based

on the graph in Example 1. The top row of graphs shows the realized states s[k]. The status of

each site, which is either a 0 or a 1, is written in the site. The bottom row of graphs shows the

probabilities r[k]. Inside each site is r [k], the probability that that site has status 1 at time k. El

0.2 s[O]4.20 0.7
(o 1 1

0.4

0.1 0. 6

0

Network states

s[1]
0.2 '-

0.7

10
0.4

1/
0.1 0 6

1 j

s[2]
0.2 '

0.7

0
0.4

0.1 0.6

0

0.7

r[1]

0.0 0.3 1.o

0.0

Probabilities
r[2]

Figure 3.2: Example of a particular path of the binary influence process in its first few steps.

If all of a site's influencing neighbors have the same status, whether all O's or all l's, then

that site will copy its neighbors' status with certainty in the next time step. If a site has a self-loop

then it is one of its own influencers. This feature allows us to model situations where statuses tend

to persist, because the self-loop would influence the site to repeat its previous status. In the power

systems context, the self-loop can be used to model failures that are difficult to repair, for instance.

3.2.1 Comparison to Markov Processes

When compared to the evolution equations of Markov processes in (2.10)-(2.11), the binary influence

model in (3.1)-(3.2) looks rather similar. However, these two models are not the same, and their
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differences are as follow: 1

" In a binary influence process, the state vectors s[k] can have multiple l's among its entries,

but in a Markov process, the status vector must have exactly one entry of 1.

* Intuitively, we can think of a binary influence process as having an active entity at each site.

Each of these entities can be in one of two statuses (such as 'failed' or 'normal'). In a Markov

chain of order m, there is only one active entity whose status is one of the m possibilities.

" In the binary influence model, the state vector s[k] multiplies D from the right, while in the

Markov process, the status vector multiplies from the left:

r[k + 1] = D s[k] (binary influence)

p'[k + 1] s'[k]A (Markov)

* In a network graph F(D'), the sum of incoming edge weights at a site node is 1. In a Markov

chain F(A), the sum of outgoing edge weights at a status node is 1.

" In a network graph, edge weights are to be interpreted as influences, while in Markov chains,

edge weights are the transition-probabilities.

* In the binary influence model, the vector of probabilities r[k] is not necessarily a PMF vector,

but p[k] in the Markov process must be.

3.3 Model Analysis

A few fundamental questions arise regarding the influence model: What happens in the long run?

Do the sites eventually converge to the same status? What structure of the network graph would

permit such convergence? If they are convergent, what status would the sites take in the limit?

How can the behavior be characterized when it is not convergent?

To answer these questions, it is possible in principle to study the influence model above by

means of a Markov chain F(G), where G is a state-transition matrix of order 2'. Each status of r(G)

would correspond to one possible outcome of s[k]. However, since the size of the state-transition

matrix G grows exponentially in the number of sites, it is practically impossible to analyze G

'As a reminder, s[k] is called a state vector in the binary influence model, but it is called a status vector in the
Markov process. Each entry si[k] is called a status in both models.
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directly for all but small values of n. It would be very difficult just to classify the nodes of I'(G)

into transient and recurrent classes, let alone find the steady-state probabilities. In what follows,
we will circumvent this problem by showing that certain important properties of G such as the

recurrent classes as well as the probabilities of being absorbed into each of them can be analyzed

with matrices of order n, as opposed to 2', due to the simple dynamics of the model.

By inspection, we can see that there are at least two obvious states that could be the terminal

states of the binary influence model: the all-ones and the all-zeros states, or the consensus states.

When all sites have reached either consensus, there can be no influence to switch to the opposite

status, given how the model is defined. Hence, any consensus state will stabilize and remain that

way forever.

Knowing that there are at least two kinds of eventuality, we can refine our questions regarding

the convergence:

" Does the binary influence model always end up in one of these two consensus steady-states

regardless of the initial condition? Are there any other final states beside the consensus states?

If so, how does the structure of the network graph come into play?

" What are the probabilities of reaching the various recurrent classes?

* How do these results generalize to general influence models, where the number of allowable

statuses is greater than two?

3.3.1 A Fundamental Proposition

The following proposition is a simple but powerful result regarding the probability governing the

status of a given site. It is very similar to Proposition 2.13.

PROPOSITION 3.1

E(si[k]) = Prob(site i is in status 1 at time k).

Proof. Again, this follows directly from the fact that si[k] is a binary-valued random variable.

Hence, its expected value is the probability of its being in status 1. l

Following similar steps as in Section 2.3.1, we arrive at the following identities

E(s[k + 1] | s[k]) = r[k + 1] = Ds[k]. (3.3)
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It is easy to show that this leads to

E(s[k] I s[0]) = Dks[0]. (3.4)

E(s[k]) = DkE(s[0]). (3.5)

3.3.2 Graphical Interpretation

To obtain a more physical interpretation of (3.4) in terms of the graph F(D'), consider the transpose

of the equation,

E(s'[k] I s[0]) = s'[0](D')k.

which is equivalent to

E(sj[k] I s[0]) = si[0] [(D')k],.

In this summation, only the term with si[0][(D')k]ij > 0 would contribute to the sum. This is

possible when sj[0] = 1 and [(D')k],j > 0. By Theorem 2.1, [(D')k])j > 0 if and only if a path

of exactly length k from site i to j exists on the graph 1F(D'). This means that the probability

Prob(sj[k] = 1 s[0]) = E(sj[k] I s[0]) comprises contributions from each site whose initial status

is 1 and from which site j can be reached by a path of k steps. Similarly, Prob(sj[k] = 0 1 s[0])

can be shown to be contributed by the sites that are k steps away and that have 0 as their initial

status. To summarize, we have established the following.

COROLLARY 3.2

Given a realization of the initial state s[0], a site j on F(D') has a positive probability of being in

status 1 (respectively 0) at time k if and only if there exists some path that

(a) has length exactly k,

(b) originates at a source site whose initial status is 1 (respectively 0), and

(c) terminates at j.
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3.3.3 Limitations

Although Proposition 3.1 and eq. (3.5) give a closed-form expression for the probability of each

individual site being in status 1, they are still too weak to characterize the state of the whole

network. The reason is that the expected value E(s[k]) is only the ensemble average -the average

of s[k] from repeated experiments at a fixed time index k. Even if lim_,oo E(s[k]) converges to a

constant vector ci, there are still many possible interpretations of this limit. Does it mean that the

binary influence process will always reach a consensus, and c is just the probability of reaching the

all-ones consensus? Or does it mean that the process will forever flip around at random, but in such

a way that the status of a node at large time index, when averaged over repeated experiments, will

have a value of c? Or does the process get stuck in a deterministic, finite loop of states, where the

status of a node at large time index has an ensemble average of c? Or can all these cases happen

depending on the particular experiments? Proposition 3.1 alone does not exclude the possibilities

of these final states.

Thus, it is necessary for us to make a more definite statement on the final states of a given

binary influence process. As with the role of 1F(A) in the analysis of its Markov chain, the structure

of the graph 1F(D') plays an important role in the convergence of s[k]. We will start by analyzing

the case of ergodic network graphs, then proceed to a more general network graph structure.

The following sections will repeatedly invoke the definitions and results discussed in Chapter 2,
particularly those from Section 2.1.

3.4 Ergodic Network Graphs

We now assume that 1F(D') is an ergodic (i.e. irreducible, and aperiodic) graph. In terms of

convergence behavior, ergodic network graphs are among the simplest to understand and thus,
serve as our starting point. As we will show, the only recurrent states (i.e., a state on a recurrent

class) of these graphs are the consensus states.

Let r(D') be an ergodic network graph. Let V be the set of sites on F(D'), and i E V be

some site. Define the mth-level neighbor set of i for an integer m > 0 as

T'(i) = {v E V I there exists a path of exactly m steps from site i to v }

By Corollary 3.2, T(i) represents all the sites that could be influenced by i in one step.

Thus, if site i is currently in status 1, then there is a positive probability that every site in T(i)
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would be in status 1 in the next time step. Similarly, T 2 (i), 3 (i),..., are all the sites that could be

influenced to assume status 1 by i to in 2, 3 steps and so on. To summarize, we have the following

Lemma.

LEMMA 3.3

Let i - V and let T m (i) be as defined above.

Prob(every site in T m (i) has status 1 at time k site i has status 1 at time 0) > 0

Next, we exploit the fact that D is ergodic to claim that there is a path of any desired length

between any given pair of sites, provided that the path is sufficiently long.

LEMMA 3.4

If D is ergodic, Dm > 0 for all m > n - 1.

Proof. See [26], Corollary 6.2.20. I

COROLLARY 3.5

Given D is ergodic, for all m > n - 1, and for any site i, T m (i) = V.

Proof. By Theorem 2.1, there is a path of length m from site i to j on F(D') if and only [(D') m ij >

0. But since Dm = [(D')m ]' > 0 by Lemma 3.4, there exists some path from i to any site in exactly

m steps. Hence T m (i) V. l

THEOREM 3.6

The only recurrent states of a binary influence model in the case of an ergodic network graph are

the all-ones and all-zeros consensus states.

Proof. If the initial state s[0] is the all-zeros consensus, then it will remain that way for all time. If

it is not, let i be any site that has status 1 under s[0]. By Corollary 3.5, T m (i) = V for m > n - 1,
and by Lemma 3.3, there is a positive probability that at time m, all sites on F(D') will be in status

1. Since the all-ones consensus is an recurrent state, the fact that it can reached from s[0] shows

that s[0] is either a transient state, or the all-ones state itself. Since s[0] is arbitrary, there can be

no other recurrent state beside the consensus states. 0
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3.4.1 Probability of Consensus

Having established that all ergodic autonomous classes must reach a consensus, we can apply

Proposition 3.1 to determine the probability of reaching each consensus.

From Section 2.3.2, if D is ergodic, then

lim Dk = 17r' (3.6)
k-+oo

where ir is the left eigenvector corresponding to the eigenvalue at 1, which has been normalized so

that r'1 = 1. If the stochastic matrix D had been used as a state-transition matrix of a Markov

chain, this vector would have been the vector of steady-state probabilities. Because D is ergodic,
the column vector 7r will be strictly positive entry-wise (see [16], p. 117). Combining (3.4) with

(3.6), we conclude that

lim E(s[k] I s[O]) lim Dks[0]
k-+oo k-+oo

= 17r's[O] (3.7)

Eq. (3.7) indicates that all sites have the same probability of 7r's[O] of reaching status 1. This

matches what we expect since we know that the state must eventually reach a consensus. The

following theorem summarizes the results of this section.

THEOREM 3.7
Let F(D') be ergodic. Let 7r' be defined as in (3.6). Then the probability that the influence process

starting from initial state s[O] will eventually settle in the all-ones consensus state is 7i's[O]. The

probability of reaching the all-zeros consensus state is thus 1 -7r's[0].

3.5 Periodic Irreducible Graphs

3.5.1 Introduction

Now we investigate the recurrent states of the binary influence process when r(D') is irreducible

and periodic. We will analyze it by reducing this to a problem of convergence on d separate ergodic

graphs.

Clearly, the all-ones and all-zeros states are still two of the recurrent states of periodic

irreducible graphs, as they are for all network graphs. We will show that on periodic graphs, the
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consensus states are just two special cases of a class of recurrent states called limit cycles.

Recall from Section 2.3.3 that when F(D') is periodic with a period d, the sites can be

partitioned into d subclasses that are connected in a cycle such as in Figure 2.4 and 2.5. Consider

a period-2 graph as in Figure 3.3. Assume that s[O] is such that all the sites in the same subclass

(x

(x

even time indices

V_

odd time indices

Figure 3.3: Example of a period-2 graph in a limit cycle.

have the same status, which in this figure is status x for the left subclass and y for the right. At

even-numbered time indices, the left subclass is influenced only by sites in status y, and the right

subclass only by sites in status x. Therefore, these statuses will deterministically switch back and

forth between the two subclasses. In other words, the network graph is stuck in a loop, which we

call a limit cycle. In what follows, we generalize the above example to arbitrary periodic irreducible

graphs, and show that the limit cycles are the only possible recurrent states. A consensus state can

then be regarded as a special case of limit cycle where the statuses of all subclasses are the same.

3.5.2 Analysis

Without loss of generality, all

indices, so that we can express

0

D-R, 0

within the same subclass are assumed to have consecutive

Rd 0

or D'

Rd_1 0 R'

(3.8)
0 R']

0 _J

Recall that an entry [D']ij represents the amount of influence that site i exerts on site j. With the

configuration in (3.8), on the graph r(D'), subclass i influences subclass i + 1 and so on, i.e., the

influences are "forward pointing."

Let ui[k] denote the state vector of the ith subclass, so that the state vector of the entire
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graph can be written as

[ui[k]

s [k] =(3.9)

ud[k]_

Because the subclasses are connected in a cyclic manner, the realized value of ui[k] will depend

only on the previous state u_ 1 [k - 1] of its predecessor subclass and nothing else. The portion

usi[k - 1] will, in turn, depend on Ui-2[k - 2] and so on. If we keep tracing the dependencies

backward in time, we will find that ui [k] depends only on the initial state uj [0] of a certain subclass,

and is independent of the initial condition of any other subclass up[0] for p 4 j. Moreover, different

subclasses at time k depend on different portions of s[O]. This observation leads to the following

conclusion, which will greatly simplify our analysis by allowing us to consider the convergence of

each subclass separately.

LEMMA 3.8

Assuming the initial state s[0] is given, for any i # j and a fixed k, ui [k] and uj [k] are statistically

independent.

Note that if s[0] has not been given, then we cannot conclude that ui[k] is independent of uj[k],
because the portions of s[0] that they are dependent on might be correlated.

The dth power of D' has a block diagonal form:

Di D'

Dd -D -.. , or (D')d = [ (3.10)

D D

where each D = - R'R' - -- RM- 1. Each Dm must be a valid network matrix because each

row of Dd sums to unity, which means the rows of Dm sum to unity as well. The block-diagonal

form of (D')d in (3.10) implies that the graph P((D')d) comprises d disconnected graphs, each one

being equivalent to the graph F(D' ) for some m =1, ... , n.
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Example 3: Consider the network matrix D given by

0 0.5 0.5 0.5 0

1 0 0 0 1

D'= 0 0.5 , so (D') 2  0.5 0.5 0 [D D
D2J

0 0 1 0 0.5 -

1 1 0 1 0.5_

This is a period-2 irreducible graph. Figure 3.4a depicts the graphs F(D'), while Figure 3.4b shows

((D' )2). Notice how F((D')2 ) consists of two disconnected graphs F(D') and F(D'), both of

which are ergodic. The numbers 1, 2,... , 5 in the figure are the site indices, not the statuses. D

D' D' D'2

\1 ~2(2
5 /2)

33

(a) (b)

Figure 3.4: Example of a period-2 irreducible graph (a) 1(D'), (b) F((D') 2).

In general, the graphs F(D') and F ((D')d) are different, as Example 3 above shows, but their

sites have a one-to-one correspondence with each other. Specifically, we match site 1 on F(D') to

site 1 on F((D')d), site 2 on F (D') to site 2 on r((D')d), and so on. Since F((D')d) comprises the

graphs {fP(D' )m = 1,... , d}, we can uniquely match each site on any graph F(D' ) to a unique

site on 1F(D') as well. For instance, in Figure 3.4, sites 1, 2, 3 of F(D') are matched to sites 1, 2, 3

of F(D') respectively, while 1,2 of r(D') are matched to sites 4, 5 of r(D'). More generally, for a

site i on graph P(D' ), define v(i, m) as the index of the matching site on 1F(D').

LEMMA 3.9

Let i, j be any two sites on F(D' ). A path of length k from i to j on F(D' ) exists if and only if

there exists a path of length kd from site v(i, m) to site v(j, m) on I(D').

Proof. Because of (3.10), the (i,j)th entry of (D, )k is the entry in position (v(im),v(jm)) of

(D')kd. Combining this with Theorem 2.1, we have proved the lemma. E

In Figure 3.4, one can verify that the graphs conform with Lemma 3.9 by checking that a
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path of length 2k in F(D') always has at least one corresponding path of length k in either IF(D')
or F(D').

We will now show that eventually each subclass will reach its own consensus. First, fix a

graph F(Dm ) and fix a site i on it. Each F(D' ) will be an ergodic graph (see Sec. 2.3.3). Recall

from Corollary 3.5 that for all sufficiently large k, the set Tk(i) will eventually cover every site on

P(D' ). Using Lemma 3.9, this implies that for all sufficiently large k, Tkd(v(i, m)) must include

every site in the mth subclass on 1F(D'). The general result of Corollary 3.2 states that the existence

of a path is equivalent to the ability of the source site to influence the destination, so we conclude

that regardless of the initial state s[O], there is always a positive probability that all sites from the

mth subclass on 1F(D') will reach a subclass consensus at some time kd. Once a subclass reaches

the consensus, the state of that subclass will never change when viewed as snapshots every d steps.

Since this argument must apply to each subclass m, every subclass will eventually reach its own

consensus at time kd for sufficiently large k. The consensuses reached by different subclasses could

be different. The statuses of these subclasses cycle around indefinitely in a loop of d states, similar

to the situation shown in Figure 3.3. The following theorem summarizes this main message of this

section.

THEOREM 3.10

The only recurrent states of a periodic irreducible network graph are the limit cycles.

3.5.3 Probability of Limit Cycles

A binary influence process of an irreducible periodic network graph is said to have reached limit
A

cycle c = (ci,... , Cd) if every site in the ith subclass has status ci at all times kd for all k sufficiently

large. For time indices that are not a multiple of d, the statuses of the subclasses can be inferred

by shifting the statuses cyclically by the appropriate amount.

Given an initial state s[O], which limit cycles will be reached, and with what probability?

Using Lemma 3.8,

d

Prob(process reaches limit cycle c) = Prob(subclass i reaches consensus ci).
i=1

Each Di defined in (3.10) is ergodic, so

lim D = 17(i)k -- oo
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where 7t(i) is the normalized left eigenvector of Di corresponding to the eigenvalue at 1. Again,

we can apply Corollary 3.2 to obtain the probability of the subclass consensus. If subclass i starts

from initial condition uj[0], then at time kd it will reach the all-ones consensus with probability

D ku,[0] -+ 17r()'ui[0].

To summarize, we conclude the analysis of the binary influence process on a periodic irreducible

graph with the following statement.

THEOREM 3.11

For a given s[0], let ui[k] and 7r(j) be defined as above. The probability of a periodic irreducible

network graph reaching limit cycle (c1,... , cd) is H1~'_ pi where

01 if ci = 1

I - 7r,()Ui[0] if ci = 0

After convergence, the state of the periodic graph at any time k that is not a multiple of d

can be inferred from the limit cycle by cyclically shifting the states through (k mod d) steps.

3.6 General Network Graphs

3.6.1 Autonomous and Dependent Classes

This section analyzes the binary influence process on general network graphs. If the network graph

is irreducible, then it must be either ergodic or periodic, both cases of which we have already

dealt with in Secs. 3.4 and 3.5. We therefore assume for the rest of the section that the network

graph 1F(D') consists of multiple classes. We assume for simplicity that F(D') is a connected graph.

Otherwise, the following analysis can be applied to each component separately.

Recall from Sec. 2.1.1 that a class is a set of nodes within which all nodes communicate.

Any reducible graph (i.e., one having multiple classes) must have at least one autonomous class,

which is one that has only outgoing edges but no incoming edges, and at least one dependent class,

which is any non-autonomous class. For example, in Figure 2.3, the class on the left is dependent.

The important thing to note is that an autonomous class always settles into either a consensus

state or a limit cycle, because it receives no external influence. A dependent class, on the other

hand, may or may not settle down to either type of recurrent state. For example, consider the
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graph in Figure 3.5. The dependent class (enclosed in a dotted line) receives external influences

A C

B D

Figure 3.5: Example of a dependent class with two potentially conflicting external influences.

from sites A and B, both of which are separate autonomous. If A and B happen to have the same

status, then regardless of the initial status of sites C, D, and E, the latter will eventually converge

to a consensus. If A and B have different statuses, then the dependent class will never settle to a

steady state. Rather, the statuses of A and B will forever circulate randomly within the dependent

class.

More generally, classes on a network graph can be arbitrarily connected so long as they

are not cyclical. It becomes tedious, if not impossible, to list the general necessary and sufficient

conditions for a dependent class A to reach a limit cycle. This would not only depend on how A

is connected to the external classes, but also on what their periods are relative to that of A, and

ultimately on how those influencing classes are influenced themselves. However, we list here some

of the conditions that are necessary for A to reach a limit cycle or a consensus:

" Each of the classes influencing A must itself reach a limit cycle.

" For each of the classes influencing A, the period of the limit cycles has to divide that of A.

If these conditions are not met, then the state of the dependent class A, as well as the states of all

the classes downstream, will be perpetually random.

3.6.2 'Evil Rain' Model

One special form of binary influence model that we would like to pay special attention to is the

'evil rain' model. This model can potentially serve as an abstract mathematical representation of

propagating failures on a network. Unlike the previous cases of irreducible graphs, which always

settle to a consensus or a limit cycle, the evil rain model is concocted with the intention of repre-

senting certain features of real networked systems. A real system is neither permanently robust,
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nor completely non-functional. Take the power grid, for instance. At any time, a certain fraction of

the substations could be down for a variety of reasons such as failure maintenance, human error, or

repair from previous accidents. This variation of statuses across the network causes some parts of

the network to be more vulnerable to small failures than others. A large cascading failure is often

a result of a small initiating failure that happens to occur at a place and time where the conditions

allow it to spread widely. With this motivation, we introduce the evil rain model below.

The evil rain model is a special form of the binary influence model in which the network

graph consists of one dependent class and two single-site autonomous classes as shown in Figure

3.6. The two autonomous sites have a fixed status of 1 or 0 and are the sole suppliers of their

Network

Source of
failures

Source of
repairs 0

Figure 3.6: The Evil Rain Model.

respective statuses into the system. We think of the status-i site as the 'evil rain' that sprinkles

failures into the system. The status-i then circulates and spreads around until it is overwritten by

the status-0, which acts as the 'repairman' who runs around trying to fix the damage caused by

the spreading evil rain.

By numbering the sites so that the evil rain and the repairman are the first two sites

respectively, the influence matrix and the state vector of an evil rain model have the forms

D = 1F] s[k]= 0 (3.11)

_e1 e2 F_ __[k]_

where each e= [ei ... ej, ]' is a column vector of length n, the number of dependent sites. The

entry eij is the influence from the ith autonomous site to the jth dependent site. The matrix F

describes the connections within the dependent class. Since the statuses of the first two sites are

fixed, we can omit them from the evolution equations (3.1)-(3.2). The reduced equations of the
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evil rain model can thus be described as

i[k + 1] = Fi[k] + ei (3.12)

i[k + 1] = Bernoulli(p[k + 1]). (3.13)

The state i[k] will never reach a consensus or limit cycle, because the evil rain and the

repairman sites will keep randomly injecting l's and O's into the system. A basic question that

would be of interest for practical application is: what is the average number of sites in status 1 at

a given time?

To find the average number of sites in status 1 at time k, we take the expectation of (3.13)

and substitute into (3.12) to get

E( [k + 1]) = FE(i[k]) + el (3.14)

As long as some element of eij is strictly positive, the eigenvalues F will be strictly inside the unit

circle. Then (3.14) can be viewed as an linear system driven by constant input el from initial state

i[0]. The steady-state solution to this equation would exist can be easily shown to be

lim E(i[k]) = (I - F)-lei. (3.15)
k-+oo

As expected, this solution does not depend on ![0]. This is because the injection of l's and O's will

eventually "wash out" all information of the initial state. The expected total number of status-1

sites in steady-state is simply the sum of the expected status of each site. We therefore have the

following result.

THEOREM 3.12

In the evil rain model with at least some eij > 0, the expected number of status-1 sites in steady-state

is l'(I - F)--le.

3.7 Dual Process: Coalescing Random Walks

As already mentioned, the binary influence model is similar to a model that has been studied

under the label of voter models. These stochastic systems were first introduced along with their

dual process called coalescing random walks [25]. Since then the analysis of these two processes has

been significantly interlinked, as an observation in one system often provides insights into the other.

In this section, we will touch on coalescing random walks as an alternative way of understanding
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the binary influence model.

3.7.1 Alternative Descriptions of the Binary Influence Model

There are two different ways to describe a binary influence process. The first method, which is the

method we have used so far, is to describe the evolution of the sequence of state vectors {s[k]} as a

function of time. The other method, which will be the focus of this section, is the outcome matrix.

This alternative description of the binary influence model not only provide us with an alternative

view of the model, but also serve as the bridge between the model and its dual, the coalescing

random walk processes.

Recall that in the binary influence model the probability of a site on the network graph

F(D') being in status c at time k + 1 is equal to the sum of weights from the influencing neighbors

who are in status c at time k. An equivalent way of describing the influence is to say that a site

chooses a neighbor at random with a probability determined by the influencing weight, and then

copies the status of that site. The crucial observation here is that site i chooses its neighbor with

the same set of probabilities regardless of its current status or its neighbors'. In other words, at

each time step, site i decides which site it wants to copy from by rolling an n-faced die (where n is

the total number of sites) with a probability of face j showing up being equal to [D]ij.

The analogy with die throwing allows us to define the outcome matrix U as follows. Let U

have n rows, and an infinite number of columns. Each row corresponds to a site, and each column

corresponds to a time step. In the ith row of U, the entries are generated by repeatedly throwing

an n-faced die with a PMF specified by the ith row of the network matrix D. For example, if

2 .8 0

D .4 .3 .3 (3.16)

.2 .1 .7

then we will use the first row of D to generate the first row of U. To do that we will throw a 3-faced

die with a PMF of [.2 .8 0]. The results of the throws, say [2 2 1 2 ... ], are then entered as the

first row of U. Other rows of U are generated from the PMF's given by the corresponding rows of

D. Suppose the realized the outcome matrix is

2 2 1 2 ..-

U = 3 1 3 1 .-.. (3.17)

3 3 2 1--
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The interpretation of U = [uij] is that site i copies from site Ui3 during the transition from time

j - 1 to j. To find out the status of a site at a given time, we just have to trace the history of

copied sites to the left until we reach time 0. For example, if we assume the initial state of the

graph is s[0] = [a b c]', Figure 3.7 shows that at time 4, all sites have just converged to consensus

c. In the voter model literature, the matrix U is presented in a slightly different form called the

Initial Time
status 1 2 3 4

1 a 2 2 + 1 2 .. U
Nodes 2 b 3 1 3 1-

3 c 3-3 1 ---

Figure 3.7: Backward tracing on the outcome matrix.

percolation substructure [14, 21, 25, 34], but the essential ideas are the same as ours.

For a given outcome matrix U, let Pi,k be the backward path originating from site i at time

k and terminating at some site at time 0. For example, in Figure 3.7, the solid line denotes path

P2,4. Let iJu[k] be a length-n vector with the ith entry defined as

(,u[k])i = the site at which path Pi,k terminates based on realization U. (3.18)

Given a sequence of {7u[k]} as a function of k, we can obtain the binary influence process by the

relation:

si[k] = sj [0] where j = (77u[k]).

