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Abstract

The information in genomes is only partially contained in the linear sequence of their
nucleotides. Their folding into dynamic three-dimensional structures creates spatial
relationships between loci that likely play important functional roles. Yet so far only the
broad outlines of this spatial organization have been discerned.

In chapter 2 of this thesis I describe a general constraint-based framework for defining
the configuration space of chromosomes. Analogous to protein structure determination
through NMR, such a framework allows the quantitative reduction of the conformation
space down to the level of a single structure or an ensemble of structures. It is compatible
with both experimentally determined and theoretical constraints, particularly those
motivated by evolutionary optimality.

In chapter 3., I describe the first method to search for signals of large-scale three-
dimensional structure in genome sequences. The results suggest that there is strong
selection for three-dimensional relationships within the chromosome, particularly those
related to transcription. The signals generated recapitulate both known structural data
from microscopy and functional data on genome-wide transcription levels. Moreover, a
detailed analysis of these signals in E. coli suggests previously unknown structural
features including chromosome-long periodic looping and an axis of high transcriptional
activity. There are immediate applications to other bacteria and potentially to eukaryotes.

Thesis Supervisor: George M. Church
Title: Professor of Genetics, Harvard Medical School
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Chapter 1

Introduction
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Our current ways of thinking about the cell have been enormously influenced by

the success of molecular biology and genetics. We think of genomes as sequences of

letters with subsequences that can be deleted, inserted, inverted, or mutated. We represent

the flow of information from DNA through mRNA through protein by strings where T's

move to U's, and triplets are transformed to an alphabet of K's and Y's and W's. We

represent interactions among genes, proteins, and metabolites by lines whose colors and

ends delineate repression or activation.

Even as biology is broadening from the study of individual cellular components to

system-wide measurements and models, our thinking is still heavily influenced by these

abstractions. DNA binding sites for transcription factors are represented by linear weight

matrices [ 1 ] genetic circuits are represented by diagrams similar to electrical circuits, and

proteome-wide interaction maps are represented by exploding tangles of lines [2]. Our

mathematical models too are colored by these abstractions. Reaction dynamics are still

often modeled in the same way they were in the 1960's when we had not yet abandoned

the conception of the cell as a homogeneously stirred mixture and thought of reactions as

simple bimolecular A + B - AB. [3]

In many cases these abstractions are extraordinarily useful, allowing us to discern

logic that might have escaped our notice in more complex representations. And often

these abstractions contain our full knowledge of the system since so much of biology is,

of necessity, learned from purifying molecular components and analyzing them outside of

their cellular context or from making genetic manipulations with simple phenotypic

readouts. Yet still these abstractions are divorced from the notion of the cell as a physical

object. We know that the cellular space is exquisitely organized. Macromolecular
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crowding can be so extreme that the cellular space is closer to liquid crystal than to

aqueous solution [4]. DNA natively is not a simple string, but a double helix where

subsequent nucleotides are rotated relative to each other.. Proteins are highly convoluted

objects with marvelously intricate folds. Without attention to the true nature of this

cellular space, we are robbed of important intuition - our intuition about arrows and

lettered strings is very different from our intuition about physical objects moving and

rotating and interacting. This kind of visual intuition has played a pivotal role in the

history of science. Newton, it is said, first conceived of orbital motion by imagining the

trajectory of a sphere thrown such that it falls at the same rate its horizontal motion takes

it around the body it orbits. Maxwell conceived of electrodynamics by imagining tubes of

fluid as the lines of a field. Kekule solved the structure of benzene in a dream about a

snake biting its tail. And most famously, Einstein conceived of relativity in a series of

thought experiments involving elevators and clocks and traveling on light beams.

Fortunately, the appreciation of cellular spatial organization is growing rapidly.

Scientists talk now of interconnected networks of protein "machines" containing tens of

proteins [3]. For example, in addition to the ribosome, we now refer to a replisome for

DNA replication, large holoenzymes for transcription, and even complexes of metabolic

enzymes as machines for metabolic pathways. Some have referred to the entire cell as a

massive macromolecular organelle [5]. Advances in structural biology are yielding

atomic resolution structures of complexes as large as the ribosome while, simultaneously,

imaging from electron microscopy is reaching levels of resolution that allows known

atomic domain structures to be fit into density maps of large cellular regions [6]. Such

techniques are creating images of the cell components in their true space at particular
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moments in time, both revealing new complexes and discriminating between the many

interaction partners found in techniques such as tandem affinity purification mass

spectrometry and yeast two-hybrid analysis .

A change in our understanding of the spatial organization of prokaryotic cells is

also underway. In vivo fluorescence imaging is revealing that these organisms which

were until little more than a decade ago thought to be unstructured, have intricate patterns

of protein localization that are carefully choreographed in time [7]. These dynamics have

begun to reveal the precise mechanisms underlying processes such as the cell division

cycle and the creation of cellular asymmetries [8]. Interestingly, such insights also

suggest that the differences between prokaryotes and eukaryotes are much smaller than

once thought:; the finding that bacteria have cytoskeletal proteins and rapid chromosome

segregation systems not unlike the spindle apparatus of eukaroyotic mitosis seems to

indicate that many of the mechanisms governing fundamental cell processes are

conserved across prokaryotes and eukaryotes [9].

Chromosome Folding

The genomic DNA that we envision as a linear sequence of letters is embedded in

this complex cellular space, supercoiled or wound around nucleosomes and folded into

higher order domains, compacted thousands of times its contour length. It intrinsically

rotates an entire helical turn every -10.6 base pairs such that contacts within and between

binding proteins are affected by changes in the local helical twist. The entire information

content of the genome is thus not fully realized without its embedding in this space

including the local alterations of structure along the helix and the global coiling and
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looping that organizes genes and promoters and other loci in three-dimensions. It is this

spatial organization that is the topic of this thesis.

The spatial organization of genomes has only recently come under scrutiny. In

eukaryotes, the nucleus is beginning to be understood three-dimensionally in terms of

distinct functional territories, and chromosomes in terms of domains with non-random

spatial distributions [10]. An intricate relationship between chromosome structure and

transcription has been revealed, extending from the level of nucleosome positioning,

through the level of larger scale loops, to the positioning of entire domains [11]. In

human cells, it has been shown that certain alleles on separate chromosomes are "kissing"

- clustered together in space such that they regulate each other's transcription [12] - and

that the repositioning of chromosomal loci can lead to transcriptional activation or

silencing [ 11 ]. Within the nucleus there are recognizable structures which play known

functional roles, the nucleolus for rRNA synthesis, structures for storage of splicing

components, "factories" for transcription, and other structures of unknown function [11,

13]. Additionally, there are known proteins, lamins, that anchor various loci to the

nuclear envelope and constrain their movement. All of this is yielding a view of the

nucleus as an elaborately scaffolded or marvelously self-assembling entity, and of

chromatin as a three-dimensional mesh whose geography is highly regulated and through

which binding proteins diffuse and exchange, generating a highly interconnected

network. The "codes" specifying nucleosome positioning and the compaction of DNA

into condensed heterochromatin are under intense investigation, as are the ways in which

larger chromosome loops are formed and regulated [14]. There are even indications of a

broad relationship between chromosome spatial organization and disease; chromosome
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structure plays a role in triplet repeat disorders, malfunction of lamin disorders, and also

in cancer [11 ].

While this global spatial organization is tremendously exciting, it appears that for

now it will be difficult to unravel in eukaryotes. We do not yet know the rules governing

either the folding or the positioning of genomic loci. Indeed, while the positioning of

domains in territories is non-random, it also appears to be not completely deterministic

[ 11 ]. Although this view may be complicated by cell lines used, and the anecdotal nature

of the measurements, for now, until either the rules are better understood or better global

means of measuring are found, descriptions of nuclear organization will likely be

probabilistic.

