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Abstract
The dramatic increase in aluminum consumption over the past decades necessitates a societal
effort to recycle and reuse these materials to promote true sustainability and energy savings in
aluminum production. However, the path towards this goal is full of challenges which lead to
inefficiencies in the usage of secondary materials. These frictions are due to (i) rapidly changing
consumption patterns, (ii) compositional incompatibility in scrap streams and (iii) incomplete
information in the decision making process around scrap consumption.
This thesis tackles these inefficiencies by developing optimization-based decision tools and
modeling techniques for the assessment of sorting technologies and scrap management from
procurement to production. In the course of managing and accounting for the aforementioned
variability and uncertainties in the material system inputs, the goal is to present cost-effective
strategies to increase scrap consumption under applicable context of different operating
environment in aluminum production. These decision tools also aim to foster a fundamental
shift in decision-making behavior to factor in uncertainties into the scrap management process.
A sorting algorithm with an arbitrary number of output streams is created as a guide to quantify
the effects of wrought and cast recovery rates, sorting cost, scrap content, and product mix on
sorting technologies application and development. In collaboration with Norsk Hydro
Aluminum, an evaluation of wrought-versus-cast sorting technology is undertaken. For a
reasonable range of sorter recovery rates and costs, the process leads to overall cost savings and
increase in scrap consumption. Unlike cost savings and scrap consumption, however, the sorter
utilization rate does not increase monotonically with improvements in recovery rates.
Furthermore, under limited scrap supplies, not all products benefited in increased scrap
consumption with sorting.
Stochastic optimization techniques are introduced to address demand and scrap compositions
uncertainties faced by different decision-makers along the aluminum production chain. With the
idea of recourse and scrap net residual value, increased scrap purchase and usage were
determined to be an effective hedge against adverse demand swings. Traditional forecast-based
deterministic decision tools were found to be too costly and conservative in scrap usage on
average. At the operator level, stochastic modeling draws relevance in its ability to link
production tolerance level for compositional variance to the underlying compositional
uncertainties in scrap materials. The technique also supports diversification in scrap sources as a
way to mitigate compositional variance in product scrap usage.
Overall these models and methodologies target various scrap usage inefficiencies in the
aluminum production chain. Their application and associated insights can bring society one step
closer towards sustainable development, not only in aluminum, but potentially for other light
metals as well.
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Title: Assistant Professor of Materials Science and Engineering Systems Division

Thesis Co-Advisor: Lionel C. Kimerling
Title: Thomas Lord Professor of Materials Science and Engineering
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Chapter 1: Introduction

1.1 Aluminum, Society & Environment

Aluminum is a critical component of modem day materials use. It is used in a large number of

industries including transportation, packaging, construction, consumer durables and other

engineering applications . In fact, by the end of the twentieth century, 32 million tons of

aluminum was consumed worldwide, making it the second most utilized metal in the world.

'Within the US, the three biggest individual markets for aluminum are transportation, building

and construction, and packaging which represent 33%, 20% and 13% respectively of all annual

shipments (Aluminum Association 2004). While the abundance of bauxite ore around the world

does not indicate any imminent shortage of aluminum (in fact, aluminum is the third most

abundant element), there are certainly severe environmental consequences for heavy reliance on

primary production versus recycling this metal. Recycling aluminum only requires 5% of the

energy and emits 5% of the CO2, a greenhouse gas, compared to primary production of hot metal

(Keoleian 1997, Stodolsky 1995). Even though 55% of the energy source for primary aluminum

production is currently from renewable energy2, the remaining 45% are still polluting and

environmentally harmful (International Aluminum Institute 2002). While the aluminum industry

continues to raise the energy efficiency of primary production (International Aluminum Institute

2002), it still carries one of the highest primary-versus-secondary energy production requirement

differences compared to many other prevalent engineering materials. Hence, aluminum stands

out as a leading material for recycling efforts.

' These include electrical wiring, electrical towers, consumer durables, furniture, machinery and sports equipment
(International Aluminum Institute).
2 The sources are mostly hydroelectric power.

13



Figure 1.1 Energy source for primary aluminum production (International Aluminum
Institute 2002)
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Figure 1.2 Primary versus secondary material production energy requirements. (Keoleian
1997)

1.2 Aluminum Usage & Recycling Challenges

Perhaps in part due to being a highly valuable component in the consumer waste stream,

aluminum is often perceived to be a sustainable material and one that is highly recycled. In fact,

of the major metals, post-consumer aluminum and steel scraps represent 20-25% of domestic

apparent consumption in recent years, compared to only 9% for copper (USGS Mineral

Commodities Summary 2005). Yet, a more detailed view of the specific aluminum markets

would reveal hidden issues in this simple statement. While statistics regarding the recovery and

usage of secondary aluminum in all the major markets are not available, some observations can

be made in particular of the packaging and transportation industries. Some obstacles in
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aluminum recycling efforts relate to the actual rate of recycling, and the infrastructures and

technologies available to promote such effort. Others involve inherent problems and challenges

due to the constantly evolving nature of aluminum consumption and the chemical incompatibility

of different aluminum alloys and products in the recycling chain.

According to the Institute of Scrap Recycling Industries, the aluminum beverage can (mostly

.3105) recycling rate in the United States has been averaging around 60-65% recently. Close to

:54 billion used cans (1.6 billion pounds of aluminum alloy) were collected in the US in 2002.

However, this rate is far too low for the aluminum can to be conceived as a highly recycled

product; especially when it has the potential to be completely close-loop recycled (the same

material goes back into making new cans). Since it is rare for used aluminum beverage cans to

be mixed with other aluminum alloys during the collection, recovery and recycling processes,

this low rate of aluminum recycling from beverage cans can be mostly attributed to low

participation rates from consumers resulting in leakage from the material system.

While the volume of aluminum cans in the market today is undoubtedly significant, packaging

still ranks second in total tonnage of aluminum consumption compared to the transportation

industry. Regarding aluminum consumption in the transportation sector, it has not always been

the case that aluminum was used extensively. In fact it was only in 1994 that transportation first

became the largest single sector of consumption with passenger cars accounting for the majority

of the subsequent growth. The impetus for much of this rise in consumption in the transportation

sector is the desire to reduce vehicle weight and to meet government fuel economy requirements

(Ostroff 2004). In 2002, aluminum was the third most used material in cars and trucks,

according to the Aluminum Association. In fact, between 1973 and 2002, the average vehicle

aluminum content has risen steadily from 91 pounds to 274 pounds (Benedyk 2002). With a

15



global annual production of 50 million new vehicles and average aluminum content per vehicle

of 274 pounds, the potential annual automotive contribution to the secondary aluminum scrap

pile is over 13 billion pounds. Table 1-I lists examples of recent vehicles with high aluminum

content.

Peugeot 607 418

Citroen C5 330 : ' 400kg...

Nonmetal Aluminum · Steel

Table 1-I Aluminum content of selected Figure 1.3 Average material content and
vehicles end-of-life material value of year 2000

vehicle (Ducker 1999)

Even though the aluminum content only represents 7%3 of the average motor vehicle by weight,

it typically accounts for over 50% of the vehicle's value as scrap (compare Figure 1.3). Because

of this value, up to 85% of the aluminum in cars are recovered and recycled at end-of-life. The

environmental and monetary benefits are some of the reasons Ford Motor Company and Alcan

jointly launched North America's first (October, 2002) closed-loop recycling program for

automotive aluminum sheet scrap. This static picture, however, belies the underlying issues in

aluminum recycling for automotive applications.

The applicability and economic value of scrap materials are delicately balanced with their

inherent handling difficulty during processing. This difficulty stems from the widely varying

chemistry and properties of the incoming scraps. In additional to the variability in chemical

content due to the mixed nature of scrap materials, scrap types exhibit trends due to changes in

3 Based on average aluminum content of 274 pounds for passenger cars and light trucks in year 2002 and total car
weight of about 4,000 (Ducker Research Company). Each pound of aluminum replaces two pounds of iron or steel.
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Vehicle Model Aluminum Content (bs)

Lincoln LS 500

Oldsmobile Aurora 500

Chevy Trailblazer 390

Nissan Altima 360
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the material choices in associated applications. For instance, the estimated combined aluminum

content of all vehicles currently on the road is 36 million tons worldwide and growing on the

order of 10% per year (Gesing 2001). This growth involves two types of aluminum alloys

differentiated by the way they are formed as well as in chemistry - cast and wrought. A wrought

product is one that has been subjected to mechanical working by processes such as rolling,

extrusion, and forging. A cast product is one in which the shape has been produced by

introducing molten aluminum into a mold, and includes processes such as sand casting,

permanent mold casting, and die casting, etc. Castings have less stringent compositional targets

and a high tolerance for impurities, and therefore can easily absorb current mixed alloy scrap.

'Wrought on the other hand is much less tolerant and current practice indicates that less than 10%

scrap can be used (Cosquer 2003). With silicon as a proxy for alloying content, Figure 1.4

indicates the generally higher alloying content for cast versus wrought alloys.

.- na16%

14%
12%
10%
8%
6%
4%
2%
0%

1100 2036 3003 4043 5052 6061 319 356 380 390

Figure 1.4 Silicon content of various wrought (xxxx) and cast (xxx) products. (Datta 2002)

Historically, cast products represented the bulk of aluminum alloy produced and were thus able

to absorb a significant amount of post-consumer scrap materials (USGS Minerals Yearbook

2003). Independent studies indicate that the growth in demand for wrought aluminum will

17



exceed that of cast aluminum in the near future (Cosquer 2003, Schultz 1999). Some are even as

pessimistic as to quote that the market for secondary castings is not likely to grow (Gesing

2001).

7000 . .- 

m 5000 - Wrought

4000

o 3000 -

E 2000 - -

.-M
--.. hhIN

up; T,-, 7 7I

1000

0

Figure 1.5 US passenger & light trucks aluminum consumption split between
wrought (Ducker 2002)
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automotive

Potential issues arising from changing patterns of
wrought and cast content (Ducker 2002)

consumption between

Figure 1.5 indicates the source of issues with regard to the changing patterns of consumption

between wrought and cast content. The projected compounded annual growth rate for wrought
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content in vehicles is more than double that of cast material at 5.5% versus 2.3%. This is in

contrast with the historical growth rate of 5.0% for wrought versus 6.7% for castings. Today,

even though castings for engines and transmission still account for a significant portion of the

automotive aluminum content, wrought products such as aluminum closure panels is rapidly

catching up. The number of aluminum closure panels went from 2.2 million parts to 3.8 million

parts from 1999 to 2002. This represents a compounded annual increase of 20%! On top of this

there are smaller-scaled but more radical concepts in materials design for cars such as aluminum

body in the Chrysler Plymouth Prowler or aluminum space frame on the Audi A8 and A2. With

the assumption that vehicles on average has a lifespan of 10 years and taking into considerations

for the above mentioned changes, Figure 1.6 shows a near-term crossing point between the

automotive casting consumption and the historical scrap supply stream. This intersection and

subsequent overshooting of the scrap supply over the castings consumption level means that the

rest of the scraps above this castings consumption level will have to be absorbed elsewhere,

presumably in the wrought content of the vehicle. However, as discussed earlier, wrought

products have less tolerance for variability and amount of impurities. This is the essence of the

risk involved of not being able to repurpose the mixed scrap streams. This is highly undesirable

given the current regulatory trends toward more stringent recycling requirements, not to mention

the negative environmental impact.

1.3 Thesis Relationship to Prior Work

This thesis is a relay on the early works of Professor Randolph Kirchain and Alex Cosquer in

applying optimization techniques in the study of aluminum recycling (Cosquer 2003, Kirchain

2003). It was previously demonstrated that through materials selection and design choices, scrap

consumption can be dramatically enhanced in automotive applications. Their framework also
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introduced modeling elements for the evaluation of single-stage, two-stream output sorting

technologies. Mindful of the environmental and economic significance of aluminum

sustainability, other researchers are addressing this topic from many different angles. Some are

focusing mostly on factors and technologies that are influential in the automotive sector (van

Schaik and Reuter 2003). Others are expending effort in specific classes of sorting technologies

development (Gesing 2002). The current research is complementary towards these development

and research efforts.

The need for continuing research in this area stems from several fronts. The challenges facing

aluminum recycling are not limited to those mentioned in the previous section. Inefficiencies in

scrap consumption due to chemistry mismatch cannot be addressed by materials selection and

design choices alone. Although such strategies might be promising under certain operational

constraints, they might not apply in situations where the chemical and physical properties of the

products require certain materials design. While these levers for scrap usage improvement are

appreciated in this thesis, other sources of inefficiencies are tackled as well. The scope of sorting

technology modeling capabilities is expanded beyond two-stream output to allow for a general

N-stream output. Furthermore, the mathematical framework and logic for multiple-stage sorting

is presented. In previous work, while not fully implemented, it was suggested that the two-

stream output framework can be readily adapted for multiple-stream output by cascading the

two-stream output modeling elements downstream. However, this suggested model structure is

unreflective of actual materials flow and furthermore introduces computational inefficiencies in

that the variable space grows exponentially with the number of output streams. With the current

proposed model structure, the growth in variable space is only linear in the number of output

streams.
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Prior decision tools available to aluminum producers and other participants in the aluminum

production chain are often deterministic. They typically fail to capture one critical aspect of any

real engineering system - uncertainty. Variability is only studied in the context of sensitivity

analyses performed on operational parameters. This is an incomplete solution since it does not

provide actionable decisions that directly incorporate information on operational uncertainties.

in the current work, through the introduction of stochastic programming techniques (Shih 1993,

Dempster 1980), various uncertainties faced by different stakeholders in this industry are

modeled and accounted for in new decision framework. Specific techniques that will be

explored include chance constraint programming and recourse modeling. Through critical

examination of uncertainties in the aluminum production and scrap management processes, this

thesis provides industry with a set of user-friendly decision-making tools that better reflect real

operating environment and reasons for enhancing scrap usage.

The compilation of this thesis is ultimately a journey down the road of questions and answers

towards the betterment of scrap utilization in the aluminum production environment. To what

extent should scrap sources be sorted to be value added? At what costs are sorting technologies

economically sensible? How does the recovery rate of a sorter affect its utilization rate and is

this affected by the product mix as well? Do the considerations of operational uncertainties such

as demand and compositional uncertainties enhance or reduce scrap usage? What is the

economically optimal way to utilize scraps in light of uncertain operational conditions? What

are the driving forces by which operational uncertainties affect scrap usage? Under limited scrap

supplies conditions4 , how do considerations for operational uncertainties affect the relative

attractiveness of various scrap types? Can product compositional design changes benefit scrap

4 Limitation in scrap supplies is interpreted as the inability to source an extra unit of scrap at a price at or below what
is implied by the marginal benefit of having that extra unit of scrap.
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usage even in uncertain operational environments? Through critical thinking and methodologies

development on questions such as these, the goal of this thesis is to contribute to aluminum

sustainability.

1.4 Thesis Overview

This thesis focuses on developing tools and insights to support decision-making around the

aforementioned challenges within the aluminum production and recycling industry. The aim is

to characterize modeling techniques that identify cost-effective strategies to alleviate the issues

through either technology adoption or modified industry behavior with regard to scrap

consumption and management. The materials flow pertinent to scrap consumption in aluminum

production is illustrated schematically in Figure 1.7 along with the associated problems. The

details of the algorithms that deal with decision making at each step will depend on the exact

nature of the problem at hand.

Scrap Purchasing Production Allocation

I Pr
. - 9' ~~:D

Problem:wn: Proble: Pr m:

Pire to accomt Chemicd I ifficy in
f p vae cnpisbiiity manaing chemica
under product among compont conentl uncertainly
demnd unertainty in scrap maerials of scrap matrials

Figure 1.7 Sources of inefficiencies in aluminum scrap consumption.

Chapter 2 begins with an introduction on relevant optimization techniques that are used through

out this thesis as aids to derive insights into scrap consumption and management. For

completeness, one other technique often employed in stochastic optimization called Monte Carlo

method, will be discussed as to why it was not used. The focus will be on understanding the
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construction and logic behind these mathematical programming frameworks. The details of their

relevance on aluminum recycling will be made explicit in later chapters. Following this, sample

sorting technologies will be briefly introduced in Chapter 3 to give the reader a sense of the

physical means of scrap sorting. A comprehensive discussion of the modeling framework for a

two-stage N-output stream sorter is the goal of Chapter 4. In particular, the chapter will build up

the model framework step by step from the point of view of a single source of mixed scrap. The

benefit of doing so is not to confuse the reader with the simultaneous considerations of multiple

scrap sources; the overall model of multiple scrap sources is then an array of the resulting

picture. It also serves as a conceptual link between single and multi-stage sorting models. At

this juncture, the groundwork has been laid to apply the knowledge towards critical examination

of inefficiencies in aluminum scrap consumption. In Chapter 5 marks the beginning of a trail to

tackle such inefficiencies starting with scrap purchasing. By explicit considerations of demand

uncertainty through a stochastic optimization technique introduced earlier known as recourse

modeling, it will be demonstrated that robust scrap usage and purchasing decisions should

account for the many sources of variability in the operating environment. By doing so, scrap

usage can often be enhanced. The idea of scrap option value will be introduced and intimately

tied to the need for hedging strategies in light of uncertain demand. In Chapter 6, the sorting

model previously established will be adapted for a single-stage three-stream output sorting study

in collaboration with Hydro Aluminum. A set of cast/wrought mixed scraps will be considered

together with a range of cast/wrought products. This processing technology is proven to

circumvent the difficulty in handling scrap materials in production environment due to their

mixed nature. The cost effectiveness and applicability of such technology is uncovered under

different operating assumptions. The economics of adopting sorting technologies will be
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illustrated from the viewpoint of rent-for-service as well as direct investment. Then the concept

of another stochastic optimization technique, namely chance constraint method, will be applied

in Chapter 7 to account for compositional uncertainties in the production environment. At this

final stage of materials flow prior to market, diversification among scrap material choices is

presented as a key to control the risks of compositional variances. This control becomes a

natural driver for scrap tolerance. At the same time, chance constraint rigorously ties the

compositional diligence of scrap suppliers to their desirability as raw material sources. Chapter

8 puts together some of the modeling building blocks to address multiple sources of uncertainties

and variability. The mathematics involved is discussed together with the challenges both from a

modeling as well as data requirement perspective. In the conclusions chapter, the relative

significance of the various sources of inefficiencies and their suggested model-driven remedies

will be weighted against each other in terms of potential for scrap consumption improvement and

cost savings. Finally, ideas for future work will be presented as reflections and critique of work

from this thesis.
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Chapter 2: Introduction on Mathematical Programming

Optimization is also known in modem terminology as mathematical programming. In the most

general terms, it is the act of minimizing or maximizing a quantifiable goal under mathematically

defined constraints in reaching that goal. It is a vast subject with origins in the works of Dantzig,

Lagrange, Euler and many others who followed. However, the concept of optimization was slow

to gain acceptance in many practical applications until the availability of high-performance

computing power. Since then, with the development of computationally tractable algorithms to

solve such problems, the field gained acceptance as a scientific approach to decision making in

applications as varied as engineering science and economics. Today, optimization modeling

techniques are well suited for studying a wide range of designs and operations of materials

recovery system (Lund 1994, Stuart 2000).

This chapter is not a comprehensive review of optimization theory. Instead, it will introduce key

concepts that arise in linear and nonlinear, deterministic and stochastic mathematical programs.

Basic solution techniques will also be introduced primarily to provide a general sense for how

mathematical programs are solved. Readers who are interested in major techniques such as

simplex algorithm and interior-point method, which also make use of ideas discussed in this

chapter, can refer to many excellent texts on these subjects (Luenberger 2003, Chong 2001,

Bertsekas 1999, Bertsimas 1997). The ideas introduced in this chapter are important to

understand the results and discussions in the chapters to follow.

2.1 Deterministic Linear Optimization

A mathematical program attempts to identify the best values for a set of decision variables in

order to guarantee an extremum of a function of those decision variables (xl,...,x,), called an
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objective function, subject to a set of constraints. The general form of a linear program (LP) is

as follow. Minimize or maximize:

Eq 2.1 f(xl,x 2, ... ,X) = cTx,c = (cl,c2,.... ,cn),x = (x,,x2,....,x)

Subject to:

Eq 2.2 ailX1 + ai,2x2 +... + ai,nX n bi, i = 1,2,....,m

or in compact vector notation, Ax b

The x's are the decision variables, the c 's, a's and b's are constants. With all constraints being

equality constraints, the condition m < n, where m is the number of constraints and n is the

number of decision variables, is a necessary condition for an optimization problem to exists. If

m = n, the problem has a unique solution. Otherwise if m > n the problem might be over-

determined and not have a solution at all unless if some of the constraints are degenerate. In the

special case where all the constraints are of the type of equality, the problem statement is known

as a standard form, and a common technique to solve for the extremum is by the Lagrange

multiplier method. In fact this method is applicable also with inequality constraints with

additional considerations. It is also at the heart of many nonlinear optimization techniques. To

illustrate the idea of Lagrange multipliers, the objective function must be reformulated as an

augmented objective function, also known as a Lagrangian:

Eq 2.3 L(x) = f(x, ,x2,...,x)-ig(x)l -g (-) -...- img m(x)

where

gl (x) = a1 x1 + al,2 2 + ... + al,nXn - bi

gm (x) = am IXI + am,2X2 +... + am,nXn - bm
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are the individual constraints. The 2's represent the Lagrange multipliers and can have physical

:meanings depending on the problem. They are often known as shadow prices because they

represent, at the optimum, the change in the objective function with respect to a marginal change

in the right-hand side of the associated constraint, bi. With the standard form restated with an

augmented objective function, the solution technique of Lagrange multipliers proceeds as follow:

Eq 2.4 VL(x) = (a" ' i- ' a, (0...,0,0,...,o)

This provides a system of equations to solve for the optimal solution. In solving this set of

equations, the Lagrange multipliers are also found for the optimum, which then can be used for

sensitivity analyses. As mentioned earlier, the Lagrange multiplier method can also be used with

inequality constraints. The key is to introduce slack variables into the constraints and to treat the

slack variables as part of the variables to be determined for the optimal solution. A simple

numerical example will illustrate this.

Max: f(x,y)=x+y

s.t.: 3x + y = 9 -> g(x, y) = 3x + y - 9 = 0

as well as non-negativity constraints on the decision variables (ie, x, y > 0). To restate this

problem statement in an augmented standard form:

Eq 2.5 L(x,y, ,AO, ,y,S,,Sy) = f(x,y) -g(x,y)-2x(x-Sx2)-2y (Y-S 2)

Note that slack variables Sx and Sy have been introduced to convert the two non-negativity

inequality constraints on the decision variables x and y into equality constraints. The slack

variables are squared to ensure that the slack effects are positive since each of the original

inequality constraints are of positive-definite type. A special relationship exists between the

slack variables and the associated Lagrange multiplier of each constraint. If the associated
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Lagrange multiplier is non-zero, then the slack variable must be zero meaning that the constraint

is binding or strict (equality holds). The inverse of this logic statement is also true. Each of the

Lagrange multipliers in the Lagrangian corresponds to one equality constraint. Take derivatives

with respect to the decision variables, Lagrange multipliers, and slack variables to reveal the

system of equation that will determine the optimal solution.

(1) 1-3 -0 =
ax

aL
(2) = 1- 0 - Ay =0

ay

(3) =3x+y-9=0

(4)L(4) =x-S 2 =0
a2t

(5) -=y-S =0

aL
(6) = 22xS = 0

aSx

(7) a 2AySy = 0

One particular difficulty with the above system of equations is in system equation (6) and (7). In

particular due to the special relationship between the Lagrange multipliers and the slack

variables, there are four cases of possibilities: (I) Sx=0, Sy=O, Ay?0, Ax?0, (II) Sx?0, Sy?O, Ay=0,

Ax=0, (III) Sx=0, Sy?O, 4?0, Ax=0, (IV) S?0, Sy=O, y=0, Ax?0. Inspection of the system of

equations show that cases (I) and (II) are impossible. Comparison between the solutions for

cases (III) and (IV) indicates that the optimal (maximum) solution is given by:
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= , = 9, = =-2,xA = 0, = 9,0 = 1, x = -2,,S x = S = 9; f(x, y) = 9

According to the Lagrange multiplier Ax if the non-negativity constraint for decision variable x is

instead x > 1, the overall objective value will decrease by 2.

'The above discussions centered on the application of the method of Lagrange multipliers in

solving deterministic optimization problems. In the following sections the underlying concepts

just discussed, including those of shadow prices, still apply but the attentions are focused on

techniques for stochastic optimizations. In particular, the theories and applications for major

stochastic optimization techniques such as recourse and chance constraints will be developed.

These concepts are fundamental to the results presented in later chapters.

Some or all of the constraints in a real world optimization problem are often stochastic.

Rigorous mathematical techniques have been developed to deal with engineering systems

modeling under uncertainty in the optimization constraints. These techniques, generally known

as stochastic programming, have been utilized to address uncertainty in a number of

environmental and resource management scenarios (Ellis 1985, ReVelle 1969), amongst other

applications (Dupacova 2002, Kira 1997, Martel 1981, Growe 1995). The following sections

describe the major types of stochastic programming techniques.

2.2 Chance Constrained Programming

Chance Constrained Programming (CCP) was developed by Charnes and Cooper in 1963

(Chames 1963). Since then this technique has been applied in contexts as varied as resource

planning and traffic control (Li 2002, Waller 2001, Shih 1993). Among stochastic optimizations,

there is a class of problems where violations of constraints cannot be avoided completely and

that compensation actions for such violations cannot be clearly formulated with associated
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costs5. Nevertheless, decisions have to be made under these circumstances without a clear view

of what is likely to happen. In such cases, it makes sense to think of the optimization problem as

guaranteeing some level of constraint feasibility. Central to CCP are deterministic reliability

factors ao with values between 0 and 1. A reliability factor specifies the probability that a certain

stochastic constraint is to be met. It can be an operational observation based on history or a

tolerance level. In particular, in the context of materials production, oc can be interpreted as the

observed likelihood that the compositions of finished goods pass the compositional

specifications. It can also be related to the tolerance level of the production manager. The goal

of CCP is to translate non-deterministic constraints into deterministic equivalents such that

standard mathematical programming (Lingo, GAMS, etc.) can be used to model the stochastic

nature of the problem. Through the introduction of a variable that relates the reliability factor to

the choice of optimization decision variables, the deterministic equivalents adequately capture

the uncertainty factors in the underlying problem. The idea behind CCP is best illustrated

through an example. In the following example, a full optimization problem is not shown rather

the emphasis will be on deriving the formulation for chance constraints deterministic

equivalents. A full application will be presented in a later chapter. While the detailed

derivations are slightly abstract, the final outcome of translating the stochastic constraints into

deterministic constraints has a very elegant and intuitive interpretation.

Suppose a person is creating a salt bath with some maximum allowed salt content by mixing n

number of salt solution each with a stochastic level of salt content. This person must satisfy,

with reliability cx, the constraint that the overall mixture has a lesser amount of salt than the

5 Either the costs associated with such compensations cannot be known ahead of time, or that the enumeration of the
compensations is prohibitive from a computational standpoint, or both.
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maximum allowed . Suppose this person has attempted this before. Then his c can simply be

the average of his past success rate. The non-deterministic constraint is:

Eq2.6 Pr{(a' = Dixi)< D*} az

where i = Index for solutions (1, 2., n)
Di = Random variable of salt content in solution i
xi = Decision variables on mass fraction of solution i in the final salt bath
D* = Deterministic maximum amount of salt allowed in the final salt bath
a = Actual level of salt content in the final salt bath
a = Amount of salt in the final salt bath implied by a (more explanation below)
a = Required probability by which the stochastic constraint must be met

An assumption will be made that the random variables Di are Gaussian variables7 . The large

number of material sources involved warrants this practice. Given that Di are Gaussian

variables, the following definitions emerge:

D = (Di, i = 1, 2, ... , n) is the vector of random variables Di
x = (xi, i = 1, 2, .... n) is the vector of decision variables xi
E(Di) = The expected level of salt content in solution i
VT) = Covariance matrix of D

a = E(Di)x i

a = PxTVDX

So far, the constraint remains non-deterministic and cannot be modeled based on standard

mathematical programming techniques. The key to formulating the deterministic equivalent is to

introduce a new variable X(a) that will relate the probability specified by the reliability factor a

to the decision variables xi and the stochastic constraint. The new variable is introduced as:

Eq 2.7 X(a) = a-jua
(7a

6 The premise might be that salt solution with higher salt content is less expensive, but since a full cost optimization
problem is not the emphasis here, cost implications will not be discussed at this point.
7 The Central Limit Theorem states that the resultant distribution from combinations of a large number of systems
with various distributions (not necessarily Gaussian) is always Gaussian. It should be noted, however, that
normality is not a requirement in the development of the chance constraints method.
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where

x(a)

Eq 2.8 F (X(a)) =

One should recognize that X(a) is a normalized Gaussian variable8 and Fx(.) is the cumulative

normal distribution. Since the variables a, a and a are all xi -dependent, the explicit

dependence on a in the expression X(a) implies a relationship between the xi and the reliability

factor a. This implicit relationship removes the Pr{.} in the stochastic constraint in order to

arrive at the deterministic equivalent. To make this implicit relationship between a, la, caa and

a more explicit, a change of variable can be carried out as t-- a where:

a - u da' da't= - a = + t --> = cra ->dt =
er ~ dt ra

Eq 2.9 X(a) d
1 I e-t/2dt = 1 le(a' .a)'2da =aFx (X(a)) = -_ d t __ a

-2 CaV, ~e a2aa

which is simply a regular cumulative distribution function in the variable a which can also be

expressed mathematically as:

Eq 2.10 Pr{a < a = ua+ X(a)aa } = a

If this expression for a is substituted into Eq 2.6 then

Eq 2.11 Pr{(a' =Dixi) < D }> Pr{a' < a = a + X(a)a, }

In Eq 2.11, the variable a' is simultaneously present on the left-hand side of the < sign inside

both Pr{.} expressions. This allows the upper bound D* to be directly compared to the upper

bound pta + X(a)ra according to the > sign in between the two Pr{.} expressions. Because the

8 A normally distributed variable with mean zero and standard deviation of one, ie, a standard normal distribution
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left-hand side Pr{.} expression is > the right-hand side Pr{.} expression, the derivation for the

deterministic equivalent is complete. It can be expressed as:

Eq 2.12 D* 2 u,a + X(a)ra

where X(a) is simply the inverse of the cumulative normal distribution, Fx-(F(X(a))). It should

be noted that D* is deterministic and the right-side is dependent on xi which are in turn dependent

on the choice of a deterministic reliability factor a. It should also be noted that the original

linear chance constraint has become non-linear. Eq 2.12 has a graphical interpretation that will

reveal the underlying meaning of this result. In Figure 2.1, it is apparent that the final form of

the chance constraint is simply a deterministic constraint with a "safety margin" provided by the

term X(a) a. The greater the desired safety margin (ie, lower tolerance for error), the larger the

chosen value for a and hence larger X(a).