In particular, if TU[k] = jl, then all sites at time k are holding a status that is equal to the initial

status of site j; that is, the binary influence process has already reached a consensus by the time

k, and the consensus is s3 [0]. It will also imply that qu[k + m] j1 for all m > 0

From Figure 3.7, a few observations can be made:

" Suppose we trace to the left all paths that originate from each site at some fixed time. As

the paths move left, they tend to merge with each other so that the number of distinct paths

either decreases, or remains constant.

" If all the backward paths originating from the same time k have merged into one before reaching

time 0, then s[k] must be a consensus state. Even if they have not merged into one at the time
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0, s[k] could still be a consensus. To see this, consider a binary influence process with initial

state s[0]. Let A be the set of sites whose initial status is 1, let A, be the rest of the sites

whose initial status is 0. As long as every site in qu[k] lies in A, as depicted in Figure 3.8, then

time 0 time 1 time k

A A A

A VA A,C C C

Figure 3.8: A backward tracing for the influence process that reaches a consensus. All sites in qu [k]
is in A.

s[k] will have reached a consensus of all-ones.

9 Although the outcome matrix U and its corresponding percolation substructure extend in-

finitely to the right, and do not settle to constant values, the binary influence process defined

by U tends to have settled at some finite time. This is because backward paths originating from

a large time index have a good chance of merging into one (if there is a nonzero probability

that they could be merged) before they reach time 0.

3.7.2 Coalescing Random Walks

The coalescing random walk is another stochastic process defined on a network graph. By learning

about the dual process, we can better understand the binary influence model, particularly in the

study of the convergence time. Moreover, by establishing the binary influence model as the dual

of a variation of the "random walk" family, we have effectively linked this model to the more

mainstream literature in probability, thus allowing the possibility of applying known results about

random walks to further study the binary influence model.

The coalescing random walk (CRW) process is defined as follows. Assume we are given a

network matrix D, and its directed graph F(D) (not F(D')). At time 0, every site holds a black

dot. At every time step, the dot on site i hops to ones of its neighbors with the probability given

on the branch, just like transition of a Markov chain. The difference here is that we have all dots

hopping simultaneously. When two or more dots land at the same site, they coalesce into one, and

continue hopping, as shown in Figure 3.9.

Another way to define the CRW process is through the outcome matrix. Given a network
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A . >. B AB

O0e D D

time: 0 time: 1

Figure 3.9: Example of a coalescing random walk. The dots from A and B coalesce when they meet
in C. At the same time, the original occupants of C and D have hopped to somewhere else.

matrix D, we first generate an outcome matrix U = [uij] in exactly the same way we generated

(3.17). That is, we use the ith row of D as the PMF the generate the ith row of U. The entries of

U designate which dots hops to where and when. Specifically, if there is a dot present at site i at

time j - 1, then at time j, it is to hop to site uij. Using (3.17) as an example, if we would like to

know where the dot that started in, say, site 1 at time 0 has hopped to, then we trace the paths

forward in time, as shown in Figure 3.10. Let us define u [k] as a length-n column vector with its

Time
0 1 2 3

1 2 2/ 1-02 U
Nodes 2 3 1 3 1---

3 3 3 2 1-

Figure 3.10: The path shows the journey of the dot that starts from site 1.

ith element given by

(I[k])i = the location at time k of the dot that originally started from site i, based on realization U

For Figure 3.10, nu[1] = [2 3 3]', 4u[2 = [1 3 31', iu[3 ] = [1 2 2]', etc.

Thus, the CRW model is essentially the binary influence model running backwards. Their

common underlying machinery is the outcome matrices. Since all entries of U are independently

generated (although they are not identically distributed), any statistics of forward paths should be

equal to those of the backward paths. The relation between CRW and the binary influence model

can be stated as:

Prob(U is such that 7U[k] = v) = Prob(U is such that - [k] = v) (3.19)
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for any length-n vector v. The reason for (3.19) is as follows. Let A be the set of U such that

7 [k] = v, and let B be the set of U such that 4u[k] = v. For any U E B, consider a matrix

U2 which is equal to U1 except that the order of the first k columns are reversed. Then U2 E A

because qU2 [k] = v. Similarly, for any U3 E A, the matrix U4 with the first k columns reversed

must be in B. Hence, there is a one-to-one correspondence between the members of sets A and

B, and because reversing the columns do not change the probability of each outcome matrix, the

probabilities of sets A and B are equal.

This duality relation has been recognized by [25] for the voter model, which is a continuous-

time, infinite-grid version of the binary influence model, with uniform influencing weights. The

connection to CRW has been the key to the tractability of voter models, and has made it a favorite

choice among the various interacting particle systems (see Sec. 1.2 for more details).

Naturally, various results about the binary influence model can be interpreted in terms of

the CRW process. Theorem 3.6 implies that if F'(D) has an ergodic structure, then in the CRW

model all the random walks will eventually coalesce into one. If the graph is periodic with period

d, then the number of random walks will eventually be reduced to d different walks.

3.7.3 Application to Binary Influence Model

An immediate consequence of the duality between the binary influence model and the CRW model

is the proposition developed in this section. Essentially, the main result here is that if we increase

the number of l's in the initial state s[0], then we also increase the probability that a given group

of sites will all be in status l's at all time. While this statement seems straightforward, we do not

know of any obvious proof other than the following approach, whose surprising simplicity is largely

due to the insight from the CRW.

Let V denote the set of sites on a network graph, and B C V be a fixed subset of it. For

any subset A C V, define CA as a binary state vector in which all sites in A have a status 1. That

is, CA is a length-n whose ith element is a 1 if i E A, and 0 otherwise. Then let

B A
qA k] = Prob( all sites in B has status 1 at time k given that s[0] = CA). (3.20)

In all the discussions to follow, the set B will remain fixed. So we define qA [k] = qB [k] to reduce

the notational clutter. We emphasize that in general

qA[k] > Prob( s[k] = CB given that s[0] = CA) (3.21)
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because in (3.20) nothing is said about the sites that are outside of the set B, but (3.21) constrains

that they must be zero. A careful examination would reveal that

qA[k] = Prob( U is such that Vi E B(r/q[k])j c A ). (3.22)

The best way to understand (3.22) is perhaps through the backward traces on the percolation

substructure. Consider Figure 3.11, which depicts the backward traces similar to Figure 3.8. Recall

that for a given U and its percolation substructure, the state of B at time k can be found by tracing

the paths from all sites in B at time k to the left until time 0. Any U that counts towards qA[k]

must be such that those traces will end up completely in A, which is the set of sites whose initial

status is 1. With this picture, the following proposition almost becomes evident.

time 0

A

AC

time 1 time k

*-, B

Figure 3.11: Graphical Interpretation of (3.22).

THEOREM 3.13

For any subsets A, C c V,

qAuC [k] > qA [k] + qC [k] - qAnc [k]. (3.23)

Sketch of Proof: Consider the U's such that when we trace the paths from B at time k back

to time 0, they all end up in A U C. By definition, the "measure" (or the total probability) of

all such U's must be equal to qAuC[k]. On the other hand, any such U must fall into one of the

following four categories depending on where those backward paths terminate:

I: The paths completely terminate in A - C.

II: The paths completely terminate in C - A.

III: The paths completely terminate in A n C.

IV: The paths terminate at sites that cover two or three of the above cases.
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Since these four cases are mutually exclusive, the sum of the measures of U's from all four cases

must equal qAUC[k]. Now because the sum of the measures from the first three cases is equal to the

right-hand side of (3.23), we have achieved inequality (3.23) by dropping the measure from case

IV. F

Simple as it is, Theorem 3.13 lets us obtain a statement that would have been difficult to

do without the coalescing random walk argument. This following statement boils down to the fact

that if the binary influence model starts off with a larger initial set of I's, then the probability that

a given set of sites will be all l's will also be larger at all time.

COROLLARY 3.14

If R c S C V, then qR[k] <qs[k].

Proof. Applying Theorem 3.13 with A = R and C S - R, we get qs[k] > qR[k] + qs-R[k1 -

qsn(s-R)[k]. But since Rn (S - R) 0, qRn(s-R)[k] 0. And because qs-R[k] > 0, we have the

desired inequality. E

The message of Corollary 3.14 is very similar to that of eq. (3.5). Explained loosely in terms of

failures, both state that a larger initial failure will result in larger failure at all time. However,

neither statement is stronger than the other. Eq. (3.5) along with Proposition 3.1 provides an

quantitative probability of failure for each individual site. Corollary 3.14 above, on the other hand,

makes a statement about arbitrary sets of sites, but only provides bounds, not the exact probability.

3.8 Variations of Binary Influence Model

Recall that the binary influence Process consists of two evolutionary equations, which are

r[k+1] = Ds[k] (3.24)

s[k + 1] = Bernoulli(r[k + 1]). (3.25)

In this section, we briefly explore a variation of these two equations and explain why it may provide

a more realistic modeling of the cascading failure phenomena. Although the model to be proposed

is not tractable as the binary influence model, it, nevertheless, seem rather promising as a starting

point for further research.

We generalize the binary influence model by modifying the first equation (3.24) so that the
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system is now described by

r[k + 1] = f(s[k]) (3.26)

s[k + 1] = Bernoulli(r[k + 1]). (3.27)

where f(-) [fi(-) - f,(-)]' is a general function that maps the state vectors to the vector of

probabilities. The sequence {s[k]} is still a Markov process in some 2n-state Markov chain.

With the second equation being the same, it is still true that E(s[k]) = E(r[k]). More

importantly, Proposition 3.1 which states that

E(si[k] given s[0] ) = Prob( site i is in status 1 at time k given s[0] ).

still holds. Therefore, if we are able to obtain some recursion for E(s[k]) then we could solve for

the probability of a site being in status 1 for any desired time.

3.8.1 Status-Dependent Influence Model

One interesting variation of the binary influence model is the case where the edge weights on the

network graph vary as a function of a site's status. This variation could model a situation where a

site is influenced differently when it is in status 0 from when it is in status 1.

As a potential application, consider the following hypothetical scenario of a power grid.

Suppose the sites can be classified into two kinds - the power substations and the repair centers

- as shown in Figure 3.12. In normal operation (status 0), a substation's status depends on other

repair
centers

substations

When in status 0 When in status 1
(normal) (failed)

Figure 3.12: Example of status-dependent influence model. A substation receives influence from
different sets of sites depending on its status.

neighboring substations, whose own statuses can vary over time. However, once the substation

goes down (status 1), it requires the good influence from the repair center to bring it back up. This
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means at each substation site, there are two sets of incoming edges to be applied under different

statuses.

We now formulate the status-dependent influence model as follows. Assume that we are

given two stochastic matrices Do = [d0g] and D -= [dJ]. When site i is in status 0, the influence it

receives from site j is dp.. Similarly, when it is in status 1, the influence it receives from j is d1 .

The evolution equation would then be

r[k + 1] = (1 - s[k]) o (Dos[k]) + s[k] o (Dis[k]) (3.28)

s[k + 1] Bernoulli(r[k + 1]), (3.29)

where o denotes the Hadamard, or entry-wise product.

There are a variety of questions one can ask about this process. Again, the all-ones and

all-zeros are clearly two of the recurrent states. As for the probability of status 1 of a site, we need

a recursion for E(s[k]). To get it, we first rewrite (3.28) to get

r[k + 1] = Do s[ki + ((s[k]s'[k]) o D) 1 (3.30)

A
where D = D1 - Do. Note that when Di = Do, the second term in (3.30) vanishes to reduce to

binary influence model. After taking the expectation, we finally have

E(r[k + 1]) = E(s[k + 1]) = Do E(s[k]) + (E(s[k]s'[k]) o D) 1. (3.31)

The appearance of the term second-order term E(s[k]s'[k]) is where the difficulty arises. If we try

to obtain a recursion on the second-order term by multiplying eq. (3.30) with itself transposed,

the recursion would involve terms up to the fourth order, and the recursion for the fourth order

would involve terms up to the eighth order, and so on. It appears that some additional analysis is

required just to numerically obtain the value of E(s[k]) for arbitrary k.
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4.1 Introduction

We now introduce the General Influence Model, which is one of the main contributions of this

thesis. The general influence model has the structure of networked Markov chains, with the special

property that the state-transition probabilities of each chain depend in a linear way on the statuses

of its neighbors.

As with the binary case of the previous chapter, the general influence model is created to

analyze the dynamics of random propagation on graphs. However, the general version includes one

significant generalization of the binary case that makes it far richer: it allows each site to have

an arbitrary internal Markov chain. With this flexibility, we can use the influence model to study

many more types of interacting networks. Sites on the graph are no longer constrained to be of the

same type. For instance, if the network is being used to model a supply chain, we can have sites

that represent factories, others that represent distribution centers, and yet others that represent

consumers. By analyzing the influence model, one can gain an understanding of how these nodes

affect each other.

The general influence model is very amenable to theoretical analysis. In our discussion,

we will define a new class of matrices called influence matrices that arise as a generalization of

stochastic matrices. The influence matrix describes the first-order propagation of the influence

model, capturing the dynamics of the status probabilities of the individual sites. In later chapters,

we will show how to obtain higher-order descriptions of the influence model, which capture the

dynamics of the joint probability of any selected group of nodes. As we will see, this higher-order

analysis will also serve as the theoretical bridge between the influence matrices and the very large

state-transition matrix that governs the entire network, viewed as the master Markov chain.

Among models developed in previous research, the one that is most similar to the influence

model is perhaps the voter model. However, as explained in Section 1.2, the main results on voter

models pay more attention to graphs with infinite size and regular lattice structure. Our binary

influence model is already different from the voter model in certain ways. The general influence

model, which is more versatile and includes much greater modeling flexibility than the binary case,
represents an even greater departure from the classical voter model.
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4.2 Model Definition

4.2.1 Homogeneous Influence Model

As the first step in generalizing the binary influence model, we will study the homogeneous influence

model, where each site has an identical Markov chain (though possibly initialized differently from

site to site). To motivate the model, consider the following scenario. A power grid consists of

many power plants, and each one can be in one of three statuses at any given time: normal,

alert, or failed. In the absence of interaction with others, a power plant's status can plausibly be

modeled as evolving according to the Markov chain F'(A) drawn in Figure 4.1. However, due to

normal alert failed

Figure 4.1: A 3-status chain modeling a power plant's operating conditions

the grid connection, power plants are linked up through a global network structure. These network

interconnections cause the state-transition probabilities of each plant to depend not only on the

plant's current status, but also on those of its neighbors. How might we represent the effect of the

network connections on the evolution of each site's internal status? Figure 4.2 intuitively explains

the approach of the homogeneous influence model.

D'

A

10 0

Figure 4.2: A homogeneous influence model.
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In this figure, one can think of the entire network as having two levels of structure: the

network level and the local level. At the network level, nodes are called sites and their connections

are described by a network graph F(D'), where D is a stochastic matrix. Every site has an internal

local Markov chain F1(A), which is the same at every site (hence a "homogeneous" influence model).

At any given time, a site is in one of the statuses of F(A), and its current status is indicated in our

figure by a '1' in the node corresponding to that status. For the example in Figure 4.2, the current

status of the site on the left is 'normal,' while the current status of the one on the right is 'alert.'

The status of every site evolves with transition probabilities that depend both on its current status

and the current statuses of the surrounding neighbors. Our specification of the rules that govern

the evolution of the status will be described next.

Let D and A be stochastic matrices of dimensions n x n and m x m respectively. In this

case, we say that there are n sites, connected by the network graph 1F(D'), and within each site is

an m-status Markov chain 1F(A). At time k, the status of site i is represented by a length-m status

vector, an indicator vector containing a single 1 in the position corresponding to the present status,

and 0 everywhere else:

s'[k]l= [0 ... 010 ... 01.

This interpretation is exactly the same as that used in our description of a Markov chain (see Sec.

2.3). Likewise, let pi[k] denote the PMF vector governing the status of site i at time k. Let the

network state matrix, or simply the state matrix, S[k] be defined as a matrix that stacks up all the

status vectors of the network sites as its rows. The (network) probability matrix P[k] is similarly

defined:

s'[k] p'[k]

S[k] P[k] .(4.1)

s'[k] p'[k]

The evolution equations of the homogeneous influence model are now specified as:

P[k+1] = DS[k]A (4.2)

S[k + 1] = Realize(P[k + 1]), (4.3)

The operation Realize(.) performs a random realization for each row of P[k + 1] in the same

manner as (3.2) in a binary influence model. The initial state S[0] is assumed to be realized by

some distribution that is independent of the evolution above. Each row of P[k + 1] is a valid PMF
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because

P[k + 1]1m = DS[k]Alm = 1n,

where l is a vector of dimensional f whose entries are all 1.

To get an intuitive understanding of (4.2), let us consider each row of P[k + 1] separately:

P'i[k +1] =dils'1[k] A + --- +dins'[k] A

If all sites were 'disconnected,' i.e., evolved independently of each other, then D = In. This means

dii = 1 and dij = 0 for j # i so that (4.4) reduces to

p'[k + 1] = s'[k]A.

That is, pi[k + 1] represents the next-status PMF of site i exactly as it would in a regular Markov

chain. In contrast, when the sites are connected according to 1'(D') and D is an arbitrary stochastic

matrix, eq. (4.4) reveals that site i uses a convex combination of these PMF's from itself and all

neighboring sites to get its actual next-status PMF. The greater dij is, the greater the influence j
has on the next status of site i. Therefore, one can think of dij as the amount of influence that

site j exerts on the evolution of i. For this reason, D will be referred to as the network influence

matrix and A the local state-transition matrix.

An alternative evolution for each si [k + 1] so that the status probabilities pi [k + 1] remain

unchanged at every step can be described as follows. At the end of time step k, site i chooses the

site it will be influenced by according to PMF {dii, di2 ,... , din }. If the chosen site is, say, j, then

site i performs another realization for its actual status at time k-+ 1 using the PMF s3 [k + 1]A; that

is, site i assumes the status of site j while obtaining its next-status PMF. This two-step realization

effectively yields the same pi[k + 1] as that in (4.4).

A careful examination of the homogeneous influence model shows it to be a combination

of a binary influence model and Markov chains. Consider eq. (4.2), the first equation of the

homogeneous influence model: P[k + 1] = DS[k]A. Each column of S[k] can contain an arbitrary

number of l's, but there must be exactly a single entry of 1 in each row. The product DS[k]

can be viewed as calculating the probability vectors of m separate binary influence models, one

for each column of S[k]. On the other hand, by treating each row of S[k] as a status vector of a

Markov chain, the product S[k]A corresponds to calculating n separate next-status PMF's. The

homogeneous influence model is in this sense a most natural combination of both models.
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4.2.2 A Different Form

The homogeneous influence model (4.2)-(4.3) can be rewritten so that it is in the form of matrix-

vector multiplication instead of matrix-matrix multiplication. This change of form will eventually

afford us not only the convenience of analyzing a single matrix as opposed to two (D and A), but

also the ability to generalize the model so that each site can have an arbitrary Markov chain.

With si[k] and pi[k] defined as in Sec. 4.2.1, let the state and probability vectors be defined

as

si[k] P[k]

s[k] = [k]= 1 (4.4)

-sn[k| _Pn[k ]

Since each si[k], as well as each pi[k] is a length-m column vector, both s[k] and p[k] are column

vectors of length mn. These different representations are related to S[k] and P[k] in (4.1) by

s[k] = vec(S'[k]) p[k] = vec(P'[k]),

where vec(.) is the notation for vector stacking, as described in [27], p. 244, for example. Let the

influence matrix be defined as the Kronecker product of D' and A:

d11 A ... dn1 A
A A

H D'o A (4.5)

d1nA ... dnnA

Then equivalent expressions to (4.2)-(4.3) are

p'[k-+1] = s'[k]H

s'[k + 1] = MultiRealize(p'[k + 1]).

The operation MultiRealize(p'[k + 1]) treats each block of PMF's within p'[k + 1] separately,

independently realizing the new status vectors block by block.

If D = I, then the influence model reduces to n independent Markov chains, because all

sites are disconnected from each other. If A = 12, then the influence model reduces to the binary

influence model.
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We now generalize the influence model one step further so that each site is allowed to have different

Markov chains. For instance, if the network network represents the power grid, then in addition to

the power plant sites, some sites may represent the loads, whose internal status characterizes the

current demand level such as "high" or "low," as shown in Figure 4.3.

high low
norma ale failed

Figure 4.3: general influence model

4.3.1 Generalized Kronecker Product

Before we present the general influence model, we need to define a new notation that generalizes

the Kronecker product. Let A be some r x t matrix and let B be some matrix. Recall that A 0 B

denotes the regular Kronecker product:

aiiB ... aitB
AAB

[ar1B ... artBj

For more background on regular Kronecker product, see [27], Chapter 4. We generalize this notation

so that each matrix B in the (i, j)th block can be different. Specifically, we assume that a set of

dimension-compatible matrices {Bij 11 < i < r, 1 < j < t} is given, where Bij,... Bit all have the

same number of rows, and B 1 ,... , Bri all have the same number of columns, for each i. We then

define the generalized Kronecker product as

aB - - aitBit

A& {Bi} =I

ariBri -.. artBrt
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In the special case where Bij = Bi for all j, we write the above product more simply as A 0 {B}.
One form of usage that appears especially often later is the vector product

Viwi

oVnwn_

where v = [vi - va]' and every wi is a column vector.

4.3.2 Model Definition

Let mi be the order of the local Markov chain at site i for 1 < i < n. Let si[k] and pi[k] be the

status vector and the next-status PMF vector of site i at time k exactly as defined above, with

the only difference being that these are now vectors of length mi. Let s[k] and p[k] denote the

state and probability vectors defined the same way as in (4.4); both are column vectors of length

(mi + - -- + Mn).

For each pair of sites i and j, the state-transition matrix Ai3 is an mi x mj nonnegative

matrix whose rows sum to 1, i.e., Aijlmj 1 m. The more general form of influence matrix is

defined as

d 1 An ... dn1 A1 n

H A D' & {Ajj }=(4.6)

Ld~nAn1 - dnnAnn_

The evolution equations of the influence model are defined as

A
p'[k+1] = s'[k]H (4.7)

s'[k + 1] = MultiRealize( p'[k + 1]) (4.8)

where MultiRealize(-) operates as before except that it now takes into account the different block

lengths. Again, the initial state s[] is assumed to be independently realized by some given distri-

bution. The influence process is the sequence of random vectors {s[k]} generated by the influence

model in (4.7)-(4.8).

By looking at the ith block of p'[k + 1] in (4.7) closely, we find a result similar to (4.4):

p'[k + 1] = dis'[k]A1j + - + dins[k]Ang. (4.9)
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That is, each term s [k]Ajj on the right-hand side of eq. (4.9) produces a length-mi valid PMF,
and p' [k + 1] is created from a convex combination of all such PMF's.

Again, an equivalent way of obtaining each si[k + 1] is by realizing it in two steps. Site i
first chooses a site to be influenced by. If the chosen site is j, then site i performs the actual status

realization based on the PMF s'[k]Aij. The combined result is an effective PMF given in (4.9).

4.3.3 Motivating Questions

Now that we have defined the influence model in its full generality, many challenging questions

arise as to how to analyze such a model. As a start, we recognize that the influence process is a

discrete-time, finite-state Markov process itself. This is because the next-step probability vector

p[k + 1] depends on the current state and nothing else from the past. Let us denote the Markov

chain that describes this master process as 1F(G), where G is its state-transition matrix. Each

possible outcome of s[k] is a status in the chain 1(G). The challenge in analyzing G arises from

the fact that its dimension equals H i mi, the product of the dimensions of the local Markov chains,
which means that the size of G grows exponentially in the number of sites. Nevertheless, despite its

extremely large size for a network of moderate size (n) and complexity (maxi mi), G should bear

an intimate relationship with H, since it is entirely from H that G is defined.

There are at least three crucial aspects of G for which we want to gain a thorough under-

standing. First, in order to determine what the states could be eventually, we need to understand

the structure of 1(G) enough to identify its recurrent classes. This is an interesting problem not

only because 1(G) typically contains so many states that it is impossible to draw a graph for it, but

also because its interconnections will generally be dense regardless of the network structure F(D').

This prevents us from even listing all the entries of G, let alone analyzing it in any way. Thus, the

only practical way of understanding the structure of G is through a careful study of the structure

of the graph 1F(H). Section 4.4 will show that for an irreducible 1(D'), the recurrent classes of the

master Markov chain F(G) can be inferred from the structure of the graph 1F(H).

A second set of quantities we could learn from G if we had this large matrix are the steady-

state probabilities of the different states. Knowing these probabilities will enable us to quantify

the likelihood of the collective status of the sites (i.e., the global state) in steady state. Again, the

straightforward scheme of obtaining the dominant left eigenvector of G is impossible due to the size

of the problem. We will show how H, as well as its higher-order forms, can provide information on

these steady-state probabilities.

Finally the dynamics, or specifically, the eigenvalues of G help us understand the time-
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domain behavior of the influence process. For instance, if we are running a Monte Carlo simulation

of the influence model, then how long should the simulation be in order to achieve a steady-state

behavior? As we will see, the eigenvalues of G can be found from H and its higher-order forms.

In what follows, we will study these three fundamental aspects of G through both graphical

and algebraic means. In Sec. 4.4, we begin by exploring the recurrent classes of 1(G) through com-

putations on the graph 1(H). Just as one would typically first delineate the transient and recurrent

classes in a Markov chain before analyzing its state-transition matrix, we will start our analysis of

the influence model through graph analysis in order to obtain an intuitive understanding of this

system. We will show that the recurrent classes of the Markov chain 1(G) can be characterized by

the structures of the influence graph 1(H).

Later, in Chapter 5, we embark on our detailed study of the matrix G. This will include

the formal construction of G, elucidation of its explicit connection to H, and determination of

their common eigenvalue and eigenvector structures. This algebraic exploration of G will give us

insights into the dynamics of the master chain, which, as we will show, has an intuitively pleasing

correspondence with the dynamics defined by H. Through the relation between G and H, we can

derive partial information regarding the steady-state probabilities without having to construct or

perform computations on G. Finally, in Chapter 6, the higher-order analysis of the influence matrix

will further elucidate properties of G and provide us with a method to obtain stronger information

on the steady-state probabilities, though with progressively increasing computational costs.

4.4 Determining Recurrent Classes of F(G) by Analysis of F(H)

This section deals with one of the the most basic questions regarding the influence model: for a

given influence model, what state or group of states could the influence process {s[k]} eventually

settle to? As the master Markov chain F(G) is one in which each node represents a possible outcome

of s[k], we are asking the following equivalent question: what are the recurrent classes of 1F(G)?

In this section, we will characterize the recurrent classes of 1F(G) by analyzing the structure of

the graph 1F(H). This type of analysis can be very practical because it allows one to understand

the recurrent classes of 1(G) without having to actually construct G, which is usually very large,

as mentioned earlier. Indeed, as the examples below show, for moderate number of sites one can

quickly describe the recurrent classes simply by inspecting 1(H). In the following, a recurrent state

of an influence process is a state in which the corresponding status of the master chain 1(G) is a

node in some recurrent class (of 1F(G)). Otherwise, it is called a transient state.
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4.4.1 Motivating Examples

Let H = D' 0 {A 2j} be the influence matrix defined in Sec. 4.3. We shall refer to I'(H) as the

influence graph. Since every node on 1(H) belongs to some local Markov chain, it is called a status

node. The network graph is defined as r(D') as usual, and its nodes are referred to as sites. We

assume throughout that 1F(D') is a connected graph, because if 1F(D') has multiple components,
then each disconnected component would produce an influence graph of its own, and we can then

apply the analysis below to each graph separately.