Bacterial Chromosome Organization

In bacteria, where the cellular substructures are simpler, transcription and

translation are coupled, and no envelope separates chromosome from cytoplasm, we

expect the spatial organization of the genome to be particularly strongly related to

function and the rules of folding perhaps simpler. Bacteria should therefore serve as a

logical testing ground to derive the rules of chromosome folding. Notably, because of the

recent commonalities discovered between mechanisms involved in prokaryotic and

eukaryotic subcellular architecture, we may expect that at least certain rules governing

bacterial chromosome folding may also be shared with eukaryotes. For these reasons, the

folding of bacterial chromosome is the focus of this thesis.
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The existence of significant spatial organization of the bacterial chromosome fold

has been long under-appreciated. The same initial experiments that contributed to views

of the bacterial cell as an unstructured space shaped the initial views of the chromosome

[15]. In transmission electron microscopy images acquired over thirty years ago, the

chromosome appeared as an amorphous mass, identifiable primarily by the exclusion of

ribosomes. We now know that the harsh specimen preparation for these images -

replacing solvents and soaking in heavy metals - were prone to generating artifacts.

Electron microscopic images of chromosomes from lysed cells also showed seemingly

disordered structures, notable for large numbers of loops, extending from the lysed

membrane. This led to the view that the chromosome was effectively a disordered rosette

of loops, extending from a central core. Consistent with this view, much in vivo

experimental work has involved classification of "topological domains" of supercoiling

which were thought to be equivalent to these loops [ 16]. The properties of these domains

are important for both the nature of local chromosome compaction and for its relationship

to transcription and replication. Therefore I discuss them in some detail below.

Topological Domains

In vivo, bacterial DNA is, topologically, a negatively supercoiled circle. The twist

of the DNA along its helical axis (Tw) is supplemented with a "writhe" (Wr) which

causes larger loops of the entire double helix to form [ 17]. This writhe is constrained

within the structure by the joined ends of the circle and thus without a break in one of the

DNA strands,, the total amount of Tw and Wr is constant (called Lk, the linking number.)

Negatively supercoiled DNA is energetically less stable than relaxed double helical DNA
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and thus, if a single stranded break allowing the DNA to freely rotate about the other

strand is introduced, the supercoils will spontaneously be released from the structure.

This relaxation should propagate until the entire structure is fully relaxed [ 17].

In nicking experiments in vivo, where a single stranded break is introduced at a

particular position along the bacterial chromosome, however, the relaxation of

supercoiling does not propagate through the entire structure but rather is constrained to

certain regions [18]. These regions are referred to as topological domains because their

local topology is insulated from the rest of the structure.

Variations in the local linking number forms a first level of conformational

regulation above the level of the double helix. Without any topological change, the total

linking number of the chromosome remains constant [17]. However, the local linking

number can be changed by transcription, replication, or binding of DNA binding proteins

such as nucleoid-structuring proteins, RNA or DNA polymerase, or transcription factors

which may constrain local structure or unwind the double helix, thereby transforming

twist into writhe. The edges of a topological domain are formed by such constraints and

can alter the local linking number by constraining certain amounts of the global linking

number within their boundaries to promote various effects. The potential energy of

supercoiling can be used, for instance, to locally unwind the positively twisted DNA of

the double helix necessary for both transcription and replication [ 17].

A recent set of discoveries suggest that there is an elaborate interplay between this

topological structure of the chromosome and transcription. In particular, the expression

level of hundreds of genes are affected by changes in supercoiling [ 19]. In some genes,

the promoter regions are underwound (local Lk too high) so that RNA polymerase and
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initiating factors are misaligned. In other regions the promoters are overwound (local Lk

too low) leading to a similar misalignment. Alteration of local negative supercoiling

writhe by the binding of nucleoid-associated proteins like HU, HNS, or FIS can twist the

promoter into the proper configuration, aligning the binding faces of the helix and

initiating transcription [20] Additional local supercoiling can also contribute to

transcription initiation in promoters where the elongation step is energetically disfavored

because of local high energy GC sequence content (called discriminator sequences.) [20]

Intriguingly, since supercoils can propagate until they reach a topological barrier,

formation of a new supercoiling restraint (by a binding event say) can send local

supercoiling to a neighboring site, allowing the DNA to act as a sort of telegraph [ 17].

Amazingly, it: seems that the global level of supercoiling (the global linking number

which is modulated by a set of topoisomreases capable of removing negative supercoils

and a DNA gyrase capable of adding them) is also a global control on transcriptional

state. The amount of negative supercoiling appears to be used to precisely titrate the

amount of ribosomes produced to meet the requirements of given nutrient conditions

[20]. Topological domains have one further important consequence in solving a problem

of replication: the isolation of positive supercoils generated by the unwinding of

replicating DNA in front of DNA polymerase from the rest of the structure [ 16]

Since the dynamic nature of topological domains is consistent with the disordered

loop structures seen in lysed cells, until very recently the entire chromosome structure

was believed to consist of a disordered, dynamic collection of supercoiled domains [21 ].

However, some intriguing observations suggested otherwise. Chromosomal inversions

between certain regions of the chromosome were found to be disallowed [22] Synthetic
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constructions of these inversions that yielded viable cells suggested that the disallowed

inversions were structurally disallowed. Thus these experiments indicated that there was

additional structure to the chromosome or that certain regions of topological domains

were not totally fluid.

Improvements in the resolution of fluorescence microscopy, however, yielded the

most radical reevaluation of bacterial chromosome structure, in a startling set of

observations. First, fluorescently labeled origins and termini were observed to occupy

reproducible positions along the cellular axis in E. coli, C. crescentus and B. subtilis [23].

Moreover, these regions exhibited reproducible spatiotemporal dynamics during

replication and cell division. Subsequently, in E. coli, Niki et al. measured the positions

of a set of chromosomal loci between the origin and terminus using fluorescence in situ

hybridization (FISH) and found that their positions along the longitudinal axis of the cell

corresponded linearly with their distance from the origin along the genome sequence

[24]. Finally, in C. crescentus, Viollier et al. measured a set of 141 different

chromosomal loci using both FISH in formaldehyde-fixed cells and GFP-lac fusions in

vivo and found that this linear relationship held for every locus tested [25]. Furthermore,

they followed several loci simultaneously with the origin of replication throughout the

cell cycle and observed specific replication dynamics and a rapid movement after

replication back to cellular locations occupied before replication initiation. These

experiments indicated that the bacterial chromosome is in fact highly organized into a

structure that is symmetric about the origin of replication and which compacts the DNA

such that it preserves genetic distance from the origin. Additionally, they showed that this

structure has tightly controlled dynamics.
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Evolutionary Optimality of Chromosome Structure

While fluorescence microscopy indicates in broad outlines a very large-scale

structural order to the chromosome, and topological domains illustrate ways in which

supercoiling properties affect the local promoter level and suggest a highly dynamic local

level structure to the genome, the large-scale folding bridging these two structural

regimes is unknown. In other words, how are topological domains of genomic DNA

packaged into the symmetric linear arrangement of chromosomal arms observed by

microscopy? This is the structural level at which long-range spatial interactions between

genes would occur and which would determine the nature of intermediate compaction

which may be of profound importance for replication. It is this scale that I focus on in this

thesis.

Because of coupled transcription-translation, this folding has the potential to

organize groups of functionally related genes such that their protein products are

translated and assembled into complexes in the region where they are transcribed,

forming a scaffold for the assembly of the many large protein machines which have

begun to enter our conception of the cell.. It may likewise organize highly active genes

around transcription factories similar to those in the eukaryotic nucleus [26].

During replication this folding must allow segregation without extreme

entanglement.. Indeed, this is perhaps the reason for the linear correlation of genomic

distance from the origin and longitudinal position in the cell viewed bymicroscopy; such

compaction would help prevent regions yet to be replicated from becoming entangled
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with newly replicated regions. The paired fork model of replication by which the set of

DNA polymerases replicating the chromosome bidirectionally from the origin of

replication remain fixed together in space and pull the DNA through, would explain the

symmetry observed between chromosome halves about the origin of replication as well

[27]; these points must be close together when moving through the polymerase machine.

