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Abstract

Wave breaking on the ocean surface significantly facilitates the transfer of mass, mo-
mentum, heat and energy across the air-sea interface. In the context of the near field
flow about a surface ship, the breaking bow wave is a key element to the bubbly sig-
nature and an appreciable portion of the wave drag of the ship. Yet, despite its direct
effect on many aspects of ocean engineering, this phenomenon is not well understood
even at a basic level. Most of the knowledge has been contributed by experiments in
the laboratory and the field although results are often limited due to the difficulty
in taking measurements of local quantities during the breaking event. Numerical so-
lution of the breaking wave problem has generally been limited to the pre-breaking
phase as it avoids complex mechanisms such as surface re-entry, spray formation,
air entrainment and strong turbulence. Additionally, relatively few experimental or
numerical studies exist which dynamically couple the air-water interface.

The objective of this thesis is to contribute to the knowledge of steep breaking
waves in the context of the coupled air-water interface. Of central importance are
basic kinematics and dynamics, the rate of energy dissipation and energy flux at
the interface during the breaking event. To this end, a systematic study of a range
of breaking waves is performed by direct numerical simulation (DNS) of the Navier-
Stokes equations using an Eulerian interface capturing method. The advantage of the
DNS approach is that all physical scales are resolved and no turbulence closure models
are necessary. However, because of this, DNS is limited to the study to moderate
Reynolds numbers with a relatively high computational cost for each simulation. For
this reason, this study is limited to two-dimensional flows at Reynolds number O(10').
The interface capturing method used is a modified form of the level set method which
is better suited for simulating coupled air-water flows. The level set method provides
a natural numerical treatment of the coupled air-water interface through complex
surface topology changes. Thus, no ad-hoc treatment of the air-water interface during
the breaking event is necessary.

The key findings of this thesis represent new contributions to the study of breaking
waves in three distinct areas. The first is the kinematics and dynamics of deep water
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breaking waves for both spilling and plunging types. For the waves in this study,
there was no indication of flow reversal or separation in the water while the air flow
showed separation on the front face of the wave and over the crest. Localized shear
regions are found in spilling breaking waves and curvature effects are identified as the
dominant mechanism of vorticity generation in both types of breaking waves.

The second area is the energy dissipated by breaking waves. The volumetric
dissipation rates as well as its spatial variation for both air and water are presented
for the range of waves in this study. While the water volume experienced an increase
in dissipation rate during the breaking event, the increase is more pronounced in
the air volume to the point that it becomes the same order of magnitude as that in
the water for some waves. The amount of energy in the wave lost due to breaking is
quantified as a function of the energy in the wave prior to breaking. A threshold below
which waves do not break is identified and qualitative comparisons to experiment are
made when applicable.

The third area is the transfer of energy at the air-water interface during breaking
which is an aspect of the breaking process that has not received much attention in
the literature. In this thesis, the formulation of a term in the energy equation which
accounts for the energy flux rate at the air-water interface is presented. The waves
in this numerical study give evidence that this quantity is appreciable. Although
the calculation of this term is sensitive to errors associated with the conservation
of energy, values as high as 25% of the energy lost to breaking are found. At the
Reynolds numbers in this study, the dominant mechanism for each type of wave is
identified as inviscid for spilling breaking waves and viscous for plunging breaking
waves.

This numerical effort has contributed to the basic knowledge of wave breaking
at moderate Reynolds numbers. Through the inclusion of the coupled air-water in-
terface, unique insight to the kinematics, dynamics, dissipation and energy fluxes of
breaking waves was obtained. The information gained in this study provides an ini-
tial step towards physics-based turbulence models for the study of wave breaking at
larger scales.

Thesis Supervisor: Dick K.P. Yue
Title: Professor of Hydrodynamics and Ocean Engineering
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Chapter 1

Introduction

The dynamics of the ocean surface have been an important topic of study as long as

man has answered the call of the sea. The dangers present in the ocean must have

been of particular interest as ocean travel involved fishing, exploration and trade. All

of these activities still comprise a significant portion of the global economy as well

as aspects of the ever present search for crude oil and the dependance of a nation's

national security on its Naval defense force for transportation of its armed services

and protection of its ports. The role of the ocean in the global climate change is

also distinctly vital as we are learning how local oceanic occurrences such as El Niho

effects the weather patterns on a global scale. Wave breaking plays an important

role in the dynamics of the ocean surface and thus touches just about every aspect of

human life. Yet, the complexity of the physical problem and our ability to quantify

it has severely hampered our understanding of it.

At a basic level, wave breaking effects the rates of transfer of energy, momentum,

heat and mass between the air and the sea and can drive many atmospheric and

oceanic circulation processes. This gives them a direct effect on the global climate.

Additionally, the absorbtion of atmospheric gases by the ocean plays an important

role in climate modeling and prediction [96, 44]. Ocean wave breaking effects the

air-water gas exchange through turbulence under the surface and wave breaking [7].

Thus, it has a large effect on climate modeling efforts. From a layman's point of view,

poor understanding of the coupling between the atmosphere and the ocean effects all
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aspects of weather prediction from basic day to day effects to better prediction of

hurricane tracks.

In deep water, wave breaking not only effects climatology efforts, but causes sig-

nificant dynamic loading on ocean engineering structures such as off-shore research

platforms and oil exploration efforts. At present, predicting the magnitude, duration

and occurrence probabilities of the wave impact pressure is difficult as current predic-

tion efforts are considered unreliable [79]. The severe loading on such structures can

cause significant fatigue and ultimately result in damage or loss of structures. In the

surf or coastal zones, breaking waves contribute to extensive erosion of the coastline

and damage to harbor and coastal structures such as sea walls. Thus, it has direct

effect on coastal management policies about the world.

Within the context of ships, the breaking of the bow wave is partly responsible for

the bubbly wake of surface ships. This signature plays a key role in remote detection

and counter-measure development which is of vital interest to Naval defense forces.

The energy lost in the breaking bow wave of a surface ship can account for up to 15%

of the drag of a surface ship [2]. Shaving even a modest percentage of drag from a

surface ship can lead to a substantial increase in the fuel efficiency of not just Naval

vessels but of the entire maritime trade industry. Additionally, as the Navy presses the

design envelope further to unconventional hull forms and unconventional operational

zones, current computational design packages are used outside of their limitations.

These design capabilities have little or poor wave breaking, spray formation and air

entrainment modeling capabilities.

As wave breaking is such a vital area of concern, it is an active area of research.

There are many recent review articles on the subject. In fact, much of the information

in this chapter is based on information from these reviews. For a recent review of

wave breaking effects on air-sea interactions, see Melville [75]. It discusses aspects

of the topic from an experimentalist point of view such as measurement techniques,

recent wind-wave modeling efforts, wave breaking dissipation, the ocean boundary

layer, gas transfer and acoustic signatures.

Deep water wave breaking is reviewed in Banner and Peregrine [4] again from an
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experimentalist point of view. Measurement techniques for the field and laboratory

are discussed. Theories associated with wave breaking and wind-wave modeling are

also discussed. Finally, the effects of air entrainment and bubble clouds are also

cited. Although there is some duplication, a similar review by Banner [3] is also

recommended.

A thorough discussion of the aspects of spilling breaking waves is done by Duncan

[31]. This review discusses the definition of spilling breaking waves and the effects of

surface tension. Unsteady and steady breaking waves are discussed in detail for long

and short waves as well as two- and three-dimensional wave breaking. The review

is again mainly from an experimentalist point of view; however, there is also a brief

discussion on available numerical results.

1.1 Types of Wave Breaking

The criteria for classifying breaking waves is relatively vague and dates back to the

effort to classify beach conditions during World War II [34, 47, 71]. In the open ocean,

there are generally two types of broad classifications used in the literature which are

plunging and spilling breaking waves. In coastal zones, a third type called surging

is also commonly referenced. In plunging breaking waves, the wave crest forms a jet

which overturns. The sheet of water which makes the jet, plunges down on the front

face of the wave, creating an air pocket and a secondary splashing event. In general,

once the sheet of water impacts the wave, bubbles, spray and turbulence form almost

instantaneously. Plunging breaking waves are in general an unsteady event; however,

in the context of ship breaking waves, this is not necessarily the case. Plunging

breaking waves are less common in deep water. They tend to be more dominant in

coastal regions where bottom topology and shoaling forces the energy of the wave

to produce a plunging breaker. This can be seen on every beach and in the more

fantastic "pipes" loved by surfers.

Spilling breaking waves are associated with a rough patch on the crest of the

wave which falls down its front face or potentially spills off of the back. There is a
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characteristic formation of a bulge on the front face of the wave. The bottom of the

bulge is generally called the toe and usually has an associated capillary wave train

extending from it and continuing down the face of the wave [66]. The presence of

the capillary wave train at the base of the bulge is believed to trigger an instability

which causes the bulge or rough patch to travel down the face of the wave. In some

disciplines such as physical oceanography, spilling breaking is defined when a patch

of "white water" is seen to move along the face of the wave [4]. This white water or

air entrainment is not necessarily a criteria for spilling breaking waves in other fields

where the formation of the bulge is considered a criteria [31]. This is mainly a function

of the scale investigated as smaller scale spilling breakers do not usually have white

water associated with them. There has been an effort in the physical oceanography

community to recognize breaking not associated with white water which they call

microbreakers due to their relative size in the open ocean (A < 30cm)[4]. For the

purposes of this study, we will call any breaking wave which does not form a jet a

spilling breaking wave. In general, most breaking in the ocean is of spilling type and

is unsteady in nature. However, again in the context of ship waves or waves behind

submerged bodies, this is not necessarily the case.

Breaking waves are also classified by their temporal evolution as either unsteady or

steady (or quasi-steady) events. An unsteady breaking wave is a brief event, generally

within a wave period, and relatively random in the open ocean. Once the mechanism

which initiated the breaking event has expired, unsteady breaking waves no longer

continue to break. For example, if the wave is breaking because of a local excess of

energy due to focusing, once the increased dissipation in the wave has dissipated this

energy, the breaking event stops shortly thereafter. Unsteady breaking waves may

even have periodic events of breaking caused by a periodic focusing of energy as a

wave passes through a region. However, each event is relatively short and unique.

Steady breaking waves are a sustained event and generally occur near submerged

moving objects or still objects subject to a current. Within the reference frame of

a ship, the breaking bow wave is considered to be a quasi-steady breaking wave. It

has a plunging component near the ship which becomes a spilling breaker in the near
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field. Because steady breakers have a sustained source of energy (namely the presence

of the body), the wave will continue to break as it must continuously dissipate the

energy which the body is inputting. A quasi-steady (two-dimensional) breaking wave

is always a spilling breaking wave. It has an associated bulge and toe, but unlike

the unsteady spilling breaking wave, they do not propagate down the front face of

the wave. In general, the bulge is described as a region which has separated from

the wave flow underneath and continuously injects a turbulent wake into the fluid

surface. The quasi-steady aspect of the description has developed over the years as

researchers have identified a low frequency oscillation of the breaking region on the

wave face. For experimental efforts in steady wave breaking, the reader is referred

to the works by Duncan [30, 29] as well as Lin and Rockwell [59]. Theoretical work

in the area was done by Cointe and Tulin [15 in which a model for two-dimensional

steady breaking was developed. Numerical efforts in this area were performed by

various authors in an effort to use Duncan's experiments as a benchmark for viscous

numerical simulations [45]. One might argue that quasi-steady breaking might entail

a cyclic breaking event such as a train of waves impacting a seawall over a long period

of time [60]. The forces on the seawall will be dominated by the repetitive action of

the wave on the wall such that on a long time scale, the event could be considered

quasi-steady and information regarding the mean loadings, etc. could be computed.

Finally, a short comment about two- and three-dimensional breaking. In my

humble opinion, the concept of two-dimensional breaking is really an invention of

numerical methods and to some extent experimental investigations. Waves which

begin as two-dimensional wave trains traveling down a wave tank will develop three-

dimensional flows as soon as the wave breaks and turbulence is formed. Even two-

dimensional steady breakers have three-dimensional flow components to them as the

flow in the bulge is turbulent. For plunging breaking waves, Perlin et al. showed the

existence of a longitudinal variation along the front before it plunges and Longuet-

Higgins [67] described the breakup of the jet of a plunging wave as a distinctly three-

dimensional process.

These arguments make it appear as if two-dimensional studies of breaking waves
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are not relevant. However, the saying "we must walk before we run" comes to mind.

The investigation of wave breaking using two-dimensional techniques has helped an-

swer many basic questions regarding breaking mechanisms as up until the breaking

point the three-dimensional effects are minimal. A two-dimensional investigation is

also not out of the ouestion for small wavelength waves where the Reynolds number

is moderate and the formation of turbulence generally reserved for the most violent

of breaking events. This is also the case for infinite Reynolds numbers where the

flow is modeled using potential flow. Inviscid numerical methods can compute up

to the breaking event and have contributed to a significant amount of knowledge on

pre-breaking effects in plunging breaking waves. However, due care must be taken in

addressing issues regarding scale and the physics of air entrainment and bubbles. As

turbulence becomes more prominent after the breaking event for larger wavelengths

(and thus Reynolds numbers), many conclusions must be made with caution. That

being said, however, the predominance of current numerical and experimental investi-

gations are based within the context of two-dimensional flows. Investigations of truly

three-dimensional waves are relatively few in number [80, 107, 128, 62].

1.2 Breaking Mechanisms

There are various mechanisms which have been identified as causing wave breaking.

Initially addressed by Stokes [106], there is a theoretical limit to the wave steepness

(ak = 0.4432). Once a wave has reached this steepness, the particle speed in the crest

of the wave is equal to the phase speed. Anything greater will produce a breaking

wave. However, many researchers have found that instabilities contribute to break-

ing at much smaller slopes. Experiments have shown that for slopes less than 0.3,

two-dimensional Benjamin-Feir stabilities can cause waves to break [73]. Numerical

simulations show that this instability, which consists of a wave with a central fre-

quency and small-amplitude sidebands, can see waves break with slopes as small as

0.1 [19, 69]. The Benjamin-Feir instability slowly develops and can take on the order

of 100 wavelengths before it causes a wave to break [31]. Thus, its importance in the
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open ocean is questionable as other factors may take precedence before this instability

has time to develop. For instance, in three dimensional waves, instabilities cause the

wave to break much more rapidly [107].

For the open ocean where waves propagate in an infinite number of directions and

the environment is not controlled, the dominant mechanisms for breaking in the open

ocean are cited as wave-wave, wave-current and wind-wave interactions. At some

level, all of these mechanisms are associated with the energy in the wave. Wave-

wave interactions form through dispersion or wave focusing. In the case of dispersion

where waves traveling with different speeds and different directions can focus in one

location. If the focusing is adequate, it yields an unsteady breaking event. This

type of dispersive focusing technique is used primarily in laboratory experiments as

the location of the breaking event and many quantities about the breaking wave

can be controlled. Another wave-wave interaction which may lead to breaking is the

modulation of a group of waves by their envelope. It has been reported that waves are

prone to periodic breaking as they passed through a group [25]. Banner and Tian [5]

show that the modulation of a wave group can lead to recurrence of the wave group

(no breaking) or a breaking event. However, the existence of groups in the open ocean

is an abstract concept and difficult to confirm [103]. Even so, a modulation can lead

to wave breaking.

Wave-current interactions happen anywhere a current exists in the ocean. How-

ever, they are much more prominent where tidal effects set up currents in and out

of harbors and along coastal regions with naturally occurring inlets. Depending on

the relative velocity between the current and the wave group, the wave energy can be

reflected from the current. This causes a focusing of energy near the reflection area

and if sufficient, will cause waves to break.

Wind-wave interactions occurs as the wind blows over the ocean surface. Through

surface friction, the wind, imparts energy into the waves. Depending on the wind

speed, the wave age (how long the wind has been blowing), and the fetch (the area

over which the wind blows), the waves will develop until they break. Each of these

parameters have a profound effect on the breaking event as well. As the wind is an
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ever present quantity in the open ocean, this topic has received considerable attention

in field experiments. In fact, it is difficult to find field measurements of breaking waves

where the wind is not a part of the picture.

Perusal of the literature associated with wave breaking reveals that the breaking

event is a complex phenomenon. The multitude of breaking mechanisms and the

large range of scales associated with wave breaking can skew the results in a particular

direction. For example, the energy lost in wave breaking in the laboratory experiments

which use dispersive focusing is sensitive to the three-dimensionality of the wave [80]

and the gain on the wavemaker [54]. Breaking waves at smaller scales dissipate energy

but do not entrain air or form white water on their faces. As the air entrainment

is also a factor in dissipation, waves which entrain air should have more dissipation

than those that don't [55]. Waves generated in a steady breaking experiment have an

order of magnitude greater than unsteady breaking waves [74]. Thus, the results of

any breaking wave study may critically depend on the breaking mechanism involved.

1.3 Missing Links in the Knowledge of Breaking

Waves

As breaking waves are an active area of research, much is known about the kinematics

of wave breaking, especially at length scales around im which is the common wave-

length for laboratory experiments. However, there are three broad areas where the

lack of knowledge is painfully obvious and relatively restrictive in the advancement

of the field. They are the dissipation associated with breaking waves in a global and

local sense as well as its effect on the spectral evolution of waves, the effect breaking

waves have on the fluxes at the air-water interface, and a universal breaking criteria.

One important area of research is wind-wave forecasting. While a rigorous the-

oretical foundation for the prediction of wave evolution does not yet exist [75], the

use of the radiative transfer equation [87, 51] has become the predominant method of

wind-wave forecasting. The radiative transfer equation is based on evolution of the
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wave action spectral density N(k) = gF(k)/o-:

dN O-- cg +0) - VN = SWSNL - Sdis
dt 5+

This simply states that by evolving the wave action spectral density, it is possible

to predict what waves make up a region of the ocean surface a little later in time.

This is all dependent upon the quality of the models on the right-hand side of the

radiative transfer equation which makes it an active area of research. SNL is the term

responsible for nonlinear wave-wave interactions and was formulated by Hasselmann

[43]. The only challenge associated with this term is effectively and efficiently calcu-

lating it. Parameterizing the effect of wind input (Sm) and the dissipation (Sdi,,) on

the spectrum comprises the bulk of the wave forecasting prediction problem. There

are some commonly accepted models for each term, for which I refer the reader to

Komen et al. [52] for the most up-to-date treatment of these terms. However, it

should be pointed out that the dissipation term is the least well understood term.

A few models exist which use equilibrium range assumptions to deduce the spectral

slopes. Yet, how the dissipation affects the spectrum of the waves in the ocean for a

large range of wave numbers is still elusive.

A clearer picture of the dissipation of a single wave or group of waves has begun to

form with the help of laboratory experiments. As the wave generation is much more

controllable in the laboratory verses the field, parametric studies can be made. For

two-dimensional wave groups, Rapp and Melville [92] performed extensive measure-

ments of the energy dissipation and momentum flux for a range of breaking waves

caused by dispersive focusing. Their study characterized the global momentum flux

and energy lost during breaking as a function of an integral slope parameter. They

also included an investigation of the spectral evolution of the wave group through

breaking where they were able to identify a build up of energy in high frequencies

and quantify change in the spectrum after breaking. Finally, they found that most

of the energy lost to the breaking event had been dissipated by turbulence in about

four wave periods which shows that the turbulence dissipation is significantly higher
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after breaking.

The only three-dimensional breaking waves performed in the laboratory where

dissipation was measured were done by Nepf et al. [80] where a similar technique of

dispersive wave focusing was used to generate breaking waves in a wave basin. They

found that in the three-dimensional case. the amount of energy dissipated during the

breaking event was somewhere between that of a spilling and plunging breaking wave

as the three-dimensional breaking event itself was a plunging breaking wave in the

center which tapered to spilling events at the edge.

These experimental efforts have provided a great step forward in quantifying the

energy dissipation during breaking for dispersively focused waves. Yet, until just re-

cently, the investigations have only been focused on dissipation as a global quantity.

While a global measure of the energy lost to breaking can provide important infor-

mation, it is incapable of providing information regarding local relationships. Deter-

mining the local dissipation rate for breaking is essential for developing physics-based

numerical models. Having adequate numerical models for wave breaking dissipation

is a remaining challenge in the computations of the near field flow around a surface

ship and extending the knowledge of wave breaking at relevant physical scales. Not

only will computations help with the design of advanced hull forms and help fill in the

gaps of information unattainable by experiments, they have the potential of helping

focus experiments in particular areas of interest. Thus, while the current body of

experiments have added to our understanding of breaking wave dissipation, there is

considerable work which needs to be done.

The second area where our knowledge of breaking waves is lacking is on its effect

of the fluxes at the air-water interface. Through the increased velocity and turbulent

fields in the breaking region as well as air entrainment, the mass, momentum and

energy fluxes are significantly altered by wave breaking. Much attention has been

placed on the wind energy input into the wave field, but nothing has been placed on

the reverse process. Experimental studies in the field have again provided most of the

knowledge on the global and average properties. Current numerical studies generally

do not couple the air and water boundary layers, leaving their influence on each other
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as parameters. There has been very little computational effort expended to perform

direct numerical simulations of the coupled air-water boundary layer much less in the

context of the effects of wave breaking. As in the case of dissipation, understanding

local effects of the energy fluxes is critically important to developing physics-based

models which will enable numerical studies at larger scales which will enable further

model development and parameterizations.

The final missing link is the development of a universal breaking criteria. For

obvious modeling reasons, it is desirable to be able to look at some quantity of a

wave, whether it be a local or global quantity and determine if it is going to break. In

addition, to be able to tie that quantity to other aspects such as mechanical energy

lost, gas transfer rates, thermal effects, air entrainment, etc. appears to be the "holy

grail" of wave breaking investigations. Whether or not this will be successful is

actively debated in the community. The difficulty of trying to reduce the entirety of

the complex physics of a breaking wave to a single number is a daunting task which

a few brave souls are attempting.

There are a multitude of proposed breaking criteria in the literature. They fall

into four categories. The first is a geometric criteria based on local and global wave

steepness similar to the idea behind Stokes limiting wave. The local criteria which

is cited considers asymmetry and crest front steepness. The global wave steepness

is an integral slope parameter based on the sum of the spectral components. Yet,

the presence of instabilities can affect these criteria and it has been pointed out that

this type of criteria must be scale dependent [75]. The second type is a kinematic

criteria which relates relative speeds in the wave. One version uses the particle speed

compared to the crest phase speed. The other version considers the orbital speed

in the crest to the group speed [122, 115]. The third type of criteria is a dynamic

criteria which considers the evolution of the higher harmonic frequency range of the

spectrum based on the type of observations made by Rapp and Melville. For a recent

review of the criteria, the reader is referred to Wu and Nepf [127].

The fourth type of criteria which has been proposed recently which is based on

a local growth rate. This type of criteria was introduced by Dold and Peregrine
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[19] and championed further by Banner et al. [5, 103, 104]. The idea behind this

criteria is that the there is a mean convergence of energy density as the wave group

is modulated by the envelope. This returns to the wave-wave interaction idea where

a local convergence of energy causes the wave to break.

As the relative usefulness of these criteria is still a hotly debated topic, few have

tried to associate this to the strength of the breaking event or other breaking effects.

Additionally, this type of study requires a large database of breaking waves and effects

to make strong conclusions. Wu and Nepf [127] have centered on the kinematic criteria

as it is easier to measure in the field. Rapp and Melville have keyed on the integral

slope parameter as a global measure of the energy in the wave. However, there is

some scatter in results once the threshold of breaking has been crossed. Song and

Banner and Banner and Song [103, 104] have had some limited success in the criteria

based on the growth rate. Yet, the sparsity of the data has limited the success of

these criteria much less tying them to other breaking effects.

The applicability of these criteria in the open ocean is difficult. Many of the criteria

are based on the existence of wave groups and characteristic information regarding

the groups. The existence of groups in the open oceans has still not been confirmed.

Other criteria are based on point measurements. A single point measurement when

waves travel in all different directions represents the wave at an undetermined stage of

evolution. This type of information makes it difficult to infer a breaking criteria and

does not describe the intermittent occurrence of wave breaking in the open ocean. A

better measure than surface kinematics and dynamics may be the process of interest

[75]. A universal breaking criteria may not be within our reach at this time, but

a criteria which governs the dissipation or heat transfer, etc. may be much more

effective and easier to obtain.

While wave breaking is an active area of research, there are key areas where de-

tailed knowledge is lacking. They are the dissipation and dissipation rates of breaking

waves, the fluxes at the air-water interface during the breaking event and a univer-

sal breaking criteria. Experimental investigations have begun to scratch the surface

in gaining this knowledge; however, measurements even in the laboratory during
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the breaking event are extremely difficult especially if air entrainment is involved.

Numerical investigations of the topic can lead to improved knowledge in the area,

enhanced statistical quantities by expanding the available database, and help focus

future experimental efforts.

1.4 Numerical Investigations

Up until the past few years, numerical studies of breaking waves have been dominated

using two-dimensional potential flow methods. These methods make irrotational and

incompressible flow assumptions and have no viscous effects [68, 24]. Some three-

dimensional potential flow studies have also been accomplished recently [128, 62]. All

of the methods available in this area are unable to go past the breaking event without

some ad-hoc treatment of the interface at jet re-entry as well as dissipation effects

necessary to model the energy lost during breaking. Thus, most of the work on wave

breaking dynamics has been relegated to field and laboratory experiments.

Some very early works which include viscous effects are around [39]. However,

the method involved in tracking the interface was low order and the quality of results

in terms of determining kinematics, dynamics and dissipation effects is poor. More

recent studies have used surface following grids in which the free-surface boundary

layer could be resolved [31]. However, these methods can not do plunging events. Re-

cent years has seen the application of a new class of interface capturing schemes such

as volume-of-fluid, level set methods and smoothed particle hydrodynamics to wave

breaking problems [13, 46, 120, 53, 98]. These methods allow for natural treatment of

the surface re-entry and breakup; however, with the exception of the volume-of-fluid

method, the interface capturing methods are in their infancy in development and

rigorous proofs of convergence. Few works in the literature have been able to quanti-

tatively answer the questions posed about dissipation, interface fluxes and breaking

criteria. All of the recent viscous works are two-dimensional. The computational ef-

fort for a three-dimensional breaking wave which includes viscous effects is significant

and it has not been attained in archival journals yet.
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The main restriction in the viscous works is the limitation of the Reynolds number

for direct numerical simulations (DNS). In waves, the Reynolds number scales as

A3/2 /v and at the laboratory scale is 0(106). In general, the best Reynolds number

attainable by viscous flow codes without turbulence closure is O(104) providing that

the free-surface boundary layer is resolved adequately. While the interface tracking

methods which use a surface following grid are better suited for clustering points

near the interface, they still are limited to cases where the surface remains single-

valued and air is not entrained. Methods which use interface capturing do allow for

multi-valued surfaces and air entrainment. However, unless a large number of grids

is used, they require advanced gridding techniques to have adequate resolution near

the air-water interface.

To increase the Reynolds number to scales seen in the laboratory let alone those

seen in the field, a certain amount of turbulence closure modeling is needed. Such

methods as Large-Eddy Simulation (LES) and Large-Wave Simulation (LWS) as well

as RANS calculations have been computed [18, 14, 60]. However, as the turbu-

lence closure modeling for steep breaking waves is also in its infancy, the results are

promising at best. Significant progress has been made with the work of Brocchini

and Peregrine /citeBrochPer as they have begun the step forward in developing a

framework in which to begin these modeling efforts for RANS calculations. However,

real progress will only be made if physics-based models are developed for use in these

methods. These models can only be developed if a detailed picture of the physics

involved can be achieved. This can only be accomplished using detailed experimental

measurements or high quality DNS.

The application of numerical methods to the investigation of wave breaking has

been around for a quarter of a century. They have enriched our understanding of waves

prior to the breaking event. However, not until recently have numerical capabilities

developed which allow us to simulate past the breaking event without some type of

modeling effort. Direct numerical simulation is a necessary step towards developing

physics-based turbulence closure models which can be implemented into larger scale

computations such as LES and LWS as well as RANS.
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1.5 Scope of Thesis

This thesis will attempt to begin to answer the some of questions posed in the previous

section: namely to gain understanding of the kinematics and dynamics of breaking

waves, their dissipation and the transfer of energy at the air-water interface. We

choose direct numerical simulation of the Navier-Stokes equations to preclude the use

of any turbulence closure models which may mask the physics involved. The air-

water interface is modeled through the level set technique which allows for a natural

treatment of plunging events and air entrainment. Simulating the effects of the entire

coupled air-water boundary layer allows us to capture all of the physics governed

by the Navier-Stokes equations. As this is a first attempt to fully simulate the cou-

pled air-water boundary layer for wave breaking, effects such as salinity, surfactants,

temperature, gas-exchange, etc. have been left for future work. This numerical in-

vestigation is a two-dimensional study; however, extension to three-dimensions is not

hampered by the numerical method or governing equations but is also relegated to

future work.

The outline of this thesis is as follows. In Chapter 2, the formulation of the multi-

fluid governing equations (conservation of mass and momentum) presented within the

context of the level set method. A description of the level set method is included as is

the governing equation which evolves the air-water interface. The multi-fluid energy

equation is derived using the level set method and the technique for determining the

energy equation for a single fluid in a multi-fluid environment is described. Finally,

an analysis of the level set method for the simulation of air-water flows is presented

and improvements to the level set method in this type of flows are given.

Chapter 3 presents the current numerical implementation of the method as used

in this study. For most of the work, established numerical techniques have been

employed but are documented here as reference. However, in some cases established

techniques were inadequate for the present study and either new techniques were

developed for this method or various disparate techniques were combined. In the

event that a new technique or combined technique was used, it is documented as such
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in this chapter. These improvements allowed for a development of a robust numerical

implementation of the level set method for the simulation of air-water interface flows.

Chapter 4 presents the methods used to generate breaking waves in this numerical

study in the context of other methods available in the literature and the physical

processes they are representing. In general, numerically generating breaking waves is

an art form verses pure science and this chapter represents an effort to document the

process for multi-fluid flows. There is also a brief presentation of methods which were

developed but not used in this study. This chapter also contains a catalog of all of

the waves generated in this study, the methods used to classify the type of breaking

wave generated, and an assessment of the quality of the waves generated.

Chapter 5 contains a collection of the validation efforts for the numerical model.

It shows validation tests for water droplet re-entry as an attempt to judge the capa-

bilities of the numerical method for simulating the jet re-entry of a plunging breaking

wave. It highlights the volume and mass conservation capabilities of the numerical

implementation. As we are attempting to determine the dissipation rates of wave

breaking and the transfer of energy across the air-water interface, the energy con-

servation is also described in detail in this chapter. Finally, a brief discussion of

convergence is also included.

Chapter 6 is the first chapter devoted to the physics of wave breaking. This

chapter addresses the kinematics and dynamics of breaking waves for both spilling

and plunging breaking waves. Drawing oni a few representative waves in this study,

the evolution of the free-surface, the characteristic velocity field and vorticity and

vorticity fluxes of spilling breaking waves is detailed. We identify two types of spilling

breaking waves in this study - gentle and strong. While they are generally similar

in nature, the strong spilling breaking waves last longer and have stronger vorticity

and stresses than the gentle spilling waves. Comparison to findings in experiments

and theoretical models are given as well. For plunging breaking waves we focus on

the formation of the jet as compared to experiments and theory as well as the effects

of the jet re-entry and breakup. Velocity, vorticity and stresses are shown for two

types of plunging events - those that have a jet ejection and those which have air
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entrainment. The entrainment of air is also discussed within the context of this two-

dimensional study. Finally, the evolution of the spectrum for a variety of breaking

wave types is discussed and compared to available experimental results. While the

waves in this study have a fairly narrow banded spectrum, we find a similar growth

in energy in high wave frequencies prior to breaking and a similar loss of this energy

after breaking.

Chapter 7 is entirely devoted to the dissipation of breaking waves. It begins with

a discussion of the dissipation rate and its spatial variation from non-breaking waves

through spilling to plunging breaking waves. The variation of the dissipation rate

through the breaking event as well as its correlation to regions of high vorticity are

discussed. The unsteady nature of the breaking event is also shown. In respect to

the experimental techniques available in the literature, the a global perspective of

the energy lost during breaking is also discussed. Factoring out estimated losses due

to laminar effects, the amount of energy lost purely to the breaking event is also

presented. We found that it scales with the amount of energy in the wave prior to

breaking better than to an integral slope parameter. There is a threshold energy value

below which waves do not break. Above this threshold, there is some scatter in the

amount of energy lost to breaking. While the amount of data is sparse at the upper

range of the investigation, there appears to be an upper bound to this energy lost as

well. Direct comparison to experiments is made in terms of the amount of potential

energy lost during the breaking event. An assessment of a dimensionless dissipation

rate compared to available unsteady and steady wave breaking is presented. Finally,

within the context of this study an assessment of the breaking criteria based on wave

growth is also discussed. Though the criteria in the literature is based on wave groups

and the amount of available data in this study is sparse for definitive conclusions, the

comparison is qualitatively (and quantitatively) good.

Chapter 8 addresses the topic of energy transfer during the breaking process.

Through the use of the multi-fluid energy equation developed in chapter 2, a term

which represents the energy flux rate at the air-water interface is derived and analyzed.

Using a few representative cases from this study, an argument for the existence of this
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term is also given. The amount of energy transferred through the interface during the

breaking event is quantified and its importance is assessed within the context of the

other physical processes involved. To within the error of the energy conservation for

the waves, it was found that this energy transfer at the interface can be up to 25%

of the energy lost due to the breaking process. By investigating the spatial variation

of this energy flux rate in the breaking waves, for spilling and plunging events, the

localization of the energy flux is identified. The dominant components of the flux

rate are shown to be different in spilling and plunging events as well.

Finally, Chapter 9 pulls together the conclusions in this thesis in a concise form.

It cites the contributions of the thesis for both the numerical method and the physics

investigated. There is also a brief discussion of areas of future work to which this

investigation is a first and vital step towards.
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Chapter 2

Level Set Formulation of the

Navier-Stokes Equations

For this work, the Navier-Stokes equations are used to simulate the fluid motions

of multiple fluids with varying properties using the level set method. This chapter

outlines the formulation of the governing equations cast in the context of the level

set method. It covers mass and momentum conservation as well as the advection

of the level set function which captures the location of the two-fluid interface. The

governing equations are cast in a primitive variable form which requires the solution

of a Poisson equation for the pressure. Thus, this chapter discusses the derivation for

this equation for multiple fluids and conditions for obtaining a unique solution. The

boundary conditions for the governing equations are also discussed.

Finally, this chapter addresses the use of the level set method of air-water interface

flows. The differences between the level set form of the governing equations with

a smoothed interface and the common multi-fluid form (with sharp interface) are

enumerated in detail and the consequences of using the smoothed interface form are

discussed. A detailed analysis of the performance of the smoothed interface form

for air-water flows is presented as is the comparison of the smoothing function to

a filter. As a consequence of the performance of the traditional function, a new

smoothing function is developed and tested for use in modeling flows for which the

viscous boundary layer thicknesses are not comparable. This new smoothing function
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substantially outperforms the traditional function used in the literature today.

2.1 Introduction

Many types of interface tracking/capturing methods exist in the literature today for

viscous, incompressible flows, such as: level set, volume-of-fluid, marker-and-cell, and

boundary-fitted methods. As discussed in chapter 1, the level set method was chosen

over other numerical methods because of its ability to gracefully handle complex

topology changes without any ad-hoc treatments at the interface. A relatively recent

review of interface tracking methods was done by Kothe [53]. A review of the current

state-of-the-art level set method was done by Sethian and Smereka [98].

The level set method is an Eulerian method based on the advection of a function

# to simulate the motion of the interface rather than marker points or color functions.

The "level set function" is a higher-dimensional function of which its zero level set

is the location of the interface. The level set function can be taken as a variety of

representations. In fact, if taken to be a color function of zero or one, the formulation

is essentially the popular volume-of-fluid (VOF) method. However, to avoid surface

reconstruction which is necessary in VOF methods, the level set function is taken to

be a signed normal distance from the interface. At any point on the Cartesian grid,

the level set function represents the (normal) distance from the interface. The sign

of the function indicates in which fluid the point resides. Therefore, at any time, the

location of the interface is then the zero level set of 0.

The following nomenclature will be used throughout this formulation. Consider

an arbitrary material volume Q which has two incompressible fluids present. For

simplicity and application, there are only two fluids in this system a light (f) and

dark (d) fluid. The interface between the two fluids is F. An example of this volume

is shown in figure 2-1. For this derivation, the entire volume Q is defined as Qe n Qd

and the interface between the two fluids F is defined as Qf U Qd. The material surface

enclosing the material volume Q is DQ. Likewise, the material surfaces enclosing Qe

and Qd are defined as 498f and dQd.
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Figure 2-1: Schematic of general material volume Q containing light and dark fluids.
The interface between the two fluids is designated by the zero level set of a higher-
dimensional function #.
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2.2 Field Equations

Many applications of the level set method have appeared in the literature in recent

years [113, 12, 112, 46]. Each presents the field equations in a similar manner. The

formulation used here is essentially presented in [12]. It is chosen because of its clarity

and mathematical formalism.

2.2.1 Mass Conservation with a Level Set Treatment

The conservation of mass written from the perspective of an arbitrary material volume

for each fluid is:

-+ V (pU) dQe = 0 (2.1)
SatI

ap II + V (pu)j d~ad= 0 (2.2)

using the definition for the entire material volume in section 2.1, this can be rewritten

in a single equation as:

1 O+ V-(p* ) dQ= 0 (2.3)
JOL[ atI

Because the material volume is arbitrary and the integral is zero, the integrand is

also zero which yields the conservation of mass in differential form is:

ap
8t+V pi) = (2.4)

If we assume that both fluids are incompressible (9 0), then the continuity equa-

tion is obtained:

V - U- = 0 (2.5)

Note that the continuity equation applies for any point in the domain, whether it lies

in the light or dark fluid.
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2.2.2 Navier-Stokes Equations with a Level Set Treatment

If the fluid in the general volume moves with velocity ti(x, t), the momentum in the

volume is given as:

J pidQ 
(2.6)

For the purposes of this general derivation, only two forces acting on the fluid in the

material volume will be considered. They are gravity and a general stress force. The

volumetric force due to gravity is:

J pgdQ (2.7)

If oij is the stress tensor and nr the surface normal pointing into the light fluid, then

the surface force (on the material surface DQ) is given by:

ofjnjd(OQ) (2.8)

Using these forces and continuing with the incompressible fluid assumption, the rate

of change of momentum for Q is:

p D = J pgdQ + J -ijnjd(OQ) (2.9)

With the definitions of the multiple fluids in section 2.1, this can be rewritten:

pf J pgdQ + j -ijnj d(OQ,) + o-ijnjrd(DQd) + [o-iini]dF (2.10)

I II

where [o-ijnj] is the jump of the stress tensor across the fluid interface F. In this

form, the divergence theorem can be applied to integrals I and II in equation (2.10)

to transform them from surface integrals to volume integrals over their respective

volumes.

The free-surface boundary condition which accounts for the discontinuity of the
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normal stress across the interface gives:

[uijnj] = ysii (2.11)

where '7 is the surface tension coefficient, K is the curvature of F and n- is the outward

pointing normal along F (inward being into the dark fluid).

A method to treat a surface force within a volume without directly locating the

interface on which the force is applied was developed by Brackbill et al. [9]. Within

the context of a volume of fluids type application, the authors consider two fluids that

are separated by a transition region of finite width. A force density is defined that is

proportional to the desired surface force and normalized such that, as the transition

region thickness goes to zero, the actual surface force on the interface is recovered.

This method is valid for two or three dimensions and surface reconstruction is not

necessary.

The surface force in this application is given by the right hand side of equation

2.11. The normal vector of the surface can be calculated from the level set function

in the region near the interface, providing that the distance function is maintained

(i.e. |IVOIH = 1):
VO

n = - (2.12)

Additionally, the curvature of the surface can be defined from the normal vector:

K -- (V -n) (2.13)

To ensure that the force density is only applied in the region near the interface (0 = 0),

the force is multiplied by the Dirac delta function. This allows the surface integral

in equation 2.10 to be converted to a volume integral.

J 'yidF = Jy6(#)V~dQ (2.14)

The momentum balance of equation 2.10 can be rewritten as a single integral over
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the arbitrary material volume.

f Di - &o% pg - -yO(O)Vo dQ = 0 (2.15)Jo Dt 8x

As in the mass conservation derivation, the integrand is zero because Q is arbitrary

and the integral is zero. This provides a multi-fluid form of the momentum equations.

(p + Vd) =? +pg + 6()V# (2.16)at UxU

For applications involving a Newtonian fluid, the stress tensor will be defined to be

og = -HI + 2piD where rl is the static pressure, D is the deformation tensor and

I is the identity matrix. The Navier-Stokes equations, using a volumetric force for

surface tension effects, can be written in the following, primitive-variable and non-

conservative form:

P + VU- -V + V - (2pD) + p- + -ys(#)Vb (2.17)
8t

In conservative form, providing that V -i = 0 and dividing equation (2.17) by p, the

Navier-Stokes equations become:

Dii 1 1 1 (V 2.8
+ V -( if) =- V + 1 V (2(O)D) + g+ -sK(#)Vo (2.18)

at pW# pW# pM#

The density and viscosity have been made functions of the level set function. This

vector equation is the primitive variable form of the level set treatment of the Navier-

Stokes equations.

2.2.3 Constitutive Properties

The constitutive properties of the fluid, namely density p and viscosity p, are dis-

continuous in multi-fluid formulations. In the level set method, this discontinuity is

mapped to a continuous function q. In this application, # is taken to be the signed

normal distance from the interface. The mapping of the constitutive properties of the
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fluid is done using a Heaviside function H(0). The reverse mapping of the density

and viscosity from the level set function is done as follows:

p( Pe + (Pd - pf)H() (2.19)

"(6) up + (U', - p)H(#) (2.20)

Ideally, the Heaviside function would represent a sharp transition between the two

fluids. In general however, the Heaviside function is smoothed over a small distance

by a "smoothing function", f(#; c). Recent works by Fedkiw [83], show promise in

using sharp interfaces. For this work, the Heaviside function is smoothed.

1 J > c if - E water

H (#; c) = If (0; c) 11 < c if i E F (2.21)

0 #< -c if X- E air

The Dirac delta function is related to the Heaviside function by:

dH) ) (2.22)
d#0

The overall effects of smoothing the interface are discussed in detail in section 2.7.

Through the development of this work, it was determined that a smoothing function

other than the traditional level set smoothing function was appropriate for smoothing

air-water interface flows. The reasons for this and the new form of the smoothing

function is discussed in this same section. However, because the traditional smoothing

function is used in almost all of the current literature, its form and origins will be

discussed for completeness.

Origins of Traditional Smoothing Function

The traditional smoothing function f(0; c) results from early work in the numerical

simulation of blood flow in the heart by Peskin [86]. Peskin's mollified delta function
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(or distribution function) is based on the Fourier series of a delta function.

1 X 1 00 TX(223
o(x) = 2L L cos(L (2.23)

n=1

The delta function has many desirable properties which make it a good place to

start. Specifically, its integral over all x is unity and it is zero away from its region

of interest (in this notation, x = 0). However, because it is a sharp function, it needs

to be mollified. If only the first mode in equation 2.23 is considered and the length

of the series L is set to the half-distance (c) over which the function is smoothed, an

equation can be obtained:
1 c r

S(x) ~ + -cos( 7) (2.24)

Here, we have included a constant c. This constant is necessary to ensure that the

function has compact support in the range of -c < x < c. For this to occur, c must

equal 1/2.

6(x; E) = 1+ cos( 7)) for -c < x < c (2.25)

This form of the mollified delta function is used throughout the literature for many

applications, not just the level set method. To get the mollified form of the Heaviside

function, equation 2.25 is integrated with respect to x. The constant of integration

is determined such that at x = 0, the mollified Heaviside function is equal to 1/2.

This gives us the smoothing function f(#; c) which is used in all present level set

formulations.
1 # 1 #7r

f (0; ) -(1 + - + - sin(-)) (2.26)
2 e Cr c

As stated previously, a modified smoothing function was developed for this work.

A detailed discussion of its development and its comparison with the traditional

function are discussed in section 2.7. Equation 2.26 is symmetric about 0 = 0. It was

determined that in cases where the viscous boundary layer thicknesses between the

two fluids were not essentially the same size, that practical computational resolution

was not sufficient to resolve the velocity gradients in the region where the boundary

layer was smaller (in this case the air). The modified form is asymmetric about the

57



interface, reaching further into the region with the smaller viscous boundary layer.

This essentially brings the ratio of level set boundary layer and viscous boundary

layer for both fluids to be about the same.

2.2.4 Nondimensionalizat ion

The nondimensionalization of the governing equations (2.18) chosen for this problem

is based on properties of water.

x = Li' - = Uii' t ( )t' H = PdU 2H' P = PdP' P = PIdI' (2.27)

Dropping the primes for simplicity, the nondimensional form of the field equation

becomes:

&il 1 1 k 1
-- + -(i) = VII+ V -(2p(#) ) + (#)VO (2.28)

tp() p(#)Rde Yr2 pG)We

with the nondimensional parameters defined as follows.

PdUL 2 U e PdU2L
Red =-I Fr2 = gLWe = (2.29)

Ipd gL -

As a result of the nondimensionalization, two normalized constitutive property pa-

rameters are also now defined: A = - for density and Tj = g for viscosity. The
Pd A'd

nondimensional forms of equations (2.19) and (2.20) become:

p(O) = A + (1 - A)H(O; c) (2.30)

-() = 1 + (1 - TI)H(0; c) (2.31)
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2.3 Level Set Equations

2.3.1 Governing Equation of the Level Set Function

To move the interface with the velocity of the fluid at that point, an advection equa-

tion governs the level set function. The level set advection is done through a La-

grangian invariance equation, D/Dt = 0:

t+ V# = 0 (2.32)at

It has been rigorously proven by Osher and Sethian [84] that this advection equation

accurately moves the interface based on the velocity field. Another method of proving

this has been shown by Sussman et al. [111]. A less rigorous proof, which is easier to

interpret physically, is the following.

Consider a two-dimensional plane progressive wave with free-surface elevation T

a cos (kx - wt) vertically centered at z = 0. If the zeroth level set of the function #
represents this same line and 0 represents a signed distance function then it would

be defined as follows:

/ -- Z (2.33)

If the velocity components of the wave field are (u, w) and both the velocity and

the level set function are substituted into equation 2.32, the nonlinear kinematic

free-surface boundary condition is the result when evaluated at z = 7.

71t + 77XUz=n - WZ=7 = 0 (2.34)

This proves that the advection of the zero level set of # represents the kinematic

motion of the free surface. Yet, experience has shown that use of this advection

equation where u = ufluid everywhere presents a minor difficulty in that the level set

function can lose its distance function property.

The application of the form of the advection equation in equation 2.32 to the fluid

mechanics application of the level set method has been questioned by Sethian [97].
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The legacy of Marker and Cell methods which use Lagrangian particles has polluted

the implementation of the level set method. In an Eulerian interface tracking method

such as the level set method, only the interface should move with the velocity field of

the fluid through the kinematic boundary condition. Because the level set utilizes a

higher-dimensional function, using the fluid velocity of the entire fluid to advect the

level set function implies that all other nonzero level sets move with the fluid velocity.

This is not the case and doing so causes the level sets to either bunch up or spread out

with a subsequent loss of the distance function characteristic. This inaccuracy makes

it difficult to calculate the curvature of the surface and has forced the development

of the reinitialization techniques in which much care must be taken to avoid volume

conservation problems [97].