Recall that even in the case of binary influence model, different configurations of the network

matrix D alone can already give rise to a number of very different steady-state patterns, for instance,
the consensus, limit cycles, or the 'evil rain.' Here with the freedom in choosing both D and all

the n 2 state-transition matrices Ai3 's, the possibilities seem almost too many to catalog. Thus,
before any formal analysis, let us first motivate the study with a few examples. In each example,
we will show how the recurrent classes of 1(G) can be found from the structure of the influence

graph 1(H). These examples will also reintroduce the notions 'hopping dots,' a concept that will

greatly help us in visualizing later results.

Example 1: (Homogeneous Influence Model) Let H = D' 0 A be a homogeneous influence

matrix whose numerical value are as shown:

.5 1

.2 .1 .2 .4 .2 .4

5 .5 1
D' = A .4 .2 .4 H = (4.10)

.2 .1 .2

.5

The corresponding graphs 1F(D'), 1(A) and r(H) are in Figure 4.4. In the graph 1F(H), we also

draw the boundary around the statuses that belong to the same site. Our convention throughout

is that sites and site boundaries are drawn with curved squares or curved rectangles, while the

statuses are drawn with circles.

In Figure 4.4, observe the upper site boundary of F(H), which encloses statuses {1, 2, 3}. If

we remove all the site-crossing edges, then we would get a graph with exactly the same structure

as F(A) on the left. The fact that 1F(A) is a subgraph of F(H) is entirely due to the fact that in

1F(D') site 1 has a self-loop. In contrast, site 2 of 1F(D') does not have a self-loop. Therefore, if we

consider the lower site boundary of 1(H), and remove all site-crossing edges, then we would be left
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1 site H

4 5) 6
1 - 2 3

A
status

Figure 4.4: Example of a homogeneous influence graph and its constituents.

with only three disconnected statuses {4}, {5} and {6}.

To picture the influence process graphically, it is helpful to recall the "hopping dot" inter-

pretation introduced in Example 2 of Sec. 2.3. Unlike the Markov process, where there is only one

dot in the entire system, here there is one dot within each site boundary. The current position of

a dot indicates the status of the site within which it lies. The positions of the dots also indicate

where the "1" entries are in the state vector s[k]. For instance, in Figure 4.5 the positions of the

dots correspond to the state s[k] = [0 1 0 0 1 0]' (the index of each status is shown in I'(H) in

Figure 4.4).

Figure 4.5: State s[k] [0 1 0 0 1 0]'

A status has a positive probability of being occupied by a dot in the next step if and only

if it is currently one step away from any dot, regardless of whether the dot is within the site or

outside. Wherever a dot is, it is always faced with a mixture of two kinds of outgoing edges: those

that do not cross the site boundary, and those that do. Any of the non-site-crossing edges can be

traversed by the dot with positive probability. The dot cannot traverse a site-crossing edge, but

can "influence" the status at the other end of the edge by increasing the probability that this status

becomes occupied by the dot in the other site; this is the essence of influence that a site exerts on

its neighbors. Every dot is evidently always trapped within its site boundary.
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A dot may hop to a non-adjacent status within its site if it receives external influence. For

instance, consider Figure 4.6 in which the filled dots indicate the state s[k] = [0 0 1 1 0 0]' (the

numbering is still as in Figure 4.4). In the following step, it is possible for the lower dot to hop to

status 6 due to the influence from the upper dot. Once the dot has hopped, the system will be in

Figure 4.6: Example of a dot hopping to a non-adjacent status.

state [0 0 1 0 0 1]' and will remain there, proving that in the master chain 1(G), this new state is

recurrent and the original state is transient.

There is an important further point that can be made from this example. Notice that before

the lower dot has hopped, the dots are in statuses 3 and 4. If there were no network connections

and if each site boundary contained a local copy of F(A), both statuses would have been recurrent

with respect to their local chains. The fact that [0 0 1 1 0 0]' is transient in the master chain shows

that even if both dots are in statuses that would have been recurrent with respect to their local

chains, the entire system might still be in a transient state of F(G).

Finding the recurrent classes of the influence process is equivalent to finding all the possible

configurations in which the dots can end up eventually. For this example, we can determine the

recurrent classes simply by inspection, and they are as shown in Figure 4.7. Here, each recurrent

class comprises a single state (or a single status of the master chain F(G). L

Figure 4.7: Recurrent states of Figure 4.4. The location of the solid dot is the final status of that
site.

Example 2: In the previous example, the two recurrent states of F(G) both involve statuses that

would have been recurrent with respect to their local chains. This example will provide a contrast

to the previous example by showing that a status that is transient with respect to its local chain
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can be occupied by some dot in the recurrent classes of F(G), provided that the influence matrix

H is not homogeneous. Suppose the different component matrices are

1 1
2 1

-i
1]

1 1
A11 = --

2

1
1

1
11

iJ
A _ 1

A22 - 2

L1

1
1
1

1 11A 12 = A 21 = I3,

which results in the following influence matrix:

1
H = -

4
(4.11)

Figure 4.8 shows the structure of F(H). Using the hopping dot analogy, if the dot in the upper site

1 2 3

4 5 6

Figure 4.8: F(H) for H in (4.11).

drifts to status 3 (as it does with positive probability), then it will cause the lower dot to occupy

status 6 with positive probability, even though 6 is a transient status of the local chain in the lower

site. Similarly, if the lower dot drifts to status 4, it causes the upper dot to be in status 1 with

positive probability even though 1 is a transient status of the local chain in the upper site. Hence,

the recurrent states of F(G) can involve both 1 and 6. For this example, it is not hard to see that

the recurrent class of 1(G) consists of all the 9 possible states of this system (3 possible locations

for the upper dot, multiplied by 3 for the lower dot). In other words, 1(G) is an irreducible (and

indeed, ergodic) Markov chain. 0

Example 3: In both previous examples, the r

recurrent with respect to their local chains.

case; a status that is recurrent with respect to

ecurrent classes of 1(G) involved statuses that were

We show in this example that this not always the

its local chain need not be involved in any recurrent
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class of 1(G). Let there be two sites, and let the order of the local chains be 3 and 1 respectively.

Suppose the matrices are given as

[.5 .~]D I' = * 5.5 .5

The matrices Aij can be easily inferred from D' and H and can be verified to have each row

summing to 1. The network graph 1F(D') is irreducible, while the influence graph 1(H) is as in

Figure 4.9a. By inspection, the only recurrent state for 1(G) is shown in Figure 4.9b. As we can

1 2 3

4

(a)

(

(b)

Figure 4.9: (a) Status indices (b) Recurrent state.

see, even though status

F(G). D

1 is recurrent within the upper site, it is not part of the recurrent state of

Example 4: (Binary Influence Model) As mentioned in Sec. 4.2.2, the binary influence model

is a special case of the homogeneous influence model where the local chains have state-transition

matrices A = 12. In Chapter 3, we explored the binary influence model using only the network

graph 1P(D'). The influence graphs of these models have the unusual property that F(H) is always

disconnected, regardless of whether the network graph is connected. For instance, let

.5

.5 ,and H=D'0I2=

0j

.2 .5 .5

.2 .5 .5

.4 0 .5

.4 0 .5

.4 .5 0

.4 .5 0
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Their graphs are shown in Figure 4.10. The structure of 1(H) simply consists of two identical but

H sites
D 2

3 ) 5)

Figure 4.10: The influence graph for a binary influence model.

disconnected graphs, one for status "0" and the other for status "1", and each with the structure

of 1F(D'). This structure is obtained regardless of the structure of P(D'). From this figure, it is not

difficult to see that when all the dots reside on the same subgraph, they would always remain there,

which is equivalent to the binary influence process having reached a consensus. It is less obvious,

however, that the consensus states are the only possible recurrent states for all ergodic 1F(D') -

though we have confirmed that to be the case in Chapter 2. EL

4.4.2 Basic Relations Between F(D') and F(H)

At this point, we can begin our formal analysis of the recurrent states. As the previous examples

show, the results will depend on the structures of 1F(D') and 1F(H) simultaneously. The first set of

results, developed in this section and the next concerns the basic relations between the topologies

of F(D') and 1F(H). Based on these results, Sec. 4.4.4 describes the recurrent states for the case

of irreducible network graphs. Then in Sec. 4.4.7 we briefly outline the case of arbitrary network

graphs.

We will now describe the relation the classes on 1F(D') and those on F(H). For any site i on

the graph 1F(D'), let #(i) denote the set of statuses on F(H) that are enclosed within the boundary

of site i. For instance, in Figure 4.4, #(1) = {1, 2, 3}. In Figure 4.10, #(2) = {3, 4}. The following

propositions lay out some basic relations between the paths on r(D') and those on 1(H).

LEMMA 4.1

An edge (ij) on 1F(D') exists if and only if there exists an edge on F(H) from each x G #(i) to

some y E q(j).

Proof. By definition, the fact that an edge (i, j) exists on F(D') means dj z 0. Now the paths
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from the statuses in 0(i) to those in 0(j) on F(H) are described by the (i,j)th block of H (see

eq. (4.6)) which is djjAij. Since the rows of Aij sum to 1 by definition, there must be at least one

positive entry in every row of Aij. By extension, there is at least one positive entry in every row

of djiAij as well, because dji ? 0. Therefore, for any x E 0(i), in the row of H that corresponds to

x, there is at least one positive entry to some position y E 0(j), implying that edge (x, y) exists on

F(H). The converse can be shown similarly.

COROLLARY 4.2

If on 17(H) there exists an edge -y from some status in 0(i) to some status in 0(j), then every status

in 0(i) has an edge to some status -though not necessarily the same one- in $(j).

Proof. If edge -y exists, then the corresponding entry of H must be nonzero, which implies that dji

is nonzero. Then we can apply Lemma 4.1 to get the desired result. D

COROLLARY 4.3

A path on 1(D') from sites i to j exists if and only if for any status x G 0(i), there exists a path

on F(H) from x to some status in f(j).

Proof. This is proved by repeatedly applying Lemma 4.1 to each edge on the path from i to j. l

Now that we have established the basic results on paths, let us move further to the issues of

classes. Recall that a class is a set of nodes that communicate. As a result of Corollary 4.3, if D is

reducible (has multiple classes), then so is H. This is because if site i does not have a path to site

j on 1F(D'), then no status in 0(i) can have any path to any status in #(j). However, the converse

is not true; if H is reducible, then D may or may not be reducible. For instance, consider F(H)
from Example 1, which is repeated in Figure 4.11. The classes of F(H) are enclosed in the ovals.

classes

1 1 2 3

HD'H

24 5 6

Figure 4.11: Classes of 17(H) from Example 1.
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Even though 1F(H) has 3 classes, 1F(D'), which is shown on the left, has only 1 class. As another

example, in Figure 4.10 1F(H) has 2 classes, but F(D') has only 1 class.

4.4.3 Paths and Probabilities

The previous section focuses on the structural properties of 1(H) and F(D'). In this section, we

will relate those properties to probabilities. Although the influence model in consideration now

is more general than the binary version of Chapter 3, many of the following results are still very

similar. Hence, some of the results below are simply stated without the proofs. Readers can refer

to Sec. 2.3 and 3.3.1 for explanations.

LEMMA 4.4

E(s,[k] I s[0]) Prob( status x will be occupied by a dot at time k I s[0])

Proof. Because sx[k] = 1 when x is occupied, and 0 when it is not, its expected value must equal

the probability of occupation.

THEOREM 4.5

E(s'[k] I s[0]) = E(p'[k] I s[0]) = s'[O]Hk (4.12)

Note that Theorem 4.5 implies that E(s'[k]) = E(s'[0])Hk.

COROLLARY 4.6

Let x and y be any two statuses on F(H). If under the initial state s[0], the status x is occupied

by a dot, and if there is a path of length exactly k on F(H) from x to y, then there is a positive

probability that status y will be occupied by some dot at time k.

Proof. If x is occupied at time 0, then sx[0] = 1. By Theorem 2.1, if a path of k steps from x to

y exists then [Hk]xy > 0, which means E(sy[k] I s[0]) = [s'[0]Hk] > 0. Then by applying Lemma

4.4, we have proved the claim. El

Although this last corollary follows formally from the two preceding propositions, it deserves

a careful intuitive explanation. In Corollary 4.6, the destination status y might be in a different site

from x. Since no dot can cross any site boundary, the reason that y can be occupied is not because

the dot at x hops along the path until it reaches y, but rather, because x exerts influence along
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the path until y is occupied. For instance, consider Figure 4.12. Suppose, as shown in (a), there

exists some path from status x in site A to status y in site B (all other edges are omitted). First

the A-dot hops along the path until it reaches its boundary. Then, in (b), it exerts the influence

on the status in site B that is adjacent to it and on the path. In the following step (c), the B-dot

hops from wherever it is onto this adjacent influenced status. Finally, the B-dot continues down

the path until, with positive probability, it reaches the destination y at time k.

(a) (b)

A B
jx 0

(d) (c)

Figure 4.12: Intuitive explanation for Corollary 4.6.

4.4.4 Irreducible Network Graphs

We first analyze the recurrent states of irreducible (i.e, single-class) network graphs. From a

practical point of view, the irreducible case is also the most important one because many large

networks in real-life tend to be irreducible. The more edges in a network, the more likely that it

will be irreducible.

The fact that F(D') is irreducible does not mean that F(H) will also be irreducible. When

F(D') is irreducible, then all its sites communicate. Translating to 1(H) by Corollary 4.3, this

only means we can go from any status in any given site to some status in any desired site. This

is still not sufficient to conclude anything about the reducibility of F(H). For instance, in Figure

4.11, r (D') contains 1 class, but 1(H) has 3; classes {1, 4} and {3, 6} are recurrent, while {2, 5} is

transient. On the other hand, in Figure 4.8 of Example 2, F(H) is irreducible just like its r(D').

Global and Local Classes As explained earlier, finding the recurrent states of 1F(G) is equivalent

to finding all the possible configurations in which the dots can end up on its influence graph 1F(H).

We thus expect that the recurrent states of 1F(G) can be described in terms of the structure of 1(H)

and the hopping dots. Thus, we now turn our attention to the study of the classes on 1F(H) and
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Transient Recurrent

Local {2} {1}, {3}
Global {2,5} {1,4}, {3,6}

Table 4.1: Classes of the graph in Figure 4.11

their relations to the structures of the local chains F(Asi).

A set of statuses is a global class if it is a class with respect to F(H). A global class is globally

recurrent if it is recurrent with respect to F(H). Otherwise, it is globally transient. The influence

graph 1(H) always contains at least one recurrent class, because all finite directed graphs do.

Let us for the moment disregard all the edges that cross the boundary of a particular site i

and only focus on the subgraph of IF(H) that lies strictly inside it. Because H = D' 0 {Aij}, this

subgraph is described by F(diAgi). When dei > 0, we say that the ith local chain exists. When

dii= 0, this subgraph is simply a set of disconnected statuses. When the local chain exists, we call

a set of statuses a local class if it is a class with respect to the local chain IF(di2Agi). A local class

can be locally recurrent or locally transient with respect to its own chain. For example, in 1F(H) of

Figure 4.11, only the upper local chain exists, and the classes are as in Table 4.1.

Because a class must include all the statuses that communicate with each other, a global class

always includes a whole local class. That is, if any global class -whether transient or recurrent-

has a status in common with any local class (whose local chain exists), then that entire local class

must be a subset of the global class. Also, by definition, in a globally recurrent class one can take

any path from any status on it to any other status (even those outside its site boundary), and be

guaranteed that there is a path back to the starting status. This means if a globally recurrent class

contains a status x that belongs to local chain i, then regardless of whether x belongs to a locally

recurrent or transient class, that globally recurrent class must contain at least one locally recurrent

class from local chain i.

Classes in Homogeneous Influence Models We now take a diversion to focus on the special

case of homogeneous influence models. It turns out that for these models, there is a special relation

between the local and global classes, as suggested by Table 4.1. Each global class on a homogeneous

influence graph is actually composed of local classes that are images of one another from different

sites. For instance, in the above table, the global class {1, 4} is made up of statuses 1 and 4, both

of which are the "left" recurrent status of 1(A). The set {1, 6}, which mixes the "left" and "right"

recurrent statuses, is, on the other hand, not a global class. We formalize this observation and

characterize the global classes on homogeneous influence graphs as follows.

On the graph 1(H) of a homogeneous influence matrix H = D' o A, the subgraph that lies
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strictly inside the boundary of site i is described by 1(diiA). Every status in 1F(diiA) is the unique

image of a particular status in 1(A). For example, in Figure 4.4, status 1 in 1(A) has two images

in F(H), one inside each site; its image in the top site is status 1, and its image in the lower site is

status 4. For a status x in 1(A), we denote its image in site i by x(j). The definition of an image

extends to sets of statuses naturally. For example, in Figure 4.4, the set of statuses {5,6} in 1(H)

is an image of the set of statuses {2,3} in IF(A).

Suppose we are given a path p = (p, = x, p2 ,.- ,Pr z) that connects statuses x to z on

IF(A). Also, we are given another path q = (qi = i, q2,... , qr k) connecting sites i to k on r(D').

Note that p and q have the same length of r - 1. We call a path s = (s 1 ,... , sr) on 1F(H) a product

path of p and q, denoted s = p o q, if for each 1 < t < r, st = (Pt)(qt). That is, st is the image in

F(dqt,qtA) of pt. For an intuitive visualization, see Figure 4.13. Shown on the left in this figure are

A

site i site j site k

)6 Z

D' 0 0(k)

H

Figure 4.13: A product path.

paths p = (x, y, z) and q = (i, j, k) on graph F(A) and IF(D') respectively. On r(H) on the right,

we show the product path s = p o q = (x(i), Y(j), z(k)). Loosely speaking, in each step that we move

on the product path s, we move a step along p and a step along q at the same time.

THEOREM 4.7

Let H = D' ® A be a homogeneous influence matrix, and let s = p o q be a product path. Then

edges on s always exist on F(H). Conversely, every path s on a homogeneous P(H) can be written

as s = p o q where p and q are paths on 1(A) and I(D') respectively.

Proof. An edge (x(j), y(j)) on 1(H) exists if and only if djia.y > 0. This is true if and only if

axy > 0 and dji > 0. Or equivalently, edges (x, y) and (i, j) must both exist on 1(A) and 1F(D')

respectively. Extending this argument to paths is straightforward. D

Let the statuses on F(A) be partitioned into classes R1.... , Rw. For each class k and each

site i, let R( be the image of class Rk on F1(diiA). Thus, the sets {R,, .. . , R$)} is also a partition
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of 0(i), the statuses inside boundary of site i. Two integers a and b are called relatively prime if

their greatest common divisor is 1.

THEOREM 4.8
Let all the variables be as defined in the previous paragraph. If D is irreducible, and if the period

of D is relatively prime to the period of every class Rk, then there are w classes in F(H) with the

kth class equal to

Pk A R) U ... U R .

Moreover, Pk is a globally recurrent class if and only if Rk is a recurrent class with respect to F(A).

Proof. See Appendix A. D

Further reading on product graphs can be found in [28].

Recurrent States We now remove the restriction to homogeneous influence models and return

to the case of general influence models. Our main question is still: what are the recurrent states

of 1(G) with an irreducible network graph? Using the hopping dot analogy, if all the sites were

disconnected, then the dots would eventually drift into one of the recurrent classes of their respective

local chains. With the inter-site connections, having all dots trapped inside locally recurrent chains

is no longer sufficient to guarantee that the influence process has settled into a recurrent state of

r(G). Recall from Figure 4.6 of Example 1 that even if every dot is trapped in a globally recurrent

class (i.e. a recurrent class in 1F(H)), but different dots reside in different classes, then some dot

can still hop out of its class due to inter-site influences.

On the other hand, if the dots are all trapped inside the same globally recurrent class in

1(H), then they can never leave. This is not only because the dots do not have a path out of the

globally recurrent class, but also because they will never receive any influence to hop out of it; all

the influences are from within that global class, and will always stay inside it, as shown in Figure

4.14. In this diagram, it is assumed that there are three sites, and the globally recurrent class is

the union of all the three locally recurrent classes shown.

At this point, we are tempted to conjecture that in the recurrent states of an influence

process, all the dots will be permanently locked inside a single globally recurrent class. To confirm

this conjecture we must be able to answer the following question: does a globally recurrent class

always have "room" to trap the dots from all sites? In other words, is it possible that a globally

recurrent class does not include a status from every site? If there exists some globally recurrent

class that does not, then our conjecture cannot be correct; there would have to be at least two active
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0

locally
recurrent
classes

Figure 4.14: A segment of F(H) showing all the dots trapped in the same globally recurrent class.

The globally recurrent class is all the three locally recurrent classes combined.

globally recurrent classes involved in a recurrent state in order to hold all the dots. Consequently,

it would be possible that in the recurrent states of an influence process, the dots would still shuffle

in and out of globally recurrent classes. See Figure 4.15 for instance. In this 3-site influence graph,

globally
recurrent

A X

B Y

globally
recurrent

A X

0 B Y

Figure 4.15: If a globally recurrent class did not include a locally recurrent class from every site,

then it would not be able to permanently lock in the dots.

the locally recurrent classes A and B together constitute a globally recurrent class, while X and

Y make up another. In the left figure, even if two dots have already been captured in A and B,

the dot in the locally recurrent class X can exert influence on class Y. Eventually the dot at B

will leap back and forth randomly between B and Y, proving that neither of the globally recurrent

classes is able to lock in those dots permanently.

As it turns out, a case such as Figure 4.15 cannot happen. The reason is due to the following

leinma.

LEMMA 4.9

If 1(D') is irreducible, then every globally recurrent class includes at least one status from every
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site.

Proof. Let R be a globally recurrent class and let x be any status on it. Let i be the site whose

boundary encloses x, i.e., x E 0(i). For any other site j on 1(D'), there must exist a path on r(D')

from i to j, because 1F(D') is irreducible. By Corollary 4.3, there must also be a path from x to

some status y E 0(j). Now because R is recurrent, it must include every status that is reachable

by x. Therefore, y E R. Since j is arbitrary, this statement must apply to every site. E

COROLLARY 4.10

For every site i for which dii > 0, at least one locally recurrent class of 0(i) is entirely contained

within a globally recurrent class.

Proof. Because a globally recurrent class always exists, we can apply Lemma 4.9, which states

that it must have a status in common with 0(i). Then because dii > 0, the ith local chain exists,
which means the globally recurrent class must include a whole locally recurrent class, as explained

earlier. D

We can see from the examples in Sec. 4.4.1 that they all conform with Lemma 4.9. Intuitively, this

means that within each globally recurrent class, there is room for the dots from every site. If all

the dots are held inside the same globally recurrent class, they will remain there.

However, will the dots ever end up in the same globally recurrent class? Indeed, we are

not even sure whether each dot will move into a globally recurrent class at all. At this point,
all we know is that if the local chain exists, the dots will drift into one of their locally recurrent

classes, which, unfortunately, may not belong to a globally recurrent class. For example, consider

the influence graph F(H) of Example 3, which is repeated in Figure 4.16. In this figure, status 1

1 ~-'2 ,'3

Figure 4.16: The influence graph r(H) from Example 3 in Sec. 4.4.1.

by itself constitutes a locally recurrent class of the upper site, but with respect to F(H), it is a

globally transient class. The lower dot is obviously stuck at status 4, its only status. Suppose the

upper dot starts in status 2. Then it has a positive probability of drifting into status 1. If there
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had been no connection, the upper dot would have remained there for all time, and would have

proved that a dot need not end up in a globally recurrent class. However, due to the influence from

the lower site, the upper dot will eventually hop to status 3, which is its final destination. In this

example, the edge (4,3) (the one from status 4 to 3) is the critical path of influence that enables

the upper dot to eventually hop out of status 1. Our question now is: in general, does a critical

edge such as (4,3) always exist? In other words, is it possible that a dot will drift into a locally

recurrent class that happens to be a part of some globally transient class, and remain there forever,

because there is no external influence to attract it out? The answer to this question is negative and

is answered by the following theorem. This theorem shows that from any status on an influence

graph, there is always a path from that status back to some status in the same site that belongs to

a globally recurrent class. Translated to the example above, there is guaranteed to be a path from

status 1 back to another status (status 3) in the upper site that belongs to a globally recurrent

class. Thus, just by being in status 1, the upper dot is effectively influencing itself to move into a

globally recurrent class.

THEOREM 4.11

If the network graph IF(D') is irreducible, then on 1(H), there exists a path from any status x to

another status y such that both the following conditions hold:

(a) y belongs to some globally recurrent class.

(b) y is in the same site as x, i.e., if x E 0(i), then y E 0(i).

Proof. If x is part of a globally recurrent class, then the claim is immediately satisfied because

there must be a path from x to itself. If x is part of a globally transient class T, then let i be

the site within which x lies, so x E 0(i). Since T is transient, there must be a path from x to

some status b outside of T. Whichever site b belongs to, by the fact that D is irreducible and by

Corollary 4.3, there must exist a path from b back to some status c E #(i). We know that c § T,

because otherwise we would have found a path from x to b, then from b to c, and from c back to x

again (because c and x would be in the same class T), which means x and b would communicate.

However, this is not possible because, by choice, b 0 T. If c is part of a globally recurrent class, then

the claim is proved. If it is not, we can apply the argument over again to find paths from c to d,
then d to e, and so on, where these statuses c, d, e, ... are all distinct statuses in 0(i). Because 0(i)

is finite, and because #(i) contains statuses that belong to a globally recurrent class (see Lemma

4.9), eventually the path from x must run into one of those statuses. El

By combining Theorem 4.11 with Corollary 4.6, we can conclude that every dot will even-

tually move into some globally recurrent class, although not necessarily the same one. Since there

- 94 -

Chapter 4 General Influence Model



General Influence Model

could be several globally recurrent classes, different dots may end up moving into different globally

recurrent classes. This means even after they all enter globally recurrent classes, if they are not

all in the same class, then they can still hop out of their respective globally recurrent classes. Will

they ever hop into the same class and thereby get trapped in that class? The answer depends on

the structure of 1F(D').

4.4.5 Case I: Ergodic F(D')

Eventually every dot must move into some globally recurrent class. Take one such dot from any

globally recurrent class. Suppose it is currently occupying status x E #(i). Recall from Corollary

4.6 that if one can find a path from x to any status y in m steps, then m steps later, y has a positive

probability of being occupied by some dot. As an implication of this, suppose we can find two paths

of the same length m, both originating at x, but with one path terminating at some status in, for

example, #(1) and the other path terminating in 0(2). Since x is in a globally recurrent class, the

destinations of these two paths are still in the same class. The existence of these paths implies that

m steps later, there is a positive probability that the dots of sites 1 and 2 would be occupying the

destinations of these paths simultaneously. This would mean that m steps later, there is a positive

probability that the dots of sites 1 and 2 would be inside the same globally recurrent class as x.

However, even if both dots actually move inside that global class, they might not remain there,

because the dots from the rest of the sites can attract them out of that global class; only when all

the dots are in the same global class can we guarantee a permanent capture of the dots.

Thus, to show that every dot can end up the same global class, we must find n different

paths of the same length m that lead from x to to all the n different sites on F(H). Then m

steps later, there is a positive probability that all the dots would be trapped in the same globally

recurrent class.