Additionally, since this model extrudes daughter DNA naturally to opposite sides of the

cell, it offers an elegant solution to the segregation problem even with some small level

of entanglement. By generating a biased movement of DNA in opposite directions, it

allows the resolution of entangled DNA strands by topoisomerases (itself unbiased) to

ultimately separate the daughter chromosomes [ 16]

Although the intermediate-scale folding has been inaccessible to direct

microscopic measurement, several intriguing observations have been made of long-range

positional correlations in transcription both in absolute expression level and in the

expression correlation of gene pairs in E. coli. These correlations extend far beyond the

-10kb level of topological domains to 100kb and even to 600 kb [28-30]. Moreover they

seem to change as a function of environmental state, thus indicating potentially that there

are long-range spatial contacts between various chromosome regions that are modulated

by transcriptional state. Positioning of certain transcription factors and their binding sites

also have been reported to be periodic.[31] However, it is not yet clear to what extent

these correlations and periodicities are confined to particular regions of the chromosome

- the 600kb correlation extends the entire chromosome length but some studies have

found the smaller periodicities confined to particular regions [28] - and it is not clear

how they relate to a global folding of the chromosome.
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In this thesis I approach the problem of chromosome folding from the perspective

of function. The fundamental ideas are three-fold. First, the three-dimensional spatial

organization of the chromosome is likely to have been optimized by the process of

evolution. Evolutionary selection on genomes should be working not only at the level of

gene content and controlling elements, but also at the level of structure. Thus insight into

the structure can be gained by an understanding of the "optimization function" that

evolution is optimizing in the same way that understanding the "objective function" for

metabolic fluxes or for gene expression levels has yielded accurate predictions of these

quantities [32, 33]. Indeed, by understanding even a subset of the optimization criteria or

a few constraints we can restrict the space of possible conformations immensely. And a

constraint-based framework allows for the testing both of the implications of a set of

constraints and for their compatibility. Chapter 2 describes work on constraints and

optimization in detail, detailing the theoretical and experimental observations underlying

constraints and optimization criteria for chromosome structure. It outlines a general

constraint-based method for describing feasible conformations given hard distance

bounds which is based on the method of distance geometry and also portions of the likely

global optimization functions operating on the chromosome. Furthermore, it descibes a

set of montecarlo methods, one parametric, the other non-parametric, for finding optimal

configurations within the constrained configuration space.

The second fundamental idea of this thesis is that, as a result of evolutionary

optimization, we expect to see signals of selection for three dimensional-spatial

relationships recorded in the hundreds of bacterial genomes that have now been

sequenced. Chapter 3 describes this work. Within it, I describe the first evidence of
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evolutionary selection for spatial relationships in bacterial genomes. The signals we find

are based on a simple but novel method to identify points that are likely evolutionarily

selected for spatial vicinity and a method to extract structural information from them. I

describe an analysis of these signals in E. coli where they show unambiguous

periodicities that span the entire length of the chromosome and a strong position

preference for a single phase of the period. The signals strongly suggest a periodically

looped possibly helical organization of the E. coli chromosome with a single

chromosome--long longitudinal axis along which most of the pairing occurs. The pairing

is also strongly correlated with transcriptional level indicating likely functional relevance.

The end of this chapter describes a first attempt to elucidate structural features of the E.

coli chromosome fold based on fitting of the pair data derived from comparative

genomics to explicit models. Even fitting at this simple level of complexity reveals

interesting functional consequences of structure like the preference of highly expressed

genes for a single helical face.

The appendices on complete determination of biological systems and selection of

oligonucleotide probes relate to constraint-based determination and potential

experimental measurements that could generate a large set of constraints for chromosome

folding. Extensions of the oligonucleotide probe work in particular are discussed in the

last chapter on conclusions and future directions.

It is the final contention of this thesis that solving the structure of a chromosome

fold, whether bacterial or human, should be approached quantitatively using the same

mathematical framework used for solving the structure of a protein - instead of

minimizing the error between observed and calculated electron densities, we minimize
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more generally the error between a broad set of constraints gathered from diverse

experimental methodologies and a model of the fold at some given level of resolution,

whether the 10kb, kb, b, 00bp or atomic scale With enough constraints, it will be possible

to solve both the structure and its dynamics as a function of cell state. This 4D

chromosome trajectory will undoubtedly contain a wealth of information about cell

function and the spatial organization of the nucleus, nucleoid, and the cell.

24



References

1. Zhu, Z., J. Shendure, and G.M. Church, Discoveringfunctional transcription-
factor combinations in the human cell cycle. Genome Res, 2005. 15(6): p. 848-55.

2. Scholtens, D., M. Vidal, and R. Gentleman, Local modeling of global interactome
networks. Bioinformatics, 2005. 21(17): p. 3548-57.

3. Alberts, B., The cell as a collection ofprotein machines: preparing the next
generation of molecular biologists. Cell, 1998. 92(3): p. 291-4.

4. Ovadi, J. and P.A. Srere, Macromolecular compartmentation and channeling. Int
Rev Cytol, 2000. 192: p. 255-80.

5. Sali, A., et al., From words to literature in structuralproteomics. Nature, 2003.
422(6928): p. 216-25.

6. Aloy, P., et al., Structure-based assembly ofprotein complexes in yeast. Science,
2004. 303(5666): p. 2026-9.

7. Jensen, R.B. and L. Shapiro, Cell-cycle-regulated expression and subcellular
localization of the Caulobacter crescentus SMC chromosome structural protein. J
Bacteriol, 2003. 185(10): p. 3068-75.

8. Gitai, Z., The new bacterial cell biology: moving parts and subcellular
architecture. Cell, 2005. 120(5): p. 577-86.

9. Gitai, Z., M. Thanbichler, and L. Shapiro, The choreographed dynamics of
bacterial chromosomes. Trends Microbiol, 2005. 13(5): p. 221-8.

10. Taddei, A., et al., The function of nuclear architecture: a genetic approach. Annu
Rev Genet, 2004. 38: p. 305-45.

11. Misteli, T., Concepts in nuclear architecture. Bioessays, 2005. 27(5): p. 477-87.
12. Spilianakis, C.G., et al., Interchromosomal associations between alternatively

expressed loci. Nature, 2005. 435(7042): p. 637-45.
13. Phair., R.D., et al., Global nature of dynamic protein-chromatin interactions in

vivo: three-dimensional genome scanning and dynamic interaction networks of
chromatin proteins. Mol Cell Biol, 2004. 24(14): p. 6393-402.

14. Dekker, J., et al., Capturing chromosome conformation. Science, 2002.
295(5558): p. 1306-11.

15. Travers, A. and G. Muskhelishvili, Bacterial chromatin. Curr Opin Genet Dev,
2005.

16. Hardy, C.D., et al., Disentangling DNA during replication: a tale of two strands.
Philos Trans R Soc Lond B Biol Sci, 2004. 359(1441): p. 39-47.

17. Hatfield, G.W. and C.J. Benham, DNA topology-mediated control of global gene
expression in Escherichia coli. Annu Rev Genet, 2002. 36: p. 175-203.

18. Postow, L., et al., Topological domain structure of the Escherichia coli
chromosome. Genes Dev, 2004. 18(14): p. 1766-79.

19. Peter, B.J., et al., Genomic transcriptional response to loss of chromosomal
supercoiling in Escherichia coli. Genome Biol, 2004. 5(11): p. R87.

25



20. Travers, A. and G. Muskhelishvili, DNA supercoiling - a global transcriptional
regulatorfor enterobacterial growth? Nat Rev Microbiol, 2005. 3(2): p. 157-69.

21. Thanbichler, M., P.H. Viollier, and L. Shapiro, The structure andfunction of the
bacterial chromosome. Curr Opin Genet Dev, 2005. 15(2): p. 153-62.

22. Segall, A., M.J. Mahan, and J.R. Roth, Rearrangement of the bacterial
chromosome:forbidden inversions. Science, 1988. 241(4871): p. 1314-8.

23. Webb, C.D., et al., Bipolar localization of the replication origin regions of
chromosomes in vegetative and sporulating cells of B. subtilis. Cell, 1997. 88(5):
p. 667-74.

24. Niki, H., Y. Yamaichi, and S. Hiraga, Dynamic organization of chromosomal
DNA in Escherichia coli. Genes Dev, 2000. 14(2): p. 212-23.

25. Viollier, P.H., et al., Rapid and sequential movement of individual chromosomal
loci to specific subcellular locations during bacterial DNA replication. Proc Natl
Acad Sci U S A, 2004. 101(25): p. 9257-62.

26. Cook. P.R., Predicting three-dimensional genome structure from transcriptional
activity. Nat Genet, 2002. 32(3): p. 347-52.

27. Dingrnan, C.W., Bidirectional chromosome replication: some topological
considerations. J Theor Biol, 1974. 43(1): p. 187-95.

28. Jeong, K.S., J. Ahn, and A.B. Khodursky, Spatialpatterns of transcriptional
activity in the chromosome of Escherichia coli. Genome Biol, 2004. 5(11): p.
R86.