To understand the point raised by Sethian, we can continue with the two-dimensional

plane progressive wave example which has amplitude a, frequency w and wave num-

ber k. For a finite water depth of h, the velocity field of the plane progressive wave

is given by:

u = A cosh (k(z + h)) cos (kx - wt)

w = Asinh(k(z+h))cos(kx-wt) (2.35)

where A = gak/w. If this velocity field is substituted into equation 2.32 along with

equation 2.33 and evaluated at the bottom, z = -h, a different equation results:

awsin (kx -wt) + Acos (kx -wt)(-ak sin(kx -wt)) + = 0

Akcos(kx-wt) = w (2.36)

Therefore if the advection velocity at the bottom is equal to the fluid velocity (ii

ufuisd), equation 2.32 is violated and the level set function then loses its distance

function property over the course of a simulation. This can be problematic in cases

where the calculation of surface curvature is necessary. Reinitialization of the level

set function is generally used to maintain the level set function as a distance function.
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2.3.2 Reinitialization

To combat the loss of the distance function property, a various number of reinitial-

ization techniques have been developed [12, 110, 82, 45, 83]. The methods are based

on the definition of the level set function if it represents a distance function:

1VOI = 1 (2.37)

A partial differential equation is derived such that if iterated to steady state, equation

2.37 holds:
00 + sign(oo) (IVOI - 1) = 0 (2.38)

The initial condition for this equation is the initial position of the level set function,

O(x, t = 0) - #0 . Equation 2.38 conserves volume within the domain bounded

by the level set function because it does not change the position of the zero level

set. However, numerically, this is not the case and if the interface is reinitialized

using this technique, it has a tendency to stray [111]. Sussman and Fatemi [110]

modified equation 2.38 to allow for an additional volume conserving requirement.

The requirement is that within a general and fixed volume Q:

at H(O) = 0 (2.39)

If equation 2.38 is defined as the operator L( 0 , 0), then the modified equation is

00
at = L(#o, #) + Af (#) (2.40)
at

The Lagrange multiplier (A) is defined to require volume conservation. Expanding

2.39 and using 2.40 yields an equation for A.

J, H(O) J H'(0)0, H'(O) (L(o, 0) + Af (0)) = 0 (2.41)
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This can be solved for A if it is assumed constant in Q:

A - f H'(#)L(o, ) (2.42)
f 2 H'(O)f (0)

The function f () is chosen to ensure that only the interface is corrected to remove

any drift.

f(#) = H'(#)IV#l (2.43)

To reduce the number of iterations, equation 2.40 can be iterated to a finite time.

The accuracy of the level set function is only necessary in a narrow band near the

free surface to adequately calculate the curvature. This can be seen if equation 2.38

is rewritten in a more familiar form:

00 Vo
at + sign(qo) - VO = sign(#o) (2.44)

This is a nonlinear hyperbolic equation with characteristic velocities W.

VO
w = sign(#o) (2.45)

Because -O is the normal of the interface, the characteristic velocities point out-ivoI
wards. Sussman and Fatemi take advantage of this by pointing out that the region

nearest to the interface will be initialized first and then it will work away from the

interface. Thus, a cutoff point of the reinitialization can be determined and the par-

tial differential equation can be solved to some point in time equal to E where C is

defined to be the distance around the interface to which an accurate distance function

is needed.

A similar method was proposed by Chang et al. [12]. This method is based

on an area/volume preserving form of equation 2.38. It is essentially a perturbed

Hamilton-Jacobi equation which is solved to steady state.

0 + (Ao - A(t))(K - 1)|V#| = 0 (2.46)at
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A0 denotes the total volume for the initial condition (the perturbed level set func-

tion), A(t) denotes the total volume corresponding to the level set function at time t

and K denotes the curvature of the interface. Both methods require that the partial

differential equation be solved to some point, either a particular time or steady state.

This also requires a CFL condition within the reinitialization steps for the time in-

tegration. Additionally, when three-dimensional simulations were done by Oka and

Ishii [82], they found that both reinitialization steps were necessary in a three stage

fashion to get adequate volume conservation.

Adalsteinsson and Sethian [1] propose computing what they call extension veloc-

ities that will propagate the nonzero level sets in such a manner that the distance

function is maintained. The method does have some interesting advantages. By using

a velocity field which becomes the interface velocity at the interface, reinitialization

is not necessary. The method, while considered a "fast marching method", can be

tedious if not implemented efficiently. It is unclear if this method is any better than

the reinitialization technique discussed. In practice, most level set methods published

in the literature use the method outlined by Sussman and Fatemi which is also the

method used in this work. The implementation of their reinitialization technique is

discussed in detail in section 3.8.

2.4 Multi-Fluid Energy Equation

The multi-fluid energy equation is derived using a control volume technique. The

control volume is defined similarly to figure 2-1 where the volume (V) contains both

fluids and the interface between them can be multi-valued or broken. The change in

total kinetic energy (R) of the control volume is determined by the net work done on

the control volume d [37].
Dd dWD-= - (2.47)Dt dt
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The kinetic energy per unit volume is defined as K = (I/2)pii.i-, thus the total kinetic

energy in the volume is just the integral over the entire control volume:

K = J dV = p(i - i)dV (2.48)

The left-hand side of equation 2.47 simply becomes:

-~ =2-f dV + Ku -dA (2.49)
Dt t V s

The right-hand side of equation 2.47 is made up of work from the pressure, viscous,

surface tension and gravitational forces. Each term is defined below. First, the net

flow work by the pressure field (H) is given by:

=-s fu - dA (2.50)

Second, the rate of viscous (r) work is given by:

s u - 7-. dA (2.51)

Third, the rate of viscous dissipation which is also a function of T is given by:

=- (T . V) udV (2.52)

Fourth, the net work by the gravitational force is given by:

= - j pgwdV (2.53)

Finally, any surface forcing such as surface tension or artificial surface forcing does

work:

we = F - f w (2.54)

where F is the force which is applied at the surface.
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Combining equations 2.50-2.54 with equations 2.47 and 2.49 yields the energy

equation for a control volume.

~atjj dV+i Ki-dA - iidA+j --T.dA- (T-V)idV- pgwdV+?O (2.55)

For the sake of notation, the dissipation rate per unit volume is defined as E:

E = (T - V) - U (2.56)

Thus, the energy equation for a multi-fluid control volume is given as the following:

09 dV+ ii dA -- lu -dA+ U -J TdA - EdV - pgwdV+,d (2.57)
atj Js is fsJ JV

As the control volume is arbitrary, equation 2.57 can be evaluated on a single cell of

size (dx, dz) using a finite volume methodology. The following differential equation

can be derived for the kinetic energy per unit volume:

[K],+ V - (Ku + u) + [pgW] = T ( i) - E + 9 (2.58)
at

where [f], is evaluated at the cell center.

2.4.1 Nondimensional Form of the Multi-fluid Energy Equa-

tion

To be consistent with the governing equations in section 2.2, we will choose the same

nondimensionalization which is detailed in equation 2.27. Additionally, the level set

form of the equation requires that p = p(o) and 1 = p(O). The nondimensional level

set form of the multi-fluid energy equation then becomes:

[,+ V - (K + U) + [p()W1O = 1 (V(T - -) - E) + ) (2.59)
at Fr2 IZed
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where the Reynolds and Froude number are defined in equation 2.29. Additionally, it

is some times convenient to consider the gravitational effect as a rate of energy change

verses the work done. In other words, the net gravitational work can be rewritten to

a similar form as the kinetic energy. The potential energy per volume is given by 4
and is related to the work done as follows:

1 _P__)_10 = " (2.60)
Fr at

A common notation which is used in the literature by many authors defines E as the

total energy and F as the energy flux vector. To be compatible with this notation,

we make the following definitions:

E= [r]o + [V]o

F (r, + 11) U-

Equation 2.59 now becomes:

+ V -F = V - - -) + O (2.61)at Red

2.4.2 Extracting the Energy Equation for a Single Fluid

To extract the information for each fluid from the energy equation, we will use the

information which is supplied by the level set formulation, namely a signed function

which smoothly varies across the interface. The smoothed Heaviside function will

be used to help separate the air from the water in the control volume. We begin

with equation 2.61 which represents the rate of change of total energy in the per unit

volume and multiply it by the smoothed Heaviside function. For the sake of a cleaner

notation, H(#; c) = HO is adopted.

OE - HO
H1 a + HOV . F = V . E - E) + H1"1 (2.62)

8t Red
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Because we have used the smooth form of the Heaviside function, Hp can be brought

into the derivatives using the chain rule. Consider the first term:

H E =EHp _ EDHK (2.63)
at at 0 qat

All of the terms associated with the divergence can be arranged as well. For a general

vector A, this is:

HV - =)V - H - i"- - V# (2.64)

This can be simplified further if we note that by definition

aHo= 
(2.65)

aq

and by the governing equation of the level set function

= -i.V# (2.66)

This yields a differential equation for the total energy of the water in the control

volume. A similar equation can be derived for the air in the control volume by

multiplying equation 2.61 by 1 - HO rather than H4.

a +E N - - __ +___V# - Eti (2.67)
at +V.(w-Rew Rew + 9 ,V F Rew El) (.7

Equation 2.67 is essentially the same as the differential equation for the entire control

volume except for an additional term which represents the transfer of energy at the

interface between the air and water portions of the control volume. This term is

discussed in detail in chapter 8.
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2.5 Pressure Equation

2.5.1 Gravitational Body Force & Pressure Term

In most incompressible flows, the effect of gravity can be accounted for by separat-

ing the total pressure into a dynamic and hydrostatic component. Generally this

hydrostatic component can be added to the solution at any time being that it is a

constant. General viscous treatments of free-surface flows perform a similar method

and only account for the change in free-surface elevation from the static water line as

a contribution of the gravitational body force.

However, while in this problem both fluids are considered incompressible, the grav-

itational body force can not be neglected until the final solution is obtained. Because

the density within the material volume changes in an Eulerian sense, the gravitational

effects must be considered. Generally, in a physical sense it is easier to consider things

in terms of dynamic pressure instead of total pressure within the discussion of incom-

pressible flows. Dommermuth et al. [20] present a method of capturing the dynamic

pressure contribution separate from the "hydrostatic" component and still maintain

the gravitational body force effect on the volume. In this paper, the total pressure

field is decomposed into a dynamic and a pseudo-hydrostatic component.

rI = Pd + Ph (2.68)

The pseudo-hydrostatic component can be defined as any desired quantity and it

will be used to absorb the gravitational body force term in equation (2.28).

Ph = - dz' (2.69)
.Fr2

Recalling that the density is a function of space in this method, P will be a func-

tion of the horizontal directions. When the decomposed pressure field is substituted

into the governing equation, the modified Navier-Stokes equation becomes:
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(2.70)

The gravitational effect is imbedded in equation (2.70). The operator V(X,Y) is

(A2 Iy).

2.5.2 Variable Density Projection Operator

A detailed discussion of the need for a link between the continuity and momentum

equations for incompressible flows can be found in many computational fluid dynamics

texts. Even though there are four equations (continuity plus the three momentum

equations) and four unknowns (the three components of the velocity field and the

pressure), because the flow is incompressible, no direct solution for the pressure exists.

The method chosen to couple the continuity and momentum equations as well as

determine a direct equation to solve for the pressure is the projection method.

The projection method uses the continuity equation (2.5) directly on the Navier-

Stokes equation (2.70). This yields a Poisson equation with variable coefficients for

the dynamic pressure field which ensures continuity. To illustrate this concept, the

acceleration term of equation 2.70 is discretized using a simple forward Euler time

discretization.

iin+ 1 _ i 
Vn

+ VPd =-V-( - Ph+ ( - (O + (n)
At p(#) p(#)Re We

(2.71)

To couple the continuity and momentum equations, the divergence of equation 2.71

is taken. This yields a Poisson equation with the divergence of the velocity field at

two time steps as part of the source term.

1 V - 2- .72
V - VPd - + V - F .7

p(#) At

69



The next natural step would be to use the continuity equation and set V - d = 0 for

both time steps n and n + 1. However, setting the n-th stage to zero has been shown

to allow error to accumulate. Mathematically, this term is zero; however, numerical

errors may cause this term to be a small, non-zero number. Including the error

associated with this term not only prevents an error accumulation but also nonlinear

instability. In this context, the Poisson equation for the dynamic pressure becomes:

1 V . iin
V - VPd = + V -F (2.73)

Section 3.6 contains the discretization and solution of this equation for the dynamic

pressure. Section 3.9 discusses the details of the interaction of the numerical integra-

tion scheme and the projection operator.

2.5.3 Solvability

The boundary conditions for the Poisson equation for the dynamic pressure are given

in section 2.6 equation 2.84. They are periodic in the horizontal direction and ho-

mogeneous Neumann conditions in the vertical direction. Thus, they are such that

the pressure can only be solved up to a given constant. A solvability condition is

necessary [102]. This should entail nailing down the solution at a given point. Ad-

ditionally, because of the nature of the problem (strong discontinuous coefficients)

a compatibility condition is also necessary. For this type of problem, the natural

compatibility condition is based on the divergence theorem.

A general divergence theorem for discontinuous variables can be derived. Consider

a volume V which is contained entirely within the surface S. An arbitrary surface F

divides V into two sub-volumes V and V2 which are contained within Si and F and

S2 and F for V and V2 respectively.

For a vector F, the divergence theorem says:

J V -FdV = IF - dS (2.74)
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where n- is the outward facing normal of S. This applies when F is 02 i.e. it and

its partial derivatives are continuous. However, when F is only C1 a more general

form of equation 2.74 must be derived. To begin this derivation, we will examine the

right-hand side of equation 2.74:

F n - Fdi- +F.i -dS 2+ jF - n+dS++ F - n~_dS (2.75)
JSJS1 JS2 s+ Js -

Referring to the notation in section 2.1, S+ and S_ are F for the 1 and 2 surfaces

respectively. Since F is C' and n-_ = -n+, the following can be said,

J Fr - n+dS+ = - i- F - n-dS_ (2.76)

These two terms cancel and the right-hand side of equation 2.74 becomes:

jF -rdS= F .ni1dSi+ F - n'2dS2  (2.77)
Js JS1 JS2

Now, it is left to examine the left-hand side of equation 2.74:

/ V .-FdV = V -F dV + V - F dV2+ I[V. F]dF (2.78)

where [-] represents the jump in the quantity across F. Putting both sides together,

this more general form of the divergence theorem is:

j V -FdV = JF - dS - [V F]dF (2.79)

This equation can now be used to determine a compatibility condition for a Poisson

equation where F = VPd. A discrete form of the equation is discussed in section

3.6.

71



2.6 Boundary Conditions

There are two types of boundary conditions for the domains utilized in this thesis

depending on the canonical problem considered. They will both be discussed in this

section and then only referenced in later chapters. While these conditions are the only

ones considered in this work, the numerical method is not limited to those discussed

here.

2.6.1 Periodic Wave Tank

To reduce the domain size necessary for a wave tank, periodic horizontal boundary

conditions are used for the velocity, pressure and level set function within the length

of domain L.

G(L) = -(0)

Pd(L) = P(0)

O(L) = 0(0)

(2.80)

(2.81)

(2.82)

The domain is considered to be

below. The walls allow no flux

used for the terms that slip.

contained within a set of free-slip walls above and

through them and a zero-gradient extrapolation is

aii - t

o j-j= 0 (2.83)

Additionally, there is zero (dynamic) pressure gradient at the walls.

(2.84)= 0
On

Finally, because the level set function is a distance function, a zero-gradient extrap-

olation is an insufficient boundary condition. To this end, a linear extrapolation
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method based on the sign of the level set function is employed.

0= sign(o) (2.85)
On

2.6.2 Open Channel

For cases where periodicity of the horizontal flow would pollute the region of interest,

an open channel with free-slip walls has been used. The boundary conditions vertically

are the same as that in the periodic wave tank, namely equations 2.83 and 2.84 for the

velocity and pressure, respectively. The inlet conditions are that of a steady, uniform

inflow.

U = (U, 0 , 0)

i -n = 0 (2.86)

The outlet conditions use zero gradient extrapolation.

_.1 = 0 (2.87)
anl

The dynamic pressure also uses zero gradient extrapolation on all boundaries.

Pd= 0 (2.88)
(n

Finally, the level set function uses the same extrapolation idea as in equation 2.85 for

all boundaries.

2.7 LSM for Air-Water Interface Flows

A key component to successful implementation of the level set method is the smooth-

ing of the fluid interface over a few points. Many authors simply justify this by

minimizing the number of grid points over which this occurs. In their paper on front-

tracking flows, Unverdi and Tryggvason [121] make two strong arguments in regards
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to smoothing a sharp interface. The first applies to methods where an indicator func-

tion is used to determine the location of the interface. They point out that with a

sharp indicator function, an uncertainty principle exists in that "it is not possible to

specify a precise location and zero thickness simultaneously". If, from one grid point

to the next, the indicator function goes from 0 to 1. the only thing which can be said

is that the interface lies somewhere between those two points. Because of the nature

of the level set function, this argument does not directly apply because the location

of the interface will be known at a given point. However, Unverdi and Tryggvason's

uncertainty principle is still applicable in the sense that, in the governing equations,

if the function which maps the level set function to a density or viscosity is sharp,

the property will change sharply between grid points essentially bringing the order of

the method back to a marker-and-cell type method.

Their second argument, which is more applicable to the level set method, is to con-

sider smoothing the interface just as an approximation of a sharp function. Such that

when a parameter which defines the smoothness goes to zero, the function becomes

sharp. Thus, as any finite-difference approximation of a derivative or trapezoidal

approximation of an integral becomes a derivative or integral as the step size goes to

zero, the same can be said for the smoothing function as its width goes to zero.

2.7.1 Overall Effect of Smoothing the Interface

To look at the global effect of smoothing the interface, we will consider the Navier-

Stokes (NS) equations for a sharp and smooth interface. If the location of the interface

I' is known, the NS equations can be written for both fluids (air and water for this

discussion). Regardless of the discretization difficulties associated with a surface of

complex topology, for a given velocity U- the conservative form of the NS equations

for both fluids can be written as two separate equations (refer to equation 2.18). For
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simplicity in notation, the effect of surface tension has been ignored.

OfW + V (UU) = -VI + V - (2DW) + (2.89)
at Rea Fr2

Diia 1 r - k

at + V(iii) A VI + AR V - (2Da) + (2.90)

In equations 2.89 and 2.90, D is the deformation tensor and the density and viscosity

ratios are represented by A pa/pw and y =Ipa/ti. The nondimensional parameters

are based on the properties of the water and defined as:

pwU L 2U2
R U = L Tr = (2.91)

In general, the density and viscosity are governed by their own advection equations.

However, with a sharp interface, they are discontinuous making their advection nu-

inerically troublesome. The level set formulation maps the discontinuous density and

viscosity functions as a smooth function of the distance to the interface (0) making

its advection straight forward. The discontinuities only exist in the NS equations.

Using this mapping gives us equation 2.17 which is repeated here for simplicity:

01 1 k
+ ()- + V -(2p(#)U) + (2.92)

tp() p(O)Red Fr2

with the density and viscosity functions represented using a Heaviside function which

is 0 in the air and 1 in the water.

p(O) = A + (1 - A)H(O; c) (2.93)

p(j) = + (1 - 7)H(#; c) (2.94)

If the Heaviside function is sharp, equation 2.92 will recover equations 2.89 and 2.90

if written out for each fluid. This brings us to our first conclusion in regards to the

level set form of the NS equations. If S is defined as the solution to equations 2.89

and 2.90 and S is the solution to equation 2.92, then
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1. 5 S provided the Heaviside function is sharp.

For complex surface topologies, the solution S (and S for that matter) for sharp

Heaviside functions is numerically difficult. Using the justification of Unverdi and

Tryggvason [121], the Heaviside function is customarily smoothed over a small dis-

tance, say 2c. The smoothed Heaviside function then becomes a function of the

distance to the interface (the level set function, #).

1 #> c if X- E water

H (; C) 101 e if X E F (2.95)

0 #< -c if X- E air

This is the same as equation 2.21. Here, f(0; c) is called a smoothing function. It

is a function of the signed distance to the interface and uses a parameter ( to define

the thickness of the smoothing, or in other words, the thickness of the interface.

To understand the overall effect of smoothing the interface, the exact form of the

smoothing function is irrelevant. Thus, to keep the discussion clear, the details of the

form will be discussed in detail in 2.7.2.

To classify the effect of the smoothing distance c, a few more parameters need to

be defined. First, a common notation in level set methods is a which represents the

number of points in c.

Z = -(2.96)

Here, A is the grid spacing. Generally, the majority of all level set implementations

in the literature use a = 2.5 such that they claim the interface is smoothed "over

only a few grid points" or within the width of a typical second-order finite-difference

stencil. In addition to a, an additional parameter will be useful which measures the

ratio of viscous boundary layer thickness to interface thickness (level set boundary

layer thickness).

(2.97)CY
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There is an equivalent -y definition based on the properties of the air. One important

item of note is because of the relative values of density and viscosity for air and water,

the relationship from water to air can be found easily.

a ~ V/1--0Y. (2.98)

To finally address the effect of the thickness of the interface, we need to quantify the

error associated with smoothing the interface. We shall represent the error between

the smoothed and sharp solution as C:

e = 5 - S (2.99)

The second conclusion that we can draw regarding the overall effect of smoothing the

interface is:

2. For a fixed 0 < -y, < 00, there is a limiting smoothed solution where e(-Y,) $ 0.

This can be seen if one considers the thickening of the interface as actually applying

a level set boundary layer (of size 2c) over the discontinuity which appears in the

sharp solution. In general boundary layer theory, the process of finding the global

solution involves finding an inner and outer solution and then matching the boundary

conditions at the seam between the inner and outer solutions [6]. However, the partial

differential equations under consideration (eqn. 2.92) are being solved only in the

global sense, using boundary conditions only at outer the boundaries. Because the

governing equations are different in the global sense, there will always be an "error"

associated with their solution. With this in mind, convergence tests should always

be done at the same -y.

The third conclusion that we can draw is that of the approximation argument of

Unverdi and Tryggvason in that as the level set boundary layer thickness goes to zero,

the sharp solution is recovered:

3. As -y, approaches oc, ( - 0.
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A final conclusion (or consequence of conclusion 3) involves the numerical dis-

cretization of the level set NS equations.

4. As a approaches 0, (Y) -+ 0.

Because the numerical sharpness of the Heaviside function is reliant on a, one can ac-

tually recover S using a poorly resolved S. For this under resolved case, (particularly

a < 1), numerically it would seem as though there was no level set boundary layer. If

a numerical implementation of this case were done using a model with high numerical

dissipation, one might recover something which resembled the sharp solution. This is

not a recommended approach.

The consequence of these four conclusions is that properly resolved direct numeri-

cal simulation (DNS) of the NS equations using the level set method is not equivalent

to solving the multi-fluid DNS presented in equations 2.89 and 2.90. In other words,

level set DNS is not DNS of the multi-fluid NS equations. It is DNS of the level set NS

equations. With this in mind, what becomes the issue is the consequences of using the

level set NS equations and striking a balance between the resolution of the smoothed

layer, the viscous boundary layer for both fluids and realistic computational costs.

2.7.2 Performance of Traditional LSM

As a test of the performance of the traditional smoothing function in the context of the

Navier-Stokes equations, a canonical problem of a vortex pair rising towards the air-

water interface is considered. The initial conditions for the test is a flat interface with

two sets of counter rotating vortices (arranged as image pairs) positioned far away

from the interface. The induced velocities of the vortex pairs (in the water) causes

them to rise towards the surface. The results of particular interest for this problem

are the deformation of the interface and the formation of secondary vorticity at the

interface which were highlighted in the works of Tsai and Yue [118] for cases with

and without surfactants in two dimensions and in three dimensions by Dommermuth

[22].

Tsai and Yue's clean case is the most relevant for this comparison. They noted an
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increase in surface elevation at the centerline with a scar or indentation of the surface

(over the location of the vortex). Additionally, at the wave trough there was a peak

of negative vorticity due to convection of the primary vortex horizontally under the

surface and the strength of this secondary vorticity is about 20% of the primary vor-

ticity. The nondimensional parameters for Tsai and Yue are Re = 180, Tr2 = 0.15

and We = 1 and We = 20. Figure 2-2 is an instantaneous snapshot of the interface

location using the level set method for three different resolutions for a constant in-

terface thickness for Re = 200, Tr2 = 0.5 and We = 12.5. The agreement between

this and Tsai and Yue's results are quite good qualitatively and quantitatively if the

difference in Tr is considered. The maximum free-surface elevation at the time shown

for Tsai and Yue is around 0.22. The level set method shows a maximum elevation

at this time to be around 0.6, which scales with the difference in Froude number.

Additionally, considering the minimal difference in results at the three resolutions,

one might consider this to be a converged result. However, as seen in figure 2-3, the

secondary vorticity which forms at the interface, while having qualitatively similar

results to what is expected, has an increasing amount of "spurious" vorticity as the

resolution decreases. The presence of the spurious vorticity also becomes increasingly

more significant if the interface thickness decreases as can be seen in figure 2-4.

Two questions arise from these tests. First, what is the source of this spurious

vorticity and second, since the vorticity at and near the interface effects the free-

surface elevation, why does the result in figure 2-2 appear converged?

To answer the first question, it is easier to consider a simplified problem which

can be solved analytically. Namely, the solution of linear Poiseuille-Couette flow

for two-fluids between moving (in opposite direction) parallel plates. The steady,

linear (one-dimensional) form of the NS equations for the water and air are given in

equations 2.100 and 2.101, respectively. Both are non-dimensionalized by the water

characteristics.
1
eV2U = VP (2.100)

Re,

7 V2Ua = VP (2.101)
Re,

79



Figure 2-2: Instantaneous free-surface elevation (rq) for half of the domain at T = 4
for three cases: (i) a = 3 (red); (ii) a = 4 (green); and (iii) a = 5 (blue). The
interface thickness is fixed for -y, = 1+. Re = 200, Fr2 = 0.5 and We = 12.5

Figure 2-3:
three cases:
thickness is

Instantaneous surface vorticity (wy) for half of the domain at T = 4 for
(i) a = 3 (red); (ii) a = 4 (green); and (iii) a = 5 (blue). The interface
fixed for y. = 1+. Re = 200, Fr2 = 0.5 and We = 12.5
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Figure 2-4: Instantaneous surface vorticity (wy) for half of the domain at T = 4 for
three cases: (i) -, = 1/2 (red); (ii) y, = 1+ (green); and (iii) -Y = 2 (blue). The
resolution of the interface thickness is foxed at a = 3. Re = 200, Fr2 = 0.5 and
We = 12.5

Again, q in this context is the ratio of viscosities between air and water. The boundary

conditions for equations 2.100 and 2.101 are no-slip at the top and bottom of the

domain, no-slip at the air-water interface and a continuous shear at the interface.

The solution of this problem can be obtained analytically.

The level set formulation of this problem, non-dimensionalized by the water, is

1
V - (2pc(#)D) = VP (2.102)iRe

with gE(q) continuous and equal to q + (1 - q)H(#). Because a smoothed Heaviside

function is used, equation 2.102 can be rewritten in a form similar to the sharp

equations:

pie(O)V 2u + 2D - VO(1 - R)(#) = 1e.VP (2.103)

Equation 2.103 is another proof that the level set form of the Navier-Stokes equations

is not the same as the sharp form of the two-fluid equations. In addition to the
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Figure 2-5: Comparison of solutions to the two-fluid Couette-flow problem for a single
case 7,Y = 2: (i) analytic (black); (ii) high-resolution (green); (iii) moderate resolution

(red). Re, = 200 and P = 5e-4

form of the equation, the equation is a global equation and only subject to boundary

conditions at the top and bottom of the domain (no-slip walls). There are no specific

boundary conditions at the interface. The no-slip condition at the interface is taken

care of by the continuous flow assumption and the balanced shear condition is a

consequence of the statement of the shear forces being continuous in a fluid. The

second term of the equation can be interpreted as a forcing function which helps

enforce the stress balance in the interface region verses the exact interface.

Figure 2-5 shows the solution of the analytic sharp solution compared to both a

highly-resolved and moderately-resolved solution of equation 2.102 numerically, using

a tridiagonal solver. The effect of solving the level set formulation globally is evident

as is the effect of the shear balance over the interface region.

Considering the velocity solution shows us the effect of solving the two different

sets of equations but not until the velocity gradients and shear stresses are considered

does the source of the spurious vorticity become evident. Figure 2-6 shows the solution

of this problem for a fixed , at a high resolution (which we consider the exact solution
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for the sake of the discussion) and at more reasonable computational resolutions. The

slope of the velocity and the shear stress are shown here. Surprisingly, the fluctuations

of the shear actually occur at the transition between the smoothed layer and viscous

air boundary layer and not at the interface as one might expect.

To understand why this is the case, we need to reconsider the physics of the

problem we are considering. Because of the differences in viscosity between the two

fluids, whether the interface is sharp or smoothed, the velocity gradients in the air

boundary layer are a hundred times larger than the water. It is common knowledge

that, providing the velocity and length scale between the two fluids are the same,

there is a factor three difference in the viscous boundary layer thickness for air and

water. With air being the larger of the two boundary layers resolved on the same

grid, the number of points in the viscous air boundary layer is by default three times

that in the water boundary layer. However, even using three times more points in

the air boundary layer, it is difficult to resolve gradients that change by a factor of

100. This is quite evident in the plot of the velocity slope in figure 2-6. Remembering

that as -y becomes large, the sharp solution is obtained, what might be considered a

suitable value for the water flow (say 2) yields a very high (say about 6) value for

the air flow. This makes the solution in the air portion of the flow seem as if the

interface were sharp with only a few points in it. This is verified up to sixth order

finite difference schemes. The poor resolution of these very high gradients leads to

the formation of non-physical vorticity.

This is not necessarily a new problem in the computation of multi-fluid flows but

has not been discussed in the level set literature. One of the benefits of the level set

method outside of its ability to model complex topological changes is that it provides

a mapping of the interface such that a-priori knowledge of which points are in which

fluid is not necessary. However, in trying to remove a numerical implementation issue

we've potentially affected the modeling of the physics. There are two ways to attack

this problem. First is to adequately resolve the transition between the smoothed

interface and the viscous air boundary layer. Using the analytical solution showed

that the computational requirements for this are extreme. They show that a 's as
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Figure 2-6: Velocity slope and shear stress using traditional smoothing function for
a single case -yb, = 2: (i) analytic (black); (ii) high-resolution (green); (iii) moderate
resolution (red).

high as 20 still have a small amount of error for 7, of 2. The second is to allow the

level set boundary layer to smooth the air boundary layer without paying a penalty

in the water. This solution is addressed in the next section.

The second question as to why the spurious free-surface vorticity does not seem

to affect the free-surface elevation can now be answered based on the knowledge just

gained. The conservative form of the governing equation of the level set function is:

- + V W( ) = 0 (2.104)at

For the advection of the level set function, the relevant velocity gradients are (u, wZ).

The nature of vorticity for a two-dimensional problem at the interface is that it is

actually a function of u, and wx. Because the vortex pair problem has very weak

vertical gradients in the vertical velocity and weak horizontal gradients in general,

the only effect of these poorly resolved vertical gradients in the air boundary layer is

in the calculation of the vorticity.
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2.7.3 Development of a Modified Smoothing Function

For the purposes of this study, it is desirous to have a modified smoothing function

g(O; c) which extends the smoothing properties of the level set boundary layer further

into the air boundary layer than the traditional model.

Development of a smoothing function, also called a kernel, has been addressed

by many authors. Some general properties are identified by Williams et al. [125]

which are applicable here. The authors state that the smoothing function should: (i)

have compact support, (ii) be monotonically decreasing with respect to the distance

from the center, (iii) be symmetric, (iv) be sufficiently smooth, (v) have a normality

property, and (vi) approach the sharp function as the smoothing parameter goes

to zero. While they state that symmetry is desirable, they also note that it is not

required. Because we are actually looking for a function which has a larger extent

in the air boundary layer, the modified smoothing function developed here will not

be symmetric. The list of requirements translate into the following conditions for a

well-behaved, non-symmetric smoothing function:

1. g(O; c) 1/2 4. dg/do(E; c) = 0 7. d2 g/d0(-hc; ) 0

2. g(; ) 1 5. dg/d$(-hc c) = 0 8. dg/dx > 0

3. g(-hc; c) = 0 6. d 2g/d0 2 (C; C) = 0

The factor (h) which represents the additional extent into the air boundary layer

is left as a variable at this point. Conditions 1 through 3 satisfy the recovery of the

sharp function as c goes to zero. Conditions 4 and 5 satisfy the normality property.

Conditions 6 and 7 supply sufficient smoothness and condition 8 provides the mono-

tonically decreasing requirement. A polynomial can be generated to satisfy these

conditions and keep the kernel form simple. Solving the first seven conditions gives

all of the polynomial coefficients as a function of h and an eighth coefficient. The

eighth coefficient is chosen albeit somewhat randomly to satisfy condition 8 for a given

h. Experience has shown that h < 2 may not be sufficient to adequately smooth out

the gradients in the air boundary layer. Therefore, we choose h = 2, i.e. the level
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set boundary layer in the air is twice the width of the water value. The coefficients

become:

1 61
CO = c4 = -11c 7 - 2

2 1296
301 173

324 1296
19 47

C2 12c7 - C 3c +129 (2.105)
648 1296
677

C3 6c 7 - C7 = 0.015
1296

where the polynomial is given for completeness as:

g(x = O/C) = co + ciX + c 2x
2 + c3X 3 -+ c4x4 + c5X5 + c6x6 + c7X7  (2.106)

Figure 2-7 shows the behavior of the new smoothing function compared to the tra-

ditional function for a fixed 7. and a. It is important to note that, while there has

been some additional smoothing of the level set solution in the air, the -Y can still

be chosen such that it is greater than 1. By increasing the extent of the level set

smoothing in the air boundary layer from c to 2c, the effective y, has been cut by

half. This yields us with the new form of equation 2.98:

1
~ -V1 0Tw (2.107)2

Providing that -y is chosen such that -Ya > 1, there will still be a portion of the air

boundary layer which is not in the smoothed region.

Performance of Modified Smoothing Function

Returning to the performance of the modified smoothing function, we will first deter-

mine its performance in the one-dimensional test case of two-fluid Couette flow.

Figure 2-8 compares the velocity, its slope and the shear stress of the modified

smoothing function with the traditional smoothing function results. The performance

is markedly improved in the region of the air solution solely because of the increased
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Figure 2-7: Comparison of the smoothing functions for Yw = 2 and a = 5.

extent of the level set boundary layer. This decreases the jump in slope which must

be resolved.

Finally, it is left to consider the modified smoothing function in conjunction with

the full Navier-Stokes equations and return to the simulation of the vortex pair rising

towards the free-surface. Figures 2-9 and 2-10 compare the surface elevation and

surface vorticity between the two smoothing functions, respectively. The "spurious"

vorticity is now absent.

2.7.4 Smoothing Functions as Filters

A useful approach to further understanding the consequences of

tion is to consider the spectrums of the functions. For example,

in one-dimensional space: HA(x) and HB(x; E).

1

HA(x) =

X>0

1/2 x=0

0

HB(x;E) = {
X<0

1

f(x; E)

0

the smoothing func-

consider two signals

X>E

IXI < E

x <E

(2.108)
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Figure 2-8: Velocity slope and shear stress comparison between the traditional and
modified smoothing functions for a single case 7, = 2: (i) analytic (black); (ii) high
resolution f(0) (green); (iii) moderate resolution f(#) (red); (iv) high resolution g(o)
(purple); (v) moderate resolution g(0) (blue)
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Figure 2-10: Instantaneous surface vorticity (wy)
for three cases using modified smoothing function
a = 4 (green); and (iii) a = 5 (blue).
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Figure 2-11: Signals A (sharp interface) and B (smooth interface). The distance is
nondimensionalized by the smoothing distance E.

where f(x; c) is that defined in equation 2.26. A plot of these two signals is shown

in figure 2-11. In this context, if we assume that signal B started out as signal A, it

looks as if it has passed through a filter. The ratio of the spectrums of the two signals

will show how the smoothing function modifies the spectrum of the sharp function.

The filter can be calculated by considering the ratio of the spectrums S(k) of each

signal at each wave number. For example:

SB (k; E)
YAB(k) = - (2.109)

SA(k)
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To simplify the discussion and analysis, we will modify signals A and B (eqns. 2.108)

so that they are periodic and symmetric about x = 0.

0 x > 1/2 0 x > 1/2 +

1/2 x = 1/2 1 -f(X 2 ; C) 1/2 - E < x < 1/2 +

HA (x) 1 -1/2 < x < 1/2 HB(X; C)= 1 -1/2 + c < x < 1/2 -

1/2 x = -1/2 f (xi; C) -1/2 - c < x < -1/2 +

0 x < -1/2 0 x < -1/2 - c

(2.110)

The modified signal B contains the variables x, and x2 which are equal to x + 1/2 and

x - 1/2, respectively. The spectrum of these two modified signals can be calculated

over a length L using Fourier series. The Fourier coefficients for the series for the

modified sharp Heaviside function (signal A) are:

1
aAo

bag -- 0
2Ln~

aA, = - sin -- (2.111)
Sn7 2L

bA,, = o

For the modified smoothed Heaviside function (signal B), these coefficients are:

1
aBo 2L

aB 2 2E2P _ sinH sin ('7") (2.112)
Fn (2- in22) 2

bB= 0

The spectrum for each signal is defined as follows, where k = nAx:

S(k) = a2 + b2 (2.113)

The spectrums for the two modified signals A and B are shown in figure 2-12. Initially,

some of the wavenumber energy is preserved until kiE = 0.0044 or nE, = 1. After
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Figure 2-12: The spectrums for the two modified signals (sharp (A) in green and
smooth (B) in blue) against kc,,.

this there is a significant drop in the amount of wavenumber energy present until a

"notch" appears at kc,, = 0.0088 or nE,, = 2. The filtering effect of the smoothing

function can be seen if we examine the ratio of the spectrums. This is shown in figure

2-13. The filter goes to essentially zero where the notch occurs in the spectrum of

signal B with a small rebound afterwards.

Figure 2-14 shows the effect of changing E,, (i.e. -) ) for a fixed a. Within the

context of the resolved wavenumbers, for a fixed number of points over which the

smoothing function operates (a), the filter is variable with respect to We when plotted

against the nondimensional wavenumber kE,,. This is important for the idea for

convergence tests. Keeping a fixed and refining the grid makes E,, smaller ( larger).

Because the physics of the problem being modeled will depend on the filtering effect

of the smoothing function, to ensure that the problem is consistent, C', should only be

calculated from 7,, and not a and A. If the filters are plotted against the dimensional

wavenumber, they lie on top of each other. The effect of the variation of 7, is then

to only stretch or shrink the filter range.

Figure 2-15 shows the effect of increasing resolution (a) of the level set boundary
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Figure 2-13: The filter from signals A to B for -y,, = 2 with a = 5.
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Figure 2-15: The filter from signals A to B for a range of a with N, fixed and equal
to 2.

layer for a fixed -N = 2. As the resolution is decreased, the filter (and thus the physics

being modeled) changes dramatically. This is consistent with previous conclusions

that a "poorly" resolved smoothed interface will appear sharp. Figure 2-15 also

points out that the physics being modeled is mainly a function of how well resolved

the smoothed layer is.

Because this work will use a modified smoothing function, we should consider

its filter behavior and compare it to the original smoothing function. The Fourier

coefficients can be calculated through a similar, albeit more tedious, analysis. After

plugging in the coefficients in equation 2.105, they become equation 2.114.

Figure 2-16 compares the spectrum of the traditional filter and modified filter for

a fixed and a. Because the modified smoothing function smooths the function

out over a greater distance than the traditional smoothing function, there should

be a greater loss of signal energy, which can be seen in the filter in figure 2-16.

There is a small peak at the zeroth wavenumber which is expected due to the value

of aler Essentially, the area under the new smoothing function is not the same as

the traditional function. After some inspection it seems impossible to determine a
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Figure 2-16: Comparison of the filters from signal A to B and from signal A to C for

-, = 2 and a = 5.

polynomial which simultaneously satisfies the same area and ensures that the delta

function and its derivative are well behaved for h = 2. This is possible for smaller h

values, however testing of these functions with the Poiseuille-Couette flow discussed

in sections 2.7.2 and 2.7.3 shows that they do not perform well for air-water flows.

1 ( 709E \
ac1 = 2L 14000 + ((
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+ L4  21323 sin 7r -
+ 5 n5  225 (
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18949 Cos ('
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2))
4838 (E7 Cos (
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2.8 Conclusions

This chapter has presented the mathematical formulation of the governing equations

utilized in this work in the context of the level set method. The field equations (mass

and momentum conservation) were derived from a material volume perspective and,

because the material volume was general, the differential forms could be determined.

The origins and necessity for the Poisson equation for the pressure field were high-

lighted as was the fairly unique treatment of the hydrostatic pressure contribution.

Because the Poisson equation for this problem has no unique solution, techniques

required to obtain a unique solution are discussed, including the development of a

divergence theorem for functions which are not C2 continuous.

The mapping of the quickly varying constitutive properties, namely density and

viscosity, using a smooth distance function was also discussed. The governing equa-

tions were nondimensionalized and two types of boundary conditions (the periodic

wave tank and an open channel) were outlined.

The governing equations for the level set function were defined from Lagrangian

invariance. The consequences of using the fluid velocity as the advection velocity

were discussed in detail with focus on the reinitialization technique used to correct

the errors this introduces.

The use of the level set method for air-water interface flows is analyzed in detail

to understand issues regarding convergence testing and consequences of smoothing

the interface. Finally, a modified smoothing function which is asymmetric about the

interface, reaching further into the air boundary layer than the traditional method

does, is developed, tested and analyzed to ensure that the resulting physics are what

should be expected.

96



Chapter 3

Numerical Implementation

This chapter details the numerical implementation of the governing equations de-

scribed in chapter 2. In general, the method is implemented to a second-order accu-

racy in space and time. The grid uses a staggered-MAC type grid which is prevalent

in the literature.

As discussed in chapter 2, an algorithm based on the projection method is used to

solve the level set form of the Navier-Stokes equations. This entails the solution of a

variable coefficient Poisson equation for the dynamic pressure. The momentum equa-

tions are integrated in time using a second-order low storage Runge-Kutta scheme.

This type of implementation is by no means new; however, the multi-fluid aspect of

the problem leads to situations where great care must be taken in the discretization

to ensure that numerical dissipation is minimized. The numerical technique of in-

cluding surface tension in an Eulerian interface capturing method is detailed. The

discretization and integration of the level set governing equations are discussed as

well as the nuances of implementing a level set reinitialization scheme which accu-

rately conserves volume. Finally, the numerical algorithm is outlined to show how

the Navier-Stokes equations and level set governing equations are coupled with the

reinitialization scheme.
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Figure 3-1: Schematic of the MAC-type grid used in the discretization of the level
set formulation.

3.1 Grid Discretization

Discretization of the flow solver is done on a MAC-type grid [39. For each cell,

the level set function, fluid density, viscosity and pressure are computed on the cell

centers. The horizontal velocity is computed on a grid staggered in the x-direction

and the vertical velocity is computed on a grid staggered in the z-direction. This is

shown in figure 3-1.

In general, to move variables between various grids, such as the u velocity from

the z-centered to the z-staggered grid, a simple averaging is done. This is adequate

only if the grid or variables on the grid do not change drastically from point to point.

It is also best suited for Cartesian rather than general boundary-fitted grids. There

are instances when the constitutive properties will be needed on the staggered grid.

Most volume of fluid and many current level set implementations treat the constitutive

properties in much the same way as the velocity fields when moving them between

grids. For example, consider the hypothetical situation in figure 3-2. To determine

the value of p(2.5, 2) given that p(2, 2) = 0.07 and p(3, 2) = 1.0, an average would

assign that value to be 0.54. If a biquadratic interpolation is used, the density value at

the point of interest actually evaluates at 0.65. The question becomes, which is right?

One argument is to use even higher order interpolation. Eventually, a sufficiently large

enough order interpolation scheme would converge to the appropriate value. While

a valid argument, these interpolation schemes involve increasingly more points. As

the surface topology becomes complex, accurately interpolating functions that rapidly
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Figure 3-2: A hypothetical example of the interface crossing through a cell. The

density (0.001 in air and 1.0 in water) is shown.

vary three orders of magnitude within a larger interpolation domain would be difficult

to converge. The interpolated values of the density and viscosity play significant roles

in the solution of the pressure field and calculation of shear forces at the interface.

Even small errors here will be very problematic.

One of the main advantages that the level set method has is that it has mapped

the rapidly changing and discontinuous functions (i.e. density and viscosity) to a

continuous function (i.e. the distance to the interface). Even as the interface topol-

ogy becomes complex, the level set function itself varies much more slowly than the

constitutive properties. Therefore, providing that an accurate level set function exists

in the smoothed region, an interpolation scheme can be used to move the level set

function between grids and the constitutive properties can then be evaluated using
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the interpolated value. Based on these arguments, the level set function is moved

between grids using biquadratic interpolation and the density and viscosity are eval-

uated using these interpolated values and equation 2.31.

3.2 Convective Terms

The level set form of the governing equations (equation 2.70) uses a conservative

treatment of the convection term. The convection term is defined as:

V . (--)(.)

Discretization of this term takes advantage of the MAC-type grid as done by Harlow

and Welch [39]. The differentiation is done via a compact stencil of the width of one

cell which is the same as the classic finite volume discretization using a Cartesian

grid. Simple averaging is done to compute the values of the flux components on the

cell faces. Because the interface is smoothed, averaging is not an issue providing the

resolution of the velocity gradients in the smoothed region is adequate.

Using the notation from figure 3-3 where the grid notation is made such that

i = z -1/2 and k' = k - 1/2, the treatment of the convective term for the x-direction

equation is:

I(li',k 4 - {(ui'+1,k + Ui',k) 2 _ (ui',k + Ui -'1,k)2
1

OX 4(xi - Xi_1)

Bz 4(zk'+1 -k zI ) (ui',k+1 + U',k)(Wi,k'+1 + Wi-1,k'+1)

-(Ui,, + ui',k-1)(wi,k' + Wi-1,k') (3.2)
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Figure 3-3: Expanded schematic of the MAC-type grid used in the discretization of
the level set formulation.

For the z-direction, the discretized form of the conservative convective term is:

t9(uw)1  1
Dx 4( + - x') { (uj'+1,k - Ui'+1,k-1)(Wi+1,k' +Wi,k')

-(ui,,k + Ui',k_1)(Wi,k, + Wi.1,k') }
D(ww)i,k' - (wi,k'+1 + Wi,k')2 - (Wk' + Wi,k-1) 2 } (3.3)

az 4(Zk -_1)

It should be noted here that while the grid spacing in the denominator has not been

assumed to be constant, that using a simple average to compute the values between

grid points is only viable if the grid spacing does not change drastically from point

to point. If such a case is considered, a more advanced treatment is necessary.

The convective term in the level set governing equation also requires the movement

of terms as the velocity field and level set function are not represented on the same

grids. A compact stencil is used to calculate V - (60), thus the level set function must
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be moved to the staggered grid. This is done with averaging:

(uo) _ 1 Ui'+l,k(#(i + 1, k) + #(i, k)) - Ui',k(#(i, k) + #(i - 1, k))
(3.4)ax 2 Xi'+l ~ Xi'

D(w/) _ 1 wi,k'+1((i, k + 1) + #(i, k)) - wi,k'(#J(i, k) + 0(i, k - 1)) (3.5)
oz 2 k Zk'+1 - Zk'

3.3 Shear Forces

Because of the variable viscosity, the shear forces in the level set formulation are

based on the Euler form of the momentum conservation equations. Generally in most

Navier-Stokes solvers for incompressible flows, a term that is of the form vV2 ii appears

on the right hand side of the momentum equation. Instead, as seen in equation 2.70,

the term is of the form:

1 V - (2p(#)D5) (3.6)
P(#)Red -

7-

The shear stress is computed assuming a Newtonian fluid of non-constant viscosity.