How do we find such paths? Let V be the set of sites on 1F(D'). For a site i E V, recall the

definition

T m (i) = {v E V I there exists a path of exactly m steps on F (D') from site i to v

which was first introduced in Sec. 3.4. By Corollary 3.5, if r(D') is ergodic, then for sufficiently

large m, we achieve Tm(i) = V, which means that on r(D') one can go from i to any site in m

steps. Using Corollary 4.3, this translates to the ability to go on F(H) from any status x e 0(i)

to some status y in any desired site in exactly m steps. So if we pick x to be from the globally

recurrent class mentioned in the previous paragraph, then in m steps we can reach some status
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within every site. Thus, we have proved the following main result.

THEOREM 4.12

If the network graph F(D') is ergodic, then there is a one-to-one correspondence between each

globally recurrent class of the influence graph 1(H) and a recurrent class of the master chain 1(G).

Specifically, every state in any particular recurrent class of 1(G) has all its corresponding dots

trapped within a particular globally recurrent class of 1(H).

4.4.6 Case II: Periodic Irreducible F(D')

If F(D') is periodic and irreducible then it must have the form of subclasses being connected in a

circle, as in Figure 2.5. This will also cause H to have the following cyclic form (with appropriate

numbering of the sites):

0 Hi

H=
0 Hd_1

.Hd 0

Each Hk consists of all the block matrices {djiAi 3 } with i being a site from subclass k and j from

subclass k + 1. For example, Figure 4.17 is an example of a F(H) whose 1(D') has a period of 3.

Inside each site boundary, none of the local chains exists, because di= 0 for all i.

sites

Figure 4.17: An influence graph 1(H) whose 1(D') is periodic.

At some point, all the dots will move into some globally recurrent classes. As before, these

could be different classes. If that is the case, then the dots will move around until the number of

occupied globally recurrent classes reduces to just one per subclass. Below we offer an intuitive

explanation for this.
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Suppose that on P(H) there are exactly 3 global classes: R1 and R2 , which are both recurrent,
and T, which is transient. In Figure 4.18 we show a portion of a typical F(H), displaying only the

connection from sites in subclass i to those in subclass i + 1. Since a globally recurrent class must

subclass i subclass i+1

R R

1 1

T T

R/------ R ------

R2 R2

T T

Figure 4.18: A portion of ['(H) between subclass i and i + 1.

include a status from every site, each site in this figure must have some status that belongs to ft 1

and some that belongs to ft 2. Hence, within each site, we partition the statuses into 3 groups as
shown in this figure. Notice that the edges never mix the recurrent classes; ft 1 only connects to

R1, while ft2 only connects to R2.

Continuing on this example, we now place a dot into each site and observe the one-step
transition from time k to k + 1 in Figure 4.19. These dots are called s, t, u and v, as shown in

the figure. At time k, we would like to focus only on s and t. Therefore, they are drawn as solid

dots, while u and v are drawn hollow because they are irrelevant to our point. At this time, both s

and t have already been inside the globally recurrent classes R1 and R2 respectively, and are now

exerting their influences on u and v. The edges from s are causing a positive probability that in

the following step, u and v would both jump into R1. On the other hand, t is influencing u and v

to move into ft 2.

Hence, the state of subclass of i + 1 at time k + 1 could have 4 possible outcomes:

(a) u and v both in RR;

(b) u and v both in R2 ;

(c) u in R1 , but v in R2 ;

(d) u in R2 , but v in sa1.;

In the figure, we only show cases (a) and (b).
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to0

time k

S

time k+1

(b ) -- --- -------- --- --- -

S (7)

-0
t

time k+1

V

Figure 4.19: Example of two possible transitions for an influence graph with
network graph.

a periodic irreducible

Suppose (a) actually happens. Then both u and v would be in R 1 . Then at time k + 2, the

dots in subclass i + 2 (not drawn here) must also be in R 1 , because they have no other influence

beside those coming from R 1 . Again in time k + 3, the dots in subclass i + 3 would also be in R1,

and so on. Similarly, if (b) happens, then the same argument would apply except that the dots will

be in R 2 instead.

If (c) or (d) happens, then both R 1 and R 2 would be occupied by some dots in subclass i +1.

Our argument above can be applied again and again every time step. Eventually all the dots would

hop on to one of the classes, leaving the other one empty. This is consistent with our assertion

earlier that dots in the same subclass will eventually end up in the same globally recurrent class.

We can generalize this idea to the case of multiple globally recurrent classes, and the same

logic would still apply; within each subclass, only one globally recurrent class will be occupied

eventually. Note that different subclasses may occupy different globally recurrent classes. Suppose

there are d subclasses in 1F(D'). Then there could be up to d different occupied globally recurrent

classes in a recurrent state of the master chain 1(G). Suppose at some large time index kd, which

is a multiple of d, the system has already reached a recurrent state of 1F(G). If all the dots in the

ith subclass are trapped in the cith globally recurrent class, then we say that this influence process
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has reached the limit cycle c = (ci,... , cd). From this we can infer the occupied globally recurrent

classes at time (kd + 1) by shifting the entries in c to the right in a cyclic manner; at time (kd+ 1),

the dots the 1st subclass will all be in the cAth globally recurrent class, the 2nd subclass will be

in the c1 th globally recurrent class, the 3rd in the c2 th and so on. Note that this definition of

limit cycles is a generalization of the the one first introduced in Sec. 3.5. The following theorem

summarizes our discussion in this section.

THEOREM 4.13

If 1F(D') is irreducible and periodic, and if s[k] is a state in an recurrent class of F(G), then under

s[k] all the hopping dots from the same subclass are trapped within the same globally recurrent class

of F(H).

4.4.7 General Network Graphs

When we allow an influence graph to have an arbitrary F(D'), there end up being many more

possibilities for the recurrent states of 1(G). We will settle for only the most basic statement that

applies to all influence graphs.

The analysis in the Sec. 4.4.4 can be applied towards influence models with arbitrary network

graphs 1(D'), but it can only make statements about the sites in the autonomous classes of 1F(D').

The hopping dots of these sites will eventually be trapped in the autonomously recurrent classes

defined below, which are essentially the globally recurrent classes with respect to the autonomous

subgraph of F(H).

Autonomously Recurrent Classes For any directed graph F(C), let S be a set of nodes on

1(C). Recall from Sec. 2.1.1 the definition of a principal submatrix Cs, which is defined as the

square submatrix of C that is obtained by selecting the rows and columns that correspond to the

nodes in S. The graph P(Cs) can be obtained from r(C) by removing all the nodes that are not

included in S and all the edges connected to them. Thus, the graph 1(Cs) is always a subgraph of

IF(C).

From the previous sections, recall the definition of #(i), which represents the set of statuses

of 1F(H) that are within site i. We now generalize this definition so that it applies to sets. For any
A

subset Q of sites on r(D'), define #(Q) = {#(q) I q E Q}.

Let R be an autonomous class of 1F(D'). A set S of statuses on F(H) is an autonomously

recurrent class of F(H) if S is a recurrent class of of F(HO(R)). The following example will clarify

the definition.
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Example 5: Let the matrices be given as follows.

1 .4

.4

.2_

A=[0 1] H =D'O A =

The associated graphs F(D'), 1F(A), and 1F(H) are shown in Figure 4.20.

D' 3

S 2

A

35

6

Figure 4.20: Graphs for Example 5.

The graph 1F(D') has two classes: {1, 2}, which is autonomous, and {3}, which is dependent.

With R = {1, 2}, we get O(R) = {1, 2,3,4}. The submatrix Hp(R) will then be

0 .5 0 1

0 .5 0 1
HO(R) =

0 .5

0 .5

(4.13)

and F(Hg(R)) is given in Figure 4.21. Since {2, 4} is the recurrent class of l(HO(R)), as enclosed in

the oval in the diagram, the set of statuses {2, 4} of F1(H) is an autonomously recurrent class. 0

In Examples 1 through 4 of Sec. 4.4.1, D' is irreducible. In those cases, F(D') is itself an

autonomous class, so an autonomously recurrent class reduces to just a globally recurrent class.

However, when D is reducible, an autonomously recurrent class is globally transient with respect

to F(H).
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1 2)

3)

Figure 4.21: The subgraph F(HO(R)). The oval show the statuses that are topologically equivalent
to the autonomously recurrent class of F(H).

Intuitively and referring to Figure 2.1, one can think of an autonomously recurrent class

as the class containing the "rightmost statuses of the leftmost sites." To explain this, see Figure

4.22. Suppose on JF(D') we arrange the classes so that they point from left to right. Then the

autonomous class comprises a set of "leftmost sites." From the subgraph of 1(H) comprising the

statuses of those sites, we extract recurrent classes, which are then the "rightmost statuses." These

are the autonomously recurrent classes. In the following chapter, we will show that autonomously

autonomous dependent

autonomously
recurrent

Figure 4.22: "The rightmost statuses of the leftmost sites." An intuitive visualization of an au-
tonomously recurrent class.

recurrent classes are crucial elements in the analysis of the influence matrix H.

Returning to the main point of this section, our analysis in Sec. 4.4.4 can only predict the

recurrent states of the sites in an autonomous class R. It says that the dots of the sites in R will

eventually be trapped in one of the autonomously recurrent classes. This is because, as a subgraph

of 1(H), no status in 1P(Hp(R)) receives any influence from a status whose site is not in R. This

makes the graph F(Hp(R)) look as though it is defined from an irreducible D. Thus, the statuses

in F(HO(R)) will behave as if there is no status other than those in O(R). The analysis of the rest

of the 1(H) will depend on how these autonomous sites converged. We leave this as a direction for

future research.
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This chapter continues our investigation of the general influence model and its dynamics.

In the previous chapter, we have characterized the recurrent states of an influence process mostly

through the study of the influence graph structure. Our analysis has relied on the picture of the

hopping dots in order to aid the visualization and explanation. Although we have identified the

classes of the influence graph within which the dots can be "trapped," there still remain important

questions. For instance, what are the probabilities that the dots would be trapped in a given class?

How do such probabilities evolve as a function of time? As mentioned earlier, the straightforward

approach to such questions is to resort to analyzing the master Markov chain F(G), the master

Markov chain in which each status corresponds to a possible outcome of the state vector. If we

could afford the computation of G' for all n, then the above questions would be easy to answer.

However, this is practically impossible due to the large size of the problem, as the dimension of G

is exponential in the number of sites. Thus, any calculation involving G that can be manipulated

so that it only involves the influence matrix H would be of great practical benefit, because the size

of H is only linear in the number of sites, and thus much smaller than that of G in general. This

is, therefore, our motivation in this chapter for analyzing the matrix H rigorously, and establishing

its precise relation with G.

While the approach to studying the influence model in the previous chapter has been graphi-

cal, the analysis in this chapter will largely involve linear algebra. We first analyze the eigenstructure

of the matrix H. We introduce a class of matrices called the event matrices. This class of matrices

will be the important element linking H and G. Then we analyze G and some of its eigenstructure.

Using the relation between G and H, we will obtain certain projected probabilities of the influence

process. These projected probabilities will be shown to be meaningful quantities in their own right.

Finally, we will explain how the eigenvalues of H are related to those of G, and how this relation

can be interpreted intuitively.

Before reading the following sections, it might be helpful to review the notation on general-

ized Kronecker product in Sec. 4.3.1, as this will used throughout the chapter.

5.1 The Influence Matrix H

In this section, some basic properties of H will be shown. The main message is that the au-

tonomously recurrent classes defined at the end of Chapter 4 are to influence matrices what recur-

rent classes are to stochastic matrices; they correspond to principal submatrices of H that contain

the eigenvalue at 1.
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Recall that an influence matrix is defined as

H = D' o {Aj}

where D is an n x n stochastic matrix, and each Aij is an mi x mj nonnegative matrix. In addition,
each row of Aij must sum to 1, i.e., Aij must satisfy Aij3

1m = 1 m,. As in the previous chapter, it

will be assumed throughout this section that IF(D') is a connected graph. In general, the influence

matrix H is not stochastic, because neither its row sum nor its column sum is the all-ones vector.

Still, H is in many ways like a stochastic matrix: it is nonnegative, and as we will show, has 1

as its dominant eigenvalue. In a way, this is not too surprising, since H is derived from a convex

combination of stochastic matrices.

In the following discussion, we will show that the dominant eigenvalue of every influence

matrix is 1, and in the process of doing so, we will demonstrate how the multiplicity of this

eigenvalue is tied to the structure of the underlying influence graph.

First, some eigenvalues in -(H), the set of eigenvalues (or the spectrum) of H, are identified

by the following theorem.

THEOREM 5.1

Let H = D' 0 { Aij} be any influence matrix. If w is a left eigenvector of D with a corresponding

eigenvalue A, then (w 0 {1mi}) is a right eigenvector of H with the same eigenvalue. Conversely,

if any right eigenvector v of H with a corresponding eigenvalue of r can be expressed as a® {lmi },
then a is a left eigenvector of D with eigenvalue -r.

Proof. Using the fact that Aij1m,,j 1mi,

d11Aj d nliln W1 1mi

H(w 0 {lm}) [ .

Ldln An1 l dnAnn- wnlmn

(dllwi + - + dniwn)lmi

(d1iw 1 + -- + dnnwn)lmrn

=A(w0o{1mi}).

The converse of the theorem also follows in a straightforward manner. E

Theorem 5.1 states that o-(D') C o(H), or equivalently, c-(D) C -(H). This provides us with

- 104 -

Chapter 5 Influence Matrix Analysis



Influence Matrix Analysis

n eigenvalues of H. Since the dimension of H is E> mi, there are another (Ei mi - n) eigenvalues

of H to be found. In general there is no simple way to describe them, except for the case of

homogeneous influence matrices, where H = D' 0 A. In that case, being a standard Kronecker

product, the eigenvalues will be all possible combinations of the eigenvalues of D' and A, i.e.,

a (H) = { A I Ai E a(D'), A1 E o(A)}

and their eigenvectors will be the Kronecker products of the corresponding eigenvectors from D'

and A. See [27], Theorem 4.2.12 for proof.

Because o-(D') C a(H), one of the eigenvalues in a(H) must be 1. Unfortunately, we still

cannot apply the Perron-Frobenius Theorem to conclude that 1 is the dominant eigenvalue of H,

because, among other things, H might be reducible. Our approach, therefore, is to identify certain

submatrices of H that can shown to be irreducible, then make statements about their dominant

eigenvalues, and then relate them to the dominant eigenvalue of H.

Kronecker Factorization For any subset S of statuses on 1'(H), the (principal) submatrix Hs

can be obtained by selecting the rows and columns of H that correspond to the statuses in S, or

equivalently, by deleting the rows and columns that do not correspond to the statuses in S. After

the deletion, let R be the set of sites that still has at least one status remaining in HS. Now define

DR to be the (principal) submatrix of D corresponding to the sites in R. Then submatrix HS can

still be factorized as

Hs = D' 0 {Aij}. (5.1)

where Aij is a submatrix of some Agj. We write D' in (5.1) to emphasize the fact that it is a

principal submatrix of D'. For example, suppose

.6 1 .5

D'= .4 .4 , and H = D' {Ag}=

Although the 9 matrices {Aij I 1 < i, j < 3} are not shown explicitly, then can be inferred from H
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above. For instance, we can infer that

A, 1 = [1 i], and A 13 =

because the top-left block of H is d1 A11 = (0.6) [1 , while the top-right block of H is d31A 13

(0.5) [.2 .81-

If S = {1, 5, 6}, then to obtain HS we have to eliminate rows {2, 3, 4} and columns {2, 3, 4}

from H. After the elimination, the sites that still have at least one status remaining in HS are sites

R = {1, 3}. The resulting D' and Hs are

R=[.6 .5] and Hs =

.6 .5

.1 K

The first crucial point to be reiterated here is that D' is a submatrix of D', obtained by deleting

row 2 and column 2 from D'. Note that DR is no longer stochastic. We can write HS = D {
Again, the 4 matrices {Aij 1 i < 2} can be inferred from Hs. For example,

A1 1 = 1, and A 12 = [1 1.

The second crucial point here is that each Aij is a submatrix of some Agj. For instance, by

comparing (5.3) to (5.2), we can see that All is a submatrix of All and A 12 is a submatrix of A 13 .

Using the procedure of rows and columns deletion as described, we are always left with a

unique factorization of HS in the form of eq. (5.1). Therefore, for any subset S of statuses on

F(H), we will refer such expression of HS as the Kronecker factorization.

Recall the following definition of an autonomously recurrent class from Sec. 4.4.7. We repeat

it here for convenience of reference.

Definition 1 Let RO be an autonomous class of 1F(D'). A set S of statuses on F(H) is an au-

tonomously recurrent class of F(H) if S is a recurrent class of F(HO(Ro)).

An autonomously recurrent class always exists in any influence graph. This is because an

autonomous class Ro always exists in F(D'), and in F(HO(R0 )) there must always be a globally

recurrent class.

The following short lemma will be used in the proof of Theorem 5.4
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LEMMA 5.2

For a given class R of 1(D'), DR is stochastic if and only if R is autonomous.

Proof. Given that R is a class, DR is stochastic if and only if R is recurrent in F(D). But by

Corollary 2.4, R is recurrent in F(D) if and only if it is autonomous in 1F(D'). Combining the two

statements, we have proved the above assertion. EZ

So far, the term stochastic matrix has only been applied to square matrices. We now gen-

eralize it so that it applies to a non-square matrix. A p x q nonnegative matrix A is stochastic if

Alq = 1. It is substochastic if A1q < 1 with the inequality being strict in at least one position.

LEMMA 5.3

Let S be a class of 1 (H), and let Hs = D' 0 {Ajj } be the Kronecker factorization of Hs. Then S

is a recurrent class of r(HO(R)) if and only if every Ai3 is stochastic.

Proof. Fix an Aij. Let Agj be the matrix from which the submatrix of Aij is extracted. Thus,
i',j' (E R and consequently, 0(i') C O(R) and #(j') c O(R). Because Agj is stochastic, the only

way Aij can be substochastic is that a nonzero column of Agj has been dropped in order to obtain

Aij. This is possible if and only if there is an edge from some status x G 0(i') n S to another status

y E (O(j') - S).

If S is a recurrent class of F(HO(R)), then such an edge (x, y) cannot exist, because S must

include every status in 0(j') C R that can be accessed from x. Therefore, by the reason in the

above paragraph, Ai 3 is stochastic. Since i and j are arbitrary sites, we have proved the forward

part of the claim.

Conversely, if Ai 3 is stochastic, then such an edge (x, y) does not exist. Then there is no

outgoing edge from #(i')n S to any status in (#(j') - S). Since i and j are arbitrary, we can extend

our conclusion to say that there must be no outgoing edge from S to any status in O(R). In other

words, S is a recurrent class of F(HO(R)). This proves the reverse part of the claim. D

THEOREM 5.4

Let S be a class of 1(H), and let Hs = D' 0 {AI2 } be the Kronecker factorization of Hs. Then S

is autonomously recurrent if and only if DR and every Ai3 are stochastic.

Proof. First assume that S is an autonomously recurrent class. Let Ro be the autonomous class

of r(D') from which S is defined in the sense of Definition 1. Since S is a globally recurrent class

of F(HO(Ro)) whose network graph P(DRo) is irreducible, S must still retain at least one status of
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every site in R0 , Lemma 4.9. This means R = Ro. Therefore, DR DRo, which is stochastic by

Lemma 5.2. To show that the matrices {A2 } are stochastic, we invoke Lemma 5.3 by recognizing

that S is a recurrent class of F(HO(Ro)). Therefore, every Aij must be stochastic. Hence, we have

proved the forward part of the claim.

Conversely, assume DR and every Aij are stochastic, and S is known to be a class. Then

DR must be irreducible. Otherwise, there must be two sites p, q E R such that p and q do not

communicate on F(D ). On the other hand, the fact that p, q E R means that there exist two

statuses u, v E S such that u E #(p) n S and v E 0(q) n S. Since S is a class, u and v communicate.

By Corollary 4.3, p and q must communicate as well. Hence, we have a contradiction. So DR

must be irreducible and R must be a class. Because DR is also stochastic, by Lemma 5.2, R is an

autonomous class. Then by Lemma 5.3, S must be recurrent with respect to F(HO(R)), which, by

definition, means that S is autonomously recurrent. E

Note that Theorem 5.4 only applies when S is known to be a class, which immediately

implies that DR is irreducible. If S is only some set of statuses whose DR and {Aij} from the

Kronecker factorization are stochastic, then it might not be autonomously recurrent. For instance,
if we let S be the set of all statuses on F1(H), then clearly Hs = H, which yields H = D' 0 {Aij}

as its Kronecker factorization. In this case, even though D and {Ajj} are certainly stochastic, S

will not be autonomously recurrent -or even a class at all- if D is, for instance, reducible.

The main consequence of Theorem 5.4 is that it qualifies HS for the Perron-Frobenius

Theorem, which is the key for establishing the following statement.

THEOREM 5.5

For any autonomously recurrent class S on F(H), HS has a unique dominant eigenvalue at 1.

Proof. By Theorem 5.4, we can express HS as HS = D' 9 {Ai }, where DR and every Aij are

stochastic. Because DR is irreducible and stochastic, by Corollary 2.8 DR must have a positive left

eigenvector 7r. Because HS is an influence matrix, we can apply Theorem 5.1, to conclude that it

must have an eigenvalue at 1 with a corresponding eigenvector of the form ir 0 {1p }. Because S

is irreducible, by the Perron-Frobenius Theorem (Theorem 2.7), it must have a unique dominant

eigenvalue. But since 7r 0 { 1p} is positive, by Corollary 2.9 it must be a right eigenvector of the

dominant eigenvalue of Hs. Thus, A = 1 must the unique dominant eigenvalue of Hs. D

We have seen that the dominant eigenvalues of autonomously recurrent classes are 1. Could

there be any other types of classes of F(H) whose submatrix also has a dominant eigenvalue at 1?
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Also, how can we be sure that the spectral radius of an influence matrix has to be 1? The following

two theorems answer these questions.

For a class S of 1F(H), whether or not S is autonomously recurrent, HS is irreducible.

Therefore, by the Perron-Frobenius Theorem, Hs has a unique dominant eigenvalue that is real

and positive.

THEOREM 5.6

Let S be a class of F(H) that is not autonomously recurrent, then the real dominant eigenvalue of

HS is strictly less than 1.

Proof. Let Hs = DI 0 { A} be the Kronecker factorization of HS. Now by Theorem 5.4, the

fact that S is not autonomously recurrent implies that some of the matrices DR and Ai3 must

be substochastic. Thus, we can add some nonnegative matrix to DR in order to turn it into

a stochastic matrix D. Similarly, we can add to each Aij some nonnegative matrix to obtain the

stochastic Aij. One of these matrices being added must be nonzero. Let the new Kronecker product

be H = 0D f{Ajj}. The graph 1(H) is irreducible like 1F(Hs), because by adding to Ds and {AJ},

we can only create more edges. Therefore, the entire set of nodes on F(H) is an autonomously

recurrent class of F(H) itself. Hence, by Theorem 5.4, H has a dominant eigenvalue at 1. Because

Hs is irreducible, by Corollary 2.11, its dominant eigenvalue must be less than that of H. This

completes the proof. E

THEOREM 5.7

The dominant eigenvalue of H is 1. Moreover, the (algebraic) multiplicity of this eigenvalue is

equal to the number of autonomously recurrent classes on 17(H).

Proof. Let {S1, ... , S,} be a partition of the statuses of F(H) into classes. By Corollary 2.3, the

eigenvalues of H are those of the Hs,'s, counting multiplicities. Then the assertion follows from

Theorems 5.5 and 5.6.

5.2 The Event Matrix B

The previous section describes a basic feature of the eigenstructure of an influence matrix by

showing that its dominant eigenvalue is always at 1. In this section and the next, we will shift our

focus to an important matrix called the event matrix, which is denoted by B. It is a concept that

needs to be introduced before we proceed to the topic of master Markov chains in the following
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section.

Recall that the state of an influence process at time k is captured in the state vector s[k].

In this section, we systematically list each possible outcome of s[kl, and stack these outcomes row

by row into one large matrix called the event matrix B. Thus, the rows of B can be regarded as

the sample space of the influence process. The importance of B is twofold. First, by listing the

outcomes as rows, B provides a reference for the way we order those events. Second, B will turn

out to play a crucial role in understanding the overall dynamics of the influence process.

5.2.1 Definition

Given a set of integers min, .. - , m we construct a sequence of matrices {B(j) } from i = 1 to i = n
through a recursive procedure as follows:

B(l) A iml

B(i) = [B(i-) 0 1m I lii1 0 Imi 1 (5.4)

where pi = j inm. The matrix B(i) is defined as the event matrix for m 1,. - , in. In particular,

B(n) is referred to as simply the the event matrix and, will be denoted by

B = Bin).

For example, if (mi, M 2 ) (2, 3), then

B(l) = , 1 and
0 1

B(2) = B

= [B(j) 0 13 112 0 13]

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1 (55)

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

The dimension of B is (Ji mi) x (E> mi). So in general, it is a very tall and narrow matrix.
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In terms of the influence model, if the integer mi represents the order of the local chain Aii,

then as described earlier, each row of B is one possible outcome for the state vector

s'[k] = [s'[k] s' [k] .

Each row of B is thus called an event. To match the dimension of each vector si[k], notice how

within an event entries can be partitioned into contiguous blocks of sizes {mi}. For example, each

row of B in (5.5) has two blocks of sizes 2 and 3 respectively. Within each block is a single nonzero

entry of 1 indicating the status the corresponding site. Therefore, if we let

A (m1+...+m-1)
ti = mi

. 0(mi+---+Mn)

then for all 1 <i n,

THEOREM 5.8

For 1 < i < n,

I (5.6)

(5.7)Bti = 1.

rank(B(i) (Em,) -i+1
k=1

Proof. See Appendix B. FI

5.2.2 Event Addresses

It is more convenient to refer to the events by a multiple-integer index where the integers indicate

the statuses of the corresponding sites. That is, we can assign to each row of B an address, which

is an n-tuple string of the form j = (ji,.. , jn) where 1 < ji < mi. An event of address j is defined

as row jm of B where

jm (ji - 1)(2 ... Mn) + (j 2 -1)(m 3 . mn) + --- + in.
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For example, the addresses for each event in the B in (5.5) are

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

1

(1, 1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

The event that corresponds to address j will be denoted by bj. Notice that j and bj can be derived

from one another as long as we know the sizes {mij of the local chains. In this sense, the address

of an event is the description of that event; they are merely two different representations of the

same thing. This reference-by-address scheme will be used in the rest of the chapter.

5.2.3 The Null Space of B

The null space A(B) of B arises as a connection between H and G. We need it as a tool to classify

the eigenvectors of H. Let A be an (mi + - + mn) x (n - 1) matrix whose entries are as given:

A
A

imi

1m2 1m2

1m3

1 m~i

1m~

THEOREM 5.9
The columns of A form a basis for jf(B).

Proof. By recalling the definition in eq.

Therefore, using (5.7),

(5.6), each column of A can be written as (ti - ti+1).

B(t, - ti+1 ) = 1 - 1 = 0.

So BA = 0. Next because A is in echelon form, all the columns are linearly independent. Fur-

thermore, the number of columns of A matches dim(AV(B)) = n - 1 as stated in Theorem 5.8.