X(q) D
A

.A n

Ua

Figure 2.1 Graphical interpretation of chance constraint formulation result.

The above development has been for an upper bound constraint. However, suppose there is also

a lower bound, DL, on the level of salt required in the finished solution such that

Eq 2.13 Pr{(a' = DDixi) 2 DL} 2 a'
i

33

I



The deterministic equivalent for Eq 2.13 is not simply to change the sign for Eq 2.12 from ? to ?.

However, the ideas applied above can also be applied to find the deterministic equivalent of Eq

2.13. The following statement is the resulting deterministic equivalent to the statement in Eq

2.13:

Eq 2.14 Pr{(a' = EDixi) < DL} < (1- a')

Similar to the derivations in the case of an upper bound constraint, a variable that relates a' to

the decision variables xi is introduced next. Again, X(1-a) is a Gaussian variable.

Eq 2.15 X(- a')= a- a
O'a

Using Eq 2.15 and performing a transformation similar to Eq 2.9 and Eq 2.10, one can express

Eq 2.15 as:

Eq 2.16 Pr{a' <a=pa +X(1- a')ca} =1-a

Substituting Eq 2.16 into Eq 2.14 results in:

Eq 2.17 Pr{(a' =Dixi) < DL} < Pr{a' < a = a + X(1- a')Ca}

Now since a' is present on both sides of Eq 2.17, the two upper limits can be directly compared,

resulting in the deterministic equivalent in Eq 2.18. Again, the resulting constraint is non-linear.

Eq 2.18 DL < lpa + X(1-a )a

2.2.1 A Note on Nonlinearity

To clarify the above discussions on CCP and to highlight the implications of non-linearity on

computation, a specific instance of the salt solution problem will be investigated. In the

following example, there are four available salt solution with individual mean levels of salt (p
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· .p4) and standard deviations (l--.. c4). Suppose, also for the time being, that there is only an

upper bound constraint on the level of overall salt content in the final bath.

To be complete, the correlations, pij9, between the salt contents of the four types of solutions are

also needed in order to formulate the constraint. Following the format of Eq 2.15, the

deterministic equivalent of this particular small example is:

D' _ X1, + , 2x 2 + , 3 X3 + , 4 X4 +

Eq 2.19 2 2 +2X X2P2222 2 + 2xx3
00 IX1 °)22 2 3 3 4 4 2P2 2 3P3 3

+ 2XlX4 P14 1,o4 + 2x2X3p 2 3o2o 3 + 2x2x 4p24 2o 4 + 2X3X4p 34o3 ao4

Noticeably, Eq 2.19 is non-linear with all of the terms within the square-root containing

decision-variable products. There are special cases when the constraint statement can revert

back to linearity. The cases are (1) when there is perfect correlation amongst the salt content of

the four types, pij = +1 for all i andj, and (2) when /2 of the correlations are +1 and 1/2 are -1.

While the ability, to linearize the deterministic equivalent can be a tremendous time saver for

computational purposes, cases where this matches with the physical reality are rare. For most

optimization routines, non-linear solving capabilities are much slower in comparison to linear

capabilities. These issues scale exponentially with the dimension of the problem. It will be

shown in later chapters that non-linearity does not pose a significant computational issue when a

small number of alloys are produced. For larger dimensions, the challenge remains for chance

constraint to be an efficient decision tool for uncertainty modeling.

For completeness, in the case when all correlations are perfectly positive, Eq. 6.14 becomes:

Eq 2.20 D* 2 ŽUIX1 + U2X2 + p3X3 + P4 X4 + X(a)[C1 x1 + 2x 2 + o3x 3 4x4 ]

9 Correlation Pij = ij/cic. In other words it is the covariance between the salt content of solution i andj divided by
the production of the standard deviation of the salt content of solution i andj.
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On the other hand when 50% of the correlations are perfectly positive and 50% perfectly

negative, Eq. 6.14 becomes (with half +/-):

Eq 2.21 D* 2 iXl + 8.2X2 + 8y3 X3 + IU4X4 + X(a)[±rlXl T o2 X2 + o3X3 T o'4X4]

2.2.2 About a

One might wonder what will happen when a = 1. Mathematically this means that X(a) = oo!

However, practically speaking this is an impossible case. As in the previous salt bath example,

the supply of salt content is uncertain. To demand a 100% reliability of meeting the salt content

requirement is to ignore reality (ie, ignoring uncertainty)! If uncertainty is part of the problem,

there are no absolute guarantees, and therefore practically speaking this reliability factor or

tolerance level c must fall strictly within 0 < a < 1.

2.3 Recourse Model

With some stochastic problems, the actions to compensate for constraint violations can be

specified and quantified in terms of costs. Such cases gave rise to multiple-stage decision

making schemes generally known as recourse modeling. This technique inherently relies on an

"action-reaction" principle. The action is a decision to be made prior to knowledge of a

stochastic. The reaction is the recourse to be taken given that decision and a particular outcome

in order to satisfy all the constraints. Given such information, the stochastic optimization

problem can be formulated as an LP. Similar to the chance constraint programming technique,

the deterministic equivalents of the stochastic constraints are derived based on knowledge about

the probabilistic distribution of the chance outcomes. However, rather than seeking to meet the

stochastic constraints at a certain reliability level, the recourse model seeks to minimized the

expected cost of the overall problem by probabilistically weighing the consequences of
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deviations from the expected outcomes of the stochastic elements, ie, the cost of the first-stage

decision plus the expected costs associated with recourse decisions.

The objective of a recourse problem, which is intended to be either minimized or maximized, can

be abstractly stated as follows:

Eq 2.22 f (C', D l) + g(C >, p>',D > )

In Eq 2.22, the contribution from the first stage to the objective function is given by the function

j(.). D1 is the vector of stage-one, a-priori decision variables - the attributes which characterize

mathematically the state of the decision. The contribution from later stages to the objective

function is given by the function g(.). D>' is the vector of later-stage recourse variables over all

possible outcomes and p>' is the vector of the probabilities of those outcomes. The overall cost

impact of the recourse decisions to the overall objective are weighted by those probabilities. The

relative impacts of the various constraints are also weighted by those probabilities. This way the

formulation allows for volatility in the various inputs to the model. In other words, the objective

is an expected objective rather than a deterministic objective. C' and C'' are the cost vector

whose aggregate contribution to the objective function is being maximized or minimized in an

optimization problem.

Explicit formulation of the recourse model is a natural fit for problem statements where clear

recourse actions can be specified. This methodology can be and has been applied towards a wide

variety of problems including supply chain and inventory management, resource planning,

financial planning and even communication networks (Cattani 2003, Petruzzi 2001, Dupacova

2002, Kira 1997, Martel 1981). Typically the first stage of a recourse model involves a decision

to be made without knowing the outcome of some future stochastic event(s). However, the
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decision maker has an opportunity for recourse. This means that although the initial decision

might not meet the stochastic constraints, the model allows for an adjustment in the subsequent

stages of decision-making (recourse). This allowance for recourse adds to the overall cost of the

optimization problem. In a two-stage recourse model, there is only one decision vector for stage

one, while there are as many decision vectors to be determined as there are potential outcomes.

In this sense, the first-stage decision accounts for the later stage costs but does not bias towards

any specific outcome. This is known as the non-anticipative property of recourse model. Again,

the idea is best illustrated through an example.

An application of the recourse model methodology in aluminum recycling will be provided in

detail in a later chapter. To illustrate the basic concepts, consider the following simplified but

classic supply chain problem. A vendor needs to decide the number of product X to manufacture

in-house prior to knowing how many he can sell because manufacturing takes time. Suppose

that the cost for him to make one is $1 while the cost for him to purchase the finished product

from another supplier is $2. Suppose this vendor is adamant about meeting all his demands for

the period. If he did not make enough, he can purchase the rest demanded by his customers on

demand for $2 each. This is his recourse and $2 is his cost for the recourse. Suppose also in this

simplified world that there are only three possible demand scenarios of 150, 200 or 250 product

X with probabilities 0.2, 0.5 and 0.3. The overall situation can be summarized as follow:

D
P3=

0.3

P2=0.5

Demand = 150 Demand = 200 Demand = 250
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D is the number of product X to be made that has to be decided prior to knowing the outcome of

the demand for the day. Ri is the number of finished product X that the vendor will have to

purchase from his friendly supplier in order to meet the demands under scenario i. As stated

above, the recourse model minimizes the overall expected cost of the strategy taken. It is

formulated as follow:

Minimize: 11) + 2E{R 1 + R 2 + R3} --- 1D + 2(0.2)R1 + 2(0.5)R2 + 2(0.3)R3

Subject to: D + R > 150

D + R2
> 200

D + R3 > 250

Knowledge of the probabilities of the different possible demand outcomes allow us to write the

above in a deterministic form. The solution to this problem statement will tell the vendor what

the optimal production plan is irrespective of the demand scenario as well as the amount to

purchase from the other supplier once demand is apparent. Of course, only one of the solutions

matters when the stochastic demands materialize.

The above simple example was illustrated for discrete outcomes. Theoretically the recourse

model is capable of solving problems with continuous distribution of uncertain outcomes.

However, even with current numerical techniques, such continuous random variable problems

are generally feasible only for questions with random vectors of small dimensionality (Louveaux

1997). Discretization can help to reduce the size of the variable space, and the optimization can

still capture a certain degree of reality and render useful information. With the aluminum

recycling studies, for instance, discretized recourse modeling will be demonstrated in later

chapters to yield useful insights.
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Another method that is often mentioned in stochastic studies is the Monte Carlo Method. While

not being used in this thesis, its basic concepts and relationship to recourse will be briefly

mentioned and reasons for it not being used will also be discussed.

2.4 Monte Carlo Method

This method statistically simulates processes that depend on random variables. At the heart of

the Monte Carlo method is the reliance on pseudo-random numbers10 to generate a random

population of states, which are tested against some model. In theory, as long as there is an

available random number generator and knowledge of the probability distribution of the

stochastic states, the Monte Carlo method can be applied to an optimization problem.

It has been established that using random numbers uniformly distributed between 0 and 1, one

could generate random numbers of other probability distributions (Manno 1999). Suppose the

uniformly distributed random number is u. Using u, another random number q can be generated

with a probability density function off(x). If the random number q can have any value from --

to +o, then the relationship between the cumulative probability density function F(x) andf(x) is

as follow:

X

Eq 2.23 F(x) = f(x')dx'
-0

The relationship between F(x) and x is exactly the relationship between u and q. In other words,

the values for q can be generated by

Eq 2.24 q = x = F-1 (F(x)) = F- (u)

The values for q generated this way follow the probability density function f(x). Relating this

discussion to the aluminum recycling studies, q can be composition with some probability

0' These are numbers that are generated with numerical algorithms and behave similarly to true random numbers

40



distributionf(x). As hinted at in section 2.3, optimization modeling with the aid of Monte Carlo

methods can capture the underlying probability distribution of the stochastic elements while

providing for implicit recourse. Since the modeling framework is aimed at optimizing an

objective function, when statistical fluctuation causes a particular solution to fail a constraint, the

model will react by readjusting the solution. In doing so, the original solution with a total cost of

Co will be discarded and a new solution with total cost of C1 will be selected. The difference in

strategy (e.g., using different amounts of raw material for different finished goods) between the

new solution and the old solution is the implicit recourse chosen by the model, while C1-Co is the

cost of recourse.

However, the difficulties with practical usage Monte Carlo simulation are in its implementation

and interpretation of simulation results. First of all, depending on the dimensionality of the

stochastic variables space, a large number of sampling (i.e., simulation runs) would be needed to

deliver a dense enough representation of the joint probability distribution of all stochastic

elements. This computational demand translates into inefficiency and often impracticality for

quick decisions. For instance, with just two stochastic variables and discretized outcomes of ten

possibilities each, 10? 10 = 100 simulation runs will be required just to cover this space. At the

same time, a Monte Carlo simulation on an optimization problem provides as many solutions as

there are the number of simulation runs. In practice, it might be difficult to synthesize an

actionable strategy based on all the solutions provided, unlike the case for recourse model or

chance constraint method. The average of all the possible solutions might not be an optimal

stochastic solution after all; even worst, it might not be a feasible solution at all. For these

reasons, the Monte Carlo method is not used in this study. The method is more applicable in risk
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analyses where the objective is to determine the range of possible outcomes given stochastic

input states, and thereby ascertain the likelihood of failure.

2.5 Summary

This chapter gave a very quick overview of some of the key concepts in optimization. Ideas

applicable to both linear and non-linear techniques, including Lagrange multipliers and shadow

prices, were discussed. The mathematics and logic behind several popular stochastic

optimization techniques were also exposed. A hint on their applications was presented using

simple problems. More detailed applications will follow after a brief discussion on sorting

technologies and the associated model development central to the discussion on sorting

technologies.
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Chapter 3 : The Significance of Demand Uncertainty

The focus of this chapter and the next is on the role that demand uncertainty should play in

formulating raw material purchasing strategies. It is important to realize that demand uncertainty

is just one of many uncertainties that are present along the chain of aluminum scrap flow. Other

sources of uncertainties include, but are not limited to, raw materials pricing, supply,

compositions, etc. Compositional uncertainties are studied in a later chapter. However, given

that the primary control of the purchasing function is over the quantity of raw materials and not

any particular property of those raw materials, uncertainty in the quantities of products demand

is a natural starting point in studying the role uncertainties play in scrap consumption.

This chapter provides several thought-provoking examples on the interesting effects demand

uncertainty have over scrap materials purchasing. They will prompt questions regarding the

appropriateness of making scrap materials purchasing based purely on expected demand.

Alternative scrap purchasing schemes will be introduced with minimal explanations on why they

should work better from both an economic as well as scrap consumption standpoints.

Justifications for the alternative and methodologies on generating the associated scrap

purchasing strategies under uncertain demand will be provided in detail in the next chapter with

the aid of a case study.

3.1 Does Demand Uncertainty Matter in Scrap Purchasing?

The following are three motivating and conceptually fundamental examples to make the case for

the importance of uncertainty in scrap management decision making.

Consider an abstract demand cycle for some materials production. Suppose there are only two

raw materials available, S and P. Assume that ton for ton each can produce the same amount of

43



final product, but due to some constraints they are priced differently. S costs $1/unit and P costs

$2/unit. However, P is always readily available while S must be procured ahead of time. The

imminent decision is therefore how much S to purchase. Inventory cost is $0.1/unit. The green

line in Figure 3.1 represents the fluctuation in actual demand and the red-line represents the

mean demand around which purchasing strategy for S is formed.

o 1.5

c 1.0

o

0.5

Figure 3.1 Abstract demand cycle for materials production.

Consider the costs involved in each period following the mean demand-based purchasing

strategy. At time 0 there are no raw materials in inventory. The mean demand is apparently 1

unit from Figure 3.1. Behaving according to a mean-demand-based strategy will cost $2.55. But

consider a different strategy according to Table 3-1. According to this other strategy, more

scraps were purchased and used, and the costs over these periods were less! The extra units of S

purchased under this other strategy carried cost savings that outweigh the inventory costs,

leading to less reliance on more expensive primary materials.

The question of course is how can this new strategy be justified and what conditions made it

possible to be less costly? What was done differently and why? Is there something particular

about the pricing conditions on raw materials S and P that made this new strategy better? How

about the inventory costs, does that not make a difference in the overall costs between the two

strategies? What about the compositional differences between raw materials? These are all valid
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questions and they all matter when it comes to decisions regarding scrap materials purchasing

and usage. A framework is needed to incorporate these factors and more into a decision tool that

can help material processors come to better scrap purchasing and usage strategies beyond the

mean demand-based ones. That framework will be presented in the next chapter with a focus of

demand uncertainty.

Table 3-I. Comparison between mean-based scrap purchasing strategy versus another
strategy.

Mean-Based Strategy
Period 0 Period 1

Expected Demand 1.0 1.0
Actual Demand 0.5 1.5
S in inventory (a)
S Purchased (b)
S on hand (a+b)
S Used
P Used
Cost of S
Cost of P
Inventory Cost
Costs

0.0
1.0

1.0
0.5
0.0

$1.00
0.00
0.05

$1.05

0.5
0.5
1.0
1.0
0.5

$0.50
1.00
0.00

$1.50

A Different Strategy
Period 0 Period 1

1.0 1.0

0.5 1.5
0.0
1.1

1.1

0.5
0.0

$1.10
0.00
0.06

$1.16

0.6
0.5
1.1
1.1
0.4

$0.50
0.80
0.00

$1.30

The second example makes the relationship between the various factors hinted

more explicit and formulaic.

Let product demand distribution be uniformly distributed [0.5,1.5] as follow:

m_ I I 1 -,

0.5

at above even

1.0

1.5

Product
* x Demand

Suppose again there are two raw materials S, P that cost differently, but can produce the same

amount of product. Demand is denoted by x and must be strictly satisfied. S has a longer lead
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time and as such must be pre-purchased. The cost of S, P and inventory on a per unit basis are

Cs, Cp and Cl respectively. The expected cost of a raw material purchasing strategy of a units of

S in light of the above demand distribution is:

F(a)=aCs + (C, -C,)(a-x)dx+ Cp(x-a)dx
2 2

=aCs + (C - Cs)[ax- 2 ]0 + Cp[ 2 -ax]5
2 2

(C - Cs + Cp)a2 + (C C-Cs 3C)a + -Cs 9C
2 2 2 8 8

If a > x, inventory costs will be incurred, while allowing for salvage value of unused raw

materials. Otherwise if, a < x, raw material P will be acquired to fill the gap. To find the raw

material purchasing strategy that will minimize this cost:

aF 3C C - Cs= (C -Cs +Cp)a3CP +C =0
aa 2 2

(C-Cs + 3Cp C

C, - Cs + Cp

This optimal solution illustrates the trade-off between cost savings from using scrap versus

primary and the carrying cost, represented here simply by the inventory cost which can also

include the effects of depreciation in scrap value and time value of money. Of course, the

optimal decision also critically depends on the underlying probability distribution. Clearly these

parameters can be chosen to give an optimal scrap purchasing decision that is identical to a

mean-based strategy (a = 1 unit). However, the point is that they need not match up depending

on what the various parameters are. Based on recent prices for primary and secondary

aluminum, the optimal solution, a* will be greater than 1 when the carrying cost is less than

$260 per ton.

1 Primary price assumed to be $1,300 per ton and scrap materials at 80% of that level.
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Finally, in this last example the questions of whether the concepts introduced in the previous

examples can be carried on to multiple-period planning is laid to rest. Once again demand is

uniformly distributed between 0.5 and 1.5 units as in the prior example. Given this uncertain

demand, various amounts of scrap material S are considered to be appropriate to hold on hand.

The optimal amount is the amount defined as the one that will result in the lowest average

production cost. Average is taken over 1,000 periods with the actual time-frame for each period

left as arbitrary. The inventory cost is fixed at 10% of the scrap material cost as in the first

example. Figure 3.2 illustrates the evolution of the optimal amount of S to be held on hand for

various primaries and scrap material unit prices. It is clear that depending on the raw material

prices, the optimal amount of scrap to be held on hand is not necessarily at the mean demand

level.

2.4

o 2.2
.L

M 2

zo: 1.8

c_C 1.4

1.2

1

0.5 1 1.5 2

Scrap on Hand

Average production cost per period versus

2.5 3 3.5 4

optimal amount of scrap kept on
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3.2 How should demand uncertainty be addressed?

Given that these examples have shown scrap purchasing based on expected demand are prone to

be sub-optimal, the need is to have some way to systematically arrive at better alternatives. That

decision framework must be versatile enough to consider simultaneous production of multiple

products with multiple raw materials. It must also capture the effects of raw materials pricing

and inventory costs as well as the collective degree of uncertainty of the various products. This

framework is the topic of the next chapter.
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Chapter 4: Managing Demand Uncertainty - A Recourse
Model Framework

Once aluminum scraps are available in the market, the drive towards scrap consumption is

always initiated by the purchasing of such raw materials. As such, the examination of sources of

inefficiencies in aluminum scrap usage begins with raw materials purchasing. This chapter is

devoted to a critical examination of this initial decision with the hope of uncovering driving

forces for improvement in scrap consumption.

Traditional scrap purchasing behavior based on point forecasts on demand will be contrasted

with an alternative method that takes into account the underlying demand uncertainty. The goal

of this chapter is to show that the benefits of such scrap purchasing behavioral changes can be

quantified and justified from both a scrap usage and economic perspectives. In particular, this

benefit is directly attributed to explicit considerations for demand uncertainty in scrap

management decision-making. Such uncertainties are considered within a two-stage recourse

optimization framework. A brief conceptual review of the recourse framework and its

relationship specifically to demand uncertainty is followed by hypothetical yet realistic case

studies. Case results will demonstrate that, although intuitive, alloy production planning based

solely on expected outcomes leads to more costly production on average than planning derived

from more explicit treatment of uncertainty. By factoring in the penalties associated with

different possible outcomes, the new scrap purchasing decisions better positioned the alloy

producer to weather uncertain outcomes and promoted greater scrap purchases.12

12 Part of this chapter is based upon a paper (Li, P.P. and Kirchain, R.E., "Quantifying Economic and Scrap Usage
Impacts of Operational. Uncertainty Within Alloy Production Planning") presented at the TMS 2005 Annual
Meeting Cast Shop Technology: Aluminum Melting: Strategies and Sourcing Symposium, San Francisco February,
2005.
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4.1 Scrap Management Challenges in the Treatment of Demand Uncertainties

Materials demand is undoubtedly difficult to predict with certainty (Holland, 2001, Lee 1997).

An immediate appreciation of this can be gained by examining the historical volatility in

aggregate US demand for a number of metals. Figure 4.1 illustrates the annual change in

apparent consumption from 1970 to 2000 (Buckingham 2002).

- Aluminum -- Copper -- Iron Steel - Nickel
o~n/

0o
O.
=

W O

> E

0c¢C%0
U 

Year

Figure 4.1. Normalized historical US apparent consumption of aluminum, copper, iron,
steel and nickel

The lack of clear predictability presents a challenge for raw material purchasing whose goal is to

have raw materials ready for production needs. Even when long-term prospects are promising

failure to account for such variations can become a source of inefficiency in secondary material

usage and creates sometimes unrecoverable cash flow problems for any operation. In fact,

lessons from other resource and environmental management scenarios can be drawn in which

explicit treatment of uncertainties in decision-making led to more efficient usage of resources:

capital, natural and financial. For instance, applications in conservation biology have ranged

from qualitative scenario planning to more quantitative techniques such as simulations,

hypothesis-testings and Bayesian statistics for improvements in policy-making, population

growth studies and genetic models (Peterson 2003, Ralls 2000). Monte Carlo simulations were
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effective in providing a range of likely optimal designs in urban water management and more

specifically, flood-risk management projects selection (Al-Futaisi 1999, Geldof 1997). Others

attempted to quantify the economic impact of uncertainties among considerations for other

system factors. De Weck et al. applied real options analyses to improve the economic

performance of communication satellite deployment by the order of 30% (de Weck 2004, de

Neufville 2004). Leotard borrowed from the finance literature and assumed energy demand to

follow geometric Brownian motion in devising guidelines and derivatives contracts for power

generation and transmission capacity investments (Leotard 1999). Another example from the

energy sector relied on chance constraints to model the uncertain characteristics of coal

properties in coal blending operations in power plants, resulting in optimal tradeoffs between

emissions and costs (Shih 1993).

Despite the uncertainties in aluminum production environment, definite business-critical

decisions must be made on a regular basis. Modeling tools are available to help support these

decisions, improving decisions not just about raw materials purchasing, but also mixing,

upgrading and sorting of secondary materials (van Schaik 2003, van Schaik 2002, Cosquer 2003,

Kirchain 2003). Analytical approaches may be used within such tools to embed consideration of

uncertainty in the decision-making, but generally this occurs through the use of statistical

analyses that are used to forecast expected outcomes. Combined with expert opinion these

expected outcomes are used within inherently deterministic models. This combination of

statistical analysis and modeling suffers from two fundamental limitations. First of all, implicitly

assessments based on mean expected conditions assume that deviation from that value has

symmetric consequences. It also assumes risk neutrality. For many production related decisions,

the repercussion of missing a forecast are inherently non-symmetrical. Secondly, such models
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generally provide static single scenario strategies accompanied by only implicit guidance

regarding how to adjust strategies when confronted with changing conditions.

This chapter introduces an analytical approach, a linear recourse-based optimization model,

which accommodates a richer set of probabilistic information and thereby attempts to address

these two shortcomings. Although the case which is presented examines only one relevant form

of uncertainty - variable demand - the method is readily extensible to address uncertainty in raw

material availability and factor prices13 . The key ideas behind recourse modeling are reviewed

in the next section.

4.2 A Brief Review of Recourse Modeling

A recourse model is an optimization model that simultaneously considers multiple stages of

related decision making with the goal of satisfying both current needs as well as planning for

uncertain future events (Petruzzi 2001, Cattani 2003). In a two-stage model, a set of stage-one

decisions are to be made immediately based upon what is known at the present in combination

with a dependent second set of recourse plans which will be implemented in the second stage

depending upon how future conditions unfold. While there is only one set of optimal stage one

decisions, for every possible outcome in stage two, there will be a set of recourse decisions

(plans). The power of this method is that it is able to embed expectations about later events into

the decisions taken at the present. In essence, a single best set of stage-one decisions are made

with respect to the magnitude and likelihood of all possible outcomes in the later stage. This

decision making scheme for a two-stage model on scrap management and usage is illustrated in

Figure 4.2 in which references for the specific decisions to be made in each stage for a case to be

described below are in brackets. The potential outcomes have been discretized for computational

tractability. A single set of decisions (scrap-prepurchases) correspond to all possible outcomes

13 Considerations of raw material compositional uncertainty require other, non-linear modeling methods.
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(different product demands) at a later stage. For each potential outcome is a second stage plan

(recourse: primaries and alloying element purchases). The second stage plan is the recourse

action - when the products cannot be made with pre-purchased scrap materials, primaries and

alloying elements will have to be purchased.

Stage One Decisions Uncertain Outcomes Stage Two Decisions
(Scrap Pre-Purchases) (Potential Demand Outcomes) (Primaries & Alloying

= Outcome Node

M = Decision Node

ir

Figure 4.2. Schematic representation of a two-stage recourse model (specific decisions for
case to be described below are in brackets).

4.3 Demand Uncertainty Base Case

To demonstrate the value of recourse modeling, a Base case examining demand uncertainty is

considered. The case deals with the raw material sourcing decisions that confront an aluminum

alloy producer who is planning for an uncertain demand one specific time period from today. To

produce these finished goods, raw materials - both scrap materials and primary materials -

must be acquired. For the purposes of this case, it is assumed that while primary materials can

be obtained on demand as needed, scrap materials must be procured ahead of time (pre-

purchased) before actual production14. For instance, scrap materials will have to be contracted

today for delivery for later production needs. This represents a two-stage recourse decision

setting whereby a decision needs to be made today to enter into a contract for scrap supplies

14 An assumption verified with industry participants.
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while primary material needs can be deferred until actual production in the future. Since primary

materials are generally more expensive than scrap materials, when a suboptimal set of scrap

materials were pre-purchased, the producer will have to pay the penalty of having to use more

primary materials than optimally needed. The notion of optimality will be further developed

below, but basically the aim is to minimize overall expected production costs. Although this

construction is an oversimplification of actual purchasing practices, the model presented is

readily adaptable to more accurately reflect specific sourcing constraints. In particular, both

scrap and primary raw materials likely must be contracted with each specific type having typical

necessary lead times.