In two-dimensions this yields four components to the stress tensor of which two are

symmetric.

Tik ={# X (3.7)
au +w 2aw,

5z ax z J

In most current level set implementations, the discretization of each of the components

of the stress tensor in equation 3.7 is done with a compact stencil over one cell

and uses averages where necessary to get the velocity (and viscosity) values at cell

faces. In addition to the errors associated with averaging the viscosity (see section

3.1), this introduces additional numerical dissipation even in the region where the

viscosity is a constant. In this implementation, the stencils for the stress terms and

their derivatives are formed such that in regions where the viscosity is constant, the

resulting discretization recovers a second-order central difference scheme for the term

vV 2ii. This tactic is important in reducing numerical dissipation.

For example, the desired stencil for iiI j', when the viscosity is constant is

(Ui'+1,k - 2 ui2 ,k + uirl_,k (AX2). To obtain this, the differentiation of T1 1 needs to
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be calculated on the non-staggered grid, namely (T1lji,k - T11|i-l,k)/(AX). Recalling

the definition of T11 from equation 3.7 yields a compact stencil for the calculation of

the stress and its x-derivative which are in equation 3.8. It can be easily worked out

that, when the viscosity and grid spacing are constant, the desired central-difference

stencil is recovered.

( Ui'+,k - Ui',k
Tii( iik - Xii

i',k T111i,k - T11i-1,k (38)
x XTi -- Xi-1

A similar analysis of the other normal stress T33 and its vertical derivative yields that

it too should be calculated on the non-staggered grid using a compact stencil.

T33li,k 2[t(O)i,k wjk' l -
\ Zk'+1 - Zk'

a733 ik' [T331i,k - T331i,k-1 (3.9)
az ~ Zk - Zk-1 I

The shear stresses T13 and T31 are differentiated horizontally and vertically, and con-

tribute to both x-staggered and z-staggered grids. For the desired stencils to be

recovered, the shear stresses are calculated on a grid which is staggered in both x and

Z.

T131i',k' =2[p(0)j,, k' (Ui',k - Ui',k-i Wi,k' - Wi-l,k'

SZk - Zk'- I Xi -X i-1

/9T7'3 Ii',k = [T131i',k'+1 - T13 i',k'
i',k Zk'+1 - Zk'

a j3lik' [T13li'+1,k' - r13 i',k' (3.10)
I Xi'+1 - i' .

The only interpolation between grids which is now done is of the viscosity which is

treated as in section 3.1. Therefore, because all velocities are calculated at points

where they are directly represented, the numerical dissipation of this discretization is

decreased compared to the typical level set implementations.
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3.4 Surface Tension

As discussed in section 2.2.2, the surface tension is applied via the continuous surface

force method within the volume. The volumetric body force which represents the

surface tension force is repeated here for reference:

1
1 O()V o (3.11)

p(O)We

All of the derivatives for this term are computed using the standard second order

central difference scheme. The delta function is given in equation 2.22. The surface

tension force is evaluated on the cell centers and translated to the staggered grids by

averaging when necessary.

An example of the computed surface tension force is shown in figure 3-4. The

surface tension force was calculated for a circle of radius 0.25 on a lxi grid. The

ratio of the level set boundary layer to the water boundary layer ('y,) is 2. For this

example, the Reynolds number in the water is 2000 and the Weber number is 738.

The force density is equally weighted throughout the transition region.

3.5 Treatment of Hydrostatic Body Force

Particular consideration must be given to the treatment of the "hydrostatic pressure"

term in equation 2.69 such that its differentiation in equation 2.70 yields a conservative

body force. The definition is repeated here for convenience.

P=- J ( )dz' (3.12)
.Fr2

Theoretically, the gradient of Ph produces a term that cancels out the body force

term (2 ) and leaves the horizontal gradients as a modified body force term in the

Navier-Stokes equations.

V(x,y)Ph - (ij) (3.13)
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Figure 3-4: Surface tension force vector for a circle of radius 0.25 on a 1xi grid. Black

lines represent boundary of level set boundary layer.
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Figure 3-5: Schematic of the integration scheme derived to generate a conservative
body force.

Due to numerical error, this may not be the case and it will produce a nonconservative

body force. This generally occurs in the smoothed interface region where the density

changes rapidly. Despite the fact that a vertical derivative is not actually taken in the

implementation, Ph should be constructed such that it is a conservative body force

or its effects will be seen with very large gradients at the interface, seemingly giving

the fluid very large accelerations.

Derivation of the integration scheme is done in reverse, from the desired numerical

differentiation. If a compact central difference stencil about the vertical staggered

grid point where the vertical gradient term should contribute is used, a trapezoidal

integration scheme can be worked out.

For example, consider the schematic of the grid shown in figure 3-5. Using com-

pact central differences and assuming a nonconstant grid spacing, the gradient of the

integral I at point k' + 1 is:
09k'+1 _ Ik+1 - Ik (3.14)

Dz Zk+1 - Zk

If I is the integral of a function f, then by definition 8+ fk'+1. Equation 3.14

can be rewritten to reflect the contribution to the total integral I at point k' + 1:

AIk'+1 = z f(z)dz = fk'+1 (Zk+1 - Zk) (3.15)

Integration is done from the top of the domain to the bottom. Additionally, to allow

for jumps in the integrand, since it is in this case a function of the density, the

interpolation process discussed in section 3.1 is used to calculate the value of f on

the cell faces.
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3.6 Solution of the Projection Operator

Both [12] and [111] remove the complication of solving for a variable coefficient Poisson

solver by solving the governing equations in the stream function formulation. By

taking the curl of the Navier-Stokes equation, the pressure contribution disappears

(V x VPd = 0). This limits their work to either two-dimensional or axisymmetric

flows. As discussed in Chapter 2, to allow for simple extension to a three-dimensional

flow solver, the governing equations are solved in the primitive variable formulation.

In the primitive variable formulation for incompressible flow, the pressure can be

obtained via the projection method. This is repeated from section 2.5 equation 2.73

for convenience.
I V . "ii

V -1 VPd = + V -F (3.16)
p(#5) At

To ensure that the pressure which results from the solution of the Poisson equation

yields a divergence free velocity field, all of the divergence operators in equation 3.16

must be done consistently. Thus, the divergence operator used in equation 3.16 uses

a compact central difference stencil based at the cell center. On a grid with non-

constant grid spacing, this operator is:

k i,k i,k

where

( x qxi'+1,k - qxi',k

(qz qzi,k'+1 - qzi,k' (3.17)
9z )k Zk'+1 - Zk'

Once the dynamic pressure has been solved for using the implementation discussed

below, its gradient must be added to the momentum equations before the time integra-

tion. The dynamic pressure resides on the cell centers and the momentum equations

reside on the respective staggered grids. Thus, another compact central difference
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stencil is necessary for this calculation which is similar to equation 3.17.

1 (1_ qik - qi-,k

I Oq qi~ - q~k-1(3.18)p 1 O 1$ ) Jik, \\ZX -Z I

The movement of the density to the staggered grids which is required in equation

3.18 is done as discussed in section 3.1.

Returning to the solution of the projection operator, even with a smoothed in-

terface, this Poisson equation has strongly variable coefficients. The discretization of

this equation is addressed in section 3.6.1. Additionally, as was discussed in section

2.5.3, with the Neumann and periodic boundary conditions utilized in much of this

work, the Poisson equation will be subject to a solvability condition. The discretized

version of which is addressed in section 3.6.2.

3.6.1 Discretization of Dynamic Pressure Equation

Due to the large variation of the coefficients in this Poisson equation, straight forward

central difference discretization of the Poisson equation can lead to spurious answers.

Additionally, adaptive stencils within an iterative matrix can have an ill-effect on

the damping of discontinuities by actually reinforcing them [36]. The discretization

used here is a compact central difference stencil. The compact stencil is chosen to

complement the staggered grid discretization and ensure that the divergence of the

flow field is zero.

For simplicity of notation, Pd will be called 0 in this derivation and p($) will be

replaced by p. Additionally, the grid notation is made such that i' = i - 1/2 and

k' = k - 1/2. An expanded form of equation 3.16 at every point (i, k) is:

i,k +i,k = i,k (3.19)
OX Pi,k OX OZ Pi,_ OZ

X Z

Discretization of the X term in equation 3.19 using the compact central difference
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stencil outlined in equation 3.17 is:

1/2 1 ( {i+ 1,k - i,k ( k ~i-1,k) (3.20)

Xi+1/2 - Xi-1/2 Pi+1/2,k \ i+i - Xi pA-1/2,k \ i - Xi__1

Discretization of the Z term in equation 3.19 yields a similar form.

1 { 1 (,k+i - ,k _ 1 i,k -Oi,k-1 (3.21)
Zk+1/2 - Zk-1/2 Pi,k+1/2 Zk+1 - Z Pi,k-1/2 \ Zk - Zk1

Collecting the common '/ terms, equations 3.20 and 3.21 yield, the discretized form

of the Poisson equation.

COi,kV'i,k + Cli,kVi+1,k + C2 i,k'i-1,k + C 3 i,kfi,k+1 + C4 i,k'Vi,k-1 =Oi,k (3.22)

where

1 1
C1,k (Xi+1/ 2 - Xi-1/ 2 )(Xi+l - Xi) Pi+1/2,k

1 1
C2,k (Xi+11 2 - Xi-1/ 2 )(Xi - Xi-1) Pi-1/2,k

1 1
C32,k -

(Zk+1/2 - Zk-1/2)(Zk+1 - Zk) Pi,k+1/2

1 1
C4,k (Zk+1/2 - Zk-1/2)(Zk - Zk_1) Pi,k-1/2

COi,k = -(Cli,k + C2ik + C3j,k + C4j,k) (3.23)

The solution of this equation is done iteratively until the L,, norm is satisfied, namely:

max ik - Pkj < tolerance (3.24)
X,z

In general, the tolerance is set to be 10-8. To modestly increase the convergence

efficiency of the scheme, a line successive over-relaxation (LSOR) scheme is used in

the z-direction where it is assumed that largest density gradients exist. This involves

the solution of a tridiagonal matrix at each horizontal point. Parallel implementation

of this Poisson solver is done through red-black implementation "zebra" stripes [129]
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to reduce communication. Finally, Chebyshev acceleration [89] is used to further

increase the convergence efficiency of the scheme.

3.6.2 Solvability of Dynamic Pressure Equation

There are two phases to the solvability of the dynamic pressure condition: compatibil-

ity and existence of a solution. The first part of solvability, namely the compatibility

of the system of equations can be addressed using an additional equation such as the

divergence theorem. When it is ensured that the system of equations is compatible,

the existence of a solution must be guaranteed which is generally done by defining

the solution at a point or subtracting its average.

In ensuring compatibility, because the interface has been smoothed, the divergence

theorem (equation 2.74) in its typical form can be used because 1)VP is at least

C2 continuous. If the interface were sharp, then equation 2.79 would have to be

applied. Experience has shown that the implementation of equation 2.74 in its exact

discretized form is superior to its natural form. To do this and include any non-

homogenous boundary conditions for the pressure gradients, the divergence theorem

will be rewritten moving the boundary integrals to the left hand side.

I V -AVdV - AVO . -dS =0 (3.25)

Here, the substitutions of 0/ Pd and A = 1/p(#) have been made as a niatter of

notational convenience. In discrete form this becomes:

I LS jdV - I AiDoi dS = 0 (3.26)
i=int i=bnd

which can be written in a general form

whGiiB ~ 0 (3.27)

where Gi is the linear operator Li or the differential operator Di and Bi is the dif-
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ferential volume dV or area dS depending on whether the point is in the interior

or on the boundary, respectively. Note here that if equation 3.27 is actually zero

verses approximately zero that the system of equations has no solution. Thus, the

compatibility condition takes a system which may have a solution which is essentially

a function of the error and renders it unsolvable.

The next step is to apply the compatibility condition to the discretized Poisson

equation. Consider the matrix equation:

(3.28)

9N ON UN

Multiplying each side of the equation by B and summing for all points N, yields

B -g Biai (3.29)

j Oo

Equation 3.29 provides the means to enforce the compatibility condition in a global

sense. Subtracting this equation from the matrix of equations being solved will ensure

that it is satisfied globally. Namely,

[I [(3.30)

9N ON OrN

where

E0 t (3.31)
N

While the problem is now compatible, i.e. the system of equations now has a solu-

tion, the matrix is still singular and the solution is non-unique [11, 102]. To remove

the singularity, a common practice is to "nail the solution down" to a known value

[78]. This is a common (and generally undocumented) practice. It is important to
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point out that if the matrix is made solvable without ensuring that the equations are

actually singular, all of the error E, will collect where the solution has been defined.

In the context of the solution of the pressure Poisson equation, this results in an

accumulation of divergence at this point violating the mass conservation equation.

It is not necessary to change the matrix such that the solution is defined at a point

when using an iterative solver. There are two ways of enforcing it iteratively. The

first is to allow the point to float. Forsythe and Wasow prove that an iterative solver

will converge to a solution and if so desired, a constant can be subtracted from it

[33]. The second is similar to Forsythe and Wasow in that the constant is subtracted

from the solution at every point, yet it is done at every iteration. The second tactic

is what is applied in this work.

A One-Dimensional Example

To simplify this example, we will look at the problem in a single dimension. Because

this is a linear problem, adding multiple dimensions is simple linear superposition.

The one dimensional form of the Poisson equation with variable coefficients is:

a 0
-- A(x) -= o- (3.32)

The discretized form of which is:

A = C2j7P- 1 + C0OVi + C1ji*+1 = o-i (3.33)ax Ox

The coefficients CO, Cl, C2 are the one-dimensional forms of the coefficients in

equation 3.23. They are actually irrelevant to this discussion because this method can

be applied to any system with varying coefficients requiring a compatibility condition.

A limited example using five points is shown below. The discretized matrix form of
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the governing equation is the following (using periodic boundary conditions):

Co1 C1 1

C22 C02

C23

C15

Summation of all five equations

alent to equation 3.29.

C2 1

C12

C03

C24

C13

C04

C25

C1 4

C05

02

03

04

V) 5

U1

O3

O4

Os

(3.34)

(multiplied by dV) leads to a single equation equiv-

( 1(CO 1 + C22 + C15 ) + 0 2 (C1 1 + C0 2 + C23 )

LHS = +V 3 (Cl 2 + C03 + C24 ) + 4 (C3 + C04 + C25 ) dV

+0 5(C1 4 + Co5 + C21 )

RHS =(a 1 + U 2 + U3 + 04 + Us) dV

The gi correction for the t-sum is:

gi = (Co, + C2j+1 + Cli_ 1)

(3.35)

(3.36)

and the overall correction for each point is calculated from:

t = E g9PidV

(3.37)
UO oidV

At each point, the equation which gets solved is now:

C2jVi_ 1 + C0j# + C1j9b+i = Ux - EO (3.38)

Testing of the solvability condition was performed at numerous resolutions for both

periodic and Neumann boundary conditions. Discussed here is a sample (two resolu-

tions using periodic boundary conditions) to illustrate its performance. The periodic
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test function used in this example is:

W sin (2kx) x < 0 (3.39)

sin (2k'x) x > 0

The test function 3.39 is applied on a domain that is of the size 7/k < (x, z) wr/k'.

The solvability is applied at the point x = 0. The variable coefficient is the inverse

of the density A = 1/p as it is in the pressure solver for the level set formulation.

The only specific requirement for these test cases is k' = kA where A is the ratio of

the density in the two regions. These test functions actually use a case where the

interface is sharp. However, the functions were designed such that there is no jump

at the interface and thus the solvability condition as it was designed in this work is

applicable.

Figure 3-6 shows the performance of the solvability for 32 grid points. It is clear

that, without the compatibility condition, the solution deforms significantly to meet

the Dirichlet condition at the center and keep its periodicity. However, its error com-

pared to the case where solvability is used is large. Figure 3-7 shows the performance

of the two solvability conditions for 512 grid points. Again, the effect of the solvability

condition in the periodic direction is clear and the higher resolution reduces the error

as expected.

3.7 ENO Derivatives

When the derivatives of the level set function are needed for an advection equation,

such as during reinitialization, an essentially non oscillatory (ENO) scheme is used.

The first ENO schemes were developed by Harten [40, 41] and relied on cell-averages

and point values. A reconstruction procedure was necessary to extract the point

values from the cell averages. In a multi-dimensional problem this generally becomes

complicated [42]. More recent ENO schemes developed by Shu and Osher [100, 101]

work with cell fluxes and not averages and remove any reconstruction phase, making
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them more efficient. These ENO schemes (up to second order) can be proven to be

total variation (TV) stable.

The ENO scheme used in this work is based on Shu and Osher's Roe scheme

[100, 101]. It is given this name because the first point of the stencil is chosen based

on the local sign of the slope of the flux at the forward face of the cell. This is the

Roe speed. This method gives uniformly high-order fluxes, even at discontinuities.

However, it does admit an entropy violating expansion fan. Shu and Osher also

introduce a straight forward "entropy fix" for this problem which is used only in the

region of an expansion fan. The process of constructing this ENO scheme of any order

for a general advection problem is explained in detail in Shu and Osher [101].

Sussman and Fatemi [110] describe the algorithm and the application of the en-

tropy fix to the level set problem. The ENO scheme used in this work was derived

from Sussman and Fatemi work within the context of nonuniform grid spacing. It

is described in this section up to second order. For each direction, the derivative is

taken as if it were a one-dimensional problem.

The first step is to compute a divided difference table. This is defined as follows:

O[xi, Xi] = Oi (3.40)

O[x k, Xi+f] = (0[Xi-k+1, Xi+f] - [i-k, Xi+f-1])/(Xi+ - Xi-k) (3.41)

Shu and Osher determined that to provide high accuracy at discontinuities, that the

building block for this method should not be the flux at a given point but rather a

variable in which its derivative is the flux at that point. They call this variable Q.

The zeroth order Q is defined to be the value of the level set function at the point i.

Q(x) = [xi, xi] = #i (3.42)

To show the derivation of the second order derivative, it is necessary to show the

steps for the first order derivative since the process is a building block system. For

each point i and its neighboring point i - 1, the following process is done. It is shown
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in detail for the i - 1 point. The first step is to compute the Roe speeds based on the

divided difference table. The Roe speeds determine the direction of the stencil.

a' [i 2 i

(3.43)

The superscript a' denotes the order. Equation 3.43 becomes:

1 ~i - i-1 _ i-1 ~ Oi-2

Xi - Xi-2 \Xi ~- Xi-1 Xi- 1 - Xi-2/

bl =1 0i+1 - i _ i - i-1
Xi+1 ~ Xi-1 (Xi+1 - i Xi ~~ i-1

The smallest Roe speed is chosen based on the following criteria:

1 _ a' if 1a 11 < 1b'1 1

b otherwise

The first order Q is computed.

Q () - 1, xi](x - xi)

- i ( -i)
Xi - X~i1

(3.44)

(3.45)

(3.46)

If only the first order ENO derivative was desired, this Q1
would be used to compute the derivative. For the second

additional step is taken. The second order Q is computed

general equation:

and the Q' for point i

order ENO scheme an

based on the following

k=i-1+f

Qe+ 1 ()=Q,(X) + CJ 7 (X - Xk) (3.47)
k=i-1

where e = r - 1 and r is defined as the order of the method. Thus for the second
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order scheme, Q2 becomes the following:

k=i

Q2X _1 1(X) + C1 j( - Xk)
k=i-1

or

Q2 (X) Q1(x) + cI(x2 - x(Xi + Xi_1) + XiXi_ 1 )

and finally,

Q 2(X) =' -OL1 (x - X,) + c1(x 2 - X(Xi + Xi-1) + Xizi 1 ) (3.48)
Xi - xii

To determine the flux at the point i - 1, the derivative of Q2 with respect to x is

taken. We denote this flux because it is on the 'left' side of the cell.
OX

0-- + c1 (Xi - Xi- ) (3.49)
Ox Xi - Xi-1

To compute the flux on the 'right' side of the cell, namely + the process is repeated

for the point i. This involves reevaluating equations 3.43 through 3.48, including

computing a Roe speed for point i which will determine a new c. With the newQ2

calculated for point i, the flux on the right side of the cell can be calculated by taking

the derivative of Q2 with respect to x.

ax+ - O i - c'(xi+ - Xi) (3.50)
Ox Xi+1 - Xi

At this point, the "entropy fix" needs to be incorporated which is done through a

selection criteria based on the velocity of the characteristics w calculated from each

119



side. This allows the entropy fix to only be in use in the region of expansion fans.I ~ if WxR < 0 and (WxR +WxL) < 0

~ if wxL > 0 and (wxR WxL) > 0 (3.51)

0 if JWxL < 0 and (-R +xL)> 0

3.8 Reinitialization

The method used in this formulation is based on Sussman and Fatemi's Lagrange

multipliers method [110]. Most works in the literature which discuss "mass conser-

vation" and the level set method actually refer to conserving the volume of the fluid.

This can cause some confusion as there is also the mass conservation governed by the

continuity equation. The reinitialization process tries to conserve the volume of the

fluid:

V(t) J H(0; c, t)dQ (3.52)

This specific numerical implementation of Sussman and Fatemi's method has been

found to conserve the fluid volume in a domain within 0.7% for most applications

investigated. Throughout this work, it was found that if special attention was paid to

the ENO derivatives near the interface, this percentage could be dropped to 0.07%.

This section will first discuss the numerical implementation in general and then ad-

dress the "fix" which gave a tenfold increase in volume conservation.

Sussman and Fatemi's method integrates an initial value partial differential equa-

tion to a given time. This initial value problem is solved within a level set simulation

such that the time in this problem is really a pseudo-time. This initial value problem

is given in equation 2.38 and repeated here for convenience.

t= L(#o, #)at

L(#o, #) = sign(0o) (1 - IV01) (3.53)

00 = (x, t = 0)
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It is essentially a two-stage scheme where at every time step, the level set function

is updated based on equation 3.53 and then is corrected using Lagrange multipliers

which help maintain the initial volumes of the fluid in each cell. The Lagrange

multipliers are given in equation 2.40 and again repeated here for convenience.

00 = L(#o, 0) + A H'( 0o)IV o 0

at_ -f H '()L(o, ) (3.54)

AB H'()f ()

The first stage of the time step uses third-order Runge-Kutta as described in Sussman

and Fatemi with second-order ENO derivatives described in section 3.7. The resulting

level set function is labeled Sn+1. The correction stage is then computed:

0n+ = n+1 + AtAH'( 0o)V~o 0  (3.55)

The Lagrange multiplier is calculated as:

- f H'(0) (" +i (356
A = ( -o(3.56)

f H'(0)211700

The integrals in equation 3.56 are calculated using biquadratic interpolation. The

initial value problem is generally solved to a time (or also distance) of 0.5. Also, it

should be noted that it is not necessary to perform reinitialization at every time step

of the level set simulation. The frequency that this is performed is really a balance

between quality of results (in terms of volume conservation) and CPU time.

To test the accuracy and ability of this implementation of the reinitialization

scheme, two tests have been devised [95]. The first involves performing reinitialization

on a known distance function: concentric circles. An accurate reinitialization scheme

with little dissipation or drift, should essentially return what it was given. The

equation for the concentric circles distance function used in testing is:

Oo(x) = 4 - \/x2 + z2 (3.57)
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The test was performed on a square 5x5 grid using a variety of grid points. The drift

in volume on each grid for the concentric circles case is shown in table 3.1. For each

case, the level set smoothing distance is fixed to be 2.5Ax 1 28 where AX 128 is the grid

size defined on a grid of 128x128. This ensures that a convergence can be inferred. A

Romberg integration scheme is used to calculate the volume for these test cases. As

can be seen in table 3.1, even on what could be considered fairly course grids (N=64),

the relative change in volume using this scheme is very small.

Table 3.1: Performance of reinitialization scheme for a

test involving concentric circles.

N AV Relative Change

64 9.9810-3 0.0213%

128 3.2110-3 0.0066%

256 8.8010-4 0.0018%

512 2.3210-4 0.0005%

The second test is to challenge the ability of the reinitialization scheme and in-

volves using a test function which is signed but a poor representation of a distance

function. The solution of this particular function is a set of concentric ellipses. The

elliptic test function is given as [95]:

#() =f (X() + - 1(358\ \ABJ/(3.58)

f (X) =a + (x - xo) 2 + (z - zo) 2

On the same 5x5 grid as the circles test, the parameters are given by A = 4, B = 2,

a = 0.1, x0 = 3.5 and zo = 2. Figure 3-8 shows the initial distribution of the distance

function, the zero level set which represents the ellipse and the reinitialized distance

function. The volume conservation for this ellipse using 1282 points on the 5x5 grid

is 0.33%.

As stated in the introduction to this section, the volume conservation for this
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implementation is considerably good compared to other reinitialization or lower-order

schemes. However, the drawback to having any volume loss is that the volume loss

occurs at the interface. For air-water flows, a loss in volume is a "change" of water

to air. This loss to the water can be detrimental to energy conservation in particular

if the flow is very energetic. A brute force improvement would to be to increase the

order of the scheme in general or look into using a more advanced implementation of

the Lagrange multipliers. However, in this case, it is best to determine why volume

conservation is still an issue with the use of Lagrange multipliers whose purpose is to

prevent it.

A paper by Russo and Smereka [95] shows some insightful analysis which sheds

light on the solution. The governing equation of the initial value problem (eqn. 3.53)

can rewritten as a first order hyperbolic partial differential equation.

00 V0
+ sign(#o) V# = sign(0o) (3.59)

Because the normal of the interface is V#/j V#| , the characteristics emanate from

the interface in the normal direction. This fact is used in the reinitialization scheme

to determine when to stop the solution of the initial value problem. A proper so-

lution of the hyperbolic partial differential equation will propagate the initial signal

along the characteristic line at the characteristic speed. When solving hyperbolic par-

tial differential equations in a discretized sense, this requires that information from

neighboring characteristics does not pollute the propagating signal (i.e. differentia-

tion can not cross characteristic lines). Upwinded schemes, such as the ENO schemes

used in this reinitialization process, use information about the characteristic velocity

to ensure that only information from the characteristic line of interest influence the

propagation of the solution.

The characteristic velocity along these w characteristics actually changes signs

as one crosses the interface. Thus, when w is calculated in a discrete sense, any

differencing across the interface will be including information from the wrong char-
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Figure 3-9: A schematic of the interface crossing a one-dimensional grid.

= 1 2 3 4 5
<0 <0 >0 >0 >0

>0 >0 >0 >0 >0
w <0 <0 >0 >0 >0

Table 3.2: General information about figure 3-9.

acteristic line and polluting the signal. The result is a tendency for the interface to

drift towards the nearest grid point causing a loss in volume.

Russo and Smereka propose a "subcell fix" which is outlined extensively in their

paper which includes a point in the stencil which represents the interface. This type

of thinking can be applied to the ENO scheme discussed in section 3.7 with only a few

modifications to the overall scheme. Consider the simple example shown in figure

3-9 with the corresponding table 3.2. The point of interest for this example is point

3. The second order ENO scheme would yield the following:

00' 94-03 04-203+02

Ox AX Ax
_3 - #

AX +(3.60)
2 3 - 2 + 0-202 + 1

AX

with the characteristic velocities WxL > 0 and WxR > 0. It should be noted that both
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derivatives cross the interface. Thus, unless equation 3.51 chooses neither (or chooses

zero), the method will differentiate across the interface and the upwinded nature of

the scheme will break down at this point. The characteristic velocities are a function

of the gradient at that point (either from the + or - side) and the sign of the initial

level set function #n. All of these quantities are positive. Based on this, equationi 3.51

will pick 2 - for a.ax ax

To apply "sub-cell fix" proposed by Russo and Smereka to this ENO scheme means

to add a point which represents the point on the interface to the stencil. If point A

in figure 3-9 is included in the ENO scheme, equation 3.60 becomes:

(90# 4 0-#3 _ 4-2 3 + OA

Ox AX AX
03- O5A

AX 2(3.61)

ax Ax + AXo# 3- #3 - 4 -22# +A

AX

To determine the location of point A which is necessary to determine grid spacing, a

third-order polynomial for x(#) is fit and evaluated at # = 0. Again, because the sign

of the characteristic velocities have not changed, equation 3.51 will still pick 2-0k forax

. With point A included in the stencil however, the differencing does not cross the

interface as it did previously and the upwinded nature of the method is sustained.

The overall performance of the modified reinitialization scheme can be seen when

comparing the overall volume conservation for actual simulations. Figure 3-10 shows

the volume conservation over an entire simulation various breaking waves using the

original implementation and the version which contains the sub-cell fix. The original

implementation conserves volume with 0.7% as quoted earlier. There is a marked

loss of volume during the breaking event which for this case occurs 4 < T < 10 for

this case. This case is actually a spilling breaking case, where the surface topology

does riot become very complex. The implementation which includes the sub-cell fix

is shown for a spilling and plunging case. The volume conservation for the spilling
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Figure 3-10: A comparison of the volume conservation for various breaking wave

cases. The original implementation (-..-) is plotted against the left axis and is for a

spilling breaking wave simulation. The version with the sub-cell fix is plotted against

the right axis and is for a spilling (-) and plunging (-.-) case.

case is actually 0.003% but appears as a straight line on this scale. The plunging case

conserves volume overall to 0.02% with a peak in actual volume increase of 0.07%

during the breaking event. With this sub-cell fix included in the implementation of

the reinitialization, the fluid volume is essentially conserved.

3.9 Time Integration Scheme

Time integration of the simulation is implemented via a low-storage Runge-Kutta

scheme. This scheme is based on the arrangement developed by Williamson [126].
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To illustrate this Runge-Kutta scheme, it will be described using the example

differential equation:

J = f(x) (3.62)

For a second order scheme, the first stage is to compute the value at the second stage

based on values at the current step (n):

q1 = hf(x")

= X + blq' (3.63)

where h is the discretization spacing and the superscript notation represents the stage

(n,1, and 2:n + 1). In the low-storage method, values for q2 and Xn+1 are a function

of the current q' and xi values and overwrite those existing values in memory.

q2 = a2 1+hf (x)

s"+ = X 1 + b 2q 2  (3.64)

The values of a2 , b and b2 are chosen to eliminate round-off error. They are a2  _

bl = 1, and b 2 = 1/2.

3.9.1 Integration of Field Equations

The application of this time integration scheme to the level set formulation of the

Navier-Stokes equations with the projection operator is outlined. For clarity, the

stages in this presentation are represented as subscripts. The equation being dis-

cretized is the following:
d 1
S- p( ) VP + F (3.65)

where

F = -V - (ti) - 1V(XY)h - (i, j) + 1 V - (2pi(#)D) + -O(#)V# (3.66)
p(p(#/dC
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The first stage of the low-storage Runge-Kutta scheme is calculated as follows:

1
u1 = ti + bAt(- VPdn + Fn) (3.67)

p(#)

However, the pressure field at n is unknown. To find this value, we use the projection

method discussed in the earlier section.

1
V - iI = V -in+ biAt(-V ( VPdn)) + V - Vn) (3.68)

p(#)

Forcing the dilation at stage 1 to be equal to zero, the pressure field at n can then

be calculated.
1 V - ICG

V-( V Pd,) = bAt + V - (3.69)
p(#) b + V

The new velocity field can now be evaluated using equation 3.67.

The low-storage method includes the contributions from the initial stage. To do

so, new notation is introduced. The newly calculated velocity fields (i- 1) are used to

calculate F'/.

FI = a2(Fn - V ( VPdn)) + F1  (3.70)

With this notation, the second stage of the integration scheme is written.

n+I1 = + b2At(- VPdl + F') (3.71)

As in the first stage, the pressure field for the intermediate stage is unknown and is

solved via the projection operator:

1 V-dl1 =- i

V ( VPi) = + V -F' (3.72)

With the pressure equation solved, equation 3.71 can now be evaluated for the veloc-

ities at the next time step.
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3.9.2 Integration of the Level Set Equation

The governing equation for the level set is integrated in a similar manner. The

equation being discretized is the following:

__ 0(f9 
'79\

at k .IJ

where

G = V .(#)(3.74)

The first stage of the low-storage Runge-Kutta scheme is calculated as follows:

#1 = On+ b GnAt (3.75)

Unlike the field equations, all values are known (velocity and level set function at each

stage) and no additional equations are necessary and equation 3.75 can be evaluated

directly.

When the field equations have been integrated to give the velocity field for the

intermediate stage (equation 3.67), the level set function at the next time step can

be directly evaluated. The low-storage method includes the contributions from the

previous stage. The notation used is the same as in section 3.9.1.

G, = a 2 (Gn) + G1  (3.76)

With this notation, the second stage of the integration scheme is written.

On+ I= 0 1 + b2GAt (3.77)

3.9.3 Dynamic Time Step Control

Because of the explicit time integration method used in the flow solver, a restriction

on the time step is necessary to ensure stability. There are many factors involved in

the time step restriction: capillary effects (when surface tension is considered), viscous
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effects, gravitational effects, and the standard CFL number. When surface tension

effects are considered, it is necessary to ensure that capillary waves are captured for

stability [9]. For this to occur:
1 Ax

Cc < I(3.78)
2 At,

where Ax represents the wave speed of the grid based on the time step determined

by surface tension effects, At, and C, is the capillary wave speed:

cc = (3.79)
Pq + Pw

where k is the wavenumber. Combining equations 3.78 and 3.79 with the additional

knowledge that the maximum wavenumber resolved by the grid is kmax = 7r/Ax

obtains:

At, < AX3/ 2 Pa + Pw / (3.80)

In nondimensional form equation 3.80 becomes

At, < AX3 /2 We (3.81)
47

The other time step restrictions are fairly well documented in any basic computational

fluid dynamics text so they will only be listed here verses described in detail. Because

of the explicit time integration scheme, there is a restriction due to the viscosity and

the grid speed (the so-called CFL restriction). The nondimensional form of the viscous

restriction for two fluids is:

At = min (-tewP AX2 (3.82)
(14 P(#

The CFL restriction is simply:

AtCFL = Mi A (3.83)
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A final time-step restriction is necessary to resolve the gravity waves at the air-water

interface. This restriction is generally never necessary as the other terms are much

more restrictive.

Atg = AxFr 2  (3.84)

The time step is dynamically chosen such that the minimum of all of the time-step

restrictions and then given a factor of conservancy to ensure compliance.

At = 0.8 min(At, AtCFL, At,, Ats) (3.85)

In general the time step restrictions which become limiting factors are the viscous and

capillary (surface tension) restrictions. In most viscous applications, even those with

free surfaces, the viscous restriction is the most limiting terni. However, depending

on the Weber number chosen for the restriction, the capillary restriction can be severe

compared to the viscous restriction even though it is proportional to Ax3 /2 compared

to Ax 2 for the viscous term.

3.10 Numerical Algorithm

A breakdown of the numerical algorithm is included for completeness in table 3.3.

Each Runge-Kutta stage is essentially the same and will not be repeated. After both

stages of the Runge-Kutta integration are completed, the time step is evaluated and

modified as necessary according to section 3.9.3.
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Table 3.3:

Outline of numerical algorithm for a single Runge-Kutta stage.

Step Action Reference

1. Compute the source term for the Navier-Stokes equation 3.66

2. Evaluate the divergence of this source as the source term for the pressure equation. equation 3.17

3. Calculate the matrix coefficients for the projection operation equation 3.23

4. Iteratively solve for the dynamic pressure section 3.6

5. Update the source term for the Navier-Stokes equation with the gradient of the pressure field equation 3.18

6. Determine the intermediate values of the velocity field equation 3.67

7. Compute the source term for the level set function equation 3.74

8. Determine the intermediate value of the level set function equation 3.75

9. If reinitialization step, reinitialize the level set function section 3.8



3.11 Conclusions

The numerical implementation of the governing equations were described in this chap-

ter. Using a staggered-MAC type Cartesian grid, the treatment of all of the terms

in the governing equations was described in detail. While many of the numerical

implementations employed in this work are fairly standard to what is prevalent in the

literature, some improvements have been made.

First and foremost, the movement of the constitutive properties between grids has

been significantly improved over what is used in current level set implementations.

These current implementations generally use direct averaging of the density and vis-

cosity to calculate the values on points where the level set function is not represented.

As the surface is represented by a smoothed region in which the density and viscosity

vary by two to three orders of magnitude over a few points, significant errors and

numerical dissipation can result through simple averaging techniques. As these er-

rors and additional dissipation are located at the air-water interface and are integral

in solving for the pressure and calculating the stresses at the location, an improved

method was developed. As the level set function gives an accurate depiction of the

distance of the point of interest from the interface, the level set function was inter-

polated to the grid points and the constitutive properties were evaluated based on

these interpolated values. For very little additional computational effort, this method

proved to be superior to the averaging method prevalent in the literature.

Second, the treatment of the stress forces was improved over current literature in

that in the bulk of the fluid where the viscosity is constant, the discretization of the

stress forces reduce to a second order central difference of the Laplacian. This detail

significantly reduced the numerical dissipation in the treatment of the shear forces.

Third, the numerical implementation of the reinitialization of the level set function

was significantly improved over what is used in literature. Through combining the

basic method of Sussman and Fatemi [110] with the spirit of the idea behind Russo

and Smereka's sub-cell fix [95], the volume conservation of the reinitialization scheme

was increased by an order of magnitude.
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And finally, this numerical implementation in general is second-order accurate in

space and time. The numerical algorithm has been outlined in section 3.10. As a

final note, the numerical model has been implemented on various distributed memory

parallel and vector parallel platforms using MPI and Fortran90 without dependance

on any architecturally dependent libraries. The model has been found to scale linearly

and efficiently on a number of platforms.
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Chapter 4

Initiating Numerical Breaking

Waves

This chapter details the multiple methods employed in generating the waves in this

study. While the topic of generating initial conditions for numerical simulations is not

new, the process is generally not well documented in the literature. Additionally, the

presence of a multi-fluid domain makes it difficult for direct application of "standard"

methods commonly used in literature.

The predominance of the literature involving numerical simulations of water waves

use potential flow techniques and interface tracking methods to track the free surface

location. In this method, the technique for generating waves involves aml accurate

calculation of the linear (or non-linear) initial wave field up to the desired order of

the calculation involved. In general, these waves do not break within a short period

of time which is usually desired in numerical simulations. To force these waves to

break, many authors use the method detailed by Longuet-Higgins and Cokelet [68]

where an artificial pressure force is applied to the wave for a short period of time

traveling in phase with the wave. Longuet-Higgins and Cokelet found that if this

pressure forcing is applied to a wave which has an amount of energy just below the

energy of the Stokes limiting wave, the wave will break shortly after the completion

of the forcing period. This type of method is very useful when periodic and small

domains of the order of a wavelength are used as it can be applied to force a single
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wave to break in a short time.

Other successful studies use the concept of wave focusing as is used in many

wavetank experiments. Depending on the implementation, it involves including the

presence of a wavemaker on one boundary and simulating the entire length of the tank

(c.f. Dommermuth et al. [24]). Either the signal of the wavemaker is actually repro-

duced or an accurate estimation of the flow leaving the wavemaker is calculated as an

inlet condition. The generated wave group is allowed to propagate downstream where

dispersion causes the group to focus and then break. This technique is used effectively

and efficiently for all numerical wavetanks which use potential flow techniques.

While the most straightforward method for generating waves, the numerical wave-

tank is an inefficient method of generating waves for a viscous flow solver, even one

which is only a single fluid. It requires a very large computational domain for which

the majority of the fluid is still. Presuming a time-accurate scheme is involved, a lot

of computational effort is put into solving for zero. To our knowledge there is only

one viscous numerical wave tank in the literature which speaks to the difficult task

of attempting this computationally [35].

Section 4.1 details the methods used in this study, their derivation and their

effectiveness. Section 4.2 details how surface tension can be used to generate multiple

types of breaking waves. Section 4.3 details the actual waves generated for this study

and how they were classified as breaking or non-breaking as well as what type of

breaking wave. Section 4.4 comments on the consequences of using the methods

detailed in this chapter. Finally, section 4.5 highlights improvements which could

potentially be used in future work.

4.1 Wave Generation Methods

This section details the four methods used to generate waves of varying types for a

multi-fluid, periodic domain. Including the effects of the air volume makes directly

implementing many of the potential flow methods detailed in the literature difficult.

An initial condition for the air, or at least the air boundary layer, is necessary to elii-

138



inate extraneous surface vorticity. The periodic domain used in this study precludes

the use of a wavemaker. Additionally, the computational effort required to simulate

an entire wavetank with both the air and water volumes is significant.

The first of the four methods discussed is what we term an "impulsively" started

Airy wave, where no solution for the air volume is used. The second method uses

a solution of the two-phase Airy wave problem that satisfies all viscous free-surface

boundary conditions and thus contains a solution for both the air and water volumes.

The third and fourth methods center around using surface forcing to initiate a wave

or force an existing wave similar to Longuet-Higgins and Cokelet. Each method has

its advantages and disadvantages, which will also be discussed.

4.1.1 Impulsively Started Airy Wave

Previous authors have used a single-fluid third-order Stokes wave solution which is

overly steep as an initial condition to produce breaking waves in a viscous multi-fluid

simulation [13]. This method does not give any weight to boundary layers in the

air and water and their effect on the initial condition. Our experience has shown

that this generates a large amount of surface vorticity when the two fluids have the

constitutive properties of air and water. Thus excess vorticity must, be damped out

or it significantly effects the solution.

The impulsively started linear Airy wave used here is similar to that in Chen and

Kharif [13]. However, some effort has been made to smooth out the velocity field as

it transitions through the air boundary layer. The location of the free surface is given

as:

ZfS = E cos(27rx - wt) (4.1)
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In the water, the velocity field is given as the real part of:

u = leai 2 (x-wt) cosh 27(h + 6)

ww = -aire 2 w-u) sinh 27r(h + 6) (4.2)

where the amplitude and depth are given as

27rCA
a1 w cosh(27r)

(z - zf,)f
h =(Zf 8 +-f) (4.3)

Note that the scaling used in this study is based on the wavelength verses the

wavenumber. Thus, cA = ak/27r. In equations 4.1-4.2, the notation used is L= V/-1
and f is the undisturbed water depth.

The reason why this is termed "impulsively" started is that, from the air volume's

point of view, it sees an impulsively started water volume underneath it. If this

remains so using a smoothed level set boundary layer as done in this study, a strong

sheet of vorticity is formed at the air-water interface which can affect the solution. It

is not clear if the work of Chen and Kharif [13] experiences this vorticity as it is not

discussed. To reduce this effect without determining the air boundary layer profile,

the water velocity at the free surface is exponentially decayed into the air boundary

layer over a small distance using the following decay rate:

Ua = UfsC I

Wa Wfs e(1 h) (4.4)

To demarcate the air-water boundary from the surface elevation, the level-set

function is initialized from the free surface location as

# = Zf8 - Z (4.5)
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While this is not sufficient as a distance function, the level set function can be reini-

tialized before the start of the computation to obtain a proper distance function based

on this estimated one. It should be acknowledged that this flow field does not preserve

continuity in the entire volume because of the treatment at the air boundary layer.

However, the initial pressure field is solved at the first time step to ensure that the

velocity field following satisfies continuity. Practice has shown that the velocity field

satisfies continuity within one to two time steps.

Providing that the slope of the wave (ak) is sufficiently small for linear theory to

apply, waves generated with this method do not break. The slope associated with the

breaking threshold for this method lies between 0.2 < ak < 0.3. The waves generated

by this initial condition tend to be overly energetic in terms of kinetic energy as the

wave steepness increases. Whether or not this is due to applying linear theory to

waves which are outside the application of the theory is not clear. A third-order

Stokes wave was also briefly tested with essentially the same results.

4.1.2 Two-Fluid Airy Wave Solution

Another method for generating an initial condition for a wave in a multi-fluid domain

is to include a solution for the air. Initial work was done by Dore [27]. Similar work

in the realm of soft waves over mud has been done by Dalrymple and Liu [17] and

Wen and Liu [123] where the domain consisted of water with a free-surface over soft

mud as another wavy interface. Finally, Mei and Liu [72] looked at the damping of

surface gravity waves using a boundary-layer-Poincard technique where a rotational

boundary layer (for the horizontal velocity only) was added to the linear wave solution

at the surface to account for viscous damping. None of these applications provide the

solution that is needed for this work.

For this solution, the flow field is separated into an irrotational ( p) and a rotational

(') part for both fluids. There are commonalities and assumptions which simplifies

the solution: (i) the free-surface elevation is known a-priori; (ii) the inviscid wave

number k is the same in both fluids; (iii) the solution is for deep water; (iv) the

equations and boundary conditions are linear and applied at the linearized free surface
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z = 0. For simplicity, the equations will be non-dimensionalized with respect to the

wavelength before the solution is presented.

The irrotational part of the solution can be found as the real part of:

SPw = C'Ae )e (27z) in the water (z < 0)

SPa = EAA 2 eT 2rwt)e( 27z) in the air (z > 0) (4.6)

As in section 4.1.1, t = V T and cA is the wave slope nondimensionalized by the

wavelength. To determine the rotational solution, we will define a stream function

<)wa that satisfies the following linear form of the Navier-Stokes equations:

_ V2?/o in the water (z < 0)
at Re"

- V 2 Oa in the air (z > 0) (4.7)
at new

Here, -y = i/A is the ratio of the viscosity ratio (q) and the density ratio (A) defined in

section 2.2. The velocity field is calculated from the stream function in the standard

way: (u, w) =(- a, The stream function is assumed to have the form:

= EA 3e 2 7x-wt)e 2k3z in the water (z < 0)

SAA 4 e2xwt)e-27rk4z in the air (z > 0) (4.8)

Unlike the irrotational wave number k, the viscous or rotational wave numbers k3

and k4 can not be assumed equal because the viscosity is different in the two fluids.

If the stream functions (eqn 4.8) are substituted into the governing equations (4.7)

the viscous rotational wave numbers can be determined.

2 1 wRe.
k = 1- (4.9)

47r2

k 2 1 e (4.10)

There are four remaining constants: A1 through A 4 . These can be found through the
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application of boundary conditions at the two-fluid interface. In this solution, four

boundary conditions are applied at the interface for the total velocity field. They are:

(i) the linearized kinematic boundary condition, (ii, iii) continuous horizontal and

vertical velocity, and (iv) balanced tangential stress. The results are the following:

S 1) + r(k4k3+ k4+ k3) +k
A, =

27r (k3 + qk4 + T1 + 1) (k4 - 1)

A2 L ((T - 1) + (k4k3 + k4 + k3) + qk4
27 (k3 + ijk4 + T1 + 1) (k4 - 1)

A3= k4TI + I

7 (k3 + Tjk4 + T1 + 1) (k4 - 1)

7r (k3 + 77k4 + 77 + 1) (k4 - 1)

Figure 4-1 shows the velocity field at the crest of the wave. While the rotational and

irrotational parts of the solution are not continuous at the interface, the full solution

is continuous as required by the interface boundary conditions.

It is interesting to note that the shear layer which exists at the interface for the

irrotational solution is countered by the rotational field. In a sense, the rotational

velocity field, even though discontinuous itself, is actually decreasing the amount of

shear in the fluid near the interface. While counterintuitive, this fact will be discussed

in the forthcoming section regarding the damping of gravity waves.

The solution can be simplified for large Reynolds number flows. First and fore-

most, the viscous wave numbers (4.9 and 4.10) can be simplified if 7Ze >> 1.