Therefore, the columns of A form a basis for Af(B). I
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COROLLARY 5.10

.A(B)= {v v = a®{mj} and a'1 = 0} (5.8)

Proof. From Theorem 5.9, any v E P1(B) can be written as v = Ay for some - E Rn-1. Since

[ 11

(Y2 - -Y)1m 2

L -Yn-1lrn -A

the coefficients of the 1 m,'s sum to zero as claimed. Conversely, if we are given any v in the form

in v = a® {mi} where a'1 = 0, then it is straightforward solve for -y so that v = Ay. l

5.3 The Master Markov Chain G

We now formally construct the state-transition matrix G of the master Markov chain r(G). As

mentioned earlier, the Markov chain 1F(G) will be one in which each status represents a possible

snapshot or state of the influence process. Since B lists all the possible events of the process, it is

no surprise that there should be some sort of relation among G, B and H, and we will indeed see

such a relation shortly.

5.3.1 Definition

Given an influence matrix H, its master Markov chain F(G) is defined as the Markov chain whose

every status represents a possible state of the influence process. Since there are pn= m= 1 ... mn

possible outcomes for the state s[k] of the influence process, the dimension of G is yl x P,. We will

order these states in the same way that they are ordered in the event matrix B. Each row of G, as

well as each column, can then be referenced by an n-tuple address j = (ji,... 'in) as introduced

Sec. 5.2.2. Consequently, we can reference an entry of G using a pair of addresses such as (j, k)

where j is the address of the row and k the address of the column. For any two valid addresses j
and k, the corresponding entry of G is defined as

gj,k = Prob(s[k + 1] = bk s[k] = bj) (5.9)
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From (4.7), given that s[k] = bj, the next-status PMF is

P '[k + 1] = b H. (5.10)

Let {pi,t} denote the entries of p[k + 1], where pze represents the probability that site i will be in

status F at time k + 1, given s[k]. Then for any address k = (k,, kn),

n

qj, k = , p i. (5.11)
i=1

By varying over all j and k in the order they appear in B, eqs. (5.10) and (5.11) uniquely define

all entries of G.

Beside its large size, the matrix G tends to be dense, even if the influence matrix H is sparse.

For instance, in the case of a homogeneous influence model where H = D' 0 A, the density of H

(the number of nonzero entries relative to the total number of entries) is always no more than that

of D. Hence, a sparse D would imply a sparse H. However, if A > 0, then no matter how sparse D

is, all (p-t)2 entries of G would be filled. The reason is that A > 0 would mean that every site has

a positive probability of being in any status in every time step, which causes gj,k > 0 for all j, k.

This shows that G is, in general, a very big and very dense matrix. It is for these very reasons that

we have to study the connection between G and H in the hope of relegating certain computations

on G to a reduced-order computation involving only H.

5.3.2 G as a Markov Chain

To emphasize the meaning of G, we define a Markov process {f[k]} using G as the state-transition

matrix. Thus, the evolution equations of this chain are:

q'[k + 1] = f'[k]G (5.12)

f[k + 1] = Realize(q[k + 1]) (5.13)

On the other hand, let {s[k]} denote the influence process that evolves according to (4.7)-(4.8) with

H as its influence matrix. If the initial conditions of these two processes satisfy f'[0]B = s'[0], then

for any valid address i,

Prob( (f [k]) = 1) Prob( s[k] = bi). (5.14)
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Eq. (5.14) implies that if one observes the sequence {S[k]} defined as

s'[k] = f'[k]B, (5.15)

then there would be no statistical difference between the true influence process {s[k]} and {9[k]}.

This is because, by (5.14), f[k] always selects row i from B with the same probability that s[k] is

equal to that row. In other words, the Markov process {f[k]} defined above is merely a different

representation of the influence process {s[k]}.

Since i[k] and s[k] are statistically the same,

E(s[k]) = E(s[k]). (5.16)

Taking the expectation in (5.15) and substituting (5.16) into it, we have

E(s'[k]) = E(f'[k])B. (5.17)

Note that E(f[k]) is a PMF vector because E(f'[k])1 = E(f'[k]1) = 1.

PMF Marginalization Eq. (5.17) is intriguing. It shows that apart from being an event-listing

matrix, B can also be thought of as an operator that calculates the marginal probabilities from the

PMF vector E(f[k]). To see this, let us partition s[k] into

s'[k] = s'[k] ... s' [k] .

Each E(si[k]) from (5.17) is a valid PMF vector of length mi, because

E(s'[k])ti = E(f'[k])Bti = E(f'[k])'1 = 1,

where ti is defined in (5.6), and we have evoked eq. (5.7) for the second equality. Let sjt[k] denote

the th entry of sj[k]. Because each sjz[k] is a binary variable, its expected value equals the

probability of its being a "1" at that time. Thus, E(sjf[k]) would tell us the probability of site

j being in status f at time k. On the other hand, for any valid address i, E ( (f[k])i ) represents

the probability of the influence process being in state bi at time k (see eq. (5.14)); each entry of

E(f[k]) describes the status of every node simultaneously. So, through the multiplication of B in

eq. (5.17), we are effectively converting the joint PMF E(f[k]) governing the joint status (or the

state) of all sites into n different marginal PMF's E(s1 [k]),... , E(sn[k]) governing the status of

each individual site. Thus, in the process of marginalizing E(f[k]) to obtain E(s[k]), B "removes"

any information regarding the correlation among sites.
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5.3.3 Relation Between G and H

THEOREM 5.11

For all k > 1,

GkB = BH k (5.18)

Proof. From Sec. 2.3, the closed-form expression for E(f[k]) in terms of the initial state vector is

E(f'[k]) = E(f'[0])Gk. (5.19)

After multiplying this by B from the right, and substituting in (5.17), we obtain

E(s'[k]) = E(f'[k])B = E(f'[])GkB (5.20)

On the other hand, from Theorem 4.5 and from the fact that E(f'[0])B = E(s'[0]),

E(s'[k]) = E(s'[0])Hk = E(f'[0])BHk. (5.21)

Equating (5.20) to (5.21), we have

E(f'[0])Gk B = E(f'[0])BH k (5.22)

Because (5.22) must hold for all initial status vectors E(f[0]), we have arrived at the relation above,
as claimed. D

Theorem 5.11 above represents the simple but fundamental relation between G and H. It

will be the foundation on which the connection between the spectrum of G and and H is based for

the rest of the chapter. Indeed, the simplicity of this theorem is the key to the tractability of the

influence model.

5.3.4 Evolution of PMF's

Theorem 5.11 and its proof show that instead of tracking the evolution of E(f[k]), the PMF of the

joint status involving every site, one can track the evolution of E(s[k]), the collection of PMF's of

the individual status of each site. Although the latter vector provides no information about the

correlation among sites, it requires much less computational burden to obtain. The computation of

Hk involves matrices of order (mi1 +- - +m,), as compared to Gk, which is of order Mn = m, . - -
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In order to understand the evolution of E(s[k]), one needs to understand the eigenstructure of H.

Specifically, the eigenstructure of H will dictate how fast E(s[k]) will approach the steady state.

To clarify this statement, suppose for simplicity that the eigenvalues of H are Ao, ... , A, -1, where

vn = ml + - - - + m,. Suppose for simplicity that these eigenvalues are distinct so that their

eigenvectors are linearly independent. Assume also that these are ordered so that

1 = AO > 1A1| I> - - - >_ 1AVnI-.

Let wi and vi be the left and right eigenvectors corresponding to Ai respectively, and let these

vectors be normalized so that w'vi = 1. Then by spectral decomposition,

vn -1
H = vow'O + A VW' (5.23)

i=1

Since the eigenvalues are distinct, all the eigenvalues in the second-term in (5.23) are smaller than

1 in magnitude. The summation in the second-term would thus eventually vanish as k -+ 00,
leaving only the steady state term vow'. To relate this to the evolution of the status-PMF, since

E(s'[k] ) = E(s' [0] )H k

V-1

E(s'[k]) = E(s'[0])vow' + A E(s'[0])vw'. (5.24)

We say that E(s[O]) has a component along the ith eigenvector if E(s[O])'vi = 0. If E(s[0]) has a

component along an eigenvector vi, then the term involving Ak will remain in the summation in

(5.24) for all finite k, because A only decays asymptotically to zero.

Recall from Theorem 5.1 that we can express vo, the right eigenvector corresponding to the

eigenvalue at 1, as

vo = p& f {1,}

where p is the left eigenvector of D corresponding to the eigenvalue at 1, and p'1 = 1. The first

term in (5.24) therefore always reduces to

E(s'[0])vow'o = Wo,
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Pilmi

_P n1mn,
= P1 + - -+ Pn

= 1.

Therefore, the steady-state value of (5.24) is

E(s'[k]) -+ E(s'[O])vow' = w' (5.25)

If E(s[O]) has a component along any eigenvector other than the one with an eigenvalue at

1, then that component reflects the departure of E(s[O]) from the steady-state value of E(s[k]).

The rate at which each of these terms decays to zero will be governed by how fast A reaches zero

as a function of k. This is our motivation for understanding the spectrum of H. By knowing its

eigenstructure, we can quantify how much deviation an initial state E(s[O]) has from the steady

state, and how fast E(s[k]) will approach the steady state. Moreover, by relating back to the

eigenstructure of G, we can determine the conditions on E(f[0]) that will cause E(s[O]) to have

particular deviations from the steady state.

5.3.5 Eigenstructure of G and H

For the rest of the chapter, it will be assumed that H = D' 0 {Aij} has distinct eigenvalues.

Because by Theorem 5.5, H always has a dominant eigenvalue at 1, and its algebraic multiplicity is

equal to the number of autonomously recurrent classes on F(H), our assumption implies that 1F(H)

must have only one autonomously recurrent class. It also implies that D has distinct eigenvalues,
because otherwise by Theorem 5.1, H would have had the same repeated eigenvalues. Having

distinct eigenvalues also means that 1F(D') has only one autonomous class.

COROLLARY 5.12

Let w, v be a left and right eigenvector of H with a corresponding eigenvalue of A. If Bv -f 0,
then Bv is a right eigenvector of G with A as its corresponding eigenvalue. Moreover, if A is a

non-repeated eigenvalue of G, then w' = ,'B, where v is a left eigenvector of G corresponding to

A.
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Proof. Letting k = 1 in (5.18) and multiplying by v from the right, we have GBv = BHv = ABv.

So if By y 0, it must be a right eigenvector of G with eigenvalue A. Since A is an eigenvalue of

G, it must have a corresponding left eigenvector iv such that 'G = AV'. Multiplying (5.18) by

iv' from the left, we get i'GB = Aiv'B = iv'BH. This shows that if i'B f 0, then it must be

a (transposed) left eigenvector of H with eigenvalue A. If A is a non-repeated eigenvalue of G,
then as left and right eigenvectors of G with the same eigenvalue, i'(Bv) 5 0, which implies that

iv'B : 0. Thus, iv'B is a left eigenvector of Hr with eigenvalue A.

On the other hand, since w is the eigenvector of H corresponding to A, and since H has

distinct eigenvalues, it must be that w' = civ'B, where c is some nonzero constant. Without loss

of generality, we can lump c into civ, and the claim is proved. l

COROLLARY 5.13

Let ;v, iv be a left and right eigenvector of G with a corresponding eigenvalue of A. If iv'B 7 0 then

i'B is a left eigenvector of H with A as its eigenvalue. Moreover, if A is a non-repeated eigenvalue

of G, then V = Bv, where v is a right eigenvector of H corresponding to A.

Proof. The proof is similar to that of Corollary 5.12. l

Corollary 5.12 implies that certain eigenvalues and eigenvectors of G can be obtained form

H. We define the set of relevant eigenvalues of H as

A
r = { The eigenvalues of H whose corresponding right eigenvectors v satisfy By / 0 } (5.26)

It then follows from Corollary 5.12 that , C t-(G) n -(H). Note that this definition leaves no

ambiguity as to which eigenvalue is relevant, because the eigenvalues of H are distinct by our

assumption. (If H contained repeated eigenvalues, then there could be an eigenvalue whose set of

corresponding eigenvectors contains those that satisfy Bv = 0 as well as those that do not, thus

making the definition of , above ambiguous.)

Another point to note is that the eigenvalue A = 1 is always relevant. From Theorem

5.1, a right eigenvector of this eigenvalue is v = p 0 {1,} where p is the left eigenvector of D

corresponding to A = 1. From Corollary 5.10, we know that this v AJ(B) because p'l # 0.

An eigenvector of H that corresponds to a relevant eigenvalue is called a relevant eigenvector.

The rest of eigenvalues in -(H) are called irrelevant eigenvalues, and are denoted by

A
= oUH) -r
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The corresponding eigenvectors of tc are called irrelevant eigenvectors.

The label "irrelevant" for K, is justified by the following observation: regardless of the value

of E(f[0]), no expected status vector E(s'[0]) = E(f'[0])B will ever have any component along the

irrelevant eigenvectors. This is due to the fact that for any irrelevant (right) eigenvector v,

E(s'[O])v = E(f'[O])Bv = 0.

This means that in the analysis of eq. (5.24) we can altogether disregard those terms that involve

irrelevant eigenvalues.

The identity of irrelevant eigenvalues is revealed in the theorem that follows the next lemma.

LEMMA 5.14

The number of relevant eigenvalues is given by:

n

Hr= mi - n +1=o-(H)I - (n -1).
i=1

Proof. Let K, be a matrix of JKIc columns, with each one being an irrelevant eigenvector corre-

sponding to a different A E ,,. By definition, BKc = 0. Since H contains distinct eigenvalues, the

columns of K, must be linearly independent. From Theorem 5.9, dim(Af(B)) = n - 1. So there

can be no more than n - 1 columns in Kc, which means JKc < n - 1. Because H contains Ei mi

distinct eigenvalues, I K I + I r, mi. Hence,

k|1 > ( mi) - n +1. (5.27)

Now let K be a matrix of ,Jr columns, each one being a relevant eigenvector of a different A E K.

From Corollary 5.12, the columns of BK are the right eigenvectors of G corresponding to eigenvalues

in r,. The columns of BK must be linearly independent, because they correspond to distinct

eigenvalues. The rank of BK, namely I'r, cannot exceed the rank of B, which is (Ei mi) - n + 1

by Theorem 5.8. Combining this with (5.27), we conclude that It< = (rj mi) - n + 1. El

THEOREM 5.15

KC= {A A E o-(D) and A - 1} (5.28)

Proof. Given that A is an eigenvalue of D with a corresponding left eigenvector a, by Theorem 5.1

- 120 -



Chapter 5 Influence Matrix Analysis

we know

Hv = Av where v = a ® {1m,}. (5.29)

A 4 1 -4 a'1 = 0

SBy= 0 where v = ao {1m}

- A E rc

because a and 1 are left eigenvectors

of different eigenvalues (Thm. 1.4.7 in [26])

by Corollary 5.10 and (5.30)

by (5.29), (5.31) and (5.26)

This proves ie contains at least all of -(D) except for the eigenvalue at 1. Because H contains

distinct eigenvalues, so must D (see reasoning in the first paragraph of Sec. 5.3.5). This means

lo-(D)l = n, and as a result, IYc, ;> n - 1. But by Lemma 5.14, r,,c = n - 1. So rc cannot include

any other eigenvalue other than -(D) - {1}. E

Theorem 5.15 in combination with Theorem 5.1 thus completely describe the irrelevant eigenvalues

and eigenvectors for the case of distinct eigenvalues in H.

As for the relevant eigenvalues and eigenvectors, in general, there is no simple way to describe

them except for the eigenvalue at 1, whose right eigenvector has been described in Theorem 5.1,

or for the case of homogeneous influence matrices H = D' 0 A. In the latter case, any left or right

eigenvector of H = D' 0 A can be factorized into

left: wH = VD 0 WA right: VH = WD 0 VA

where in (5.33) the notations wx and vx denote a left and a right eigenvector of matrix X

respectively (see [27] about eigenvectors of Kronecker products). In particular, let p and a be the

left eigenvectors corresponding to the eigenvalue at 1 of D and A respectively. Then the eigenvectors

of H corresponding to the eigenvalue at 1 are

left: 1, 0 a right: p 1m

where n and m are the orders of D and A respectively.
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5.3.6 Intuitive Interpretation of K

The eigenvalues in K, when considered as a part of -(G), can be intuitively thought of as the

eigenvalues whose duties are to "correct" the marginal distribution of E(f[k]) to its proper steady-

state value. To understand this, let us return to the discussion in Sec. 5.3.4. As before, for

i = 0, . . . , v - 1, let Ai denotes the ith eigenvalue of H (where the eigenvalues are sorted by

their magnitudes), and let wi and vi denote corresponding left and right eigenvectors respectively.

Likewise, assume that G also has distinct eigenvalues Ao = 1, ... , I, which are similarly sorted

by magnitude, and let their corresponding left and right eigenvectors be denoted by iV4 and vj

respectively. By combining Corollaries 5.12 and 5.13 and the assumption that G has distinct

eigenvalues, we can see that definition (5.26) is equivalent to

A
K = { The eigenvalues of G whose corresponding left eigenvectors iV satisfy VB 4 0 }. (5.35)

Assuming that iV = 1, the evolution of E(f[k]) can be expressed as

pn -1

E(f'[k]) = E(f'[O])G = jI + S E(f'[01)i;W'i. (5.36)
i=1

where we have assumed that the zeroth right eigenvector has been normalized to vo = 1, so

E(f'[0])Vo = 1 because E(f[0]) is a PMF. Note that some of the Aj in the second term in (5.36) will

be from K C o(G)n o-(H). Recall that E(f[0]) is said to have a component along the ith eigenvector

if E(f'[0])v # 0.

We say that the PMF E(f[0]) has the correct steady-state marginals, or simply correct

marginals if the corresponding E(s[0]) is equal to the steady-state eigenvector of H,

E(s'[0]) = E(f'[0])B = wo. (5.37)

In other words, if E(f[k]) has the correct marginals, then E(s[k]) in (5.24) would simply not evolve,
because (5.37) shows that it is already starting from the steady state.

If E(f[0]) = vo, the steady state of G, then it certainly must have the correct marginals,
because

-IW'B= wo (5.38)

by Corollary 5.13, but what are the other possibilities? In general, E(f[k]) can have the correct

marginals if and only if it is any PMF vector of the form vo + x where x E J(B'), the left null
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space of B, because (vo + x)'B = VB.

THEOREM 5.16

E(f [0]) has a component along a relevant eigenvector if and only if E(f [0]) does not have the correct

(steady-state) marginals.

Proof. By multiplying B on the right of (5.36), and substituting (5.38), we get

Pn-1

E(f'[k])B = i'oB+ kE(f'[0])rii'B
0i

w'o + i E(f'[0])iiv'B. (5.39)

where the second term in the summation only involves the eigenvalues in ,, because of (5.35). If

E(f[k]) does not have a component along the relevant eigenvector, then the second term in (5.39)

must vanish, leaving only the term w' on the right-hand side. Conversely, if E(f'[k])B = w', then

S AE(f'[0])> 'B = 0
Ai e

for all k, which can only be satisfied if E(f'[0])VihivB = 0 for all i. Now since ivi4B z 0, it must be

that E(f'[0])Vi = 0. That is, E(f[k]) does not have a component along any relevant eigenvector. D

This theorem states that if E(f[0]) does not start off with the correct marginals, it will have

some component along the relevant eigenvectors. These components represent the deviations from

the steady state of E(f[k]), and they will decay according to the eigenvalues in K, until E(f[k])

have the "corrected" marginals.

Interestingly, if E(f[0]) does start off with the correct marginals, but E(f[0]) # iWo, then the

evolution of E(f[k]) would still have contributions from the terms corresponding to the eigenvalues

of G that are not in r,. Intuitively, these other eigenvalues are performing the duties of "correcting

the correlations" among the sites. This suggests that the spectrum of G can be partitioned into

those that correct the marginals, or the averages of each individual site, and those that correct

the correlations, or the joint-averages of groups of sites. Indeed, as we shall see in the following

chapter, among the correlation-correcting eigenvalues of G, one can make even further partitions:

some of them specifically correct the second-order statistics, some the third-order statistics, and so

on. For now, the point to make is that each eigenvalue of G has a clearly defined purpose, which

is to correct the statistics of E(f[0]).
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5.4 To Link or Not To Link

We now tackle an important question that has been raised in Sec. 4.2.1 as a motivation to study

the influence model: what are the effects of network connection on the status of each individual

site? The answer to this question will be discussed below after some simplifying assumptions.

We will then explain why this answer naturally motivates us to study the higher-order influence

descriptions in the following chapter.

Again, using the power system scenario, suppose each power plant can be either "normal" or

"failed. The operating conditions of the power plant may be (coarsely!) modeled by some Markov

chain F(A) in the form shown in Figure 5.1. Without the connection to the network, a power plant

(norma failed

Figure 5.1: A Markov chain modeling a power plant's operating conditions

will operate alone and will achieve a steady-state failure probability that depends only on A. If it

chooses to connect to the network, and thereby to influence and to be influenced by it, then the

status of this site will depend not only on its own current status, but also on the current statuses of

its neighbors. From the point of view of that power plant, this dependency represents a two-edged

sword. The benefit is that when it is failed, the network has the potential to bring it back up. On

the other hand, when that site is normal, a failed set of neighbors can influence it to fail. The main

questions are: should the site connect to the network, or should it operate in isolation? If it should

connect to the network, which sites should it connect to, and what are the optimal branch weights?

We can see that this "to link or not to link" question is effectively an optimization problem,

which, in order to be answered quantitatively, requires one to define the precise objective function

and the constraints. However, with the assumptions we are about to make, the answer to this

problem will be simple enough that we can skip those formal definitions altogether. First, we

assume that the the influence graph is homogeneous, i.e., H = D' 0 A. Second, assume the local

chain A and the network matrix D after the addition of the new site are ergodic, and consequently

so is H. Being ergodic, both D and A have steady-state left eigenvectors p and a respectively, both

of which are assumed to be normalized so their entries sum to 1. In other words, when the new

site operates alone, it has a steady-state PMF of a.

With these assumptions, the answer is surprisingly simple: it doesn't matter how the new

- 124 -

Influence Matrix AnalysisChapter 5



site is connected to the network, as long as it is only concerned about its own steady-state proba-

bility, not the joint probability between its status and that of some other site. The reason is that

E(s[k] I s[0]) = s'[O]Hk, and by (5.34) and the fact that H is ergodic,

E(s[k] I s[O]) s'[O]Hk

-+ s'[0(p01m)(l'o0a')

S[a' ... a'] (5.40)

where in (5.40), we used the fact that s'[0](p i 1m) = 1. Eq. (5.40) shows that every site, both new

and old, will have the same steady-state PMF, regardless of how D has changed, provided that D

is still ergodic.

5.4.1 Experiments

To confirm the answer to the "to link or not to link" question as well as to gain more insight into

the system, we performed the following simulations of two homogeneous influence models.

To highlight the effect of network connection, we generated two 30-site homogeneous influ-

ence models with the same local chain A but different network connections:

Ha = I A

Hb = D'® A.

In Ha, all the sites are disconnected. In Hb, D is a randomly generated network matrix such that

every site has a self-loop and that the incoming edges (including the self-loop) at every site all have

equal weights; for a site with k neighbors, the weight of each incoming edges is equal to 1/(k + 1).

This means in Hb every site receives equal influence from the neighbors and itself. The local chains

are identical at every site and are given by

A= [.99 .011
.08 .92

We will refer to the statuses as "normal" and "failed" respectively. The steady state PMF vector

of A (the normalized left eigenvector of the eigenvalue at 1) is [.889 .111].

Typical snapshots of the simulation for 10 consecutive time steps are shown in Figures 5.3

and 5.4. In each figure, the left column corresponds to the results from Ha, and the right column

to the results from Hb. In order to make these plots, we had to assign an (x, y) coordinate to each
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site. Then, while creating the matrix D for Hb, the edges were created in such a way that each

site tended to connect to a near site rather than a far one. The coordinate assignments, as well as

the bias in favor of near sites were implemented merely to avoid clutters of tangled edges in the

plots. They are inconsequential to the simulation dynamics. Note that in the plots for Ha, edges

were drawn between sites to make it easy to compare with the plots for Hb, although in the actual

simulations for Ha these edges were ignored -they do not imply any influence. Sites in normal

status are denoted by thin circles, and sites in failed status are drawn in thick circles.

From observing the simulations in motion, a few qualitative differences can be seen. First,
there are significantly more state changes in Hb, as can be seen from the frequent flickering of the

thick circles. Second, failures in Hb that occur in clusters are significantly more persistent than

those that occur in isolation. This is because failed sites sustain each other with like influences in a

cluster. In contrast, an isolated failed site would be surrounded by normal statuses, and therefore

has a tendency to quickly revert to normal status.

The simulation was carried out for a total duration of 2 x 10 5 time steps for both models.

At the end of the simulation, a histogram of the number of failed sites at each time step was

plotted for each system and compared in Figure 5.21 The mean number of failed sites per time

0.25
H Ha

0.2 Hb
0
C
(D

8-0.15

>, 0.1

Im 0
0.05

C02
0 10 20 30

number of failed nodes

Figure 5.2: Histogram of number of failed sites at each given time steps.

step are 3.29 and 3.34 for Ha and Hb respectively. Both are sufficiently close to our expectation of

0.11 x 30 = 3.33 (probability of failure in steady state times the number of sites). This is also in

agreement with our answer to the "to link or not to link" question - it doesn't matter what D is,
because the individual steady-state PMF would remain unchanged.

'By the ergodic theorem ([3], Thm. 1.10.2), both histograms are guaranteed to converge. Moreover, even though
they are obtained from a single run of the experiment, at convergence each histogram would be the correct steady-state
distribution of the respective system.
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The difference between the two histograms in Figure 5.2, however, is that the histogram for

Hb has a visibly greater standard deviation than that for Ha (3.6 vs. 1.8); it has higher probabilities

for small and large failures, but lower probabilities for the average-sized failures. This is consistent

with the earlier description of qualitative differences.

The above observations are consistent with our intuition; through the connections among the

sites, the correlation of the statuses are increased among neighbors. Since the correlation among

neighbors are not reflected in the individual PMF's, the following question surfaces: what analysis

of the influence model can one make to rigorously show the effect of network connection? Our

answer is to extend the analysis of individual statuses to analysis of joint-statuses, a collection of

statuses that simultaneously describes a group of sites. This is the motivation for the higher-order

analysis developed in the following chapter.
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Ha, Time = 1

Ha, Time = 2

Ha, Time = 3

Ha, Time = 4

Ha, Time = 5

Figure 5.3: Sample run from step 1 to 5. Thick circles denote failed sites while thin circles denote
normal sites. Notice how isolated failures in Hb revert to normal much more quickly than in Ha.
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Ha, Time = 6

Ha, Time = 7

Ha, Time = 8

Ha, Time = 9

Ha, Time= 10

Figure 5.4: Continued sample run from step 6 to 10. Notice how new failures in Hb tend to be

caused by neighbors that have failed in the previous time steps.
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6.1 Introduction

Apart from being able to predict the steady-state probability of the individual sites, one is often

interested in the joint status of two or more sites. For example, in the case of power systems,

a planner might inquire about the likelihood that a certain group of generators would be down

simultaneously. Since our analysis of the influence model so far only applies to individual sites, an

extension of the analysis is needed to determine such collective behavior of sites.