29. Allen, T.E., et al., Genome-scale analysis of the uses of the Escherichia coli
genome: model-driven analysis of heterogeneous data sets. J Bacteriol, 2003.
185(21): p. 6392-9.

30. Carpentier, A.S., et al., Decoding the nucleoid organisation of Bacillus subtilis
and Escherichia coli through gene expression data. BMC Genomics, 2005. 6(1):
p. 84.

31. Kepes, F., Periodic transcriptional organization of the E.coli genome. J Mol Biol,
2004. 340(5): p. 957-64.

32. Edwards, J.S. and B.O. Palsson, Metabolic flux balance analysis and the in silico
analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics, 2000.
1(1): p. 1.

33. Dekel, E. and U. Alon, Optimality and evolutionary tuning of the expression level
of a protein. Nature, 2005. 436(7050): p. 588-92.

26



Chapter 2

Constraint-based determination of chromosome
structure

with Daniel Segre
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Abstract

We outline a method to integrate data on the three-dimensional structure of whole

chromosomes and genomes. The method is based on evolutionary optimality. We

hypothesize that the three dimensional structure of the chromosome is optimal for many

of the functions that it performs. These functions determine geometrical and dynamical

constraints that can be expressed mathematically. Our goal is to gather enough

constraints to create a 4D model of the chromosome. Changes in the structure of the

chromosome over time (the 4th dimension) will reflect the varying functional constraints

on the genome during different phases of the cell cycle.
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How to fold a chromosome

Massive effort has been devoted to studying cellular structure at the nanometer

and micrometer scales. Very little success, however, has been achieved in studying

structure at intermediate scales. These mesoscopic scales are important in many

biological processes. For instance, aggregation of molecular components in specific

cellular regions is involved in processes as diverse as mitosis and bacterial chemotaxis,

spatial gradients are crucial for the development of many multicellular organisms, and the

geometry of cells is exquisitely tailored to their function.

The structure of the chromosome is of particular importance. It forms the spatial

framework for transcription and determines the genes that are accessible to the

transcription machinery (6). Moreover, its replication and spatial segregation into

daughter cells are necessary for successful reproduction. The extended DNA of most

organisms is hundreds of times longer than the diameter of the nuclear or cellular

membrane and must be folded extensively to fit inside the cell. This fold can be described

as a configuration in space with regions of varying flexibility. Some regions may be quite

rigid while others may diffuse freely throughout most of the cell. Still other regions may

sample the space unevenly, spending most of their time in particular areas. Our goal is to

understand and characterize these folds.

A viable fold must allow the DNA to fulfill its functions for the cell: transcription

of the necessary genes and replication. We hypothesize that evolutionary pressure has

selected those configurations that are optimal for these processes. The functions
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determine geometrical and dynamical constraints that can be expressed mathematically.

Varying constraints on the genome during different phases of the cell cycle and in

different environmental conditions change the structure of the chromosome over time

(the 4th dimension.) We have developed methods to generate structures based on these

constraints.

4D information in the genome?

There are two major factors we expect to determine the folds (structures) of the

chromosome: constraints from the physical chemical properties of DNA and optimization

from the process of evolution. The energy of a particular structure is determined by

chemical properties such as bond lengths, bond angles, and electrostatic interactions.

Thus, physics and chemistry define the space of feasible structures of the chromosome.

Evolution chooses particular feasible structures from this space, by altering local

sequence properties, generating sites for geometry altering binding proteins, or, in part,

by changing the linear position of genes along the chromosome which, through their

interactions with the transcription machinery and various proteins may mechanically and

dynamically shape the chromosome fold.

Since evolution may influences structure by altering the linear sequence of the

genome, we expect genome sequences and annotation to contain information about the

structure of the chromosome. The situation is analogous to protein folding where the

primary amino acid sequence gives information about the three dimensional structure of
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the protein (7). In chromosome folding, gene function and other experimental data may

give information about the three dimensional structure of the chromosome.

Many research efforts have been aimed at predicting the structure of proteins from

sequence data. These theories use the physical chemical properties of amino acid

sequences to find the most energetically stable structure. (7). With chromosomes, the

physical properties of the nucleic acid sequence leave a large amount of flexibility in

what structures are formed. Indeed, at mesoscopic scales, the atomic forces are observed

mainly in the elastic properties of DNA: its persistence length (the distance within which

points on the strand feel the presence of each other and which determines its bendability),

and the energy of supercoiling (8). The information from functional genome annotation,

which reflects evolutionary selection, however, is potentially far more constraining in

that certain folds will be more or less efficient for the cell. Our methods use such

functional information to predict aspects of chromosome structure.

Theoretical and Experimental Distance Constraints

The methods we have developed are constraint based. We establish a set of

criteria (constraints) and then search for structures that satisfy these criteria. Constraint-

based models have been immensely successful in modeling metabolic fluxes and are

generally useful in several ways: (i) the degrees of freedom of the constrained system (or

the dimensionality of the "feasible" space) provide information about the degree of

understanding of the system, (ii) tests of the consistency of multiple constraints offer the

possibility of critically revising data or our interpretations of data, (iii) computer

31



simulations or optimization algorithms can be applied within constrained feasible spaces

to search for solutions that correspond to specific configurations; optimal configurations

are particularly interesting as they may capture important properties of evolutionary

adaptation.

The constraints on chromosomes can be motivated by experiment or by theory.

Experimental data sources include confocal microscopy, cross-linking, and other

visualization techniques. Confocal microscopy can be used to follow particular

chromosomal loci in time (9) and measure the distance between these loci. Cross-linking

experiments can provide genome scale information about the distances between many

chromosomal loci simultaneously. Recently, a cross-linking technique determined the

large scale morphology of the entire yeast chromosome III (10). Other visualization

techniques, particularly electron tomography promise to give detailed views of the entire

chromosome.

The two main categories of theoretical constraints in our current model are

transcriptional constraints, and replication constraints. Transcriptional constraints focus

on the configurations of the chromosome that are energetically efficient for the cell in

terms of the spatial locations of transcribed genes. For complexes to form, for example,

the components must diffuse into the same region of space and encounter each other in

the proper configuration (1 1). This probability is increased when the loci of translation

(for proteins) or transcription (for RNAs) are closer together. In bacteria, this can be

achieved by having the physical locations on the genome where the components are

transcribed close together in space (figure 2.1, black squares.) Another possible
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Figure 2.1 Two types of distance constraints motivated by transcription in bacteria:
membrane genes (blue) close to the membrane and genes that code for components of a
protein complex (black)

Figure 2.2 Highly transcribed genes (yellow - one labeled i) will be located close to
transcriptional factories (green - labeled F)



transcriptional constraint in bacteria is that membrane protein coding genes be close to

the membrane where they can be transcribed, translated, and then directly inserted into

the membrane in a process called transertion which may itself play a large role in

structuring the chromosome (figure 2.1 red circles.) (12). A third transcriptional

constraint is that genes with high levels of transcription be located close to regions of

high transcription activity ("transcription factories") thought to be located at specific

positions in the cell (figure 2.2.) For fixed transcription factories, genes that are highly

transcribed will, of necessity, spend much of their time attached to the factories. It is

believed that the transcriptional factories are one of the most important organizing factors

of chromosome structure (6). There are many other possible transcriptionally motivated

constraints such as those that locate transcription factors close to their binding sites and

those that optimize the relative spatial positions of enzymes involved in metabolism (13).

It is useful to note two possible ways in which transcriptional constraints could

act upon chromosome structure. One is through the evolutionary positioning of genes

linearly along the genome and the selection of specific sequences that may control the

geometry of small regions of the chromosome (for instance AT tracts cause bends or

binding sites for specific chromosome conformation altering proteins can cause regions

to take on specific geometries.) Another is the product of the "mechanical forces"

between proteins or RNAs that are still attached to their genomic loci. In bacteria, when

proteins that are attached through ribosomes and mRNAs to their sites of transcription

interact, they may cause these sites to spend more time close together thus enforcing

particular structures. We can imagine this happening with ribosomal RNAs in the
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eukaryotic nucleolus, for instance, where all of the ribosomal RNAs are colocalized and

transcribed.