(4.11)

k3 = 1 E

(1 = - t)

L427r2

2 '7e k3

e472

Next, because Ze, >> 1, it follows that k3 >> 1 and k4 >> 1. The coefficients A1
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Figure 4-1: Two-fluid Airy wave solution at the crest (x = 0) plotted by each compo-
nent and total velocity field. (up, wp) are the irrotational flow components and (un, w,)
are the rotational flow components while (U, W) are the total velocity components.
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through A 4 can also be simplified.

A,=
27r
itw

A2=
27r

2yw
A3 = (t +1) f VK

A4 = -(i+1) f -A 3 ji (4.14)
Recw

where f is only a function of the ratio of the constitutive properties rj and A:

f (= + ) (4.15)
( I+ VI-1)

The dispersion relationship gives the frequency of the wave as a function of the wave

number. It comes from balancing the normal stress at the interface between the

two fluids with surface tension. For simplicity, only the potential flow solution is

used to determine the dispersion relationship here even though the boundary layer

should have a small effect on the dispersion relationship. The two fluid dispersion

relationship which includes the effects of surface tension, is given by Lamb [56]:

' 

A Fr 1 1/ w = (27r A +87r3 1 (4.16)
1 + A We (1 + A))

With this dispersion relationship, equations 4.6, 4.8, and 4.11 can be used as

an initial condition to start a multi-fluid simulation of an Airy wave. While the

coefficients in equation 4.14 are available, the full coefficients are used (equation

4.11) in this method. As in the impulsively started Airy wave method, the air-

water boundary is demarcated by equation 4.5 and reinitialized to a proper signed

distance function before the start of the simulation. For the purposes of initializing

the velocity field, the free-surface normalized depth in equation 4.3 is used for z.

Unlike the impulsive Airy wave, this flow field does satisfy continuity initially and

the initial pressure field is solved after the flow field has been initialized.
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The waves generated by this initial condition are similar to the impulsively started

case in that providing that the slope of the wave ak is sufficiently small for linear

theory to apply, waves generated with this method do not break. The slope associated

with the breaking threshold for this method lies between 0.2 < ak < 0.3. However,

the waves generated by this initial condition have a better balance between kinetic and

potential energy. This does degrade as the initial wave steepness increases. Again,

the reasons behind this are not clear.

Damping of Gravity Waves between Two Fluids

At this point in the discussion on wave generation techniques, we will deviate from the

topic to derive the laminar damping rate of gravity waves between two fluids. This

damping rate is used extensively in forthcoming chapters. As the two-fluid Airy wave

solution has just been derived, this is an opportune time to perform this derivation.

The derivation is based on an estimate outlined in Lamb [57] for a potential flow

solution of a wave in a single fluid with a free surface. The basic concept behind the

Lamb method is that the change in total energy per unit area is equal to the average

rate of work done by the surface forces if the potential flow were actually viscous.

d -
E = -W (4.17)

dt

In general, this approach applied to linear waves yields an equation for the amplitude

decay of the form:
d

a = -Fa (4.18)
dt

The first step is to calculate the rate of work done by surface forces due to the flow

field in the water. Here, the surface stresses o- are chosen to be viscous stresses.

D. = (0-33w + 013U),

Dw = Rwi + Rw2 (4.19)

The work done by the air on the water is similar but has a negative sign due to the

146



direction of the normal vector.

Da = - (633 W + J-13U)a

Da = Rai + Ra2 (4.20)

In calculating the total work done at the surface by the air and water (W = D = DW+

Da), it is noted that there are terms proportional to cos(27rx - wt) and sin(2wri - wt)

in the velocity field. Thus, the total work terms will contain terms of the form cos 2,

sin2 and sin -cos. As we need W, these terms will be averaged over a wavelength.

Thus, only the terms proportional to cos2 and sin2 will be retained and shown in this

derivation. The terms for the work done by the water and the air become:

2 27r22 - 47r2C2 wf 2w - 4w 2 2 f 2 2f 
Re Re2 Rew e)

- 47rc2w2  2w 8rre2w2 f 2w
2 = 2L_ - 22 2f + 4(2 2 2  2R

R2 Rew Re, Re", + cfL)vRe.

Tai = c (4r2 2 - 87r2 2fwy - 87r 2 fw 2 
- 167r2 2w

- - 2-e 21ReC

Rew

R - a 2 4 7 T 2 L 2 -8 7 F 6 2 a 2 f 7 ( L 2 f R w 4 F C____ 
______ -: 2w-c

(4.21)

(4.22)

212)

(4.23)

(4.24)

Combining equations 4.21 through 4.24 yields the following equation for the average

rate of work done by the surface stresses:

-_ 47rc2 W 2  
87r 2  2 f ( 

W = (I+ ) - (1 - )
Rew Re2

+ C2 W 2W IVq - 2) +2 2 2 2 2 A + 2)2 1 VRew Re W

+87 2 (qiv - 1) + 167r2 2f ( y -)
CWfRV Rew Re Rew
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The kinetic energy per unit area of the wave is given by:

(U2 + W2) dAw + - (L + Wf) dAa (4.26)
A2 Aa 2

If the total velocity field for both the air and the water is substituted into equation

4.26 and only the dominant term is kept, the total kinetic energy per unit area (or

volume) is:

S= (1A) EA (4.27)
87r

The total energy per unit volume is twice equation 4.27 using equipartition. To

determine the damping rate of the wave, we substitute the average rate of work done

by the surface forces (equation 4.25) and the total energy per unit volume (equation

4.27) into equation 4.17. After some manipulation, the damping rate of the amplitude

of the wave can be determined following equation 4.18.

= 1 + f e -2+
Rew 1 A Il+ A 2w 3eA

- 6 3 / (1-s - 7 f 2  2w +- re f1611) 71 A r 2W + O(Re-3/ 2) (4.28)
Rew I + A 1+A v/i7 l Rew

The boxed terms are associated with the effect of the air on the water. They originate

from evaluation of the surface stresses on the water by the air (equation 4.20). If the

damping rate is evaluated for water waves in the absence of air, (n 0 and A = 0),

then Lamb's result is recovered.

We can examine the relative magnitudes of each term for the damping rate at

the Reynolds number of interest for this problem (RIe = 2000) for a range of Weber

numbers. Table 4.1 contains the value of each term in equation 4.28 including the

terms proportional to Re-3/2 for an air-water interface problem. The dominant term

in the damping rate is the first term. This term is due to the irrotational flow. The

second term makes a minor adjustment to decrease the damping rate. This second

term is a function of the rotational field. As discussed in the derivation of the two-

fluid Airy wave solution, the purpose of the rotational field is to actually decrease
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the shear rate at the air-water interface caused by the discontinuous irrotational flow

field. Thus, its affect on the damping rate is to decrease it.

The third through fifth terms of equation 4.28 are the effects of the work done by

the air on the surface. As can be seen in table 4.1, these terms (in particular term 4

and 5) are one order of magnitude less than the second term. They are also negative.

Thus, they reduce the damping rate of the irrotational flow but very little due to

their size. The terms which are proportional to Re&3
/
2 are inconsequential.

The amplitude reduction of the various terms is also shown in table 4.1. The

amplitude reduction is calculated as the reduction of the initial amplitude at t 1 or

-7 = e-F (4.29)

While terms associated with the air work (terms 3 through 5) are important, their

effect is to change the amplitude reduction by only 0.1%. Thus for the purposes of

this study, the damping rate used in estimating laminar losses in subsequent chapters

only includes the first two terms. Namely,

87 2 (1 + ) 27r 2w

Re, 1 + A I + A Rem 4.0

Chen and Kharif have a similar equation for the damping of gravity waves between

two fluids (their equation 11) [13]. The only difference between it and this simplified

damping rate is that the second term has a positive sign where this one is negative.

Based on the discussion regarding the purpose of the second term, the negative sign

is correct. Investigation of their paper, in particular their figure 3b, shows that it is

likely a typographical error as the damping line on their figure is more representative

of a minus sign verses a positive sign.
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Table 4.1:

Relative magnitude of damping rate terms (eqn 4.28) for

7 -e. = 2000.

We w Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7

7.38 6.312 0.03983 -0.001572 7.457E-06 -0.0007733 -0.0007835 -3.0050E-05 2.0183E-07

738 2.570 0.03983 -0.001003 4.758E-06 -0.0007733 -0.0004999 -1.9175E-05 1.2878E-07

73,868 2.504 0.03983 -0.000990 4.697E-06 -0.0007733 -0.0004935 -1.8929E-05 1.2713E-07

738,684 2.504 0.03983 -0.000990 4.696E-06 -0.0007733 -0.0004935 -1.8927E-05 1.2712E-07

00 2.504 0.03983 -0.000990 4.696E-06 -0.0007733 -0.0004935 -1.8926E-05 1.2711E-07

We w F1:2 71:5 Fi: 7  % Amp Red1 :2 % Amp Red. 5  % Amp Red1 .7

7.38 6.312 0.038261281 0.036711834 0.036681985 96.25% 96.40% 96.40%

738 2.570 0.038830218 0.037561644 0.037542598 96.19% 96.31% 96.32%

73,868 2.504 0.038843083 0.03758086 0.037562058 96.19% 96.31% 96.31%

738,684 2.504 0.038843202 0.037581038 0.037562238 96.19% 96.31% 96.31%

oc 2.504 0.038843215 0.037581058 0.037562258 96.19% 96.31% 96.31%
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4.1.3 Surface Forcing I

It is not necessary to use a solution of the wave field to generate plane progressive

waves for an initial condition. Another method uses surface forcing on a flat, quiescent

fluid. Using a normal pressure force on the surface which moves with a given speed, a

progressive wave can be produced. Depending on the initial amount of energy input

by the surface force, the resulting wave will either progress as a non-breaking wave

or form a breaking wave shortly after the forcing has been removed.

Forcing the surface in a multi-fluid volume is applied in a similar manner as the

surface tension is applied as discussed in section 2.2.2. The smoothed delta function

is used to locate the interface in the volume and apply a force in the normal direction.

The surface force applied is:

T= p(x, t)W(<; c) (4.31)

The normal vector is calculated from the level set function as in equation 2.12 and the

smoothed delta function is the same function which is used in the calculation of the

surface tension, i.e. equation 2.22. The "pressure" forcing p(x, t) can be any desired

function providing it moves with a phase speed so that it imparts a phase speed to

the water. The one chosen for this work is a simple sine wave.

p(x, i) = PO (1 + cos(7wi - 7r)) sin(27wx - 7r4) (4.32)
2

where po is a tunable constant to control the magnitude of the forcing. The time t is

given such that the forcing is ensured to turn off after a half-period of the forcing:

t 0 < t < 27r/3 
(4.33)

0 t > 27r/3
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or

t - in , 12 (4.34)
( r/3

This forcing is added to the momentum equations (eqn 2.28). To keep the effect

of this term separate from the pressure field, it is solved separately using the same

process for the pressure field (section 2.5).

1 -
V - VF' = JS (4.35)

The gradient of F, is also added to the momentum equations. It is not necessary to

keep the effect of this term separate from the pressure field. It is sufficient to add

equation 4.31 to the momentum equations and solve for the pressure field.

As stated previously, this forcing is applied to a flat, quiescent surface. The initial

velocity and pressure field are zero and the level set function is given as:

0 = -z (4.36)

where z = 0 represents the water line.

A potential drawback to this method is the inclusion of surface tension at the

start of the wave forcing. As the surface begins to develop curvature from the surface

forcing, the surface tension force which is proportional to the curvature fights this

and flattens the surface out. Thus, for cases where this wave generation method is

used and it is desirable to include surface tension effects, the surface tension force

is turned on slowly such that the surface is allowed to deform before the surface

tension can remove it. This is accomplished by slowly increasing the reciprocal of the

Weber number such that it reaches its intended value Wct before the surface forcing
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1 2 3 4 5 6 7 8 9 10

Figure 4-2: Ramp-up of surface tension coefficient (-) and forcing amplitude (- -),
normalized by their peak values.

is complete. This is shown in figure 4-2.

1

We
1
W (1 + tanh(6i - 57r)

2Wet
(4.37)

(4.38)
t 0 < t < 57r/12

0 t > 57/12

ii = min(57r, t) (4.39)

The benefit of this wave generation method is that the initialization is clean in terms

of the initial velocity and pressure fields for both fluids. Over a range of forcing
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amplitude, 0.025 < po < 0.05, this method creates a range of non-breaking and

breaking progressive waves. The difficulty lies in the fact that this method relies solely

on surface forcing to generate a full-fledged progressive wave. The plunging breaking

waves generated in these cases tend to have an excess of horizontal momentum and

be more jet-like compared to the Dlunging breaking waves seen through wave focusing

or waves generated with the linear Airy wave solution (one or two fluids). Despite

this fact, this method is robust in generating plane progressive waves.

4.1.4 Surface Forcing II

Another method of wave generation which uses surface forcing is in the spirit of the

pressure forcing used by Longuet-Higgins and Cokelet. A pressure force similar in

nature to what is detailed in section 4.1.3 is applied to a field which already has a

plane progressive wave in it. As the wave surface is already developed, the difficulty

of including surface tension effects addressed in section 4.1.3 does not arise.

The method centers around applying a sinusoidal pressure forcing which is 900 out

of phase with the wave such that the positive pressure forcing is on the back face of

the wave 1. > 0 and negative pressure forcing is on the front face of the wave TI, < 0.

If this is not implemented sufficiently, it is possible to generate waves which move in

the opposite direction of the original wave, giving the appearance of a standing wave

in the solution. Therefore, it is critical that the forcing move at the same speed of the

wave being forced. When this surface forcing is applied in potential flow calculations,

the phase speed of the initial wave is easily determined and constant as there are no

viscous effects on the wave phase speed.

In this method of (breaking) wave generation, the surface forcing is applied in

the same manner as for SFI in terms of methodology. However, instead of a flat,

quiescent surface, it is applied to a pre-existing wave field. The difference between

SFI and this method is that the force which is applied is a function of the slope of

the surface rather than a prescribed shape. To preclude the need for constructing a

surface and determining the slope of the interface at every time step, the sign of the

forcing is inferred from the sign of the surface normal in the x direction. The normal
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is also used to direct the force vector in the surface normal direction and the delta

function is utilized to include the surface forcing only in the realm of the smoothed

surface.

7, = p(t)nnr-(#; c) (4.40)

The variation of the amplitude of the surface forcing over time is controlled in the

same manner as that for SFI such that the function p(t) is given as:

p(t) = (1 + cos(7 - 7r)) (4.41)
2

and the time is modified as in equation 4.33.

While the magnitude of the forcing in equation 4.41 is generally arbitrary and

only for a period of time, this method is similar to what is used in the literature to

impart a sustained wind input to a wave field where a surface pressure distribution

is added as a function of the local wave slope 7,. Banner and Song [104] use the

following surface pressure distribution in their study on the influence of wind forcing

on the breaking of deep water waves.

Ps(X, t) = aPaU>IX(x, t) (4.42)

The forcing is a function of the shear stress on the surface imparted by the air pau2 and

a tunable constant a. There is much more meaning to these terms and the interested

reader is referenced to the text by Phillips [87] and section 2 of Donelan [26] for a

thorough discussion on empirical methods and realistic bounds for these coefficients.

Suffice it to say, the forcing method SFII is not without physical meaning.

This method is ideal for taking waves which do not break or break very little and

impart energy to them such that they will certainly break. The initial velocity and

pressure fields are not necessarily clean in that they have been estimated using linear

theory. However, if waves are taken with initial slopes in the range of 0.2 < ak < 0.3

and a small amount of forcing is applied (the amount of which is dependant on the

initial slope of the wave), a range of breaking waves can be generated consistently.
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The method works best when the amplitude is near the limit of the linear theory

ak ~ 0.3 in that little energy needs to be used to make the wave break.

The drawback of the implementation of this method is that the actual slope of

the wave is not used, only inferred from the surface normal. After the forcing period

is complete, there is evidence through the presence of a small standing wave that the

wave has not been forced at its phase speed. The resulting standing wave energy

for this method is relatively small compared to other methods in this work. Section

4.4 discusses the presence of standing wave energy in this work. This small standing

wave aside, this method is very capable of generating a range of breaking waves.

4.2 Using Surface Tension to Generate Breaking

Waves

This section discusses how modifying the surface tension of the problem being inves-

tigated can be used to create a range of types of breaking wave. Using surface tension

to control the generation of breaking waves may seem like an ad-hoc method. From

an experimentalists point of view, the surface tension effects and coefficients are de-

pendant only upon the fluids being used. However when performing direct numerical

simulation, these properties can be varied easily. The Reynolds number which are

capable of being simulated using direct numerical simulation is moderate O(103-4).

Based on the scaling of this study, this represents a physical wavelength of millimeters

for the low end and centimeters on the high end. At these length scales, the Weber

number is around 0(1) to 0(10). This is a very strong surface tension effect relative

to experimental scales where the Weber number is around O(10'). While the debate

about the scalability of Reynolds number effects in breaking waves is still open, there

is no doubt that surface tension effects do not scale.

In his review paper on spilling breaking waves, Duncan [31] details the effect of

wavelength and thereby surface tension effects on the breaking process. For relatively

long wavelengths, a jet is formed which impinges on the front surface of the wave. For
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Figure 4-3: Schematic of the effect of surface tension on breaking waves. Reprinted
with permission. From [31].

shorter wavelengths, the effects of surface tension suppresses the jet formation and

the surface then forms a bulge at the crest with a train of capillary waves at the toe.

This is shown schematically in his figure 1 which is reproduced in figure 4-3. Thus by

modifying the actual surface tension coefficient, a wavelength which is small due to

the Reynolds number restriction of direct numerical simulation can generate spilling

but not plunging breaking waves.

An example of such an effect can be seen in figure 4-4 where the only difference

between the solutions is the surface tension coefficient. As detailed in Duncan's review

paper, the case where the Weber number is O(10') forms a plunging breaker. The

formation of this jet is suppressed for the cases where the Weber number is 0(102).

The front face of this wave forms a bulge and toe. The capillary waves that Duncan

describes which should appear at the toe of the bulge are not resolved and thus not

seen. It is quite useful in direct numerical simulation which is limited to moderate

Reynolds numbers to use the surface tension coefficient as an additional controlling

parameter to generate a variety of breaking waves.

In general, the formation of the bulge in lieu of a plunging jet can be a factor of

the energy prior to breaking and the strength of surface tension effects [31]. In the

context of this study, the formation of the bulge verses a jet is primarily a function

157



0.2

0.1

N O

-0.1

-0.4 -0.2 0 0.2 0.4
X

Figure 4-4: Two waves generated by the same amount of surface forcing (SFI) using
two different Weber numbers. (red) We = 73,868; (blue) We = 738

of surface tension effects and the amount of energy in the wave prior to breaking.

A threshold Weber number was not directly investigated as a part of this study and

a review of the cases in this study does not reveal a clear transition from bulge to

jet. Table 4.2 compiles a sample of the waves in this study which formed bulges and

jets along with their Weber number and energy prior to breaking. The strongest

conclusion which can be made from table 4.2 and the other waves in this study is

that waves which have Weber numbers less than O(103) do not form jets. This is

consistent with physical expectations as this Weber number is closer to the physical

Weber number of the waves being simulated which is 0(10). At these small scales,

the surface tension effects suppresses the jet formation [31, 119, 631.

For waves with a Weber number greater than O(103), the evolution of the surface

into a bulge or jet becomes dependant upon the energy in the wave as well. Unfor-

tunately, within the context of this study, it can not be said that, for a given Weber

number, the formation of the jet is then only dependant upon the amount of energy in

the wave prior to breaking. For example, in table 4.2, consider the four waves which

have a fixed Weber number of 73,868. Two form spilling breakers with bulges and the

other two form jets. For the cases which have very little standing wave energy in the

computational domain (all cases which are not IAW), there appears to be a threshold
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between 0.51 and 0.64. Case IAW-08, which has a considerable amount of standing

wave energy, forms a strong-spilling breaking wave with an initial energy at 0.6779

of the limiting Stokes wave. The presence of the standing wave and general sparsity

of data at different Weber numbers makes it difficult to draw a firm conclusion. An-

other criteria related to the growth rate of the wave (see section 7.4) or particle speed

relative to group or phase speed may also be key.

Table 4.2:

Bulge and Jet Formation as a function of Weber number and energy

prior to breaking.

Bulge Formation Jet Formation

Case Class We EW/EstokeS Case Class We Ew/Estokes

IAW-04 SS 738 1.1704 A2P-17 JT 73,868 0.6405

IAW-03 SS 738 0.6627 A2P-18 JT 73,868 0.6900

A2P-02 GS 738 0.4765 IAW-09 AE 73,868 1.2005

IAW-08 GS 73,868 0.6779 A2P-14 JT 738,684 0.5893

A2P-06 GS 73,868 0.5119 A2P-16 JT 738,684 0.6411

A2P-09 GS 738,684 0.5178 SFI-04 JT 00 0.6788

SFI-02 GS oc 0.5459

Classification: Non-breaking (NB), Incipient Breaking (IB), Gentle

Spilling (GS), Strong Spilling (SS), Jet Formation (JT), Air Entrain-

ment (AE)

4.3 The Waves Generated

The four wave generation methods detailed in section 4.1 were used to generate a

variety of waves which are of breaking and non-breaking types. This section details

the simulations which were completed, the waves they generated and how they were
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classified.

This study entailed the generation of 36 different waves through the four different

wave generation methods. Table 4.3 includes all of the relevant information regarding

the 36 different waves, including physical and numerical parameters as well as how

they were classified. As discussed in chapter 1, there are three classifications used in

the literature regarding waves: non-breaking, spilling and plunging. This work takes

the spilling breaking wave and divides it into two subcategories: gentle and strong.

The same with the plunging breaking waves: jet-forming and air-entraining. Thus,

the five wave classifications defined in this work are: non-breaking, gentle-spilling,

strong-spilling, jet-forming, and air-entraining.

Classifying waves as breaking or non-breaking is a relatively straight forward pro-

cess. It involves visually inspecting the surface for signs of breaking, looking at the

damping of the wave amplitude compared to that expected by laminar damping ef-

fects and finally, consulting the dissipation rate to ensure it experienced no significant

relative increase for cases which are determined to be non-breaking. To discern be-

tween spilling and plunging breaking waves is also straight forward. Providing that

the surface does not form a jet or re-enter itself, then it is classified as a spilling break-

ing wave. If a plunging jet entrained air, then it was classified as an air-entraining

breaking wave.

The only subjective classification was the difference between gentle-spilling and

strong-spilling breaking waves. For this study, once a wave was determined to be

a spilling breaking wave, the dissipation rate (see chapter 7) was considered next.

Waves which saw a mild increase in dissipation rate in the water volumes were first

categorized as gentle-spilling breakers. Those that saw a much larger relative increase

were labeled strong-spilling breakers. Each case was then reviewed in terms of looking

at the balance between the relative increase in dissipation rate between the air and

water volumes. As a final check, the evolution of the surface was revisited and the

strength of the bulge (and the time it persisted before traveling down the wave crest)

were also considered.
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Table 4.3: Waves Generated in this Study

Classification: Non-breaking (NB), Incipient Breaking (IB), Gentle Spilling (GS),

Strong Spilling (SS), Jet Formation (JT), Air Entrainment (AE)

Case Name WGMIRe, Fr We ako po y N j L. Lz Class

SFI-01 SF1 00 0.0 0.025 3.0 NB

SFI-02 SFI O0 0.0 0.04 3.0 GS

SFI-03 SFI O 0.0 0.03 3.0 NB

SFI-04 SF1 00 0.0 0.05 3.0 JT

SFI-05 SFI 00 0.0 0.035 3.0 NB

SFI-06 SF1 2,000 1 00 0.0 0.045 3.0 320 320 1.0 1.0 JT

SFI-07 SF1 00 0.0 0.03 2.0 NB

SFI-08 SF1 738 0.0 0.03 3.0 NB

SFI-09 SF1 O 0.0 0.05 2.0 JT

SFI-10 SFI 738 0.0 0.05 3.0 SS

SFI-11 SFI 73,868 0.0 0.05 2.0 JT

continued on next page



continued from previous page

Case Name WGM Re, j Tr [ We ak Po y N ] N L J Lz Class

IAW-01 IAW 738 0.1 0.0 2.0 NB

IAW-02 IAW 738 0.2 0.0 2.0 NB

IAW-03 IAW 2,000 1 738 0.3 0.0 2.0 256 256 1 1 SS

IAW-04 IAW 738 0.4 0.0 2.0 SS

IAW-05 IAW 738 0.5 0.0 2.0 SS

IAW-06 IAW 73,868 0.1 0.0 3.0 NB

IAW-07 IAW 73,868 0.2 0.0 3.0 NB

IAW-08 IAW 2,000 1 73,868 0.3 0.0 3.0 320 320 1 1 GS

IAW-09 IAW 73,868 0.4 0.0 3.0 AE

IAW-10 IAW 73,868 0.5 0.0 3.0 AE

A2P-01 A2P 738 0.2 0.0 2.0 NB

A2P-02 A2P 738 0.2 0.125 2.0 GS

A2P-03 A2P 738 0.3 0.0 2.0 IB
2,000 1 256 256 1 1

A2P-04 A2P 738 0.3 0.04 2.0 GS

A2P-05 A2P 73,868 0.3 0.04 2.0 GS

A2P-06 A2P 73,868 0.2 0.125 2.0 GS

continued on next page



continued from previous page

Case Name WGM Rew Fr We ako Po AT,, N, LC L Class

A2P-07 A2P 73,868 0.25 0.0 2.0 NB

A2P-08 A2P 738,684 0.3 0.04 2.0 GS
2,000 1 256 256 1 1

A2P-09 A2P 738,684 0.2 0.125 2.0 GS

A2P-10' A2P 7.38 0.2 0.0 2.0 NB

A2P-11 2  A2P 2,000 1 738,684 0.2 0.125 3.0 1024 1024 1 1

A2P-12 3  A2P 10,000 1 63,156 0.2 0.125 3.0 1280 1280 1 1

A2P-13 4  A2P 2,000 1 7.38 0.3 0.0 2.0 256 256 1 1

A2P-14 A2P 738,684 0.3 0.04 3.0 JT

A2P-15 A2P 738,684 0.3 0.045 3.0 GS

A2P-16 A2P 2,000 1 738,684 0.3 0.06 3.0 320 320 1 1 JT

A2P-17 A2P 73,868 0.3 0.06 3.0 JT

A2P-18 A2P 73,868 0.3 0.07 3.0 JT

'Poorly resolved LSBL, removed from study
2 Not complete in time to be included in study
3ibid
4 ibid



4.4 Comment on Presence of Standing Waves

Despite considerable effort to develop a wave generation method which had zero

standing wave component in the computational domain, standing waves existed for all

of the methods considered. In general, an undesired standing wave in a computational

domain can result for a variety of reasons. The first is a result of the mismatch of using

a linear solution as an initial condition for a simulation which involves a nonlinear

free-surface boundary condition [23]. A second is the use of a linear solution outside

the bounds of its applicability. A third reason occurs when the free surface is being

forced. If the surface forcing is out of phase such that waves are generated progressing

in the opposite direction of the initial progression, the result will be a standing wave

component. Unfortunately, all three of these reasons appear in the wave generation

methods detailed in this chapter. This section addresses their presence in this study

as well as quantifies their magnitude and effect on the results shown.

The range of strength and frequency of the standing waves which resulted for each

type of wave generation mechanism is shown in table 4.4. The strength and frequency

were determined by considering the fraction of total energy that the potential energy

(in the water) fluctuated at a given time. For cases with wave breaking or where

surface forcing was involved, times well away from both regions (breaking and forcing)

were used to determine the fluctuation amplitude and period.

Table 4.4: Percent energy and oscillation period for standing wave for

various wave generation methods

Wave Generation Method % E Period

Airy Two Phase (A2P) 1.2-1.5 1.28-1.54

Airy Two Phase with Forcing (SFII) 2.6-8.5 1.28-1.53

Impulsive Airy Wave (IAW) 31-49 1.22-1.35

Surface Forcing I (SFI) 4.6-9.1 1.21-1.50

In terms of generating minimal standing waves in the domain, the two-phase Airy
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wave is the most reliable with the amplitude of the standing wave energy only about

1% of the total energy of the wave. This standing wave energy is believed to be a

function of the linear/non-linear mismatch as well as using the linearized solution on

a surface which is not z = 0. The amount of energy in the standing wave increases

when forcing (SFII) is applied, the amount of which is dependent upon how strong

the forcing is. The increase can be 7-8% of the total energy of the wave for cases with

the strongest amount of forcing. This result can be for two reasons. The first is from

the surface forcing itself. If the forcing is not precisely in phase with the wave, waves

moving in the opposite direction can be formed. Also, as the surface force is applied

using the smoothed delta function, the forcing is acting over a distance of 3C into both

fluids. It is believed that this forcing into the fluid domain verses the exact surface

may also cause a wave to travel in the opposite direction. Yet, it is not considered a

large effect. In cases where the surface tension was turned on over time, there was no

visible increase in standing wave energy. As the surface forcing technique is modeled

in the same manner as the surface tension, any standing wave which is a result of

forcing the interface over a thickness is considered to be very small.

For cases which the surface forcing (SFI) is used to generate the plane progressive

wave, the standing wave energy is 4-9% of the energy in the water volume. The cause

of this standing wave can be discerned by inspecting the mechanics of this forcing

method. The surface forcing method slowly presses down on the surface as a sine

wave which travels. As the surface is initially flat, there is a delay in which the free

surface becomes deformed. Once it has deformed, the forcing is able to impart a

horizontal energy to the surface which then makes the wave travel. Thus, one reason

for the standing wave is the initial deformation of the surface before the wave begins

to progress. The other is because, as the surface forcing function is prescribed verses

a function of the free-surface slope as in SFII, there is now a phase difference in the

forcing function and the slope of the free surface. This phase difference now allows

the forcing function to impart energy in the wrong direction.

The cases which use the impulsively started Airy wave incur the largest amount

of standing wave energy (31-49%). The largest amount of energy in the standing
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wave component corresponds to the cases with the largest initial slope which is well

beyond what linear theory would allow. The reason for the standing wave energy in

these cases is two-fold. The first is using a linear theory well outside the bounds of its

applicability and off of z = 0. The second is the shock to the air that the impulsively

started wave field gives. This is evident when cases which use the two-phase Airy

wave solution are compared to impulsively started waves of the same slope. In the

two-phase case, the standing wave energy is no more than 1.5 % while the same cases

using the impulsively started wave field have 32-37%. The cases in the literature

which use this method do not appear to address this issue nor mention it with any

regularity.

For all of the cases, the period of the standing wave is ~ 1.2-1.5. This corresponds

to a wave number of 3 or 4 depending on the the Weber number based on ail inviscid

dispersion relationship for an interface between two fluids with surface tension effects

(eqn. 4.16). Additionally, there appears to be a connection between the period and

the amplitude of the wave but this could not be quantified. The only cases where the

standing wave may affect the results in this thesis are the impulsively started cases

which have by far the largest standing wave energy. The waves generated on this

method appear to ride over the standing wave crests. As some breaking mechanisms

are a function of wave focusing, there is nothing which indicates that the breaking

mechanism for these cases is not partly to do with a sudden convergence of energy

as the progressive waves ride over the standing waves. However, as stated in section

4.1.1, it is more likely that these waves have such an excess of kinetic energy that the

waves break to disperse this energy rather than focusing.

In summary, the wave generation methods used in this study are generally well

suited for creating breaking and non-breaking waves with little (less than 10%) of the

total wave energy existing in the standing wave. Only the cases where the impulsively

started method was used does this standing wave energy become significant and

potentially affects the solution. The period for the standing wave is consistent for all

cases.
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4.5 Future Improvements

The wave generation methods discussed in this chapter are by no means the only

methods available. However when a multi-fluid domain is present, the number of

robust methods with few side effects is fairly small. When a periodic domain is used

as in this study, the options are limited further. The two-phase Airy wave method

(with and without surface forcing) was found to be the best method of the methods

explored here. Yet, while very useful in generating an array of breaking waves, the

method is limited in its scope of application.

In general, the four methods used in this study are not useful in studying wave

groups or broadband spectrums. The waves generated using these methods essentially

had a single frequency represented. It may be possible to extend the two-phase Airy

method and use it for multiple wave components to study wave groups. Yet, the

design of the wave group must be done carefully in the context of periodic boundary

conditions. Without a robust capability for generating and evolving wave groups

efficiently, the entire study of wave focusing which is used widely in experiments can

not be investigated. Additionally, none of these methods are suitable for the study of

steady breaking waves that is another rich area of wave breaking which has not been

sufficiently studied numerically in the literature. This section briefly discusses two

methods which were developed as additional wave generation methods to address the

study of additional unsteady and steady breaking waves.

4.5.1 "Wavemaker Push"

Using a Navier-Stokes flow solver to simulate the entire length of a wavetank is not a

trivial computational undertaking, even if only a single fluid is simulated. Addition-

ally, most numerical wavetanks are used to generate information regarding wave-body

interactions of which the viscous component is fairly small. Thus, the computational

effort may significantly outweigh the amount of useful data which is gained. Outside

of trying to replicate wave focusing experiments to do a one-on-one comparison which

includes the effects of viscosity and wave-overturning, it is difficult to imagine where
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a viscous numerical wavetank would serve a purpose.

Recent experiments by Duncan [32] detailed an interesting set of experiments in

which a flexible wavemaker is used to impulsively push water down a channel. It is

controlled in such a manner so that the profile of the wavemaker mimics that of a ship

hull passing through a plane. This "2D+T" wavemaker is capable of producing waves

with a broadband spectrum which break relatively near the wavemaker. Using this

type of wavemaker for breaking wave studies is not necessarily a new idea. However,

it was abandoned long ago for the wave-focusing techniques which are much easier to

control and characterize. Yet, within the context of ship breaking waves, it is much

more plausible that an impulsive push more closely mimics the mechanism involved

than a wave-focusing technique.

This type of wavemaker and study is well suited to a multi-phase viscous numer-

ical wavetank as the domain requirements are significantly less than wave-focusing

techniques. Because of its impulsive nature, it creates waves with a broad spectrum

which will allow for nonlinear effects to become more apparent than narrow banded

or single-frequency spectrums could attempt.

The most feasible method for numerically representing a wavemaker push of this

type is to use a free-slip boundary condition at the boundary which represents the

wavemaker. This entails using the following boundary conditions at the wavemaker

for the velocity field:

u(z, t) = U(z, t) (4.43)

where the prescribed velocity field can be made a function of z to allow a flexible

wavemaker to be used to mimic a ship bow as in Duncan's experiments. The vertical

velocity is allowed to slip in an inviscid manner.

The pressure boundary condition at the wavemaker must be chosen to ensure that

the flow satisfies continuity at that point. This means that the pressure gradient on

that boundary must include the acceleration term from the wavemaker, namely:

1&BP DU
- = --- - - Fx (4.44)

P (0) ax at
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where the forcing F, is the x-component of the Navier Stokes equation as defined in

equation 2.71.

To keep the numerical domain small, the outlet boundary conditions for the ve-

locity and pressure field must be done with a degree of care to ensure continuity is

satisfied, there are no reflections at the boundary and the solution only grows with

time if the forcing grows with time [49, 48]. Johansson [49] suggests outlet conditions

of the form:

(outlet, z, t) (4.45)

P PO

Providing that j = q + 1, Johansson proves that the outlet condition is divergence

free. However, if j z q + 1 and the viscous effects are small, the divergence will be

confined to an outflow boundary layer. To ensure that the outlet is divergence free,

q is chosen to be 1 making j = 2. The prescribed outlet pressure field is po = 0 as

this is only referring to the dynamic pressure and hydrostatic considerations are not

important.

Both the work by Johansson and others deal with grids which are collocated, in

that the velocity and pressure points exist at the same point in space and thus are

all well defined on the boundary. However, the numerical implementation used in

this work uses a staggered grid such that only the velocities are well defined on the

boundaries. Thus, to ensure that the flow is divergence free at the outlet boundary

condition, the pressure boundary condition is chosen to help enforce continuity as in

equation 4.44.
1lBP _ u

-a = - -at -Fx (4.46)

p (#) Ox Ot

The difficulty in implementing this wave generation method in the context of the

numerical capabilities of this study is that the term og is not known a-priori in an

explicit time-stepping scheme. Either an implicit time integration scheme should be

included or a scheme which uses collocated grids is necessary such that equation 4.45
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can be applied directly. We suggest an implicit time integration scheme be included

in future implementations. Unfortunately, this is not a trivial matter because an

implicit time integration scheme with a moving free-surface that also includes surface

tension effects becomes a nonlinear problem.

4.5.2 Influence of a Submerged Body

Another method of wave generation which was considered deals with the subject of

quasi-steady breaking waves. A series of papers by Duncan [29, 30] as well as a paper

by Lin and Rockwell [59] show that a train of waves will develop on the free surface

behind a submerged object moving with constant velocity. Depending on the speed of

the submerged object and its submergence depth, the first crest of this wave will form

a breaker. Within the reference frame of the object, this is a quasi-steady breaking

wave.

Quasi-steady breaking waves are thought to be yet another class of breaking

waves with their own associated dissipation characteristics [29, 74]. Additionally,

it is thought that, within the reference frame of a surface ship moving with constant

velocity, the bow wave of a ship could be considered quasi-steady after it has bro-

ken off the bow and has entered the near-field flow. The validity of this point is in

some contention after recent field experiments have shown that even in very calm seas

there is an inherent unsteadiness in breaking ship waves [108]. This aside, there is an

abundance of experimental and theoretical work on steady breaking waves with a few

numerical works available. Thus, the capability of generating quasi-steady breaking

waves in a small computational domain would be useful.

In developing this wave generation method, we propose that the actual object

itself is not important to the wave generation. Only its influence on the surrounding

fluid is important. Other numerical works have put significant effort into replicating

the foil geometry used in Duncan's experiments and ensuring that the boundary layer

was fully resolved around the foil in addition to the free-surface boundary [46]. This

places a large number of points near the foil which could be used near the free-surface.

Additionally, using a grid around the foil which accurately resolves the boundary layer
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around the foil and adequately resolves the free surface is difficult.

One of the benefits of this numerical implementation is that the grid is Cartesian

and the interface is captured in an Eulerian manner. Thus, including an exact replica

of the foil geometry and ensuring that the foil boundary layer is adequately resolved

would entail changing the grid or using body force techniques [109] to ensure a no-slip

condition at the boundary. Even satisfying a free-slip condition about a geometry on

a Cartesian grid is not a trivial manner [21]. If only the influence of the geometry

is necessary to generate a quasi-steady breaking wave, than we propose that only

the influence of the body is necessary to be modeled. Similar work by lafrati and

Campana [45] use a matched method where a viscous free-surface (level set) solver is

matched to a boundary element method which then solves the potential solution for

a submerged geometry. Within the boundary element method domain, there is no

free surface making the solution relatively quick and the influence of the geometry is

transmitted through the matching condition at the boundary.

A second approach to this method is one in which a distributed disturbance is

placed in the viscous flow domain, beneath the free surface. No effort is needed to

resolve the no-slip boundary condition on the geometry or to satisfy even a free-

slip boundary along the geometry. This is done through the use of a distribution of

Gaussian sources and sinks which mimic the presence of the body.

To add the disturbance to the flow field, the continuity equation is modified such

that:

V U =U (4.47)

where Ud represents the effect of the disturbance. The (dynamic) pressure field is

then decomposed into two parts. The first is the pressure field which would satisfy

the continuity equation without the disturbance. The second is the correction which

includes the disturbance.

Pd - P1 - P2 (4.48)

Depending on the choice of implementation, the total dynamic pressure can be solved

using a single Poisson equation or two separate Poisson solvers can be solved for each
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part of the decomposed pressure. To keep the effect of the disturbance separate, we

choose to solve two Poisson equations. The first is that given in equation 2.72 which

satisfies a divergence-free velocity field. The second is simply:

V - 1A V2 = d (4.49)

The momentum equations are updated with both pressure fields as part of the time

integration scheme.
Dii - 1

= F - V(p1 + p 2 ) (4.50)
at pW#

The choice of the disturbance is generally arbitrary since it is the effect of which we

are looking to capture. As the disturbance is in the domain, something which is non-

singular or desingularized is a prudent choice. To mimic the effect of a submerged

geometry, a distribution of desingularized sources and sinks were used with variable

strength. Borrowing from thin airfoil theory, the strength of the source/sink is made

proportional to the slope of the thickness of a desired geometry. In this case, an

ellipse was chosen yielding the following for the strength of the gaussian sources and

sinks.

m(x) = -mo(t) t(x) (4.51)
dx

where

22
t(x) = b 1 - - (4.52)

a2

The constant mo(t) is a scaling constant which can be used to determine the strength

of the disturbance. The function of time is to allow the disturbance to be slowly

"turned on". If this disturbance is placed in a free stream, it will create a wave train

behind it similar to that seen in Duncan's experiments. Depending on the strength

of the disturbance, it is possible to make the first wave break. Figure 4-5 shows a

representative test simulation using this disturbance technique. This particular case
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Figure 4-5: Successive free-surface profiles of the formation of a quasi-steady break-
ing wave in a wave train following a submerged disturbance using the body force
technique. Flow is from left to right, ellipse is representation of mimicked ellipse
geometry. Re, = 500, Fr = 1, We = oc.

is at the start of forming a breaking wave on the first crest of the wave train behind

the body. This body force technique has shown to be robust in generating a wave

train behind it and shows promise in attaining a quasi-steady breaking wave train for

the study of the characteristics and turbulent qualities of this type of wave.

4.6 Conclusions

In general, the method of initiating breaking waves for a computational study is

a fairly undocumented process compared to experimental studies. This process is

directly tied to the computational techniques involved and some methods may or

may not translate well. As the technique used in this study entails a multi-fluid

domain, additional complexity is involved as it is not well known how to initialize the

air volume.

The techniques developed as a part of this study ranged from using no solution

for the air volume and allowing it to react to the water volume to determining a

solution for both volumes. Both methods generated breaking waves; however, the

method which used some type of solution in the air was more reliable in decreasing

the "noise" (or standing wave) in the simulation. Methods which used surface forcing

to generate breaking waves were also robust in decreasing the influence of the standing
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wave compared to the impulsively started Airy wave. However, the surface forcing

technique can introduce standing wave components to solutions which have very little

before the forcing is initiated. The surface forcing methods also simulate the effect of

energy input to the progressive waves similar to that used to simulate wind forcing.

In addition to using surface forcing on progressive waves to generate wave break-

ing, the surface tension force is a reliable method for generating different types of wave

breaking. By modifying the effective surface tension coefficient (modifying the We-

ber number while keeping all other parameters the same), waves which form spilling

breaking waves will form plunging breaking waves instead. This allows a wider range

of breaking waves to be studied using a single wave generation method.

In all, 36 waves were generated using the techniques described in this chapter.

They ranged from non-breaking to plunging breaking waves with air entrainment.

The benefits and limitations of the techniques were also discussed. In addition to the

already cited standing wave "noise" which exists, the waves generated in this study

are narrow banded in terms of spectrum and are only unsteady breaking waves. To

address these last two limitations, a method which creates a broadband spectrum

within a smaller domain such that simulating an entire wave tank is not necessary

was outlined as was a method which can be used to simulate quasi-steady breaking

waves. A preliminary result for a quasi-steady breaking wave was shown. These

wave generation methods, including the future improvements outlined, should facili-

tate a wide-ranging (direct numerical) investigation of breaking wave kinematics and

dynamics which includes viscous as well as air effects in the domain.
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Chapter 5

Validation of the Level Set Method

This chapter details the validation effort for this numerical study. It verifies the

robustness of the method for simulating surface impact and fluid re-entry problems.

Once the method has been verified as robust for this class of problems, the volume,

mass and energy conservation are detailed.

The volume conservation of the numerical method is defined as the conservation

of the water volume throughout the simulation. The numerical method is found to

conserve volume to within 0.2% which is an order of magnitude better than published

level set studies. The mass conservation is determined as the amount of divergence

in the flow field. For the entire domain, the numerical method conserves mass to

machine accuracy. Point-by-point, the mass is conserved to the tolerance of the

iterative Poisson solver for the pressure field.

Energy conservation is determined through two tests. The first is a standard test

of comparing the viscous damping rate of a linear Airy wave to theoretical values.

The numerical method was shown to agree with theoretical values. Because the

viscous damping rate is relatively insensitive to the presence of surface tension and

the presence of a second fluid, it was determined that this test was inadequate to

confirm energy conservation. The second test includes the direct calculation of the

energy equation to determine any residual energy losses. Through this second test,

the energy conservation of the numerical method was found to be within 10% of the

energy in the entire volume.
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5.1 Surface Impact and Fluid Re-entry

The purpose of this set of validation tests focuses on the robustness of the level

set method in handling surface re-entry problems. As plunging breaking waves are

composed of a jet re-entry event, knowledge of the robustness of the method in the

context of water impacting and re-entering a surface as well as the phenomena of

droplet formation via pinch-off is essential.

This surface impact and re-entry test centered around the impact of a water

droplet on a flat free surface. The physics of this canonical problem include all of

the relevant issues of interest for this validation such as a moving bulk of water

impacting the surface, entry of the impacting water into the bulk below, splash-up of

the water surface after the impact event and droplet formation through pinch-off of

the resulting splash. The impact of a water droplet on a quiescent surface has been

the topic of a variety of studies for over a century [117]. The impact of a drop on a

pool of fluid is the source of many high speed photography studies. The formation

of the crown with droplets pinching off is a widely sought after picture amongst high

speed photographers. The resulting sheet which splashes up after the drop impact

contains tiny capillary waves and also ejects droplets back into the air. The ejected

droplets are not only nice to look at, but have considerable effect on fluid transfer on

the ocean surface during rain. Of particular scientific interest has been the formation

of a vortex ring underneath the impact region as vorticity near the air-water interface

effects a wide range of topics from the acoustic noise generated by rain to the effect

on the gas-transfer rate at the ocean surface.

The purpose of this study was not to try and answer any of the questions posed in

the available literature about this scientifically interesting and technically challenging

problem. It was only to gauge the capabilities of the level set in modeling this

problem. This problem was investigated using two formulations. The first uses the

two-dimensional formulation and implementation outlined in chapters 2 and 3. The

second is a basic implementation of an axisymmetric formulation based oi the work

of Sussman and Smereka [112]. The canonical problem begines as a circular drop
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Simulation Parameters
L A r/ Re" Fr We 7 A

0.25 0.001 0.01 10,000 4 oc 1 0.006

Equivalent Physical Parameters in Air and Water

Diameter Impact Velocity
~ 12.5cm 1.2 m/s

Table 5.1: Numerical parameters for the simulation of water droplet impact.

released from rest two diameters above the pool of still water which has a depth of only

a diameter. The parameters involved for the flow are given in table 5.1. The boundary

conditions for two-dimensional case are the same as the periodic wave tank described

in chapter 2 in that periodicity is used horizontally and free-slip conditions are used

on the vertical boundaries. For the axisymmetric case, the horizontal boundaries are

represented by symmetry planes and the vertical boundaries are free-slip boundaries.