In this chapter, we present higher-order analysis of the influence model. An rth-order joint

status is a collection of statuses of a group of r sites. The higher the order, the larger the size of

the problem becomes. This graceful growth is desirable to us from both theoretical and practical

points of view. Theoretically, the higher-order model serves as the link between the dynamics of

the first-order H and that of the master Markov chain G. Practically, higher-order analysis makes

computations on influence models scalable. It allows us the flexibility to obtain progressively more

elaborate statistics at the expense of progressively greater computation, instead of jumping directly

from the first-order to the master chain G.

Our approach in this chapter is as follows. First, we introduce the joint-status vector,

its meaning, and the issues regarding redundant joint statuses. Then, we will derive the higher-

order influence matrices, and expose the relations between them and the master Markov chain

G. Finally, we expose the "telescoping" relations of the relevant eigenvalues, and explain how the

relevant eigenvalues of higher-order influence matrices correct higher-order statistics of sites.

6.2 Joint-Statuses

Ultimately, the purpose of higher-order influence matrices - or for that matter, the purpose of this

entire chapter - is to be able to answer a question of the following sort: in a given influence model,

what is the probability that sites a, b, c are simultaneously in statuses x, y, z respectively? In what

follows, we will refine this question by setting it up mathematically so that we can answer it. As

the first step, in Sec. 6.2.1, we will show what joint-statuses are, and how they are different from

the status vectors used thus far. Then in Sec. 6.2.2 we restate the main problem of this chapter,

and finally from Sec. 6.2.3 onward derive the answer to this problem in detail.
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6.2.1 Definition

As before, let H = D'0 {Aij} be an influence matrix and let min,... , mn be the orders of the local

chains, i.e. the sizes of A ,... , Ann respectively. In this chapter, we will refer to H as a first-order

influence matrix instead of just an influence matrix, to distinguish it from higher-order influence

matrices soon to be introduced. Recall that a status vector of site i at time k is denoted by si[k],

a length-mi binary vector with a single entry of 1:

si[k] = [0 ... 1 ... 0]'.

We say that site i is in status x at time k if the position at which the entry '1' appears in si[k] is x.

Now let us extend this notation to multiple sites. For a given ordered set of r sites i =

(i1 ,... ,ir), we say that the sites in i are in joint-status f = (f1,... ,£r) at time k if, for each

1 < t < r, the site it is in status ft. Note that the sites in i need not be distinct. A convenient

way to represent the joint-status for i is by the joint-status vector, which is defined as the following

Kronecker product:

si[k] sil [k] 9 ... Sir[k].

Note that the subscript of si [k] is a vector, not a scalar. The vector si [k] is a binary vector of length
A

pi = mnil -mi,.

Example 1: Suppose

s1 [k] = [1 0]' s2 [k] = [0 0 1]' s3 [k] = [0 1]'. (6.1)

Then a few examples of the joint-status vectors are

S(1, 2 )[k] = s1[k]Os 2[k] = [0 0 1 0 0 0]' (6.2)

S(2 ,1)[k] = s2[k] 0 si[k] = [0 0 0 0 1 0]' (6.3)

S(3,3)[k] = s3[k] ®s 3[k] = [0 0 0 1]' (6.4)

Like the individual-status vector si[k], there is only a single nonzero entry of 1 in the joint-

status vector si[k]. The position of this entry '1' is a function of both the joint-status f and
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Y l, f') f (f, mi)

(1, . .. , 1,mj) Tf1

(1, . .. ,1,)2) 2

(,...,1, Mir) Mir
(1, ... , 2, 1) mir + 1

(Mil) , 7 Mi,_1,I Mir pi-1

(Mi, ... , Mri, mir) Ai

Table 6.1: Table of f and f(f, mi).

Mi = (Mil , . .. , Mr):

f(e, m) = (1 - 1)(mi 2
... Mir) + (V2 - 1)(mi 3 ... Mir) + - + (er-1 - 1)mir + fr. (6.5)

Despite the cumbersome appearance of (6.5), this function can actually be easily understood when

viewed in a table as shown in Table 6.1. Reading down the table, one notices that in the right

column the f(-, -) simply sequences from 1 to pi, while f sequences "last-digit first" from (1,... , 1)

to (mil , ... , Mir). Since the left column list all possibilities of f, and since pi is the length of vector

si[k], this table shows that each position in si[k] uniquely corresponds to a joint-status f. Therefore,

we will use the multiple-integer f both as a joint-status and as an addressing scheme. We say that

the sites in i are in joint-status f at time k if the entry '1' of si[k] is at position f(f, mi); and when

we refer to the entry at address f of si[k], we are referring to the entry at position f(f, mi) of si[k].

6.2.2 A Motivating Proposition

We now present a basic proposition that has surfaced repeatedly in this thesis in various contexts.

For a group of sites i and one of its addresses f, we refer to (si[k])t as the entry in position f(f, mi)

of vector si[k].

PROPOSITION 6.1

For any group of sites i,

Prob( the sites in i are in joint status f at time k ) = E [ (si[k])| I (6.6)

Proof. Because each (si[k])t is a binary random variable, its expected value is equal to the proba-

bility of its being a 1. D

- 133 -

Chapter 6



Higher- Order Analysis

Proposition 6.1 is the key. It says that if we know E(si[k]) for all i and all k, then we know

the probability of each joint-status for all time. Our main question for the rest of this chapter is

then: how can we determine E(si[k]) for a given influence model without resorting to Monte Carlo

simulation? Are there evolution equations that will provide us with E(si [k]) for all k? The answers

to both of these questions are affirmative, and we devote the rest of this chapter to answering them.

6.2.3 Primary and Secondary Groupings

A grouping is defined as an ordered set of r sites i =(i, ... , ir). Throughout this section we assume

that r < n, where n is the number of the sites in the influence model. We also assume that r is

fixed so that a grouping always contains the same number of elements. A grouping i = (i1 , ... , ir)

is called primary if it contains only distinct sites and if the indices of these sites are sorted in a

strictly increasing order, i.e., i1 < < Ir. A grouping that is not primary is called secondary.

If i is primary, then its joint-status vector si[k] is called a primary joint-status. Similarly, if i is

secondary, then s [k] is called a secondary joint-status.

Given that there are n sites, there are nr possible groupings. Among those, only (T) are

primary, because there are that many ways to choose r distinct sites from n available ones. The

remaining nr - (n) groupings are secondary.

Example 2: Suppose there are 3 sites in an influence model and we fix the order r to be 2. Then

the listing of all the groupings and their classifications are given in Table 6.2. As expected, there

are 32 groupings, of which only (') = 3 are primary. El

Table 6.2: List of all groupings and their classifications.

The primary groupings are given this name for two important reasons. First, by knowing
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(1, 1) 0
(1,2) 0

(1, 3) 0

(2,1)
(2,2)
(2, 3) 0

(3,1)
(3,2)
(3,3)
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the joint-statuses of every primary grouping, we know the joint-statuses of every possible grouping;

every secondary joint-status can be derived from some primary grouping, as we will show in Sec.

6.2.4. Second, given the state vector s[k], the statuses in the following time step of the sites in

a primary grouping are independent, thus simplifying the analysis on their joint-PMF's. We will

discuss this second property in more detail in Sec. 6.3.4.

6.2.4 Marginalization Matrices

As just claimed, every secondary joint-status can be derived from some primary joint-status. In

this section, we identify the primary joint-statuses from which a given secondary joint-status can

be derived. The two joint-statuses will be related through a matrix called a marginalization matrix.

We will explain how the marginalization matrices can be constructed through several examples.

For two groupings i = (i1 ,... , i) and j = (i,... , j), we write i C j if the unordered

version of i is a subset of the unordered version of j, i.e., {ii,... ,} C {ji,... ,Jr }. For example,
(1, 1) C (1, 2), and (3, 2, 2) C (2, 3, 4).

THEOREM 6.2

Let i be a grouping. There exists a primary grouping j such that i C j. Furthermore, there exists a

matrix M[j, i] such that

s' [k] = s' [k]M[ ji]

Although conceptually Theorem 6.2 is not difficult to understand, the constructive proof

that we are going to provide requires a certain amount of bookkeeping of details. Thus, rather than

proving it formally, we shall only explain why the claim is true in an informal manner, and along

the way give several examples to familiarize the reader with the procedures to convert a primary

joint-status to a secondary joint-status.

The first claim of Theorem 6.2, regarding the existence of such a primary grouping, is ex-

plained first. In the cases (a) and (b) below, we explain this claim while simultaneously constructing

such a primary grouping.

(a) If a given grouping i contains only distinct sites, we can sort the indices of the sites in it to

obtain a sorted grouping j. Since j contains only distinct sites which are already sorted, j is a

primary grouping with the property that i C j as claimed.

(b) On the other hand, if i has some repeated sites, then the number of distinct sites in i must
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be strictly less than r. Let t be the number of distinct sites in i. Then we can find (r - t)

additional distinct sites to create a new grouping k, which is made up of exactly r distinct

sites. That is, k is a grouping that combines the t distinct sites in i and the additional (r - t)

distinct sites that we add. The (r - t) new sites can always be found, because we still have

available to us (n - t) distinct sites that are not in i, and r - t < n - t. To make the procedure

well-defined, we assume that the sites with the smallest indices will be chosen among those

available ones. Once we have k, we can sort it as in case (a) to obtain a primary grouping j,
which again satisfies i c j.

As a result of the cases (a) and (b) above, whether or not the grouping i contains repeated sites,

we are left with a unique primary grouping j such that i C j, which we call the designated primary

grouping of i and denote by w(i) = .

A few examples of groupings of order 3 and their designated primary counterparts are given

in Table 6.3. One can verify that in each case, w(i) is primary (i.e., sorted and having distinct

sites), and that i c w(i). This completes our explanation for the first part of the claim in Theorem

6.2.

____ w(i)

(3,1, 2) (1,2,3)
(8,8,8) (1,2,8)
(2, 1, 1) (1, 2, 3)

Table 6.3: Examples of some groupings and their designated primary counterparts.

The second claim of Theorem 6.2 involves the construction of the matrix M[j, i] for some

primary j such that i c j. This part of the claim is a bit more complicated than the first, so

before we present the construction procedure for a general grouping i, we provide a few examples

as motivation first. For the rest of the chapter, for any grouping i, define Mi M[w(i), i] as the

marginalization matrix of i. When i is primary, w(i) = i. In that case, Mi I.

Example 3: In this example, we will simply present a few marginalization matrices and verify

briefly that they have the desired properties, without yet describing how they are constructed. The

purpose is to accustom the reader with the general idea of what these matrices look like.

Let us revisit the 3-site example used in Examples 1 and 2. Given that the orders of the

local chains are 2, 3 and 2 respectively (from Example 1), the two examples of marginalization
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matrices that we focus on now are as shown:

1 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0

1 0 0 0 M 0 0 0 1 0

M(1,) = (2,1 = .(6.7)0 0 0 1 0 1 0 0 0 0

0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 1

Focusing on M(1,1) first, since w[(1, 1)] (1,2), the first marginalization matrix M(1,1) is a 6 x 4

matrix, which is equal to the order of S(1, 2 )[k] x the order of s(1,1)[k]. For the statuses defined in

(6.1), s(1,1)[k] = [1 0 0 0 ] and s(1, 2 )[k] is as given in (6.2). We can see that s 1 )[k] = s' 2 )[k]M(1,1)

as claimed. Notice that columns 2 and 3 of M(1,1) are zero. This is expected because the second

and third entries of s(1,i)[k] are always zero. The reason is that when site 1 is in status 1, s(1,1)[k]

is in joint-status (1,1), which corresponds to having an entry '1' in the first position; when site 1

is in status 2, then s(1,1)[k] would be in joint-status (2,2), which corresponds having a '1' in the

fourth position. The second and third position will never have an entry '1' in them because they

represent invalid joint-statuses for s(1,1) [k].

Now, let us turn our attention to M( 2,1). Since w[(2, 1)] = (1, 2), M( 2 ,1) is a 6 x 6 matrix.

Again, we can verify from (6.2) and (6.3) that s' [k] s( 1 2 )[k]M( 2 ,l). Notice that and

M(2 ,1) both have a single nonzero entry of 1 in each row. As we shall see, this is true for all

marginalization matrices. In particular, M(2,1) also has a single '1' in every column, thus qualifying

it a permutation matrix (see Sec. 2.1.2). We shall see too that this is always the case when i and

w(i) are permutations of each other, or equivalently, when i has distinct sites. E

We now describe the procedure to construct the matrix M[j, i] for the general case. Let

i = (ii,... ,ir) be a grouping and let j = (ji,... ,jr) be a primary grouping such that i c j. Since

i C j, for all 1 < t < r, the site it of i must also be a member of the ordered set j. Since j
only contains distinct sites, the site it must uniquely correspond to some site in j. Thus, for each

1 < t K r, we define 0(t) as the re-indexing function such that it = jo(t). In other words, 0(-) is

defined such that

(i1 .. ir) = (U0(1), . .. , Jo(r)) A E() 

We call such function 0(-) and E(.) the scalar and vector re-indexing functions for i and j respec-

tively.

Example 4: From Table 6.3, (3, 1, 2) C (1, 2, 3). So we let i = (3, 1, 2) and j = (1, 2, 3). Then we
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set 0(1) = 3, 0(2) 1= and 0(3) = 2, so that

e(j) = (j3,jij2) = (3, 1, 2) = (41,i 2 ,i3 )

as desired. Notice that here E(.) is essentially a permutation function, which is a one-to-one

function, since i and j are permutations of each other.

The function 0(.) needs not be a one-to-one function, as this next example shows. Again,

from Table 6.3, let i = (8, 8, 8) and j = (1, 2, 8). In this case, we must set 0(1) = 0(2) = 0(3) = 3,

so that

e(j) = (h, h, ) = (8, 8, 8) = (i1 , i2 , i3 ).

Recall that for each grouping i, the joint-status vector si[k] simultaneously indicates the

statuses of sites i1,... , ir at time k. In particular, there is a '1' at address f of si[k] if and only if

the sites in i are in joint-status f at that time.

Since i C j, if we know the joint-status of the sites in j at time k, we must know the joint-

status of the sites in i at that same time. Equivalently, if we know the position of the '1' entry in

sj[k], then we must know the position of the '1' entry in si[k]. More specifically, if the '1' entry is
A A

at address p =(P,... Pr) of sj [k], then si[k] would have a '1' in position E (p) = (P(1), ... , P6(r)),

where E(-) is the vector re-indexing function of i and j. The reason for position 0(p) is simple:

since the site indices jo(t) and it are equal, when jo(t) is in status po(t), so is it.

The marginalization matrix M [j, i] is a matrix that satisfies s' [k] = s [k] M [j, i]. This shows

that M [j, i] has as many rows as the order of sj [k], and as many columns as that of si[k]. Therefore,

we can refer to each column of M[j, i] by a unique address f = (fi, ... , fr) in which 1 < ft < 'm

for all t. That is, we use address f to refer to a column of M[j, i] in the same manner we use it

to refer to a position in si[k]. Similarly, each row of M[j, i] can also be referred to by an address

p, the same way each entry of sj [k] is referred to. Combining these observations, we come to an

important fact about M[j, i]: for each pair of row and column p and f,

(M[j,i] = I iffO(p) (6.8)
0 0 otherwise

In words, eq. (6.8) means entry (p,f) of M[j,i] is a 1 if and only if the fact that sj[k] is in

joint-status p implies that si[k] is in joint-status f. This definition implies that a nonzero entry in
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M[j, i] always occurs in a position of the form (p, E(p)), where p is the address of its row. As a

consequence, each row of M[j, i] must have exactly a single nonzero entry of '1', as seen in M(1,1)

and M(2,1) in Example 3.

To familiarize ourselves with the matrix M[j, i] even further, we make two more characteri-

zations of M[j, i] in interesting special cases.

Observation 1: The matrix M [j, i] is a permutation matrix if and only if i and j are permutations

of each other.

Note that this statement is not so obvious because M[j, i] permutes the entries of sj [k], not those

of j. We have seen an example of this case from M(2 ,1) in Example 3. The explanation for this

observation is as follows. The groupings i and j are permutations of each other if and only if for

each 1 < t < r, the scalar re-indexing function 0(t) maps t to a unique integer in the set {1, ... , r},
which means that 0(.) is a one-to-one function.

When the scalar re-indexing function 0(.) is a one-to-one function on the set of integers

{ 1,... ,r}, the vector re-indexing function 0(-) is a one-to-one function on the set of addresses

- = { (p1,-. , Pr) 1 Pt < mj } of sj[k] as well. The reason is that its inverse exists; given an

address F of si [k],

p = 6-1(f) - V( --1 (1)) -. I f'9- ()-

Since a one-to-one function on the set E implies that E(.) is a permutation function, we have

completed our explanation for Observation 1.

Observation 2: If i has any repeated sites, and the order of every local chain satisfies mi > 2,
then M[j,i) must have some zero columns.

We have seen this case in M(1,1) in (6.7). The reason is that there are certain positions of si[k]

that can never have a '1' in them. These are the entries corresponding to joint-statuses in which

a single site have different statuses. For example, if i= i 2 , then an entry of address f in si[k] is

guaranteed to be zero if f, 5 £2; the site il must have the same status as site i 2 , since they are the

same site.

Example 5: Let us now revisit the marginalization matrices in Example 3 and see how they were

constructed.

In the first one, i = (1, 1) and j = (1, 2). So the scalar re-indexing function used was

0(1) = 0(2) = 1. For every row address p of M(1,1), the pairs of (p, ®(p)) are listed in Table 6.4a.
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There we also show which position of si [k] the address E(p) really corresponds to by evaluating the

function f(0(p), (2, 2)) defined in (6.5), where (2, 2) = mi, the orders of the sites in i. Using the

first and the last columns of this table, we have determined every nonzero position of M(1,).

In the second matrix M(2 ,1), i = (2, 1) and j = (1, 2). So 0(1) = 2 and 0(2) = 1. The rest of

the procedures are the same. El

Rows Columns
Index p E(p) f (E(p), (2, 2))

1 (1,1) (1,1) 1
2 (1,2) (1,1) 1
3 (1,3) (1,1) 1
4 (2,1) (2,2) 4
5 (2,2) (2,2) 4
6 (2,3) (2,2) 4

(a)

Rows Columns

Index p 0 (p) f (E(p), (3, 2))
1 (1,1) (1,1) 1
2 (1,2) (2,1) 3
3 (1,3) (3,1) 5
4 (2,1) (1,2) 2
5 (2,2) (2,2) 4
6 (2,3) (3,2) 6

(b)

Table 6.4: Listing of (p,E(p)) for (a) M(1,1) (b) M(2 ,1 )-

6.3 Higher-Order Influence Matrices

Recall that in Sec. 6.2.2, we stated a proposition which motivates us to find the evolution equations

for E(si[k]). Knowing the expected value of this vector is equivalent to knowing the probability of

each joint-status of the sites in i. We subsequently classified the joint-statuses into primary and

secondary joint-statuses, and explained in detail on how the secondary joint-statuses can be derived

from the primary ones. In this section, we return to the message from Sec. 6.2.2 and explain how

the analysis so far can be applied.

By knowing the expected joint-statuses for all primary groupings, we know the expected

joint-statuses for every grouping, primary or secondary. This is due to the fact that for any

grouping i,

s'[k] = s'()Mi.

Hence, by the linearity of expectation operators,

E(s' [k]) = E(s' (i)[k])Mi. (6.9)
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Since w(i) is primary, if we have the expected joint-status of every primary grouping, we must

have the expected joint-status of w(i), and consequently, of i. Our problem can then be reduced to

finding the evolution for expected joint-statuses of every primary grouping. This will be our goal

for the rest of Sec. 6.3.

6.3.1 Lexicographical Ordering

Before deriving the evolution equations for primary groupings, there is a straightforward but nec-

essary concept that needs to be introduced, namely the concept of lexicographical ordering. As

mentioned earlier, there are n' possible groupings. These groupings are listed in Table 6.5 below.

The lexicographical ordering is defined as the order in which groupings appear in this table. An

Grouping

(1, .. 1,1 1)
(1,.. ,1,2)

(1,.. ,1,n)
(1,.. ,n,1)
(1,.. n, 2)

(n,... ,n~n -1

(n,... ,n,n)

Table 6.5: The lexicographical ordering.

ordered collection of groupings i1 , i 2 , ... , ik is said to be in lexicographical order if the order in

which these groupings appear is the same as they do in Table 6.5.

6.3.2 Expansion and Truncation Matrices

A
Let i1,... ,i, be the list of all v = n' groupings arranged in lexicographical order. Define the

rth-order state vector at time k as

s(r)[k] = [s' [k] .. . s, [k] . (6.10)

It is not difficult to show that the length of vector s(,)[k] is (En1 mi)r
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Among these v groupings, a subset of order r/ = (n) of them are the primary ones. Thus,

we define (-) as the indexing function such that i (j) is the jth primary grouping, when they

arranged in lexicographical order. The primary grouping listed in lexicographical order are then

i(2), - i(n). Define the rth-order primary vector at time k as

Y(r) [k] [ k] ... [k . (6.11)

Since s(r) [k] includes all joint-statuses, we can obtain Y(r) [k] from S(r) [k] by deleting entries that

belong to secondary joint-statuses from s(r) [k]. That is, we can write

y(r) [k] = s'r) [k] Tr (6.12)

where

R11 .- Ri71

Tr =](6.13)

and each matrix Rpq is matrix of dimension pi x ti (q) defined as

Rpq = (6.14)
0 otherwise

That is, Tr can be thought as a tall matrix obtained by starting with a big identity matrix I, then

removing some of the columns. It generally has the following form:

Tr= (6.15)

We call Tr the rth-order truncation matrix, or when there is no ambiguity, simply the truncation

matrix.

On the other hand, from Sec. 6.2.4, we have shown that every joint-status is derivable from

a primary joint-status via the marginalization matrix. Thus, we define the rth-order expansion
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matrix as the matrix M, such that

s',)[k = y(r)[k]Mr. (6.16)

To visualize the structure of Mt, one can think of it as being defined by

Mr = [L, -- - L,] (6.17)

where Lt is the matrix that contains the marginalization matrix Mi, for it with appropriate zero-

padding:

0K~
Lt Mit

0
(6.18)

The zero-padding is so that in the multiplication in (6.16), the matrix Mi, will be multiplied by

sw(it), the designated primary joint-status for it.

The more formal definition of Mr (which is not helpful for visualization, but essential for a

later proof) is as follows:

Mr =

N771 ... Nqv-

(6.19)

where Npq is a pi, x Piq matrix defined by

Npq Miq
0

if w(iq) =i)

otherwise

This means Npq is defined as the Miq, the marginalization matrix for iq, if the pth primary grouping

happens to be the designated one for grouping iq.

Since a primary grouping is its own designated one, some of the Npq's must be the identity

matrix. Specifically,

Npq = I, if W(i) = iq = i p),
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or equivalently,

(6.20)

Example 6: Let us continue our running example which has been the focus of Examples 1-3, and

5. Here the 3 sites have local orders of 2, 3 and 2 respectively. Since r = 2, the 2nd-order state

vector for this system is the concatenation of all joint-statuses in the same order as they are listed

in Table 6.2:

S(2) [k] = IS ( 1 [k] S'1,2) [k] .. -- S(3,3) [k] .

The total length of S( 2 ) [k] is (2 + 3 + 2)2 49. The 2nd-order primary vector is

Y(2) [k] = s' (12 [k] S'1,3) [k] s(,)k

which is a vector of length 4+6+6 = 16. The expansion matrix M 2 and the truncation matrix T 2

are of dimensions 16 x 49 and 49 x 16 respectively. All their entries are either a 0 or a 1, and the

patterns of their 1-entries are shown in Figure 6.1. Notice that in columns 5 to 14, and 30 to 35,

5

10

15

20

25-

30 35 40 45 50

30

40-

45

501
0 5 10 15

(b)

Figure 6.1: Pattern of the 1-entries in (a) M 2 and (b) T2 .

M 2 has the pattern of an identity matrix

that in (6.15). I

as explained. Also, see how the pattern of T 2 matches
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THEOREM 6.3

MrTr = I

Theorem 6.3 conforms with our intuition, since we already know that by reducing the rth-

order state vector s(r) [k] to the primary vector y(r) [k], we never lose any information. To see this,
substitute (6.16) into (6.12) to get

Y'(r[k] = y' ,[k] Mr Tr. (6.21)

However, even though (6.21) must hold for every possible outcome of y(r) [k], it alone does not allow

us to conclude Theorem 6.3. The reason is that the entries in y(r)[k] cannot be freely chosen. In

particular, we generally cannot set y(r)[k] = [0 ... 1 ... 0]', because it has to have at least one '1'

entry per each primary joint-status. So we need the following more formal proof.

Proof. From (6.13) and (6.14), Rpq = 0 unless p = (q). Combining this fact with (6.19), we have

Ni().. - Nig(g)1

Mr T r (6.22)

LN'q (1) ... Nng W)

[L (,) ... L(q)] (6.23)

where the second equality follows from the definition of Lt in (6.17) and (6.18). By (6.20), all the

matrices on the diagonal of (6.22) must be identity matrices, because they are of the form Np (p).

Consequently, the off-diagonal matrices in (6.22) must zero. The reason is that from (6.18), each

Lt can have only one nonzero block, which we have already shown to be the identity matrix. This

completes the proof. E

We can visually verify Theorem 6.3 by multiplying M 2 and T2 in Figure 6.1 to see that the product

is a 16 x 16 identity matrix.

6.3.3 Joint-State Vectors

In (6.10), we defined the rth-order state vector S(r)[k] as a concatenation of all the joint-status

vectors. Here we show it can be expressed as a permuted Kronecker product of the first-order

state vectors. This is a rather technical point, but it will be important for our derivation of the
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higher-order influence matrix later on.

For any matrix A, the rth Kronecker-power Aor is defined inductively for all positive integers

r by A® 1 = A, and for r > 2,

A r I A(r 1 ) 9 A.

THEOREM 6.4

There exists a unique permutation matrix Pr such that

s'(r) [k] = s'[k] OPr.

where s[k] represents the first-order state vector of the influence model.

Proof. See Appendix C. E

Example 7: Using the system from Example 6, the permutation matrix P2 such that s'(2) [k]

s'[k] 2 P2 is a 49 x 49 matrix and has the nonzero pattern as shown in Figure 6.2. 0

0.
5-

10

15-

20-

25-

30

35

40

45

50[
0 10 20 30 40 50

Figure 6.2: The permutation matrix for Example 7.

6.3.4 Derivation of Higher-Order Influence Matrix

At last, we have arrived at this critical section which will combine all the definitions and results in

earlier sections and produce the feature of this chapter, namely the rth-order influence model.

At the beginning of Sec. 6.3 we explained our goal: to find evolution equations for E(s;[k])

for every grouping i in order to know the probability of its joint-statuses. Then we explained that

the evolution of the primary joint-statuses sufficed to infer all other joint-statuses. In this section,
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we will use another important property of primary joint-statuses to derive the evolution of its

expected value.

Recall that the next-state PMF vector of an n-site influence model is

p'[k] = '1 [k] - - [k] .

Also, recall that the one-step evolution of the influence model conditioned on s[k] is given by

p'[k + 1]

s'[k + 1]

A

=A

s'[k] H

MultifRealize( p' [k + 1])

(6.24)

(6.25)

In (6.25), different sites are realized independently.