Modes of Bacterial Chromosome Replication

During reproduction, the entire genome must be copied and segregated into the

daughter cells. In bacteria, this process is often depicted with simple diagrams using

circles to represent the replicating chromosome. However, these diagrams ignore the

compactness of the genome inside the cell. The situation is instead one where a circle,

folded hundreds of times, is duplicated and segregated. The fact that the genome must be

so compact during this process places many constraints on the structure and these

constraints can be expressed mathematically given a replication model.

Topological and spatial factors affecting genome replication have been discussed

many times in the literature, and theoretical and experimental evidence for a bidirectional

paired fork process has accumulated. (8, 14, 15). We have used the paired fork process as

a basis for formulating replication constraints for our chromosome model. The paired

fork is a set of four linked DNA polymerases, which is probably fixed in space.

Replication proceeds in both directions (with two polymerases in one direction and the

other two in the opposite directions.) Since the polymerases are linked and fixed, it is the

chromosome, not the polymerases that move. The chromosome is pulled through the

polymerase complex and daughter DNA emerges on either side. The effect is that while

the DNA is replicated, it is separated into different sides of the cell (figure 2.3.)
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There are several ways in which replication constraints can be incorporated into

models. If the diffusion of the chromosome through space is faster than the rate of

replication, we can expect folding of the newly generated chromosome as it grows from

the replication forks. However, the constraints on the fold at any given moment will only

be those that are derived from the portion of the new chromosome that has been already

replicated or its interaction with the other daughter chromosome or the remaining

unreplicated chromosome. As the replicated chromosome grows, new constraints will be

active, but these new constraints will be acting on a structure that is already partially

folded. Thus the space of possible folds that meet the constraints at later times is

dependent on the space of possible folds at earlier times. This results in final folds (after

replication) that reflect the history of the growing replicated chromosome (figure 2.4.)

The effects are analogous to known dynamic effects in protein folding where the final

conformation of the protein is affected by folding of the partially translated protein

intermediates before translation is completed.

Replication yields constraints related to the ability to segregate and disentangle

structures as they go through the replication process. Daughter structures that are more

entangled, are more difficult to separate, requiring greater topoisomerase activity. It is

possible to quantify entanglement by examining overlap between replicating structures

using various methods, for example support vector machines which can determine the

optimal surface separating two structures Furthermore, since loci symmetrically opposite

the origin of replication are pulled through the polymerase complex simultaneously, it is

possible to impose constraints that reflect this symmetry, for instance by enforcing a
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Figure 2.3 A diagram of possible chromosome replication mechanism. Left: the
classical view; Right: the paired fork model; Center: an intermediate state, shown to
emphasize the transformation from one model to the other.

Figure 2.4 At left, representations of the matrices of distances between points on a
growing chromosome and at right, the structures.
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symmetric flattened circle shape (flattened about the origin and terminus) for the entire

chromosome.

Distance Geometry at the Genome Level

The static constraints on chromosome structure can be represented as upper and

lower bounds on the distances between chromosomal loci. Proximity of a membrane

protein-coding gene to the membrane (modeled as a sphere), for instance, can be

enforced by setting a lower bound on the distance between the center of the cell and the

membrane protein-coding gene. Structures can then be found which satisfy these

constraints.

The constraints do not completely determine the structure of the chromosome,

rather, they limit the space of possible conformations. This conformation space

effectively defines both the number of distinct structure classes consistent with the

constraints and the flexibility of the chromosomal loci in each structure class. It is

therefore important to have a means, not only of generating structures consistent with the

constraints, but also of performing an unbiased sampling of the conformation space to

determine the ensemble of structure classes. Fortunately, nuclear magnetic resonance

spectroscopists have faced similar problems determining the structure of proteins from

NOE (Nuclear Overhauser Effect) data (16, 17). We have adapted one of their methods

based on the mathematics of distance geometry for our models.

Method of Distance Geometry
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Mathematically, the upper and lower bounds on distances between loci define the

conformation space. However, this space is defined in terms of distances and not in terms

of the coordinates necessary to visualize a structure and examine many of its properties.

Distance geometry takes the distance bounds and finds coordinates that are consistent

with them in three-dimensional space. For an under-constrained structure, the problem of

choosing a distance matrix that satisfies the bounds is NP hard (non -polynomial time)

but heuristic algorithms exist that are quite efficient at finding solutions.

Our algorithm is an adaptation of the EMBED algorithm of Timothy Havel (16,

17). It consists of four steps. 1. Bound Smoothing, 2. Metrization, 3. Projection, and 4.

Optimization. The bound smoothing step addresses the issue that although the initial

distance bounds constrain only a small subset of pairs of loci, Euclidean distances are not

independent of each other and thus the bounds contain much more information than the

specific distances that they constrain. Bound smoothing makes some of these

dependences into explicit bounds. The best known example of a distance dependence

which is a property of the geometry of a space is the triangle inequality which restricts

the feasible distance between a triplet of points i, j, and k. (dij < dik + djk)

There are additional higher order distance relations between the distances of 4, 5,

6, ... , n points from each other in three-dimensional space. These higher order relations

are mathematically complex and computationally time consuming and therefore

infeasible to apply iteratively to the problem of distance geometry as existing algorithms

require. Our algorithm performs bound smoothing with only the triangular inequality, a
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good approximation that is standard practice in the field. This bound smoothing serves to

significantly increase the number of explicit constraints on the structure.

The second step in the algorithm is to choose a set of distances that are consistent

with the bounds. This step, called metrization, results in the selection of a random

distance matrix that is representative of a single structure. One at a time, distances are

chosen randomly between the bounds and after each choice, the algorithm performs an

additional step of bound smoothing to incorporate the changes in the constraints that

depend on the new distance (figure 2.6)

Metrization results in a distance matrix that represents a single structure. The next

step, projection, is used to generate a set of coordinates that are consistent with the

distance matrix. Since our bound smoothing algorithm only smoothes based on the

triangular inequality, the distance matrix generated after metrization is guaranteed to be

consistent with distances between the n points in n -1 dimensional space not necessarily

in three dimensions. The projection step finds coordinates in three dimensions with

distances that are closest to the original metrization distances (figure 2.7 and box 2.1).

This projection into three-dimensional space often results in minor violation of

the initial constraints. The final step in the algorithm is optimization of the coordinates so

that they minimally violate the initial distance bounds. We perform the optimization

using a simple error function and the method of steepest descent.

The entire distance geometry process results in an unbiased sampling of the

conformation space defined by the initial distance constraints. Additionally, the bound

smoothing step produces several useful results. First, it allows the consistency of the

constraints to be determined in n- dimensions. This is useful in determining if any
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Figure 2.5 The pro cess of distance geometry generates a matrix of distances (pictured on
the right) that are consistent with a set of distance bounds (pictured on the left) Blue in
the left matrix indicates a distance that is unconstrained (except for along the diagonal
where it indicates zero distance from a point to itself.) The other colors represent upper
bounds on the distances, red indicating the largest.

CONSTRAIN BOUNDS

SMOOTH BOUNDS

CHOOSE D(ij)

Figure 2.6 Diagram of the process of metrization using distance geometry
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Figure 2.7 The projection process takes a matrix of distances and gene rates a set of
coordinates in three-dimensional space.
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subsets of the constraints are impossible to simultaneously satisfy. Second, bound

smoothing generates a set of lower bounds and upper bounds that take into account all

triangular inequalities. These lower and upper bound matrices are themselves

independent distance matrices which represent the most expanded and most contracted

structures in n-1 dimensions that are consistent with the constraints.

Results from Mycoplasma

We used the distance geometry method to model the chromosome structure of the

bacterium Mycoplasma pneumoniae (18). It is nearly a minimal cell with a genome that is

816 kbp long and only 688 genes. It has limited metabolism, no known regulation, and

very few DNA binding proteins (figure 2.8). Since it is so simple, we expect chromosome

structure to be under strong evolutionary selection. We constrained the 110 membrane

protein coding genes to be close to a spherical membrane with the diameter of an average

Mycoplasma cell. We also constrained the 52 annotated ribosomal protein-coding genes

to be close to each other. Furthermore, we constrained the origin and terminus of

replication to be at opposite poles of the cell, an observation that has been made in many

microscopy experiments. Finally, to reflect the geometry of the paired fork model, we

modeled the genome as a flattened circle (with origin and terminus of replication as

poles.)

This resulted in a model with 165 loci (13,530 distances) and 1547 constraints.