A time history of the two-dimensional case is shown in figure 5-1. As the drop

begins to fall under the effect of gravity, vorticity begins to form in the air about

the droplet which is seen in figure 5-1a. At this Reynolds number, it is not expected

that the drop will deform any during its free fall. Thus, as it impacts the surface

as in figure 5-1b, it is essentially circular. The vorticity in the air flow about the

droplet shows signs of the formation of a separation bubble behind the droplet. The

motion of the droplet towards the air-water interface causes vorticity to form just

above the air-water interface. This vorticity is signed opposite of the vorticity which

is along the surface of the droplet. The impact of the droplet on the surface causes

this vorticity which formed at the air-water interface to be ejected horizontally. This

ejection strengthens it considerably. The impulse of the droplet impact on the surface

can be seen by the significant magnitude of the vorticity in the water at the impact

point. The splash-up after the drop has entered the water surface can be seen in

figure 5-1c. There is some amount of pinch off and droplet formation at the tips of

the splash sheet (not shown). The large vortices which have curled over the splash

sheet are from the vorticity which formed about the drop as it fell towards the water

surface. The vorticity which lies along the inside of the sheet are the vortices which
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formed just above the water surface as the drop moved towards the interface. Finally,

in the water volume signs of paired vortices being injected into the bulk flow can be

seen. However, as the tank depth was only a few diameters of the drop, these vortices

do not penetrate very deep. The depth of the tank also contributes to the relatively

high sheet splash-up verses the formation of waves propagating away from the impact

area.

A time history from the axisymmetric case is shown in figure 5-2. In this case,

the vorticity is not shown but two views of the air-water interface are shown. As the

droplet impacts the surface, transverse waves can be seen to propagate away from the

impact region. The surface begins to form a jet ejection at the impact point. However,

the limited tank depth interferes again with the formation of the jet ejection.

Through the simulation of this canonical problem for water impact, the level

set method proved to work exceptionally well for water re-entry problems without

any special treatment of the surface at the point of re-entry. Sheet pinch-off and

droplet formation were also evolved naturally without out any ad-hoc assumptions

regarding the treatment of the surface in these cases. While the simulations are two-

dimensional and without the effects of surface tension, the qualitative comparison to

physical experience is good.

5.2 Volume and Mass Conservation

In the literature pertaining to the level set method, there is a large focus on "mass

conservation". This mass conservation is related to the reinitialization of the level set

function to a signed distance function minimizing the drift of the zero level set. In

incompressible flows, mass conservation is related to satisfying the continuity equation

as discussed in section 2.2.1. To avoid confusion in this work, we have called the mass

conservation used in the level set community volume conservation as it is really is

about maintaining the volume of each fluid throughout the simulation. The techniques

used to conserve volume during the reinitialization process were discussed in detail

in section 3.8. We will retain the definition of mass conservation as satisfying the
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Figure 5-1: Time series of two-dimensional simulation of water droplet impacting flat
surface. Black line represents the air-water interface. Color contours are transverse
vorticity -5 < wy < 5 from blue to red.
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(a) T=0.000

(b) T=5.029

(c) T=6.138

Figure 5-2: Time series of axisymmetric simulation of water droplet impacting flat

surface. Each pair is for the same time from a slightly different viewing angle.
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continuity equation. This section reports the volume and mass conservation for the

waves in this study.

As reported in section 3.8, techniques garnered from various authors regarding

the reinitialization of the level set function were combined to provide superior volume

conservation. It was reported there that this improvement reduced the amount of

volume gained or lost by an order of magnitude. A representative spilling and plunging

event were shown against the method generally used in the literature pertaining to

the level set method in figure 3-10. Figure 5-3 contains the volume conservation for

half of the waves done in this study. While not all of the cases are shown, the volume

conservation for all of the waves in this study remains within the 0.2% cited in section

3.8. Careful study of figure 5-3 shows an oscillation in the volume conservation. The

frequency of this oscillation is due to the fact that the reinitialization is only done

after a number of time steps 0(50-100). As stated earlier, the reinitialization is not

done every time step only as a concession to balancing code performance with quality

of volume conservation. Unfortunately, it is not possible to compare this volume

conservation with the literature as the volume conservation is rarely reported. If it is

reported it is generally on the order of 2-3%.

Figure 5-4 shows the maximum and total divergence of the flow field for the

same waves shown in figure 5-3. The convergence tolerance of the pressure Poisson

equation will be a factor of the maximum divergence in the entire flow field (water

and air volumes) will be a factor of the convergence tolerance of the Poisson equation.

This is because the solution of the pressure Poisson equation dictates the amount of

divergence permissible in the flow field. If the Poisson equation was solved exactly

for the pressure field, then the maximum divergence in the flow field would be to

machine accuracy. However, as an iterative solver is used in this implementation,

it will be dictated by the accuracy to which this is solved. The total divergence

of the flow should be zero at every time step. This is because of the use of the

compatibility condition in the solution of the Poisson equation dictates zero divergence

in the integral sense. As seen in figure 5-4, the maximum divergence in the flow field

is generally O(10-') for all of the cases considered. As the tolerance for convergence
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Figure 5-3: Volume conservation for the waves in this study over the entire length of
the simulation. Outliers are case SFI-04 (upper) and SFI-11 (lower).
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criteria of the pressure Poisson equation is the L, norm of 10-8. This is quite

acceptable. The total divergence in the field for all of the cases considered is essentially

machine accuracy.

5.3 Damping of Linear Waves

The purpose of this test is to provide validation for the damping of linear waves by

viscosity as an initial measure of the numerical dissipation of the numerical imple-

mentation of this study. The method used here is a common method used for viscous

flow solvers which include free surfaces. In the absence of surface tension and air, the

amplitude of a linear wave will be damped out by only viscosity. An approximation

of the damping coefficient using linear Airy waves appears in Lamb [57] and a modal

analysis appears in Landau and Lifshitz [58]. Both show that the amplitude will

behave as:

c(t) = Coe-rt (5.1)

where co is the initial wave amplitude and F is known as the damping coefficient. The

non-dimensional damping coefficient for waves in a single fluid, using the wavelength

as a length scale is:
8wr2

F = 8(5.2)

Chapter 4 includes a derivation for the two-fluid Airy wave solution which was derived

in section 4.1.2. The simplified form of the damping rate (equation 4.30) is given here

for reference.
87r 2 71+ij 27r 2w

Rew I + A 1 + A Rew

Equation 5.1 defines the amplitude envelope of the damped gravity wave. This damp-

ing rate is used in many of the forthcoming chapters to determine the laminar damping

rate of the waves in this study. Thus, its applicability should be tested.

For this validation test, a non-breaking wave with little standing wave energy in

the domain was chosen (case A2P-01). The Reynolds number for this case is, as it is

for all cases in this study, 2000. Using the inviscid frequency of the wave as calculated

183



1 E-05-

5E-06-

L.U
0-

E

-5E-06-

0 5 10 15 20 25 30
t

(a) Maximum divergence in volume

1E-13

5E-14

C> 0

-5 E-14

-1E-13
0 5 10 15 20 25 30

t

(b) Total divergence in volume

Figure 5-4: Maximum and total divergence of entire flow field for the waves in this
study over the entire length of the simulation.
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by equation 4.16, the damping rate for the two-fluid Airy wave is 0.0388. The damping

rate for a single-fluid Airy wave based on equation 5.2 is 0.0395. The wave amplitude

at a given point in the domain over time as a wave probe would measure a train of

waves is shown in figure 5-5 along with the amplitude envelopes using both damping

rates. It should be noted that the amplitude envelopes essentially lie on top of each

other. Additionally, very little difference is seen if the actual frequency of the wave

is used as calculated through a Fourier transform of the wave (not shown). However,

the difference in the actual frequency of the wave and that given through the inviscid

dispersion relationship is 0.9%. The small effect of the standing wave can be seen

in the modulation of the amplitude during the decay of the wave in figure 5-5. This

particular wave has a standing wave which represents 1.22% of the total energy in the

wave. Despite the modulation by the standing wave, the damping of this two-fluid

Airy wave is as predicted by theory.

The results of this validation test show that while the comparisons are good, the

damping envelope is fairly insensitive to small changes in F. The F for a single fluid

predicts the damping envelope as well as the first and second terms of the two-fluid

solution. Thus, using this type of validation test for a rigorous check on energy

conservation is not prudent. Another method is presented in section 5.4.

5.4 Energy Conservation

As discussed previously, the common method of gauging numerical verses viscous

dissipation by studying the amplitude damping of a linear Airy wave is inadequate

for multi-fluid flows. The issue revolves around the dominance of the term which is

due to the water volume and inversely proportional to the Reynolds number. Unless

the second fluid has a density and viscosity near that of the water, the amplitude

envelope of the waves is fairly insensitive to the presence of the second fluid. Thus,

to better understand the energy conservation of the numerical implementation in this

study, a more rigorous check on the energy conservation is needed.

The method chosen for validating energy conservation was to begin with the equa-
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Figure 5-5: Amplitude of two-fluid Airy wave (case A2P-01) at x = 0 over the time of
the simulation. Black line represents amplitude envelope using the two-fluid solution
(equation 5.3). Blue line represents amplitude envelope using single-fluid solution
(equation 5.2). Note that the blue and black lines lie on top of each other.
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tion which governs the conservation of mechanical energy in the control volume. This

was derived in section 2.4. The change in total energy per unit volume was defined in

equation 2.61 using notation prevalent in the literature. It is given here for reference.

OE I 1
+ V - F = (V - - E) + (5.4)

Integration of equation 5.4 over the control volume of interest, namely the entire

computational domain yields:

aE -- + (5.5)
Bt ReaJ

where the periodic and free-slip boundaries have been used to simplifity the equation

and

{.Vjf}jdV

To determine the energy conservation of the numerical method, a residual is defined

based on equation 5.5 such that when zero, the numerical method conserves energy

perfectly.

DIE z
at+ Rd-,d = R (5.6)DL Red

The residual will include not only any energy losses due to the numerical implemen-

tation, but it will also include any numerical errors associated with the calculation of

equation 5.6. This residual is the rate that energy is (or is not conserved). To equate

this to an actual amount of energy lost throughout the simulation, the residual must

be integrated in time using a cumulative integration:

R(t) = Rdt (5.7)

Figure 5-6 shows the cumulated residual for all of the waves in this study over the
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Figure 5-6: Cumulative energy lost over the entire simulation for the waves in this
study.

entire life of the simulation. For all of the non-breaking cases, this residual is ex-

tremely small and relatively constant. As the breaking event becomes more violent,

the residual increases with the maximum amount of energy lost to numerical effects

occurring for cases where there is significant air entrainment.

The actual amount of energy lost during the entire simulation is only significant

when considered against the amount of energy lost to the physics being modeled.

Figure 5-7 shows the cumulative energy lost over the entire simulation as a fraction

of the total energy lost in the volume over the same time period. It is shown against

the amount of energy in the wave before breaking non-dimensionalized by the energy

in the Stokes limiting wave. This is chosen as it is a useful measure of the breaking
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Figure 5-7: Cumulative energy lost over the entire simulation as a fraction of the
energy lost to breaking during the simulation for all of the waves in this study. Plotted
against amount of energy in the wave before the breaking event. (<i) non-breaking,
(A) gentle-spilling, (V) strong-spilling, (0) jet formation, and (o) air entrainment.

strength of the wave in subsequent chapters. For all of the waves in this study, this

is less than 10% meaning that the energy in the entire volume is conserved to within

10%.

A similar technique can be used to address the conservation of energy for a single

fluid in the domain. In the case of the water volume, the residual is defined from

equation 2.67. Integrating over the same control volume as before, the equation for

the residual of the energy conservation in the water volume is:

"+ -We-X=R (5.8)
at Rew 7

Chapter 8 discusses the calculation of 7 extensively. In this chapter, it is determined
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that direct calculation of T in this study has been polluted through the double booking

of surface tension and surface forcing effects. Thus, because the residual in the water

(and air) volumes is dependent upon the calculation of y, the calculated residual for

these volumes degrades for many of the waves in this study. The residual for the

water volume using the direct calculation of the energy transfer rate at the interface

is shown in figure 5-8 as a fraction of the total energy lost in the water volume over

the breaking event. For many of the waves where there are stronger surface tension

effects, such as the spilling breaking waves, the amount of energy lost to numerical

error almost doubles. Thus, while less than 10% of the total energy lost in the entire

volume, because of the poor calculation of the energy transfer at the interface using

direct methods, the conservation of energy in the water volume during the breaking

event is only to within 16%. This does not mean that the energy conservation for

the water volume is poor. As the energy conservation of the entire volume is to

within 10%, the water and air volumes are also conserved to within this amount. The

significant residual calculation shown here only points to the poor calculation of the

energy transfer between the two volumes.

5.5 Convergence

This section discusses the convergence of the numerical method. The grid convergence

rate for a non-breaking and breaking wave in which all parameters are kept the same,

except the grid resolution is discussed. As discussed in section 2.7, this includes the

ratio of the viscous boundary layer to the level set boundary layer 7..

One must be careful in performing a grid convergence using a smoothed interface

level set implementation. In section 2.7.1, we showed that the governing equations

were a function of the level set boundary layer thickness (c) or its relationship to

the viscous boundary layer thickness (-y). The difference between the smoothed and

sharp solution is a fixed quantity once a smoothed interface is chosen. The question

becomes, what is the convergence of the smoothed governing equations? To this end,

grid convergence tests must be done with a fixed interface thickness verses a fixed
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Figure 5-8: As in figure 5-7 except for the water volume only.

191

0.2

0.

0.

< NB
A GS
V SS
o JET
o AIR

0

V 0
- -

-
V 0

0

0

<1I I I I

0.12

W 0.1

0.08

0.06

0.04

0.02

0



N 65,536 102,400 262,144
% Volume Conserved 0.0043% 0.0033% 0.0005%
Slope Parameter 0.3345 0.3315 0.3272
Fraction E, lost due to breaking 0.0140 0.0148 0.0154
Fraction viscous losses which are laminar 1.059 1.063 1.065
Fraction of energy lost transferred through interface 0.0428 0.0458 0.0489
Fraction of energy lost due to numerical error 0.00656 0.00453 0.00262

Table 5.2: Grid convergence for a non-breaking wave.

number of points in the interface. In the literature, the number of points over which

the interface is smoothed is usually given as a fixed parameter. Thus, only modifying

the grid spacing with a fixed number of points in the smoothed region as part of the

grid convergence test actually poses different problems instead of trying to converge

a single solution.

The first example of grid convergence can be seen in section 2.7 in the canonical

problem of the vortex pair rising to the interface. Figures 2-9 and 2-10 show a grid

convergence test which involved the modified level set function. The ratio between

the level set boundary layer and viscous boundary layer is kept constant as the grid

is refined and convergence can be seen in the profile of the interface and the vorticity

at the interface.

The convergence for the non-breaking wave is performed as follows. Case SFI-07

is run at three resolutions. This case is a non-breaking wave at Reynolds number

2000 and an infinite Weber number. Various quantities are given for the respective

resolutions in table 5.2. All of the quantities improve as the grid resolution increases.

In particular, the volume conservation increases drastically and the residual energy

lost throughout the simulation decreases as the grid is resolved.

The convergence for the breaking wave is performed in a similar manner for case

SFI-09. This case is also at a Reynolds number 2000 and an infinite Weber number.

In fact, case SFI-09 is case SFI-07 with a slightly larger surface forcing amplitude.

The same quantities shown for the non-breaking wave in table 5.2 are given for the

breaking case in table 5.3. As in the non-breaking case, volume conservation increases
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N 65,536 102,400 262,144
% Volume Conserved 0.131 0.055% 0.050%
Slope Parameter 0.7076 0.6938 0.6785
Fraction E, lost due to breaking 0.2470 0.2278 0.2095
Fraction viscous losses which are laminar 0.5093 0.5756 0.6517
Fraction of energy lost transferred through interface -0.2811 -0.3180 -0.3667
Fraction of energy lost due to numerical error 0.05514 0.0648 0.0845

Table 5.3: Grid convergence for a breaking wave.

with increasing grid resolution. In fact, except for the energy lost due to numerical

error all of the quantities shown improve with increasing resolution. The numerical

error increases for each increasing resolution of the breaking wave. The exact rea-

sons behind this are not clear. One possible reason is that, while the parameters of

the simulation (-y, and wave forcing), the resulting wave slopes before breaking are

different. Thus, each breaking wave is slightly different and convergence is hard to

judge.

5.6 Conclusions

The validation of the numerical method was presented in this chapter. First, the

robustness of the numerical method for simulating a water drop impacting a flat free

surface was considered. This test was used to determine the capability of the level

set method for flows with surface re-entry. Robustness in this area is critical for the

simulation of plunging breaking waves. The method proved to be highly adept at

simulating this phenomenon without any special treatment at the impact point.

Once the robustness of the method was established the volume and mass con-

servation of the implementation was established for all of the waves in this study.

The numerical method proved to conserve mass for the domain to within machine

accuracy. The volume of water simulated was also conserved to within 0.2% for all of

the waves considered. This volume conservation is an order of magnitude less than

what is established in the literature.
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The numerical dissipation of the implementation was also established. The first

attempt to determine this was done through the simulation of a plane progressive wave

which does not break. The damping of the amplitude of the wave was compared to

theory developed in chapter 4. However, it was determined that while this type of

validation may be adecuate for single fluid simulations, the effects of the air have little

effect on the amplitude envelope derived from theory. Thus, it would be difficult to

tell whether or not the energy conservation of both fluids is sufficient.

A second method involved the calculation of the energy equation for the entire vol-

ume. The residual of this calculation (left-hand side minus right-hand side) presents

the amount of energy lost during the simulation to numerical dissipation and any

errors associated with the energy calculation itself. The residual was shown as a

fraction of the total amount of energy lost in the volume. For all of the waves in this

study, this quantity was less than 10%. A similar residual calculation was shown for

the water volume only. This residual calculation is dependent upon direct calculation

of the energy flux rate term discussed in chapter 8. As discussed in chapter 8, there

are issues regarding direct calculation of this term at this time. Thus, the energy

conservation calculation for the water has more associated errors which is reflected in

the larger residuals for this volume. However, as the total volume calculation shows

an energy conservation of over 90% for all of the waves in this study, the numerical

implementation is considered to have adequate energy conservation.

Finally, a grid convergence study was presented. For the canonical problem of

a vortex pair interacting with a free surface, the convergence of the implementation

was established. The convergence rate for a single breaking and non-breaking wave

was also discussed.
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Chapter 6

Kinematics and Dynamics of

Breaking Waves

This chapter focuses on the kinematics and dynamics of breaking waves. While this

is a large field of study encompassing many relevant length and time scales, this work

focuses on the geometry, velocity field and surface stresses as they pertain to the

moderate length scales in this study. Of all of the areas of study, crest geometry

has received the most attention in the literature over the past two decades due to its

ease of measurement. Information regarding the velocity field is significantly sparser,

especially near the surface and in the free-surface boundary layer as well as in the

breaking region itself. This is particularly the case for plunging breaking waves where

very little about the kinematics is known after the plunging event where the entrain-

ment of air and three-dimensional turbulent nature of the field makes measurements

difficult.

For crest geometry, the most cited body of work is that by Bonmarin [8] which

uses multiple breaking wave generation techniques to generate an ensemble of breaking

waves and reports the evolution of seven geometric parameters up to breaking and,

if possible, during the breaking event for both spilling and plunging breaking waves.

The work of Duncan et al. [28] also details the crest evolution up to and through the

breaking event for gentle-spilling breaking waves.

While the geometry of breaking waves through the breaking event is relatively well
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documented, until just recently, very few experiments have tackled the difficult task of

measuring the velocity field in the breaking region. For gentle-spilling breaking waves,

Qiao and Duncan [90] provide a clear description of the velocity field throughout

the breaking event. Perlin et al. [85] provide velocity measurements of a plunging

breaking wave prior to breaking and recent velocity field measurements by Melville

et al. [77] look at the large scale effects of breaking waves on turbulence and the

formation of coherent structures. While it is not part of this study, it should be

noted that more progress has been made in measuring the velocity field of steady

breaking waves [59, 16].

In general, most experimental studies focus on the spectral evolution of the break-

ing waves to deduce information regarding the kinematics of wave breaking. Because

of the Reynolds numbers involved at the laboratory scale, the spectrum gives a fairly

accurate idea of the flow field and energy providing assumptions regarding equiparti-

tion of the energy and linear flow apply. In the context of pre-breaking build-up and

well after post-breaking, this technique is sound for wave groups in the laboratory

setting.

In theory, numerical simulations have the capability of providing both the surface

and velocity field evolution of breaking waves. Yet until recently, the methods have

been limited by either the physics being modeled (inviscid flows) or the numerical

method employed (surface re-entry). Numerical efforts which use inviscid techniques

include Dommerniuth et al. [24], Longuet-Higgiiis and Cokelet [68, 69], and Tulin et

al. [122, 115, 119]. Because simulating the surface re-entry problem is so difficult,

there are relatively few simulations which go past the breaking event for plunging

breaking waves.The recent techniques which include viscous effects and surface re-

entry are Iafrati and Campana [45] and Chen and Kharif [13].

This chapter uses the waves in this study to address the kinematics and dynain-

ics of spilling and plunging breaking waves. Section 6.1 details the spilling breaking

waves in this study by considering a representative case of a gentle-spilling and strong-

spilling breaking wave as defined in chapter 4. The evolution of the free-surface is

detailed along with the characteristic velocity, vorticity field, and vorticity flux. De-
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tailed comparisons to what is expected from experimental measurements is discussed.

The stresses in the wave throughout the breaking event are shown. The sources of

vorticity and stresses in the wave are shown to be essentially curvature effects due to

the deformation of the surface during the breaking event.

Section 6.2 deals with the plunging breaking waves in this study by focusing on

the formation of the jet, its breakup and re-entry into the front of the wave crest,

and the entrainment of air when applicable. It also details the velocity, vorticity and

stresses of the wave during the jet formation and the jet re-entry/breakup phases. The

air entrainment is briefly discussed within the context of the bounds of this study.

As the waves in this study are purely two-dimensional and the air is incompressible,

quantifying the concepts of bubbles and bubble dynamics is outside the scope of this

work. However, general comments and a qualitative discussion on the air entrained

is included at the end of this section.

Section 6.3 details the spectral evolution of a variety waves in this study. It

includes a comparison between non-breaking and breaking waves from incipient to

plunging. Qualitative comparison to the generally accepted results in the literature

is included. As wave focusing experiments generally contain broadband spectrums,

the comparison is qualitative mainly due to the narrow bandwidth of the waves in

this study. We have found that, in general, there is a shift in energy from low to high

wavenumbers in the pre-breaking buildup. This shift of energy is represented by the

steepness in slope developed before the breaking event. Within a few wave periods

after the breaking event, there is a loss of energy at all wavenumbers. The loss of

energy is much more significant at the higher wavenumbers.

6.1 Spilling Breaking Waves

A comprehensive review of spilling breaking waves is contained in a review paper by

Duncan [31]. During a spilling-breaking event, a "bulge" generally forms on the front

face of the wave surface. This bulge is accompanied by a train of small capillary

waves located at the bottom of the bulge on the wave face (or toe). Shortly after the
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bulge forms, it separates from the crest of the wave and moves down the face. This

motion of the bulge leaves a region of surface turbulence in its wake as well as the

presence of larger capillary waves.

The train of capillary waves at the toe of the bulge has received considerable at-

tention in the literature. In particular, Longuet-Higgins postulates that the capillary

waves generate a shear flow at the toe of the bulge [66, 65]. This shear flow quickly

becomes unstable and causes the bulge to separate from the wave crest and move

down the face. According to Longuet-Higgins theory, the presence of the capillary

waves at the toe is essential for the bulge to move along the face of the wave unless

the velocity field separates from the front face of the wave due to surface curvature

effects. In fact, it has been reported that there is no flow reversal (or separation) in

the wave up until the bulge moves along the face of the wave [90]. The only cases

reported in the literature in which flow reversal exists and the bulge did not move

relative to the wave crest were waves which were quasi-steady in nature, such as the

wave train behind a towed submerged hydrofoil [30].

In chapter 4, we classified spilling breaking waves into two types - gentle and

strong. Both types of spilling breaking waves are characterized by a steepening of

the surface and a localized region of increased energy at the crest. In a predominance

of the spilling breakers in this study, the steepening of the surface results in the

formation of the bulge on the wave crest as reported in the literature.

Figures 6-1, 6-2, and 6-3 show three stages of breaking for a spilling breaking wave

in this study. Also included in the figures are contours of transverse vorticity. The

first stage is a developmental stage (figure 6-1) where the bulge forms on the front

face of the wave. While it is not necessary for surface forcing to generate the breaking

wave, it is noted that in this particular case, the bulge forms during the forcing phase.

Before the bulge forms, there is little or no vorticity in the water flow and a small

amount of vorticity in the air due to the flow over the crest and trough. As the bulge

forms on the front face of the wave, a region of positive vorticity in the water flow

forms at the toe and significant vorticity develops in the air flow at the crest.

The second stage is the breaking stage (figure 6-2). During this sustained breaking
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stage, the bulge and toe are relatively stationary on the wave face and there is little

change in the vorticity in either fluid. Recalling the descriptions by Duncan and

Longuet-Higgins, the lack of motion by the bulge is different than what is seen in

experiments where the bulge separates from the crest and moves down the face of

the wave. At this point, it is not entirely clear why this is the case. However, the

reasons which may be responsible for this phenomena are discussed in detail later in

this section.

The third stage is a "dissipating" stage (figure 6-3) where the wave is returning

to a less energetic wave with little vorticity and curvature to the surface. This stage

sees a decrease in strength of the vorticity in the bulge and on the wave face. The air-

water interface begins to lose its characteristic bulge until it returns to a symmetric

plane progressive wave with an overall decreased amplitude. As the bulge did not

separate from the wave face and move relative to the wave crest, there is very little

turbulence or vorticity in the flow field after the breaking event.

With figures 6-1 through 6-3 in mind, this section discusses the evolution of the

air-water interface for both gentle- and strong-spilling breaking waves. The velocity

and normalized stress profiles are considered to elucidate the characteristic kinematics

and dynamics of the field. The vorticity field is examined as well as the sources of

vorticity through consideration of the vorticity flux at the surface.

6.1.1 Evolution of the Air-Water Interface

This section discusses the evolution of the air-water interface for the spilling breaking

waves in this study. The formation of the bulge in the spilling breaking waves is

shown in figure 6-4 for both gentle-spilling and strong-spilling breaking waves. From

a typical sinusoidal profile, there is an increase in crest elevation and decrease in the

trough depth prior to the bulge formation. The formation of the bulge is apparent

in both profiles during the breaking event; yet the strong-spilling waves have a more

pronounced bulge with larger curvature which lasts longer than the gentle-spilling

waves.

Bonmarin [8] also notes a change in crest elevation and trough depth prior to wave
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Figure 6-1: Time evolution (development) of a spilling breaking wave (case A2P-02)

with transverse vorticity contours shown. Interface is represented by red line if surface

forcing exists and black line if it does not. Nondimensional theoretical wave period

(T) is 2.57.
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Figure 6-2: Time evolution (breaking event) of a spilling breaking wave (case A2P-
02) with transverse vorticity contours shown. Interface is represented by red line if
surface forcing exists and black line if it does not. Nondimensional theoretical wave
period (T) is 2.57.
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Figure 6-3: Time evolution (dissipating) of a spilling breaking wave (case A2P-02)
with transverse vorticity contours shown. Interface is represented by red line if surface
forcing exists and black line if it does not. Nondimensional theoretical wave period
(T) is 2.57.
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Figure 6-4: Waterfall profiles of gentle-spilling (case A2P-04) and strong-spilling

breaking waves (case SFI-10). Successive vertical profiles (every At = 0.1) are offset

by Azff = 0.02. Red surface profiles are times when surface is being forced.
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Figure 6-5: Definitions for four asymmetry parameters.

breaking. Longuet-Higgins and Cokelet [69] showed approximately 20% increase in

crest elevation and decrease in trough depth for a wave of initial steepness of 0.28 just

prior to breaking onset. This is also seen in the waves in this study. For example, the

gentle-spilling breaking wave shown in figure 6-4a has a 25% increase in crest height

and 20% decrease in trough depth just prior to the breaking event.

In addition to the change in height and depth of the crest and trough of the

wave, the wave evolves from an initially symmetric sinusoidal shape to an asymmetric

shape. The asymmetric shape appears before the bulge formation. Kjeldsen and

Myrhaug [50] defined four parameters to describe the asymmetry of a wave profile: a

horizontal asymmetry factor p, a vertical asymmetry factor A, and a crest front and

rear steepness c and 6, respectively. Figure 6-5 defines these parameters. Bonmarin

[8] reports a range of these parameters for the breaking waves in their experimental

study. The waves in this study fall within the ranges of what is seen in Bonmarin's

study for all four parameters. This is shown in table 6.1.
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Table 6.1:

Comparison of wave asymmetry parameters to experimental data.1

Parameter Minimum Maximum Mean Value

(a) f: Horizontal asymmetry

Experiment 0.59 0.91 0.75 -

Gentle-spilling Wave 0.61

Strong-spilling Wave 0.58

(b) A: Vertical asymmetry

Experiment 0.78 2.37 1.38 -

Gentle-spilling Wave 2.43

Strong-spilling Wave 2.40

(c) c: crest front steepness

Experiment 0.24 0.68 0.41 -

Gentle-spilling Wave 0.49

Strong-spilling Wave 0.54

(d) 6: crest rear steepness

Experiment 0.19 0.42 0.31 -

Gentle-spilling Wave 0.20

Strong-spilling Wave 0.22

Experimental data from Bonmarin [8] table 4; Gentle-spilling wave (A2P-04); Strong-spilling wave (SFI-10).

What is not seen in the free-surface profiles in figures 6-1 through 6-4 or any of

the spilling breaking waves in this study is the train of capillary waves at the toe of

the bulge. Nor does the bulge appear to separate from the crest and move down the

front face of the wave. In all of the spilling breaking waves in this study, the bulge

forms and then dissipates without any relative motion to the wave crest.

There are a few possible reasons as to why the capillary wave train appears in

experiments and some simulations but does not appear in this study. The first is that
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the physical length scale of the waves considered in this study is relatively small (0.1

cm) compared to the experiments (1 in). Longuet-Higgins [66] reports, that for waves

which the wavelength is on the order of 1 m, the capillary wavelength is on the order

of 5-50 cm . This reported capillary wavelength is well above the primary wavelength

of the waves in this study by at least an order of magnitude. There are no published

experimental results of waves at this wavelength. Thus, it is not clear if waves of this

size see a wave train at the toe near the bottom of the bulge.

Second, if such a wave train were to exist for waves of this scale, it is uncertain

if the simulations performed in this study would resolve them. Consider the waves

generated by Duncan [28]. The primary wavelength of the generated wave was 0.789

im which resulted in a capillary wavelength of 0.38 cm. Relatively speaking, based on

the wavelength of the main wave in the simulations, the capillary wavelength which

would result would be about 35 pm. This wavelength is unfortunately smaller than

the smallest resolved wavelength (45 pm) in this study. Thus, if waves of primary

wavelength on the order of 0.1 cm do indeed form a secondary wave train near the

bulge during the breaking event, the resolution of these simulations was not sufficient

to detect their presence.

Third, the moderate Reynolds number of the waves in this study (Re, = 2000)

damps out the small capillary waves before they are formed. Consider the wavelength

seen in Duncan's experiments of 0.789 m. A pseudo-viscosity for this wavelength at

a Reynolds number of 2000, is O(10-3). The capillary waves in Duncan's experiment

are 0.38 cm. Using this pseudo-viscosity, the Reynolds number for the capillary wave

is 0(10-1). Based on equation 4.30, the damping rate of these capillary waves is

0(100) which is four orders of magnitude larger than the primary wave. Based on

the wavelength and frequency of the capillary waves, the waves would be damped

out in a single capillary period because of the increased dissipation from the pseudo

viscosity.

The fourth reason is purely numerical. It is not clear if the smoothed interface

has an effect on the formation of the capillary waves. Based on these four arguments,

the characterization of the presence and effect of the capillary wave trains seen in
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experiments is considered outside the scope of this study.

The evolution of the free-surface during the spilling breaking event up until the

bulge movement compares well to what has been presented in the literature in terms

of the geometry and behavior. The absence of a capillary wave train is disappointing

as no direct comparison can be made to existing experiments. However, its absence,

combined with the lack of movement of the bulge, is an indirect correlation to what

is proposed in the literature.

6.1.2 Characteristic Velocity Field

Within the reference frame fixed with the crest, the flow field for a plane-progressive

wave consists of a surface parallel current in the opposite direction of the crest motion.

As the surface deforms during the bulge formation, the velocity field can either follow

the surface or separate from the surface, forming a dividing streamline with the flow

in the bulge above it. In experiments on gentle-spilling breaking waves performed by

Qiao and Duncan [90], the flow field has been observed to follow the surface providing

the bulge is not moving along the surface relative to the crest. This is also seen in

the gentle-spilling breaking waves in this study. Figure 6-6 shows an instantaneous

characteristic velocity profile for a gentle-spilling breaking wave during the breaking

phase as seen in figure 6-2. Also included is the air-water interface and a select

number of streamlines in the water and air volume near the surface. At this instant

and throughout the breaking event, the velocity field in both fluids is able to follow

the curvature of the surface and no flow separation exists. This is the case throughout

the breaking event for the spilling breaking waves in this study. However, in general

some flow reversal is seen in experiments during the period of bulge movement [90].

As the bulge does not move nor does the shape of the bulge increase such that the

flow can not follow the surface, no flow reversal is seen or expected.

The normalized stress components rij/p(O; c) = 2 Sjj are shown in figure 6-7.

While the normal stress are equal and opposite due to continuity, both the normal

stresses T1 1 and 733 are shown for completeness along with the shear component, T13 .

The toe of the bulge and the bulge itself contains a localized region of increased
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Figure 6-6: Instantaneous velocity vectors of gentle-spilling breaking wave (case A2P-

02) during the breaking phase. Every second vector is plotted. Blue line is surface

location. Green lines are streamlines.

stresses. This equates to a large region of dissipation at the toe and in the bulge.

Additionally, as seen in the velocity vectors in figure 6-6, there is no sign of a sep-

aration point where the tangential stress along the face of the wave would be zero.

The stresses in the air volume are similar in nature in that there are regions of high

stress at the bulge due to the curvature, but no separation exists in the air volume.

Above the crest of the wave, there is also a region of shear stresses which occurs as

the air-flow attempts to follow the curvature of the wave crest.

The normalized stress components can be converted to surface normal and surface

shear stresses through the use of the normal and tangent vectors. The transformation

is:

Tnn ~~ ni7ij-j

Tns = tirijnj (6.1)

The definition of the normal vector is in equation 2.12 but with a negative sign
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Figure 6-7: Instantaneous normalized stress components for a gentle-spilling breaking

wave (case A2P-02) during the breaking phase. Black line is surface location. White

line are streamlines as in figure 6-6.
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such that it points out of the water into the air volume. Thus,

n = -

t = i ol (6.2)

are the normal and tangents used in equation 6.1. The normalized surface normal

and shear stresses are shown in figure 6-8. As is seen in figure 6-7, the toe region has

a localized region of large stresses, both normal and shear, in both the air and water

volumes which will contribute to significant dissipation. The crest itself is essentially

stress free in both fluids. Yet, above the front face of the crest in the air volume,

there is significant amount of positive surface shear stress as the air flow adjusts for

the curvature of the surface. Also, just above the toe area, there is a small point of

negative normal stresses in the air. In the bulge area, the water volume has a small

region of negative shear stresses just following the positive region in the toe. The air

flow also sees regions of negative shear stress around the toe region. Thus, while no

separation exists in the flow, there are regions where, in the surface coordinates, the

shear stresses have become zero.

For the waves which are strong-spilling breaking waves, the bulge on the front face

of the wave is more pronounced (see figure 6-4). Thus, flow reversal and separation

in these cases is more likely as the surface parallel velocity has a sharper change in

curvature to follow than in the gentle-spilling cases. Figure 6-9 shows the velocity

field in the reference frame of the crest for a strong-spilling breaking wave during

the breaking event. Compared to the gently-spilling breaking wave in figure 6-6,

there is an increase in curvature of the surface at the toe of the bulge; however,

there is no significant flow reversal in the water volume for this case. As it has been

established that bulge movement relative to the crest generates a separated field for

unsteady spilling breaking waves [90], this is not unexpected. In fact, the cases in

the literature where there exists a definitive separated bulge region which does not

move are cases of quasi-steady breaking waves where a detached bulge rides above

the dividing streamline [15, 59]. The flow in the air above the wave has a distinct

210



0.05

N

0

-0.05

10
8
6
4
2
0

-2
-4
-6
-8
-10

I I

0.2 0.4

(a) r../(4)

0.1

0.05

N

0

-0.05

10
8
6
4
2
0
-2
-4
-6
-8
-10

I I i I I I

0.2 0.4
x

Figure 6-8: Instantaneous normalized stress components in surface coordinates for a

gentle-spilling breaking wave (case A2P-02) during the breaking phase. Black line is

surface location.
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Figure 6-9: Instantaneous velocity vectors of strong-spilling breaking wave (case SFI-
10) during the breaking phase. Every second vector is plotted. Blue line is surface
location. Green lines are streamlines.

flow reversal at the toe of the bulge like an interior corner flow. Based on the velocity

field and streamlines, there is evidence of a separated region in the air volume above

the wave crest like an exterior corner flow. This is very much like what is seen in

studies of flow over wavy surfaces or mountains. Note in figure 6-9 the streamlines

go through the interface. At this instant in time, there is an upward motion of the

surface due to the presence of a standing wave in the computational domain.

As in the gentle-spilling case, the normalized stress components are shown in figure

6-10 for the strong-spilling breaking wave. In general, compared to the gently-spilling

waves, the normal stresses in the water volume are fairly similar in nature, albeit

stronger, and again balance out as continuity demands. The shear stresses are much

stronger and less localized at the bulge region, reaching back into the wave. The

larger magnitude of the stresses indicate a larger dissipation rate in these types of

waves, which is confirmed in chapter 7. The shear region in the wave crest begins

at the toe location and practically extends the entire width of the wave crest, in-line

with the surface parallel velocity as it approached the toe. This reveals the existence

of a shear layer between the bulk fluid and the fluid in the crest of the wave. While

no flow reversal exists in the water volume in these strong spilling breaking waves,
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Figure 6-10: Instantaneous normalized stress components for a strong-spilling break-

ing wave (case IAW-04) during the breaking phase. Black line is surface location.

White line are streamlines as in figure 6-9.

a fairly strong shear layer does as the flow adjusts to the free-surface profile. The

air volume shows the greatest difference between gentle- and strong-spilling breaking

waves. While there is no sign of separation in the air volume for gentle-spilling

breaking waves, there exists a small region right near the toe of the bulge where zero

stress exists. The shear layer above the wave crest in the air flow still exists and as

expected is considerably stronger than in gently-spilling waves.

Figure 6-11 shows the normalized stresses in surface coordinates calculated as in

equation 6.1. As in figure 6-10, there is a strong localized region of positive surface

normal and shear stresses at the toe. The normal stresses have a small point of

negative stresses in the air above the toe which was seen in the gentle spilling breaking

wave. The surface shear stresses in the water volume are dominated by the toe

location without evidence of any other significant regions of activity. In the air
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volume, however, the area above the crest of the wave has significant positive shear

stresses and just before the toe region a negative shear stress. Again, the shear

stresses change sign near the toe region in the air showing a flow reversal and possible

separation region.

6.1.3 Vorticity and Vorticity Flux

Through investigation of the velocity and stresses of spilling breaking waves in section

6.1.2, the bulge region of the breaking wave was determined to be the region of

interest. Thus, the vorticity in this mainly irrotational flow field is expected to be

confined to the bulge region. This is seen in figures 6-1 through 6-3 where the vorticity

for each stage of the spilling breaking event is shown. The developmental stage shows

the vorticity developing in both fluids as the bulge forms. During the breaking event,

the vorticity is relatively unchanged. During the dissipation stage, the strength of

the vorticity decreases as the bulge disappears. Figure 6-12 shows the vorticity for

both the gentle- and strong-spilling breaking waves during the breaking event. The

structure of the vorticity is fairly consistent between the two cases. There is a strong

positive vortex at the toe of the bulge in both the air and water volumes. Note that

positive vorticity is clockwise in these figures. There is also secondary weaker vortex

of negative vorticity right above it on the bulge.

In his paper regarding capillary rollers and bores, Longuet-Higgins [65] proves that

any curved, free surface (in a steady flow) is a source of vorticity and its strength

is proportional to the curvature times the particle speed (W = -2Kq). As the bulge

does not propagate, the spilling breaking waves in this study can be considered steady

within a reference frame which follows the crest over a short period of time. However,

because this study includes the effects of the air volume above the wave, the air-

water interface is not a shear-free surface in that its boundary condition is only that

of continuous shear between the two volumes. Also, as seen in figures 6-7 and 6-10,

the region of the bulge is not a region of minimal shear. Thus, direct comparison

to the theory is not applicable. However, when compared to the local curvature and

tangential velocity component (2,d . t), there is qualitative comparison to Longuet-
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Figure 6-11: Instantaneous normalized stress components in surface coordinates for
a strong-spilling breaking wave (case IAW-04) during the breaking phase. Black line
is surface location. White line are streamlines as in figure 6-9.
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Higgins in the sense that the strength (and sign) of the vorticity agrees within 20%.

Based on this assessment, the vorticity in the water which appears at the toe of the

bulge is believed to be a curvature effect only. For the air, the vorticity in the region

is also a curvature effect while the vorticity above the crest is due to separation of

the air flow from wave crest.

Following the work of Rood [93, 94], the vorticity flux at the surface is shown in

figure 6-13. The vorticity flux which is shown is the two-dimensional version of

1 1
Ti - WG = ii - VWY (6.3)

in 2D

In equation 6.3 and figure 6-13, the normal points into the surface. Therefore, from

the perspective of the water volume, a negative vorticity flux means a flux of positive

vorticity into the water volume. From the perspective of the air volume, it represents

a flux of positive vorticity into the air volume. This is confirmed with figure 6-12.

To summarize the kinematics and dynamics of spilling breaking waves, it has been

determine that the flow in the wave is responding to curvature effects. There is no

sign of any flow reversal for the water volume in the velocity vectors and normalized

stresses, even for the strong-spilling breaking wave. Therefore, the vorticity in the

water is only a function of curvature effects. The flow in the air around the wave

presents a different picture. Analysis of the velocity and stress fields shows that as the

wave transitions from a gentle- to strong-spilling breaking wave, the air experiences a

flow reversal at the toe of the bulge. This reversal is a significant source of vorticity

for the air and there is a corresponding increase in the stresses in the fluid (and the

dissipation which is discussed in chapter 7). The back face of the wave (or backside

of the crest) is generally another point of separation for the air flow around the

wave. Depending on how energetic the air flow is as it approaches the crest of the

spilling breaking wave, the air separates off of the crest much like the flow off of a

backward facing step. This is evident even in the gentle-spilling breakers but certainly

predominant in the strong-spilling breakers.
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Figure 6-12: Instantaneous vorticity contours for spilling breaking waves during the

breaking event. Gentle-spilling is case A2P-04 and strong-spilling is case SFI-10.

Black line is surface location.
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Figure 6-13: Instantaneous vorticity flux for spilling breaking waves during the break-
ing event. Gentle-spilling is case A2P-04 and strong-spilling is case SFI-10. Black
line is surface location.
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6.2 Plunging Breaking Waves

Past studies regarding plunging breaking waves have mainly focused on the topic of

waves in shallow water such as shoaling and waves impacting on walls such as sea

walls. Deep water plunging breaking waves are less common in nature but have a

great effect on offshore structures, air-sea mixing, increased ocean turbulence and

wind-wave-current interactions. Experimental measurements of deep water plunging

breaking events have appeared within the last few decades [92, 80, 54]. However,

the experimental methodology was limited to qualitative measurements during the

breaking event. As will be discussed in chapter 7, these measurements treat the

breaking region like a "black box" where increased turbulence and the entrainment

of air makes detailed measurements difficult. Recently, some authors have attempted

to make quantitative measurements during the plunging event [77, 85]. Yet because

the field of view used for the experiments encompasses the entire wave, the details of

the flow at the crest and in the free-surface boundary layer are lacking.

Until recently, the numerical study of plunging breaking events has been limited

to two-dimensional simulations using potential flow methods [24, 68]. These works

give a detailed view of the crest kinematics and dynamics up until the plunging jet

re-enters the water surface. Due to the numerical method employed, they can riot

simulate past the re-entry event. A recent numerical work by Chen and Kharif [13] is

the first viscous simulation of a plunging breaking wave. This work shows the impact

of the plunging jet on the surface and subsequent impact events as the jet either

bounces along the wave face or causes an ejection from the bulk flow. However, the

constitutive properties of the fluids used in the simulation do not have the properties

of air and water. In particular, the viscosity ratio is significantly higher (0.4 compared

to the actual 0.01) than in reality, thus the applicability of their results has yet to be

seen.

Experiments and simulations report that during the development of a breaking

wave, the wave develops significant asymmetry. In a spilling breaking wave, the

asymmetry gives way to the bulge as discussed in section 6.1.1. For a plunging
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breaking wave, the asymmetry develops into a near vertical region on the crest of the

wave. In general, during a plunging event, a jet forms at this point shortly after it

becomes near vertical. This event is usually associated with a particle velocity speed

which is greater than the phase speed of the wave and a large pressure gradient at

the location of the jet formation which then accelerates the flow forward [671. In

the literature, the jet which forms curves and stays intact during the plunging event

where it re-enters the front face of the wave [8, 92]. This forms an initial air pocket

which is responsible for most of the air entrainment. The plunging jet then causes

subsequent splash-up and re-entry events. Each event is decreased in amplitude and

the amount of air entrained.

Chapter 4 discusses how surface tension is used to create plunging breaking waves

at the length scale relevant for this study. By reducing the surface tension effects,

the jet formation is allowed to occur. All of the plunging breaking waves generated

in this study have been generated using a relatively weak surface tension coefficient

and either a surface forcing technique or over-energetic wave field. In chapter 4, the

plunging breaking waves were separated into two types: those that form jets and

those that entrain air. In the jet-forming events, the jet which forms is ejected from

the near vertical wave face. The jet impacts the wave surface and then has subsequent

ejection and re-entry events. However, because of the thinness of the jet which forms

in these cases, the jet pinches off of the wave face at the ejection point before the

air pocket collapses and entrains air into the bulk flow. The waves which entrain air

have a thicker jet which forms and stays intact as the air pocket collapses.

The majority of the plunging breaking waves in this study have been classified

as jet-forming with only a few waves entraining air. Figures 6-14, 6-15 and 6-16

show the time evolution of the air-water interface and the transverse vorticity for a

plunging breaking wave which has a jet ejection. The breaking event has three main

stages. The first is the development stage (figure 6-14) in which the surface of the

wave becomes near vertical. Up until this time, there is no vorticity in the water

except for a very thin region on the front face of the wave. The air flow has relatively

strong vorticity near the crest and trough of the wave.
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As the jet forms and the curvature of the air-water interface becomes significant

(figure 6-15), the vorticity in the water becomes stronger in this area but is still

limited to a thin region near the interface. The air sees significant vorticity as it is

trapped underneath the jet and the air pocket is formed. When the re-entry event

occurs (figure 6-15c), there is a region of positive vorticity in the water beneath the

impact point which is the result of the impulse of the jet on the wave face.

The third stage of breaking for the jet-forming cases is a jet disintegration (figure

6-16) stage. Here the jet becomes thin and pinches off. There is very little change in

the vorticity field for during the jet disintegration phase as most of the vorticity is in

a thin region near the surface of the wave.

The other type of plunging breaking wave in this study is the case where there

is significant air entrainment. These cases were formed through over-energetic waves

as initial conditions and have the most standing wave energy associated with them.