For a grouping i = (i,... , ir), define

pi[k] = p4[k] pi. p,[k]

LEMMA 6.5

If i = (i',... ,i ) is a primary grouping, then

E(si[k]) = E(pi[k]). (6.26)

Proof. Because all the sites in i are distinct, their status vectors are realized independently. Thus,

E(si[k] p[k]) E(si,[k] p[k] ) ... 0E(si,[k] p[k]

= pi 1[k] - pi, [k]

= pi[k]. (6.27)

Taking the expectation of (6.27) over pi[k], we have proved the claimed above. E

Using the notation in Sec. 6.3.2, let i1 , . . . , i, be the list of all groupings arranged in lexico-

graphical order. Let i (i), _. - , i (,) be the list of the primary groupings, and define

Z(r)[k] _' pi [k] -... pi [k] . (6.29)

By comparing (6.28)-(6.29) to (6.10)-(6.11), we see that p(,)[k] is analogous to s(r)[kl, and z(r)[k]
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to y(r)[k]. This is confirmed by Lemma 6.5, which implies that

E (z(r)[k]) E (Y(r)I[k]) (6.30)

However,

E (P(r) [k]) E E(s (r) [k]) (6.31)

in general. The difference between (6.31) and (6.30) is that eq. (6.30) only applies to primary

groupings. The reason that the joint-PMF's of primary groupings work out so nicely is entirely

because the sites in primary groupings are conditionally independent. On the other hand, secondary

groupings have repeated sites, and therefore their status vectors are correlated.

A relation that is analogous to Theorem 6.4 is

p(r)[kl = p'[k] rPr. (6.32)

Eq. (6.32) is valid because it only has to do with rearranging of the entries; it has nothing to do

at all with independence. Similarly, we have

Z(r)[k] = pr)[k]T = p'[k] rPrTr (6.33)

because Tr simply selects the primary groupings from P(r)[k]. Eq. (6.33) will be useful in the

derivation of the higher-order influence matrix later on.

Finally, we have the desired evolution of the primary joint-statuses.

THEOREM 6.6

Using all the definitions from Sec. 6.3.2 and 6.3.3,

E (Yr) [k + 1] = E (Y'r) [k]) Hr

where

Hr = Mr P'H 0 r PrTr.
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Proof. For primary i, we can write

Z(r)[k + 1] = p'[k + 1]OrPrTr

= (S'[k]H) rPrTr

= s'[k]lrHorPrTr

s' [k] Or =S P '
(r) r

-Yr) [k] Mr Fr

Z'(r)[k + 1] = y(r)[k]MrP'H Pr T

by (6.33)

by (6.24)

by mixed-product property

by Theorem 6.4 and by P,-1 = P'

by (6.16)

by substituting (6.38) into (6.36).

Then, by taking expectation of (6.39) and substituting in (6.30), we have completed the proof. E

6.3.5 Significance of Hr

The matrix Hr defined in Theorem 6.6 is called the rth-order influence matrix. Exposing it in full

detail is one of the major accomplishments of this thesis. This matrix enables us to obtain the

probability of the rth-order joint status for any group of sites and for any time k. Naturally, this

benefit comes at the expense of greater computational burden. Specifically, as a consequence of

Theorem 6.6,

E (y'r)[k]) = E (y'r)[0] ) Hr.

Thus, the task of computing the joint-probability depends on computing powers of Hr. The size

of Hr grows with order r. As an example, suppose H is an n-site homogeneous influence matrix,
with each site having a local chain of order m. Then the order of Hr is

(fl)mr.r

To get an idea of how Hr grows, consider Table 6.6, which lists the order of Hr as a function of

r. In this table, we assume that the influence model is homogeneous and that n= 10 and m = 2.

At r = 1, we have H, = H, the first-order influence model. At r = 10, Hr G, the state-
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r Order of Hr

1 20
2 180
3 960
4 3,360
5 8,064
6 13,440
7 15,360
8 11,520
9 5120

10 1024

Table 6.6: Order of Hr vs. r for a 10-site homogeneous influence model, with 2 statuses in each
site.

transition matrix of the master Markov chain introduced in Chapter 5. For r = 2 to r = 9, we have

the influence matrices of "intermediate" order. As we shall show later, the rth-order joint-PMF's

would allow us to readily infer any joint-PMF's of order smaller than r. Therefore, if we have the

10th-order statistic in the above system, we would have the joint-PMF of all the orders.

Interestingly, we see that for r = 4 to r = 9, the order of Hr is actually larger than that of

H10 = G. Nevertheless, we emphasize that this phenomenon is only due to the finite size of n. As

n gets sufficiently large, the size of Hr for r < n will be less than that of G = H, assuming that

m and r are fixed. To see this for the case of homogeneous models, recall that the order of H, is

(,)mr, while the order of H. = G is m'. For sufficiently large n,

( m) mr < nrmr < M, (6.40)

The first inequality of (6.40) holds because ('), the number of ways to selecting r distinct objects

from n available ones, is less than n', the number of ways to choose r objects out of n without the

restriction that the objects be distinct. The second inequality of (6.40) follows because m' grows

exponentially in n, while nT only grows polynomially.

Thus, for large n, the more detailed a joint-probability we want, the more computational

power we have to devote for it. In Sec. 6.4, we will deal with the relation between H, and G, the

master Markov chain defined in Chapter 5.
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6.3.6 Example 1: Calculating Variance with H 2

In this subsection, we demonstrate a particular use of H, to help us further analyze the "to link

or not to link" problem, which was first introduced in Sec. 5.4. Specifically, we will show that the

dominant left eigenvector of H 2 can be used to analytically calculate the variance of the number of

failures per time step. Without H 2 , we would have to resort to Monte Carlo simulation, which is

generally more time-consuming.

In Figure 5.2, we have obtained the histograms of the number of failures for two different

(first-order) 30-site influence matrices, Ha and Hb, whose definitions are given in that section. Both

influence matrices are homogeneous with the same 2-status local chain, representing"normal" and

"failed" statuses. Their only difference is that in Ha all the sites are decoupled, whereas in Hb,
each site is equally influenced by its neighbors and itself. One important result we obtained from

simulating the two models was that the histogram for Hb had a greater variance than that of the

uncoupled Ha. We justified this observation by describing qualitatively how the increased variance

is caused by the coupling among the sites.

In this section, we will confirm this argument by calculating the variance for different influ-

ence matrices, each with a different coupling strength. Specifically, for each 0 < c < 1, we define

the network matrix D(c) and its influence matrix H(c) as

A
D(c) (1 - c)I + cD

A
H(c) D(c)'® A

where D and A are the same ones from Sec. 5.4. It is not difficult to see that H(c) is also a similar

convex combination of Ha and Hb:

H(c) = (1 - c)Ha + cHb. (6.41)

By varying c from 0 to 1, we can control the strength of the coupling among the sites; the higher

c is, the stronger the coupling. We refer to c as the coupling coefficient.

We are interested in how c affects the variance of the number of failures per time step in

steady-state. However, we will calculate this variance for each H(c) by analyzing the dominant

left eigenvector of H 2 (c), the second-order influence matrix of H(c), rather than by Monte Carlo

simulation. To do so, first consider si[k] = [sil [k] si 2 [k]]', the status vector of site i at time k. The

scalar variable si2[kl is a binary indicator of whether site i is in status failed at time k. Now, let
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t[k] be the length-n vector containing such failure indicators of every site

t[k] = s12[k] s22 [k] ... sn 2 [k] .

Thus,

t'[k]1 = the number of failed sites at time k.

The quantity we are interested in is the variance of t'[k]1. Because for all c, the influence processes

defined by H(c) is ergodici, by the ergodic theorem, the distribution of t[k] converges to a constant

steady-state distribution for large k. Assuming that the steady state has been reached, then

var(t'1) = E [(tl) 2 ] - [E(t'1)]2

= 1'E(tt')1 - E(t')1. (6.42)

In (6.42), we have dropped the time argument [k] to avoid the clutter, and to reflect the fact that

the distribution of t[k] is time-independent by the steady-state assumption above. The second term

in (6.42) is equal to the expected number of failures at any given time, which we have already found

in Sec. 5.4. The first term in (6.42) involves the matrix E(tt'), whose (i,j)th entry is equal to

E(si 2S3 2). Thus, our problem is to find this last quantity, the cross-correlation of failure indicators,

for all possible pairs of sites i and j.

The cross correlations of failure indicators can be extracted from the dominant left eigen-

vector of H 2 (c) in a few steps. First we see that the dominant left eigenvector of H 2 (c) gives us

(after appropriate scaling) the steady-state value of the primary vector E(y( 2) [k]), from which we

derive the steady-state second-order state vector via the relation

E(S'2) [k]) = E(Y'2) [k]) M2. (6.43)

The vector E(s'2) [k]) gives us the joint-status all the 900 = 302 pairs of sites in lexicographical

ordering:

E(s' 2) [k]) = [E(s' ® s') E(s' 9 s') ... E(s'0 0 s')

where we have dropped the time argument [k] from the right-hand side. Looking inside the expected

'Because A > 0, the master Markov chain G for this influence process satisfies G > 0 by the reasons explained in
the last paragraph of Sec. 5.3.1. This therefore implies that F(G) is ergodic.
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joint-status for each pair (i,j), we have a length-4 vector

E(s' 0 s/) = [E(siisj) E(si1sj 2 ) E(s 2sji) E(s 2 sj 2 ).

The last element is the cross-correlation of failure indicators that we are looking for.

To summarize, the procedure for finding the variance of the number of failures per step is

as follows:

(a) For each 0 < c < 1, construct H(c) as in (6.41).

(b) Construct the expansion and truncation matrix M 2 and T2 . Both matrices should be the same

for all c, because they are only a function of n, the number of sites, and m, the order of local

chains.

(c) Construct H2 (c) = M 2(H(c) 0 H(c))T 2 .

(d) Find the dominant left eigenvector v of H 2 (c).

(e) Normalize v so that the first first four entries sum to 1. This gives us E(y( 2) [k]).

(f) Obtain the E(s( 2 )[k]) from (6.43).

(g) Extract every fourth entry from E(s( 2 )[k]). These are the cross-correlations of the failure

indicators.

(h) Sum the cross correlations to obtain the first term in (6.42). Since the second term is already

known, by formula (6.42) we have obtained the variance of the number of failures at each time.

The result of this calculation for each H 2 (c) is shown in Figure 6.3. Note that we plot the

standard deviation rather than the variance as a function of the coupling coefficient. This plot

confirms our earlier intuition that as the coupling strength among the sites increases, the standard

deviation of failure sizes at any given time increases.

6.3.7 Example 2: Determining Spatial Correlations from H 2

We show another application of H 2 by using it to calculate the conditional probability of failure

given that a specific site has failed. We set up a 20-site homogeneous influence model with the

structure of the network graph as shown in Figure 6.4. The network matrix D is defined the same
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Figure 6.3: Standard deviation of the number of failures per step as a function of the coupling
coefficient c.

Figure 6.4: The Random Graph for Example 2.

way as in Sec. 5.4. That is, a site of k neighbors has k + 1 incoming edges (after including the

self-loop) and all edges have weight 1/(k + 1). The local chain A is given by

A=[.9 :1 .
.5 .5

Thus, it still has the same structure as that used in the previous example (the one in Fig. 5.1). The

steady-state vector of A is [.833 .167]. From the influence matrix H = D' 0 A, we obtained the

second-order influence matrix H 2 , calculated its dominant left eigenvector, normalized that vector

so that the first four entries sum to 1, and converted from the steady-state primary vector E(y( 2) [k])
to 2nd-order state vector E(s( 2 ) [k]). As explained in Sec. 6.3.6, every fourth entry of E(s( 2) [k]) is

the cross-correlation of the failure indicator variables between every pair of sites. Each of these

entries can also be interpreted as the joint-probability of the two sites failing simultaneously.

To show the effect of the spatial correlation on failures, we fix a site, which is marked X in

Figure 6.4, and solved for the failure probability of each other site given that X has failed. This
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conditional probability can be found by dividing by 0.167 the joint probability of each site failing

simultaneously with site X. This constant is the individual probability of failure (i.e., the second

entry from the dominant left eigenvector of matrix A). Normalizing the joint-probability by this

constant thus gives us the conditional probability. These conditional probabilities are shown in

Figure 6.5. From this figure, we can see that the conditional probabilities of failure are higher

177

3.167
.183

4 Q4.183 

0.167

x

-. 167
.

7
167

.167

Figure 6.5: The probability of each site failing given that the center site has failed.

among the sites near site X, and gradually fall off as one moves away from it. The sites that are

sufficiently far away from X are so independent from X that their conditional failure probabilities

are almost equal to the unconditional one, which is 0.167. Notice also that the conditional failure

probability only increases due to network connection; all labeled conditional probabilities are 0.167

or greater.

At first glance, the conditional probabilities in Figure 6.5 seem somewhat lower than one

might expect. The reason is that these are the conditional probabilities of a site failing in the same

time index given that X is currently failed. However, in the actual dynamics of the influence model,
a failure at X would propagate to its neighbor in the following time step, assuming the neighbor

is one step away. Thus, if we had calculated the conditional probability that a one-step neighbor

of X fails in the following step given that X fails now, then that conditional probability would be

significantly higher.
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6.4 Relation between H, and G

In the rest of this chapter, we will explore the relations between Hr and G in terms of their

eigenstructure. This type of analysis is similar to what was done in Chapter 5, except that here the

higher-order analysis will further illuminate the structure of eigenstructure of G. Again, throughout

Sec. 6.4 we assume that r is fixed.

6.4.1 Higher-Order Event Matrix

In this section, we will introduce the higher-order event matrix Br, which will perform much like

the event matrix B did in Chapter 5. That is, Br will serve as an event-listing matrix, a projector

of PMF's (in the sense to be clarified), and finally as the matrix linking G and Hr.

Assume that we are given an influence model of n sites with orders of local chains as

m 1 ,... ,mn. Recall that the event matrix B is a (M imi) x (E mi) matrix. It contains rows

that represents the outcomes of s[k]. Each row of B is called an event, and is denoted by b , where

j = (ji,... ,jn), the address of that row. The addresses sequence in lexicographical order from

(1,1, ... , 1) to (MI, M2,... ,MO).

Let Pr be the permutation matrix in Theorem 6.4, and Tr be as defined in (6.13). Define

the rth-order event matrix Br as

(b 1,1,...,I1)/(D

Br PrTr. (6.44)

(b'/o
(Mi M2,...,nn))

Since Br has the same number of rows as B, we can refer to each row of Br using the n-tuple

address as well. The meaning of Br is straightforward when interpreted row by row: row j of Br

represents the rth-order primary state vector Y(r)[k] when s[k] = bj. To see this, recall that when

s[k1 = bj,

(bJ)rPrTr = s'[k] ®Pr = s(r) [klTr = YN [k],

by Theorem 6.4, and by the definition of Y(r)[k]. In other words, Br is the matrix that lists all the

possible outcomes of Y(r) [k] as its rows. We denote the row of address j in Br as b r.

As a result, each row of Br must have (n) l's in it, because there are that many primary

groupings of order r. In particular, when r = n, B = I, because there is only one possible grouping,
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namely the grouping that contains all the sites. The rth primary vector Y(r) [k] in that case can be

regarded as a status vector of the master Markov chain G, because each entry of Y(r) [k] would tell

us the status of every site simultaneously.

Example 8: For a 3-site influence model whose local chains are of orders 2,3 and 2 respectively,
the event matrices B, B 2 and B 3 are as shown in Figure 6.6. Their dimensions are 12 x 7, 12 x 16,
and 12 x 12 respectively. As expected, these matrices contain (3) = 3, (3) = 3 and (3) = 1 entries

in each row respectively. El

Or

5

0 5

0

5

0r

5

10

0 5 10

Figure 6.6: Examples of event-matrices B, B 2 , and B 3 = I respectively.

6.4.2 Conversion of Orders

THEOREM 6.7

There exists a matrix Kr such that

Br = Br+iKr

Intuitively, that Br is derivable from Br+ 1 according to Theorem 6.7 is not surprising, be-

cause each row of Br+1 contains the (r+I1)st-order joint-statuses, which is more detailed information

than the rth-order ones.

There are usually several possible matrices Kr that satisfy Theorem 6.7. Here we will settle

on just one particular construction described in Appendix D. The resulting matrix Kr looks and

feels similar to a marginalization matrix M[j, i] introduced in Sec. 6.2.4.

Example 9: For the event matrices in Example 8, K 1 are shown in Figure 6.7. The matrix K 2 is
not shown because it would be equal to B 2 itself, since B 3 = I. l
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Figure 6.7: Example of K 1 for the event-matrices in Example 8.

6.4.3 Eigenstructure Relations

This section generalizes some of the results in Sec. 5.3.3 to higher-order influence matrices. In

particular, it will expose the relation between the eigenstructure of G and that of each H,. This

relation leads to the telescoping relation of the relevant eigenvalues.

Let {f[k]} be the Markov process generated by the master Markov chain I'(G). For an event

address j, recall eq. (5.14) which says

Prob( (f[k])j = 1) = Prob (s[k] = bj). (6.45)

But as we have explained in Sec. 6.4.1, the event {s[k] = bj} is equivalent to the event {Y(r)[k]
b r) }. Therefore, eq. (6.45) implies that

Prob( (f [k])j = 1) = Prob (y(r)[k] b r).

Then by an argument similar to Sec. 5.3.2, we can show that

E(Y'r)[k]) = E(f'[k])Br (6.46)

The following results are more general theorems that those found in Sec. 5.3.3. We keep the

proof brief because of the similarity to the previous ones.

THEOREM 6.8

GkBr BrH
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Proof. Because E(f'[0])Gk = E(f'[k]), by multiplying Br from the right, we get

E(f'[0])GkB, = E(f'[k])Br

= E(y' r)[k])

= E(f'[0])BrHrk

Hence, E(f'[0])GkB = E(f'[0])BrHrk. Since this must

claim.

by (6.46)

by Theorem 6.6

by (6.46)

hold for all E(f[0]), we have the above

D

As before, in the following we assume that H has distinct eigenvalues.

COROLLARY 6.9
Let w, v be a left and right eigenvector of Hr with a corresponding eigenvalue of A. If BrV Z 0,
then BrV is a right eigenvector of G with A as its corresponding eigenvalue. Moreover, if A is a

non-repeated eigenvalue of G, then w' =i'vBr, where iv is a left eigenvector of G corresponding to

A.

COROLLARY 6.10

Let V, v be a left and right eigenvector of G with a corresponding eigenvalue of A. If 'i'Br # 0
then @'Br is a left eigenvector of Hr with A as its eigenvalue. Moreover, if A is a non-repeated

eigenvalue of G, i = BrV, where v is a right eigenvector of Hr corresponding to A.

Proof. By the exact same reasoning as the proofs of Corollaries 5.12 and 5.12, except that here, we

rely on Theorem 6.8 rather than Theorem 5.11. E

Define the set of rth-order relevant eigenvalues as

A
Kr = { The eigenvalues of Hr whose corresponding right eigenvectors v satisfy BrV : 0 } (6.47)

For the rest of the chapter, we assume for simplicity that both G and Hr have distinct eigenvalues.

Combining this assumption with Corollaries 6.9 and 6.10, we have an equivalent definition for the

rth-order relevant eigenvalues

Kr = { The eigenvalues of G whose corresponding

left eigenvectors '& satisfy W'Br # 0 }
= L-(G) n o-(Hr)
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THEOREM 6.11 (Telescoping)

If G has distinct eigenvalues, then

Kr C Kr+1

Proof. Let A E Kr. Let w' be a corresponding

eigenvector of G. Then we can scale iv so that

W' = v'Br

= 'Br+1Kr

Now, because w is an eigenvector,

w 7 0 - W'Br+iKr # 0

a -'Br+ 1 0 0

- A E Kr+1

left eigenvector of Hr, and iV a corresponding left

by Corollary 6.9 and assumption

that G has distinct eigenvalues

by Theorem 6.7

by (6.48)

Since H, = G, the telescoping relation gives us a deeper understanding of the spectrum of G;

assuming that G has distinct eigenvalues, each eigenvalue of G is a relevant eigenvalue of some

higher-order influence matrices.

6.4.4 Intuitive Interpretation of Kr

A

In Sec. 5.3.6, we gave an intuitive explanation for K = K, by explaining that these first-order relevant

eigenvalues are the ones that specifically "correct" the deviation of E(f[0]) from its steady-state.

Now by a very similar argument, we will show that the rth-order relevant eigenvalues will correct

the corresponding order of statistic in E(f[0]).

Let us fix an order r. From Corollaries 6.9 and 6.10 and assuming that G has distinct

eigenvalues, we can extend (5.35) to

A
Kir = { The cigenvalues of C whose corresponding left eigenvectors W_ satisfy iYvBr zA 0 }.(6.49)
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Assuming that H, and G both have distinct eigenvalues, we can write the evolution of

E(f[k]) as

E(f'[k]) = E(f'[O])Gk = ' + E AfE(f'[O])viW4. (6.50)
i=1

Any Aj c Kr is called an rth-order relevant eigenvalue, and its eigenvector an rth-order rele-

vant eigenvector. We say that E(f[0]) has a component along an rth-order relevant eigenvector if

E(f'[0])Vi -f 0 for some Ai E Kr.

We say that E(f[0]) has the correct rth-order marginals if

E(f'[0])Br = Wo (6.51)

where wo is a left eigenvector of Hr. The reason we regard as the "correct" rth-order statistic is

that with condition (6.51), E(Y'r) [0]) = E(f'[0])Br would simply not evolve, because it has already

reached the steady-state.

THEOREM 6.12

E(f[0]) has a component along an rth-order relevant eigenvector if and only if E(f[0]) has the

correct rth-order marginals.

We skip the proof, because it is nearly identical to that of Theorem 5.16. This shows that

the eigenvalues in Kr are the ones that correct the rth-order statistic of E(f[0]).
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7.1 Summary

In this thesis we have presented and analyzed the influence model, a particular mathematical

representation of random interactions on networks. The influence model comprises sites connected

by a network structure. Each site has a status that evolves according to a Markov chain whose

transition probabilities depend not only on the site's current status, but also on the statuses of its

neighbors.

The results developed in this thesis form a foundation for the study of the influence model.

After the thesis introduction in Chapter 1, we first introduced the background material in Chapter

2. This chapter covered the basics of general directed graphs and Markov chains. Then the special

case of the binary influence model was studied in Chapter 3. If the network graph 1F(D') is ergodic,

the influence model must reach either the all-ones or all-zeros consensus. Moreover, the probability

of reaching the all-ones consensus is contributed linearly by each site whose initial status is '1'.

We then introduced the concept of the coalescing random walk as alternative ways to understand

the binary influence model. In addition, we also used the coalescing random walk to derive some

inequalities on probabilities that apply to the binary influence model.

In Chapter 4, we proceeded to define the general influence model and its influence matrix.

The influence matrix H = D' 0 {Aij} is defined as a generalized Kronecker product, where the

network matrix D holds the information on how much the sites influence one other, and the matrices

{ Aij} describe the influences at the status level. We introduced the master Markov chain IF(G) as

the chain in which each status represents one possible outcome of the influence process. As the

order of G is much larger than that of H, we explained the practical benefits of extracting as much

information about G as possible through the study of H.

The first reduced-order analysis in Chapter 4 involved determining the recurrent classes of

F(G) from the influence graph 1(H). We introduced the "hopping dots" picture to help us visualize

and explain the results. The location of each dot in the influence graph defines the status of that

site at any given time. These dots influence one another as they hop about. Our mission was to

find all the configurations in which all the dots could be permanently trapped; this is equivalent to

finding all the recurrent classes of F(G). To do this, we first analyzed the structure of the influence

graph for the case of an ergodic network graph. A major result of this chapter stated that when the

network graph is ergodic, then the globally recurrent class (a recurrent class on the influence graph)

will be the region within which all the dots in the system are trapped. Another interesting concept

that emerged from the structure of homogeneous network graphs, where H = D' 0 A, was the

product path, a combination of a path on the network graph with another one on the local chain.

Using the idea of product paths, classes on a homogeneous influence model were easily described in

- 163 -



terms of the local classes, provided that they satisfied a certain condition on the period, and that

the network graph was irreducible.

In Chapter 5, we continued developing the relations between the influence matrix H and

the state-transition matrix G of the master Markov chain. As opposed to Chapter 4, where the

influence model was analyzed graphically, the analysis in this chapter was mostly through linear

algebra. We revisited the definition of an autonomously recurrent class, which was introduced at

the end of Chapter 4. The first important message of the chapter was that the influence matrix

has a dominant eigenvalue at 1, and its multiplicity is equal to the number of autonomously

recurrent classes in the influence graph; in short, an autonomously recurrent class is to an influence

matrix what a recurrent class is to a Markov chain. The next major result of the chapter was

the key relation GB = BH, where B is the event matrix. From this relation, we characterized

the eigenvalues of H and partitioned its spectrum into the relevant and irrelevant eigenvalues. We

explained in what sense the relevant eigenvalues are the ones whose duties are to "correct" the

marginal distribution of a PMF. Finally, the chapter ended with an example of the "to link or not

to link" dilemma. The conclusion of the section was that there was no difference on how a site

chooses to connect to a network, assuming a homogeneous influence model with an ergodic network

graph. The fraction of time that a site will spend in the 'failed' status is unaffected. Only the

correlation between the status of a site and those of its neighbors increases.

In Chapter 6, we deepened our study of the influence model by venturing into the higher-

order analysis. The idea was to derive a set of recursions that would provide us with not only

the status probabilities of every site, but also the joint-status of any given collection of sites. The

most important result of the chapter was that such recursions exist, and involve the higher-order

influence matrix Hr. The matrix H, is derived from the rth Kronecker power of H, the (first-order)

influence matrix. It turned out that each higher-order influence matrix could also be related to the

master Markov chain G by GB, = BrHr, where B, is the rth-order event matrix. We were also able

to partition the spectrum of each higher-order matrix into the relevant and irrelevant eigenvalues.

An important result of the chapter was the telescoping relation for the relevant eigenvalues: a

relevant eigenvalue of the rth-order influence matrix is also a relevant eigenvalue of the (r + 1)st-

order influence matrix. Moreover, the nth-order influence matrix turned out to be the master

Markov chain itself. The higher-order analysis gave us a deeper understanding of the spectrum of

G; assuming that G has distinct eigenvalues, each eigenvalue of G is a relevant eigenvalue of some

higher-order influence matrices.

Overall, the important features of the influence model can be summarized as follows:

. General Structure The freedom in choosing the network matrix D and the local chains {Aj}
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allows one to create a network with a fairly general structure, at least when compared to those

in the traditional literature on voter models, where lattice grids are predominant.

" Scalable Computation The size of the higher-order influence matrix grows as a function

of the order of the joint-status. This allows us the flexibility of obtaining intermediate-order

statistics without having to compute the full-order master Markov chain matrix G.

" Overall Tractability As this thesis has shown, the influence model can be analyzed at various

levels. It is the author's belief that the influence model is rich enough to yield much additional

fruit, and interesting enough to warrant further research. It is the author's hope that these

studies will lead to genuine insight, and perhaps application, in the setting of complex inter-

active networks.

7.2 Potential Areas for Future Research

The following is a list of some potential area for future research related to the influence models.