For the purposes of this case, production is assumed to be distributed across four alloys - two

cast alloys (380, 390) and two wrought alloys (6061, 3003). These alloys were chosen because

of their prevalence within overall industry production and should be illustrative of results for

similar alloys. In addition to a full complement of primary and alloying elements, the producer

has available seven post consumer scraps from which to choose. Prices and compositions used

within the model for both input materials and the finished alloy products are summarized in

Table 4-I, II and III, respectively. Average prices on primaries and scrap materials as well as

recent prices on alloying elements were taken from the London Metals Exchange. The particular

scraps and product types chosen are based on studies by Gorban (Gorban 1994) reflecting some

of the major alloys used among automotive wrought and cast products and the scrap materials

which would be expected to derive from those products. Finished good compositional

specifications are based on international industry specifications (Datta 2002). Scrap

compositional information is also taken from Gorban. In order to ensure that results are not

biased towards any particular product type, all products were modeled using the same average
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demand and probability distribution. Furthermore, all raw materials were initially assumed to be

unlimited in availability in order to avoid the potential effects of limited raw materials supplies.

The model framework presented herein can be used for cases of non-uniform demand and

constrained scrap supply without modification.

Table 4-I. Prices of Raw Materials
Primary & Elements Cost / T Scrap Materials Cost / T

P1020 $1,360 Brake $1,000
Silicon 1,880 Transmission 1,000
Manganese 2,020 Media Scrap 1,000
Iron 320 Heat Exchange 1,000
Copper 266 Bumper 1,000
Zinc 980 Body Sheet 1,000
Magnesium 2,270 All Al Eng. & Trans. 1,000

Table 4-II. Compositions of Scrap Materials
Raw Avera e Compositions (wt. %)
Material Si Mg Fe Cu Mn Zn
Brake 1.54 1.23 0.40 0.62 0.14 0.12
Transmission 10.30 0.21 0.90 3.79 0.28 2.17
Media 4.88 0.64 0.53 1.00 0.11 1.00
Heat 2.88 0.21 0.44 0.68 0.59 0.20
Exchange
Bumper 0.39 0.78 0.38 0.32 0.09 0.75
Body Sheet 0.47 1.34 0.21 0.57 0.19 0.07
All Al A1Eng. & 8.61 0.30 0.68 2.69 0.27 1.26
Trans.

Table 4-III. Finished Goods Chemical Snecifications
Finished Average Compositions
Alloys (wt. %)

Si M§ Fe Cu Mn Zn
380 8.50 0.10 1.00 3.50 0.25 1.50
390 17.00 0.88 0.65 4.50 0.05 0.05
3003 0.30 0.03 0.35 0.13 1.25 0.05
6061 0.60 1.60 0.35 0.28 0.08 0.13

Figure 4.3 illustrates the probability distribution function assumed for all the finished goods

demand outcomes. The mean demands for alloys 380, 390, 3003 and 6061 were all modeled at
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20kT each. The coefficient of variation 5 in demand for all four finished products is roughly

10%. Although finished good demand may be more accurately represented by a continuous

probability distribution function, in order to leverage the computational efficiency and power of

linear optimization methods, the probably distribution must be discretized. Furthermore, it is

expected that production planners in real life will not have a continuous probabilistic view of

demand outcomes (Choobineh, 2004). For the purposes of the case, each finished good has five

possible demand outcomes, symmetric around the mean (a symmetric discrete probability

distribution function). All together they represent 625 (i.e., 54) demand scenarios (5 possibilities

x four finished products). The model formulation can be executed with finer probability

resolution, but at the expense of greater computational intensity.
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Figure 4.3. Probability distribution for all products demand under Base Case.

4.4 Scrap Purchasing Recourse Model

The recourse model for this case is formulated as a linear optimization model (Chong 2001). The

mathematical definition of the model is given in Eq 4.2 to Eq 4.7. The goal of this model is to

minimize the overall expected production costs of meeting various finished goods demand

through an optimal choice of raw material purchases and allocations. By accounting for the

probabilities and magnitude of demand variations, the model optimizes the cost of every possible

15 Defined as c/ where c is the standard deviation and gt is the mean
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demand scenario weighted by the likelihood of those scenarios. The primary outcome from such

a model will define both a scrap pre-purchasing strategy as well as a set of production plans

(including primary and alloying element purchasing schedules) for each demand scenario.

Effectively, this provides an initial strategy and a dynamic plan for all known events. The

variables to solve for are D1s, Dlsft and D2fz which will be defined subsequently together with

other notations.

Minimize:

Eq 4.1 E Cs D + CpPDj - (0.95)C, PzRs_
s p,f,z s,z

subject to

Eq 4.2 D 1 < A

The amount of residual scrap for each scenario is calculated as:

Eq 4.3 Rsz = D - Ds
f

For each demand scenario z there are scrap supplies constraints as determined by the amount of

scrap pre-purchased,

Eq 4.4 ID' < Ds
f

Eq 4.4 enforces the aforementioned condition that scrap materials must be ordered before final

production. As such, at production time, no more scrap can be used than was ordered. Similarly,

a production constraint exists for each scenario, quantifying how much of what alloy must be

produced:
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EDqf4 + D' =Bfz 2Mf

For each alloying element c, the composition of each alloy produced must meet production

specifications (Datta 2002):

Eq 4.6

Eq 4.7

ID' Usc E fzpc < BfZUfc
s p

ZD' Ls + >D2 Lc 2 B Lfes fZ Pf P
s D

All other variables are defined below:

Rsz = Residual amount of scrap s unused in scenario z
Cs = unit cost ($/t) of scrap material s

PC = unit cost of primary materialp
D's = amount (kt) of pre-purchased scrap material s
Pz = probability of occurrence for demand scenario z
D2fz = amount of primary material p to be acquired on demand for the production of finished
goodf under demand scenario z
As = amount of scrap material s available for pre-purchasing
D sfz = amount of scrap material s used in making finished goodf under demand scenario z
Bfz = amount of finished goodf produced under demand scenario z
Mfz = amount of finished goodf demanded under demand scenario z
Uc = max. amount (wt. %) of element c in scrap material s
Lsc = min. amount of element c in scrap material s
Upc = max. amount of element c in primary material p
LpC = min. amount of element c in primary material p
UfC = max. amount of element c in finished good f
LfC = min. amount of element c in finished goodf

Within this problem formulation, the objective function (Eq 4.1) includes cost contributions from

not only the purchase of scrap and primary materials, but also the salvage value of unused scrap

materials. Unused scrap occurs for scenarios where stage-two demand was insufficient to

consume all of the scrap which was pre-purchased in stage one. It is critical to note that unused

scrap that was pre-purchased has embodied value. It can be resold or used for future production.

In deterministic analyses, no unused scrap will ever be purchased since any unneeded scrap will

simply drive up costs, making its existence irrational. In the stochastic environment, some extra
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scrap might be pre-purchased that will be useful on average but will lead to unused scrap in

certain scenarios. To be conservative, an assumption has been made that the salvage value will

be at a discount to the cost of acquiring that scrap material. The discount is assumed to be 5%.

One interpretation of this discount is time value of money. Another is the cost of storage of this

unused material. In future work the impact of this parameter should be quantified separately and

more precisely. To be complete, it should also be noted that the salvage value is not always at a

discount to the original cost of acquisition. In a rising scrap price environment or tight supply

market (Gesing 2002), the rise in price can more than offset factors such as time value of money

or cost of storage. The objective function also factors in the probabilistic nature of the demand

outcomes. This modifies the effects of expected primary usage as well as the salvage value of

unused scraps.

4.5 Basic Comparison of Mean-Based vs. Recourse-Based Scrap Purchasing Strategies

One of the goals of this study is to examine the implications on scrap purchasing with and

without explicitly accounting for uncertainties in product demands. These two strategies are first

defined below.

Mean-Based Scrap Purchasing Strategy

The mean-based strategy was formulated based on knowledge of only the mean of the finished

goods demand. The results of this strategy are intended to reflect those of common industry

practice, using forecasting and deterministic analytical tools to support purchasing and batch

mixing decisions. The operating constraints are the same as those of the Base Case with the

exception of ignoring the possible variations in finished goods demand (as described in Figure

4.3). In other words, all finished good production quantities were set at 20 kt each. The results

of this strategy are shown in the column "Mean-Based Strategy" in Table 4-IV. This strategy was
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accommodated in the formulation presented previously by setting the probability of 20 kt

demand to one, with all other demand levels at a probability of zero. Mathematically this can be

concisely stated as:

1, z=m
Eq 4.8 P =0.z

0.z# m

The symbol m denotes the mean demand scenario in which all product demands are 20kt. Once

this stage one decision is made, the optimization problem is changed to reflect the fact that Dis

are no longer variables. In other words, the scrap pre-purchasing stage is done and the pre-

purchased amounts are fixed.

Recourse-Based Scrap Purchasing Strategy

This alternative strategy is based upon full consideration of the probability distribution of

demand outcomes using the two-stage recourse model. With the assumption of independence

among product demands,

Eq 4.9 PZ = r|P
f

The symbol Pf represents the probability of product f having a demand amount according to

scenario z. For instance, in scenario 1, all the product demands are 16kt and each of them has a

probability of occurrence of 0.1 (Figure 4.3). As a result, P1 = (0.1)4 . It should be emphasized

that the formulation of probability calculation in Eq 4.9 is not a defining feature of recourse

modeling. In fact, the recourse strategy can be formulated with any probability distribution as

long as it conforms to the norms of probability theory. Under this alternative strategy, the model

establishes a stage 1 purchasing plan to best accommodate all of the 625 possible production

scenarios.
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Table 4-IV. Base Case: Scrap purchasing mean-based strategy (decision based only on
mean demand) & recourse-based strategy (decision based on probability distribution of
demand)

Scrap Mean-Based Recourse- A (kt) A %
Material Strategy (kt) Based

Strategy (kt)
Brake 14.0 15.4 1.4 10.0%
Transmission 18.2 18.7 0.5 2.8%
Media Scrap - - -

Heat 4.4 6.4 2.0 45.5%
Exchange
Bumper 6.4 6.9 0.5 7.8%
Body Sheet 10.9 10.9 -
All Al Eng. - - -
& Trans.
Total Scrap 53.9 58.3 4.4 8.2%
Exp. Costs $92.7M $92.4M

In Table 4-IV, a comparison is made between the scrap purchasing decisions implied in stage

one under these two strategies. Even with only 10% coefficient of variation, sizeable increases

in the purchasing decisions of certain scrap types can be seen with the recourse-based strategy. In

aggregate, recourse-based strategy drives scrap purchasing up by more than 8%. The difference

in pre-purchasing strategy between the two strategies is essentially a hedge against adverse

movements in product demands. This hedge is the difference in scrap purchasing implied

between the mean-based and recourse-based strategies. Its origin will be further explained

below. From here on, the extra scrap purchased in recourse-based strategy relative to mean-

based will be termed the hedge basket. In the case presented, this hedging operation took the

fbrm of greater scrap purchase. In the absence of this hedge, more costly primary material and

alloying elements will have to be used in certain scenarios. The expected cost savings stemming

from such hedging operations can be attributed to an asymmetry between the economic benefits

of having cheaper scrap to use when needed compared against the net costs involved in acquiring

and storing added scrap material in those cases when it is unnecessary.
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On an individual scrap basis, recourse-based strategy did not drive up the purchases uniformly.

Notably, while Heat Exchanger scrap purchase increased by only 5%, Transmission scrap

purchase grew by nearly triple that at almost 15%. In contrast to both, Body Sheet purchasing

was unchanged in the recourse-based strategy. In order to understand why, the usage of these

scrap types among the four products must be examined. In the results presented in Figure 4.4,

the evolution of scrap usage are examined for five particular demand scenarios, ranging from all

low (16kt for all products) to all high (24kt for all products). The scrap usages for the Base Case

are represented in the solution space under recourse-based strategy and the cost effect of these

solutions are weighted by their respective probabilities of occurrence in the overall objective

function. Excluded from Figure 4.4 are the contributions from media and all Al engine scraps

since there were none. As evident from these results, a number of scraps are predominantly used

by a single product. For instance, brake scrap is used exclusively for the production of 390,

while body sheet and bumper scraps are heavily drawn by 6061. In these cases, it is also clear

that hedging amounts for these particular scrap types in light of stochastic demands are driven by

uncertainties in these specific products and not others. For heat exchange scrap, the

contributions by the various products are more mixed. In fact the usage of this scrap type among

the wrought and cast products is roughly split. Therefore the hedge on heat exchange scrap is

driven by uncertainties in demand of more than one product, most notably 3003 and 380. While

scrap usage generally increase for a certain product as demand rises, this trend is not always

monotonic when there are substitution effects, ie, same scrap being used by different products.

The versatility of a particular scrap in its application towards the production of the various

finished products turns out to be a deciding factor in whether or not it is represented in the

hedging basket. The fact that Body Sheet scrap was not represented can be explained as follow.
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Body Sheet was primarily used in the production of 6061. However, 6061 also made use of Heat

Exchange and Bumper scraps. In contrast to Body Sheet scrap, Heat Exchange and Bumper

scraps are used in all four products. Under uncertain demand for all products and given that the

scraps do not cost differently from each other, the system will automatically favor having more

versatile scraps over less versatile ones. As a result, Body Sheet scrap was not part of the hedge.
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Figure 4.4. Scrap usage among products under the recourse model framework for a range
of demand scenarios.

For the Base Case, the expected cost savings derived from the recourse-based strategy was

$0.3M compared with the more traditional mean-based approach. This methodology of taking

into account the probabilistic nature of product demand will never on average lead to a strategy

that results in a higher expected production cost. Given the same ability to make forecasts,

incorporating more information into the analysis simply cannot make the analyses worst.
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Associated with this cost savings in the Base Case is an increase in scrap consumption of over

lkt. This is a natural consequence of the extra scraps available from the hedging operation.

The greater scrap pre-purchases were driven by the potential for higher product demands.

Therefore given greater amounts of scraps available, more scraps will be consumed in the

scenarios with higher product demands. On the other hand, a certain amount of scraps were used

for the lower demand scenarios under the relatively lower amount of scraps pre-purchased for the

mean-based strategy. Since these scraps were strictly a subset (smaller amounts) of the scrap

pre-purchased under recourse-based strategy, there is no reason why they will not be used under

the production environment implicated by this alternative strategy. As a result, scrap usage has

reasons to increase under recourse-based strategy for the higher demand scenarios and no reason

to decrease for the lower demand scenarios. This leads to the observation that for the Base Case

extra scraps from the hedge automatically led to greater expected scrap usage.

There are several deciding factors as to whether a scrap material will be represented in the hedge

basket. Three types of scrap versus products behavior in the hedge are readily identifiable from

Figure 4.5 to 4.9. Focusing first on Figure 4.5 to 4.8, it can be noticed that when the alloys are

produced exclusively of one another, recourse-based decisions will always lead to a hedge that is

proportional to the mean-based purchase. In this case, the proportionality happens to be 10%.

Then, if these individual hedges were summed and compared to the aggregate hedge when a

portfolio of these products was produced, three modifications to this hedge formation are

observed. First, if the scrap is exclusively consumed in a product and that product only make use

of that one scrap material, the aforementioned relationship of proportionality strictly holds. This

was the case for the consumption of Brake scrap in alloy 380. Then, if a scrap material is

consumed predominantly (but not necessarily exclusively) in an alloy that makes relatively
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substantial use of other scrap materials as well, the aggregate hedge will be diminished relative

to the sum of the individual hedges. This was the case for Bumper, Transmission and Body

Sheet scraps. Finally, the scrap materials that will enjoy the greatest percentage increase in

forming the aggregate hedge are the ones that are the most versatile and evenly distributable

across products. The Heat Exchange scrap is a prime example of this in the Base Case.
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Figure 4.9. Comparison between the sum of isolated hedge in the exclusive production of
individual alloys with the hedge on aggregate production of a portfolio of those products.
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It was observed that in none of the cases where all alloy demands were at or below 20kt were

there scrap usage difference between the two strategies. The greater scrap usages were also

driven to different degrees by the four alloys. As will be confirmed by demand shadow prices

studies in a later section, alloys that have greater tendencies to consume more scrap materials

tend to be more effective in this respect. One way to illustrate this is by a cluster map as shown

in Figure 4.10. In this figure, the horizontal axis represents the 625 demand scenarios in

increasing order of scrap usage increase (recourse- vs mean-based). The horizontal bars

corresponding to each alloy indicates the extent of scenarios where that particular alloy had a

demand > 20kt while all other alloys carried demand < 20kt. The solid bars are representative of

the range spanned by these scenarios, but not every scenario within that range is such a case.

Nevertheless, these ranges are all inclusive of such cases for all four alloys. As implied earlier,

alloys that tend to use more scrap (ie, 380) occupy a higher range than those that do not (ie,

3003).

.3
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Scenarios With Increasing Scrap Usage Change (Strategy 1 vs 2)

Figure 4.10 Cluster map for alloys produced (each bar represent the span of scenarios
where corresponding alloy demand > 20kt holding all other alloy demands < 20kt

Ultimately, the appropriateness of hedging through greater scrap purchases is sensitive towards

many factors. The most obvious ones include degree of demand uncertainty, primary/secondary
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price spread, the ability to resell unused scrap, and storage cost. Some of these effects were

already hinted at by the motivating examples in the beginning of this chapter. The following

sub-sections will examine the effects these factors have in more detail on the need and form of

hedging, while still assuming unlimited scrap supplies.

4.5.1 Impact of Magnitude of Demand Uncertainty on Hedging

In the Base Case, at approximately 10% demand uncertainty, the benefits derived from the

recourse-based strategy was $0.3M in cost savings and slightly over lkt increase in average

scrap usage. These benefits are expected to rise with increasing product demand uncertainty.

Recall that the extra scraps made available through the hedging operation was a direct result of

the potential for favorable demand swings. As this swing extends into greater demand territory,

given the Base Case pricing assumptions, a larger hedge basket will be required to service the

extra demand. Therefore, it is clear that with greater demand uncertainty, the greater the hedging

amount will be. From the prior section, it was argued that the logic follows that with the extra

scraps available, the average scrap usage will increase. Therefore, as the magnitude of demand

uncertainty increases, the average scrap usage benefit will increase based on the recourse

strategy. With this increase in scrap usage, the expected cost savings will also rise due to the

reduction in dependence on more expensive primary materials.

4.5.2 Impact of Salvage Value on Hedging

In the results presented thus far, an assumption has been made that unused scrap materials have

salvage value equal to 95% of their original costs. Naturally deviations from this assumption

will have an impact upon how one should approach scrap pre-purchasing. Figure 4.11 illustrates

the sensitivity of the hedge on scrap salvage value. It is important to be clear that the hedge is

not always positive. Ultimately in light of uncertain demand, there are two factors for wanting
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more or less scrap materials. One is the potential cost savings that can be derived from having

cheaper scrap materials to use when needed (price differential advantage). The other is the net

cost of carrying that scrap material (carrying cost) until it leaves inventory. The carrying cost

can be defined as the acquisition price of the raw material less the salvage value of the raw

material. If the salvage value of the scrap is too low, the carrying cost will more than offset the

price differential advantage such that less scrap will be desirable, leading to negative hedge. The

hedge was positive under the Base Case because the price differential advantage outweighs the

carrying cost of those scraps. As Figure 4.11 illustrates, below approximately 65% salvage

value, it no longer pays to have those extra scrap on hand. In fact, below this point, it is better to

have less scrap on hand than implied by the mean-based strategy. At 65% salvage value, the cost

of carrying an extra unit of scrap is perfectly balanced by the price differential advantage from

having that extra unit. The Okt line is a reference for the mean-based strategy. The difference

between the two driving forces for hedging, namely cost savings from the price differential less

the carrying cost will be termed the option value of scrap. The hedge will be positive (negative)

when the option value is positive (negative).
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Figure 4.11. Effects of scrap salvage value on scrap pre-purchase hedging strategy.
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]From Figure 4.11 it is apparent that the hedge as a function of increasing salvage value is

convex. This can be understood by considering the effects of the two option value driving forces

separately. As the salvage value drops, there is a tendency to purchase less scrap according to

recourse-based strategy because the carrying cost is increasing. But while lower salvage value

implies higher carrying cost, having less scrap material also denies the material system of the

price differential advantage stemming from the price difference between scraps and primaries.

This price differential advantage is independent of the salvage value. These two effects oppose

each other resulting in a rather slow rate of decrease in the hedging amount in low salvage value

environment. On the other hand, when the salvage value is high the price differential advantage

remains while the cost of carry is also reduced. This double positive in higher salvage value

environment is the momentum behind the convexity observed in Figure 4.1 1.

The option value is also intimately tied to the magnitude of the underlying demand uncertainty.

L-arger uncertainties imply higher option value and results in greater driving forces for hedging.

When the price differential advantage more than offsets the carrying cost, greater demand

uncertainty will translate this effect into more positive hedging. Similarly, when the carrying

cost dominates, greater demand uncertainty will exacerbate the situation by pushing for less

scrap purchasing, ie, more negative hedging. Hence it is observed in Figure 4.11 that with

greater demand uncertainty, the curve rotates inward (counter-clockwise).

4.5.3 Impact of Secondary/Primary Price Gap on Hedging

Variations in the price differential advantage affect the option value of scrap which in turn

affects the degree of hedging. Figure 4.12 studies the effects of different secondary versus

primary price gap on the hedge under the Base Case. At 95% price differential, it no longer pays

to purchase more scrap than implied by the mean-based method. As discussed previously, the
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option value of scrap increases with demand uncertainty. This effect is manifested in Figure

4.12 in that with greater uncertainty, the net offsetting effects of the carrying cost and the price

differential advantage is magnified, leading to a clockwise rotation of the curve. Specifically,

above a price ratio of 95%, the carrying cost dominates over the price differential advantage.
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Figure 4.12. Effects of scrap-to-primaries price ratio on scrap pre-purchase hedging
strategy.

As the price between scrap and primary materials converge, the price differential advantage of

scrap goes to zero. Therefore the downward trend with increasing scrap-to-primaries price ratio

is no surprise. The observed concavity is due to different system constraints on either end of the

price ratio spectrum. When the price ratio is close to one, there is no barrier against the drop in

the hedge amount except of course the overall scrap purchase cannot go below zero. As long as

this point is not reached, the hedge will continue to dive. When the price ratio is low, the price

differential advantage is large. However, even if the ratio goes to zero (scrap is free), the

increase in the hedging amount will not accelerate. The mismatch in the compositions between

scrap materials and the products sets a scrap consumption limit. Only so much scrap can be used

by the production before which it makes economic sense to use primaries instead.

The discerning reader might also notice some choppiness in the response of the hedge on the

price ratio. While the overall trend is down with higher price ratio, there seems to be inflection
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points and regions that tend to flatten out before dipping again. Interestingly, such effects were

not apparent in Figure 4.11. Flatness in the hedging response to changes in price ratio is a sign

of insensitivity. The relative insensitivity versus that of the hedging amount towards the salvage

value is apparent from the formulation of the objective function. In Figure 4.11, as the salvage

ratio varies only the carrying cost of scrap is changing; the price differential advantage is

constant. Therefore the sensitivity of the hedge towards the salvage ratio is entirely driven by

the change in the carry cost. However, in Figure 4.12 as the price ratio varies both the carrying

cost and the price differential advantage are changing. Nevertheless, the carrying cost is

changing very slowly. When the price differential between scrap and primaries rises by 5%, the

carrying cost only goes up by 5% x (1 - 95%) = 0.15%. The choppiness in Figure 4.12 is

attributable to the slowly varying carrying cost effect which leads to the "step-like" features,

while the overall trend is due to the changing price differential advantage.

The convexity and concavity observed in Figure 4.11 and Figure 4.12 gives the planner a sense

of how frequently the hedge should be adjusted by buying and selling scraps. The absolute

distance between these curves and the zero hedge reference line can be taken as a measure of

potential for cost savings. For instance, when the salvage ratio is low, a small change in the ratio

does not change this potential significantly. However, in high salvage ratio regions, the hedge is

much more sensitive and as such should be monitored and adjusted more frequently. Similarly

when the price ratio between scraps and primaries is large, the hedge should be adjusted more

frequently than when the price ratio is low.

4.6 Limitations in Scrap Supplies and Shadow Prices

So far the discussions have been with unlimited scrap supplies. While that served to focus the

attention on specifically the implications of using recourse- versus mean-based scrap purchasing
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strategy, the constraint on scrap supplies must be considered. At the minimum, it should be

demonstrated that hedging is important and beneficial as well under limited scrap supplies. In

doing so, additional insights will be drawn from studies of the various shadow prices.

4.6.1 Impact of Scrap Supplies Limit on Hedging and Scrap Supplies Shadow Prices

Under the recourse-based method, the scrap purchasing strategy can be decomposed into two

parts. One part is a response to the mean product demand. This is given by the mean-based

scrap purchasing solution. The other is a response to the potential deviations from this

expectation given by the shape of the probabilistic distribution. This response corresponds to the

hedge basket - an optimal mix of extra scraps to have in response to a given profile of demand

uncertainty. With unlimited scrap supplies, as the degree of uncertainty increases without

changing the skewness, more of this basket will be needed but the mix proportions will not

change significantly even as the kurtosis evolves'6 . This means that when a particular scrap type

was not needed in low volatility environment, under the assumptions of unlimited scrap supplies

that scrap will not be a significant part of the hedging basket regardless of how much volatility

changes. This was the case for Body Sheet scrap in the Base Case.

In the event of limited scrap supplies, the hedging strategy will change with volatility increase.

Not only will the amount of scrap purchased for hedging increase, the mix of scrap that forms the

hedge will also change as shown in Figure 4.14. For instance, under unlimited scrap supplies,

Body Sheet scraps never became part of the hedge basket. However, with scrap supplies capped

at 15kt, Body Sheet scrap became a meaningful component of the hedge. The hedging basket

was altered because the limitation in scrap supplies fundamentally changed the optimization

16 Towards the far right-hand side of Figure 4.13 the hedge basket changes slightly due to changes in demand
kurtosis, defined broadly as the flatness of the probability distribution.

72



solution space of this material system. More intuitively, as some scraps such as Transmissions

were exhausted, other scraps will take its place in the hedge basket.
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Figure 4.13. Hedge basket scraps content with unlimited scrap supplies.

Of course one clear implication of limitation in scrap supplies is that one cannot simply ramp up

an existing strategy for low volatility into a high volatility environment. Both the amount as well

as the mix of scraps will have to be altered. Most importantly, however, the need for hedging

remains even with limitations in scrap supplies, although the hedge amount dropped slight from

4.5kt to 4.3kt (at 10% uncertainty) and with that the corresponding expected cost savings. The

slight reduction in the hedging potential is caused by limitations in the scrap supplies which

reduces the degree of freedom in which scraps can be used with each other and with primaries.
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Figure 4.14. Hedge basket scraps content with limited scrap supplies (15kt each).
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In the event of limited scrap supplies, accounting for demand uncertainty versus not accounting

for it can also have dramatic effects on the marginal value of scraps. This translates into the

extra dollar amount above the current price of the scrap the planner should be willing to pay for

an extra unit of that scrap material. Figure 4.15 shows the evolution of the shadow prices of

various scraps as the underlying demand uncertainty increases. Not shown are Media, Bumper

or All Al Engine scraps since their supplies are not strictly limiting (their purchases have not

reached the availability limit).

Under the Base Case, as demand uncertainty becomes greater, positive deviations from the mean

demand warrant more scrap materials. As a result, the benefits (shadow prices) of having more

scraps increase. This increase manifests itself in the generally upward sloping behavior of the

shadow prices with demand uncertainty in Figure 4.15. As the size of the hedge grows

additional scrap types are fully consumed, triggering a shadow price value (cf. Body Sheet at

34% coefficient of variation). As each scrap reaches its availability limit, the ways by which an

arbitrary compositional specification can be attained is further limited. The model must then

identify another combination of raw materials to meet specification at lowest costs. This

phenomenon is demonstrated roughly in the ranking changes in Figure 4.15. Each major change

in ranking occurs as the solution space becomes more constrained and the model identifies

another set of raw materials from which to compose the products. In particular, one observes

three regions of distinct ranks among the shadow prices on availability in Figure 4.15. The first

transition occurred at around 30% demand uncertainty at which point Heat Exchange scraps

became a limited supply in addition to Brake and Transmission scraps which were already

limited prior to this point. Similarly, around 40% demand uncertainty, Body Sheet became an
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additional limited scrap. These break points correspond to the transitions in the ranks among

these scrap supply shadow prices on availability.
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Figure 4.15. Shadow prices of scrap availability as a function of demand uncertainty.

4.6.2 Interpreting Demand Shadow Prices

Based on studies on demand shadow prices, prior research has suggested alloy substitution as a

way to increase scrap consumption (Cosquer and Kirchain 2003), albeit only for deterministic

demand. By definition, the demand shadow price represents how much it will cost to produce an

extra unit of product . However, in light of uncertain demand the interpretation is slightly

trickier since a shadow price exists for each product and for each potential demand scenario. Of

course, the shadow price for each product in each scenario is still the change in the objective

function with respect to a unit change in the demand of that specific product in that scenario.