Figures 6-17, 6-18 and 6-19 show the interface evolution and transverse vorticity

contours for one such wave. This type of plunging breaking wave has four main

stages associated with it. The first stage is the development stage and is shown in

figure 6-17. The effect of the over-energetic wave with the standing wave influence

can be seen in the surging motion of the interface. Similar to the jet-forming plunging

wave, the surface becomes near vertical which leads to the formation of the jet. The

vorticity in the water is also relegated to a very weak and thin region at the interface

on the front face of the wave. The air flow sees considerable vorticity in the flow as

the overall amplitude of the wave is significantly larger than the jet-forming cases.

This causes separation in the air flow at the crest and trough of the wave.

The second stage of this type of wave is the jet formation stage (figure 6-18).

Compared to the jet formed in the previous case, a thicker jet forms and curls down

towards the front face of the wave. However, while the jet is relatively thicker, the

vorticity is similar to that of the jet ejection in that it is still confined to a thin region

near the surface for the water and relatively large in the air flow as the air pocket

forms.

The third stage of this type of breaking wave is the jet re-entry phase. The jet
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re-entry phase is shown in figure 6-19 with the air entrainment phase reserved for

discussion section 6.2.3. During the jet re-entry phase, there is localized regions of

strong vorticity at the points where the jet impacts the front face of the wave as well

as points of extreme curvature where the jet has curled over. The re-entry phase

has multiple impact events before the jet has thinned enough to disintegrate. The

vorticity in the air flow during this phase remains strong. The fourth stage is the air

entrainment phase which is reserved for discussion in section 6.2.3.

6.2.1 Jet Formation

The formation of the plunging breaking wave is shown for two cases in figures 6-20

and 6-21. The first case is where a packet of fluid is ejected from the water surface at

the crest, which has been termed jet-forming in this study. Due to the nature of the

jet, it disintegrates before the air pocket collapse can entrain air into the flow. Thus,

there is little or no air entrainment in these types of waves. The second case is where

the jet remains intact long enough for the air pocket to collapse and entrain air.

For both cases, the formation of the jet is similar to that reported in literature in

that right before the jet formation there is a point where the crest becomes essentially

vertical. As the jet forms, the surface takes on a blunt curved appearance and re-

enters the surface. For the cases where the plunging event represents a fluid ejection,

the jet is generally very thin and pinches off at the point from where it ejected. What

is left of the jet impacts the front face of the wave. This impact happens one or

two more times in something akin to a skipping motion verses secondary and tertiary

ejection events.

For the cases where the plunging event is more violent and entrains air, the jet

which forms is thicker at the point of formation and does not break up quickly. In

fact, the jet remains in tact through the first and second re-entry event. This type

of plunging event is more representative of the plunging events seen in wave focusing

experiments and some numerical simulations verses the jets which pinch off as in the

ejection case discussed previously.

Description of the crest overturning phase of the plunging event has received recent
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Figure 6-14: Time evolution (development) of a plunging breaking wave (case SFI-04)
with vorticity contours shown. Black line represents air-water interface. Nondimen-
sional theoretical wave period (T) is 2.51.
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Figure 6-15: Time evolution (jet formation) of a plunging breaking wave (case SFI-04)
with vorticity contours shown. Black line represents air-water interface. Nondimen-
sional theoretical wave period (T) is 2.51.
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Figure 6-16: Time evolution (jet disintegration) of a plunging breaking wave (case
SFI-04) with vorticity contours shown. Black line represents air-water interface.

Nondimensional theoretical wave period (T) is 2.51.
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Figure 6-17: Time evolution (development) of a plunging breaking wave (case IAW-

10) with vorticity contours shown. Black line represents air-water interface. Nondi-

mensional theoretical wave period (T) is 2.51.
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Figure 6-18: Time evolution (jet formation) of a plunging breaking wave (case IAW-

10) with vorticity contours shown. Black line represents air-water interface. Nondi-

mensional theoretical wave period (T) is 2.51.
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Figure 6-19: Time evolution (jet re-entry) of a plunging breaking wave (case IAW-10)
with vorticity contours shown. Black line represents air-water interface. Nondimen-
sional theoretical wave period (T) is 2.51.
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attention mathematically by Longuet-Higgins [64], New [81] and Greenhow [381. The

theory of New states that the inside profile of the overturning jet of a plunging

breaking wave was approximated by an ellipse with a major-to-minor axis ratio of

V3. Bonmarin [8] considers the ellipse solution of New to one plunging breaking wave

by inscribing the './5 ellipse on the interior of the jet as well as the best fit ellipse. For

the wave discussed, it was found that shortly after the jet formed, the ratio started

on the order of 2, decreased to 1.3 and then increased to 1.6 by the jet impact. Figure

6-22 shows three moments in the plunging event for a wave which has air entrainment.

In all three cases, an ellipse which is the "best fit" to the interior curvature of the

wave is shown. The v'-ellipse is also shown for comparison. For this particular wave,

the best-fit ellipse begins with the theoretical V'-ellipse. At the moment of impact

in figure 6-22c, the ellipse has a major-to-minor axis ratio of 2.3. Table 6.2 contains

a comparison of the wave in figure 6-22 and Bonmarin's experimental results. Both

show similar trends in that the ratio begins larger than the theoretical value, drops

to lower the value and then increases again. Otherwise there is variability in the ratio

throughout the breaking event.

Table 6.2: Major-to-minor axis ratios of best-fit ellipse for a

plunging breaking wave (case IAW-10) and experimental results.

Level Set Simulation Experimental Results [8]

t a/b t a/b

t 1.731 t 2.33

t + 0.04T 1.97

t + 0.08T 2.09 t + 0.10TO 1.36

t + 0.12T 1.67

t + 0.16T 1.86 2 t + 0.12To 1.49

t + 0.20T 1.86

t + 0.24T 2.09

t + 0.28T 2.32 3 t + 0.14To 1.61

'figure 6-22a; 2 figure 6-22b; 3 figure 6-22c
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The velocity field in the reference frame of the crest of both types of plunging

events as the jet forms is shown in figure 6-23. For the ejection case, the horizontal

velocity is just slightly greater than the speed of the crest with very little vertical

velocity. This is in stark contrast to the case with air entrainment where, while the

horizontal velocity in the jet is still greater than the crest speed, the vertical velocity

is significant. It should be noted that no comparison between the magnitude of the

velocity field between the two figures should be made as the velocity vectors are scaled

differently. Also note that as in the discussion of the velocity field for spilling breaking

waves, the streamlines which go through the interface are a function of the presence

of the standing wave. At the instant in time shown, there is an upward motion of the

interface due to the standing wave in the computational domain.

It has become accepted in the literature that when a jet forms on the crest of the

wave the velocity at that point is greater than the phase speed of the crest. This is

seen in numerical simulations and experiments [68, 85]. Additionally, Longuet-Higgins

states that there is a significant pressure gradient at the point of the jet formation

which accelerates the fluid and propels the jet forward [67]. This type of behavior is

seen in both types of plunging events. Figure 6-24 shows the pressure field inside the

wave for the ejection case. The gradient of the pressure field is represented by the

vector field in this figure. The range of the contours has been limited to highlight the

jet region. The gradient of the pressure field is very strong horizontally at the point

of ejection.

Perlin et al. [85] state that up to the point of jet formation, the flow is essentially

irrotational. However, this claim is fairly weak based on the resolution of their mea-

surement techniques. As discussed in section 6.1.3, any curved surface (shear-free or

not) is a source of vorticity in the flow. As the free-surface elevations in figures 6-20

and 6-21 show, there should be a certain amount of vorticity in the flow near where

the jet begins to form as the surface experiences a significant change in curvature.

The evolution of the vorticity during the jet formation and breakup is shown in figure

6-25. In the vertex of the jet, a positive vorticity exists beginning at the jet formation

throughout the ejection event. The tip of the jet also has a small amount of negative
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Figure 6-23: Instantaneous velocity field of two types of plunging events in the ref-

erence frame of the crest as the jet is forming. Blue lines represent surface location.

Green lines represent selective streamlines.
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vorticity due to the opposite sign of the curvature at that location. Throughout the

formation of the jet, the vorticity is confined to a very narrow region near the surface

and it is unlikely that the experiments by Perlin et al. [85] could resolve this vorticity

with any accuracy.

It should also be noted that in comparison to the vorticity in the water. the

vorticity in the air is significantly larger (by at least an order of magnitude). As

discussed within the context of spilling breaking waves, the air generally experiences

significantly larger vorticity due the curvature of the water surface and the separation

it causes. In figure 6-25 it has been removed to focus on the vorticity in the water

volume.

6.2.2 Jet Re-Entry and Breakup

The breakup of the jet in the case of ejection has not been widely studied in the liter-

ature. Longuet-Higgins [67] proposes that the disintegration of the jet in a plunging

breaker is a two-stage process. The first is an inviscid mechanism which breaks the

three-dimensional sheet of water transversely into fingers. This mechanism is caused

by a rapid growth of perturbations as the jet becomes thin. According to Longuet-

Higgins, this thinning of the sheet is accompanied by a drastic reduction in the normal

pressure gradient in the jet. The second stage occurs relatively quickly once the fingers

appear. During this stage, the fingers break up and form droplets through thinning.

While Longuet-Higgins theory is for a three-dimensional process (the breakup

of sheet to fingers which then form droplets), some similarity between his theory

and the breakup of the two-dimensional jets in this study can be seen. Figure 6-26

is a magnified view of the free-surface evolution shown in figure 6-20. Starting at

the surface labeled (I), the jet is thin and continues to thin before it pinches off at

II < T < III. At profile (II), the jet thickness is just greater than two grid points.

Small cylindrical droplets form at the pinch-off point. At the moment before jet

pinch-off, there are no perturbations on the surface where the jet is thinning. Thus,

the mechanism for the jet breakup at this point is pinch off due to the thinness of the

sheet.
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Figure 6-26: Enlarged view of breakup of jet in the ejection case (case SFI-11).
Successive free surfaces are at At = 0.1. Vertical offset is Az 11 = 0.04.

One key to the jet breakup as cited in Longuet-Higgins paper [67] is a significant

decrease in the pressure gradient within the jet. Figure 6-27 shows contours of the

dynamic pressure in successive moments before the jet breakup. The range of the

contours have been minimized to highlight the jet area and blanked out in the bulk

flow. As the jet forms, there is a substantial decrease in the pressure field in the jet,

especially at the pinch-off point. There is essentially no pressure gradient in the jet

itself except at the very tip of the jet where curvature effects exist.

Once the jet has impacted the surface and caused a second ejection, the tip of

the jet begins to see a perturbation on the upper and lower surfaces (c.f. figure 6-26

profile IV). The surface forms what is described by Taylor [116] (and subsequently
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Longuet-Higgins) as a symmetric perturbation. This symmetric perturbation grows,

but not as quickly as the sheet thins. Thus, the sheet will quickly break into droplets.

This is seen at profile V where the sheet has broken into four droplets.

For the case where the jet entrains air, this type of pinch off and jet breakup

does not occur during the first plunging event. Instead, the jet stays in tact. Figiire

6-28 shows the surface evolution during this initial phase for a plunging case which

later entrains air. Compared to the ejection in figure 6-26, the jet in this case is

considerably thicker and more rounded. It re-enters the water surface and causes

a second jet to form. The second jet is somewhat more similar to the ejection jet

in figure 6-26. As it lengthens and thins, the tip of the jet begins to show signs of

perturbations which later pinch off and form droplets.

Figure 6-29 shows contours of the dynamic pressure shortly after the first impact

event and the jet ejection. At the point of impact, there is a region of significant

pressure which has resulted from the impact force of the jet on the surface. Inside

both the first and second jet there is little pressure gradient except at locations of

extreme curvature due to surface tension effects. The beginnings of the initial pinch

off of the second jet is also visible in this figure.

Figures 6-30(a) and 6-30(b) show the extent of the jet impact on the flow field.

Within the reference frame moving with the crest, there is very little influence of

the jet re-entry on the underlying bulk flow beneath z/A = -0.1. This compares

well to the experimental measurements of Bonmarin [8] where it is stated that the

penetration of the jet does not impact the bulk flow significantly.

The evolution of the (normalized) stresses from the formation of the jet through

jet breakup is shown in figures 6-31 through 6-34. As the two normal components are

equal and opposite due to continuity, only one of the normal components is shown

here. At the point of jet formation (figure 6-31), there is a concentration of normal

and shear stresses at the concave section below the point where the jet forms. unlike

the case of strong spilling breaking waves where the shear region almost reaches the

entire extent of the wave crest, the shear region is considered a local region. This

localized region persists as the jet impacts on the front face of the wave (figure 6-32).
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Figure 6-28: Air-water interface during initial plunging event (case IAW-10). Shown
at every At = 0.1. Color represents the surface at different times.
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Figure 6-29: Dynamic pressure Pd after first impact event and ejection. (case IAW-10)

Black line represents air-water interface.

Additionally, at the point of impact, as is to be expected there is another region of

strong stresses (normal and shear). The jet itself is generally free of stresses except

near where it has impacted the surface. Shortly after the first impact event (see figure

6-33), the localized region of shear stress at the point of the first jet formation has

disappeared. Yet, this region still persists in the normal stresses.

At the point of impact, the character of the normal stresses has changed. Where

it was initially a single localized region of positive (for -r11 ) normal stresses, it now has

two distinct regions. Underneath the point of the second ejection, a negative (again

for T1 ) region of normal stresses has formed. This change in sign is appropriate. As

at the point of the first jet formation, there was a strong positive region of L showing

that the jet formed was generally horizontal. At the point of second ejection, the jet

motion is more vertical, thus a strong positive region of - is present.

Also of note, unlike the first jet at this point in time, the second jet is not free of

normal stresses. The shear stresses in the region of the second jet are similar to the

first jet in that there is a localized region at the cusp of the jet and the jet is generally
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Figure 6-31: Normalized stress components at jet formation. Black line represents

the air-water interface. (case IAW-10)

shear stress free. Well after the jet formation and re-entry/breakup point (see figure

6-34), there are very little normal stresses at the surface while there is a thin layer of

increased shear stresses at the surface.

6.2.3 Air Entrainment

This section briefly discusses the air entrainment which occurs in the plunging break-

ers in this study. In laboratory experiments and the field, plunging breaking waves

entrain a significant amount of air as the pocket of air trapped by the plunger col-

lapses. The air entrained is a significant source of noise in the ocean and contributes

to the increased dissipation seen in plunging breaking events [55]. Yet, little is known

about the entrainment of air during the breaking event as it is a difficult measurement

to do accurately. Most experiments center on measuring the void fraction (or amount

of air in the volume) after the wave has broken.

Even in experiments where the wave is initially two dimensional, the collapse

of the air pocket under the plunging breaking wave is certainly a three-dimensional

effect. Additionally, the air in the pocket is actually a compressible fluid. The waves

in this study were generated using a two-dimensional model which assumes that both

fluids are incompressible. Because of these modeling assumptions, the resulting air
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Figure 6-32: Normalized stress components at jet impact. Black line represents the

air-water interface. (case IAW-10)
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Figure 6-33: Normalized stress components at jet impact. Black line represents the

air-water interface. (case IAW-10)
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Figure 6-34: Normalized stress components well after jet re-entry and breakup. Black
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pocket and bubbles will be artificially stiffer. As the air pocket collapses, there is

no third dimension to allow the air to escape. As bubbles rise to the surface due to

buoyancy, there is also no compressibility effect which allows them to change their

size naturally. Thus, the air entrainment in the waves in this study must be discussed

within the context of these limitations and direct comparisons to the literature and

real-life experiences is not appropriate.

Figures 6-35 through 6-37 show the progression of the plunging breaking wave

shown in figure 6-28. Firstly, the influence of the standing wave is seen clearly in

figure 6-35. It should be noted that this case which has air entrainment is also one of

the cases generated by the impulsive airy wave method (see section 4.1) which has over

30% of its energy represented by a standing wave. The decrease in wave amplitude

at the crest and the upwelling of the plunging region are signs of the presence of this

standing wave. This significantly deforms the shape of the plunging region. However,

the formation of a bubble from the collapse of the first air pocket can be seen. It has

been labeled "a" in figures 6-35 through 6-37. This bubble can be traced through

time as it slowly rises but becomes unresolvable before it reaches the surface.

During the plunging event, the shape of the plunging region has been deformed by

the presence of the standing wave such that we have no clean record of the collapse of a

plunging region and the secondary jet events. This makes it difficult to compare even

qualitatively to what is available in the literature. However, Bonmarin [8] describes

the re-entry and ejection event as having two possible modes. The first is where
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the rear part of the splash-up flows over the falling crest. The second is where it

moves back into the original penetrating crest (see Bonmarin figure 25) affecting

the air entrainment. While the motion is clearly affected by the standing wave, the

secondary jet can be seen to move back into the original penetrating crest in figure

6-35.

As the air pocket collapses, large bubbles form as the air pocket pinches off from

the air volume (see figure 6-36). Some of these bubbles form smaller bubbles as they

rise to the surface (such as bubble "b"). Other bubbles simply rise to the surface and

burst (such as bubbles "c", "d" and "f"). The sheet which forms after a third impact

event (labeled as "e"), finally thins enough where droplets begin to form from it in a

similar manner to the jet ejection discussed in section 6.2.2. A period or so after the

plunging event, there is very little air which remains beneath the surface.

6.3 Spectrum Evolution of Breaking Waves

In regards to the literature available for breaking waves, many of the experiments look

at the evolution of the spectrum prior to and after the breaking event. This is highly

desirable as it gives information on how the breaking event effects the spectrum. This

type of information is as invaluable to wave forecasting and spectrum evolution as

wind input or breaking criteria. The modeling focuses on the frequency spectrum

and experiments are well matched to this as at every location they have a wave

probe measurement which gives the surface deformation as a function of time. The

wave focusing experiments use broadband input spectrums on the order of 30 wave

frequencies. This is the case with the top-hat spectrum used by many authors [92,

80, 54]. The energy lost from the input spectrum tends to be near the upper end.

This has brought the authors to conclude that low frequency waves persist through

breaking.

The waves generated in this study contain primarily 2-3 discrete wave modes.

This makes it difficult to draw direct comparisons. However, a common thread in

the experimental results which we can see as well is an increase in energy in higher
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Figure 6-35: Progression of the plunging breaking wave with air entrainment. (case
IAW-10). Each color represents the air-water interface at a given time.
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Figure 6-36: Progression of the plunging breaking wave with air entrainment. (case
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Figure 6-37: Progression of the plunging breaking wave with air entrainment. (case
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frequencies as the breaking event is approached and a decrease in this energy after

it has happened. This section discusses the evolution of the spectrum as a function

of wavenumber before and after the breaking event as well as throughout (when

applicable).

For this analysis, the amplitude spectrum is calculated using a Fast-Fourier Trans-

form (FFTPACK [114]) of an interpolation of the air-water interface at every avail-

able time step. No effort is made to stop the transform process if the surface becomes

multi-valued. Regions where the Fourier transform are invalid are noted in the re-

spective figures and text as necessary. It should also be noted here that for the waves

in this study and in experiments, the spectrum is only a measure of the potential

energy in the flow field. As the spectrum is taken throughout the breaking process,

arguments regarding the use of equipartition of energy do not apply.

To establish a baseline of comparison, the first investigation of the spectrum evo-

lution is a case between a wave which does not break and one which has been classified

as incipient breaking. The incipient breaking case has no surface forcing, thus any

change in the energy is due to the wave breaking naturally. The first four modes of

the amplitude spectrum are shown as a function of time in figure 6-38.

The incipient breaking event begins between T=1 and T=1.5 and lasts until T=6.

The surface never becomes multi-valued in this case thus the spectrum is applicable

for the entire time of the simulation. Up until the breaking event, the first and second

modes of the non-breaking and incipient-breaking waves are essentially the same. A

very small difference appears at breaking onset in the first and second modes. This

difference becomes more pronounced in the third and fourth modes. This continues

through the breaking event. After the breaking event, there is a small amount of

energy lost in the first and second modes and which becomes more significant again

in the third and fourth modes. Well after the breaking event, the modes return to a

similar behavior as the non-breaking wave. There is a modulation in time for both

only in the incipient-breaking case, this modulation has shifted phase compared to

the non-breaking case.

Thus, to summarize, even in the incipient breaking case, there is a shift in energy
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from the lower wave numbers to the higher ones prior to the breaking event. Then,

as a certain amount of energy has been lost to breaking, all of the modes see a

decrease energy associated with the energy lost to breaking and essentially return to

a characteristic behavior similar to a non-breaking wave.

The normalized spectrum amplitudes for the first ten modes of the spectrum for a

non-breaking and gentle-spilling breaking wave are shown in figure 6-39 in a different

format. Shown are the contours of the normalized energy at each wave number as a

function of time:

A (t )E(k, t) = (6.4)
2E(tref)

where the normalization is the total energy in the wave at a reference time tref

E(tref) = A (trej)
all k

The breaking event for the gently spilling case lies within the dashed box. Inspection

of the evolution of the free surface for this case yields that there is no multi-valued

region of the surface such that the spectrum is valid throughout the simulation. The

normalized spectrums are similar for the two types of waves. However, just prior to the

breaking event, there is a slight shift in the energy from lower to higher wavenumbers,

in particular for modes greater than the second mode. After the breaking event, there

is an associated decrease in energy at all wavenumbers and a discernable shift in the

phase of the modulation for wave modes greater than 2. Thus, the gentle-spilling

waves see the similar behavior as the incipient-breaking case where there is a shift in

energy from low to high wavenumbers prior to breaking and an overall loss of energy

at all wavenumbers after breaking.

If we consider the amplitude spectrums for a gently spilling breaking wave and

a wave which forms a jet, the breaking effect is much more apparent. Figure 6-40

shows the actual amplitude spectrum A(k, t) as a function of wavenumber and time

for two cases which originated from surface forcing (SFI). The only difference in the
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two cases is the magnitude of the surface forcing (or the amount of energy input

into the surface). This is evident at the time the surface forcing has been removed

(T=2.09) in which the case which forms a jet has more energy in the first mode. For

both cases, the breaking event occurs between 4 < T < 6.5. The gentle-spilling case is

the same case shown in figure 6-39 and does not generate a multi-valued surface. By

definition, the jet formation does. Inspection of the free-surface elevation for this case

shows that the spectrum is valid between 4.0 < T < 6.2. Prior to the breaking event,

the build-up of energy at the higher wavenumbers is considerably more prevalent

than in the gentle-spilling case. The primary mode sees a decrease in energy prior to

breaking which implies that the energy is being shifted from the lower wavenumber

to the higher ones in the period before breaking. After the breaking event, the jet has

actually less energy in the first mode than the gentle-spilling case which can be seen

in figure 6-40 by judging the width of the band of the contour at T=7. It can be seen

in figure 6-41 which shows the energy in the entire spectrum calculated as in equation

6.4 for every available time step. In this figure, it is clear that the jet actually has

less overall energy than the gently spilling breaker after the breaking event.

In summary, the spectrum evolution has been considered throughout the breaking

event for the waves in this study. For all of the cases, there was a shift in energy

from lower wavenumbers to higher wavenumbers. The amount of energy and extent

of the shift was highly dependant upon the type of breaking event. This shift of

energy from low to high wavenumbers is key in the development of the wave steepness

and asymmetry. After the breaking event, the energy lost was distributed across all

significant wavenumbers. In particular, for the plunging breaking waves, the amount

of energy which remained in the spectrum after the breaking event was less than the

amount of energy in the gentle-spilling event.

Comparisons to the literature can only be qualitative. The waves generated in

this study are very narrowbanded and have 0(2 - 3) discrete wave modes present

whereas the wave groups generated for wave focusing experiments generally include

0(30) wave frequencies in their initial wave spectrum. Yet, despite the difference in

the number of frequencies represented, there are similarities between the breaking
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waves in this study and that reported in the literature.

In general, prior to the breaking event, there is a notable decrease in energy at

the upper end of the primary input spectrum (in many cases this is a top-hat shape).

This is coupled with an increase in energy at frequencies above this input spectrum.

This can he seen in the waves in this study. In particular, it is evident in figure 6-40

(e.g. T ~ 3) where there is an actual decrease in the amount of energy in the first

mode near breaking onset and a buildup of energy at much higher wavenumbers.

In wave focusing experiments, after the breaking event, the increased energy at

higher frequencies still exists and takes about a period to dissipate. This can also be

seen in figure 6-40. The non-dimensional period for the wave on the right of figure

6-40 is approximately 2.5. Within one wave period, the built-up energy in the high

wave modes has dissipated to below pre-breaking levels. In Rapp and Melville [92],

at a distance well away from the breaking event, the wave had lost about 90% of the

energy which had built up in the higher frequencies. They also reported that 24%

of the primary input spectrum had been lost as well, almost entirely from the high

end of the input top-hat band. While almost all of the energy has been lost from

the higher wave modes in the waves in this study, it is difficult to directly compare

the amount of energy lost from the primary input spectrum. Yet, as will be seen in

chapter 7, the amount of potential energy lost to the breaking event compares well

with experiments so it is not a stretch to say that if the waves in this study had a

larger input bandwidth that similar results would have been seen.

6.4 Conclusion

In this chapter, we've shown the kinematics and dynamics of the spilling and plunging

breaking waves in this study as well as their spectral evolution. For spilling breaking

waves, the formation of the bulge was detailed and compared to that in literature.

This included comparisons of geometric quantities such as steepness and asymmetry

factors.

The velocity field associated with the bulge was also described. Through investi-

258



gation of the velocity field and stresses in both the air and the water, we determined

that the there was no flow reversal in the wave for either gently-spilling or strong-

spilling breaking waves. Yet, in the air flow as the wave face became more prominent,

the air flow experienced flow separation at the toe of the bulge and the back face of the

wave. All of the separation and vorticity in both fluids was attributed to curvature

effects as the surface parallel velocity field tried to follow the shape of the wave. The

vorticity flux was shown to support this conclusion. It was also found that, unlike

the localized shear region seen in gently-spilling breakers at the bulge, a significant

shear layer existed in strong-spilling waves that reached almost the extent of the wave

crest.

Finally, the capillary wave train seen in experiments for gently spilling breaking

waves which were not seen in this study was also discussed. Reasons for their lack

of appearance in this study ranging from physical quantities and issues related to

scaling to numerical resolution and use of a smoothed surface were discussed. The

capillary wave train is attributed to the movement of the bulge down the front face

of the wave and an associated flow reversal as this occurs. As these phenomena do

not occur in the spilling breaking waves in this study, we are not entirely surprised

that the wave train is not seen.

A detailed investigation of the formation of the jet for two types of plunging

breaking waves was performed. It was found that a large pressure gradient appeared

at the point of the jet formation as well as an increased speed of the crest relative to

the phase speed of the wave. These are both consistent with findings in the literature.

A region of stresses and vorticity occur at the jet formation location. Unlike the strong

spilling breaking waves, this region is very localized. Some experimental results show

that plunging breaking waves are irrotational up until the breaking event. We have

shown that the region of vorticity which does exist prior to the jet formation is very

thin and likely not resolved by current experiments. However, based on arguments

regarding curvature effects, the flow must be rotational in the regions where we have

found vorticity.

The impact of the jet on the front face of the wave as well as its pinch off and
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breakup were also described in detail. For the waves in this study, the re-entry of the

jet on the wave surface had little effect on the velocity field in the bulk. The stresses

and vorticity associated with this impact are also contained to a very thin region near

the surface. While the pinch off of the jet from the wave is caused by a thinning of

the surface, the breakup of the jet is similar to what is described in the literature

by Taylor and subsequently Longuet-Higgins. The breakup of the jet into cylindrical

droplets occurs as a symmetric perturbation on the upper and lower surfaces of the

jet forms. The perturbations grow and the jet thins and thus the droplets are formed.

A brief discussion within the context of the limitations of this study of the air

entrainment for the waves in this study was also provided. The bubbles are formed

as regions in the air pocket pinch off. These bubbles either become unresolvable,

breakup into smaller bubbles or burst at the surface. One to two periods after the

breaking event, there are essentially no bubbles left in the wave. As the bubbles in

this study are considered overly stiff, no comparison to the literature was attempted.

Finally, the evolution of the spectrum throughout the wave breaking event was

also discussed. We showed that there was a loss of energy at low wavenumbers prior to

breaking which corresponded to an increase in energy at higher wavenumbers. These

higher wavenumbers are essential to developing the wave steepness necessary for the

wave. The energy remains in the higher wavenumbers for approximately one wave

period after the breaking event before it is fully dissipated. This behavior and the

potential energy loss is consistent with findings in the literature.
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Chapter 7

Energy Loss Due to Wave Breaking

The amount of energy lost due to wave breaking has been a long sought after quantity

as it has a wide range of applications. In the context of wave forecasting, determining

a breaking criteria and an associated energy dissipation would allow models to better

accurately predict the evolution of wave spectrums. In the context of ship wave

breaking, the capability of modeling breaking ship waves is critical in accurately

predicting the near field flow of a surface ship.

This chapter details the energy loss due to wave breaking by drawing on the waves

in chapters 4 and 6. As this study uses direct numerical simulation, no turbulence

closure models have been used to assume anything about the dissipation. Addition-

ally, because it has the solutions for both the water and air volume, it provides unique

insight to the vortical dynamics and dissipation in the air. In section 7.1 we detail

the dissipation rates for both volumes spatially and temporally. To the best of our

knowledge, this section provides a first ever look at these quantities during the break-

ing process. Section 7.2 details the total amount of energy lost due to breaking using

a control volume approach which is popular in the current literature. Comparison

to available experimental data from the literature is detailed in section 7.3. Finally,

we briefly explore the existence of a wave breaking criteria based on recent work in

the literature which is based on the theory of a local mean convergence in the flow in

section 7.4.
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7.1 Dissipation Rates

This section details the dissipation rates of breaking (and non-breaking) waves for

both air and water, for the various types of waves which are a part of this study (non-

breaking, gentle-spilling, strong-spilling, jet-forming and air-entrainment). To our

knowledge, this study has provided the first detailed view of the spatial and temporal

variation of the dissipation rates during the breaking event. While some cases in the

literature have attempted to provide global estimates and decay rates for the water

volume [74], there is no evidence that this has been done for the air. Through this

study, we have found that there is an increase in magnitude of the dissipation rate

during the breaking process for both air and water and the amount of increase is

dependent upon the type of breaking wave generated. For most cases, the relative

increase is more in the air than the water. In fact, for some cases where the surface

deformation is large causing significant separation in the air, the dissipation rate in

the air is of the order of that of the water during the breaking process. In addition

to the highly unsteady nature of the dissipation rate, a correlation to the strong

dissipation rates in both fluids and regions of separation as well as a local persistence

of increased dissipation post-breaking in some regions are identified.

7.1.1 Calculation of Dissipation Rate

Section 2.4 of this thesis contains the derivation of the energy equation for a volume

containing multiple incompressible fluids so the derivation will not be repeated here.

The term responsible for the dissipation by viscosity is:

1 (r . V) (7.1)
Re,,

The stress tensor is given in equation 3.7 as 2p(O)Sij. Putting this into equation 7.1

yields the energy dissipated per unit volume of fluid.

= 2 PM S2 a U (7.2)
Re, 2 %x
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or using continuity

2 P= M S. (7.3)
Re,(7 3

To calculate the energy dissipated in each fluid, the dissipation per unit volume is

multiplied by either the smoothed Heaviside function H(O; c) to extract the water or

1 - H(#; c) for the air.

E = H(O; C)E

Ea = (1 - H(#; c))E (7.4)

For consistency in the calculation of H(O; c) the level set boundary layer thickness C

is the same as that used in the simulations. Integrating E, E, sE in space will give the

total dissipation rate for the entire volume, water and air, respectively. Integrating

any of the total dissipation rates in time will give the total amount of energy dissipated

by viscosity. For the purpose of this work, the volume integration of the dissipation

rates is done through biquadratic integration and time integration is done through

a cumulative trapezoidal integration scheme. The volumetric rates were calculated

with enough frequency in time such that the difference between a trapezoidal scheme

of O(At) and Simpson's rule scheme O(At 2) is minimal.

Figure 7-1 shows the dissipation rate per unit volume over the entire volume for a

non-breaking wave. Figure 7-2 shows the total dissipation rate as a function of time

for the entire volume and the water and air volumes. The method of extraction is

consistent with the volumetric results on a per-unit volume basis as well as integrated

over the entire volume.

7.1.2 Spatial Variation of Dissipation Rate

For non-breaking cases, the dissipation rate per unit volume is fairly uninteresting.

Figure 7-3 shows the distribution of the dissipation rate in the volume for another

non-breaking wave. The local decrease of the dissipation rate at the crest is believed
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Figure 7-3: Spatial variation of the dissipation rate per unit volume over the entire

volume for a non-breaking wave initialized from the flat surface forcing (case SFI-03).

to be from the influence of the standing wave field. Both figures 7-1 and 7-3 are

representative for all of the non-breaking cases.

The breaking cases become much more interesting, depending on the type of

breaking which occurs. For cases where a gentle-spilling breaker occurs, the dissipa-

tion rate has localized regions of very strong dissipation mainly in the water where

a small separated region exists. This is seen in figure 7-4. The dissipation rate in

the air volume is essentially zero except in two regions near the crest where it must

react to the curvature of the water surface. There is a small structure of almost zero

dissipation at the front face of the wave in both fluids. The cases which are considered

strong-spilling breaking waves have a similarly large dissipation region on the front

face of the wave in the water. Figure 7-5 shows a representative case using the same

contour levels as the gentle-spilling breaker for comparison. Due to the flow reversal

by the air on the crest, the large dissipation region extends into the air flow and is

considerably stronger. There is also a very small region of near zero dissipation in

the air flow on the back side of the crest in the separated region.

The vorticity field for the strong-spilling breaking wave case is shown in figure 7-6.

The vorticity in the air is representative of a flow trying to follow the curvature of

the surface. As the air flow, in the reference frame of the crest, comes in to the face,

it must make two hard turns, each having a large gradient associate with it (a large

uZ for the first corner and a large wx to follow the second). The small core region of
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Figure 7-6: Instantaneous vorticity contours for a strong-spilling breaker initialized

by an over-energetic Airy wave (case IAW-04). Same instant in time as in figure 7-5.

little dissipation does not correlate to vorticity. This is the separation point of the

air.

For cases which are mildly plunging breakers, the flow does not have much op-

portunity to develop the strong separated region seen in the strong spilling breakers.

Thus, the dissipation rate has less localized regions except after the jet impinges the

front face of the wave. Figures 7-7 and 7-8 show a time evolution over the main extent

of the breaking event for a case started from flat surface forcing. As the crest begins

to sharpen and focus, there is a localized region of dissipation due to the curvature

of the front face (7-7a). This region becomes stronger and more pronounced in the

water as the jet forms (7-7b) and the air develops a similar region as the jet starts

enclosing it. After the impact of the jet on the water surface (7-7c), there is a large

dissipation region at the point of impact and interestingly, a small core of almost

negligible dissipation in the bulk flow beneath the impact point. This core is seen

again (7-7d) as the jet impinges on the surface a second and third time (7-8c). After

the sheet has broken up (7-8a-c) the original localized dissipation region still exists at

the crest, albeit relatively weaker compared to post breaking. This region returns to

a progressive Airy wave shortly after breaking (7-8d). As the frame in figure 7-8d has

not been altered, the decrease in phase speed of the wave after breaking is evident as

the wave crest has moved.
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To understand the evolution and correlation of the vorticity and the dissipation

during a spilling breaking event, the dissipation and vorticity at two points along

the crest of the wave are shown in figures 7-9 through 7-11, along with the location

of the cut on the wave. If we first consider the region where the breaking has not

occurred (figure 7-9b), the dissipation follows an expected profile in the water where it

reaches a maximum before the air-water interface and then goes to a minimum value

at the interface [99, 61]. The air sees a similar behavior with the peak dissipation

rate corresponding to the peak region of vorticity. Any kinks seen in these figures is

associated with the curvature of the surface as the cuts were taken vertically verses

normal to the surface. Where the wave is breaking at the same moment in time

(figure 7-9a), the dissipation rate at the air-water interface has increased two orders

of magnitude and the peak in dissipation rate below the interface seen in figure 7-9b

no longer exists. This again corresponds to the increase in vorticity at the air-water

interface and the peak region of vorticity in the air still corresponds to the peak in the

air dissipation rate. As this "toe" region moves along the face of the wave, the strong

vorticity in the air moves with it (figure 7-10a and 7-10b). The increased value of

dissipation in the water persists even though the toe has moved forward and appears

in the second cut. Near the end of the breaking event, both locations are beginning

to recover a pre-breaking profile. However, the region where the breaking "passed"

through (figure 7-11b) is closer to pre-breaking values than the point near where the

breaking originated (figure 7-11a). This local persistence of aii increased dissipation

rate should be expected as the toe region existed in this location for a longer period

of time. The motion of the bulge and toe region in these case is not as described in

chapter 6. This particular case has a relatively large standing wave energy and the

progressive portion of the wave component seems to "surf' along the standing wave.

This gives the bulge and toe region the appearance that it is moving. However, the

bulge and toe never separates from the wave surface.

To summarize, the spatial variation of the dissipation rate for a range of waves

(non-breaking to jet forming) was investigated. In all of the breaking waves, a local-

ized region of strong dissipation exists on the front face of the wave. Depending on
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the strength of the breaking wave (i.e. strong-spilling compared to gentle-spilling),

the maximum value of this localized region is stronger. The strong regions of dis-

sipation generally correlate to the regions of strong vorticity and separated flow in

both the air and water volumes. Cuts along the face of the breaking wave show ex-

pected profiles in regions where the breaking region has not passed through. Regions

in which the breaking toe has passed through return to pre-breaking profiles shortly

after the breaking event while there is a persistence of increased dissipation where

the breaking toe originated. Where the jet has impacted the front face of the wave,

directly under the impact point there is a large dissipation region but a small core of

negligible dissipation exists in the bulk below the impact point.

7.1.3 Total Dissipation Rate

This section looks at the total dissipation rate in both fluids for a variety of waves.

By comparing the dissipation rates for breaking and non-breaking waves in this study,

we can observe that, for the types of waves generated in this study, the character of

the dissipation rate during the breaking process is different for various types of waves,

as should be expected. In addition to the water rate, since this study includes the

effects of the air above the water surface, the dissipation rates for the air volume over

the range of breaking waves are also discussed.

To the best of our knowledge, there is no data in the literature regarding the dissi-

pation rate during the breaking event [74] because of the difficulty of getting velocity

measurements during breaking, even in the laboratory. For gentle spilling breaking

waves, Haibing and Duncan [90] measured the velocity field and included a discus-

sion of the vorticity but did not continue towards making dissipation calculations.

For plunging breaking waves at laboratory scale, there is significant air entrainment

making velocity fields difficult at best. Thus, most of the works involve the global

amount of energy dissipated in the event which is discussed in section 7.2.

A various number of non-breaking waves were generated as a part of this study.

Figure 7-12 shows the dissipation rate for many of the non-breaking waves for both

the air and water volumes. The standing wave which has been present in many of
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the results and discussed in section 4.4 is clearly visible in these results, but not

germane to the discussion. For the wave generation methods, the magnitude of the

dissipation rate varies slightly (though it is magnified when using the log scale here).

If the dissipation rate is scaled by the total energy in the field (Ewref)O, the cases

collapse onto each other. This is expected because in laminar flows, the dissipation

rate should be proportional to the amount of energy in the flow field. For all of the

cases, the dissipation rate for the air is an order of magnitude less than the water.

A cursory inspection of equation 7.1 reveals that the dissipation rates of the water

and the air should differ by the ratio of the two viscosities, which for this study is

two orders of magnitude. However, that presumes that everything else is the same.

Inspection of the flow field for these cases shows that the vorticity in the air is an order

of magnitude greater than the water. Thus, the single order of magnitude difference

is as expected.

All of the cases have essentially the same slope of the dissipation rate in time. To

have a nonconstant dissipation rate for a plane progressive wave over time may seem

to be counter intuitive. However, because the Reynolds number is low for these cases,

the effect of viscosity is large enough on the wave amplitude (and thus the velocity

field) to show in these cases. This is confirmed if the wave amplitude dissipation rate,

equation 4.30, is used to infer a laminar dissipation rate.

Ew(t) = Ewrefe-2 Ft (7.5)

The 2F comes from squaring the amplitude damping rate as the energy is proportional

to the amplitude squared.

The dissipation rate for a gentle-spilling breaking wave can be seen if we consider

a case in which a non-breaking wave has had energy input into it through a surface

force. Figure 7-13 compares the dissipation rate for a representative case. This

example is the case of a non-breaking wave generated by the two-phase Airy wave

initial condition and the same wave with a modest amount of surface forcing applied

to it. The effect of the surface forcing is seen during the initial increase in dissipation
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rate. For this case, the surface forcing is completely removed at T = 2.09, where the

spilling immediately commences. Once the single spilling event has completed near

Tb = 6, the dissipation returns to a behavior similar to a non-breaking wave. The

gap in the dissipation rate post breaking in the left of figure 7-13 is not unexpected.

Experience with the non-breaking cases shows that the dissipation rate should scale

by the amount of energy in the flow when it is laminar. As energy has been input

into the breaking case through surface forcing, there is no reason to expect it to

return to the non-forced case value after breaking. If the dissipation rate is scaled by

a post-breaking energy value, then the cases collapse onto each other. This implies

that the flow returns to a laminar flow post-breaking. This is contrary to results seen

in experiments [28, 90, 92] where it takes a number of periods to return to a laminar

rate. However this is not unexpected due to the moderate Reynolds number of these

simulations.

Figure 7-14 shows all of the gentle-spilling breaking waves in this study. The same

behavior can be seen when all of the spilling breaking waves are considered, whether

surface forcing is used to generate spilling or the wave spills on its own. If scaled

by the energy post breaking (right of figure 7-14), the same laminar behavior can be

seen in all cases.

The spilling breaking waves just discussed were mild in nature in that the front

face of the wave retains a fairly mild slope and the relative increase in dissipation rate

for the air flow is of the same magnitude as the increase for the water flow. Another

type of spilling breaking wave, which we call a strong spilling breaking wave, also

exists. During this type of breaking event, the front face of the wave becomes fairly

steep and may become multi-valued. Figure 7-15 illustrates the difference in surface

behavior which is commonly seen. For the strong-spilling breaking wave, the flow field

in the water is marked by a strong vortical region on the front face of the wave. The

flow field in the air is also marked by a strong vortical region, especially in the cases

where the surface becomes multi-valued. In this region, the air flow must actually

reverse, causing a great amount of vorticity. All of this strong vorticity creates a

fairly increased dissipation rate for both fluids. This is seen in figure 7-16 where
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Figure 7-13: Comparison of the dissipation rate between a gentle-spilling and non-

breaking wave for water (blue) and air (green) (cases A2P-01 and A2P-02). Left

figure is actual dissipation rate. Right figure is scaled by (Ewref) at T = 0 for the

non-breaking case and T = Tpb for the spilling case.
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Figure 7-14: Comparison of the dissipation rate for all gentle-spilling and non-
breaking waves for water (blue) and air (green). Left figure is actual dissipation
rate. Right figure is scaled by Ewrei at T = 0 for the non-breaking case and T = Tp
for the spilling cases. The pale blue and green lines represent all of the non-breaking
waves in this study. The black line represents an estimation of laminar dissipation
rate.
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Figure 7-15: Illustration of the difference in surface profiles for a gentle-spilling (case

A2P-02) and strong-spilling (case IAW-04) breaking waves.

the dissipation rate of the strong spiling breakers is compared to the gentle-spilling

breaking waves.

In addition to the overall increased dissipation rate for these spilling breaking

waves, the air flow sees a dissipation rate to within same order of magnitude as the

water. This could mean one of two things: (i) there is considerably more (in terms

of volume) vorticity in the air flow or (ii) the vorticity or stresses in the air flow

are two orders of magnitude greater than the water. Figure 7-17 shows this to be a

combination of the two. The region of strong stresses and vorticity in the flow is much

larger in the air flow than the water by a factor of about 1.5. The mechanism behind

this increased dissipation rate is a "curvature effect" in that the air flow, which sees

the crest of the wave more like a wall than a free-surface, must follow the curvature

of the wave face. In these cases, the face of the wave is much more pronounced and in

some cases causes a flow reversal of the air. Additionally, the air then separates as it

comes off the crest of the wave almost like a backward facing step. All of these sharp

changes in flow direction cause large amounts of vorticity/stresses and contributes to

the increase in dissipation rate.

The dissipation rate of all of the plunging breaking wave cases is compared to the

gentle spilling breaking waves in figure 7-18. There are only a few cases of plunging

breaking waves in this study, with and without air entrainment. The waves without

air entrainment are considered to be weak plunging breaking waves compared to the

plunging breaking waves generated by wave focusing in many experiments [92, 80, 54
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Figure 7-16: Comparison of the dissipation rate between two types of spilling-breaking

waves for water (blue) and air (green). Left figure is actual dissipation rate. Right

figure is scaled by (Ewref) at T = Tp. The pale blue and green lines represent all of

the gentle-spilling breaking waves in this study.
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Figure 7-17: Instantaneous contours of transverse vorticity wy for case IAW-04.
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and are characterized by an ejection of fluid at the crest and will be referenced as

jets. The waves with air entrainment are more representative of what is seen in

literature and generally have more than one breaking event in a period. For the

jets, the dissipation rate in the water increases to the level seen in the gentle-spilling

breaking wave cases for about the same amount of time which can be seen in figure 7-

19. This dissipation rate is about a factor of two less than the strong spilling breakers

(c.f. figure 7-16). The dissipation rate in the air, however, sees a marked increase

in dissipation rate in that it becomes practically the same value as the water. An

inspection of the dissipation rate in the volume (c.f. figure 7-7) shows the significant

increase of the dissipation in the air volume as it is trapped by the jet as it impinges

on the surface and breaks up.

For both the air and water flows, the dissipation rate in these jet events, quickly

returns to a non-breaking behavior as is seen in the gently spilling breaking wave cases.

This is in contrast to what is seen in the work of Rapp & Melville [92]. However,

as pointed out previously, the breaking waves generated through wave focusing are

much more violent in nature than the jet events generated here. In addition to their

large Reynolds number 0(106) and three-dimensional effects which are outside the

scope of this study, there is considerable air entrainment. Instead of collapsing down

and entraining air into the wave, the jet which forms at the tip of the wave becomes

thin and breaks up. In that sense, the wave, while actually plunging, is more like a

spilling breaking wave as the energy lost is attributed to the ejection of the jet verses

the amount of energy dissipated by the mechanisms behind the air entrainment and

bubble breakup. This is highlighted by the fact that the dissipation rate in the water

for these cases looks very similar to the gently spilling cases.

The cases with air entrainment are compared to the jets in figure 7-20. They are

marked by a longer period of breaking with a larger relative increase for both fluids

in dissipation rate than the jets. This is seen in Lamarre and Melville [55] where

they relate the size of the bubble plume to the dissipation rate. Lamarre and Melville

propose that the sustained dissipation rate after breaking is a function of the further

collapse of the bubbles entrained during breaking. Thus, we should expect that the
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Figure 7-18: Comparison of the dissipation rate between gentle-spilling (black dashed)

and plunging-breaking waves for water (blue) and air (green). A non-breaking wave

case (black solid) is included for reference. Left figure is actual dissipation rate. Right

figure is scaled by (Ewcf) at T = Tpb.
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Figure 7-19: Comparison of the dissipation rate between a gently spilling wave and

a wave with jet formation for water (blue) and air (green). Left figure is actual

dissipation rate. Right figure is scaled by (Ewref) at T = Tpb. The pale blue and

green lines represent all of the gentle-spilling breaking waves in this study.
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Figure 7-20: Comparison of the dissipation rate between a waves with jet formation

and with air entrainment for water (blue) and air (green). Left figure is actual dis-

sipation rate. Right figure is scaled by (E.,ef) at T = Tp,. The pale blue and green

lines represent all of the jet-forming breaking waves in this study.

cases with air entrainment should see larger dissipation rates for longer periods of

time. As in the case for the jets, the dissipation rate in the air becomes practically

the same value as the water. It is difficult to infer from the figures, but there appears

to be an increase in the slope of the dissipation rate post-breaking. Based on the

previous analysis, this would infer that the flow is turbulent but it is difficult to say

for sure because of the magnitude of the standing wave for these cases.