With this input, the implementation of our algorithm in MATLAB takes about twenty

minutes to generate a structure. It is therefore possible to generate hundreds of structures
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in a few days time. Below we present some statistical data from analysis of 160 structures

generated using the Mycoplasma constraints. Figure 2.9 shows a particular structure.

Note that the membrane protein coding genes (in blue) are all close to the membrane and

the ribosomal protein coding genes (in red) cluster together. No connecting DNA

segments are shown because the chromosomal distance between subsequently modeled

loci is sufficient to stretch across the cell. Figure 2.10 shows the distribution of distances

between two membrane proteins, a membrane protein and a ribosomal protein, two

ribosomal proteins, and between a ribosomal protein and the center of the cell. These

distributions show that the constraints have been satisfied and show evidence of clusters

of distinct structure classes. For instance, the membrane - membrane protein distribution

appears to be bimodal. Further statistical analysis is necessary before deciding if the

peaks are significant.

Optimization Algorithms

Distance geometry is extraordinarily useful as a rigorous way of defining the

conformational space accessible to a structure given a set of known constraints and also

in allowing the implications of these constraints to be derived. However, within the

framework of distance geometry, the constraints implemented are hard (they must be

satisfied) and, in the case of chromosomes, there are many aspects of a fold that may

reflect optimal, desirable properties but not necessarily required properties. For example

the spatial colocalization of genomic loci encoding components of large protein

complexes may allow for maximally efficient assembly of complexes but such complexes
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Figure 2.9 A visualization of a particular structure. Green sphere: membrane. Blue dots:
membrane: protein coding genes. Red dots: ribosomal genes
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might still be assembled less efficiently without spatial clustering of the coding loci.

These sorts of properties may be optimized subsequent to a hard constraint method like

distance geometry, by constructing a cost function reflecting the degree to which a

particular structure satisfies the desired properties and using an optimization process to

find structures which minimize the cost. For example we can write the degree to which a

conformation spatially colocalizes the ribosome components and places membrane

protein coding genes close the membrane in the cost function below.

C= w- Ed(Mi) +w2 'd,R)
i ij

Equation 2

(where d(Mj,t) is the distance between transmembrane gene i and the membrane,

and d(Rj, Rj) is the distance between ribosomal genes i and j.)

Therefore, we can use distance geometry to produce an ensemble of structures satisfying

an initial set of hard constraints and then optimization based on a cost function with high

weights maintaining the hard constraints of the distance metrization to find optimal

structures within this reduced ensemble. We developed two algorithms to find

configurations that represent optima.

Helichrome

Our first algorithm uses a set of six parameters to describe the chromosome

structure. Here, the constraints are not derived from an initial distance geometry
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metrization but rather from the set of parameters that describe the space of feasible

structures. The parameters define a supercoiled helix which can assume a diversity of

structures from simple helices to complex structures such as the structure pictured in

figure 2.11 top right panel. Supercoiled helices are consistent with known chromatin

structure in higher organisms and have several other desirable characteristics: they

automatically enforce the polarity of the origin and terminus of replication, and add a

degree of order to the structure which should solve some problems of entanglement

associated with replication. Box 2 (top) lists the six parameters. Large and small refer to

the primary helix and supercoil, and the large helix frequency is an extra oscillation that

changes the overall radius of the large helix as a function of the arc length.

Mathematically these structures are described by the equations for a local helix in the

frenet frame defined by the large helix. The equations are listed in vector form in the

bottom of box 2.

Using helichrome we perform a random walk in the parameter space, beginning

with randomly generated initial structures and then randomly change parameters to

generate test structures for each iteration. The cost of the test structure is compared with

the previous structure. If lower, the new structure is accepted. If higher, it is accepted

with probability e C where AC is the difference in cost between the new structure and

the old and P3 is the 1/kT, a Botzmann factor that varies inversely with the temperature.

The temperature is lowered according to an "annealing schedule" beginning with high

temperatures at early iterations so that structures of higher energy are frequently accepted

and decreasing so that in later iterations the structures "anneal" to a final state.
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Figure 2.11 Results of Helical Optimization with Helichrome. Top left: Simple supercoil
and right complex supercoils. Red indicates ribosomal coding gene, blue membrane
protein coding gene. Bottom: Simple helix with added cosine modulation colored in order
of distance from replication origin.
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After many iterations the resulting structures are of significantly lower energies than the

initial structure and cluster into a small number of structure kinds (figure 2.12.) These

structures visibly meet many of the constraints. A few examples are shown in the figure

2.11.

Optchrom

Our second algorithm is a simple random walk of a freely jointed chain. We

model the chromosome as a series of n points (816 in most of our runs.) At each iteration,

we make a random movement of the structure, evaluate the change in cost, and accept or

reject the new structure based on a Boltzmann probability. Again, after many iterations

the resulting structure have much lower cost than the initial structure. Here, however,

there are 2n -1 parameters and the structures have immense freedom.

Figure 2.13 shows a schematic representation or Optchrom. The panel on the left

represents part of the freely jointed chain where the pink point is being moved. The panel

on the right depicts the random movement generated by choosing a random displacement

r and random direction defined by angles 0 and p.

Our primary use for the algorithm has been to refine the structures that result after

optimization with Helichrom although it could easily be used to optimize the results of

distance geometry metrization. When used in this way, Optchrom allows local

optimization and introduction of disorder to the Helichrom structures so that they better

meet the constraints. The resulting structures are generally of lower energy than the initial

Helichrom structures but maintain, to some extent, the large scale order of the initial

structure (figure 2.14).
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Figure 2.13 Schematic of Freely Jointed Chain Random Walk, Optchrom. Left:
Displacement of a point on the structure and Right: Choice of the size and direction of the
displacement.



Figure 2.14 The results of Optchrom. Top left: Initial structure. Top right: structure of
after relaxation through optchrom viewed from the side Bottom: top view of relaxed
structure. In all panels, red indicates ribosomal protein coding gene. Blue indicates
membrane protein coding gene.



Predictions and possible experimental tests

Once we have generated an ensemble of structures that sample the conformation

space of a given set of constraints it is possible to make predictions about the outcome of

various experiments. We can, for example, predict the maximum or minimum distance

between two points given the initial bound constraints and the initial smoothing in

distance geometry. Such predictions could be verified by confocal microscopy using

fluorescently labeled loci. We can also make global predictions about the distribution of

distances that are expected in measurements (i.e. the flexibility of a locus) or the

distribution of cross-linking frequencies that we expect in an experiment like

chromosome conformation capture (10).

These predictions can be useful in many ways. They can allow us to distinguish

between the viability of one particular set of constraints and another. The results of an

experiment might allow us to rule out certain theoretical constraints as simply

inconsistent with the data. Additionally we may be able to prescribe certain specific

measurements that would allow us to distinguish between different structure classes of a

given constraint set.

We expect there to be a close relationship between experiment and computation

where experiments provide constraints and validation for structural models, and models

provide direction for experiments. We believe that this work introduces an important new

strategy for modeling large-scale structures in the cell and potentially provides a starting

point for future cellular level studies based on evolutionary optimality.
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Chapter 3

"Just in place" functional organization of bacterial
chromosomes

(manuscript in preparation with Daniel Segr& and Peter Kharchenko)
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Abstract

Bacterial chromosomes are compacted hundreds of times to fit within the cell1 ' 5 . In spite

of this complexity, in several bacteria the compacted structure has been shown to be

highly symmetric and ordered along the long-axis of the cell6'7. It is believed that the

resulting folding of the genome is important for transcription and replications, but the

structure remains unclear. Pairs of spatially close chromosomal loci can be used as

constraints on the structure9 . Here, by analyzing computationally 105 bacterial genomes,

we identify a large putative set of such pairs and study their distribution along the E. coli

chromosome. We find that paired genes are regularly spaced at multiples of 117Kb over

the whole chromosome length. This pattern, along with the axial order, suggests that each

half of the chromosome (or arc) is organized into a 117Kb periodic structure, potentially

a helix. The periodic looping of the structure would align most paired genes along a

single cell-long axis in each arc, similar to amphipathic oc-helical proteins. Additionally,

we find that the positions of the pairs are highly correlated with genome-wide expression.