Since the cost effects of any particular scenario on the overall objective function is weighted

according its probability of occurrence, the shadow price for a product demand in a scenario is a

17 Demand shadow prices are negative since an extra unit of product demand incurs costs associated with its
production.
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probability-weighted impact on the objective function of a unit change in that product's demand.

Therefore in analogy to a resultant vector from a vector sum, if these product-specific and

probability-weighted shadow prices for all the demand scenarios are summed together, the final

sum is the shadow price on an expected unit change in demand for that particular product.

Another possible interpretation for this sum is a composite shadow price SP:

Eq 4.10 P(SP') = (SP) - SP' = (SPz)
z z z

The last expression in Eq 4.10 follows because the sum of the probabilities for all scenarios

equal to one. Products that tend to consume more scrap under deterministic demand exhibits

lower demand shadow prices. With limitation in scrap supplies, the demand shadow prices are

always higher than under unlimited scrap supply situations due to reduction in degrees of

freedom in scrap usage. An expected unit change in product demand does not alter the size of

potential demand uncertainty. Instead, it serves only as a lateral shift in the whole demand

distribution. When the system has unlimited scrap supplies, an extra unit of average demand can

be made from the same set of scraps and primaries. Therefore, demand shadow prices are

largely invariant with demand uncertainty when scrap supplies are unlimited. However, even

under limited scrap supplies, the shadow prices on demand do not vary dramatically. The

shadow prices do trend up with greater demand uncertainty, but the order of change is not

significant enough to alter the ranking amongst the products. Therefore any cost savings and

scrap consumption improvement schemes (Cosquer and Kirchain 2003) by substituting one alloy

for another in these product applications in a low demand volatility environment will also be

relevant in a higher demand volatility environment.

Care should be given to note that these alloys are all significantly different from each other

compositionally. It is conceivable that with alloys that are within the same family, for instance
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the 6000 series, their compositions will be relatively closer to each other and will carry much

closer demand shadow prices. After all, the amount it costs to produce an alloy is largely driven

by its chemical content. In such cases, the change in demand shadow prices with greater demand

uncertainty may lead to actual changes in the ranking. If that is indeed the case, the relevance of

strategies involving substituting one alloy for another in a product application can depend on the

underlying demand uncertainty.

4. 6.3 Products Compositional Shadow Prices

The chemical composition of a product is designed to carefully reflect the desired properties of

the alloy. Yet these fixed compositional ranges demanded by the products are often the source

of mismatch that results in less efficient scrap usage. As such, in additional to other efforts to

promote secondary material usage, compositional design changes should be considered. Given

that the desired properties of the alloys are strict, only small degrees of compositional alterations

are likely to be tolerable. This section examines the cost impact (shadow prices) of changing the

compositional specification by 1% (ie, if the original specification was a maximum of 2 wt%, the

new specification would be 2.02 wt%). The compositional shadow prices derived directly from

the model has both the effects of production amount as well as composition. In order to isolate

the effect of compositional change on the overall objective function, the model reported shadow

price is normalized's in the following manner as shown in Eq 4.11 for an upper compositional

limit shadow price. Notice that the effect of probability weighting is already reflected in the

reported shadow prices. First by multiplying this reported shadow price by the batch amount

made for that scenario, the amount of product made in that particular scenario is fixed. The

compositional specification is then varied by some A as a percentage of the original composition.

I8 Normalization is carried out assuming that the production amount is fixed and that a 1% change in compositional
specification was incurred.
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Finally, the division by the probability-weighted batch produced, which is effectively the average

batch produced, serves to present the adjusted compositional shadow price on a per unit weight

basis.

Eq 4.11 SPfc = Z BfzX UfC x A

As is customary to do so in industry, the cost impact will be examined on a per ton basis. The

operating assumptions are the same as the Base Case. Similar to the interpretation of the demand

shadow prices, there are a large number of scenarios to be considered and each of them will have

an associated shadow price. Since each one of them is already a probability-weighted impact,

their summation will provide a probability-weighted shadow price impact of a 1% compositional

change holding product demand fixed at each scenario. Alloys compositional changes that

reflect cost benefits are direct indications that such changes can bring about greater secondary

material usage. Since primary materials and alloying elements are generally more expensive

than scrap, the cost benefits tend to come from greater scrap employment.

rc

z: Io/L.OU -
9L4

$2.50 -

0 $2.40 -

4 A $2.30 -

o $2.20 -

S. $2.10 -
s ,nn-

MI cnll FTT- UUUJ L U

U 390 MN

0% 11% 28% 45%

Coefficient of Variations

Figure 4.16. Compositional shadow price ($/t) for a 1% change in maximum chemical
specification.
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Compositional shadow prices are selectively shown for maximum constraints in Figure 4.16 for

alloys and compositions based on ones that have cost impact of >$ 1 /t for a A=1% compositional

change. While this threshold seems arbitrary, it is difficult to expect any real interest from

industry to effect compositional design alterations based on lesser amounts of cost benefits. This

figure relates these compositional shadow prices to the degree of uncertainty around demand.

The results corresponding to 0% coefficient of variation is the mean-based strategy. As a

reference the maximum Cu content of 6061 and Mn content of 390 were 0.4wt% and O.lwt%

respectively. In this Base Case, it was demonstrated earlier with the recourse-based strategies

that there are greater scrap purchase versus the mean-based strategies. Since shadow prices

measure the benefit of relaxing a strictly limiting constraint, the more constrained a particular

system, the higher the related shadow prices. In particular, for the compositional shadow price,

the cost benefit is a measure of the marginal cost savings by using an extra bit of scrap material

rather than having to use some higher cost alternative (more costly scraps, primaries, and/or

alloying elements). Given that under the recourse-based strategies more scraps were purchased

with greater coefficient of variations, there is a greater pool of cheap scrap material to choose

from with increasing demand uncertainty. This directly translates into a less compositionally

constrained production environment. As such, the corresponding compositional shadow prices

decrease as the coefficient of variation increase. However, extrapolation on Figure 4.16

indicates that even with greater demand uncertainty, the shadow prices do not change by an order

of magnitude. This means that efforts spent on altering alloy chemical specifications for the

benefit of materials recycling will be meaningful even in uncertain demand environments.
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4.7 Recourse Method and Demand Skewness

By now it is clear that the impact on scrap usage and costs from deviations around the expected

demand is high asymmetric. This was the case even when the underlying demand uncertainty

was itself symmetric. However, there is no particular reason why demand distribution must be a

mirror image around the mean. In today's environment, for instance, it is more than likely that

the demand distribution will be weighted towards the higher demand side. Fortunately, the

discretized recourse method presented in this chapter can easily handle such skewness in the

underlying uncertainty. An example of this is illustrated in Figure 4.17.

\ It
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Figure 4.17. Probability distribution function for all products demand with skewness.

Table 4-V. Case with skewness in demand probability: Scrap purchasing mean-based
strategy (decision based only on mean demand) and recourse-based strategy (decision
based on probability distribution of demand)

Scrap Material Mean-Based Recourse-Based A (kt) A %
Strategy (kt) Strategy (kt)

Brake 14.3 15.4 1.1 7.7%
Transmission 18.6 18.8 0.2 1.1%
Media Scrap -

Heat Exchange 4.5 6.4 0.9 20.0%
Bumper 6.5 6.9 0.4 6.2%
Body Sheet 11.1 11.2 0.1 0.9%
All Al Eng. & -

Trans.
Total 55.0 58.7 3.7 6.7%
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In Table 4-V, it is assumed for the mean-based strategy that the modeler assumed a deterministic

demand outlook of 20.4kt (mean) for the purpose of analyses. Recourse-based strategy takes

into account the full demand probability distribution with skewness. Overall for both strategies,

Table 4-IV lists the total amount of scrap purchased increased relative to the Base Case

(symmetric distribution). This is to be expected since on average the demand for all finished

products are higher. As a result, more scrap material will be purchased to service this extra

demand. However, several other interesting effects took place due specifically to skewness in

demand. Without skewness, Body Sheet was never introduced as a hedging component, but it is

included now that the demand distribution is skewed. These changes in the hedge are indicative

of the importance skewness plays in determining the hedge basket.

4.8 Summary on Recourse Modeling of Demand Uncertainty

This chapter provided an analytical framework for materials producers to handle demand

uncertainties in their planning and execution of scrap consumption in their production

environment. The burden of making forecasts still rests with the planners themselves, as the goal

here does not involve how to make predictions regarding product demand. However, armed with

such an analytical tool, decision-makers can better employ their forecasting prowess in

promoting greater economic and scrap usage efficiency. It should be stressed that the recourse

method introduced in this chapter is not only restricted in the study of demand uncertainty, but

supply-side uncertainties as well.

Case results demonstrate that alloy production planning based solely on expected outcomes leads

to more costly production on average than planning derived from more explicit treatment of

uncertainty. By introducing the concept of scrap option value and decomposing its drivers into

carry cost and price differential advantage, the advantage of hedging in scrap purchasing is
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established. Separate considerations for the two driving forces also served to explain the

sensitivity of the hedge on the salvage value and price differential between scraps and primaries.

It was determined that in order to adequately capture the benefits of hedging, the hedge should

be adjusted more frequently as the salvage value increase and the price between primaries and

scraps converge. Not all circumstances under which hedging is performed will result in greater

scrap consumption, and the turning points were marked at approximately 65% salvage value and

95% price differential in the Base Case. Various insights were then drawn from shadow prices

studies. Alloy substitutions were found to be fruitful even under uncertain demand in effecting

greater scrap usage and cost savings. The case was made for substitution among alloys from

different families, whereas arguments for substitution within families are less clear. Of course

these are baring other technological constraints. The degree of demand uncertainty also had a

deciding impact on the relative marginal value of scrap. It also alters the scrap mix in the hedge

basket, and diminishes but not eliminates the need for hedging under limited scrap supplies.

Regardless of whether scrap supplies are limited, however, the hedging strategies implicated by

the recourse model provide greater expected cost savings as the magnitude of uncertainty rises.

In percentage terms, the corresponding scrap purchase increase, usage increase and expected cost

savings for the Base Case were approximately 8%, 3% and 0.3% respectively.

Ultimately, the aluminum remelting business faces many sources of efficiencies and

uncertainties surrounding scrap consumption, which make production planning and execution a

challenge. This chapter focused on the impact of demand uncertainty and potential resolutions.

The next several chapters will examine other inefficiencies and present analytical methods to

address them.
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Chapter 5: Sorting Model Development

Before raw materials are sent to the production floor, they can be preprocessed to enhance their

usefulness. One of these preprocessing routes is via sorting. The reader can refer to the

Appendix for brief discussions on what sorting technologies are in general and what specific

types are being researched and developed. Generally speaking, they are techniques that promote

homogeneity in the compositions of scrap streams.

Many questions ultimately surround the applicability of a sorting technology. Is it cost

effective? Which scraps should be sorted? The answers are closely tied to the operating

conditions such as product mix, scrap supply mix and sorting performance. Often times the

interactions between these factors are complex and a decision framework is needed to guide

sorting choices in light of such constraints. A sorting model for aluminum production and

recycling is an optimization framework that takes into account the supply/demand, compositional

and sorting technology constraints and attempts to minimize costs19. As sorting technologies

continue to develop and mature, it is conceivable that the sorting processes will proceed in

stages, first between wrought and cast fractions and then into finer levels of segregations.

Therefore it is important in the future to have a theoretical framework and algorithm to model

multiple-stage sorting. This chapter develops this framework in detail and lays the modeling

groundwork for a case study on sorting technology in the next chapter.

19 The framework can be readily adapted for profit maximization.
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5.1 First-Stage Sorting or Not?

Scrap
Products

I

Figure 5.1 Sorting as a choice and the way it fits into the bigger picture of materials
production.

Even though sorting is the main topic in this chapter, it is important to note that in the model to

be developed, it is a choice rather than a necessity. As shown in Figure 5.1, mixed scrap

materials do not always pass through the sorter. In fact, absent the availability of sorting

technologies, on an abstract level the operation of materials production is a matching and

allocation of raw materials (scraps, primaries and alloying elements) to finished products. With

sorting, however, the set of available raw materials is transformed into a larger group with better

compositional control.

In the following, the logic of the sorting model development will begin by tracing the fate and

path taken by a single piece of scrap material. The overall model will ultimately consist of all

the constraints and paths that can be taken by all scrap materials as well as primary materials. A

summary of the overall model and explanations for the various subscripts and variables are given

at the end of this chapter.
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The first stage (which might be wrought versus cast) can be represented by the following box

diagram Figure 5.2. More than two output streams are possible from the sorter to allow for

generality:

Wil

i T..

lMi , (Discrete components Vvij

recovery rates)

(Discrete components makeup
of scrap Mi)

Mi2

Figure 5.2 First stage sorting schematic representation.

As scrap material Mi enters the system, the first decision to be addressed by the model is whether

to sort this material and if so how much of it should be sorted. By definition, primary materials

are uniform and, therefore, are not sorted. As such, the discussions here are restricted to scrap

materials only. From the point of view of conservation of mass, the following must hold:

Mil + Mi2 = M i

Unsorted stream Mi2 will then pass through to the next stage unchanged. For the passage of Mil

through the first stage sorter, conservation of mass dictates that:

WU = Mil Cim Rijm
m

Z Wi_ <Mi,
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For a materials production facility, not only is the quantity of material flowing through the

system a concern, but also the compositions of the resulting streams. The compositions of the

sorted and unsorted streams from the first stage of sorting can be determined as follows. For

element (e) content within the unsorted stream, we have the following.

Me,max = iemax
i2 i

M e,min = Memin
i2 i

This is intuitive since an unsorted stream must retain its original composition. For the sorted

streams Wij, their compositional content can be determined as a function of the original materials

discrete component makeup Cim of the input material Mil and the recovery rate of the sorter on

these various materials component Rjm for each output stream j. For these sorted streams, the

compositional content relationships are:

Mr C M e, max m ema xC M max

WT.zzemax m m

UJ Mil CimRim ECimRjm
m m

m m

5.2 Multiple-Stage Sorting Model Development

At the end of the first stage of sorting, single scrap material Mi has been transformed into j+l

potential streams. The quantity and composition of these streams are known based on the

formulae above and on knowledge of the quantity and composition of the input material Mi.

Armed with such information, one can proceed onto stage two sorting. Again, to allow for

generality, more than two streams of output are possible from stage two. The logic and model

representations for this two-stage model are readily extensible for additional stages.
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As a recap for the first stage, in order to model the quantity of materials that come out of stage

one as well as what their compositions are, the following information is required for the input

material:

? Quantity of input material

? Discrete component makeup of input material

? Elemental composition of individual components of discrete component

? Recovery efficiency of sorter for each material component

Similarly, with sorting in stage two, these four pieces of information are required. The quantities

of material are straightforward since they are the Wij and the Mi2 that were outputs from stage

one. The elemental compositions of individual components do not change, since they are the

same components! However, the discrete component makeup of input materials in stage two will

change due to the effects of materials segregation in stage one. Fortunately, there is enough

information from stage one to determine a priori what the makeup is for each input material into

stage two. Before proceeding on to determine this makeup, a schematic of the stage two sorting

procedure is helpful.
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- ij2
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I i2k

' \4
lVli22

Figure 5.3 Schematic for stage two sorting

In Figure 5.3 sorting is differentiated between material that went through stage one sorting (Wij)

and those that did not go through stage one sorting (Mi2). Similar to the arguments in stage one,

conservation of mass implies that:

Mi2l + Mi22 = Mi2

Wij + W 2 = WU

Sik = Wijl CmRkm
m
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Sjk < Wi
k

Ti2k = Mi 21 E Ci2mRkm
m

Ti2k < M,!21
k

Amongst the four key pieces of information that are needed to determine the quantity and

chemical composition of the output materials from stage two, three of them are already known.

The quantity of input material are exactly the quantity of output from stage one (WU, Mi2). The

elemental compositions of the individual component materials do not change. The recovery

efficiencies of the sorter are a function of the sorter capabilities and are assumed to be given.

Therefore the only information that remains to be calculated are the component makeups

( Ci2m, Cijm ) of the two possible types of input materials into stage two. One type has been sorted

in stage one while the other has not. For Ci2m it is very simple and should be equal to Cim, since

there was no sorting done on this output stream in stage one. The CUim are functions of both the

recovery efficiencies of the stage one sorter (Rjm) and the component makeup (Cim) of the stage

one input materials. Considering both of these effects yields a relationship of the form:

Cil Cim Rim Mi CmRj Cm Cim Rim
Cim = - -

Mil E CimRjm WU CimRjm
m m

With the component makeup of the input materials to stage two sorting determined, the chemical

composition of the output streams from stage two can be determined in a similar logic to stage

one output compositions. For the maximum compositional constraints:

Ur Rm M e max C maxUr Cim km Cjm Rkm m
se,max m m

Wil Cim Rkm Cium Rkm
m m
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Mi21Ci2m kmM ma x Ci2m kmMm

Te,max _ m m
i2k

2k Mi21 Ci2mRkm Ci2mRkm

m m

I e,max e,max
i22ons can be written for the minimum compositional constraints. At the end of stage

Similar equations can be written for the minimum compositional constraints. At the end of stage

two, the original input material in stage one has been split into (/+l)(k+l) output streams.

Ultimately, the terminal material streams from stage two together with available primary

materials will be allocated for the production of the various alloys desired. Section 4.3

summarizes of the overall optimization objective and constraints with detailed explanations for

all the notations encountered in the discussions. Figure 5.4 illustrates the overall two stage

sorting model schematic for a single input material stream with allocation of terminal material

streams in the final production of alloys. For clarity purposes, only two output streams are

illustrated for each sorting step and not all arrows are shown. However, the reader can infer and

generalize the schematic for more output streams per sorting step.

The above discussions serve to explicate the logic behind the development of the sorting model.

Sorting technologies are potential strategies to resolve scrap usage inefficiencies stemming from

compositional incompatibilities. However, as mentioned earlier, sorting technologies can only

be widely adopted when their cost-effectiveness can be demonstrated and the impact of operating

conditions understood. The sorting and mixing model summarized in the next section provides a

framework to answer many of the questions surrounding the applicability of sorting

technologies.
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5.3 Two-Stage Sorting Optimization Mathematical Formulation

Suppose the objective is to minimize the cost relating to alloy production.

Min: E(CiM +ZMi 1)+sCpM p + Z2 E(Mi21 + Wjl)
i p i j

Subject to the following constraints

Materials Input Stage

Materials availability constraint:

EMi < A i
i.

Stage 1 Sort

Mass flow constraints:

Mil + Mi2 = Mi

Wij = Mil E CimRim
m

I Wi < Mil
J

Compositional determinants:

M emaX = M e,max

i2 = Mi
M e,in e,in

i2 i.

M Ci R em ax CR max
il Y im m m I im jm m

We.,ax m= m
MilCimRm ECimRjm

m m

~e,min e,minMil, CiRjmMm CimRjmMm
, yemn m m

j Mil ECimRm ECimRm
m m



Stage 2 Sort

Mass flow constraints:

Mi21 + Mi22 = Mi2

Wilj W 2 = Wij

Uk W Cm R
m

T2 Mi2k Mi2 i2mRkm
m

ZTi2k <Mi21
k

Compositional determinants:

Ci2m := Cim

Mi, Cim Rji MiCim Rim Cim Rim
MCUMn M= = =

m il CimRjm Wii Z CimRjm
m m

Wij 2 Cjm C km,, maX
Se,max _ m

i jl W CumRkm
m

mi21Z i Rmp M e,max
Miz2YC i2mR kmM

e,max m

i12 - Mi21 Ci2m Rkm

mW , nma x e ,max,.ije2

CUmR kmMm
m

Z Cum Rkm
m

R 1¢ it~ e,max

Ci2m km 
m

C i2mRkm
m

M e,max = M emax
i22 i
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m

ijl E Cim Rkm
m

Mi21 I Ci2m kmM n
m

Mi2l E Ci2mRkm
m

E i2m km m
m

Ci2m Rkm
m

w emin e,min
"j2 -= W.

M emin = ein
i22 i

Output Materials Allocation

Finished alloy demand quantity constraint:

E (Mi22n + Ti2kni n k +Z Sikn )) +
k

+ E (Wij2n
J

ZZMpn >Fn
p n

Conservation of mass:

EMpn < Mp
n

E Mi22n < Mi22
n

Ti2kn < Ti2k
n

n

Sjkn • Sik
n

Compositional constraint on finished alloy:

E E (M emiMi22n + TeminTi22 i22n q E i22 i2kn + E (Wij2in Wij2n

CE E£M p Mpn 2 Fn n
p n
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%, i22 i22n"+E '- / inxw - emaxEE(Me' i'222'2 2 x,, +2 I 2i22n Si2k yijkn k Si))
i n k j k

LXMmam Mpn < Fe,maXFn
p n

All variables are non-negative. The notations and variables are detailed below.

i = Input scrap material index
n = Finished alloy index
m = Material (makeup) component index
p = Primary material index
q = Sort stage index
i == Stage one sort output stream index
k - Stage two sort output stream index
Ci =- Cost (per unit wt.) of scrap material i
Cp = Cost (per unit wt.) of primary material p
Zq = Cost of sorting (per unit wt.) for sort stage q
Mp = Quantity of input primary material p
Mi = Quantity of input scrap material i
Mil = Quantity of input scrap material i that went through stage one sorting
Mi2 == Quantity of input scrap material i that did not go through stage one

sorting
Mie"'m t = Maximum wt. % content of element e in stream M
Memi = Minimum wt. % content of element e in stream Mi
Mi2e m= Maximum wt. % content of element e in stream Mi2
Mi2e' n = Minimum wt. % content of element e in stream Mi2
Mme'max=:Maximum wt. % content of element e in material component m
Mmemn = Minimum wt. % content of element e in material component m
Ap = Quantity of availability primary material p
Ai = Quantity of availability scrap material i
Wij = Quantity of output into streamj from stage one sorting with input M
Cim = Wt. % representation of material component m in raw material i
Rjm = Recovery efficiency (%) of material component m in stage one sort

output streamj
We max = Maximum wt. % content of element e in stream Wij
Wjemn = Minimum wt. % content of element e in stream WU
M21 = Quantity of input scrap material i that did not go through stage one

sorting but went through stage two sorting
Mi22 = Quantity of scrap material i that went through neither stage one nor

stage two sorting
~Wij I = Quantity of scrap material i that went through both stage one and stage

two sorting
Wij2 = Quantity of scrap material i that went through stage one but not stage

two sorting
Sijk = Quantity of material output from stage two output stream k that traces its

origin to stage one output streamj and scrap material i
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Ti2k = Quantity of scrap material i that only went through stage two sorting and
not stage one sorting

Rkm = Recovery efficiency (%) of material component m in stage two sort
output stream k

Ci2m = Wt. % representation of material component m in scrap material i

CUem = Wt. % representation of material component m in material stream WU
Mpe max

= Maximum wt. % content of element e in primary material p
Sijke 'm = Maximum wt. % content of element e in stream Sijk

Ti2ke' max = Maximum wt. % content of element e in stream T2kj

WY2e 'm ax = Maximum wt. % content of element e in stream Wj2
Mi 22 e' max = Maximum wt. % content of element e in stream Mi22

Me min = Minimum wt. % content of element e in primary material p
Sijk mi = Minimum wt. % content of element e in stream Sijk
Ti2ke mi = Minimum wt. % content of element e in stream T2kj

WY2emin= Minimum wt. % content of element e in stream WYJ2
Mi2 2 emin= Minimum wt. % content of element e in stream Mi22

Fnema = Maximum wt. % content of element e allowed in product Fn
Fe ' min = Minimum wt. % content of element e allowed in product Fn
Mpn = Quantity of primary material p allocated towards production of Fn
Mi22n = Quantity of scrap material i that went through neither stage one nor

stage two sorting and allocated towards production of Fn
Wij2n = Quantity of scrap material i that went through stage one but not stage

two sorting and allocated towards production of Fn
Sijkn = Quantity of material output from stage two output stream k that traces its

origin to stage one output stream j and scrap material i and allocated
towards the production of Fn

Ti2kn = Quantity of scrap material i that only went through stage two sorting and
not stage one sorting and allocated towards the production of Fn
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Chapter 6: Economic and Recycling Impact Assessment
of Sorting Technologies

When it comes to environmental concerns, there is no doubt that using more aluminum

scrap materials in production is beneficial. However, when it comes to technologies

being developed to promote such a cause, the associated economic benefits are harder to

grasp at a glance. One such technologies aiming to address inefficiencies in scrap

consumption is broadly termed light metals sorting. The idea is to segregate mixed

(aluminum) scrap streams into more compositionally homogeneous scrap output. The

finer the separation, the lesser the scrap content uncertainty and the more control and

confidence material producers will have over their compositions and thus usage. Of

course, with the associated benefits over scrap consumption and depending on scrap

pricing conditions, price differential advantage, there will be added costs from the

development and deployment of such a technology. In fact, depending on the actual

expected performance of the sorter, the scrap pricing environment, and products being

produced, sorting technologies may or may not prove to be economical. Even if it is

economically viable, these factors will certainly affect the way sorting is utilized. For

instance, not all scrap types will necessarily be sorted. To answer many of these critical

operational questions and to address investment decisions, a systematic framework that

account for such driving forces will be needed. This chapter is entirely devoted to filling

in this gap and to bridge sorting technologies development with potential deployment.

The methodology to be presented is an optimization model with which a feasibility case

study on one type of sorting technology has been carried out in collaboration with Norsk
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Hydro20 . With the built-in flexibility of the working model, it can be applied towards the

study of sorting technologies with an arbitrary number of output streams. The model

serves to support industry decision-making regarding investments in and application of

sorting technologies to increase scrap use and lower production costs.

6.1 The Double-Sided Nature of Scraps

There are both economic as well as environmental drivers for scrap consumption. Scraps

are typically cheaper than primary materials. However, this relationship can be fickle as

evident by the historical volatility on the price differential. The environmental driver is

more stable and in some sense more dramatic. In fact, the explosive worldwide growth in

aluminum consumption prompts concerns not with mineral scarcity, but rather with

among other things, the energy consumption inherent with primary aluminum production.

Using secondary sources can reduce the energy consumption by over 90%. Yet this

friendly attribute of scraps is met with the difficulty in working with scrap compositions.

In particular, the components that make up scrap streams are often compositionally

distinct in many ways and cannot be used directly in production when mixed. Several

authors have raised concerns about maintaining high levels of aluminum scrap reuse in

the face of changing patterns of aluminum consumption (Drucker Research 1999,

Aluminum Association 1999, Gorban 1994). Although a significant surplus of aluminum

scrap is not necessarily imminent, the concerns do point to current or emerging

inefficiencies in scrap reuse (Gorban 1994). Economic inefficiencies occur when high

value alloys are repurposed into compositionally tolerant alloys. These actions are direct

20 Part of this chapter is based upon a paper (Li, P.P., Guldberg, S., Riddervold, H.O., Kirchain, R.E.,
"Identifying Economic and Scrap Reuse Benefits of Light Metals Sorting Technologies") presented at the
TMS 2005 Annual Meeting Post-Consumer Recycling Symposium, San Francisco February, 2005.
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consequences of the difficulty in handling scrap compositions. In the absence of

technological changes, current usage trends would suggest an increase in this practice.

To avoid this erosion of value, several firms and institutions have been developing light

metals sorting technologies (Reuter 2004, Mesina 2004, Gesing 2002, Maurice 2000). Of

course, just like any emerging technology, they need to provide definitive economic

benefits to the industry as an incentive for common deployment. Short of completing a

commercial-scale pilot test of a sorting technology, most industry participants would like

some way of gauging the economic and scrap usage impact of such capabilities

beforehand. Prior to investing in or purchasing this capability, it will be important to get

a sense of how much the technology is worth and how the applicability will change with

different product mix, scrap mix, etc. Once the choice has been made to adopt this

technology, the operators will then need a decision framework for which scraps to sort,

how much to sort, as well as how to allocate these processed materials in production. In

the following case study with Hydro Aluminum, these questions and more are addressed

on a wrought-versus-cast sorting technology. The results should be of interest to people

who are developing or considering using such a technology.

6.2 Sorting Case Study: Base Case

This case study is reflective of a large-scale European Union aluminum producer with an

annual 100kt production capacity (Table 6-II). The split between cast and wrought

products, at 70%/30% is representative of the split observed in the secondary market

(Buckingham 2002). The amounts scheduled for the individual alloys are based on

expert opinion and their ratios are illustrative of prevailing trends in the European market.

Scrap supplies represent 60% of production capacity at 60kt. This availability is
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estimated based on the sourcing needs of a producer focused on cast products. There are

four scrap types sourced from across Europe. These include i) old rolled, ii) A1-ELV

scrap, iii) shredded extrusion and (iv) co-mingled respectively. These are listed as Base

Sheets, Base Casts, Base Extrusions and Co-Mingled respectively in Table 6-I, which

also indicates their pricing and basic content. The prices on these raw materials were

taken recently from the London Metals Exchange. Unit prices shown throughout this

chapter have been normalized to emphasize economic trends rather than absolute dollar

amount. For the purpose of clarity, the compositional data on the raw materials, products

and primary elements are provided in Appendix B. The compositions on the scrap

materials were sampled and determined by spectrographic analysis. Compositions on

alloys are compliant with international standards. Metal yields have been estimated at

93% for scraps and 98% for primaries.