In summary, our data has shown a range of dissipation rates for various types

of breaking waves. Figure 7-21 collects this information for all of the waves in this

study. The relative difference between the maximum dissipation rate during the

breaking event compared to the dissipation rate prior to the start of breaking for the
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air is plotted against that of the water. Additionally, reference lines for one-times,

five-times and ten-times the relative increase are also shown for reference. Figure

7-21a has all cases considered. However, because the maximum dissipation rate can

be a function of the forcing applied to the wave the cases without forcing are shown

in fiLure 7-21b. In general, the gentle-spilling breakers have around the same relative

increase in the dissipation rate for air and water. The strong-spilling breakers have

about 5 times relative increase in the air than the water, showing the effect of the

stronger separated region in the air flow. The breaking waves with jet formation

and air entrainment are closer to 10 times the relative increase in the air than in

the water, which brings it to the same order of magnitude as the water as discussed

earlier. For all of the cases in this study, it can be said that the dissipation rate

in the water never increases by more than a factor of two within the wavelength of

the wave unless some type of surface forcing causes it to increase. For most of the

cases considered, the dissipation rate quickly returns to the non-breaking behavior

and within the arguments of scaling, the same value.

7.2 Global Energy Loss

This section takes a more "experiment" minded approach to calculating energy loss in

that control volumes are used pre- and post-breaking. In an laboratory wavetank, the

control volumes are chosen well away from the breaking region and the energy loss is

calculated as a difference between pre- and post-breaking. In the periodic boundary

conditions, the control volume is the domain and it is taken at times well away from

the breaking event and the difference between these values is what is considered the

global energy loss.

7.2.1 Calculation of Energy Losses

The calculation of the amount of energy lost is done the same way for all the cases,

whether there be an initial velocity field or surface forcing or both. Figure 7-22 is a

schematic of the total energy in the water volume over time. For this analysis, there
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are four points of interest in time: initial (to), start of breaking (tet), post-breaking

(tpb), and the stop point (t8 tp). Referring to a spilling breaking wave as discussed

in section 6.1, the period between to and tt represents the development stage. The

period between tot and tpb encompasses the entire breaking event such as the sustained

breaking and the dissipating stage. The region after tpb includes no breaking event at

all and lasts until near the end of the simulation totp. The kinetic energy in the water

volume is calculated by multiplying the kinetic energy at a point by the smoothed

Heaviside function, and integrating over the entire volume.

kew (t) = V p (0)ui i H (0; c) dV (7.6)

Determining the potential energy in a multi-fluid flow can be a subtle endeavor.

Generally, it is easier to take an initial potential energy and subtract out the work

done by gravity at a specific time. From equation 2.53, the work done by gravity is

calculated as:
Dpe w

= P(O)(7.7)

As in equation 7.6, the total amount of work done by gravity on the water can be

calculated by multiplying equation 7.7 by the smoothed Heaviside function to get only

what is part of the water volume and integrating it over the entire volume. Then, to

determine the change in energy due to this work, it is integrated in time. The amount

of "potential energy" at any given time can be taken as this change plus an initial or

reference value.

pe(t) = pe wref + J jp() 2 H(0; c)dVdt (7.8)

Because the reference value of the potential energy can skew the results in terms

of fractions of energy lost, the reference value is taken as an estimate of the initial

potential energy in the field which is estimated from an amplitude spectrum of the

surface at t = 0.

pewref = r a? (7.9)
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The total energy in the volume at any time is then given as the sum, which is given

for completeness.

Ew(t) = ke,(t) + pe,(t) (7.10)

Based on these, the loss of energy over the breaking period is estimated as the

difference between tpb and t3 t relative to the initial amount of energy in the field

Ewo = Ew(to):

dEw = (EWpb - Ewo) - (Ewt - Ewo) (7.11)

and the fraction of energy lost is based on tot

% Ew lost = (7.12)
Ew S

The amount of energy dissipated by viscosity is calculated from integrating the

dissipation rate in time. Namely,

Ew, = edt (7.13)

where

= EH(O; c)dV (7.14)

and E is given in equation 7.3.

In their work on experiments involving breaking waves, Rapp and Melville defined

a slope parameter, S. Their slope parameter is representative of the sum of the

slopes in the wave. The experiments used a spectrum which had constant amplitude

spread over a finite spectrum (also of constant amplitude). Thus, the estimated slope

parameter was given by the input to the wavemaker:

SRM = Nake (7.15)

290



The central wave number k, was calculated from the finite depth dispersion rela-

tionship at the central frequency of the input packet sent to the wavemaker. Lowan

and Melville [701, adopted this slope parameter for their experiments which used a

constant slope for a finite number of wave components.

SLM = Nak (7.16)

In the same spirit, the slope parameter used in this study is calculated as the sum of

the slopes calculated from the amplitude spectrum.

S = aiki (7.17)

In practice, the first four wavenumbers were used in equation 7.17. Unlike the ex-

periments which had a fairly wide bandwidth, the bandwidth of the waves in this

study is very narrow and using more than four wavenumbers did not change the slope

parameter noticeably.

7.2.2 Total Energy Loss

The total energy lost over the breaking event as a fraction of the energy prior to

breaking is determined from equation 7.12 and shown in figure 7-23 as a function of

the slope parameter at the start of breaking for the various types of breaking events

(non-breaking, gentle-spilling, strong-spilling, jets and air entrainment).

After S > 0.4, there is a bifurcation in the trend of the data where the fraction

of energy lost is around either 0.4 or 0.8 with a few outliers near 0.2 (which may be

another branch). In general, the strong-spilling breaking waves and plunging-breaking

waves with air entrainment are on the higher branch and most of the gentle-spilling

breaking waves and plunging breaking waves with jet formation are on the lower

branch. The presence of this bifurcation implies that the amount of energy in the

waves in this study may be more than a factor of just the slope. In the work of

Rapp and Melville and Lowan and Melville, the slope parameter was based on the
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Figure 7-23: Total amount of energy lost in the water volume over the breaking event
as a fraction of the amount of energy at the start of the breaking process plotted
against slope parameter (at t8 t) for a variety of waves: (<) non-breaking, (A) gentle-
spilling, (V) strong-spilling, (0) jet formation, and (o) air entrainment.
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input to the wavemaker and not the actual wave geometry. All of the breaking waves

generated were done through wave-focusing. At the Reynolds number for their waves

and in the absence of other inputs, the slope parameter is an adequate gauge of the

amount of energy in the wave group. However, in the cases where the waves have

more (or less) energy than the slope parameter would imply (such as those that have

received input from the wind, shear flow, turbulence or current), calculating energy

based on geometric properties and presuming equipartition may not be prudent. As

this study has access to the velocity field in the wave, the total amount of energy can

be directly calculated. Figure 7-24 shows the same total energy loss as a function of

the total amount of energy in the wave prior to breaking, normalized by the total

energy in the wave for a Stokes limiting wave of ka = 0.44.

Using the total energy in the wave at the start of breaking as a parameter has

removed the bifurcation(s) seen in figure 7-23. There is a wide amount of variation

(up to 20%) in the total energy lost for cases where Ewst/Ewstokes < 1, even in the

non-breaking cases when considering the total energy lost in the wave. Within the

context of this study, this variation essentially disappears when there is more energy

in the wave that the Stokes limiting wave. The large variability for the cases with

less energy than the Stokes limiting wave implies two things: (i) that there is more

than one factor at play in wave breaking strength than the amount of energy in the

wave and (ii) different breaking mechanisms give different energy losses such that a

single curve which covers all cases of wave breaking with little variability may be out

of reach.

7.2.3 Energy Loss Due to Breaking

To estimate the amount of energy lost due to breaking, the amount of energy that the

wave would have lost if it had not broken should be factored out of the total energy

lost. In general, this should just be the viscous effects. The amount lost to viscosity

needs to be estimated. In experiments, generally it is enough to factor in potential

effects from boundary layers on the sidewalls (and bottom if depth is an issue) of the

wavetank. In this study, there are no boundary layers in that the bottom boundary
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Figure 7-24: Total amount of energy lost in the water volume over the breaking event

as a fraction of the amount of energy at the start of the breaking process plotted

against the normalized energy (at t8 t) for a variety of waves: (<) non-breaking, (A)

gentle-spilling, (v) strong-spilling, (D) jet formation, and (o) air entrainment.
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is a free-slip boundary. However, because of the moderate Reynolds number, the

viscous effects on the wave amplitude are non-negligible. To estimate the amount of

energy dissipated due to viscous effects if the wave had not broken, we will assume

that the wave flow remains laminar throughout. In that case, the damping rate will

be proportional to the energy in the field (or the square of the velocity). Using linear

wave flow theory as a guide, we will also assume that the velocity is proportional to

the amplitude of the wave. Thus, the rate at which viscous forces are damped out is

the same as the rate at which the amplitude is damped (squared). Thus, equation

7.5 can be used to estimate the energy loss for the wave if it had not broken.

Ew, = Ewste-2r(tpb-tst) (7.18)

As a check on this estimate, the ratio of estimated viscous losses to calculated viscous

losses (using the dissipation rate) is shown in figure 7-25. For most non-breaking

cases, the ratio is greater than 0.9. As the breaking becomes more pronounced this

quickly drops to 0.5. If we consider this estimated laminar energy loss as our best

estimate and remove it from the total energy loss, then the remaining energy loss

can be attributed to the breaking event. The loss due to breaking is shown in figures

7-26 and 7-27, plotted against the slope parameter and energy at breaking onset,

respectively. Note that this estimate only removes the damping due to viscous effects

in the event that the wave does not break. Any viscous dissipation due to the breaking

event itself is retained.

When considering the amount of energy lost due to breaking as a function of

slope parameter (figure 7-26), the bifurcation which was seen in the total energy

loss remains but at a value shifted from 0.4 and 0.8 to about 0.2 and 0.4. There is

an additional grouping of points below at about 10% energy loss due to breaking.

However, they can also be interpreted within the scatter of points as part of the

lower line than a third branch. When considering this energy loss as a function of

the amount of energy in the wave at breaking onset, as now expected, the bifurcation

disappears. The cases classified as non-breaking have essentially no energy lost within
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Figure 7-25: Measure of viscous losses due to breaking for a variety of waves: (<)
non-breaking, (A) gentle-spilling, (v) strong-spilling, (0) jet formation, and (o) air
entrainment.
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Figure 7-26: Amount of energy lost to breaking in the water volume over the breaking

event as a fraction of the amount of energy at the start of the breaking process plotted

against slope parameter (at tt) for a variety of waves: (<i) non-breaking, (A) gentle-

spilling, (7) strong-spilling, (0) jet formation, and (o) air entrainment.
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Figure 7-27: Amount of energy lost to breaking in the water volume over the breaking

event as a fraction of the amount of energy at the start of the breaking process plotted
against the normalized energy (at t8 t) for a variety of waves: (<) non-breaking, (A)
gentle-spilling, (,7) strong-spilling, (0) jet formation, and (o) air entrainment.

298



the margin of error (see Chapter 5 for a discussion regarding estimating the error in

energy calculations). This also affirms our estimation of the non-breaking energy loss

due to viscosity from equation 7.18. For waves with less than 40% of the energy of

the Stokes limiting wave, there is essentially no breaking. This equates to a slope of

about 0.28 using linear theory. Rapp and Melville report a threshold of S=0.25 for a

breaking threshold and S=0.3 for a plunging threshold and Lowan and Melville report

a similar threshold value at S=0.23 for breaking onset with S=0.28 as a threshold for

plunging.

Between 40 and 80% of the energy of the Stokes limiting wave, there is again a

rather large variability. Again, there is a cluster of points which has little or no energy

loss due to breaking (less than 5%). If these cases are not considered, the variability

drops to within the margin of error for these cases. It should be noted that while

some of the cases in this cluster of points are the same as the cluster in figure 7-26,

they are not all the same. The amount of energy lost in this range is between 10% and

25% depending on the type of breaking waves. The waves which are gentle-spilling

breakers lose between 15-20% of their energy during the breaking event.

The energy loss due to breaking for the cases where the jet forms falls right in line

with the trend of the curve when plotted against energy at onset. These cases occur

when the energy is again 60% of the Stokes limit and lose around 25% of their energy

during the breaking process. In this sense, they are much like the spilling-breaking

waves in that their dissipation rates do not increase drastically and most of the energy

loss is associated with the break-up of the jet.

The cases which are more energetic than the Stokes limiting wave see the greatest

amount of total energy loss and loss due to breaking (40-45%). These cases are

strong spilling breakers and cases with air entrainment. The strong-spilling cases are

where there is a strong vortex on the front face the wave which attributes to a larger

dissipation rate than the gentle-spilling breakers which have a weak vortex due to

curvature. The cases with air-entrainment see multiple plunging events in a single

period as well as large amount of energy loss due to the amount of work necessary to

breakup the entrained air bubbles.
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In interpreting the data in this study, one should be careful in using the energy at

onset as a sole factor in determining energy loss. At 50% of the energy of the Stokes

limiting wave, there exists a range of spilling breaking waves which lose between 10-

25% of their energy to breaking. Just above 50% of the energy of the Stokes limiting

wave are cases which have formed jets and spilling breakers dependant upon the

Weber number (as the Weber number was used as a parameter to generate different

types of breakers).

In summary, we've shown that the slope parameter used in literature may not be

the most effective parameter for judging energy loss due to breaking when considering

a variety of mechanisms which generate the breaking wave. In the absence of all other

inputs, the slope parameter may be a good judge of the amount of energy in the wave.

However, in cases with increased energy input from wind and current as well as already

turbulent fields, then it may not be adequate. A more reliable method for this study

entailed knowing the amount of energy in the wave. While the energy in the wave

field is a better parameter for scaling the energy loss due to breaking in this study, it

still fails for some cases showing that other mechanisms are at work.

While it is not an absolute judge of breaking, cases with less that 40% of the energy

of a Stokes limiting wave in this study do not break which is not unlike that reported

in the literature. There is a range between 40% and 60% which form spilling breakers

and jets where the energy loss due to breaking increases dramatically. Finally, while

the data is sparse above 70% of the Stokes limiting wave, a maximum amount of

energy loss due to breaking of just over 40% is seen once a critical value is reached

somewhere above 80% of the Stokes limiting wave.

7.3 Comparison with Experiments

This section takes the highlights of the previous sections regarding dissipation rates

and global energy loss and compares them to the experiments and theory found in

the current literature. Firstly, the available data in literature which applies to this

topic is discussed. Secondly, the global energy loss results of this study in section
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7.2 are compared to the most relevant papers in the literature. In terms of global

energy lost, experiments generally cite the amount of energy flux lost in breaking

as the dissipation. This quantity is calculated as is done by the experiments and

compared directly. Thirdly, the dissipation rates of section 7.1 are compared to the

small amount of data available for steady and unsteady wave-breaking dissipation

rates found in the literature and an attempt is made to asses the scalability of a

dimensionless dissipation rate which has appeared in the literature recently. While

the cases in this study are two-dimensional and at smaller scales than the experiments,

there are many results which compare well.

7.3.1 Discussion of Available Experimental Data

The scope of the literature for breaking waves is very large and encompasses a wide

variety of topics. However, when breaking dissipation is used to refine the search, the

number of relevant papers is relatively few and have come out only in the past few

decades. This gives credence to the difficulty of measuring this type of phenomena

as it is only as experimental methodologies have increased in sophistication that this

type of result has been published. Additionally, the amount of computational results

are also fairly limited in terms of the discussion of dissipation.

The papers relevant to this section are papers devoted to the dissipation in break-

ing waves. By far the most thorough and cited work is that of Rapp & Melville [92]

in which wave focusing was used to generate a range of non-breaking and breaking

waves. In this paper and a subsequent paper [76], they discussed the excess mo-

mentum flux and energy loss for these waves as a function of their integral slope

parameter. Many of their results have been discussed throughout this thesis. The

results which are germane to this section are the global energy flux losses which are

discussed in section 7.3.2. Another similar study is that of Kway et al. [54] where

they investigated the effect of different frequency packets on the dissipation of the

wave.

An investigation of three-dimensional breaking by wave focusing was performed

by Nepf et al. [80] and Wu and Nepf [127]. In addition to a detailed survey of
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the breaking criteria [127] found in literature and its application to their waves,

they reported the energy dissipation for two- and three-dimensional breaking using

similar measurement techniques to Rapp and Melville. All three of these experimental

investigations reported the effect of breaking on the spectrum of their broadband wave

spectrums which was discussed in section 6.3.

There are a set of experiments by Duncan [29, 30] which looks at the quasi-steady

breaking in the wave train beneath a towed hydrofoil. In these papers, he was able

to discern, within the scope of his study, that the dissipation rate could be scaled by

a characteristic phase velocity. There was some fluctuation in this scaling which was

a function of the submergence depth, however, the fluctuation was relatively small.

This list is by far not a comprehensive list of the available experiments. They are

the significant contributions in the available literature which address energy dissipa-

tion.

7.3.2 Global Energy Loss

Generally, global energy loss discussed in the literature is done from the surface

elevation. Rapp and Melville provide an extensive derivation for this up through

second order and Rapp [91] contains even higher-order terms. The essential argument

is that the relative energy loss can be determined from the wave energy density which

is proportional to q2. If a control volume is drawn around the breaking region with

vertical bounds at x, and X2, then the amount of energy lost in the control volume

is:

E(t 2 ) - E(ti) + F(X 2 ) - F(xi) = -E (7.19)

Because the energy flux F is equal to the energy density times the group velocity

P9 2Cg,, the change in energy flux is proportional to the change in y2 assuming that

the group velocity does not change (which they admit is a weak assumption). The

amount of energy lost by the wave in breaking should remain in the control volume.

Thus, the loss of wave energy in the control volume is essentially the loss of energy

flux. At the Reynolds number they are investigating 7Ze. _ 0(106), providing the
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measurements are taken well away from the breaking region, this should be sufficient

in that assumptions regarding laminar flow and equipartition of energy apply.

In this study, some of the waves produced do not initially fall within the assump-

tion of equipartition. Also, the Reynolds number is three orders of magnitude less

than the experiments making Reynolds number effects more apparent. It is not suf-

ficient to call the loss in wave energy only T72. However, it can represent the loss

of potential energy in the field. When considering only the potential energy lost, it

should not be a problem to extrapolate these results to the larger Reynolds number

experiments. Thus for comparison, the potential energy loss is estimated from the

amplitude spectrum defined prior to the start of the breaking process tot to well after

the breaking event tot. After spectrum is calculated for a given time, the potential

energy is calculated from the sum of the amplitude squared for each wave number.

pew ~ W Za(k) 2  (7.20)
all k

As in section 7.2, viscous effects are accounted for using the laminar damping rate

as if the wave did not break. The loss in wave amplitude predicted by laminar viscous

damping is given by:

77(V =_ 718te-2~ -a (7.21)

Providing that tot and totp are taken far away from the breaking region where the

surface is not multi-valued such that the spectrum can be calculated and, if possible,

the flow can be considered completely laminar, then the loss in potential energy due

to breaking can be estimated by:

AT/ St S~- 7t) - (12 (7.22)

The fraction of potential energy lost as a function of the slope parameter S for the

cases in this study is shown in figure 7-28 along with experimental cases found in

literature [92, 80]. To account for the viscous losses in Rapp and Melville, the fraction

lost for the non-breaking waves (estimated to be - 0.1) is subtracted from all of their
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points. While in sections 7.1 and 7.2, we concluded that the slope parameter was

not a particularly good parameter to judge scaling for the waves in this study, it is

used in this figure as it is what is used in the literature concerning the experiments.

Within the limits of this study, the comparison to the experimental data is fairly

good. The maximum amount of potential energy lost reported by Rapp and Melville

is approximately 10% lower than the maximum cases in this study. However, it should

be pointed out that the experiments never attained more than a slope parameter of

0.5 so it is difficult to judge whether or not they reached a peak value. The upper

level of diamonds are from Rapp and Melville's study and are for the case with

central frequency f, = 0.88 Hz. This case had multiple entry events and thus a larger

amount of energy was dissipated. The cases in this study with air entrainment and

multiple breaking events also see a rather increased dissipation. Finally, the three-

dimensional result of Nepf et al. [80] experiences a lower fractional energy loss than

the experimental two-dimensional results. They attribute this to the fact that part

of the wave is spilling and part is plunging. This three-dimensional result experiences

a similar amount of energy loss as some of the spilling events in this study.

Ideally, because of the findings in the previous sections, we would like to consider

the amount of potential energy loss as a function of the energy in the wave prior to

breaking. However, the experimental data in the literature does not provide this so it

must be estimated. For all of the experimental results, the ratio of the energy in the

wave group compared to the Stokes limit is estimated as S2/St,,kes. This is shown in

figure 7-29. The scatter in the data becomes considerably less as expected. It should

be pointed out here that the energy in three-dimensional breaker is likely overesti-

mated by S2/SO.eS making the result seem out of place. The other experimental

outliers are from Kway et al. [54] where their slope parameter is a function of the

gain on the wavemaker as well. Outside of these spurious points, the comparison to

experiments improves. However, it now appears that the strong-spilling breakers and

cases with air entrainment are 10% larger than the experimental cases at the same

energy level. This is not completely unexpected as the breaking event is always two-

dimensional in this work. The experiments are not completely two-dimensional after

304



Fraction of Potential Energy Lost vs. S

<1 NB

0.5- A GS
V SS
o JET
o AIR
* EXP

0.4-

0
V o

0.3-
CM* U

CY .0

0.2-

00

0.1 + 0o

0-+

I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
S

Figure 7-28: Fraction of potential energy lost due to breaking compared to the slope
parameter (at t8 t) for a variety of waves: (<) non-breaking, (A) gentle-spilling, (')
strong spilling, (0) jet, and (o) air entrainment. Filled symbols represent experiments.
Filled square is three-dimensional experimental result.
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Figure 7-29: Fraction of potential energy lost due to breaking compared to the slope
parameter (at tt) for a variety of waves: (<) non-breaking, (A) gentle-spilling, (V)
strong spilling, (0) jet, and (o) air entrainment.

breaking. Thus, one would expect that a two-dimensional version of the turbulence

generated by the waves would over-predict the dissipation rate to a certain degree.

7.3.3 Energy Dissipation Rate

As discussed briefly in section 7.1.3, there does not seem to be anything in the liter-

ature on dissipation rates during the breaking process for unsteady breaking waves.

In his papers on steady breaking waves behind a towed hydrofoil, Duncan [29, 30]

determined that the dissipation rate of a breaking wave scaled as a function of a

characteristic phase velocity. The first paper [29] gave the dissipation rate per unit
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length as:

Ef = (0.044 0.008) pwC5 (7.23)
9

Within the accuracy of the measurements he was able to make and the scope of the

study, a constant relation between dissipation rate and a characteristic phase speed

was justified. This dissipation rate was used by Phillips [88] to infer statistics of wave

breaking. After a further study on the sensitivity of his results as a function of the

depth of the hydrofoil [30], Duncan's results show that the dissipation rate is now a

function of the inclination angle of the forward face of the wave:

0.0075 Pw(7.24)
g sin 

(

For the range inclination angle seen in his experiments, this modifies the coefficient

in equation 7.23 to have a much larger variability (0.066-0.031).

The purpose of this discussion is to not attempt an exact comparison to Duncan's

dissipation equation. Melville [74] took this assessment and results from Loewen and

Melville [70] to determine relative strength between the dissipation rate of steady and

unsteady breaking waves and also back out a coefficient for the dissipation rate of

unsteady breaking waves. Depending on his estimate of the integral velocity scale

of the turbulent dissipation as a factor of the phase speed of the wave, Melville

determined that the dissipation rate per unit length to be from scaling arguments:

e ~ (3.2 x 10-3, 16 x 10-3)/9 (7.25)
9

However, as Melville points out, since there is an estimation parameter (the fraction

of the wave phase speed which represents the turbulent velocity) which is taken to

the fifth power, there is quite a large leeway in terms of interpreting this result.

As Melville did not have actual dissipation rates, to estimate the dissipation rate,

he took the amount of energy dissipated over the time of the breaking event to give

an average unsteady breaking dissipation rate. He plotted this quantity scaled by

g/(pC5 ) verses his slope parameter (his figure 3). There was a significant depen-

307



dence on S which showed that as the wave progressed from spilling to plunging, this

dimensionless dissipation rate increased. However, there was considerable scatter in

the data if multiple breaking occurred because these multiple breaks, no matter what

slope parameter they occurred at would have a larger amount of dissipation associate

with them. The order of magnitude of this dimensionless parameter ranged from 4

to 12 x 10-3 which falls in line with equation 7.25. It is pointed out by Melville that,

because there is dependence of this dimensionless dissipation rate on the slope pa-

rameter for unsteady breaking, the characteristic velocity is not the sole determinant

of dissipation rate. Melville also notes that this dimensionless rate is up to an order of

magnitude less than that seen in the quasi-steady breaking waves of Duncan. Thus,

presuming that the wave breaking in the ocean is a characteristically unsteady event,

using estimates from quasi-steady results to infer breaking statistics is questionable.

While this work done by Melville showed no conclusive dependence on phase speed,

it is useful to determine whether or not the dissipation rate for the waves in this

study follow a similar pattern and magnitude. Figure 7-30 shows the dimensionless

dissipation rate from Melville's paper with results from this study, considered in two

different ways. The first is to calculate the average dissipation rate by calculating the

amount of energy lost due to viscosity divided by the time of the breaking event.

EAVG = lf1 -d (7.26)
EA G ~ t2 ~~- t

The second method was to just take the maximum value of the dissipation rate

during the breaking event and scale it by the phase speed of the wave.

EMAX max(EW)t1 t<t 2  (7.27)

Figure 7-30 demonstrates that, as Melville stated, for unsteady breaking events,

the dissipation rate can not be scaled solely by the phase speed of the wave. There is

clearly a dependence on the amount of energy in the wave before breaking as to the

strength of the dissipation rate. It also shows that, for the majority of waves consid-

ered in this study, the magnitude of the dissipation rate for the unsteady breaking
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waves is an order of magnitude less than quasi-steady breaking waves. However, for a

few of the cases in this study, the dissipation rate approaches that of the quasi-steady

cases. This corresponds to the very strong spilling breaking waves and waves with

air-entrainment. For the very strong spilling breaking waves, many of the charac-

teristics are similar to Duncan's over the span of the breaking event. Whereas the

presence of Duncan's hydrofoil continues to supply a source of energy for the wave to

break, the strong spilling breakers have no source of energy and the event tapers out.

All of the cases with air-entrainment see dissipation rates within the order of magni-

tude of Duncan's hydrofoil. However, as discussed previously, their dissipation may

be artificially larger due to the two-dimensional nature of the flow and the relatively

large stiffness of two-dimensional "bubbles".

7.4 Energy Growth Rate as a Breaking Criteria

The purpose of this study was not to directly determine a breaking criteria. This

is in fact a wide ranging study in and of itself. A review of the range of geometric,

kinematic, and dynamic criteria currently available in literature is included in Wu

and Nepf [127]. Their general conclusion was that accurate estimation of kinematic

quantities such as the ratio of crest speed to phase speed U/C > 1 was a simple and

robust candidate for a breaking criteria. However, as pointed out by these authors,

recent work by Stansell and MacFarlane [105] have shown that waves can break at

U/C > 0.72. This is an interesting example of the difficulty of trying to characterize

a complex process of wave breaking to a single mechanism or number.

In a series of papers, another candidate for wave breaking criteria within the

context of wave groups has been proposed [19, 5, 103, 104]. The theory is based on

a localized, short-time focusing event within a wave group. The works of Banner

[5, 103, 104], which build on the Dold and Peregrine [19] results, show that in all of

the cases in their studies, there is a mean convergence of the energy density (kinetic

and potential) toward a local maximum. Banner and Tian [5] state that this local

quantity was the only robust measure which determined whether the wave broke or
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evolved with a recurrence of the original wave group.

The basis of the theory is the local wave energy density, E:

E(x; t) = p.(u2 + v 2 )dy + 1pwgr 2  (7.28)

Banner et al. define a diagnostic parameter based on the local maximum energy den-

sity, which they call p. As the wave group is modulated by the carrier wave, this P

can vary significantly. However, they found that if they consider the evolution of its

local average value (p), that there is a critical value of its growth rate which deter-

mines whether or not a wave will break. In terms of their notation, the dimensionless

growth rate they consider is:

S= -D() (7.29)
W Dt

In the paper by Song and Banner [103], they postulate a number of diagnostic pa-

rameters. The one that they found to be most fruitful ends up being a measurement

of the local wave steepness.

A = max (Ek2 (7.30)

For cases where a group is not well defined (as in the open ocean) or periodic boundary

conditions where the realm of growth is bounded, they also mentioned that another

parameter which was useful was a normalized wave energy density:

y = max (k ) (7.31)
(ET)

where (ET) represents the mean energy of the wave group. Based on equations

7.29 and 7.30, Song and Banner determined a common threshold 6t, in the range of

(1.3 x 10- 3 , 1.5 x 10-) which indicated whether or not a wave would break or recur.

In a subsequent paper, Banner and Song determined that this threshold was upheld

through wind forcing and the effects of shear currents.

To investigate the connection between this growth rate and breaking criteria for

the waves in this study, a few diagnostic parameters were considered. The first effort

revolved around the cases where an initially quiescent surface of water is forced on the
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surface for a short period of time. For these cases, while there may be some focusing

involved, the predominant reason for breaking is the amount of energy imported to

the water during the forcing. Thus, a suitable diagnostic parameter can be the mean

energy input. As there is no initial energy in the field, this is simply:

p = (E,) - E, (7.32)

where because of the moderate Reynolds number of these cases the laminar damping

has been factored out based on equation 7.18. Because all of these cases receive only an

input, there is no modulation of the wave energy density and thus, the dimensionless

growth rate is defined as the rate of change of p directly.

dt-o =+ ((E4) - E2) (7.33)

The maximum of this growth rate is shown in figure 7-31 as a function of the amount

of energy lost due to breaking. Song and Banner's threshold values are included as

a reference. All of the cases which had an energy loss associated with breaking are

above 6o = 1.5 x 10-. While not a definitive conclusion, this shows that, in the cases

of energy input, there is a threshold above which, the waves in this study will break.

This does not give any conclusion about the role of focusing because the diagnostic

parameter used is a total and not a local quantity. After the forcing has been turned

off, in the absence of any other inputs, the amount energy in the volume will not

change (except due to viscous effects) and any local focusing of energy would be

balanced out by a loss of energy some place else. Thus the average energy (Ew) - E,

will always decrease and 60 will always be negative.

To address the effect of a local focusing or convergence of the energy density, two

diagnostic parameters were defined which follow the spirit of Banner et. aL., if not

the letter. Song and Banner define one of their diagnostic parameters as (E/pwg)k2 .

Within the context of their work which used potential flow, this was a clever way to

estimate the local slope without worrying about crest asymmetry. However, within

the context of this study, we've shown that the local slope is not a good assessment
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surface using pressure forcing. (-) Song and Banner threshold values; (o) non-breaking
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of the amount of energy in the wave field. Additionally, as there is no wave group

perse, the idea of a local wavenumber is difficult to grasp. Thus, the two diagnostic

parameters used in this work rely solely on the local energy density: I = max(EW).

The first is p and the second diagnostic parameter used is the local maximum energy

density normalized by the total eneryv in the wave. The two gyrowth rates based on

these definitions are:

61 = - max(Ew) (7.34)dt

and normalized

62 = d-- x(w (7.35)dt k\(EwT)

The maximum of these two parameters is shown against the amount of energy lost

due to wave breaking in figures 7-32 and 7-33, respectively. The waves which were

generated by forcing on a flat surface and shown in figure 7-31 are not considered here

as their breaking mechanism is not related to energy focusing. However, the results

in figures 7-32 and 7-33 include cases where an existing wave has received forcing so

the results do include forced as well as non-forced waves.

The first growth rate, 61max shows a consistent threshold value near the value of

the Song and Banner value of 1.3 x 10-, 1.5 x 10- 3, with one outlier. This outlier

is the case which we have identified as an incipient breaking case. Without a doubt,

it has an increase in dissipation during its breaking event such that it is categorized

properly. However, the reason for its appearance below the threshold is unknown. If

one considers the normalized maximum local energy density (see figure 7-33), a similar

threshold appears, near 2max ~2, with two outliers. The first outlier corresponds to

the same incipient breaking case as in figure 7-32. The second outlier corresponds to

the same wave which has received surface forcing. This implies that this particular

case may have a breaking mechanism which is not solely a function of energy focusing,

however, again, the reasons are not clear.
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Figure 7-32: Maximum growth rate 61 for a variety of forced and un-forced waves. (-)
Song and Banner threshold values; (o) non-breaking cases; (filled A) breaking cases.
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growth rate 62 for a variety of forced and un-forced waves.
value; (o) non-breaking cases; (filled A) breaking cases.
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Song and Banner made a preliminary attempt to tie their 6 not only to a breaking

criteria but also to the strength of the breaking event. This would imply a trend in

the amount of energy lost to breaking as a function of 60,1,2. In regards to 60, figure

7-31 shows an increasing amount of energy being lost to breaking as 6o increases.

However, the amount of data is sparse to draw any firm conclusions. Inspection of

figure 7-32 shows a similar trend for 61 with some scatter (which is magnified by the

log scale of the plot). Finally, the same could be said for 62 with some outliers. It is

a bit ambitious to draw any conclusions regarding a relationship between 6 and the

amount of energy lost to the breaking event based on the data in this study. At most,

what can be said is that there is a hint of promise in this direction, but more samples

would be needed to be definitive.

In summary, a concept of local convergence of energy density has been examined

in the context of this study. While initially proposed for wave groups, application to

a general volume without a well defined group showed similar results. Two growth

rates were defined as a function of the local maximum energy density. The first being

the quantity itself, the second being the quantity normalized by the total amount of

energy within the domain. The maximums of both growth rates showed a threshold

value to which the wave will either break or progress (with a few outliers). While

attempts were made to connect the maximum growth rate to the amount of energy

lost due to breaking, there was not enough conclusive evidence and more work in this

area is warranted.

7.5 Conclusions

Through direct numerical simulations of non-breaking and breaking waves the energy

dissipation of wave breaking has been quantified. To our knowledge, this study has

provided a first-ever glimpse at the spatial and temporal variation of the dissipation

rate of breaking waves. Because this study includes the effect of the air above the

surface, the dissipation rate for the air is also captured for the first time. Depending

on the strength of the breaking wave, the relative increase for the dissipation rate in
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the water during the breaking process is about twice its initial value, even in cases

with air entrainment. If the wave has been forced, this can increase to 5-6 times the

initial value depending on the strength of the forcing. Thus, in cases where a wave is

receiving an input, the dissipation rate can be tied to the strength and duration of

the input. For the air, the relative increase is significantly larger in cases when the

wave is plunging. This brings the dissipation rate in the air to the same magnitude as

the water for some cases. Spatially, the waves experience regions of strong localized

dissipation in the regions with high curvature and vorticity. The localized regions

persist longer where the breaking originated verses where the breaking has "passed"

through as it has traveled down the face of the wave or experienced a plunging re-

entry. Despite this localized persistence, the global dissipation rates for the waves in

the air and the water return to non-breaking values post-breaking.

As part of our investigation of the global amount of energy loss due to breaking,

we've shown that the amount of energy in the wave prior to breaking onset is an

indication of whether or not a wave will break. Yet, the connection between this

quantity and the strength of the breaking event is weak. That being said, within the

data available for this study, there appears to be a maximum amount of energy lost

once a critical value of energy has been reached in the wave.

The computational results have been compared to experimental data in terms of

the amount of potential energy lost due to the breaking event. As we only considered

potential energy, it is possible to compare these results to experiments which occur

at Reynolds numbers which are three orders of magnitude larger. The comparisons

are quite favorable considering the two-dimensional nature of the waves in this study.

We've also explored the existence of a breaking criteria which is based on a local

mean convergence of the energy density based on recent work in literature. Using

three different growth rates, we were able to conclude that a threshold exists above

which waves will break. However, like considering the amount of energy in the wave,

tieing this breaking criteria to the amount of energy lost to the breaking process is

not warranted at this time. While 36 different waves were generated for this study,

the amount of data is too sparse to draw a direct conclusion.
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Chapter 8

Transfer of Energy at the

Air-Water Interface during

Breaking

Much attention in the literature has been given to the transfer of energy between

the air and the sea over the past few decades. However, the focus of these studies

has been on the effect of the wind imparting energy to the waves and subsequently

the ocean currents. Additionally, the predominance of the studies in the literature

concern how this effects the spectrum of the waves as this knowledge is essential

for wave forecasting efforts. In general, the studies in the literature which address

the local effects of the wind on the waves treat the problem as air flow over a solid

boundary (such as wind over wavy surfaces) which may or may not be moving. Up

until the past few years, very little attention has been paid (numerically) to the

coupled air-water boundary layer.

Because this study does not include the effects from wind, the type of energy

transfer discussed in the literature can not be addressed. However, what can be

considered is the transfer of energy through the interface which is a function of the

breaking event. Until recent work by Brocchini and Peregrine [10], this type of energy

transfer has been seemingly ignored and waved off in the literature and fluid dynamics

texts. While the work by Brocchini and Peregrine is significant as it details the
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formulation of this transfer in the context of turbulent kinetic energy, this chapter

provides a cleaner form of the energy-flux rate at the interface. This is done in section

8.1. Using the waves in this study, this chapter first builds a case for the significance

of this term in section 8.2 and then quantifies the amount of energy transferred at

the air-water interface between the two volumes in section 8.3. Finally, section 8.4

provides a view of the dominant mechanisms of the energy transfer at the interface

for spilling and plunging breaking waves. To our knowledge, this is the first time

much of this has been reported.

8.1 Formulation and Discussion

This section revisits the formulation of the term which represents the transfer of

energy across the air-water interface. It begins with the energy equation derived in

chapter 2 and more fully explores the term. An interpretation of the term and a

discussion of what is expected from the term is also included. The rate of change of

kinetic energy per unit volume can be written by slightly modifying equation 2.67:

- + - -= - + - (8.1)(Kz ,,~ N -+ E) +F 6(;U}V
at Rew Re, '* Rew

IV

where

{-} = -H(#; 0)

= (K + HI) u-

0 Work done by other forces

and 6(0; c) is the smoothed delta function used throughout this work. The change in

kinetic energy per unit volume (term I) is a function of four mechanisms. The first is

represented by term II which is the energy density flux and is composed of two parts.
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The first is due to actual transfer of fluid mass at the interface. This is the flux of

pressure work at the interface and is present even in the absence of viscosity. The

second part is due to internal friction and only exists in the presence of viscous effects.

The dissipation by viscosity is represented by term III. It is defined in chapter 7 as

E, = 2 S H(#; c). Term IV represents all of the work done by other forces such

as gravity, surface tension and surface forcing. Finally, term V represents the flux of

energy at the interface and is the term of interest for this chapter. As equation 8.1 is

the rate of change of kinetic energy per-unit volume, it can be integrated over a volume

to get the total rate of change of kinetic energy in the water. For the purposes of

this study, the control volume is defined to be the entire domain. This helps simplify

the equation as term II yields zero contribution because of the conditions used at the

boundaries (no flux top and bottom boundaries and periodicity horizontally). This

yields the following energy equation for the entire water volume:

-_. =- W +-W+ O - - K (8.2)
at Re, Rew

where

{.} j{-}H(;E)dV and

(-)=j(.)dV

In this equation, the energy flux at the interface is represented by a volume integral.

However, the presence of the smoothed delta function in the integral reduces the

volume integral to a surface integral of the energy flux along a finite thickness of

the air-water interface. This is defined as - and represents the transfer of energy

across the air-water interface. The presence of this term has been noted in some fluid

dynamics texts [58] as the energy flux through a surface bounding the volume but

it receives little discussion. It also appeared recently in an archival journal paper

by Brocchini and Peregrine [10]. Their work, however, is based on a phase weighted
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averaged form of the turbulent kinetic energy equation. This in turn makes the

number of interfacial terms grow and appear complex. In this simplified form, the

origin and mechanisms behind it are cleaner. The form of y in equation 8.2 can be

simplified further if the definitions of F and E are substituted back into it.

/lu- -
f. ()- dV (8.3)

This form of T allows us to note that as with the energy-density flux, it is made up of

two parts, the work done by the pressure field (not including surface tension as that

is included in 0,) and the work done by viscous forces. As VO represents a vector

which points in the normal direction of the interface, T is then the flux of energy

normal to the air-water interface. In general, as the Reynolds number becomes large,

the second term of equation 8.3 becomes fairly small leaving the inviscid work of the

pressure field as the dominant contributor to the energy transfer at the interface.

While the effects of the viscous term are relatively small for large Reynolds number

flows, they are included in this study. The moderate Reynolds number of the waves

in this study dictate that it be included.

The relationship between the sign of T and the direction of the energy transfer is

dependent upon the definition of the level set function 0. In this work, 0 is defined

positive in the water and negative in the air. Thus, VO will produce a normal vector

which points into the water surface. Based on equation 8.3 and the direction of VO,

a positive - represents a global transfer of energy from the air to the water and a

negative T represents a global transfer of energy from the water to the air.

The first step in understanding the relative importance of the energy transfer at

the air-water interface is to determine how this term behaves for special cases. First,

consider a truly plane progressive wave which is not evolving or being modulated in

any way. The flux of energy normal to the interface is zero for this case. This can be

seen if the flow is in a reference frame fixed with the crest. The velocity field is surface

following and made up only of a surface parallel component. Thus, the flux of any

quantity normal to the interface in this frame is zero. Second, consider a standing
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wave which does not progress at all. In this case, there will be a component of the

velocity field normal to the interface. However, as the standing wave field is cyclic in

time, the energy transfer will also be oscillatory in nature.

Figure 8-1 shows the energy transfer rate for four representative non-breaking

wave cases. T is calculated directly in the form represented in equation 8.2 and is

shown with the rate of change of the total energy for the water volume. For all four

cases, the rate of transfer of energy is one to two order of magnitudes smaller than

the rate of change of total energy in the water. There is a period of adjustment as

the wave develops from its initial condition where the energy transfer at the interface

is larger and then reduces to an essentially constant and small value as it becomes

a decaying plane progressive wave. The oscillatory nature of the energy transfer

rate in the presence of standing waves can also be seen in figure 8-1. These cases also

experience an adjustment period where the wave is developing into a plane progressive

wave. Once the wave has completely developed, the mean value of the oscillation is

essentially constant and small.

As a final verification that the nearly zero value of energy transfer rate results

in essentially zero energy transferred between the air and water volumes for non-

breaking (and non-evolving) waves, the total amount of energy transferred over the

entire simulation is shown in figure 8-2. This is calculated as a cumulative integral

in time:

(t) = dt (8.4)

For comparison, the total energy transferred is shown along with the total amount of

energy in the water volume. For these non-breaking cases, the mechanism which is

dominant is the dissipation by viscosity as the surface tension is either a very weak

or non-existent effect. Figure 8-2 shows that the amount of energy transferred for

these non-breaking cases is negligible throughout the length of the simulation, even

for cases where the standing wave component is relatively significant.

Based on these arguments, any wave in which there is a surface normal velocity

component at the air-water interface will have a local non-zero interfacial energy
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Figure 8-1: Rate of energy transfer at the interface (solid lines) and rate of change of
total energy of the water volume (dashed lines) for four non-breaking wave cases.
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Figure 8-2: Cumulative amount of energy transferred at the air-water interface (solid
lines) and total energy of the water volume (dashed lines) for four non-breaking cases

(same as figure 8-1).
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flux. If the wave develops a crest asymmetry such that over the wavelength the flux

contributions do not cancel, ) will also be non-zero. It follows from our knowledge of

breaking waves that any wave which breaks will have a non-zero y. Thus, breaking

waves have the ability to transfer energy from the water to the air. It remains to be

seen how significant this flux is.

It should be pointed out that there is an equal and opposite term when one

considers the air equation. This can be derived in the same manner as equation 8.2

from the total energy equation by multiplying equation 2.59 by 1 - H(O; c) instead

of H(O; C).

-tKa= -6VO -(e +U) (8.5) Ot Re, e

While this energy flux rate term has been seen in texts and recent archival journal

papers, it has not received any attention from experiments regarding breaking waves.

The most thorough set of breaking wave experiments in the literature to date is Rapp

and Melville [92]. In this paper, the change in energy is defined as in an early paper

by Whitham [124].
OE OF

+ =t -+ (8.6)

In equation 8.6, the energy density E, horizontal energy flux F, and viscous dissi-

pation E are averaged over the water column and in the case of Rapp and Melville's

application, integrated over the carrier wave. The term of importance for this equa-

tion is the horizontal energy flux in the water column.

F (P(P + lpi - +pr/ udz (8.7)

Compared to the flux rate in equation 8.1, the first item of note is that the viscous

contribution to the energy flux T - - is not included. For inviscid flows with a stress

free surface, this is an acceptable form. Second item of note is that equation 8.6 only

includes the horizontal energy flux as the vertical flux has been neglected as a small
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quantity. This is also a acceptable assumption providing that the wave slope is small.

Based on Rapp and Melville's equation 2.27, the change in energy in their control

volume is purely driven by the amount of energy no longer crossing the horizontal

boundaries of the control volume. The control volume in Rapp and Melville's study

used a relatively large control volume in which the horizontal boundaries were suffi-

ciently far enough away from the breaking region. Thus, the concept that the change

in energy in the control volume itself is reflected on what is no longer fluxing through

it is valid. Even if their analysis included the surface flux term, it would be true.

As the energy has not left the control volume, something has happened to it dur-

ing the breaking event. Thus, it is a loss due to breaking. Rapp and Melville were

able to measure the kinetic energy in the control volume for a few of their cases and

determined that most of the kinetic energy in the control volume dissipated after ap-

proximately four periods. Thus, they attributed all of the energy lost in the control

volume to be dissipated away by turbulence. However, based on equation 8.2, we

know that some of this energy lost is not necessarily attributed to viscous dissipa-

tion. It remains to be seen how much, if any, of the energy lost during breaking is

transferred to the air.

One might argue that in a modeling sense, especially in the context of wave

forecasting, that "energy lost is lost" whether it be dissipated out or lost to the air.

However, in coupled air-water boundary layer problems where the air is considered,

the type of knowledge quantified by this term is essential. For cases where the air is

not modeled but the turbulence is, such as single-phase Large Eddy Simulations (LES)

or Reynolds Averaged simulations (RANS), this type of knowledge is also critical for

proper modeling. Assuming that the turbulence models provide accurate dissipation

of the wave breaking as detailed in chapter 7, they will result in an under-prediction

of the energy lost due to breaking if the energy flux to the air is a significant portion

of the energy lost during the breaking event.
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8.2 Evidence of Energy Transfer During Wave Break-

ing

The waves generated in this study allow a unique opportunity to investigate the en-

ergy transfer at the interface. The numerical method provides information regarding

both the water and air volumes such that all of the kinematics and dynamics at the

coupled boundary layer have been directly simulated verses modeled in some manner.