" Fiedler Eigenvalue Conjecture We conjecture that the eigenvalue with the second largest

magnitude of r is the same for every r. In all our numerical experiments, this has always

been the case. Indeed, if one considers the form of Hr, which is

Hr = MrP;H rPrTr, (7.1)

then one sees that Hr is almost a similaritry transformation of HO'. This is because (Mr Pr)(PrTr)

I, and thus, the right-hand side of (7.1) is almost in the form CHorC, but it is not; MrPr

is not a square matrix, and thus, is only a left-inverse, as opposed to an inverse, of PrTr. If Hr

were similar to Hor, then the conjecture would have been true, because every eigenvalue of

Hr would be a product of some r (possibly repeated) eigenvalues of H. Since every eigenvalue

of H has a magnitude that is less than or equal to 1, the eigenvalue with the second largest

magnitude of Hr must be the same as that of H. This observation is a hint that the conjecture

might be true. Since the eigenvalue of the second largest magnitude is sometimes referred to as

the Fiedler eigenvalue, we call this the Fiedler Eigenvalue Conjecture. The importance of this

eigenvalue is that it determines the rate of convergence to steady state, a topic often discussed

under the heading of 'mixing properties' for a Markov chain [38].

" Distinct Eigenvalue Conjecture We conjecture that when H has distinct relevant eigenval-

ues, so does G. If this is the case, then we can make more compact statements on the relation
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between the eigenstructure of G and Hr (which, of course, includes the first-order H). This

conjecture would allow us to combine Corollaries 5.12 with 5.13 and Corollaries 6.9 with 6.10.

Specifically, the left and right eigenvectors v and w of Hr would be related to the left and

right eigenvectors y and iv of G of the same relevant eigenvalue by the relations

v = Brv and w' = V'Br.

" Reversible Graphs Reversible Markov chains represent a special case of ergodic Markov

chains in which the steady-state distribution satisfies a more restrictive set of conditions. One

attractive feature of reversible chains is that the eigenvalues of their state-transition matrices

are real-valued, which makes the analysis of such chains more tractable than the general case

[3, 30, 31]. In particular, one can derive bounds on the Fiedler eigenvalue of a reversible state-

transition matrix in terms of structural properties of the underlying graph [38]. The spectrum

of a reversible Markov chain can also be related to that of an undirected graph. This connection

gives the potential for one to apply known results on matrices of undirected graphs (such as

Laplacian matrices) to the study of reversible Markov chains. Included as Appendix D is an

explanation of the connection of the dynamics these two classes of matrices.

By using reversible Markov chains in the influence model, we may be able to derive stronger

analytical results. For instance, if a homogeneous influence matrix H = D' A is defined from

reversible D and A, then H also has a real-valued spectrum. Does this also mean that G is

reversible, or at least, has real-valued spectrum? If G is also reversible, then it immediately

qualifies for applications of many known results on reversible chains. We may be able to apply

more elaborate analysis from [30, 31] such as the convergence time to the study of influence

models.

* Application to Traffic Modeling The influence model may find potential applications in

modeling of traffic networks. As briefly mentioned in Chapter 1, traffic congestion seems to

have certain qualitative similarities to influence models: a random congestion occurs with a

positive probability, a congestion tends to spread spatially, and the probability of a congestion

at an intersection increases with the number of congested neighboring intersections. Another

reason that suggests a potential fit is that traffic flows seem to be an aggregate result of various

users of the street network, making it possible for an average-behavior type of analysis similar

to the influence model. As a contrast, it does not seem likely that the influence model will be

useful to study a system in which an idiosyncratic behavior or an individual's agenda can have

a major impact on the system state.

" Application to Queueing Networks Another possible area of application for the influence

model is the modeling and analysis of queueing networks. A queueing network can be roughly
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described as follows. We have a network in which each site represents a queue. At each queue,

new customers can arrive, wait for service, and leave after having been served. A customer

who leaves a queue may enter another neighboring queue, or may leave the system altogether.

See [16], Sec. 6.6 for more details.

One idea that seems plausible at first on how to apply the influence model to this type of

system is as follows. We let each site be a finite birth-death chain and let the influences among

the sites be the probability at which a customer who leaves one site enters another. Thus,

the status at each site would be the number of customers currently in the queue. Having

neighboring sites with long queues would increase the likelihood that a site would also have a

long queue.

Unfortunately, the above approach leads to unrealistic dynamics. The ability to imitate a

neighbor's queue length can can cause the number of waiting customers at a site to jump up

or down abruptly if its neighbor happens to have very different number of customers in the

previous time step. This would effectively result in a gross violation of internal conservation

of customers.

Another possible approach is to let the influence model only represent the change in the queue

length'. For example, we can let the status at each site be: -1, 0, and +1. These statuses

are interpreted as the change in the number of customers in the previous time step. Thus, a

separate state variable is needed at each queue to keep track of the actual number of customers

in the queue. If the current status is +1, for instance, we add 1 to the queue length; if it is

-1, we subtract 1 from the queue length, provided that the queue length does not fall below

zero. The influence among the sites can then be specified. For instance, if we want to model

two queues in tandem, then we may set status -1 of queue A to have an influence on status

+1 of queue B.

The idea suggested in the above paragraph might lead to some interesting results. Although

it is unlikely to conserve the number of customers inside a queueing network, it should be

somewhat more realistic than the first version.

* Extension of "To Link or Not To Link" Dilemma Another interesting direction to pursue

is to extend the result on the "To Link or Not To Link" dilemma. Currently, we have focused

on only the case of homogeneous influence graphs. An obvious extension is to consider the

case of general influence graphs.

* Nonlinear Combination of Transition Probabilities The fact that the next-state PMF

p[k + 1] is expressed as a linear function of the state s[k] has its pros and cons. While it

- 167 -

'This idea was first suggested by Sandip Roy.

Chapter 7 Conclusion



makes the model analyzable, it is a rather restrictive way of specifying the next-state PMF.

We believe that certain nonlinear functions of the states could yield an evolution that is more

general and thus more applicable to real systems. The difficulty is that the proposed nonlinear

evolution must not only produce a valid next-state PMF, but also has to be simple enough to

be analyzable.

" Application to Estimation Problems The influence model could have some application

in certain estimation and detection problems, for instance, in medical imaging. It has been

proposed by [12] that Markov random field may be used in functional Magnetic Resonance

Imaging. This idea is carried out further in [32] and has shown promising results after incor-

porating the steady-state distribution of certain interaction models into the decision process.

In [32], the model in use was the Ising model, which suits the task particularly well because

of the form of its steady-state distribution; its exponential form has been an important key to

the simplification of the decision criterion. Thus, it is interesting to see whether the influence

model can be used for such applications as well.

" Variations on Network Graphs Another possible research direction of the influence model

is to let the network graph comprises two or more different type of graphs, such as D = DO+D 1 ,
D = (1 - e)Do + cDi etc. The two component graphs may represent physical systems with

different time scales, different behavior (as in a power generator vs. a load), or they may be

graphs with different structural properties. Another possibility is to let nodes of one kind in

an influence network represent nodes of some underlying network, and nodes of another kind

represent edges of the same underlying network. We may also let the network matrix D itself

evolve over time.
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Appendix A

Proof of Theorem 4.8

Assuming the definitions in the paragraph immediately preceding Theorem 4.8, our approach to

proving it is as follows. Fix an integer k between 1 and w. For any two sites i and j, pick a status

from R(') and another from Rk . Denote the two selected statuses as x(i) and z(j) respectively. We
will show that there exists a path from x(i) to z(j) by concatenating two paths 3 and rq. Path /3

exists by Lemma A.1 and it will connect x(i) to some status y(j) E R). Path 'q exists by Lemma

A.3 and will connect y(j) to z(j). Since x(i) and z(j) can be switched, this will mean that x(i) and

z(j) communicate. If we take any status y Pk, then y and x(i) do not communicate by Lemma

A.4. This then proves that Pk is a class. The recurrence of Pk is shown in Corollary A.6. This

would then complete the proof as desired.

Recall that a status X(i) in site i is an image of status x in 1F(A). For this appendix, we will

denote the latter status as x(o), instead of just x, to emphasize the fact that it is in F(A). It then

follows that x(i) E Rk if and only if x(o) E Rk.

LEMMA A.1

There exists a path from x(i) to some status in R(j)

Proof. Since D is irreducible, a path q that connects i to j on 1F(D') must exist. Let p be any path

on 1F(A) that originates at x(o), has the same length as q, and terminates at any status in Rk. Then

the path s = p o q would have the property claimed. F1

LEMMA A.2

Let {a1.... , ar} and {f,... , dt} be two sets of positive integers whose greatest common divisors

(GCD) are a and d respectively. If a and d are relatively prime, there exists a set of positive integers

{ck} and {hk} such that

cia + -- + crar + 1 =hid 1 + + hdt
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Proof. Because a and d are relatively prime, there are two positive integers bi and b2 such that

bia + 1 = b2 d. (A.1)

Next, by the property of GCD, there must also be integers {U} and {vij, which are not necessarily

all positive, such that

a = u1a1+ -+urar

d = vld---*+vtdt

Substituting these two equations into eq. (A.1), we have

(biju)ai + - + (biur)ar + 1 = (b2 vi)di + ... + (b2 vt)dt. (A.2)

If, for example, the product biug is negative, we can increase it by adding the equation diai = aid1

to eq. (A.2), so that it becomes

(biui)ai + - - - + (blui + di)ai + - -+ (biur)ar + 1 = (b2 vi + ai)di + - + (b2vt)dt.

Since all ai's and di's are positive, we can keep doing this until all their coefficients are positive as

desired. E

LEMMA A.3

The statuses in Rk communicate.

Proof. If djj > 0, then the jth local chain exists and is described by F(djjA). Then the statuses in

R must communicate by definition.k

If djj = 0, let y(j) and z(j) be any two statuses on Rk . We will construct a path on F(H)
that connects y(j) to z(j). Let -y =(1 =y(),.. ,Ye= z(0)) be a path on IF(A) that connects y(o)

to z(o). This path exists because y(o) and z(o) are in the same class Rk. Let the period of class Rk

be a. Then there must be a set of cycles {pi,... ,Pr} passing through y(o) such that the greatest

common divisor (GCD) of the cycle lengths {(Pi),... , f(Pr)} is equal to a.

On the other hand, on F(D'), there must be a set of cycles {qi, ... , qt} passing through site

j whose lengths have a GCD of d. Because d and a are relatively prime, by Lemma A.2, we can

find positive integers {hk} and {ck} such that

hif(pi) + - - - + hrL (Pr) + 1 = ci (qi) + - + ctfI(qt). (A.3)
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Construct two paths a and 6 by concatenating paths as follows

a = (1q",... ,q")

where the notation ph means looping hi times in path qj. By this construction, a and 6 are cycles

whose first nodes are yto), and j respectively. From (A.3), f(a) + 1 = f(6). To equate the two

lengths, we define S as another path on F(D') that is the same as 6 except with the last edge

removed. So instead of terminating at j, 6 begins at j but terminates at some site u. This makes

f(a) f A).

Consider the product path s = a o S. This path originates from y(j), but it terminates at

y(,), which is a status on a site that immediately precedes site j. We can then take advantage of

that last step not only to get back to Rf(i, but also to move to (72)(j), which is a step closer to our

ultimate destination, the status z(j). Once we are back on RU, the whole argument can be applied

over again to find a path to (y3)(j), then to (74)(j) etc. Eventually, we must reach Z(). Therefore,
we have found a path from y(j) to z(o). Since these two statuses can be switched, we have thus

proved that they communicate. E

LEMMA A.4

A status y Z Pk does not communicate with any status in Pk.

Proof. Suppose y communicates with some x(j) E Pk. Then there must be a path p on F(H) from

x(j) to y and another path q from y back to x(i). By Theorem 4.4.4, both p and q can be written as

p = sot

q = uov,

where s, u are paths on r(A), and t, v are paths on 1F(D'). Moreover, s must be a path from X(o)
to yto), while u must be a path from y(o) to x(o). Therefore, x(o) and y(0) are in the same class.

But since X(o) is in Rk, so must Y(o). It would then follow that y E Pk. However, this contradicts

the fact that y Z Pk. Therefore, y does not communicate with any status in Pk. E

For any two nodes x and y on a directed graph, we say that y is irreversibly accessible from

x if there is a path from x to y, but no path from y to x.

LEMMA A.5

A status y(j) is irreversibly accessible from x(j) on 17(H) if and only if y(o) is irreversibly accessible

- 171 -



from x(o) on F(A).

Proof. Assume y(j) is irreversibly accessible from x(i). Let p be a path from x(i) to y(j). Because

p can be factorized into p = s o t, the path s must connect x(o) to y(0) on F(A), and path t must

connect site i to site j on 1F(D'). Hence, y(o) is accessible from x(o). If x(o) is accessible from y(0)

as well, then let r be a path from y(0) to x(o). The path q = r 0 t would then connect y(i) to x(j).

But since y(i) and y(j) are in the same class by Lemma A.3, this would mean we have found a path

from y(j) to x(j), via y(i). Again, by Lemma A.3, x(j) and x(i) communicate because they are in

the same class. This means there is a path from y(j) to x(i), via x(j). This contradicts the earlier

assumption that y(j) has no path to x(j). The converse can be shown similarly. D

COROLLARY A.6

Pk is a recurrent class of F(H) if and only if Rk is a recurrent class of F(A).

Proof. Pk is transient if and only if there exists a status y(i) outside of Pk such that y(i) is irreversibly

accessible from every status in Pk. By Lemma A.5, this is the case if and only it y(o) is irreversibly

accessible from every status in Rk, which is exactly the case when Rk is transient. El
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Appendix B

Proof of Theorem 5.8

For 2 < i < n, define the matrix

B(A) B(j_1) G 1mi I 1,_1 0 (B.1)

where I is equal to Im, but with the last column removed. Comparing (B.1) to (5.4), we see that

B(i) is equal to B(i) with the last column removed.

LEMMA B.1

For 2 K i K n,

rank(h(i)) = rank(B(i-1)) + mi - 1.

Proof. Suppose there exists some vectors a of length (mi +- + mi- 1) and b of length (mi - 1)

such that

B(b) = 0. (B.2)

Substituting the definition (B.1) into (B.2),

0 = (B(ji_) 0 1mi)a + (1ti_1 0 I)b (B.3)

(B(il_) 0 1mi)(a 0 1) + (1lj_ )(1b)

= (B(i-l)a 0 1mi) + (1pi_ 0 Ib) (B.4)

(B(i- 1)a)1mI + Ib

(B.5)

[(B(i-l)a)lm,+ I (

where (B.4) follows from mixed-product property of Kronecker product, (A 0 B)(C 0 D) = (A 0

C)(B 0 D). Notice how eq. (B.5) is vertically sectioned into n different portions. Focusing on the
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kth portion of (B.5), we have

(B(i-i)a)klmk + lb = 0. (B.6)

Because the last entry of Ib is always zero, and because the first term of (B.6) is a constant vector,

this equation can only be satisfied if (B(i-1)a)k = 0. This in turn forces Ib, and hence b, to be

zero. Since k is arbitrary, this means that the entire vector B(i-iya must be zero. In conclusion,

eq. (B.2) implies that b = 0 and that a is in K(B(i_1)), the null space of B(i- 1 ). This means

dim (AP((i 2))) = dim (A(B(i_1)))

Finally, because hi is a pi x (E_1 mk - 1) matrix,

rank (h(i)) = min (jt ii) - 1) - dim (AP(h(j)))

S Mk) - 1 - dim (Ar(B(i_ 1)))
k=1

S Mik) - dim (.(B(i_1))) + mi - 1
k1

-rank (B(il) ) + i -1

El

LEMMA B.2

For 2 < i < n,

rank( () = rank(B(i))

Proof. Since B() [([) c], we need the fact that the last column c

on the other columns of B(j). This is because with the last column,

of B(i) is linearly dependent

[imi

B(i) Om2+---+mi-1

-1m

[ mi

= B(i) OM2+.-+mi

[Omi
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(B.7)

(B.8)
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where in (B.7) we have used the eq. (5.7). l

Theorem 5.8 can now be proved as follows. Since B(I) = Imi, it has full rank. The assertion

is thus true for i = 1. Now assume the claim is true for all B(k) up to k <i - 1 for i > 2. Combining

Lemma B.1 and B.2, we finally conclude that

rank (B(i) rank (B(i_1)) + m - 1

S( m) + i -1.
k=1

By induction, this must be true for all i.
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Appendix C

Proof of Theorem 6.4

LEMMA C.1

Let a, b.... , bn be some vectors. Then

-bn I a'

Proof. This follows from the definition of a Kronecker product. 0

Recall that a permutation matrix is a square matrix that contains only O's and 1's as its

entries, and has exactly a single 1 in each row and in each column.

LEMMA C.2

Let a, b 1 ,... ,bn be some vectors. There exists a unique permutation matrix P such that

a' b' ... a' b'j = (a' b'

Proof. See Corollary 4.3.10 in [27]. E

THEOREM C.3

There exists a unique permutation matrix Pr such that

s' [k] = s'[k] 'rPr

In the following proof, we drop the time argument [k] from every vector to reduce the

notational clutter.

Proof. We will prove this induction. For r = 1, S(r) = s. So the claim is trivially true. Now assume

that the claim is true for up to r = t - 1, then we can write

(C.1)
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for some permutation matrix P_ 1 . At the same time, let all the (t - 1)th-order groupings be

i,. .,i, where G = ( . Then we can also express s(t-1) as

s(t 1) s - S. - I' (C.2)

Since the first-order state vectors is s'= [1S ... s' 1, we have

t)= s s' . .. s' Os s12 s' - Si 2 s

which follows from the definition of s(t) and from the definition of lexicographical ordering. Then

by Lemma C.2, for each j we have

[si2 o s1 -- 'i ]s ' = (s'0 [s (C.4)

where Pj is a unique permutation matrix. Applying (C.4) to (C.3) we get,

s(t) = [(S'1 0 s')Pi . .- (s 0 s')P]

Pi

= ~ s'0 S' . ~ . s s

= ( ..-. sj' ®s')

= (s0 1) 0 s')P

= (s/)O(t-l)Pt 10 s'I) P

= [(S') (t-1) 0 s/] (Pt 0 I)P

Pt

= (I)t Pt.

by Lemma C.1

by (C.2)

by (C.1)

by mixed-product property

Since (P_ 1 0 I) still has a single '1' in every row and every column, it is a permutation matrix.

Also, being a product of two permutation matrices, Pt is a permutation matrix. So the claim still

holds for r = t. By induction, this must be true for all r. l
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Appendix D

Construction of K,

A given rth-order grouping i =(ii,... ,ir) is derivable from an (r + 1)st-order grouping j =

(ji,.- ,jr+i) if fii,-- , ir} C {ji,... ,ijr+1}. Again, since there is usually more than one (r + 1)st-

order grouping from which an rth-order grouping can be derived, we have to fix a rule in picking

one. So for a given rth-order grouping i, define the designated (r + 1)st-order grouping as the

grouping that has all the sites in i and another site outside of i with the smallest integer. After

sorting this new grouping, we are left with a unique (r + 1)st-order grouping which is denoted as

0(i). Since i C 0(i), it is not difficult to see that there exists a matrix Yi such that

si[k] = s' [k]Yi

We skip the explicit construction since it is similar to the construction of the marginalization matrix

M.

Let the primary groupings of order r be denoted by ii,... , i, where a A (p). Also, let the

primary groupings of order (r + 1) be denoted by ji,... ,jo, where # = (

Then we recognize that the columns of Br+i can be partitioned into '3 blocks (of unequal

widths), with block p corresponding to jp, the pth primary joint-status of order (r + 1). Similarly,

the columns of Br can also be partitioned into a blocks for all the rth-order primary joint-statuses.

Thus, the matrix Kr in Theorem 6.7 can be partitioned as

U11  ... U,1

Kr

[U01 ... UJ0

where

UP qz{ Yiq ifj i/) (iq)
0 otherwise.

That is, Upq is the conversion matrix Yi if the pth primary grouping of order (r + 1) is the
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designated one for the qth primary grouping of order r. This then produces a unique Kr which

satisfies Theorem 6.7.

- 179 -

Chapter D Construction of K,



Appendix E

Reversible Markov Chains and Laplacian

Matrices

This appendix explains how to convert between the matrix that describes an arbitrary undirected,

edge- and node-weighted graph into the state transition matrix of a reversible Markov chain so that

their eigenvalues are related. This type of conversion is generally well-known for the case of graphs

with uniform node weights. However, this section considers a slightly more general case by letting

the each node have an arbitrary weight.

Let G = (V, E) be an undirected graph of n nodes. Assume that G is a connected graph.

Let wij be weight of the branch that connects between node i and j. The Laplacian matrix L(G)

is defined as

S -w 3  for i j
EJ2{ ~wij for i =

For convenience, define the line weight of node i as

Wi Y, vii

isii

A
Define mass matrix as M = diag(mi, ... , mn), where mi is a strictly positive quantity representing

the mass of the ith node.

Given W and M, we define the weight-mass ratio as

A Wi
a = max -.

i mi

Define the augmented weight matrix W as

~jA A wij for i j
[W]ij = wij am-w 2 for j
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Note the crucial step of how the diagonal elements of W are defined. The purpose of such definition

is so that the matrix W is nonnegative, and so that the sum of the ith row is proportional to the

its mass. For convenience, let us define the sum of the ith row as modified line weight

wi E Gij = ami > 0.

Finally, define the state-transition matrix P as

[P]2 Aj @j

PROPOSITION E.1

P is a valid state-transition matrix of a Markov chain.

This can seen by the fact that W is a nonnegative matrix, and that each row of P is defined

so that it sums to unity.

For the sake of convenience, we will be a bit sloppy by using P to denote both a state-

transition matrix, and the markov chain that it defines.

PROPOSITION E.2

If G is not bipartite, or if the ratios are not identical for all i, then P represents an ergodic,

reversible Markov chain.

Proof: Because W is symmetric, every directed edge in P is matched by another edge in

the opposite direction. So every node in P lies on some loop with two edges. Moreover, since G is

assumed to be connected, all nodes in P communicate, i.e., they form an irreducible chain.

9 If G is not bipartite, then somewhere in it must lie a loop with an odd number of edges. For

any node i on that odd loop, the greatest common divisor of all loops that pass through i must

be 1 (because gcd(2, an odd number) = 1), meaning i is aperiodic. Since P is irreducible, the

whole chain must be aperiodic, hence ergodic.

* If the ratios wi/mi are not identical, then from the ways a and W are defined, some diagonal

elements of W must be strictly positive. This translates to the existence of a self-loop in the

Markov chain P, making it aperiodic and consequently, ergodic.

If P is ergodic, then it must have a steady-state distribution, and it will be

A mi
ri -

P
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A
where p is the total mass of the system p = mi. To check that this is the correct steady-state

distribution, one can verify that

'Trj - riPr .

11

a mi , a mj

Or equivalently, P is reversible because the matrix aMP is symmetric. o

A note on reversible Markov chains In general, a markov chain P is reversible if

it can made symmetric by multiplying the matrix D = diag(7ri,... ,,r?) from the left. Since

this multiplication is equivalent to scaling the ith row of P by 7ri, one can easily test whether a

given chain is reversible (i.e., satisfies riPi = 7rjPj) while simultaneously finding its steady-state

distribution by the following algorithm:

1. Set i = 1 and ci = 1.

2. Pick any neighbor j of node i whose cj has not been defined. If no such j could be found go

to step 5. Otherwise, continue to step 3.

3. Set cj = Pu .

4. If there exists any neighbor k of j such that Ck has already been defined, and CjPjk # CkPkj,

then stop; the graph is not reversible. Otherwise, set i = j, and go to step 2.

5. Find a node m whose cm has already been defined but is connected to some neighbor j whose

cj is still undefined. If m can be found, set i = m and go to step 2. Otherwise, continue to

step 6.

6. The graph is reversible, and 7ri = ci/(Z cj).
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The algorithm above can also be applied towards continuous-time Markov chains, whose

transition rates are given in matrix Q. We simply have to replace P with Q and repeat everything.

However, in the final step, the resulting 7i has be interpreted as the time-average fraction of time

the process spends in state i.

We now continue our main discussion on P.

PROPOSITION E.3

1
M(I - P) = -L (E.1)

Proof: By direct computation,

m -- wij for i A j
[M(I - P)]ij Mi i)_frL

mL 1 -- C" Ek, k7i Wik for i J
1

- [L]j

If A is a matrix whose eigenvalues are real, let Ai(A) denotes its ith eigenvalue, sorted so

that Ao(A) < - < An. _ (A).

PROPOSITION E.4

The eigenvalues of P are real-valued and

1 1
1 - Ai(P) =-n1iM~L -z

Proof: By pre- and post-multiplying eq. (E.1) with M-i, we get

M2( - P)M-2 = M-2LM-2 (E.2)

By similarity transformation, the eigenvalues of the product matrix on the left-hand side of eq.

(E.2) are equal to those of I - P. But since we know that the right-hand side has real eigenvalues

(because L is positive semi-definite and M is diagonal), so does the left-hand side. The negative

sign in front of P then reverses the order of the eigenvalues. E

By Perron-Frobenius theorem, -1 < Aj(P) < 1. This implies that

0 < Ai(M--LM-1) < 2a.
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In other words, through the conversion of the matrix, we have obtained an upper bound on the

maximum eigenvalue of the Laplacian matrix. This bound, however, is not the tightest possible

bound. Some improvement can be made by slightly adapting the proof of Theorem 2 in [29].
Before proceeding, let us recall a few facts from Chapter XIII from Gantmacher [17]. Denote by

A+ the matrix obtained by replacing each entry of A by its absolute value. If A is irreducible,
then IAj(A)| K AnI(A+), with equality if and only if A = eODA+D- 1 where D+ I. For an

irreducible non-negative matrix A, An_1(A) < the maximum row sum with equality if and only if

all rows are equal.

PROPOSITION E.5

An-(M-2LM-2) max ( W + WJ)
(ij)EE mi mj

Proof: The Laplacian matrix can be written in the following form

L = FWF'= (F)W (W2F')

where F is the node-edge incidence matrix, and W = diag(wi,... , wn) contains the weight of all

the edges. Now let us define

N = W2F'M1FW2

This matrix N and the node-weighted Laplacian matrix M--! LM--! share the same nonzero eigen-

values. If i is an edge that points from node k to j, we define the source s(i) and destination d(i)

of edge i as

AA
s(i) = k, and d(i) = j.

Now by similarity transformation

Ai(N) = Aj(W-NWN)

But W-iNWi = F'MlFW, and

W m(+) Md(i) for i =j

[F'M 1 FWj = J for i z j and either d(i) = d(j) or s(i) = s(j).

Wi for i j and either d(i) = s(j) or s(i) = d(j)
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So the ith row sum of (F'M-lFW)+ can be interpreted as sI) + Wd(i. Moreover, the pat-
Ms(i) mnd(i)

tern of nonzero entries in (F'M-FW)+ is symmetric, making it irreducible. Applying the the-

orem from Gantmacher as described above, the maximum eigenvalue of N can be no larger than

maxi + d(i)
( S W)Td(i))

The conversion between Markov and Laplacian matrices allow us to apply

one set of literature to apply to the other. As an example, we have the following

Let S be a subset of nodes and let

defined as

some result from

bound.

6S be the cut-set induced by it. The capacity of S is

CS =
iEs

and the cut ratio induced by S is

A E(ij) e 6S ?Uii

Cs

Let the cut ratio as

A $ min 0S.
o<ISI<n, ICsI 1/2

Then by adapting the bound from [38] using the conversion described in this paper, we have the

following bound:

Al(M-2LM-2) > 2a
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