6.2.1 Sorting Technology Description

The sorting technology considered in this chapter was modeled as a single-stage sort with

three output streams ? bins 1, 2 and 3. The Base Case assumed that the remelter will be

renting this service from a third party (rent-for-service), and therefore no fixed costs will

be incurred. The sorting costs will be based on a per ton usage basis. Later studies in

this chapter will also examine the implications of sorting as an investment. Bin 1

receives 95% of the wrought alloys from the incoming scrap stream and 5% of incoming

cast constituent. Bin 2, receives 95% of the cast alloys and 5% of the wrought. The final

Bin 3 receives 100% of all the other remaining scrap components. These values

approximate the sorting recovery rates reported for the "hot crush" technique with prior

separation of the "other" fraction (DeGaspari 1999). The Base Case sorting cost was
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estimated at $30/ton. This figure is rather conservative compared to contemporary sorting

techniques such those for stainless steel and iron21. As light metal sorting technologies

develop, this cost is likely to come down. The impact of this assumption is explored in

subsequent analysis.

Table 6-I. Quantity and Makeup of Available Scrap Types

Normalized kt Alloy mass fraction wt.%
Scrap Type Price Wroughts Casts Others*

Ton22 Sheets Extrusions

Base Casts 1.04 30 30% 56% 14%
Base Extrusions 1.24 10 15% 70% - 15%
Base Sheets 1.09 10 75% 15% 4% 6%
Co-Mingled 1.00 10 30% 30% 16% 24%

*Include tubes, wires, etc.

Table 6-II. Modeled Alloy Products Demand
Alloy Qty. Demanded (kt)
230 20
226 20
239 30

6111 10
6082 2
6060 14
3104 2
3105 2

6.3 Sorting and Mixing Model Description

The optimization model is at the heart of the framework that assesses the applicability of

sorting in the greater context of remelt operations. In Chapter 4, a two-stage version of

the optimization model was presented. Here a single-stage version is adopted for this

Base Case study. The two-stage model, instead, would be applicable when a finer level

of sorting beyond wrought versus cast separation is carried out after wrought/cast sort.

The model helps to quantify the value which sorting brings to a remelter. At a somewhat

21 Industry estimates the sorting cost for stainless steel and iron to be approximately $20/t.
22 Price per ton is normalized to the price per ton of co-mingled scraps.
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abstract level, the primary decisions for a remelter involve composing alloy batches by

carefully selecting and mixing various amounts of scrap and primary materials. Sorting

provides added flexibility as well as complexity to these decisions by affording the

secondary processor the opportunity to upgrade the materials which they have at hand.

With sorting, the set of operational decisions include what raw materials to use, which to

sort and how much of sorted and unsorted materials should be allocated towards which

product.

In practice, sorting may not occur at the remelting facility, but rather at the scrap supplier.

Furthermore, sorting technologies might be developed in-house in which case it can be

interpreted as incurring fixed costs, amortized over the useful life of the sorter. From an

analytical perspective, the methods and results presented here are equally applicable to

these arrangements. A remelter will need to decide whether to rent the service from a

third-party, buy it or to develop sorting capabilities in-house. If the latter route is taken,

how much should be spent? For a scrap supplier, it is critical to identify those markets

for whom sorting provides added value and which technologies are able to deliver that

most effectively. Both parties will need to know which scraps to sort if sorting is deemed

appropriate.

6.3.1 Single-Stage Sorting and Mixing Model

The model presented below is an extension of one developed to examine strategic raw

material allocation decisions (Cosquer and Kirchain 2003). The model developed here

assumes that sorting occurs as a single stage 1-to-j stream operation. There is no

theoretical limit onj. In a physical sense, this means that for any scrap stream entering

the sorter, j possible output streams can be modeled where the characteristics of the j
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output streams are determined by both the constituents within the incoming stream and

the performance of the technology of interest. Figure 6.1 shows this graphically,

identifying both the key variables and indices that will be detailed subsequently.

AT1

Mi

(Raw Ma

Fl

I
~,r 111Jll~ULr

Products)

Fn

Mi2

(Primaries / M
Alloying
Elements)

: (Raw Materials Allocation in Production)

Figure 6.1. Schematic of materials sorting and allocation of sorted and unsorted
material streams towards production.

In order to handle both rent-for-service as well as investment decisions surrounding

sorting deployment, the model must be formulated as a mixed-integer optimization

problem (Chong 2001). This method is widely applied in operational batch production

decisions throughout the aluminum industry. The model presented here differs from

those operational tools primarily in its simultaneous assessment of multiple production

goals and its extension to explicit sorting decisions. Other related optimization studies on

sorting have focused on the optimization of processes, technologies, and overall resource

cycles (Mesina 2004, Reuter 2004, van Schaik 2004, Dalmijn 2003, van Schaik 2002,

Xiao 2002, Gesing 2002, Maurice 2000). Current work examines sorting technologies

from the point of view of the economic value - cost savings and scrap utilization -

provided to key stakeholders. The following set of equations (Eq 6.1 -
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Eq 6.14) describes the various elements of the model, including the decision-making

objective and constraints with explanations of the variables and indices to follow.

Operational decisions are made with an objective to minimize operating costs. The

model could be readily adapted to accommodate other objectives, such as profit or scrap

use maximization.

Minimize:
(Raw Material Costs) (Sorting) (Residual Scrap Salvage Value)
( CiM + E CpM, ) + E ZIMi - Ri(Mi - Wijn - Mi2n) +

Eq 6.1 i p i i j,n nEq 6.1 14·
{if (a M ai > O) then CF else O}

(Fixed Costs Consideration)

There are four specific items included in the objective function (Eq 6.1). There are cost

contributions from raw materials purchase and sorting operation. Since not all sorted

scrap materials are necessarily allocated in final production, there is salvage value

associated with unallocated sorted scraps. The assumption is that these scraps will carry

a value at their original costs, although admittedly depending on the nature of the nature

scrap the value can be higher or lower. To capture the physical realities of batch

construction and sorting performance, the objective function is subject to the following

constraints on materials supply, demand, compositions, conservation of mass and sorting

recovery rates.

Raw materials supply constraints:

Eq 6.2 Mp < Ap

Eq 6.3 M i Ai

Pre-sorting and post-sorting mass conservation:

Eq 6.4 Mil + Mi2 = M i

Eq 6.5 Wi Mil
J
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Sorted and unsorted material streams allocation for production:

Eq 6.6 Mpn <MP
n

Eq 6.7 E Mi2 n < Mi2
n

Eq 6.8 1 Wi < W
n

Batch production requirements:

Eq 6.9 ZZZi E (Mi2n "M i2ea + pnM M 2 F,
i e j p n e

Compositional specifications requirements:

Eq 6.10 (Mi2n2aveyi2 Wee e)M e > F emin F
oitW W, j)" p m n Mi n? j p n

Quantities of materials recovered through sorter:

Eq 6.12 WU = Mil E CimRjm
m

Compositional determinants for unsorted material streams:

Eq 6.13 M e,ave = M eave

Compositional determinants for sorted material streams:

E CimRjmM'ave
Eq 6.14 Wave = m

Cim Rj m
m

All variables are non-negative. The indices and variables used above are shown in

Figure 6.1 and defined as:

i,n,m = Input scrap, finished alloy, and materials component indices
p,q,j = Primary material and alloying element index, sort stage index, stage one

sort output stream index
Ci = Cost (per unit wt.) of scrap material i
CP = Cost (per unit wt.) of primary material p
CF = Annual fixed costs of sorter
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Ri = Residual salvage value (per unit wt.) of scrap material i
Zq = Cost of sorting (per unit wt.) for sort stage q
Mp = Qty. of input primary material or alloying element p acquired
Mi = Qty. of input scrap material i acquired
Mil = Qty. of input scrap material i that went through stage one sorting
Mi2 = Qty. of input scrap material i that did not go through stage one sorting
Mie 'ave = Average wt. % content of element e in stream Mi
Mi2e ave = Average wt. % content of element e in stream Mi2

Mme 'ave = Average wt. % content of element e in material component m
Yi2e = Metal yield (%) for scrap material i that did not go through sorting
Yie = Metal yield (%) for sorted scrap material stream Wj
ype = Metal yield (%) for primary or alloying element p
Ap = Qty. of availability primary material or alloying element p
Ai = Qty. of availability scrap material i
Wij = Qty. of output into streamj from stage one sorting with input Mi
Cim = Wt. % representation of material component m in scrap material i
Rjm = Recovery rate (%) of material component m in sort output streamj
Wie'ave = Average wt. % content of element e in stream WYj
Me, max = Maximum wt. % content of element e in primary material p
Mpe'min = Minimum wt. % content of element e in primary material p
Fn

e' ma = Maximum wt. % content of element e allowed in product Fn
F,ne min = Minimum wt. % content of element e allowed in product Fn
Mpn = Qty. of primary material or alloying element p allocated towards

production of Fn
Mi2n = Qty. of unsorted scrap material i allocated towards production of Fn
W jun = Qty. of scrap material i that went through stage one sorting and ended up

in streamj that was allocated towards production of Fn

6.3.2 Computation and Output

As with other mathematical models in this thesis, the bulk of the optimization programs

were written and executed in the mathematical modeling language LINGO. The solution

to this material system optimization problem provides the most economical set of

decisions involving (i) how much of each raw material to acquire, (ii) how much of each

acquired raw material to sort, (iii) and how much of the sorted and unsorted material

streams should be allocated towards production. The driving forces of supply demand

and compositional constraints are embedding into an integrated model, with the

advantage that decisions and insights that would otherwise seem non-intuitive can be
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reflected. In fact, sometimes the material system constraints are too entangled for

intuition to be of any value. For instance, while one will not intuit that cast-like material

will be used in the production of wrought products, with sorting that might be the case.

While important, human intuitions can sometimes be an under-informed impediment to

technological changes 23.

Beyond these decision aids, shadow prices studies are also critical because sorting

technologies are in many ways a disruptive technology. For instance, it can completely

alter the way a remelter can work with scrap materials and as such it should be expected

that the scrap supply shadow prices will change. Whether actually this leads to changes

in the relative marginal benefits of scraps will be discovered.

6.4 Impact of Sorting on Scrap Consumption

Table 6-111 indicates the optimal production allocation of sorted and unsorted scraps and

sorting decisions as determined by the model for the Base Case inputs. The balance of

production raw materials were made up by appropriate primaries and alloying elements.

Due to their prompt scrap-like content, Base Extrusions and Base Sheets were never

sorted at 95% recovery rates. At this recovery rate, sorted scraps were used in all alloys.

However, the degree of usage differed by product by nature of compositional differences.

For instance, the majority of materials consumption by the 6000 series products is with

the relatively "clean" scraps (Base Extrusions and Base Sheets) and primaries. Note that

a meaningful amount of Bin 1 materials (wrought-like) were consumed by the cast

products. These were used presumably as cheaper dilution agents relative to primaries.

23 "Everything that can be invented has been invented." - Charles H. Duell, Commissioner, US Patent
Office, 1899
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Table 6-III. Raw Materials Consumption (t) with Sorting (Base Case)
Alloy~~~~~ 

BaeEtuinsBs at

Un-
sortedBin 3

230

226

239

6111

6082

6060

3104

3105

Base Sheets

Bin 1 Bin 2 Bin 3 Un-
sorted

- - - 5,469

- - - 1,194

- - - 2,791

- - - 546

- I I

230

226

239

6111

6082

6060

3104

3105

3,792

2,602

1,688

1,918

Co-Mingled

Bin 1 Bin 2 Bin 3 Un-
sorted

3,122 - 492

- 1,441 1,048

-{ - - 768

-- 76 108

- - -843

- - -375

1,486 - 241 -

Primary
&

Alloying

13,380

188

19,331

6,539

18

7,353

929

156

By comparison, Table 6-IV indicates the materials consumption when sorting is not

available; the pattern of scrap material consumption changes markedly. In fact, not only

the amount of scrap used changed, but also the types of scrap used changed. Some of

these changes are not entirely intuitive. Product 6082 swapped less expensive scraps for

a more expensive one! Product 239 eliminated its dependence on Co-Mingled when

sorting was available. These curiosities and others will be explained in more detail in the

next section in conjunction with cost impact discussions. In aggregate, scrap

consumption increased from 85% to 95% when sorting was available.
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3,688

569

260

1,727

237

Bin 2

11,624

129

25

2,965

.-- - -

Un-
sorted

4,229

1,332

14

Bin 1 Bin 2 Bin 3

l

· I I

7~---7·

Alloy Base Casts Base Extrusions

260



Table 6-IV. Raw Materials Consumptions (t) in Production Without Sorting
Alloy Base Base Base Co- Primaries & Alloying

Casts Extrusion Sheet Mingled Elements
230 - - - 1,599 18,891
226 19,217 - - 1,647 608
239 243 6,879 6,385 1,749 16,135

6111 1,413 - - 1,413 7,522
6082 - 956 1,147 31 16

6060 90 2,164 2,468 1,990 7,917

3104 51 - - 655 1,371
3105 - - - 917 1,171

The fact that overall scrap consumption increased with sorting is not a surprise. After all,

the purpose of sorting is to allow material processors to cope with scrap input

compositions such that they can be used in otherwise unaccommodating circumstances.

Mainly due to the price differential between scrap materials and primaries on average,

one would also expect reduction in production cost as a result of sorting. While these

statements are generally correct on an aggregate level, there are significant variations

when the effects are examined by product.

Figure 6.2 examines the degree of scrap usage with and without sorting for each of the

individual alloys which were investigated. Scrap-to-batch ratio represents the fraction of

the batch production that was made from scrap materials, sorted or not. Scrap

consumption for wrought products increased from 42% to 52% of batch production while

the corresponding increase for cast products was from 51% to 55%. The relatively

stronger increase in scrap consumption by the wrought products is indicative of their

relative tolerance for alloying content in comparison with cast products. While most of

the products increased their consumption of scraps, product 239 notably had a decrease.

Detailed look at the change in raw material consumption by 239 indicates that a
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significant amount of Base Extrusion that was used by this product under the no sorting

scenario transferred to the production of 230 with sorting. For product 6082, even though

there was no significant change in the percentage of scrap consumption, the types of

scraps consumed changed from using large amounts of Base Sheets and Base Extrusions

under no sorting to zero Base Sheets consumption with sorting. The major reason for

these changes is limitation in scrap supply. The supplies of Base Sheets and Base

Extrusions are completely consumed. On the far right of Figure 6.2, the relaxation of this

constraint led to a dramatic rise in scrap consumption via sorting. This jump underscores

the potential of sorting in effecting greater scrap consumption. At the same time, it also

points to one of the key reasons for the slow adoption of sorting technology deployment

- limitations in scrap availability in parts of the world.

. 100%-

a 80%-

W 60%-

40%-

' 20%-
Z 0% -

* Without Sorting · With Sorting
Unlimited Scraps

I1

226 230

I I

ni

I

I

239 6060 6082 6111 3104 3105 Total Total

Products

Figure 6.2 Base Case scrap consumption for individual products wv

6.5 Impact of Sorting on Production Costs

The changes in scrap consumption observed in the prior section are

economics since they are the solutions from a cost minimization.

savings from sorting was $0.8M or approximately 0.6% (Table 6-V).

ith sorting.

entirely driven by

Overall the cost

On an individual
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product basis, many of the peculiarities in scrap usage can be explained from a cost

perspective.

Table 6-V. Scrap Consumption Aggregated By Scrap Type.
Scrap type With Sorting Without Sorting

% Consumed Qt. (kt) % Consumed Qt. (kt)
Base Casts 90.2% 27 70.0% 21
Base Extrusions 100.0 10 100.0 10
Base Sheets 100.0 10 100.0 10
Co-Mingled 100.0 10 100.0 10
Overall Total 95.1 57 85.0 51

Total Costs $129,241,000 $130,014,906

Figure 6.3 correlates the changes in scrap usage patterns for the individual products to

cost savings/increases associated with such changes. For 6111, 3104 and 3105, the

increase in scrap consumption directly led to cost savings due to the price gap difference

between secondary and primary materials. With 6082, even though there was practically

no change in the scrap consumption, the replacement of less expensive scraps with more

expensive ones led to an increase in costs. All of the Base Sheet that it consumed under

no sorting was instead allocated towards the production of 6060, 6111 and 3104. Taking

a system's point of view, this benefited the overall production costs. It is apparent from

product 226 that increase in scrap consumption does not guarantee cost savings. Even

though it made use of more scrap, and cheaper ones no less, the associated cost benefit

was not enough to outweigh the sorting costs involved. Similarly, a decrease in scrap

consumption does not automatically lead to increase in costs, as long as the scrap types

changed to reflect cheaper scraps that more than offset the increase in costs due to

increased primary usage. Nevertheless, the argument for limitation in scrap supplies once

again applies here. In particular, the cost savings would have been 2.9% instead of 0.6%
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had scrap supplies be unlimited. These are significant dollar differences considering the

fact that the overall production costs run in the hundred of millions.

* Limited Scraps · Unlimited Scraps
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Figure 6.3 Base Case scrap usage cost impact with sorting.

6.6 Insights on Sorting From Shadow Prices

In the previous chapter, a methodology was presented that enables demand uncertainty to

be factored into the decision-making process for scrap purchasing. In doing so, it was

shown that scrap consumption can be increased. That strategy involved no upfront

investment or added costs in its implementation. It is purely a behavioral change.

Sorting technologies, on the other hand, is much more than just a behavioral change. It is

more disruptive in the sense that it costs money to implement and it can alter the way

scraps are allocated in production. In some ways, this relative disruptiveness is reflected

in the demand shadow prices (Figure 6.4).

Without exception, the demand shadow prices dropped when sorting was made available.

Shadow prices are responses to constraints; the more constrained a system, the greater the

shadow prices. When sorting is available, the system had more ways to utilize scraps,
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therefore the demand shadow prices decreased. However, unlike those observed in the

previous chapter, the ranking among the product demand shadow prices does change. It

was remarked earlier on that, due to closeness in compositions, ranking changes among

alloys within the same family might be expected when demand uncertainties were

considered. Indeed, such ranking changes are seen as well with sorting. However,

beyond that, ranking changes between alloys from different families were also observed.

The bottom line is that sorting can dramatically alter the marginal cost of production.

Therefore, if strategies were devised to increase scrap consumption and lower production

costs by alloy substitutions in product applications, those strategies should be re-

examined with sorting.

!I Without Sorting · With Sorting

lz
0

o

E.=
Z

,JU L-V ,J.7 UIII UUOL VVVV .,l J.II.VJ
Ranking

Products

Figure 6.4 Demand shadow prices with and without sorting (numbers at the bottom
of the bars represent ranking).

Sorting can alter the marginal benefits of scraps as well. The scrap supply shadow prices

represent the degree to which the overall production cost will be reduced when one extra

unit of the corresponding scrap is made available, assuming that the scrap is entirely

consumed. The greater the scrap supply shadow price, the larger the reduction in
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production cost. The degree by which production cost is reduced can vary depending on

the basis for comparison. All else being equal, a system that is currently making use of

less scrap material will benefit more from the availability of this extra scrap. The reason

is that there is a higher likelihood that the extra scrap will be used to replace dependence

on more expensive primary materials. When sorting is available, the system is more

flexible in making use of scrap materials and can already make use of more scrap.

Therefore, with sorting, the scrap supply shadow prices tend to be lower relative to no

sorting (Figure 6.5). Since Base Casts scraps were not entirely consumed, there is no

corresponding shadow price.

With sorting, the ranking among the scrap supply shadow prices was shuffled relative to

no sorting. The ranking correlated positively to the percentage of scrap consumed, for

each scrap type, by wrought products under sorting and no sorting. When scrap is used in

products with less alloying content (ie, wrought), the shadow price will be greater since

these products tend to use more primary material in their production when appropriate

scrap is not available. For the scrap types in Figure 6.5, however, Base Extrusions costs

more than Base Sheets which in turn costs more than Co-Mingled. Given that the scrap

supply shadow prices with sorting no longer follows this unit price trend, the implication

is that when sorting is available, a more expensive scrap is not necessarily less attractive

than a less expensive one. The technology enables scrap material to be used in a more

flexible manner across products. Therefore, even though prior discussions pitched the

value of sorting partly at the mercy of limitations in scrap supplies, sorting can also

remove a remelter's dependence on cheap scrap materials.
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Figure 6.5 Scrap supply shadow prices with and without sorting.

6. 7 Sensitivities of Sorting

In the following, sorting is assessed in the context of variations in sorting costs, recovery

rates, and raw material pricing. Both their impact on scrap consumption as well as

production costs will be studied. Besides employing sorting under rent-for-service and

bearing only variable sorting costs, it will also be studied as an investment.

6. 7.1 Sensitivity of Scrap Consumption on Recovery Rates

The effects of recovery rates on the percentage change in scrap consumption are shown

for the Base Case in Figure 6.6. In the following discussions, Bin 3 is treated as an

invariant such that it always collects 100% of the "other" fraction. The improvement in

scrap consumption with better recovery rates appeals to intuition - sorting overcomes

barriers for scrap consumption. If this figure is viewed as a contour map, the gradient

along the cast recovery rate axis is steeper than that along the wrought recovery rate axis.

For this Base Case, scrap consumption is more sensitive towards fluctuation in cast
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recovery rate than wrought recovery rate. The reason can be traced to the different

effects that the two recovery rates have on the amount and grade24 of the sorted materials.

A' - -A · 20%-24%
· 16%-20%

, · 12%-16%
8%-12%

0 * 4%-8%

. · 0%-4%

xso.
O e

50% 60% 70% 80% 90% B'

Wrought Recovery Rate

Figure 6.6 Percentage change in scrap consumption, sensitivity on recovery rates
(Base Case).

The cross sections AA' and BB' in Figure 6.6 refers to Figure 6.7 and Figure 6.8

respectively. In these figures the amount and grade of the sorted materials in the Base

Cast Bin 1 and 2 are shown. The widths of the bins are roughly to scale relative to each

other. Base Cast is chosen here for illustration, bearing in mind that Co-Mingled are also

sorted. Following the wrought recovery rate from A to A', it is noted that Bin 1 is

trending away from wrought grade as Bin 2 becomes less cast-like. However, neither the

material grade nor the amount in the individual bins is changing drastically. For Bin 2, as

the wrought recovery rate decreased, the material is still usable in cast production

provided that small amounts of alloying elements are added on average. The cost impact

of this requirement is not dramatic. The scrap consumption of this bin will therefore not

drop rapidly as long as there is a large enough pool of cast products to absorb this

material. As for Bin 1, when the wrought recovery dropped, the applicability of this

24 Grade is defined as the weight (concentration) of the desired product in the output stream.
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material stream in wrought production is definitely compromised. However, they can

still act as relatively cheap dilution agent as long as there are enough cast products to

make use of' it. This is another contributing factor to offset the decrease in scrap

consumption due to lower wrought recovery rate. Turning the attention now to Figure

6.8, the story is a bit different. Following the cast recovery rate from B to B', the amount

in these bins are changing very quickly. While the grade in Bin 2 remains decidedly cast-

like throughout this range of cast recovery rates, as this recovery rate deteriorated, a

significant amount of desirable material is removed for cast production. This is a strong

driving force for the drop in observed scrap consumption. At the same time, the Bin 1

material is rapidly becoming contaminated with cast fractions. Even before the extreme

of 50% wrought and cast recovery rate, the sorted stream adds no significant value to the

system relative to no sorting since the material grade is approaching that of unsorted Base

Cast material.. These factors taken together contribute to the relative sensitivity of scrap

consumption on cast recovery rates relative to wrought recovery rates for this cast

oriented Base Case production scenario.
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(Wrought Conc.)

\j°'o
BC Bin 2

(Cast Conc.)
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Figure 6.7. Recovery and grades
variation holding cast recovery at 95%.
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Figure 6.8. Recovery and grades variation
holding wrought recovery at 95%.
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The inference from the previous paragraph is that as the product mix shift away from cast

products to wrought products, the sensitivity of scrap consumption towards wrought

recovery rate will increase. This hypothesis is tested in Figure 6.9 in which a wrought-

heavy case was constructed in which the demands in the Base Case were altered from

70% cast/ 30% wrought to 70% wrought/ 30% cast (Wrought-Heavy Case). The relative

amounts demanded within cast products and within wrought products have been kept the

same. Once again the "others" components of the scraps were assumed to be 100%

segregated into Bin 3 and the sorting cost was maintained at $30/t.
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70% 3 · 0%-4%
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Figure 6.9 Percentage change in scrap consumption, sensitivity on recovery rate
(Wrought-heavy Case).

It is verified from the gradient in this figure that the sensitivity towards the two recovery

rates are now more even relative to the Base Case. This change in the gradient is a direct

result of the product mix shift. Obviously the amount and grade of the various bins

illustrated in Figure 6.7 and Figure 6.8 remain valid since they have nothing to do with

the actual product mix itself. However, their applicability towards the products is of

course critically dependent on this. Recall that in the prior paragraph, the moderate

sensitivity of scrap consumption on wrought recovery rate was contingent upon having a
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large amount of cast products to absorb the sorted scraps. In this wrought-heavy case,

this pool has shrunk and instead been replaced with less scrap tolerant wrought products.

As a result, scrap consumption is much more sensitive towards the wrought recovery rate.

For wrought-heavy production, the wrought recovery rate must be high such that there

are enough materials from Bin 1 for allocation towards wrought products. Secondly,

materials that are in Bin 1 must not be contaminated with cast fractions which will only

make it "dirtier". This is not a luxury that wrought products can tolerate.

One also observes that in this wrought-heavy production, the benefit on scrap

consumption from sorting is more significant (in terms of percentage) than for cast-heavy

production. This is intuitive from the understanding that wrought products have lower

tolerance for alloying content. For sorting technology research and aluminum

sustainability, the implications of the differential sensitivity towards the cast and wrought

recovery rate relative the product mix are the following. If the product mix is cast-heavy,

a 1% improve in cast recovery rate is more beneficial towards scrap consumption than an

equal amount in wrought recovery rate increase. Furthermore, its means that controlling

for volatility in cast recovery rate is more critical than for wrought recovery rate in cast-

heavy production.

In the above discussions, whether the product mix was cast- or wrought-oriented, the

results from Figure 6.6 and Figure 6.9 indicate that as the recovery rates improved, the

scrap consumption improved. A natural tendency would be to assume that with improved

recovery rates, the sorter can be used more intensely to generate more applicable sorted

material streams for consumption. However, this is not necessarily the case as shown in
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Figure 6.10. For a cast recovery rate of roughly 94%, as wrought recovery rate improved

from 90% to 100%, the amount of scrap sorted actually decreased.
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Figure 6.10. Percentage of mixed scrap sorted (Base Case).

In fact, the intensity of sorter application does not always have a direct correlation with

the recovery rates performance. Sorting is an enabling technology that allows the

material system greater flexibility in employing scraps, whether sorted or not. Whether

to sort more or less scrap ultimately depends on the tradeoff between several factors: (1)

Useful materials one can get via sorting and the associated cost benefit, (2) Cost of

bringing the composition of this material inline with production specification, (3) Salvage

value of excess materials, and (4) Cost of sorting. Given a certain product mix and scrap

supply mix, the recovery rates will impact the materials content of the sorted fractions

and dictate the usefulness of these processed materials. The cost of bringing these

materials inline compositionally with production specification also stems directly from

this. Ultimately, for sorting to be cost effective, the combined effects of (1) and (3) must

outweigh (2) and (4). Typically if sorted scraps are more economical than unsorted or

primary materials, the amount of materials sorted will be capped by one of the elements
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from the output stream reaching a maximum allowance in the production specification.

From this point, as the recovery rates deteriorate or improve, whether the fraction of

scrap sorted increase or decrease will depend on the relative grade between the sorted

scraps and the products for which they are intended. At the elemental level of detail, if

the recovery rate improvement results in a decrease in the percentage representation of a

critical element25 in the sorted output while increasing (but not exceeding the spec) it for

other elements, the amount of this scrap sorted will increase. More of this scrap now

needs to be sorted to get the same amount of this critical element in the output stream.

The converse of this argument is also true. If the recovery rate improvement results in an

increase in the percentage representation of a critical element in the sorted stream while

decreasing it for other elements, the amount of this scrap sorted will decrease. With a

high number of products and scrap types, multiple "peaks" in the Figure 6.10 contour can

be observed. However, the basic underlying mechanism for sorting or not is always

driven by these factors.

Of course, this discussion on the relationship between intensity of sorting to sorting

performance is purely academic if sorting is employed as a third-party service. In that

case, one would mostly be paying for what is used; cost is variable. However, remelters

can develop sorting internally or make a purchase of the necessary machinery and

software outright. Either case represents an investment. In those cases, associated fixed

costs will dominate sorting deployment. If the sorting intensity is expected to be low,

there is a clear danger of running up the unit cost of sorting. The following brief

exposition attempts to clarify the admittedly abstract discussion behind the drivers for the

25 Defined as an element whose percentage representation in a sorted scrap is at or above the maximum
allowed in a product specification.
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lack of correlation between sorting intensity and sorting performance. It is followed

naturally by a discussion on the impact of sorting costs on the applicability of sorting,

both from a rent-for-service and investment perspective. In doing so, the intensity of

sorting will be tied back into the decisions for investment in sorting technologies.