Thus the axial regions would correspond to hotspots of intense transcriptional activity,

possibly a sign of selective pressure for optimal (or "just in place") localization of highly

transcribed genes.
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Bacterial chromosomes are organized, at the local level (-10Kb), into small

irregular supercoiled domains which play an important role in transcriptions'1 °'1 . Recent

fluorescence microscopy measurements in several bacteria have shown that loci are

highly localized and undergo choreographed dynamics7 '12 . In addition, longitudinal

position of a locus in the cell in several bacteria has been shown to be linearly related to

chromosomal distance from the origin of replication along each arc (Fig. 3.1)6' 7. It is not

known how the topological domains are folded up into this high degree of order'3 .

However, several studies showing long-range correlations and periodicities in expression

and sequence along the chromosome, suggest that this folding may both be regularly

structured and functionally significant'4 '8.

We approach this problem from an evolutionary perspective. If the spatial

organization of genes due to the folding of the chromosome is functionally important,

then it will be under selection pressure during evolution'9 . We therefore expect to find

signatures of spatial selection in genome sequences. In particular, we look for gene pairs

selected to maintain spatial vicinity on the fold. Such pairs would represent constraints on

the structure. This evolutionary perspective, which we address through comparative

genomics20'21, allows us to simultaneously identify potential structural constraints and

their functional relevance. We concentrate on a resolution above -20Kb, beyond the

shortest expression correlations 16 ' 7 and the average size of topological domains'. In the

first part of our work we describe the methods used to identify the close pairs, in the
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second we analyze their distributions along the chromosome of E. coli, and lastly we

discuss structural implications.

We computationally identified potential spatially close pairs based on their

preference for close chromosomal positions, and their functional dependence (measured

by phylogenetic co-occurrence2 2) in several bacterial genomes (see Methods.) We

hypothesized that close chromosomal position preference across many genomes together

with functional dependence will reflect preference for spatial vicinity. Our search

spanned 5,000 genes and their orthologs in 105 bacterial genomes (a total of 12.5 million

pairs) and yielded over 34,218 pairs, at a p-value cutoff of 10-0.

In order to analyze the properties of the pairs, we take explicitly into account the

symmetry between the two chromosomal arcs6' 7 (Fig. la). We therefore divide the pairs

into two sets: those that are within a single arc (adjacent-pairs), which could yield

information on the folding of each arc (Fig. la), and those that are on opposite arcs

(across-pairs), which could give information about the relative position of the arcs. For

each set we define a chromosomal distance: an adjacent-distance for each adjacent pair,

defined as the gene-gene distance along the genome sequence. And an across-distance,

for each across pair, defined as the difference in distances of the genes from the origin,

(Fig. 3.1). The across-distance reflects the deviation from perfect symmetry. The

distributions of these chromosomal distances should bear the signature of different

chromosomal folds (Supplementary Fig. 3.S 1).

We first examined whether the selected pairs show signs of the observed

closeness of symmetric points about the origin of replication (Fig. 3.1 and Refs 6,7). To

do this, we
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studied the distribution of the across-distances over many genomes (see Methods.) The

distribution is significantly different from random (p<10-300), displaying a pronounced

skew towards high-symmetry values (Fig. 3.2). In many individual genomes, the pair

information is significant enough to allow an unbiased prediction of the position of the

origin of replication (Fig. 3.3).

Next, we examined the distributions of adjacent and across-distances in detail in

E. coli. For both distributions, the expectation for a random fold is a curve peaked at zero,

which decreases monotonically and linearly with increasing distances (Supplementary

Figure 3.S2).. Instead, the distribution of adjacent-distances reveals a series of major

peaks that are spaced at intervals of 117 kb (Fig. 3.4, and Fourier spectrum inset). This

observation is consistent with correlations of 115kb in genome-wide expression

data14' 161 7 and periodicities of -100Kb2 3. The distribution of across-distances displays a

similar set of peaks, spaced also at 117Kb (Fig. 3.5). We find similar patterns in other

organisms (in particular C. crescentus, see Supplementary Fig. 3).

To study whether these preferred distances occur between genes anywhere along

the genome or are confined to certain regions, we analyzed the pair density along the

chromosome, defined as the number of times a gene is involved in pairs with other genes.

The density curves were normalized to correct for possible biases in overall gene density.

As shown in Fig. 3.6, the adjacent-pair position distribution is far from uniform, having

strong peaks at preferred positions throughout the genome. The across-pair distribution

displays the same set of peaks. Notably, the most prominent peaks, or pair clusters, are
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arranged on a single grid spaced at the same 117kb period, which spans the entire length

of each chromosome arc symmetrically (Fig. 3a).

Thus, we observe a strong periodicity in the distances between the paired genes,

and in the positions they occupy, which extends over the entire length of the genome.

Since we expect pairing to indicate spatial vicinity, these patterns suggests that each arc

is organized into a set of 117Kb loops which bring the pair clusters close together in

space. Because of the experimental evidence of linear longitudinal order7 (Fig. la), we

propose that the loops in each arc are arranged into a cell-long stack, potentially a helix.

The pair clusters may then align along two (possibly coinciding) longitudinal axes or

faces (Fig. 3.9). Each axis would be analogous to the hydrophobic face of an amphipathic

a-helical protein2 4

While the pair clustering at particular chromosomal locations (and hence along

the axes described above), leaves the detailed geometry of the loops unknown, it also

prompts the question: is the pairing along a single axis indicative of some benefit to the

cell? A first answer to this question comes from the observation that gene pairs contain

many transcription and translation-related genes (Supplementary Table). To study the

functional implications in more detail, we analyzed genome-wide expression data.

Specifically we examined the correlation between pair density and absolute gene

transcriptional level derived from log growth expression data for E. coli (Ref 14 and

Methods). As visualized in Fig. 3.7, the pair density profile recapitulates often in fine

details the expression profile along the entire chromosome. This relationship, which is

also confirmed by a correlation coefficient of 0.6 (p-val=l 032), indicates that the
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periodically positioned clusters of paired genes along the entire chromosome are hotspots

of intense transcriptional activity. Intriguingly, this correlation decreases as E. coli enters

stationary phase (Supplementary Fig. 3.S5), suggesting that the hotspots of transcription

are important specifically for log phase growth.

These results can be integrated to objectively evaluate quantitative models of

chromosome structure, and understand their biological implications. In particular,

by interpreting the pairs as close distance constraints, we can calculate a goodness of fit

(similar to RMS in molecular modeling), by ascribing an energy to any given structure.

Since the pair cluster data suggest a cell long stack of loops for each arc, we began our

analysis with two simple helices, one for each arc. Analyzing the energy as a function of

the period (Fig. 3.8a) and the relative rotation of the helices (Fig. 3.8b) shows a narrow

optimum (Fig. 3.9 a,b). We also analyzed structures in which consecutive loops along the

stack in each arc are rotated relative to each other, thereby maintaining the axial

alignment of pair clusters (Fig. 3.10b, Supplemental Fig. 3.S6 and Methods). The ensuing

optimal structure (Fig. 3.10b) is a coiled coil, characterized by a 580Kb periodicity in

addition to the 117Kb loop organization, consistent with previously observed longer-

range periodicities'41 ,6 ,17 and longer range periodicities observed in the pair density

(Supplementary Fig. 3.S7). Structural models can also be overlapped with functional

information, as exemplified by the helical moments24 shown in Fig. 3.9c. In several

optimal structures obtained (Fig. 3.9a,b 3.10 Ob), a pair cluster axis common to both arcs is
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positioned in the center of the nucleoid, which correlation with expression indicates is a

high transcriptional region. This is consistent with the observation that transcription plays

a role in organizing the nucleoid'8 , and in particular with the localization of RNA

polymerase in foci at the center of the bacterial nucleoid2 5 27 . Interestingly, this

localization of RNA polymerase to the center of the nucleoid is also related to log phase

growth; the foci disperse in other conditions2 6 analogous to the way in which the

expression correlation with pair density decreases during the time course into the

stationary phase.

Our analysis infers, solely on the basis of bacterial genome sequences, a set of

strongly symmetric and periodic gene distribution signals. These signals are consistent

with observations from microscopy, expression correlation, and absolute expression

level. This suggests that these evolutionarily chosen genes pairs are representative of a

structural periodicity and that this periodicity is functionally relevant. The interpretation

of a periodically looped chromosome fold coherently fits all of the observations and

offers a strong biological explanation for the pairing. While potential alternative

interpretations may be possible, they would have to explain the observed symmetry,

distance and density periodicities, as well as expression correlation.