Also, there exists a variety of non-breaking and breaking waves such that baseline

comparisons can be made. To build a case for the presence of this energy transfer, we

first will return to the topic of energy losses. Chapter 7 includes a detailed discussion

of the energy losses during a breaking event. As a part of that chapter, the total

amount of (total) energy lost was shown in section 7.2.2 which included all of the

mechanisms involved such as viscosity and surface tension. Based on equation 8.2, it

inherently included the transfer of energy at the interface.

For T to be non-zero, the amount of energy lost during breaking due to viscous

effects and other sources of work does not equal the total amount of energy lost.

Figure 8-3 shows the fraction of total energy lost due to viscosity in the water volume

for the waves in this study using the notation defined in chapter 7. All of the non-

breaking waves lose their energy to viscous effects to within the margin of error of the

calculations for the energy conservation. As the waves begin to experience breaking,

this drops to only 70% for some cases and in general 80-90% for the predominance

of waves. Thus, for many of the waves, up to 30% of the total energy lost during the

breaking event was due to a different mechanism besides viscosity.

The sources of other work also has the potential to be significant as there are cases

in this study where the Weber number is relatively small. As the amount of energy

lost represents the total amount of energy lost, the sources of work represented by 0"

in equation 8.2 which are a part of this discussion are the surface tension and surface

forces. As the breaking event occurs after the surface forcing has been removed, this

estimation only considers surface tension effects. Figure 8-4 shows the fraction of

total energy lost due to the work done by these surface forces for the same waves.
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Figure 8-3: Losses due to viscosity as a percentage of energy lost in the water for all of

the waves in this study plotted against the normalized energy (at t8 t) for a variety of

waves: (<i) non-breaking, (A) gentle-spilling, (v) strong-spilling, (D) jet formation,
and (o) air entrainment.
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Figure 8-4: Amount of work done by surface tension as a percentage of energy lost
in the water plotted against the normalized energy (at tt) for a variety of waves: (<)
non-breaking, (A) gentle-spilling, (V) strong-spilling, (0) jet formation, and (o) air
entrainment.

For all of the cases, this is within 2-4%.

This leaves a considerable amount of total energy lost which is unaccounted by

viscosity and surface tension. Based on equation 8.2, the only remaining mechanism

is the transfer of energy between the two volumes. Additionally, based on the above,

the energy flux goes from the water to the air and it can be up to 25% of the total

energy lost during the breaking event.

If we now consider the total amount of energy in both the air and water volumes

during a breaking event, the effect of the energy transfer becomes even more evident.

Figure 8-5 shows the total amount of energy in each volume and the amount of energy

lost due to viscosity (breaking and laminar effects included). As figure 8-4 showed,
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the amount of energy lost to surface tension effects is minimal so it is not shown

here. All of the quantities in figure 8-5 have had a reference value subtracted from

them which is before the breaking onset and after the end of the surface forcing. This

allows the relative increases and decreases to be seen clearly. During the breaking

event (4 < T < 6), the energy in the air sees a significant increase to maximum

near T=5. Plots of the kinetic and potential energy of the air (not shown) reveal

that the predominance of the energy increase occurs in the kinetic energy. The only

mechanism available for this increase is for it to receive energy from the water volume.

In fact, at the point of maximum energy increase (marked by the vertical dashed line

in the figure), the difference in the amount of energy lost and the amount of energy

dissipated in the water volumes is equivalent to the increase in energy of the air

accounting for its viscous losses. Based on this evidence, there is a clear case for a

transfer of energy at the air-water interface during the breaking event. Quantifying

this amount of energy in terms of the energy lost due to breaking is discussed in

section 8.3.

8.3 Quantifying Energy Transfer

In section 8.2, a case was built for the existence of energy transfer at the air-water

interface during the breaking event. In this section, we will quantify how much energy

is transferred between the air and water volumes during breaking and what fraction

of the total energy lost this represents.

While we have an equation for - such that it can be calculated directly and

we have done so for some cases in section 8.2, there is some difficulty calculating

it directly for all of the breaking cases in this study. Equation 8.3 shows that T

is essentially a function of the pressure and viscous terms at the interface. As the

work due to gravity, surface tension and surface forcing are wrapped into E), the

pressure II at the interface should only be due to the dynamics of the flow and not a

function of any surface forces. Unfortunately, due to the method of implementation,

the pressure which results from the solution of the projection operator includes the
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Figure 8-5: Total amount of energy in volume (solid lines) and amount of energy
lost due to viscosity (dashed) lines for the air (green) and water (blue) volumes for

a breaking case. (case SFI-04) Reference value at T = 2.09 subtracted. Vertical line

represents point of maximum energy in the air.
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effect of the surface tension and some surface forcing. Thus, there is a modest amount

of "double booking" in the calculation of the right-hand side of equation 8.2 for the

direct y calculations. While the direct y was shown in figure 8-1, these cases had very

little surface tension effect from either the use of infinite Weber number or very little

curvature effects. The direct calculations were also begun after any surface forcing

had been removed. This helped minimize any double booking effect in the direct

calculations shown. However, as we do not have a clean direct calculation of T for

all of the waves in this study, to ensure that there is enough data for comparison, we

will calculate the energy at the interface in an indirect manner.

Providing that the total energy in the volume is conserved to within a reason-

able amount, the energy transferred between the volumes can be calculated from the

amount of total energy in the water volume and the energy lost to dissipation and all

other sources of work except the energy transfer at the interface.

(t) = Ew(t) - -_(t) - ew(t) (8.8)

where the underline notation represents the cumulative integration in time as used/defined

in equation 8.4. Figure 8-6 shows the indirect calculation over time for a breaking

wave compared to the direct calculation. For this case, the indirect and direct calcu-

lations are relatively close during the breaking event. As expected after the breaking

event, the direct calculation shows no appreciable change in energy transferred as

the wave has returned to a plane progressive wave. The indirect calculation, slopes

upward slightly. As this is a cumulative based calculation, this hints at a cumulated

error associated with the energy calculation (see chapter 5). Finally, figure 8-7 shows

a comparison of the direct and indirect calculations for all of the waves in this study.

In general, the difference between the two is between 5-10% with the indirect calcu-

lation being considered more reliable. Based on this and the knowledge of the double

booking in the direct calculation, the indirect method will be used to calculate the

energy transferred at the air-water interface only over the breaking event.

This being said, figure 8-8 shows the amount of energy transferred across the
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Figure 8-6: As in figure 8-5 for case SFI-11. (cyan) direct calculation and (red)

indirect calculation.
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interface using the indirect calculation. It is shown first as a fraction of the total

amount of energy lost during the breaking event (figure 8-8a) and second as a fraction

of the energy lost due to breaking only (figure 8-8b). The energy lost clue to breaking

is calculated as in section 7.2 where laminar losses if the wave had not broken are

subtracted out. Because of this, there are no non-breaking waves in figure 8-81.

For the non-breaking cases, this fraction of energy transferred across the interface

is essentially zero. In the cases where breaking occurs, this varies radically between

5-35% of the total energy lost during breaking and is always from the water to the

air (negative). If we consider the amount of energy transferred at the interface as

a fraction of just the energy lost due to the breaking event, there is also a wide

variability of 10-35%.

As this is an indirect calculation, the error in the energy calculation should be

considered. As shown in chapter 5, the energy conservation for the entire volume is

in general good for all of the waves considered. However, it degrades slightly when

the air and water volumes are extracted and the direct calculation of 7 is used for

reasons discussed already. The associated error is calculated as the residual in the

calculation of the total energy in the entire volume as a fraction of the energy lost

during breaking. Figure 8-9 is figure 8-8a with the error estimates included. For most

waves where the error is relatively small, the energy transfer across the air water

interface is appreciable.

Even after the associated error is considered, there are some conclusions which

can be drawn regarding the significance of the energy transferred during a breaking

event. For breaking waves, the energy transferred at the interface is O(10-20)% of

the energy lost. For most cases, this a fairly consistent value except for a few of the

plunging breaking wave cases. The jet cases which lie at greater than 20% are all

cases which use the surface forcing method (SFI) to initiate the wave and have jet

ejections (see chapter 6). In these cases, the jet pinches off from the wave face early

in the breaking event and disintegrates. At this point in the discussion, it is unclear

if the jet disintegration contributes to this increased energy transfer rate. Within

the scope and capabilities of this study, we postulate that the amount of transfer of
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Figure 8-8: Amount of energy transferred at the air-water interface plotted against
the normalized energy (at t8 t) for a variety of waves: (<i) non-breaking, (A) gentle-
spilling, (V) strong-spilling, (0) jet formation, and (o) air entrainment.
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energy at the interface is not overly sensitive to the strength of the breaking event,

only on the existence of a breaking event.

8.4 Localization of Energy Transfer

Up until this point, the energy transferred between the air and water volumes has

been considered a global quantity or certainly a quantity over the wavelength of a

wave. This section discusses the localization of the energy flux rate at the air-water

interface for a breaking wave.

In this section, the energy flux rate per unit volume is calculated by equation 8.3

within the reference frame of the crest motion as the energy flux rate is directly tied

to the existence of a surface normal velocity component. The first wave considered

is a strong-spilling breaking wave. Figure 8-10 shows the local contribution for a

strong-spilling breaking wave for the inviscid and viscous components separately. In

this figure, the colored contoured regions represent the extent of the smoothed delta

function. It is over this region that the energy flux occurs. This moment in time

of the breaking event represents the point of maximum energy transfer rate for this

wave (and it is globally a negative value). The rest of the wave has essentially zero

energy transfer at the air-water transfer. As discussed in section 8.3, for some waves

in this study the direct calculation of the energy flux rate had issues when surface

tension effects were included. Because this is a strong spilling breaking wave, surface

tension effects are present (see chapter 6) and the Weber number for this simulation

is 738. However, this wave has a very low error estimate in the error estimate for the

indirect calculation. The overall transfer of energy across the air-water interface for

this wave is 17% 1% of the energy lost during the breaking event (from the water

to the air).

Based on figure 8-10, the work done by the pressure field at the interface (flii-

V06(0; c) is responsible for the transfer of energy from the water to the air during

the breaking event. This is dominated by the large region on the face of the bulge

during the breaking event. Figure 8-11 shows the pressure field H with the velocity
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Figure 8-10: Components of energy flux rate for a strong-spilling breaking wave (case
IAW-04) using direct calculations of equation 8.3 within the reference frame moving
with the crest. Black line represents air-water interface.
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Figure 8-12: Stress components of the viscous energy flux rate for a strong-spilling
breaking wave (case IAW-04) within the reference frame moving with the crest. Black
line represents air-water interface.

field (relative to the crest). There is a region of large positive pressure in the bulge of

the wave. The velocity field in the bulge has a significant surface normal component,

opposite in direction to the VO which points into the water. Thus, this region of large

pressure in the bulge is transferring energy from the water to the air.

Interestingly, the viscous contributions (-rd -V06(0; E)/Rew) are from the air to

the water in this wave. Shown in figure 8-12 are the two contributions to the viscous

component, -T--fU42/Re, and -T-u- i'/Rew. The first of the two contributions is

responsible for the positive energy flux rate. Inspection of each portion (not shown)

reveals that this is due to the flux of the shear stress component T1 3 W. At this

location, this term is two orders of magnitude larger than the flux from the normal

stress. Referring back to chapter 6 figure 6-10 where the shear and normal stresses

for a strong spilling breaker are shown, the normal stresses actually change sign from

negative just below the toe to positive in the bulge. This leaves a near zero region

right at the cusp of the toe. The toe itself is the beginning of the strong shear layer

in the strong-spilling breaking waves. Thus, the dominant mechanism of the energy

flux at the toe itself is due to the presence of the shear layer. This location is also

the source of vorticity in the wave as well. The viscous shear stresses due to the

separation of the air flow at the toe is causing an influx of energy to the water at this

point. However, as seen in figure 8-10, this influx of energy is overshadowed by the

inviscid energy flux from the water to the air along the front of the bulge.
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For the spilling breaking waves in this study, the energy flux at the interface

from the water to the air is dominated by the inviscid component. The region of

increased pressure effects combined with the surface normal velocity field at the air-

water interface is significantly larger in size (not magnitude) than any effect which

occurs at the toe. For gently-spilling waves, the net effect is smaller as reflected by

the lower overall energy transfer for these waves seen in figure 8-8. This is because in

these waves, the surface normal velocity component is much smaller in both the air

and water flow fields as both are able to follow the surface curvature relatively well

and no significant regions of separation are seen. The dominant effect of the viscous

terms is the shear component. Waves which see significant shear at the surface have a

larger contribution to the viscous energy flux. Additionally, this term is also positive

implying that the energy flux is into the water volume at that point. As this point is

also the source of vorticity in the flow, this is not entirely surprising. However, this

region is confined only to the toe of the bulge making its influence rather small.

One comment which should be made refers to the discussion in chapter 6 regarding

the motion of the bulge in spilling breaking waves. In experiments (and theory), the

presence of capillary waves at the toe of the bulge triggers a shear instability which

then causes the bulge to move down the face of the wave [66]. In this study, the

capillary wave train is not present for reasons discussed in chapter 6. Thus, the bulge

does not travel down the face of the wave. As the bulge moves down the front face

of the wave, there is an associated flow reversal and region of strong shear [90]. As

was shown here, the flow reversal and strong shear will effect the energy flux at the

air-water interface. There are two possibilities as to how it will effect this. First, as

the flow reversal will generate larger surface normal velocity in the bulge where there

are strong pressure effects, the energy flux at the air-water interface could become

larger than what is shown here (but remain negative or from the water to the air).

Second, as the bulge moves down the face of the wave, the shear region at the toe

becomes larger in size and magnitude. Depending on the increased magnitude of the

shear and the relative Reynolds number for the wave, the viscous energy flux could

become as significant as the inviscid energy flux. As this contribution is positive (from
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the air to the water) in the spilling breaking waves, the global energy flux which is

now negative could decrease to the point of being near-zero or actually positive.

Unfortunately, there is not enough data in this study to allow for any conclusion to

be made. There is also insufficient data in the literature to draw any conclusions as

information regarding the pressure field is non-existent.

As seen in figure 8-8, many of the plunging breaking events see approximately the

same amount of energy transfer at the interface. However, as discussed in chapter

6, the flow fields between the spilling and plunging breaking waves are different,

especially as there is very little surface normal velocity up until the point of jet

formation. Especially for the plunging waves which see more energy transfer from the

water to the air, it is wise to consider the localized energy transfer rate throughout

the breaking event to determine if the mechanisms are the same and if the sheet

breakup contributes to an additional transfer of energy from the water to the air. To

remove any issue with the surface tension in the direct calculations, the wave chosen

for this comparison is SFI-04 which has an infinite Weber number and small error in

the energy calculation. This wave transfers 23% t 1% of the total energy lost during

the breaking event from the water to the air.

Figures 8-13 and 8-14 show the time evolution of the energy transfer rate for this

plunging breaking wave which has a jet ejection. As in the spilling breaking wave, the

two components are plotted separately so their sign and magnitude can be compared.

The left of each pair is the inviscid effects lui -V#6(0; E). The right of each pair is the

viscous effects including the negative sign -Ti - V#6(0; c)/IZe.. The velocity field

used for the calculation is the velocity field in the reference frame moving with the

crest speed. The total energy transfer rate at each point is the sum of the two. The

contoured area represents the area of integration for the calculation of the integral to

get the total energy transfer rate T. The times shown correspond to the times shown

in the dissipation and vorticity in figures 7-7 and 7-8 in chapter 7 for comparison.

Figure 8-15 shows the total energy in each volume, the amount of energy dissipated

by viscosity and the direct calculation of the total energy transferred for this same

case. The dashed vertical lines represent the times shown in the temporal evolution
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figures.

Prior to the jet formation, the energy transfer rate is extremely small over the

entire wavelength of the wave even though there is a crest asymmetry. Even at the

time where the surface is near vertical (figure 8-13a), there is very little contribution

from either the inviscid and viscous components. As determined in chapters 6 and

7, the point of the jet formation is a region of relatively strong stresses and thus

dissipation as well as vorticity. While there is also a region of large pressure gradients

at the point of ejection, the pressure itself is relatively small. There is also very little

surface normal velocity at this point and while the two components are large, the

energy flux is insignificant at the moment of jet formation.

After the jet has formed (figure 8-13b), pockets of localized energy flux rate appear

at the jet tip and on the front face of the wave beneath the jet itself. The jet tip

will always be a source of energy flux as the velocity of the jet is in the direction of

the surface normal at that point. As the normal velocity is positive, the sign of the

energy flux will be dependant upon the sign of the pressure or stress components at

that point. However, due to its relative size compared to the rest of the wave, the

tip of the jet is considered a negligible contribution to this effect. Underneath the

jet, the inviscid component is localized to "kinks" in the surface and at this point in

time is positive, meaning that air is transferring energy to the water at the surface

through pressure. After the impact event (figure 8-13c), the inviscid energy transfer

rate becomes more complex. Under the air pocket, there is a region of positive and

negative contribution from the inviscid effects. Investigation of the pressure field

shows that the pressure changes sign along this region. Thus the changing sign of

the inviscid energy transfer under the air pocket is based on the pressure field itself

verses the surface normal velocity field. A large region of positive pressure also exists

under the impact region from the impulse of the impact which contributes to region of

strong energy flux into the water. As the plunging event continues and the jet pinches

off of the front face of the wave and the second impact event occurs (figures 8-13c-d

and 8-14), the inviscid contributions only are significant at regions where curvature

effects are significant or impact has occurred.

344



U. 1

0.05

0
T=3.404

0.1 0.2 0.3 0 0.1 0.2 0.3
x

(a) T=3.4

0.1 0.2 0.3
x

0.1

0.05

N

0

-0.05

-0.120 -0.060 0.000 0.060 0.120

T=4.105 0.1i' 0.2I' 0.3 '''

0

(b) T=4.1

-0.120 -0.060 0.000 0.060 0.120 0.1

0.05
N

0
T=4.705

I I . I

00.1 0.2 0.3
x

(c) T=4.7

-0.120 -0.060 0.000 0.060 0.120 0.1 F

0.05

N

0
T=5.006

0. 0.2 0 .05 ' I.0.1 0.2 0.3 0

0.1 0.2 0.3
x

-0.120 -0.060 0.000 0.060 0.120

0.1 0.2 0.3
x

-0.120 -0.060 0.000 0.060 0.120

I , I . I . ._L .- I

0.1 0.2 0.3
x x

(d) T=5.0

Figure 8-13: Time evolution of energy transfer rate. Left of pair is inviscid effects.

Right of pair is viscous effects. Black line represents air-water interface. (case SFI-04).
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Figure 8-14: Time evolution of energy transfer rate. Left of pair is inviscid effects.
Right of pair is viscous effects. Black line represents air-water interface. (case SFI-04).
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Returning to figure 8-13b, after the jet has formed, the viscous components cover

the entire region underneath the jet even though they are smaller in magnitude to the

inviscid components. Thus, because y is negative, the energy transfer is dominated by

the viscous component due to the size of the region it effects. This negative component

is due to the large region of stresses on the front face of the wave underneath the jet

after it has formed. After the jet impacts the surface (figure 8-13c), the energy flux

due to viscous effects again sees a peak region under the jet associated with a large

dissipation region at that point. Where the inviscid components have localized to

regions where the surface is highly distorted, the viscous components span the front

face of the wave with peaks where the jet has impacted. At the point of maximum

energy transfer to the air (T ~ 5), the bulk of the energy transfer has been dominated

by the stresses in the flow field caused by the jet verses the pressure work.

This trend of localized inviscid effects at points of extreme curvature and high

regions of viscous effects near the jet ejection/impact points continues through the

second and third jet impact (figures 8-14a-c) until well after the breaking event (figure

8-14d) where there is essentially no contribution from either component.

As the jet pinches off and forms droplets (4.7 < T < 5.5 in figures 8-13 and 8-14),

there is no appreciable source of energy flux except for the very tip of the jet. As

discussed earlier, because of the shape of the tip and the direction of motion of the

tip, it will always have a surface normal component to the velocity field but will have

small contribution due to its size. Before the droplets form, the jet itself has very

little pressure or stresses. Thus, in the context of this study, sheet disintegration

and droplet formation are not a significant source of energy transfer between the two

volumes.

To summarize, for this plunging breaking wave with jet ejection, as expected, the

interfacial energy flux rate is essentially zero before and well after the breaking event.

Even as the jet is beginning to form and the crest steepens to near vertical, because

the velocity field in the reference frame of the crest is predominantly surface parallel,

the contribution to the energy transfer rate is relatively small. Once the jet forms,

however, the energy transfer rate develops localized regions for both the inviscid and
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viscous components. The inviscid component generally follows changes in curvature

as the pressure changes signs in those regions and has significant contribution at

points of severe curvature. Because of the large stresses at the interface underneath

the jets and increased shear along the surface, the viscous components are significant

despite the Reynolds number scaling. The pinch off and breakup of the jet contribute

very little to the energy transfer rate.

While both spilling and plunging breaking waves transfer energy from the water

to the air, the plunging breaking wave poses a different picture of the mechanisms

involved when compared with the spilling breaking wave. In the spilling wave, the

dominant contribution is the inviscid energy flux. For the waves in these cases, as

the Reynolds number increases, the inviscid energy flux should remain the dominant

influence providing the toe region remains small and localized. However, as the bulge

does not move down the face of the wave as in many spilling breaking waves, it is

difficult to make definitive conclusions if the viscous energy flux becomes stronger as

the stresses in the toe region become stronger and take up a larger portion of the

wave face. Somewhat surprisingly, the plunging breaking waves are dominated by

viscous effects as the pressure at the surface is relatively small except at points of

extreme curvature or impact. The stresses, in general, are relatively larger and include

not only the impact regions but regions under the jet itself. Without knowing the

relative increase of the stresses at higher Reynolds numbers, it is difficult to determine

whether the Reynolds number scaling in the viscous flux term would make it retain its

dominance in the energy flux rate. If the Reynolds number did make the viscous flux

term less significant, one could argue that the energy transfer for plunging breaking

waves would be small. It would only be affected by the actual impact event as the

predominance of the plunging events have little surface normal velocity field.

The only caveat to this conclusion is the effect of the air pocket collapse in the

plunging event. Unfortunately, the case with air entrainment which has somewhat

physical air pocket collapse has an associated error of the size of the energy trans-

ferred between the volumes which makes it an unreliable candidate for this type of

analysis. Also, as the collapse of the air pocket is a three-dimensional effect and highly

349



dependent upon the compressibility of the air, even if a case was available with small

associated errors, the applicability of the conclusions drawn would be questionable.

8.5 Conclusions

This chapter began with the investigation of the term associated with the energy

flux across the air-water interface. This transfer of energy contains an inviscid and

viscous component. For developed, plane progressive waves which do not evolve

further, this energy-flux rate is zero as there is no surface normal velocity component

in the reference frame moving with the wave crest. For cases where the surface

normal velocity component is appreciable, such as standing waves or waves evolving

into breaking waves, this term is non-zero and potentially significant.

The evidence support the existence of this term for breaking waves was also dis-

cussed. Within the context of the amount of energy lost during the breaking event,

the amount of energy lost in the water volume to viscosity and surface tension effects

does not account for all of the energy lost during breaking. As the energy is conserved

to within a reasonable margin of error in this study, the only other possible expla-

nation is that energy is being transferred from the water volume to the air volume

during breaking. This can also be seen by the increase in energy in the air volume

during the breaking event while all other energy is being removed by dissipation. This

increase in energy in the air is seen predominantly in the kinetic energy.

The energy transferred between the two volumes was quantified for all of the waves

in this study. In general, 10-35% of the energy lost in the water to the breaking event

is lost not to viscous effects but as energy transferred to the air volume. There was

no direct correlation between the strength of the breaking event and the amount of

energy transferred within the available data.

Two distinctly different descriptions of the local energy-flux rate were discovered

between spilling and plunging breaking waves. For the spilling waves, the dominant

mechanism is the inviscid energy-flux rate. This is due to the presence of a surface

normal velocity field in the bulge where a larger pressure region exists. While the
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stresses in the wave face were large at the toe and yielded a transfer of energy into

the water from the air volume, the localized region of the toe area made the viscous

energy flux contribution small. It is uncertain in spilling breaking waves where the

toe moves on the front face of the wave, whether or not this would remain true as

there is no available data to make any firm conclusions. For plunging breaking waves,

the dominant mechanism is actually the viscous component. As the pressure in the

wave during the breaking event is small except at regions of large curvature or jet

impact, its contribution is confined to these areas. The stresses at the interface are

more widespread making their influence dominant. It is uncertain how this would

scale to larger Reynolds number as the viscous stresses at the air-water interface are

unknown for these types of waves. Nor is it clear how the air pocket collapse would

effect this analysis as it is dominated by effects not included in this study.

Finally, it should be noted that as the energy transfer rate for spilling-breaking

waves is dominated by inviscid effects, the transfer from the water to the air will

scale to the open ocean. The predominance of the breaking waves at sea are spilling

breaking waves with air entrainment or microbreakers. These inviscid components

will scale to these length scales. Much attention has been addressed to the energy

transfer from the wind to the waves to the current with little understanding of the

affect that breaking has on this transfer in the opposite direction. The greater than

10% energy loss of the breaking wave to the air should be considered in all modeling

for coupled air-boundary layer effects.
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Chapter 9

Conclusions

9.1 Contributions of the Thesis

This dissertation has made new contributions to both the technical and scientific

issues associated with the numerical study of steep breaking water waves. Through the

inclusion of the coupled air-water interface and direct numerical simulation, unique

insight into the kinematics, dynamics, dissipation and energy fluxes of breaking waves

was obtained. This study provides an initial step towards the development of physics-

based turbulence models for the study of wave breaking at larger scales.

9.1.1 Technical Contributions

Simulating the coupled air-water interface through direct numerical simulation pro-

vides numerous technical issues. The effective modeling of the physics involved in this

topic requires a methodology which robustly handles the complex topology changes

associated with breaking water waves. As interface tracking methods which use points

on the interface to track its location require special treatment of the interface at

breakup or re-entry, an interface capturing method based on the level set method was

chosen. The level set method provides a natural treatment of the complex surface

topology in wave breaking and also provides efficient coupling of the air-water inter-

face dynamics by mapping discontinuous quantities such as the density and viscosity
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to a smooth function which represents the distance of a point on an Eulerian grid to

the interface.

While the level set method is robust in terms of handling the surface topology

changes, through a detailed analysis of the level set method, we discovered that

there were technical issues associate with its implementation which needed to be

addressed. First and foremost, the physics of the air-water interface problem posed

the greatest issue. While many applications of the level set method exist in the

literature, there have been few which have been successful when the two fluids involved

have the properties of air and water. Because of the relative magnitude between

the densities and viscosities of the two fluids, the relative magnitude between the

gradients of the velocities at the interface is significant. For a Poiseuille-Couette

flow, the relative velocity gradient is 100:1 between the air and the water. Thus, the

numerical resolution to adequately resolve the gradients in the air flow can be 100

times larger. This can quickly become very restrictive even in two-dimensional flows.

The traditional implementation of the level set method uses a smoothing function

which is symmetric about the interface. The smoothing is used for the constitutive

properties to remove the difficulties associated with numerically taking derivatives of

functions which vary a few orders of magnitude over only a few points. Yet, even with

this traditional smoothing, simulations involving air and water are prone to spurious

vorticity in the air which are a function of poorly resolving the gradients in the viscous

air boundary layer. To this end, we developed a modified smoothing function which

satisfies the same characteristics as the traditional function but was asymmetric about

the interface, reaching further into the viscous air boundary layer. This allowed the

large gradients in the air to be smoothed out over a larger distance and removed

the spurious vorticity. To our knowledge, the analysis of the level set method for

air-water interface flows and the subsequent development of a modified smoothing

function which takes into account the physics of the problem being modeled is the

first of its kind associated with this numerical method.

The other technical issues encountered and resolved in this dissertation were as-

sociated with the numerical implementation of the level set method verses its core
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formulation. The numerical implementation used a staggered-MAC type grid which

is highly desirable for ensuring continuity of the flow and ensuring that the pressure

and velocity field is coupled. This type of implementation is standard in the literature

involving not just the level set method but other interface capturing techniques such

as the volume of fluid method. However, the staggered nature of the implementation

requires the movement of variables between locations on the grid. Providing that

the grid is Cartesian and that quantities do not vary significantly from grid point

to grid point, this is usually performed with an average and has served the field of

computational fluid dynamics adequately for decades. As Eulerian interface captur-

ing techniques became popular, the same averaging technique was applied to the

constitutive properties as well. Yet, these quantities do vary significantly over a few

points, especially for air-water flows. In this work, the traditional averaging technique

takes the information provided in the level set function, namely the distance to the

interface which is a smooth function that varies slowly, and interpolates that value

between the various grids. The constitutive properties were then evaluated based on

this interpolated value in lieu of averaging them directly. For very little additional

computational effort, this method proved to be superior to the averaging method

prevalent in the literature in terms of numerical dissipation and adequate solution

for the pressure field. Additional improvements to the treatment of the stress forces

compared to the literature were also made which reduced the numerical dissipation

in the treatment of the shear forces.

The final contribution of a technical nature was the implementation of the reini-

tialization of the level set function. A critical aspect of the level set formulation, in

particular to the accurate calculation of derivatives and curvature, is that the level

set retain its distance function property as it is advected. The level set governing

equation relies on Lagrangian invariance. However, the typical implementation of the

level set method uses the velocity field of the fluid at the point where the level set

function is defined. For the zeroth level set, or the interface between the two fluids,

it has been proven that this is correct and is actually the kinematic boundary con-

dition at the air-water interface. However, away from the interface, the velocity of
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the field no longer satisfies this Lagrangian invariance and stretching and bunching of

the level set function can occur. This then allows the level set function to drift from

representing a distance function. To correct for this, reinitialization of the level set

function has been adopted in many of the implementations in the literature and in

this thesis. However, reinitialization can lead to small errors or drift in the location of

the interface which results in a loss of volume. The reinitialization technique adopted

for this work is based on relatively standard technique in the literature. This yields a

volume conservation of 2% over the course of a simulation as is generally reported in

the literature which uses this technique. However, by including a sub-cell fix which

ensures that the method of characteristics is not violated, we were able to ensure a

volume conservation of 0.2% for most waves. The idea of the sub-cell fix is not neces-

sarily new as it was published in an archival journal [95]. However, to our knowledge

no one has given it much notice.

9.1.2 Scientific Contributions

The key findings of this thesis represent new contributions to the study of breaking

waves in three distinct areas. The first area is in the kinematics and dynamics of

breaking waves. This numerical study simulated a variety of spilling and plunging

breaking waves throughout the various stages of the breaking process. For spilling

breaking waves, the developmental stage consists of the formation of a bulge and toe

on the wave face. The bulge represents a region of localized vorticity and stresses

in the flow which are a function of its curvature. Within the reference frame of the

wave, all of these quantities were associated with curvature as the surface parallel

velocity field (of the water) attempted to follow the curvature of the bulge. As the air

sees the wave face more like a solid wall than a shear-free surface, the bulge is also a

significant source of separation and vorticity for the air flow. We identified two types

of spilling breaking waves - gentle and strong - which are similar in characteristic but

different in terms of the length of the breaking event, the strength of the vorticity and

dissipation, and overall effect of the curvature. While the stresses in the water for

the gentle spilling breaker were confined to the bulge area, a significant shear layer
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existed in strong-spilling waves that reached almost the extent of the wave crest.

Good quantitative comparisons to experiments and theory were made in terms of the

velocity and vorticity fields. Qualitative agreement was seen in the surface evolution

except for the presence of a capillary wave train which is seen in experiments and not

in this study. Suggested reasons for this difference were posed ranging from numerical

resolution to physical scales. The capillary wave train is attributed to the movement

of the bulge down the front face of the wave and an associated flow reversal as this

occurs. As these phenomena do not occur in the spilling breaking waves in this study,

we are not entirely surprised that the wave train is not seen.

For plunging breaking waves, two types were also identified -- jet forming and air

entraining. The developmental stage of the plunging breaking wave was analyzed for

both types. It was found that a large pressure gradient appeared at the point of

the jet formation as well as region where the speed of the crest was greater than the

phase speed of the wave. Both of these findings are consistent with the literature.

As in gentle spilling breaking waves, a localized region of stresses and vorticity occur

at the point of the jet formation which is a function of the surface parallel velocity

field following the almost near vertical profile of the air-water interface. However, this

region is very thin and weak when compared to spilling breaking waves. This agrees

with experimental results which show, within the extent that they have resolved the

viscous boundary layer, that the flow is essentially irrotational up until the jet forms.

However, based on arguments regarding curvature effects, the flow must be rotational

in the regions where we have found vorticity.

The impact stage of the jet for both types of plunging events was also shown. The

waves which feature a jet ejection have a much thinner jet which forms. Because of

its thinness, the jet is subject to pinch of and disintegration as it is impacting the

wave face. The pinch-off and breakup process compared well to the theory available

in the literature even though in the literature it is described as a three-dimensional

process. For the waves which entrained air, the jet which forms is significantly thicker

and does not pinch off or disintegrate before the first or second re-entry and splash

up event. This allows the air pocket which forms underneath the jet to pinch off
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into larger bubbles or air pockets. The bubbles either become unresolvable, breakup

into smaller bubbles or burst at the surface which is qualitatively what should be

expected. After one to two periods beyond the breaking event, there are essentially

no bubbles left in the wave. As the bubbles in this study are considered overly stiff

because they are two-dimensional and incompressible, no comparison to the literature

was attempted.

Within the context of the narrowbanded spectrum of the waves in this study, the

evolution of the spectrum throughout the breaking event was studied. We showed that

there was a loss of energy at low wavenumbers prior to breaking which corresponded to

an increase in energy at higher wavenumbers. These higher wavenumbers are essential

to developing the wave steepness necessary for the wave. The energy remains in

the higher wavenumbers for approximately one wave period after the breaking event

before it is fully dissipated. This behavior and the potential energy loss is consistent

with findings in the literature.

The second area is in the dissipation of breaking waves. Because direct numerical

simulation was used in this study, there was no appreciable artificial dissipation in

the simulation due to turbulence closure models (providing the numerical dissipation

of the implementation was small, which it is). Thus, this study captured the instan-

taneous dissipation effects of wave breaking in a manner which no experiment has

provided to date. Because of the coupled air-water interface dynamics, this study

provided a unique set of the same information for the air. The spatial and temporal

evolution of the dissipation rate for both spilling and plunging breaking waves showed

a high degree of localization and unsteadiness which was also a function of the type

of breaking wave which formed. For the water, it was found that the dissipation rates

increase by at least a factor of two for even a spilling breaking wave. For the air, this

increase varied up to an order of magnitude as in plunging breaking waves it attained

the same order as the dissipation rate in the water.

The global amount of energy lost during the breaking event was considered in a

control volume approach similar to experimental techniques. With the laminar viscous

losses removed, the amount of energy lost to the breaking event alone was calculated
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and shown as an increasing function of the energy in the wave prior to breaking. We

showed that the use of the slope parameter, as is done in all experiments which use

dispersive focusing techniques to generate breaking waves, is only a useful measure

of wave breaking in the absence of all other inputs.

In this study, waves with less than 40% of the energy of the Stokes limiting wave do

not break. This is consistent with many of the findings in experiments if the energy in

the wave is estimated through an integral slope parameter. There is a range between

40% and 60% which form spilling breakers and jets where the energy loss due to

breaking increases dramatically with appreciable variability. Finally, while the data

is sparse above 70% of the Stokes limiting wave, a maximum amount of energy loss

due to breaking of just over 40% is seen once a critical value is reached somewhere

above 80% of the Stokes limiting wave. The variability in the data showed that while

the energy in the wave prior to breaking showed some correlation to the strength of

the breaking event, that other factors may be involved.

Comparisons of the potential energy lost due to wave breaking were compared to

experiments. As potential energy is not a functions of Reynolds number effect, it

is possible to directly compare the waves in this numerical study with experiments.

Despite some of the limitations of this study (two-dimensional, moderate Reynolds

number), the comparisons were quite good. Additional comparisons were made in

regards to a dimensionless dissipation rate which has received some attention in the

literature. We showed that, like experiments in unsteady breaking waves, the dimen-

sionless dissipation rate scaled by more than just the phase speed of the wave as was

proposed. We also found that the dissipation rate was an order of magnitude less than

steady breaking waves except in the cases of some of the strong-spilling breakers. As

the strong spilling breakers had many similar characteristics to the steady breakers

except in terms of duration, this is not entirely surprising.

There is an area of study in the literature devoted to determining a universal

breaking criteria for waves. This criteria would not only determine whether or not

a wave would break but what its effects would entail. The existence of a universal

criteria aside, we found that a criteria tied to the growth rate of the wave proved to
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be a potential candidate for predicting whether or not a wave would break. Despite

the fact that the theory involved wave groups, a similar concept which concentrated

on a mean convergence of the energy density in the wave was shown to be a fairly

reliable criteria for wave breaking within the context of this study. While the amount

of data was sparse to make definitive conclusions, there was evidence that this criteria

had potential in not only predicting wave breaking but to the strength of the energy

dissipation as well.

The third and final area is the transfer of energy at the air-water interface. This

area has not received much attention in the literature. The formulation of a term in

the energy equation which accounts for the energy flux rate at the air-water interface

was derived. While not necessarily a new term, the term has been neglected until

just recently in the study of free-surface turbulent flows. The energy flux rate at

the interface contains an inviscid and viscous component. Unless there is a surface

normal component to the velocity field, this term is relatively negligible.

For the breaking waves in this numerical study, there is evidence that this quantity

is appreciable. Within the context of the amount of energy lost during the breaking

event, the amount of energy lost due to viscosity and surface tension effects does

not account for all of the energy lost during breaking. Since the energy is conserved

within a reasonable margin of error in this study, the only other explanation based

on the energy equation is a flux of energy between the air and water at the interface.

Evidence shows that there is an increase in the kinetic energy in the air during the

breaking event which results from the increased separation on the flow. This increase

in energy is balanced by the additional decrease in the energy in the water which is

not accounted for by viscosity or surface forces. Although the calculation of this term

is sensitive to errors associated with the conservation of energy, values as high as 25%

of the energy lost to breaking are found. Investigation of this energy transfer showed

that there was no direct correlation between the strength of the breaking event and

the amount of energy transferred within the available data.

At the Reynolds numbers in this study, the dominant mechanism for each type

of wave was identified as two distinctly different mechanisms between spilling and
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plunging breaking waves. For the spilling waves, the dominant mechanism is the

inviscid energy flux rate. This is due to the presence of a surface normal velocity

field in the bulge where a larger pressure region exists. While the stresses in the wave

face were large at the toe and yielded a transfer of energy into the water from the air

volume, the localized region of the toe area made the viscous energy flux contribution

small. It is uncertain in spilling breaking waves where there is considerable shear as

the toe moves on the front face of the wave whether this would remain true as there

is no available data to make any firm conclusions. For plunging breaking waves, the

dominant mechanism is actually the viscous component. As the pressure in the wave

during the breaking event is small except at regions of large curvature or jet impact,

its contribution is confined to these areas. The stresses at the interface are more

widespread making their influence dominant. It is uncertain how this would scale to

larger Reynolds number as the viscous stresses at the air-water interface are unknown

for these types of waves. Nor is it clear how the air pocket collapse would effect this

analysis as it is dominated by effects not included in this study.

Finally, it should be noted that as the energy transfer rate for spilling breaking

waves is dominated by inviscid effects, the transfer from the water to the air should

apply to scales in the open ocean. The predominance of the breaking waves at sea

are spilling breaking waves with air entrainment or microbreakers and while much

attention has been (deservedly) addressed to the energy transfer from the wind to

the waves to the current, little effort has been addressed to the transfer in the opposite

direction. The - 10% energy loss of the breaking wave to the air should be considered

in all modeling for coupled air-boundary layer effects.

9.2 Future Work

Throughout the course of this dissertation, it became obvious that for there to be a

(timely) defined end to this investigation that it would ultimately define a beginning

to the next. While this investigation contributed to the numerical method and the

understanding of steep breaking water waves, it serves only as a first step towards
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viscous numerical simulations advancing the knowledge of the role of wave breaking

in air-sea interactions. Any future effort along the lines of this dissertation should

include many of the improvements mentioned here. This section identifies three areas

where future efforts should be directed. They are improvements to the numerical

method, expansion of the numerical study and how to apply the knowledge gained in

this study.

One of the contributions of this thesis was an improvement to the numerical

method itself in the development of the asymmetric smoothing function which is

better suited for the simulation of air-water interface flows. Initial investigation of

the level set method with a sharp interface showed significant difficulty in accurately

capturing the kinematics and dynamics near the interface. Thus, a smoothed interface

was adopted for this study. Questions arose throughout this dissertation regarding

this choice and whether or not the smoothed interface was significantly affecting the

physics. This was the origin of section 2.7 and the asymmetric smoothing function.

The physics of the problem at hand, namely the relative size of the viscous boundary

layers in the air and the water, dictate that there will be large gradients at the

interface in the air. To resolve these gradients and all of the scales necessary for DNS

of the air portion of the flow requires a considerably large number of points in the air

at the interface. Thus, the asymmetric smoothing function was used to smooth these

large gradients and reduce the resolution required for DNS of the air flow.

However, many find a sharp interface conceptually desirable and some authors

have improved the implementation of the level set method using a sharp interface.

The two primary techniques of interest are the use ghost fluid techniques to take

derivatives across the interface and a robust method for solving the Poisson equation

with a sharp interface using a multi-grid method. If these methods stand up to

rigorous testing within the context of simulating steep breaking water waves, a similar

investigation of breaking waves with a sharp (coupled) interface is warranted. This

does not remove the issue regarding the resolution required for DNS of the airflow as

discussed. In fact, it most likely makes it a central issue. Adaptive gridding techniques

may relieve this problem. As in this study, a balance between the necessary resolution
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and computational costs will likely have to be struck.

As this numerical method was implemented with an eye on robust and accurate

simulations verses computationally quick algorithms, there is room for improvement

which will increase the efficiency of the numerical method. For most time-accurate

Navier-Stokes solvers, the bulk of the computational effort is in the solution of the

Poisson equation for the pressure field at every time step. The method used in

this implementation (line SOR) is quite basic and the test for convergence is quite

restrictive. Conjugate gradient and multi-grid methods have been adapted for the

solution of variable coefficient Poisson solvers. However, in the conjugate gradient

method, due care must be taken in the treatment of the surface tension term if it is

included. Also, as the location of the air-water interface is imbedded in the matrix

of the Poisson equation, special care must be taken to ensure that the location of the

interface is not lost across the various grids. These details aside, improvement of the

computational efficiency of the Poisson solver would certainly expedite future studies.

The other improvement to numerical efficiency would be the implementation of an

implicit time-stepping algorithm which included surface tension effects. The implicit

time integration algorithm is not a trivial step. With the level set function also treated

implicitly, the variable coefficient Poisson solver is dependant upon information which

has not necessarily converged. Also, including surface tension effects is a non-trivial

step as it involves nonlinear components due to the calculation of the curvature. Some

semi-implicit schemes have been presented in the literature; however, their treatment

of the surface tension terms are done explicitly. Thus, depending upon the Weber

number of the problem, the time step restriction due to surface tension effects can

become the dominant term and the numerical model will resort to being explicit in

time.

With some improvements to the numerical efficiency of this implementation, it is

possible to extend the bounds of this investigation into other types of waves. This

study focused on deep water unsteady breaking waves which were predominantly

made of a single frequency. Yet, much of the application of the study of unsteady

breaking waves concerns waves which have broadband spectrums or exist as part
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of wave groups. Thus, expanding this study to include wave groups, the effects of

a wavemaker, or the capability of using an input spectrum are all regions which

could greatly increase the applicability of these results. Chapter 4 outlined the pro-

cess which could be used to include the effects of a wavemaker. The inclusion of a

wavemaker facilitates the study groups and dispersively focused wavebreaking as is

performed in experiments. It also allows the study of an impulsive "push". Waves

generated through this impulse will certainly have a broadband spectrum and break

relatively close to the wavemaker compared to dispersively focused waves. This sec-

ond application would reduce the domain size necessary for the simulation and still

capture many of the effects of broadband spectrum waves which were not included in

this study.

This numerical investigation focused on unsteady breaking waves. The study of

steady breaking waves opens the door to the entire area of application for Naval

engineering. Naval design tools are in dire need of robust wave breaking dissipation

models which can simulate the drag effect of the breaking bow wave and potentially

model the entrainment of air into the bubbly wake of the surface ship. Recent work

couples the viscous level set method with a coupled air-water interface to an inviscid

boundary element method which solves for the flow around a hydrofoil. This method

is primarily used to study the waves breaking beneath a submerged hydrofoil as in

Duncan's experiments. In chapter 4, a technique which can be used to simulate the

effect of a submerged object through the use of a body force method was described.

This technique focused on the fact that merely the influence of the body was necessary

to develop breaking waves. As these are the primary focus of the study, resolving the

flow about the hydrofoil and its turbulent wake are secondary matters. Providing

that only the effect of the body is all that is necessary to generate the breaking wave,

this type of modification would facilitate the study of steady breaking waves with a

coupled air-water interface.

The body force method which is described as helpful for studying steady breaking

waves could also be modified such that bottom effects could be studied. This type

of breaking could consider wave shoaling or the flow of a wave over a bump. Both
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mechanisms generate plunging breaking waves and are of importance to the study of

coastal erosion, etc.

On a more pragmatic side, the study of the waves using a three-dimensional

version of this numerical implementation is also warranted. While three-dimensional

breakers are another class of waves which deserve study, a wave which is initially two-

dimensional and breaks contains three-dimensional flow components. A numerical

capability which allows for this type of flow is necessary to discuss the effects of air

entrainment and strong turbulence in wave breaking. However, efforts to improve the

numerical efficiency of the code as discussed earlier should be implemented as well to

keep the computational costs at a reasonable level.

The effect of a larger Reynolds number should also be included through a basic

Large Eddy Simulation (LES). While this type of turbulence closure would be based

on basic models verses models specifically designed for the physics of wave breaking,

it would allow the simulation of Reynolds numbers of one to two orders of magnitude

larger than the present study could attain. While this is only the lower limit of

the Reynolds number at laboratory scales, it is another necessary step towards the

simulation of breaking waves at larger scales.

Finally, the question of how to apply the knowledge gained in this study to future

efforts still remains. Some might argue that the Reynolds numbers available to DNS

are too restrictive to be useful for study of the effects of breaking waves at the scales

which matter to engineering applications. There is some validity to this argument

as it is unlikely that directly scaling the results from DNS to field scales would be

entirely fruitful. This is even the case when discussing laboratory scales as the largest

waves are still an order of magnitude less than scales seen in the open ocean. Yet,

DNS provides important information about physical mechanisms during breaking as

simulations using potential flow techniques provide for the pre-breaking phase. An

extensive database of high-resolution DNS results for a variety of breaking waves is

considered quite valuable. This type of database could be used to develop statistical

descriptions of wave breaking. It can also be used to test the applicability of current

turbulence closure models in the context of breaking waves and the development of
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new ones if necessary. Without the validity of the turbulence closure models in place,

there is no degree of certainty that the turbulence models are not masking some of the

physics involved. Thus, numerical studies such as LES and LWS that involve wave

breaking at larger scales such as the laboratory may provide qualitative information

only if they can not attest to the validity of their closure models.

Yet, if physics-based turbulence closure models are developed and validated, a

similar process can be applied to go from the laboratory to the field scale using ad-

vanced LES and LWS. At these scales, many of the questions about the effects of

the coupled air-water interface during breaking on the transfer rates can be answered

more authoritatively. A similar database at laboratory scale can be used to deter-

mine statistical descriptions and test closure models appropriate for RANS (steady

or unsteady). With validated RANS closure models in place, quantitative simulation

of the near field flow of a surface ship for design purposes is an attainable goal.
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