6. 7.2 Sorting Intensity and Performance

The fact that the utilization rate26 of the sorter does not necessarily increase with better

sorting performance is somewhat unexpected but real. A simple example can illustrate

the reasons for this manifestation. In the following, consider only two elemental

compositions, A and B. A single product of 100 units is being produced with x% A and

yO/o B. Available raw materials include unlimited pure forms of A and B ($2 per unit) as

well as a mixed scrap ($1 per unit) composed of 50% A and 50% B. The sorter separates

the mixed scrap into two streams, stream 1 collects most of the A material while stream 2

collects most of the B material. Sorting cost is $0.05 per unit sorted. In the following

studies, the recovery rates refer to the recovery of material A into streaml and material B

into stream 2. For instance, an 80% recovery rate means that 80% of material A from the

mixed scrap ends up in stream 1, while 80% of material B from mixed scrap ends up in

stream 2.

Figure 6.11 and Figure 6.12 presents the optimal amounts of mixed scrap to be sorted

under different sorter recovery rates. This can be interpreted as a sorter utilization rate.

The greater the amount of mixed scrap sorted, the higher the utilization rate. Following

the evolution of the grade of the sorted streams and relating them to the desired

composition of the product will help in understanding the relationship between utilization

rate and sorter performance. For scenario 1 (product: 70% A, 30% B), below the 70%

26 Defined as the percentage of available mixed scrap sorted.
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recovery rate, the grade of stream 1 (closer of the two to the desired product composition)

is too low on A and too high on B. Typically in such compositional violations, the

dominant effect in limiting the applicability of the sorter stream is the element that is too

high. The element that is too high in content incurs dilution costs, which due to the order

of magnitude, is much more significant than the additive costs required to correct for the

element that is too low. Therefore for recovery rates below 70% in scenario 1, the

violation on B is controlling the applicability of the sorted streams. As the recovery rate

improved from 50% to 70%, this violation is reduced leading to higher applicability of

the sorted material which in turn leads to greater amount of mixed scrap sorted. To be

even more explicit, as the recovery rate improved from 50% to 70%, lesser amount of B

is being recovered in stream 1, and therefore a greater amount of scrap must be sorted in

order to gather the amount of B required for production. At 70% recovery rate, the sorted

material from stream 1 has a perfect match in grade to that required by the product.

Beyond 70% recovery rate, violation on A becomes the dominant effect. In particular,

there is now too much A in stream 1 and too little B in stream 2. As the recovery rate

continued to improve above 70%, this violation is be exacerbated leading to lesser

amounts of mixed scrap sorted driven by lower applicability. Once again, to be more

explicit, as the recovery rates improved, greater amount of A is being recovered in stream

1, and therefore a lesser amount of scrap needs to be sorted to gather the amount of A

required for production. Notice that the peak utilization rate corresponds exact to the

grade of the desired product (70% A, 30% B). Similar observations and arguments can

be made for Figure 6.12 in the production scenario 2 (product: 90% A, 10% B). When

there are many more compositions, products and scraps, the interactions become more
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complex but the resulting relationship between utilization rate and recovery rates are just

combination and superposition of the basic ideas discussed above.

Scenario 1 (Product: 70% A, 30% B)
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Figure 6.12 Units of mixed scrap sorted under production scenario 2 (product
90%A, 10% B)

6. 7.3 Sensitivity of Scrap Consumption and Value on Sorting Costs

Whether sorting is employed as a rented service or as an investment, the cost of

deployment is undoubtedly a critical determining factor in its adoption. Figure 6.13

illustrates the percentage of scrap consumption increase when sorting is rented at various

sorting cost, holding recovery rates (wrought and cast) at 95%. From this figure it seems

that this sorting technology holds promise for improving scrap consumption even as far

out as $125/t. However, realistically industry would want a certain level of cost savings
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before considering its implementation. While the percentage cost savings from Figure

6.14 seems small, when the overall production cost is in the hundred of millions, a 1%

saving can translate into over a million dollars of savings. Therefore in order to be

employed, sorting technologies will have to be within the darkest region in Figure 6.14 in

terms of costs as well as performance. At a performance of 95% recovery rate, the

critical sorting cost per ton seems to be around $17-18/t. Since the absolute amount of

savings scale with the size of the production, a larger producer will naturally have an

easier time adopting sorting technologies.
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Figure 6.13. Percentage increase in scrap consumption with sorting at 95%
recovery rates under rent-for-service model.
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Figure 6.14. Percentage cost savings with respect to different recovery rates
(wrought and cast) and sorting costs (it) under rent-for-service model.
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When sorting is an investment, the utilization rate matters as discussed earlier. As an

investment, on top of variable costs a sorter carries with it an associated fixed cost.

However number of years over which this fixed cost is amortized, there will be a portion

of the total costs involved that does not vary with the level of utilization. This means that

if the utilization rate is low, the implied per ton cost of owning that sorter can skyrocket.

As such, one would expect a critical level of sorter utilization rate, below which

ownership or investment in the sorting technology will be uneconomical.
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Figure 6.15 Percentage mixed scrap sorted (sorter utilization rate) under Base
Case. White area indicates no sorting.

a0 *] 1.0%-1.5%
[] 0.5%-1.0%

CO x ": 0.0%-0.5%

eM

Annual Fixed Cost ($M)

Figure 6.16 Percentage cost savings with sorting available under Base Case.
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Figure 6.15 and Figure 6.16 illustrates the percentage of mixed scrap sorted (utilization

rate) and the percentage cost savings given a range of sorting performance and annual

fixed cost. A variable cost of $5/t has been levied to account for certain operating costs

such as administration. The annual fixed cost is interpreted as the portion of investment

in the sorting technology that is amortized over one year. The total investment is

roughly27 the annual fixed cost multiplied by the number of years of service of the

equipment. Of course, as the annual fixed cost goes up, the unit cost of sorting goes up.

However, it is important to realize as mentioned above that greater sorting performance

does not necessarily lead to greater utilization rate. Therefore the unit cost can also be on

the rise as sorting performance improves. As Figure 6.15 indicates, however, this effect

is insufficient to offset the cost benefits from sorting as sorting performance improved.

The critical rate for sorting intensity was observed at 48%, below which point there is a

sharp drop to 0% cost savings.

Once again, in order for sorting to provide a sufficient level of cost savings to be of

interest to industry, performance and costs will have to stay within the darkness region in

Figure 6.16. Accounting for the percentage of mixed scrap sorting in this region, at 95%

recovery rate the critical fixed cost plus variable cost translates into $17-18/t unit sorting

cost. This agrees with the critical sorting cost per ton observed in the renting model.

6. 7. 4 Sensitivity of Sorting Value on Raw Material Pricing

As with the hedging considerations of demand uncertainty, the value of sorting and

indeed its ability to improve scrap consumption are dependent upon the pricing condition

on primaries mand secondary materials. Scrap consumption will no longer improve with

27 In practice one should also account for the time value of money as well.
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sorting beyond a critical price differential. For practical purposes, that price differential

will be dictated by the cost savings potential from sorting.

-- 30$/T Sorting --- 20$/T Sorting

X LO/_

'd 2.0%
rn U

Was 1.0%r .
) 0.5%

vu 0.0%

63% 75% 87% 99%

Composite Scrap to Primaries Price Ratio

Figure 6.17 Percentage cost savings from sorting given price differential between
scraps and primaries.

Figure 6.17 indicates improvement in cost savings as the price differential widens while

holding recovery rates at 95%. Since there are four scraps of interest, a composite scrap

price weighted by supply was compared against the price of P1020 or P0508. As a point

of reference the Base Case was carried out at 79% price ratio at $30/t cost of sorting. The

$1M savings mark would suggest that scrap prices should stay below 75-80% of the price

of primary in order for sorting to be value-added to industry participants. However, since

this figure assumes scrap supplies to stay constant throughout, it is probably a

conservative estimate. For the supply of scrap to stay constant while there is a structural

drop in scrap prices, the demand curve should move to lower demand. But the drop in

scrap prices is more likely to prompt greater demand for scraps. Therefore with the drop

in scrap prices there should be an associated increase in equilibrium scrap supplies,

further increasing the cost savings from sorting. In any case, Figure 6.17 provides a
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rough estimate of the relationship between the cost savings potential from sorting and the

prevailing price differential between scraps and primary materials.

6.8 Summary on Optimization Study of Sorting Technology

This study of wrought versus cast sorting based on EU scraps and production demands

suggests that sorting technologies can be of value for a range of operating conditions.

The results are conservative in the sense that industry specifications for alloy chemical

content were used. In reality, remelters themselves are expected to have even more

stringent compositional requirements, which should translate into a greater need for

sorting. At 95% recovery rates, definite cost savings and scrap consumption

improvement were observed at a sorting cost of $30/t. However, it is more likely that this

cost will have to be lowered to the $20/t range in order to stimulate real interest among

industry participants. This is regardless of whether this technology is rented, purchased

outright or developed in-house.

Because sorting effectively alters the way scraps can be used in production environment,

it is a disruptive technology in the sense that it can alter the economics of scraps and

production. Sorting can change the relative marginal benefits of scraps and the relative

cost of production. While limitations in scrap supplies clearly reduce the potential

benefits of this technology, sorting can also break the dependence of remelters on cheap

scraps. With sorting, cheaper scraps no longer always have the higher marginal benefits.

On the other hand, schemes that attempt to increase scrap consumption and reduce costs

by substituting one alloy for another must be revisited when sorting is made available.

As the product mix lean towards cast products, the sensitivity of scrap consumption on

cast recovery rate relative to wrought recovery becomes more pronounced. The
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implication is that during operations or in research and development, it is more important

to control cast recovery variations as product mix becomes more cast-oriented. It was

revealed that sorting performance improvement does not necessarily lead to more

intensive usage of the technology. This is critical when sorting is an investment rather

than a third-party service. In that case, the utilization rate has to stay above 40% in order

for sorting to be employed.

With the decision tool presented in this chapter, remelters now have a systematic way of

assessing sorting as an investment or as a technology option. The decision algorithm can

be used with other types of sorting technologies as well. Furthermore, the methodology

can be applied not only towards aluminum, but also other kinds of light metals.
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Chapter 7: Making Use of Chemical Compositional
Variations in Batch Production

7.1 Principle of Raw Material Diversification

In the previous chapters, the emphasis has been on methodologies to enhance scrap usage

through upgrading scrap materials, and better scrap purchasing management. At the

operator level, where decisions have to be made regarding which raw materials to use for

a batch production, chemical compositional variation stands out as the major uncertainty

challenge. This is problematic because materials production often has strict

compositional specifications. From the perspective of operators, there is no uncertainty

in supply or demand because they knows exactly what needs to be made and what raw

materials are available for use. However, due to the inherently mixed and often poorly

defined content of secondary material streams, the chemical compositions of scrap

materials carry a certain degree of uncertainty. For instance, while two individual piles

of scrap materials might have very similar compositions on average, they can exhibit

entirely different and unrelated levels of variability. Under a deterministic optimization

framework for raw material choice and assuming that the pricing difference between

these piles are insignificant, the operator will be indifferent between using any one of

those piles. In other words, if 1 ton of such scrap material is needed, 1 ton will be taken

from one of those piles. However, this logic is flawed under a more robust decision

framework that accounts for compositional uncertainty. Under this new stochastic

optimization framework, 1/2 ton will be taken from each pile in order to reduce the

overall level of produced compositional uncertainty. This is the principle of raw material

diversification. It is not limited only to raw materials of similar average compositions

131



and will be applicable whenever scrap piles are not perfectly correlated in compositions.

This logic and its benefits will be explained below. In doing so, its relationship to the

chance constraint stochastic optimization technique will be demonstrated.

7.2 The Operator's Challenge

In day-to-day alloy production, the goal is often to find an optimal (ie, lowest cost) way

of mixing various, on-hand raw materials in the production such that the finished

products have the desired chemical characteristics. To realize this, modem cast house

operators make use of linear programming based batch mixed algorithms. One of the

challenges in these production decisions is to adequately account for and manage the

inherent chemical compositional uncertainties in each batch of raw material. Given that

dilution practices in real-time production can be time-consuming and costly, it is highly

desirable to be as accurate as possible in the first place about the chemical nature of the

melt. To accommodate this uncertainty, conventional cast house practice is to constrict

the alloy production specification to levels more narrow than the actual compositional

specifications. However, there are various issues with this practice. First of all how

much narrowing in the specification window is enough? What is the implied margin of

error given a certain window? Also, this kind of practice is static and can penalize the

system's ability to use scrap. A better practice would be to relate the margin of error to

the underlying uncertainty in chemical compositions of the raw materials that are actually

used.

Realistically, there is no absolute way to prevent any error. Even careful sampling

cannot determine the exact composition of every single batch. The statistical knowledge

derived from sampling can only provide statistical indicators of the chemical
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compositions. These provide the operator with a sense of the magnitude of uncertainty

involved but cannot provide a guarantee on the exact compositions. Nevertheless, these

are information that should be made used of. They can provide more robust and realistic

insights into the production environment and lead to more cost-effective raw material

allocation.

This chapter explores methods which allow remelters to introduce explicit treatment of

uncertainty into their decision making. A small example can illustrate the incentives for

doing so. There are two 10kt piles of scrap type A with the same average compositions.

For the time being assume for simplicity that the chemical composition of interest is

silicon at 5wt% (500t) on average. The degree of compositional uncertainty is si =

lwt% (100t) and is the same among the two piles of scraps and they are uncorrelated.

Suppose a batch production requires 4kt of scrap type A. In aggregate there are 20kt of

scrap type A to choose from. Ignoring the compositional uncertainty, the operator will be

faced with a seemingly degenerate set of solutions regarding which of the two piles to

use. This is because all four piles have the same average content of silicon. However, let

us consider both the mean and standard deviation of the resulting product of two different

decisions: (Case 1) xl=4kt from pile 1 versus (Case 2) xl=x2=2kt. For Case 1, the

average silicon content is Siave = x (5wt%) = (4kT)(5wt%) = 200t and the standard

deviation of the final product will be p = xl2 (lwt%)2 = 40t. For Case 2, the average

silicon content is exactly the same as Case 1. However, the standard deviation is

p = x 2 (lwt%) 2 + X 2 (lwt%) 2 = 28t. Of course, no one would want Case 1 given the

possibility of Case 2. A compliant average specification with lower degree of produced

uncertainty provides a greater comfort zone for error. This is not a statistical trickery, but
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rather a very logical result. Because the four piles of scrap type A have uncorrelated

fluctuations in compositions, an increase in one pile could have been offset by an

uncorrelated decrease in another. In the traditional deterministic framework, this

information is lost. In fact, in the traditional deterministic framework, depending on the

actual operational practice, the system might be over-penalized and under-utilizing

scraps.

The concepts just discussed are in fact reflected directly in the chance constraint

optimization framework. Furthermore, it is applicable whenever the compositions of the

various scrap materials are less than perfectly correlated. Recall from Eq 2.12 that

D* >2 ,u + X(a)cra is the deterministic equivalent of a chance compositional constraint.

This can be verbalized as "requirement > mean + deviation". The mean is given by:

and the deviation term is given by:

X(a)ora = X(a) X xxiii where 0= cr, i=j

In the discussions above, it was demonstrated that choices for xi can lead to the same

mean but dramatically different deviation term. Since the requirement D* is fixed, it is a

simple mental exercise to show that if simply by choice of xi that the deviation can be

lowered, then the mean term can be made greater while still satisfying Eq 2.12. The only

way the mean term can be made greater is to have greater xi. This means that the chance

constraint methodology has the potential to increase scrap usage compared to traditional

practices with excessive static buffer or the lack of raw materials diversification practice.

In any case, the chance constraint method eliminates a lot of the problems
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aforementioned that are associated with traditional static treatment of compositional

uncertainty. The following case study demonstrates these benefits.

7.3 An Application of Chance Constraints

The following production scenario is an adaptation of the case presented in Chapter 6.

All the case information, including scrap supply and pricing is the same except for the

following. First of all, scrap materials are now stochastic in compositions. The standard

deviation is 10% of the mean. For each scrap material there are now two compositionally

identical but uncorrelated piles (this was done to demonstrate raw materials

diversification benefits). The uncertainty surrounding scrap compositions leads to chance

constraints in the optimization formulation.

Minimize:

Eq 7.1 Cs D + CDpf
s ,f

This is the overall cost of batch production excluding reworking costs28 and subject to the

following constraints. The scrap usage must not exceed the amount available:

Eq 7.2 Ds < A s

Eq 7.3 Dsf < Ds
f

The amount of products produced must be equal to or more than what is required:

Eq7.4 Dsf + Dpf = Bf M
p

For each alloying element c, the composition of each alloy produced must meet

production specifications:

28 Future work should attempt to quantify the cost of rework.
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Eq 7.5 Pr Df Us + Dpf Uc < BfUfC } afc

? Dsf Usc + E DfUpc + X(afc)( pS C, C uDf D,, ) '2 < Bf UfC
S p s S'

Eq 7.6 Pr{ Dsf Lsc + Dpf LpC BfLfC}> fS

? X~l _,8f - )1/2 >ŽBfJLf? DsfLsc + D Lp X(l-pc)(Z ps sIcscsLcDsfDsf )1/2 BfLc
S p s SI

All variables are defined below:

Cs = unit cost ($/t) of scrap material s
Cp = unit cost of primary material p
Ds = amount (kt) of scrap material s used
Dpf = amount of primary material p to be used for the production of finished goodf
As = amount of scrap material s available for usage
Dsf = amount of scrap material s used in making finished goodf
Bf = amount of finished goodf produced
Mf = amount of finished goodf demanded
Usc = max. amount (wt. %) of element c in scrap material s

Usc = average max. amount (wt. %) of element c in scrap material s
= standard deviation of the max. amount (wt%) of element c in scrap material s

Lsc = min. amount of element c in scrap material s

L sc = average min. amount (wt. %) of element c in scrap material s
Ts L = standard deviation of the min. amount (wt%) of element c in scrap material s

afc = confidence level (%) for compositional constraint with respect to the maximum
amount of element c in productf
/Jfc = confidence level (%) for compositional constraint with respect to the minimum
amount of element c in productf
ps,¢ c = correlation coefficient between max. composition c of scrap materials s and s'
pLssc = correlation coefficient between min. composition c of scrap materials s and s'
Upc = max. amount of element c in primary material p
LpC = min. amount of element c in primary material p
Ufc = max. amount of element c in productf
Lfc = min. amount of element c in productf

The statements Pr{.} state that those constraints which were required to be strictly

satisfied under deterministic modeling are now only satisfied a and , percent of the time.

Thus a and ,8 are desired levels of confidence factors by which the operator can use to
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adjust his or her sense of importance for that particular elemental composition to be

within specs. The function X(.) is the inverse of a normalized cumulative Gaussian

distribution function which relates the underlying raw material composition standard

deviations to the desired level of confidence. The symbols Pss c represents the correlation

between the fluctuations in composition c of raw material s and s'. By definition Pss 'c = 1

when s = s'. In the special case when there are absolutely no correlation among raw

material compositions, only squared terms will remain in the standard deviation

calculations in Eq 7.5 and Eq 7.6. In most cases when considering compositional

uncertainties, the optimization framework will become nonlinear. Notice that only in two

special cases when Eq 7.5 and Eq 7.6 will revert back to linearity with average

compositions replacing actual compositions. The bases for these two cases, however, are

entirely different. The first case is if there are truly no statistical fluctuations in the raw

material compositions, ie, all ur= 0. In this case, average composition is just the same as

the actual composition. The second case is that in limit of a and ? 50% while the

compositions of raw materials are uncertain (ie, ? 0). This later case is when X(50%) =

0. In this second case, the operator has essentially chosen to flip a fair coin as to whether

the compositional constraint will be satisfied.

In the results presented below using chance constraint, 99% confidence level was chosen

for all compositions with 10% compositional standard deviation and zero compositional

correlation between non-similar scraps. The comparison in Figure 7.1 is between two

styles of managing scrap compositional uncertainty. The solid line represents the total

amount of scrap usage under the chance constraint method. The vertical bars indicate the

total amount of scrap used if the original compositional specification (max/min
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"window") would be reduced in percentage. For instance a 50% window for 9-11% Si

would mean 9.5%-10.5% Si.

_ Variable Window 99% Chance Constraint
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Figure 7.1 Comparison of total scrap usage between 99% confidence chance
constraint method versus varying compositional specification window

Depending on the actual practice, Figure 7.1 shows that it is possible to induce greater

overall scrap usage with the chance constraint method, even at 99% confidence level. It

should be noted that in this figure, and the other results presented in this chapter, the

compositions on the scrap materials have been averaged rather than taken as a range, as

such the scrap consumption and cost benefits of chance constraint over the "window"

narrowing method is conservative as presented here. Of course, with greater confidence

requirement and higher inherent scrap compositional uncertainty, the likelihood of the

chance constraint method inducing greater scrap consumption will be lessened.

Nevertheless, with the chance constraint method, there is a clear tolerance level for error

and the magnitude of the underlying compositional uncertainty is directly tied to the

decisions for amount of scrap use.
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If the actual usage of scrap materials is examined by pile (recall that there are 2 piles of

each of the 7 scrap types), a critical result that is missing in deterministic and linear

optimization tools is the importance of the principle of raw materials diversification.

Figure 7.2 shows the usage of scrap materials by pile. The "1" and "2" following the

scrap name refer to the duplicate piles. In reality, on the production floor there might be

many more than just two. However, the arguments to follow still hold. What this figure

shows is that for any given scrap type, the usage of scrap for duplicate piles are the same,

evenly split between them. In contrast, in a linear deterministic optimization framework,

there will be many degenerate solutions involving one pile or the other or some random

combination of the two. In other words, one possible flawed solution would involve

selecting all from Brake 1 or all from Brake 2. The reason this is flawed and that the

correct choice is to have split amounts from both piles is a key result of the principle of

raw material diversification.

.11
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2 6

01 5a
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/ / / /
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Scrap Piles

Figure 7.2 Under chance constraint method the amount of scrap usage by pile.
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The principle of raw material diversification states that by spreading scrap usage amongst

piles of scrap materials that are uncorrelated or weakly correlated, the overall

compositional uncertainty can be reduced. The reduction in compositional uncertainty is

important because as seen earlier, it leads directly to an increase in the system's ability to

use scrap, not to the mention the peace of mind for the operator! A simple derivation will

illustrate this important concept and why in this particular case the solution leads to even

amounts of scrap use from duplicate piles.

Suppose one has to choose an amount c from two piles of identical and compositionally

uncorrelated scrap material. This amount can be, for example, an optimal amount that

has been determined as the overall amount of usage for that particular scrap type in a

production scenario. Let the decision variables be xl and x2. Furthermore let the

compositional uncertainty be abstractly referred to as o1 and 2. Since the two piles are

compositionally identical but uncorrelated, p12=0, and 01 = 2 =. Then the choices of xl

and x2 that will yield the lowest overall compositional uncertainty and therefore the least

constrained system are calculated as follow.

Min: c0T = VX 1 2 + X202 + X1X2P1 2 = X 2 + X222

s.t.: xi + x 2 = c; non-negative xl and x 2

Therefore the overall compositional variation can be rewritten as:

CT X 22 + (C- X )2 2 = X2 2 + X 2 52 + C2'2 2cx 2

To find the xl and x2 that produces the lowest CRT, this expression is differentiated with

respect to 'rT and set to zero.
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T _ 1 4xl2 - 2ca 2
ax, 2 X2 2 + (C -x1 ) 2 a 2

-> x = x2 = c/2

Had the correlation between the two piles been non-zero, the solution would have been

different and not evenly half-half. However, as long as the correlation is not perfect,

there should be a split in usage between the two piles. This is not captured in linear

deterministic formulations.

Although materials diversification can lead to greater scrap usage while managing the

aggregate compositional uncertainty in production, it will not benefit all scrap types

consumption equally even though overall scrap usage increased from 43kt to 47kt.

Figure 7.3 compares scrap consumption with and without raw material diversification

practice among similar scrap piles. Not having this practice means forcing the operator

to use only one of the two piles of available scrap for each scrap type. Bear in mind that

even when forcing the operator to use just one of the two piles, the system is being

optimized (albeit with its hands tied behind its back!). This optimization naturally leads

some of the compositions to be maxed out in the production specification since scrap is

cheap. When the system attempts to allow for the flexibility of raw materials

diversification and re-optimize, some of the scrap usage that are already at the maximum

compositional allowances must decrease in order to allow other scrap usage to increase.

The increase (or decrease) in a certain scrap's usage will affect all compositional

requirements since all the elements in a scrap type are coupled.
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Figure 7.3 Scrap consumption under chance constraints with and without raw
materials diversification practice among similar scrap piles.

The principle of raw material diversification is also apparent from another perspective.

In Figure 7.4, a comparison is made between the amount of different types of scraps used

in the production under chance constraint method and compositional window shrinkage

method. The choice was made to compare the 70% window because this leads to the

total amount of scrap use closest to that for 99% confident chance constraints. While

Figure 7.1 indicates that at this window size (70%), the chance constraint method leads to

a slightly greater but similar amount of scrap use, the distribution of usage between the

various scrap types changed quite a bit. It is noticeable that the amount of scrap usage

among scraps tended to "even out" with the chance constraint method versus the linear

and deterministic window shrinkage method. It is apparent, for example, that the gap

between the maximum and minimum amount of scrap usage among the used scrap types

became smaller under the chance constraint method. Again, this is a direct result of the

principle of raw material diversification. There is a benefit to overall compositional

variation reduction to spread out the usage of scrap materials with associated economic

benefit, especially when the correlations among compositions are weak.
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Figure 7.4 Comparison in scrap type usage between chance constraint (99%)
method and compositional window (70%) method.

7.4 Summary on Compositional Variations in Batch Production

Compositional uncertainty with scrap materials is probably one of the biggest headaches

that the operator has to deal with. This chapter presented the chance constraint method as

a robust methodology that ties this uncertainty directly to an operational tolerance level

for compositional misspecification. In doing so, scrap usage can be tuned according to

the evolution of variations in scrap compositions and the operator will have a good sense

of the likelihood of the need for reworking. This technique also eliminates the dilemma

of which scrap piles to use when faced with compositionally similar but uncorrelated

scrap supplies. It also brought forth the concept of raw material diversification as a

natural way of controlling scrap compositional variations. Nevertheless, question

remains as to whether this technique can actually improve scrap consumption or produce

cost savings in practice. The answer depends on knowledge of actual industry practice,

frequency of reworking and the associated costs. It is clear, however, that with lower

tolerance for misspecification and higher scrap compositional uncertainties, the benefits

from this technique is reduced. In any case, the application of this technique towards
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production level compositional uncertainty is promising but still preliminary based on

current studies.
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Chapter 8: Modeling Multiple Sources of Uncertainties
and Scrap Management Inefficiencies

The previous chapters have presented detailed discussions of methods for dealing with

different sources of uncertainties in decision-making and provided detailed results

evaluating production strategies to address inefficiencies in scrap usage. In particular,

demand uncertainties, compositional uncertainties and the mixed nature of scrap

materials have been considered as causes of inefficient scrap usage. While some of these

sources of uncertainties affect a single level of operation within the aluminum production

chain, others confound decisions simultaneously throughout corporation. For instance, at

the plant operator level, there are no uncertainties regarding supply or demand, the only

source of uncertainty at the time of production is compositional uncertainty regarding the

scrap materials. However, while the plant bears the unavoidable responsibility to deal

with scrap compositional variations, should the purchasing department also consider

compositional uncertainties besides demand uncertainties, and how should this be

modeled? Furthermore, without a doubt, sorting is an operation that is plagued with

uncertainties. What are the sources of such uncertainties and how should one deal with

them? This chapter attempts to answer questions such as these. In doing so, basic

modeling framework will be presented and some of the data requirements as well as

obstacles to such efforts will be discussed.

8.1 Simultaneous Considerations for Demand & Compositional Uncertainties

The uncertainties surrounding demand and compositions are orthogonal to each other in

terms of real interactions as well as from a modeling perspective. As such it is rather

straight forward to incorporate the two into a unified model framework. In fact, referring
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back to Chapter 6, the mathematical formulation does not change for Eq 4.1 to Eq 4.5.

However, the compositional constraints will become stochastic and have to be

transformed into their deterministic equivalent. The transformation is realized through

none other than a chance constraints formulation. The result is a hybrid model with both

recourse and chance constraint elements. The transformations are presented below with

new terminologies explained at the end of this section.

With the simultaneous considerations for demand and compositional uncertainties,

hedging operations are more complex to monitor since there are now two sources of

variability. However, in return for slightly more complexity and computational

resources, this practice allows purchasing to differentiate scrap suppliers not only by

price, but also in their abilities to deliver consistent compositional specifications.

D Usfz CU s + DpfUp,, < BfzUf
s p

Eq 8.1 D Us, ,, + X(afC)(Z psou,,u DsfZDsfZ)l/2 < BfzUfc
S S S SI

EDf sc + EDpZLPC > BfzLfc
s p

Eq 8.sc D. Lpc X( - OC'Csc +Xc s c ssffz )2 -BfLfc
S S S S 

D0fz = amount of primary material p to be used for the production of finished good f
under scenario z
Dlsfz = amount of scrap material s used in making finished goodf under scenario z
Bfz = amount of finished goodfproduced under scenario z
Usc = max. amount (wt. %) of element c in scrap material s

UsC = average max. amount (wt. %) of element c in scrap material s

sUC = standard deviation of the max. amount (wt%) of element c in scrap material s
Lsc = min. amount of element c in scrap material s

Lsc = average min. amount (wt. %) of element c in scrap material s

aLs = standard deviation of the min. amount (wt%) of element c in scrap material s
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caf = confidence level (%) for compositional constraint with respect to the maximum
amount of element c in productf
flC = confidence level (%) for compositional constraint with respect to the minimum
amount of element c in productf
pussc = correlation coefficient between max. composition c of scrap materials s and s'
pss'c = correlation coefficient between min. composition c of scrap materials s and s'
Upc = max. amount of element c in primary material p
Lpc = min. amount of element c in primary material p
Ufc = max. amount of element c in productf
Lfc = min. amount of element c in productf

8.2 The Roots of Uncertainties in Sorting Operations

The modeling of uncertainties in sorting operations is more challenging both from a

mathematical formulation perspective as well as from an informational requirement

standpoint. First of all, what kinds of uncertainties are realistic in sorting? Baring

liberation issues2 9, interactions with industry experts30 reveal that there are primarily two

kinds of uncertainties. They are distinct and independent of each other. One such source

of uncertainty relates to the sorter itself. While on average a sorter might sort out R% of

cast fractions, there can be deviation from this performance during actual operations.

The second source of uncertainty comes from the scrap materials themselves. Anyone

who has ever handled scraps in a production environment knows that they are

compositionally uncertain. In order to account for such uncertainties in the modeling

framework, statistical information regarding these two sources of deviations are required.

In the case of the sorter, it is sufficient that the modeler has access to the expected

performance of the sorter as well as likely variations quantified as standard deviations or

variances. Therefore it is tempting to assume that simply knowing the mean and standard

deviation of the compositional content of input scrap streams is enough to account for

29 One liberation issue in aluminum recycling is the attachment of non-aluminum content to aluminum
scrap pieces. Liberation in general refers to the clean break of discrete components from others.
30 Industry experts involved in aluminum recycling studies and technology assessment.
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compositional uncertainties in a sorting model. However, this is not the case. In fact, it

is the characterization of the accuracy in determining what constitutes a piece of scrap

and the fluctuation in performance of the sorting recovery process that are the key

requirements.

As a counter-example, take a simple scrap stream with two independent components x

and y (eg, x is 6061 and y represents 380). And for the sake of simplicity suppose there is

only one element of interest. For the moment also assume that it is known for certain that

the scrap stream consists of exactly 40% x and 60% y. This scrap proceeds with a single

stage sort between components x and y with perfect sorting, as depicted in Figure 8.1.

x (xx, ax)

S ( s Sorter
(40%x, 60%y)

y (y, Cry)

Figure 8.1 A simple scrap stream with two distinct components under perfect
sorting

Consider now the case where the mean and standard deviation of this input scrap stream,

ie us, u, are known. Based on this information, is it possible to determine , x, y and

,y? These are absolutely necessary in order to fully characterize the statistical nature of

the sorted output scrap streams. They are also indispensable to formulate probabilistic

constraints on produced compositions. The following relationships exist between these

sorted and unsorted scrap streams:

2 2 2 2a, = (40%) 2 +(60%)2 2

Clearly with one equation and two unknown, it is impossible to uniquely determine the

variability of both scrap streams. In fact, it is even impossible to pinpoint the average
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compositions of the resulting scrap streams. However, this begs the question: are the

uncertainties surrounding compositions really associated with the composition of

individual components of the scrap streams? After all, suppose one can perfectly

characterize the individual components of the scrap streams as 40% 6061 and 60% 380,

are the compositional ranges not already deterministic? Certainly with products that have

come off the production lines of major aluminum manufacturers, those specifications will

by and large be strictly met. In that case, there are no uncertainties around the

compositional maximum and minimum values of the scrap components. If so, current

deterministic treatment of sorting can already handle the modeling requirements. But

anyone who deals with scraps will disagree on the basis that scrap streams do not have

absolute maximum and minimum range of compositions within which they will fall. So

what causes this jitter in scrap compositions? The answer lies exactly with the

characterization of scrap components makeup. In fact, materials processors do not know

exactly that a certain scrap stream is 40% 6061 and 60% 380. They might know on

average, but there are uncertainties surrounding this estimate.

Therefore in order to model sorting under uncertainties, material processors have to

perform statistical metrology on their sorting operations. In particular, the sorter needs to

be characterized and the people or machinery that performs the materials identification

process must also be characterized. These characterizations will then yield the expected

accuracy and standard deviations of such operations. The modeling efforts, among other

things, will then be a way to quantify the associated benefits associated with the

reduction of such variability.
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8.3 Modeling Uncertainties in Sorting Operations

At the moment, statistical metrology is certainly not readily available with all sorting

operations. However, assuming such information becomes available in the future, the

modeling of the uncertainties associated with the discussions in the previous section can

be carried out with chance constraint methods. The formulation is a bit complex but can

be reasoned through basic statistical arguments. As with other parts of this thesis, details

of the statistical concepts referenced in this section can be found in Appendix C. In the

following the ideas will be conveyed with a single scrap stream, a single product, and a

one-step sorter with two output streams. Primaries and additive elements are not

considered as they do not contribute to the sorting framework; including them here will

serve no purpose other than to mutter the conceptual clarity. Implicitly this means the

following simplified problem assumes the finished good can be made entirely from scrap.

The input scrap stream has two components 31, A and B, with uncertain percentage

representation. For the purpose of consistency, the variables and terminologies in this

section resemble those used in Chapter 4. The formulation will be discussed and

explanations for the variables are presented below.

Wil

Miil Sorter

M1

M12

Figure 8.2 A single scrap stream going through sorting with two sorted streams

31 A component can be an alloy like 6061
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Table 8-I Stochastic settings of sorting operations
A B

Scrap Component Representation (%) CIA CIB

Average scrap component representations lIA ,IB
Standard deviation of scrap components
representation 0 1A C1B

Recovery rate (%) of components in output
stream Wll RA RB

Average recovery rate (%) of components in
output stream W1 1 A / B

Standard deviation of recovery rates CA CB

The objective function is:

Min: Cl (M-1 + M12 ) + ZMl

Scrap availability is one constraint:

Mll +M 12 < Al

The recovery of individual components from the input scrap streams into the two output

streams are determined by the makeup of the input scraps as well as the recovery rate of

the sorter on the individual components:

E[MIICARA]= E[WIi E[M CIA(1 - RA)]= E[WA] E[M 2C, ] = E[M1 ]

E[M CIBRB] = E[I IB] E[M CB (1 - RB)] = E[Wi] E[MI2 CB] = E[M1 ]B

E[WA ]W + wW1] = E[W ]

Notice in the above the differentiation between E[.] terms and other variables such as M

and M 12. While they are all variables to be determined in the calculations, the differenc

is that the E[.] terms are stochastic variables (they have elements of uncertaintic

associated), while Mll and M12 are deterministic decision variables. For material

allocation:

Pr{PM 12M 12 + PwllW, + Pw1 2W12 Fl} ->2 ' 1

/1

ce

es

ls
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Similarly for the compositional constraint:

Pr{PMl2 (Ml2AX + M2BX ) +Pwl (W Amax + I Bma ) +

PW2 (W A=M X + i 2Bma) < IFl} >a iPW12 1A I, + W,~ B~ ) m ~ + M~ B=~) +
Pr{PM1 2 (M12Ain + M2Bn ) + P 11 (Wl A e WIB )pr{PM12~· 12. min 2i min Infin

A e B e ' e
P 1 (2Wmin 12 ) F } 2 /e

All variables are non-negative and 1 >DM12 P2,I Pwl2 > 0.

Once again in order to work with these stochastic constraints, one must differentiate

between which terms are the real stochastic elements. The component compositions are

deterministic, at least their range is known, therefore terms like A , B are constants.

The terms like PW11, PM12 are variables, but they are decision variables that are chosen as

part of the optimization. The only stochastic variables are the following:

In order to transform the formulae above into their deterministic equivalents, the

expected value, variances and covariance of these terms are required. Therefore before

proceeding with the deterministic equivalent transformation one must calculate these

terms. The basis for the details of the following expressions can be found in Appendix C.

E[W,] = M,,Iu,,uA E[W ] = M,,u,,BuB

E[W12 ] = M, 1 (l1A - 1,AJ/A) E[W2 ]= M11(1B 1- BB)

[M ] = 12 E[M = M 12 ,1B

Var[WA] = M 2
1 (2 2 2A2 2 2 +

Var[W,~]= II 11 A + r/A + %)

[JW ] = M 1 1 (2 2 2 R2 2 2 2)

Var[W ] = M 1
2[C1A + (A A +U1A 1A 2A + ) 1A + 1)A +]
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Var[W2] = M2 [ 1 B -Bu B B)B )-B ) 21B BB ]

Var[M ] = M 12a A12 12 IA

Var[M 2 ] = M 2
1B

In considering the covariance, without considering the actual correlation between the six

6\ 6!
stochastic variables, there can be =- = 15 such covariance terms. However,

2) (6-2)!2!

if one examines the actual formulae for the six stochastic variables, only those variables

with common terms in the formulae will be correlated. This puts a bound on the number

of covariance to be determined at just six.

COV[W14 , W2A] = M1E[(CARA - uIAUlA )(C1A - CLARA - JUIA + PUAPIA)]

= M11 (E[CIA ]mU -E[CAR]A ]-UIAUA + J/IAUA /)

=21P2 A 2 2 2 2 2 2 2 2 2 2
21 IA ) - (UIAU + 01APrUA + TAPIA + 1A 0A ) - PIA + UIAJUA 

mM2 (072 072 2 2 2 2 22
=M IM(rA A - A c]A/ A cA A 1A A

CoV[W, W] = M1 E[(ClBRB - lBllB)(ClB - ClBRB - 1iB + IBA1B)]

COV[W ,M ] = MIMI 2 E[(C1ARA - UAPUA )(C1A - 1A )
-,22 2 

= MllM1 2E[C 1AUA -lA C1ARA -/AilAC1A +UAUlA)

= M M2 ((UA + A )UA -IARA UIAUA + U AA A)

=M1M1 2 2 2PA=M1M12(CIAA - - UIAPUA + APIU1A)

Cov[W,1 ,M1 ] = M11M12 (CO1B - 1BB + PBI1B)

CoV[W1 ,M12] = MM12E[(C1ARA - UAIuA )(C1A -JI )]
M EC'2 2=M11M12E[CAIAA -IACIARA -UAtlIACIA + AIA)

M]M12((UI A + IA)IUA J IAPUA IAPUA + UA/UIA)
M M 072 - 2 +

= MM(1( 2 1 A U)A --UA + UAIUIA

COV[WB, = MM 22 +21B)
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Cov[2 ,M 12 = M 11M 12 E[(ClA - CARA - A + A/lA)(ClA /'1A)]

= MllM12 (IA A- AA)

Cov[W ,M1 ] = M,,M(5- C1B IB)

With these expected values, variances and covariance established, the deterministic

equivalent problem formulation can be stated. In particular note that the only information

needed regarding the stochastic elements is their individual expected value and variance

(or standard deviation). The objective function does not change since there is no explicit

dependence on any stochastic term.

Min: C1(Mll + M12) + ZMll

The scrap supply constraint also does not change.

Mll +M 12 < A1

The scrap streams recovery is restated as:

E[ll] = Ml8lA]E[W[WB ] = MliB/LB

E[W12] = Mll(UIA - iIAPA) E[W2 ] = M,(,IB - PIB8B)

E[12 M] = M121A] =

E[Wl = M (AP + lBB ) E[W12 = M,1,(SlA + ,B - A lA -aB1B )

The materials allocation toward finished product will then make use of these terms

according to the chance constraint method:

PM12 (E[M1 ] + E[M1 2]) + P,11 (E[Wl A ] E[W ]) + PW12 (E[2 +E[ ] 12])

+ X(1 - )(PM1 2(Var[M1 2 ] + Var[M2 ]) + PW11(Var[WA ] + Var[W11])

+ P 12 (Var[Wr ] + Var[12 ]) + 2Pw11 P 12 (Cov[ , W ] + Cov[, W1 ])

+ 2rPW1rl (CoV[W ,M, ] + CV[W7 ,M~ ])

+ 2PW12PM12 (Cov[W2 ,MA2 ] + Cov[W2 ,M 1B ]))1/2 >F1

Similarly the compositional constraints will also appeal to the chance constraint method:
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MB +( e Be WB A] WAI2(AnnE[M + BA[ME[ + E[])+ P ])PM12 ri-fin 12 rnin 12 mine I mn e 2 in e

+ X(1- ,S )[P12 ((A )2 Var[M1 ] + (B )2 Var[M1 ])

+ PW11((Amn )2 Par[Wll ] (BA ) Var[Wl]) + P1 2 ((A )2 Var[W ] + (Bn )2 Var[WB ])

+ 2Pw wl2 ((Ai n )2 Cov[W , W12 ] + (B )2 Cov[W l, W 1B ])

+ 2Pw1 PV2 ((Amin v[ 12 + (B min COv[ll 12 ])

+ 2PW12PM2((Ain ) 2 Cov[W2A ,M 1 ] + (Bm )2 Cov[W2B,M1 B ])]1/2 F1 F'

PMl2 (Ae E[M1 '4] + BE[M12 ]) + PW11 (AmaE[W1 ] BmE[W ])
Ae e, A e WB

+ PW12 (ArxEa[x 2 ] + BmaxE[1 ])

+ p 11((A )2 Va[Wj] e )2 e ar[WB])

+ XP2 ((Aax 2 Var[W1] + (Bx )2 Var[W1])/W1e ma · 1 n 2A+' (A)a[](x )2tCa e )2COV[])
+ 2PW1PW12 ((mAne ) 1 1v2 ] + (B ) COV[, ])

2Pw1 PM1 2 ((A,x )2 Cov[ 1 ] (BmRax ) Cov[W1 I MB ])

+ 2Pw1 2 PM12 ((A'X )2 Cov[W 1A ,ml A] ± (Bx )2 COV[WB MB ])]1/2 < F e, max

After substituting for the E[.], Var[.] and Cov[.] terms, the problem statement will be

stated entirely in terms of deterministic decision variables, constants, mean values of

stochastic elements and variances of stochastic elements. The stochastic optimization has

thus been transformed into a deterministic set of equations and constraints. The

following legend explains the various terms, most of which should be familiar from

Chapter 4 and Chapter 7. All variables are non-negative.

i = Input scrap material index
n = Finished alloy index
m = Material (makeup) component index
q = Sort stage index
j = Output stream index
k = Stage two sort output stream index
Ci = Cost (per unit wt.) of scrap material i
Zq = Cost of sorting (per unit wt.) for sort stage q
Mi = Quantity of input scrap material i
Mi = Quantity of input scrap material i that went through sorting
Mi2 = Quantity of input scrap material i that did not go through sorting
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Mmi2 = Quantity of component m in Mi2
mmax = Maximum wt. % content of element e in component m

e
mmin = Minimum wt. % content of element e in component m
Ai = Quantity of availability scrap material i
Wij = Quantity of output into streamj from stage one sorting with input Mi
R-m ij = Quantity of component m in Wij
Cim = Wt. % representation of material component m in raw material i
Rm = Recovery rate (%) of material component m in output stream index 1
Fne'max = Maximum wt. % content of element e allowed in product Fn
Fne 'min = Minimum wt. % content of element e allowed in product Fn
Px, = % of material stream xxx allocated towards finished good
oen = Confidence level for meeting batch amount in finished good n
dxen = Confidence level for max. content of element e in finished good n
'fien = Confidence level for min. content of element e in finished good n
Rm = Recovery rate of component m in output stream index 1

lm = Expected recovery rate of component m in output stream index 1
Cam = Std. dev. of recovery rate of component m in output stream index 1
Cim = % representation of component m in input scrap stream i

aim = Expected % representation of component m in input scrap stream i

aim = Std. dev. of % representation of component m in input scrap stream i

8.4 Summary on Modeling Multiple Uncertainties

Simultaneous considerations of multiple sources of uncertainties might be important for

certain stages of aluminum recycling operations. This chapter considered two candidates

- demand and compositional uncertainties in scrap purchasing, and scrap content and

recovery performance uncertainties during sorting. As demonstrated, stochastic

optimization techniques such as recourse modeling and chance constraints can be applied

for these studies. Beyond the mathematical framework, equally important are the

collection of statistical information that are required as input for such studies. By

accounting for both demand and compositional uncertainty, material purchasers can rank

scrap suppliers not only in terms of price, but compositional diligence as well. All else

being equal, scraps exhibiting poor compositional control will likely constitute less of

any hedge basket. Another potentially interesting question is what level of compositional

uncertainty will alter the relative marginal benefits of various scrap supplies. The
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modeling of multiple sources of uncertainties in sorting operations can provide guidance

on the economic and scrap usage impact of reduction in such inaccuracy pitfalls. For

instance, if the effects of the accuracy in characterizing scrap content are relatively

insignificant compared to sorter performance then more energy can be spent on

improving and controlling the recovery rates.
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Chapter 9: Conclusions

Key ideas that were explored in this thesis include hedging operations in scrap

purchasing, sorting technologies and raw materials diversification. The common thread

that ties them together is the emphasis on unlocking traditionally hidden value in scrap

materials. The goal is to promote greater scrap consumption. While there is a common

theme, each idea and strategy tackles a different kind of inefficiency in the current state

of scrap usage.

9.1 Recourse-based Scrap Purchasing Strategies

The hedge amount, and the associated economic and scrap consumption impact,
increases with demand uncertainties and price differential advantage of
secondary over primary materials, and decreases with the carry cost of the
hedging operations.

Hedging in the context of this thesis is the action of buying a A basket of scrap materials

on top of a set implied by expected production requirements. This action is the result of

recourse-based modeling that brings out the option values of scraps and intimately ties

them to the underlying demand uncertainty, salvage value and price differential between

primary and secondary materials. Under favorable conditions of high demand

uncertainty, high salvage value and large price differential between primary and

secondary materials, the intensity of hedging increases as do the option values (Figure 9.1

and Figure 9.2). Hedging operations capitalizes on this hidden value and provides cost

savings as well as scrap consumption benefits. When the option value is positive, it pays

to purchase extra scrap beyond what is typically implied by deterministic analyses,

thereby also directly leading to greater scrap consumption. The driving forces for

deriving this option value led to explanations for the sensitivity of this value on salvage
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value and price differentials, as well as guidance on the frequency of and need for hedge

rebalancing.
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Figure 9.1. Effects of scrap salvage value on scrap pre-purchase hedging strategy.
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Figure 9.2. Effects of scrap-to-primaries price ratio on scrap pre-purchase hedging

9.2 Light Metals Sorting Strategies

The relative importance of wrought versus cast recovery rates depends
significantly on the product mix. For a proven performance of 95% recovery,
scrap consumption benefits can be economically justified for an implementation
cost below $20/t in the case of a large cast-oriented remelter.

The concept of salvage value was carried over to the study of sorting technologies, in

which the question is not whether sorting can promote greater scrap consumption, but

under what circumstances. The answer lies within the control of the recovery
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performance, associated costs, scrap types and products being made. For instance, a cast-

oriented operation will be more sensitive towards fluctuations in cast recovery rates

(Figure 9.3). The EU case study showed at 95% recovery rates for cast and wrought

fractions, sorting cost should stay below $20/t in order to be economical (figure

reference). This finding did not change regardless of whether sorting is developed in-

house, purchased or rented from a third-party service provider. When sorting technology

is conceived as an investment, the utilization rate cannot fall below roughly 40%, at

which point it will become too costly. Of course, actual deployment of sorting

technologies is still at the mercy of scrap availability. However, it is also recognized that

sorting technologies are disruptive in the sense that they have the potential to alter the

economics of scrap usage. In particular, with sorting capabilities, it was shown that

cheaper scraps no longer always lead to higher marginal benefits. Furthermore, attempts

for increasing scrap consumption by alloy substitutions should be reexamined under

sorting.

95% · 20/-24%

88 % n * 16%/20%
O * 12%o-16%

80% 8O/o12%

73% e * 4/o-8%

0/o4%
65% Z

58%

50%
50% 60% 70% 80% 90%

Wrought Recovery Rate

Figure 9.3 Percentage change in scrap consumption, sensitivity on recovery rates
(Cast-Oriented Case).
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Figure 9.4. Percentage cost savings with respect to different recovery rates
(wrought and cast) and sorting costs ($/t) under rent-for-service model.

9.3 Raw Materials Diversification Strategies in Materials Production

Tying tolerance for chemical mis-specifications to the statistical nature of scraps
content promotes compositional diligence amongst scrap suppliers and raw
materials diversification practice in remelting operations. Potential exists for
economic and scrap usage benefits.

Finally the idea of raw material diversification as a way to control the compositional

uncertainty of scrap materials was born out of chance constraint arguments. Although

information such as the likelihood of reworking and the associated costs have not been

factored into the analysis, and should be in future work, this technique is arguably

relevant towards promoting scrap consumption even without such considerations.

Traditionally industry attempts to control products compositional variances by narrowing

the chemical specifications. For a similar level of scrap consumption, chance constraints

will even out the distribution of scrap usage (Figure 9.6), directly leading to a reduction

in the overall produced compositional variance versus traditional practice. This has

direct implications for promoting scrap consumption as well as the potential for cost

savings (Figure 9.5). At the very least, chance constraint provides remelters a rigorous

handle on tolerance for compositional variability. It also clearly provides incentives for
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scrap suppliers to do a better job with tracking, classifying and perhaps standardizing the

compositions of their materials. Depending on actual practice by industry, chance

constraint methods might improve scrap consumption.

i Variable Window - 99% Chance Constraint
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Comparison of total scrap usage between 99% confidence chance
method versus varying compositional specification window
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Figure 9.6 Comparison in scrap type usage between
method and compositional window (70%) method.
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9.4 Comparative Summary of Light Metals Recycling Strategies

In order to place hedging, sorting and raw materials diversification on equal footing for

comparison of their relative impact on scrap consumption and costs, these techniques are

individually applied on the 100kt EU production case presented for the sorting case study

in Chapter 6. Among the various factors that affect the results, only the sorting recovery

rate is held constant at 95% (DeGaspari 1999). All other factors including demand

uncertainty, primary vs. secondary price gap, salvage value, cost of sorting, and

compositional uncertainty are examined for a range of values. These ranges are justified

based on historical market and industry observations as well as best educated guess when

factual observations are not available. Actual sources for ranges are clearly stated

subsequently.

Scrap composition uncertainty ranges from 5% to 90% based on data from industry scrap

suppliers. Historically over the last 10 years or so3 2, the price ratio between primaries

and average scraps has been bounded by 55% to 85% (Plunkert 2003). Furthermore, for

the same period, the domestic apparent consumption of aluminum carried a demand

uncertainty of up to 20% annually (Plunkert 2003). The average annual scrap price

volatility, which can be used as a gauge of the direction for salvage value, assuming the

scrap is held in inventory, is up to 40% (Kelly 2005, Plunkert 2003). For sorting cost,

experts opined that it is currently at $30/t. A lower bound has been estimated at $10/t,

leading to an average of $20/t which is roughly how much it takes to sort steel and iron

today.

32 The period is from 1992 to 2003 post dissolution of the Soviet Union when the country flooded the
market with aluminum partly in exchange for hard currency. This is arguably the last single extraordinary
world event that affected aluminum pricing.
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Based on these observations and estimations, Table 9-I summarizes the operational

parameters that bound the high and low impact on scrap consumption and costs. The

scrap consumption and cost impact given these operational parameters, and with respect

to status quo, are given in Figure 9.7 and Figure 9.8 for the various strategies discussed in

this thesis. For recourse-based hedging, the status quo is to treat demand as a point-

forecast without regard for the implications of potential deviations. For wrought/cast

sorting, the status quo is the lack of sorting capabilities. For the raw materials

diversification practice via chance constraint, the reference state is to ignore the benefits

of weak compositional correlation amongst scrap piles. Another possible comparison for

the chance constraint method is relative to the practice of shrinking the compositional

"window". However, without actual knowledge of industry practice, reworking rate and

associated costs, a fair comparison cannot be made and will at best be a wild guess.
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Table 9-I Most optimistic and pessimistic operating parameters for aluminum
recycling strategies comparison.

Raw Materials
Recourse-Hedging Wrought/Cast Sorting Diversification

(99% Confidence)
Optimistic Pessimistic Optimistic Pessimistic Optimistic Pessimistic

Demand 20% 5% n/a n/a n/a n/a
uncertainty 3 3

Scrap n/a n/a n/a n/a 90% 5%
composition
uncertainty 34

Salvage 95% 55% 95% 55% n/a n/a
ratio 3 5

Secondary/ 55% 85% 55% 85% 55% 85%
primary price
gap 3 6

Sorting Cost n/a n/a $10.0 $30.0 n/a n/a
($/t)

3.5% -

3.0% -

2.5% -
a0

-0
cA

rba0

To

2.0% -

1.5% -

1.0% -

0.5%

ft no/
U.V /0

Optimistic

Pessimisti

Recourse-Hedging Wrought/Cast Sorting Raw Materials
Diversification

Figure 9.7 Estimated percentage cost savings from worst to best operating
environment for various secondary aluminum consumption strategies

33 This is measured by the coefficient of variation in demand defined as the standard deviation divided by
the mean demand.
34 This is measured by the coefficient of variation in composition defined as the standard deviation divided
by the mean composition.
35 It is defined as the salvage value of unused scrap, sorted or unsorted, divided by the original cost of
acquiring that scrap material. A 5% discount has been added as an estimate for storage cost.
36 Scrap price is a composite price weighted by the availability of scrap
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Figure 9.8 Change in scrap consumption as a percentage of scrap availability under
worst to best operating environments

Noticeably, the three strategies are not significantly differentiated on average with respect

to cost savings potential under historically observed and estimated operating

environment. Of course, as evident by the range of potential cost savings, unique

operating variables such as the sorting cost can alter their actual relative economic

impact. The lack of differentiation on cost impact, however, is not translated into the

ranges on change in scrap consumption. Sorting stands out to carry the highest potential

for scrap consumption improvement with the least variability as operating environment

varies. This is perhaps, once again attributed to the disruptive nature of this technique.

In fact, among all the concepts discussed throughout this thesis, sorting is the only one

that requires technological change. This small range impact specific to sorting is due

specifically to the assumption of a fixed 95% recovery rate, a factor on which scrap

consumption via sorting is highly sensitive towards. While the sorting cost was varying

between $10/t to $30/t, this range is smaller than the average price differential between
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scrap and primaries observed historically, leading to lessened sensitivity towards this

parameter. Under most operating conditions, scrap consumption is improved with these

strategies. The discussions previously on hedging made clear that whether the hedge is to

be positive or negative depends on the option value of scrap. As the salvage value

worsens and the price differential between scraps and primaries deteriorates, the option

value can be negative. Nevertheless, this practice will lead to cost reduction on average

for the remelter.

Overall this thesis presented a number of suggestions for deriving greater value from

scrap consumption, while mindful of the restrictions on such methodologies due to real

operating conditions. Each of them, not only enables scraps to be consumed in manners

otherwise unavailable or unaware of, but also opens doors for continuing research in

aluminum recycling strategies. With the exception of sorting strategies, the other

strategies can be readily implemented with no additional capital investments. Over a

broad range of historically justifiable operating conditions, sorting investments can be

economically viable.
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Chapter 10: Future Work

This thesis has taken a progression from the point of scrap purchases to their usage in

final production. Along the way a number of sources of inefficiencies were examined

and proposed tactics and methodologies were introduced to address these issues.

However, this thesis is by no means exhaustive in ways to promote scrap consumption,

nor the methodologies restricted in application to those discussed above. For instance,

the recourse model framework can be adopted to study scrap supplies and pricing

volatility. Through an extension of that model, such supply-side uncertainties can be

studied along side demand uncertainty.

As noted in Chapter 3, there is a multitude of sorting technologies being developed

besides wrought/cast sorting. Each will have its merits and associated costs of

implementation. For these technologies, the sorting and mixing model can be leveraged

as a tool to answer many of the same questions that were posed in Chapter 6. All these

sorting technologies have to be cost-effective. They have to demonstrate a certain level

of recovery performance and utilization rate in order to be practical. Undoubtedly not all

of these technologies will survive the market. The tools developed in this thesis can be

used to gauge their relative competitiveness and to guide their development efforts. The

sorting and mixing model itself will surely continue to evolve as well. Correlating the

size of the scrap pieces to the ability of the sorter to differentiate and recover the alloys

might be one refinement. In the case study that was carried out, the set of alloys

produced and the scrap types available were varied but still not comprehensive. An
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extension of the case study that encompass a larger grouping of alloys, perhaps by

composition or by application, can be useful as well.

Another possible enhancement to the sorting and mixing model, as well as the recourse

model, is considerations for scrap composition uncertainties. The nonlinear formulations

introduced as compositional chance constraints in Chapter 7 can be implemented as a

standalone improvement on current practice at the production level. However, as partly

demonstrated in Chapter 8, theoretically they can also be incorporated into the study of

other sources of uncertainties in scrap management. The challenges for this

implementation lie in scalability of the mathematical formulation, computational

efficiencies and statistical data requirement. Despite these challenges, the questions

surrounding how the various strategies discussed will interact are certainly interesting.

For instance, will recourse-based hedging complement sorting technologies in promoting

greater scrap consumption, or will they work against each other?

While the bulk of this thesis has been about the aluminum market, much of the work

presented can also be directed towards the study of other light metal systems. While

much smaller in market size than aluminum, magnesium is another rapidly growing light

metal application in cars due to strict government requirements on fuel economy. As this

market grows and matures, it will be interesting to track whether similar concerns

regarding secondary consumption surface. As the types of alloys employed become more

diverse in compositional specifications, a greater need for sophistication in the recycling

efforts is likely.
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Appendix A: Aluminum Sorting Technologies

Hand sorting of aluminum is time-consuming and inefficient. While low wages in

developing countries can afford to hand-sort nonferrous scrap materials for $10 to $15

per ton (Spencer 2005), such a process is inaccurate and imprecise. As such, various

parties have been developing automated techniques for sorting secondary aluminum. In

the late 1990's, with the goal of retaining value in aluminum scrap, a number of

aluminum producers, together with automotive manufacturers and the Department of

Energy began a project to develop techniques to separate recycled wrought aluminum

from cast and then into its alloy families. The idea is that the scrap will first be sorted

into piles of wrought and cast products. The wrought products can conceivably be then

separated into its alloy families or individual alloys for reprocessing into higher-value

automotive wrought applications, such as hoods, door panels, and some chassis parts.

Although no automated sorting technologies have been widely adopted in commercial

settings, the Auto Aluminum Alliance, which aims to boost automotive manufacturers'

use of aluminum, is hoping to see a commercial sorting center able to filter 100 million

pounds of aluminum per year (Aluminum Association Press 2004, Gesing 2002, Gesing

2001, Buchholz 2001). The initial capabilities will include wrought-to-cast sorting, but

techniques are being tested that hold promise of separation of wrought scraps into

compatible alloy families or maybe even individual wrought alloy in the future

(Aluminum Association Press 1999, Vigeland 2001). The following sections give very

brief introductions to various sorting techniques.
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A.1 Thermo-Mechanical Sorting

This technique, also known as the "hot crush" was developed in the mid-1980's by the

U.S. Bureau of Mines. It is 96% effective in segregating cast from wrought. As the

name implies, it involves a series of heating, crushing and screening steps. Because the

melting point of cast alloys are lower than that of the wrought alloys, during the heating

step the wrought alloys stay solid while the cast alloys are weakened along their grain

boundaries. Such weakened grain boundaries become the points of fracture during

subsequent mechanical grinding. Finally a screening station segregates the larger

wrought pieces from the smaller fractured cast items. An added bonus of this technique

is that during the heating stage, the scraps are effectively decoated because the paints,

lacquer, etc. will melt. This eliminates the need for an extra decoating step in the

material recovery process (DeGaspari 1999).

A.2 Laser-Induced Aluminum Sorting

Huron Valley Steel Corp has been developing this technique since 1993 (Gesing 2002,

DOE 2001). In their recent industrial prototype demonstration, successful segregation of

61 11 from 5182 alloys was achieved. The major advantage of this technique is that it has

the potential to identify specific alloys and not just group alloys by families. The

technique is an effectively non-contact, non-destructive analytical method that performs

sorting by explicitly checking the composition of each piece of scrap. As the pieces of

scrap move through a conveyor belt, the first step is abrasion by laser to reveal the

material beneath the surface. A subsequent pulse of the laser at the same spot vaporizes a

small amount of the material and produces a plasma plume. This plume is then analyzed
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by Laser Induced Breakdown Spectroscopy (LIBS) for the material composition for

individual alloy identification.

Another technique that relies on similar light emission plasma for sorting aluminum is

called optical emission spectrograph (OES). Unlike LIBS, however, OES requires

contact with the samples and at this time are only available as hand-held devices (Spencer

2005).

A.3 Color Identification Following Chemical Etch

Alcoa and Pacific Northwest National Laboratory have been developing this technique

since the late 1990's (DeGaspari 1999). The material is first chemically etched to reveal a

material-dependent color. This patented etching process involves a degreasing wash, hot

water rinse, hot caustic-solution etch and a second water rinse followed by hot air drying.

As the pieces of scrap move along the conveyor belt, their colors are then examined

through video cameras used to identify and separate the different material streams. The

colors are then mapped to the individual alloy families known to the system. This

technique has potential for use to group wrought alloys into families: 2000 series (copper

based), 3000 series (manganese based), 5000 series (manganese based), 6000 series

(magnesium and silicone based) and 7000 series (zinc based). Recent demonstrations

have shown recovery rates ranging from 70-100% depending on the particular alloy

family (Gesing 2002).

A.4 Other Less Known Automated Sorting Techniques

Other lesser known sorting technologies beyond those just mentioned are also being

studied. X-ray analysis is claimed as another technology under testing. However, it is

unclear how it works. X-ray fluorescence (XRF) emissions from aluminum tend to be
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weak and quickly absorbed by ambient air, leading to difficulty in detection. A vacuum

environment might be needed. Finally, wTe Corporation and National Recycling

Technologies have teamed up to develop a Spectramet technology capable of high-speed

sorting based on optoelectronics sensors and methods. Its exact details of operations

have not been disclosed due to patent disclosure restrictions (Spencer 2005).

A.5 Summary on Sorting Technologies

It is likely that further research and development in sorting technologies beyond those

mentioned above will continue. Their acceptance and competitiveness will depend on

their ability to add value to the materials production, after accounting for the cost of

implementation. These effects are captured in a mathematical programming framework

described in detail in Chapter 5.
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Appendix B: European Union Sorting Case Study Data

Average Compositions (wt%) of Scraps
Scrap Si Fe Cu Mn Mg Cr

Base Cast 6.75 0.80 2.95 0.16 0.62 0.00
Base Extrusion 0.44 0.22 0.02 0.04 0.33 0.00
Base Sheet 0.73 0.39 0.16 0.29 0.50 0.00
CoMingled 4.27 0.41 1.34 0.34 0.10 0.02

Scrap Zn Ti Ni Pb
Base Cast 0.03 0.02 0.06 0.15
Base Extrusion 0.06 0.00 0.00 0.00
Base Sheet 0.21 0.00 0.00 0.01
CoMingled 2.11 0.03 0.00 0.00

Chemical Compositions Specifications (wt. %) of Selected Alloys
Alloy Si Fe Cu Mn Mg Cr
230 12.5-13.5 <0.4 <0.03 <0.35 <0.05 <0.05
226 8-11 <1 2-3.5 0.1-0.4 0.1-0.5 <0.05
239 9-11 <0.8 <0.08 0.001-0.4 0.2-0.5 <0.05

6111 0.6-1.1 <0.4 0.5-0.9 0.1-0.45 0.5-1.0 <0.1
6082 0.7-1.3 <0.5 <0.1 0.4-1 0.6-1.2 <0.25
6060 0.3-0.6 0.1-0.3 <0.1 <0.1 0.35-0.6 <0.05
3104 <0.6 <0.8 0.05-0.25 0.8-1.4 0.8-1.3 <0.05
3105 <0.6 <0.7 <0.3 0.3-0.8 0.2-0.8 <0.2
Alloy Zn Ti Ni Pb
230 <0.1 <0.15 <0.05 <0.05
226 <1.2 <0.15 <0.3 <0.2
239 <0.1 <0.15 <0.05 <0.05
6111 <0.15 <0.05 <0.05 <0.05
6082 <0.2 <0.1 <0.05 <0.05
6060 <0.15 <0.1 <0.05 <0.05
3104 <0.25 <0.1 <0.05 <0.05
3105 <0.4 <0.1 <0.05 <0.05

Nnrmnli7Pd Prire / Tnn Acuimntinnc fnr Primaripe and Allnvino Eiopmpnte

Si
1.88
Ti

10.67

Fe
0.32
Ni

15.11

Cu
2.66
Pb

0.76

Mn
2.02

P1020
1.36

Mg
2.27

P0508
1.36

Cr | Zn |

9.95 0.98
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Appendix C: Relevant Statistical Concepts

Part of this thesis relied heavily on statistical arguments and as such a brief review of

statistical concepts particularly relevant to the work here will be summarized below for

quick reference. A comprehensive review of probability and statistics can be found in a

number of excellent texts (Bertsekas and Tsitsiklis 2002). The derivations here are meant

to be succinct and at times serve as proofs as well. In the following let A, B and C be

uncorrelated and independent stochastic variables with the possible values and associated

probabilities of {AI,A2,A3; PI, P2, P3}, {B,,B2,B3; ql, q2, q3} and {C 1,C2 ,C3 ; t, t2, t3}

respectively. K is just a constant.

3

E[A]= ZpiAi PA
i=l

3

E[B] = qiBi = Ib
i=l

E[C] = ZtiCi = Ic
i=1

Var[A] = E[(A - uA)2] = E[A2 - 2AuA + UA ] = E[A2 ] - a = oa

Var[B] = E[(B -B) 2 ] = E[B2 - 2BUB + u]= E[B2 ] - = B

Yar[C] = E[( - C )2 ] = E[C2 - 2Cu c + ] = E[C2] - PC = CC

Next, consider the statistical properties of product of two of these variables:

3 3 3 3

E[AB]= piqjAiB =jAiBj = (piAi)(qjB) = E[A]E[B] =
i=1 j=l i j

Var[AB] = E[(AB - uAUB) 2 ] = E[A 2 B2 - 2ABu,uB + B E[A 2B 2 ] -U 2

One can expand the expression E[A2 B2 ] to see if it is possible to simplify this further:
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3 3 3

E[A2B2 ] = ZpiqjAB2 = (piA 
i=1 j=1 i=1

)(-qiB 2 ) = E[A2 ]E[B2 ] = (2 +A )U + B )

i=1

Putting these two expressions together:

Var[AB] 2 + + a2 )(2 + -_2 =2U2 a2 22 2 2 =A- AA B =B A As +B BrsA + A 

It should also be clear from the above that the expressions for expectations and variances

taken on products of independent variables are commutative. In other words:

E[AB] = E[BA] and Var[AB] = Var[BA]

The following is a simple proof that the negation of a stochastic variable does not change

its variance and that pure negation introduces a correlation of -1 with the original

variable:

E[1- A] = 1- UA

Var[l - A] = E[(1- A- 1 + )2 ] = E[(2 -A) 2] = E[A2 ]A- U = CA

What about the variance of (1-A)B? Note that this is not the same as the covariance

between 1-A and B.

Var[(l - A)B] = E[((1 - A)B - (1- A),UB )2 ] = E[(B - AB -,UB + AB )2]

= E[B2+ A2B2+ / 2 +/ ±A2 -2AB2-2B + 2BuAB + 2ABuB -2ABA/,B -2/uA/2]
= E[B2 - 2,BB + 2]+ E[A2 B2 - 2ABJAIB + /A/]± + 2E[-AB2 + BUA B + ABYB - A/ B]

= B + + Var[AB]+ 2[-UAE[B2]+ ,2A/ ]
2JUA 2 A2 22

= rB + (cr2C +22 mA/I2B)-- 2/uA(/2 + ) + 2/AUB

How about covariance, specifically the covariance between A and B assuming that the

two are independent?

CA, B = E[(A- u,)(B- A )] = E[AB- /AB- AP B + /A/B] 0
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Note that this is only true when A and B are independent. What about the covariance of

1-A with A and the correlation? Is covariance also commutative?

CrA,-A = E[(1- A- 1 + A )(A -A A)] = E[(A - A)(A - A )]

E[-A2 - A + 2A, A]=-E[A2]+2 = -_

PA,1-.A = A = -1
=A CI-A CA

UI-A,A = E[(- PA )(1- A - 1 +A)] = E[(A- A )(A - A)]

= E[_A 2 - 2A, = -E[A 21 + 2 = -2

Therefore covariance is commutative as well. Now consider the covariance between the

products AB and AC. Recall that all three variables are independent and uncorrelated

with each other.

UAB,AC = E[(AB - PUAB )(AC- /A UC )]

= E[A BC-A CAAuB -ABAC +/ A/AtAC]

= E[A2BC] -/AAc -AsAc + 2A2/ A c

= E[A 2]ABAC: -_P2u - 2A + 2A

= (/A + PCA) C -A As/c -A /ABAC + /A A B A C

CTA CB AC

Similarly the covariance between products (1-A)B and AC is:

c(1-A)B,AC = E[((- - A)B - (1 - /A )AUB )(AC - /ACA )]

= E[(B- AB --A B + AB )(AC - /A/C)]

= E[ABC - A 2BC - AUB C + ACUAUB - BJuA,UC - ABuA PC + /AB/A C -A P uA C ]

= -E[A 2 BC] -- APB2 C

= -E[A 2]/2ts/A -/.t4/As/A c

2 2
=-( + -2 )PPBC -UPPC

2A A v ar s

Oftentimes stochastic variables are summed:
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E[A + B + C] = E[A] + E[B] + E[C] =A + B + PC

Var[A + B + C] = E[(A + B + C -A B - C)2 ]

= E[(A2 + AB + AC- APuA - A/B - Ac) + (AB + B2 + BC- B/UA - BB - B,c)

+ (AC +BC +C -CUA -C/B -C/Uc) + (-/AA - AB - AC + / + A/B + P/A/C)
+ (-_sBA -B-/ a B C + + ++ (AB + /BC) + (-CA - c/B - Ic C + / C+ A/C +/B/1C)

= E[A2 A,A - AA +/A2 ] + E[2AB - AB - B/ -A BA- /B + 2u/A/B ]

+ E[B2 -B -B B+/B] + E[2BC CB -B - CB -aB BC + 2Bc]
+ E[C2 - Cc - acC + ] + E[2AC -C A - A -A -AC + 2ALc ]

U2 + (5B + 72= A +0' + C
This last simplification is contingent upon the variables A, B and C being independent

and uncorrelated. In that case, the cross terms cancel out:

Var[A + B+C] = E[(A+B+C- A -B -C) 2 ]

= E[A2- A -A /A + Aua] + E[B2 -B, - lB + B] + E[C2 -C - ,CC + ] a= + + c

Otherwise the cross-terms will contribute to covariance terms as such:

Var[A + B + C] = E[(A + B + C- PA /, -' c) 2

= E[A2 - A -A A+/a + E[2AB - AB - B/ - aA - B + 2A/,B ]
+ E[B2 - B Bts - ,B + + E[2BC - C - Bac - aB - #,C + 2BC ]
+ E[C2 - Cc - PcC + a] + E[2AC-C/uA - Alac - , A - AC + 2Aac]
= e A + + +r c + 2 2A, + 2Ce +r AC

Finally consider the effects of constants in probabilities and statistics.

E[KA] = KE[A] = K/LA

Var[KA] = E[(KA - K/,A) 2 ] = E[K2 (A - ,A )2] = K2U2= -KA cA

180



References
Aluminum Industry Roadmap For The Automotive Market: Enabling Technologies For
Body Structures and Closures, The Aluminum Association, Inc., May 1999

Al-Futaisi, A. and Stedinger, J.R., "Hydrologic and Economic Uncertainties and Flood-
Risk Project Design, " Journal of Water Resources Planning and Management, November
1999, p. 314

Aris, R.. Discrete Dynamic Programming, Blaisdell Publishing Company: New York,
NY 1964

Bellman, R. E. and Dreyfus, S. E., Applied Dynamic Programming, Princeton University
Press: Princeton, NJ 1962

Benedyk, J., Klimisch, R. and Skillingberg, M., "Aluminum Automotive Body Sheet
2002", Aluminum 2002 - Proceedings of the TMS 2002 Annual Meeting: Automotive
Alloys and Aluminum Sheet and Plate Rolling and Finishing Technology Symposia

Bertsimas, D. and Tsitsiklis, J.N., Introduction to Linear Optimization, Athena Scientific:
Nashua, NH, February 1997

Bertsekas, D., Nonlinear Programming, Athena Scientific: Nashua, NH, September 1999

Bertsekas, D P and Tsitsiklis, J. N., Introduction to Probability, Quantum Books,
Boston, MA, June 2002

Buchholz, K., "Sorting Aluminum ", Automotive Engineering International 2001 (109) p.
152

Buckingham, D.A. and Plunkert, P.A., Aluminum Statistics. August 26, 2002, USGS

Cattani, K. Cattani, Ferrer, G. and Gilland, W. "Simultaneous Production of Market-
Specific and Global Products: A Two-Stage Stochastic Program with Additional
Demand After Recourse ", Naval Research Logistics 2003 (50) p.438 - 461

Charnes, A. and Cooper, W.W. "Deterministic equivalents for optimizing and satisficing
under chance constraints ", Operations Research 1963 (11) p. 18-39

Chong, E. and Zak, S.H. An Introduction to Optimization. John Wiley & Sons, Inc: New
York, NY 2001.

Choobineh, F. and Padmanabhan, V. "Material Planning for Production Kits under
Uncertainty, " Production Planning & Control, Vol 15, No. 1, January 2004, 63-70.

Chriss, N.A., Black-Scholes and Beyond. Irwin Professional Publishing: Chicago, IL
1997

Cosquer, A. "Optimizing the Reuse of Light Metals from End-of-Life Vehicles", MIT
Thesis (2003) supervised by Professor R. Kirchain.

181



Cosquer, A., Kirchain, R., "Optimizing the Reuse of Light Metals From End-of-life
Vehicles: Lessons from Closed Loop Simulations", The Minerals, Metals & Materials
Society Meeting 2003

Dalmijn, W.L. et al, "The Optimization of the Resource Cycle: Impact of the
Combination of Technology, Legislation and Economy, " Keynote Address, Int'l Minerals
Processing Congress 2003, vol. 1 (2003), pp. 81-106

Datta, J., Dr. Ing, Aluminum-Verlag Marketing & Kommunication GmbH, Aluminum-
Schlussel (Key to Aluminum Alloys) 6th Ed., Aluminum-Verlag Dusseldorf: 2002

De Weck, O.L., de Neufville R. and Chaize M., "Staged Deployment of Communications
Satellite Constellations in Low Earth Orbit", Journal of Aerospace Computing,
Information, and Communication, 1, 119-136, March 2004.

DeGaspari, J., "Making The Most of Aluminum Scrap", The American Society of
Mechanical Engineers, 1999

Dempster, M.A.H.. Stochastic Programming. Academic Press: New York, NY 1980

Automotive Aluminum Scrap Sorting, Office of Industrial Technologies, Energy
Efficiency, and Renewable Energy, DOE, July 2001

Ducker, Passenger and Light Truck Aluminum Content Report, 1999, Ducker Research
Company

Ducker, Global Automotive Aluminum Content Forecast Through 2010, 2002, Ducker
Research Company

Dupacova, J., "Applications of stochastic programming: Achievements and questions,"
European Journal of Operational Research 140 (2002) pp. 281-290

Ellis, J.H., McBean E.A., Farquhar, G.J.. "Chance-constrained/stochastic linear
programming model for acid rain abatement - Complete collinearity and
noncollinearity", Atmospheric Environment 1985 (19) p. 925-937

Geldof, G.d., "Coping with Uncertainties in Integrated Urban Water Management,"
Water Science Technology, Vol 36 (8-9), p. 265

Geoleian, K., Kar, K., Manion, M. and Bulkley, J., Industrial Ecology of the Automobile.
Society of Automotive Engineers, Inc. 1997

Gesing, A., Berry, L., Dalton, R. and Wolanski, R., "Assuring Continued Recyclability
of Automotive Aluminum Alloys: Grouping of Wrought Alloys by Color, X-Ray
Absorption and Chemical Composition-based Sorting", Aluminum 2002 - Proceedings
of the TMS 2002 Annual Meeting: Automotive Alloys and Aluminum Sheet and Plate
Rolling and Finishing Technology Symposia

Gesing, A., Steward, C., Hopson, G., Costello, S., Lambert, S., Good, T., Grieve, R.,
Dalton, R., Wolanski, R. and Berry, L., "Separation of Wrought Fraction of Aluminum
Recovered From Automobile Shredder Scrap", Aluminum 2001 - Proceedings of the
TMS 2001 Annual Meeting: Aluminum Automotive and Joining Sessions

Gorban, L.T., Ng, G.K. and Tessieri, M.B., "An In-Depth Analysis of Automotive
Aluminum Recycling in the Year 2010, " SAE International Congress, Detroit 1994

182



Grassman, W.K., Stochastic Systems for Management, North Holland: New York, NY
1981

Growe, N., Romisch, W. and Schultz, R., "A Simple Recourse Model For Power
Dispatch Under Uncertain Demand, " ANN OPER RES 1995 Vol. 59 pp. 135-164

Holland, P., Copper's Cyclical Problems, The Mining Journal, London, August 31, 2001

Howell, S., Stark, A., Newton, D., Paxson, D., Cavus, M., Pereira, J. and Patel, K., Real
Options: Evaluating Corporate Investment Opportunities in a Dynamic World. Prentice
Hall: London, UK 2001

Hull, J.C. Options, Futures, and Other Derivatives. Prentice Hall: Englewood Cliffs, NJ
2003

The Aluminum Industry's Sustainable Development Report, International Aluminum
Institute, London, 2002

Kelly, T., et al., Historical Statistics for Mineral and Material Commodities in the United
States. 2005, U.S. Geological Survey, US Dept of Interior, Reston, VA.

Kira, D., Kusy, M. and Rakita, I. "A Stochastic Linear Programming Approach to
Hierarchical Production Planning, " J OPER RES SOC 1997 Vol. 48 (2)

Kulatilaka, A., Real Options. Harvard Business School Press: Boston, MA 1999

Lee, H. L., Padmanabhan, V., "The Bullwhip Effect in Supply Chains." Sloan
Management Review, Spring 1997, Vol. 38 Issue 3, p 93 .

Leotard, J.P., "Transmission Pricing and Incentives for Investments Under Uncertainty
in the Deregulated Power Industry, " MIT Laboratory for Energy and the Environment,
Energy Laboratory Reports, February 1999

Li, S.X., Huang, Z.M., and Ashley, A., "Manufacturer and Retailer Cooperation
Through Franchising: A Chance Constrained Game Approach," Information Systems
and Operational Research, 40 (2002), 131-148

London Metals Exchange (www.metalprices.com), Metal Bulletin Research.

Louveaux, B. Introduction to Stochastic Programming. Springer-Verlag: New York,
NY 1997

Luenberger, D. G., Linear and Nonlinear Programming. Springer: New York, NY,
September 2003

Lund, J., Tchobanoglous, G. and Lawyer, R., "Linear Programming for Analysis of
Material Recovery Facilities", American Society of Civil Engineers Journal of
Environmental Engineering 1994 (5): p. 1082

Manno, I., Introduction to the Monte Carlo Method. Akademiai Kiado: Budapest,
Hungary 1999

Martel, A. and Price, W., "Stochastic Programming Applied to Human Resource
Planning, " J OPER RES SOC 1981 Vol. 32 (3)

183



Maurice, D., Hawk, J.A., and Riley, W.D., "Thermomechnical Treatments for the
Separation of Cast and Wrought Aluminum, " TMS Fall Extractive Meeting, Pittsburgh,
October 2000: Recycling of Metals & Engineering Materials

Mesina, M.B., de Jong, T.P.R., and Dalmijn, W.L., "New Developments on Sensors for
Quality Control and Automatic Sorting of Non-Ferrous Metals," 1 1th Symposium on
Automation in Mining, Mineral and Metal Processing (MMM-IFAC 2004), September 8-
10, 2004, Nancy, France

Mesina, M.B., de Jong, T.P.R., Dalmijn, W.L., and Reuter, M.A. "Developments in
Automatic Sorting and Quality Control of Scrap Metals," Light Metals 2004, TMS
Annual Meeting, March 14-18, 2004, Charlotte, NC, USA

Neely III, J.E. and de Neufville, R., "Hybrid Real Options Valuation of Risky Project
Developments ", International Journal of Technology, Management and Policy 2001

Nemhauser, G.L., Introduction to Dynamic Programming, John Wiley & Sons, Inc.:
New York, NY 1966

Ostroff, J., Tighter Fuel Efficiency Standards Coming, The Kiplinger Washington
Editors, October 29, 2004

De Neufville, R., "Uncertainty Management for Engineering Systems Planning and
Design, " MIT Engineering Systems Symposium, March 2004

De Neufville, R., "Real Options: Dealing With Uncertainty in Systems Planning and
Design ", 5 th International Conference on Technology, Policy and Innovation 2001

Plunkert, P., Minerals Yearbook, in Minerals Yearbook, USGS, Editor. 2003, US
Geological Survey, Department of Interior: Reston, VA.

Peterson, G.D., Cummings, G.S. and Carpenter, S.R., "Scenario Planning: a Tool for
Conservation in an Uncertain World," Conservation Biology, Vol 17 (2) April 2003, p.
358

Petruzzi, N.C. and Dada, M., "Information and Inventory Recourse for a Two-Market,
Price-Setting Retailer," Manufacturing & Service Operations Management 2001 (3) p.
242-263

Ralls, K. and Taylor, B.L., "Better Policy and Management Decisions through Explicit
Analysis of Uncertainty: New Approaches from Marine Conseration, " The Journal of the
Society for Conservation Biology, Vol 14 (5) October 2000

Reuter, M.A., Boin, U., Rem., P, Yang, Y., Fraunholcz, N., and van Schaik, A., "The
Optimization of Recycling: Integrating the Resource, Technological, and Life Cycles,"
Journal of Materials, 2004 August, pp. 33-37

Reuter, M.A., Boin, U., de Jong, T.P.R., Dalmijn, W.L., and Gesing, A., "The
Optimization of Aluminum Recovery from Recycled Material," 2n d Int'l Conference on
Aluminum Recycling, Moscow 2004

ReVelle, C.S., Joeres E., Kirby W. "The linear decision rule in reservoir management
and design. Development of the stochastic model", Water Resources Research 1969 (5)
p. 767-777

184



van Schaik, A. and Reuter, M.A., "Dynamic Modeling and Optimization of the Resource cycle of
Passenger Vehicles, " Minerals Engineering (11) 15 (2002), pp. 1001-1016

van Schaik, A. and Reuter, M.A., "The time-varying factors influencing the recycling
rate ofproducts, " Resources, Conservation and Recycling 2003 Vol. 40 pp. 301-328.

van Schaik, A. and Reuter, M.A., "Minerals Engineering, The influence of particle size
reduction and liberation on the recycling rate of end-of-life vehicles," Minerals
Engineering, Vol. 17 (2), pp. 331-347.

van Schaik, A., Reuter, M.A., Dalmijn, W.L. and Boin, U., "Dynamic modeling and
optimization of the resource cycle of passenger vehicles, " Minerals Engineering 2002,
Vol. 15(11), pp. 1001-1016.

van Schaik, A. and Reuter, M.A., "The Influence of Particle Size Reduction and
Liberation on the Recycling Rate of End-of-Life Vehicles, " Minerals Engineering, (17) 2,
2004, pp. 331-347

Schultz, R. A, "Aluminum for Light Vehicles: An Objective Look at the Next Ten to
Twenty Years ", Metal Bulletin 14 th International Aluminum Conference, Montreal
Canada 1999

Shih, J.S. and Frey H.C.. "Coal Blending Optimization Under Uncertainty",
Proceedings of the Tenth Annual International Pittsburgh Coal Conference 1993, p.
1110-1115

Spencer, D., "The High-Speed Identification and Sorting of Nonferrous Scrap," JOM
April 2005.

Stodolsky F., Vyas, A., Cuenca, R., Gaines, L., "Life-Cycle Energy Savings Potential
From Aluminum-Intensive Vehicles", 1995 Total Life Cycle Conference & Exposition,
Vienna, Austria

Stuart, J.A. and Lu, Q., "A Model for Discrete Processing Decisions for Bulk Recycling
of Electronics Equipment", IEEE Transactions on Electronics Packaging Manufacturing
2000 (23) p. 314

Stuart, J.A. and Lu, Q., "A Refine-or-Sell Decision Modelfor a Station with Continuous
Reprocessing Options in an Electronics Recycling Center", IEEE Transactions on
Electronics Packaging Manufacturing 2000 (23) p.3 2 1

Trigeorgis, L.. Real Options: Managerial Flexibility and Strategy in Resource Allocation.
MIT Press: Cambridge, MA 1996

Xiao, Y. and Reuter, M.A., "Recycling of Different Aluminum Scraps," Minerals
Engineering 2002, pp. 763-970

Vigeland, P., "Aluminum Recycling: The Commercial Benefits, the Technical Issues and
the Sustainability Imperative, " Metal Bulletin's 9 th International Secondary Conference
7-9 November 2001, Prague

Waller, S.T. and A.K. Ziliaskopoulos "A Dynamic and Stochastic Approach to Network
Design, " Journal of the Transportation Research Board No. 1771, pp. 106-114, 2001.

185