We do not expect the chromosome to be statically organized. Rather, we expect

that the features of the fold we describe are related to log-phase growth and that the

structure may exhibit complex dynamics through replication6' 7' 12 as well as condition-

dependent changes2'18,19' 28. Additionally, the 117kb loops we describe should be viewed

as approximate backbones composed of smaller-scale, possibly irregular, topological

domains (Supplementary Fig. 5). In our modeling, we used pair data as structural
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constraints on the fold. Extensions of these quantitative approaches (e.g. Distance

Geometry29) and optimization algorithms13 , incorporating a range of experimental,

computational and physical constraints may, like in the case of proteins, be used for

detailed chromosome folding predictions. Additional experimental data, for example

directly measuring the propensity of different chromosomal loci to be spatially close,

could help test our predictions, and provide additional useful constraints. Moreover,

observations of fitness changes following transpositions of genomic regions containing

pair clusters may serve as direct tests of the proposed models.

The high correlation between pair density and genome-wide expression level

holds independently of any specific interpretation. However, we interpret this correlation

as indicative of an evolutionarily optimized organization which maintains highly

transcribed genes in specific chromosomal locations. This "just in place" principle, which

extends to the space domain the use of optimality30' 31, may be responsible in general for

placing specific genes in positions where they can be maximally efficient: for example

membrane proteins near the membrane3 2, or components of large macromolecular

complexes where they can be cotranslated and assembled. The optimization almost

certainly reflects replication and ordered structures, such as the ones we propose (Fig

5a,b), would help minimize entanglement during replication.

A optimization of the chromosome fold for transcription is in line with previous

hypotheses'8 of nucleoid organization as well as with emerging understanding of

analogous organizational principles in the eukaryotic nucleus8' 18' 19' 33. This suggests that

comparative genomics approaches similar to ours may be used also in the context of
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eukaryotes. iJltimately, genome sequences and their structures may turn out to be highly

interdependent aspects of a single, finely tuned system.
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Methods

Selection of gene pairs according to vicinity on the chromosome and philogenetic co-

occurrence

First, evolutionary clustering of genes on the chromosome was calculated based on the

null hypothesis that orthologous genes are randomly ordered on the chromosomes. For a

pair of genes x and y, chromosome clustering was evaluated as a probability

P(x,y) = InPg (D < dg(x,y)), where G is a set of query genomes and Pg (D < dg(x,y))
geG

is a probability of observing gene order distance D less then or equal than dg (x, y) - the

distance between orthologs of genes x and y in the organism g. P, was calculated

numerically under the null hypothesis, based on the organism chromosome sizes. The

results are based on a set of 105 bacterial and three eukaryotic genomes (S. cerevisiae, S.

pombe, C. elegans) from Genbank. The set was screened to eliminate closely related

species, using- ortholog occurrence mutual information threshold of 0.9. Orthology

mapping was established using best bi-directional orthologs from KEGG SSDB34.

Phylogenetic profile co-occurrence association was assessed using hypergeometric

probability distribution, as described in Ref. 22. The orthologs were determined using

best bi-directional BLASTP hits against NCBI NR protein dataset. Organisms containing

orthologs for less than 1% of S. cerevisiae genes were excluded from calculations.

Pairs of genes were selected by taking all pairs of orthologs with phylogenetic co-

occurrence and chromosome clustering scores of p-value < 1100
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Across and adjacent distances on chromosome arcs

The chromosome was separated into two halves (arcs), clockwise from origin to terminus

(right arc) and counterclockwise from origin to terminus (left arc) (see Fig. 3.1). A gene

pair was considered adjacent if genes were both on the same arc and across if genes were

on opposite arcs. Each gene was assigned a coordinate g, representing its distance from

the origin, and gene-gene distances were calculated as the difference in these coordinates

(gl - g2), "across-distances" for across-pairs and "adjacent-distances" for adjacent pairs.

The origin positions were taken from the Genome Atlas

(http ://www.cbs.dk/services/GenomeAtlas)

Distribution of the across-distances over many genomes

The histogram for selected gene pairs was constructed by taking all pairs in a subset of 68

bacteria for which we had mappings through Clusters of Orthologous Groups (COGS)

(http://www.ncbi.nlm.nih.gov/COG/) and calculating the across-distance for all pairs in

all genomes where the genes were on opposite arms. The p-value was calculated using a

Kolmogorov-Smimov distribution test.

Prediction of the position of the origin of replication

The position of the origin of replication in E. coli was computationally rotated to each of

360 equally spaced positions along the chromosome. For each position, the across

distance was calculated for all pairs placed on opposite arms of the chromosome for this

choice of origin. The symmetry score was calculated as the number of pairs with across
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distance, d < 200,000 excluding all pairs with genomic positions about the rotated origin

or terminus that differ by less than 200,000.

Distributions of Distances and Positions, and Fast Fourier Transform

All pairs in E. coli were classified as either across (on opposite arms) or adjacent (on the

same arm) as defined above. We constructed a histogram of the genomic distances

between the genes in each pair for a particular class, using adjacent distances for adjacent

pairs and across distances for across pairs. We estimated the continuous probability

density for the distances between the pairs in the across and in the adjacent classes using

a Gaussian smoothing window ( = 4000bp) with the ksdensity function in MATLAB

(smoothing with a Gaussian window and normalizing the total density to 1.) We then

took the discrete Fourier transform using a standard Tukey window to taper the ends

(ratio of .75 fr tapered to untapered length) and a length of 200,000.

The position densities were calculated using the Gaussian smoothing estimate above with

o = 8000bp. The grid at 1 17Kb was fit to the center of the largest peak in each half of the

chromosome.

Expression correlation

We calculated an average of the absolute transcript level for wild type standard growth

conditions (M-OPS minimal glucose) measured on 5 affymetrix microarrays in the ASAP

database (www.genome.wisc.edu/tools/asap.htm) Data reported in (Allen et al.14 ) This

data was smoothed using a truncated gaussian c = 8000bp (maximum width 16,000bp.)

We calculated the Pearson correlation coefficient of the smoothed data with the pair
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position density, sampling once every 16,000 bp to avoid smoothing artifacts. The p-

value was computed using a t-test with n -2 degrees of freedom (n is the length of the

data.) The p-value and correlation coefficient did not vary significantly with the choice of

sampling phase.

Three-dimensional models and energy landscapes

Simple helix

The coordinates of the helices were calculated according to the helical equations

x = rcos(t)
y = rsin(t)

z = pt

where r = .30, which is 3/4 of the diameter (in microns) of the E. coli cell, and the pitch, p

was varied to reflect different periods of looping. Genes were assigned to the helices by

dividing the total arc length of the helix that fits inside the cell (height or z coordinate

2.5 pm) into segments that each represent 1 kb of a genome arc (2320 segments in E.

coli.)

Planar Supercoils

Planar supercoils were constructed according to the equations.

x = r(cos(ft) + cos(gt))

y = r(sin(ft) + sin(gt))
z=t

where r is a radius of .15,

f 2r

mk
g =(k+ )f
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Where, m is the period of the small supercoils and k is the number of small rotations per

large supercoiling rotation.

Energy Landsapes

To evaluate how well a given structure satisfies the constraints derived from the selected

gene pairs, w-e calculated the sum S of the spatial distances between all pairs (k) on the

model structure:

S = ZDk
k

where Dk is the Euclidean distance between the positions occupied by the two genes in

pair k. The coordinate of each gene along the genome was taken to be the position of its

center.
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Supplementary Material

Supplementary Methods

Wavelet Analysis

We calculated the 2D wavelet spectrum of the CCP pair position density using a morlet

wavelet with wavenumber cow = 5 according to the equation

'Iy(t) = . - e- ( -)

where

t :2

and the normalization is

= + ( + 2-- -2 -i 22
the relationship between the wavenumber and the scale is given by

( g'o -) - 1 = (LA2 - 1)e-awI

We summed the [¢tv[2 across all positions t, for each scale, a to get the total wavelet

intensity independent of position at each scale.
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Supplemental Table 1

I d 1 1P- MI I M 
S)

Peak
Numbe
r 1.

UDP-N-acetylenolpyruvoylglucosamine
3972 247 118 reductase

biotin-[acetylCoA carboxylase] holoenzyme
3973 248 34 synthetase and biotin operon repressor
3981 252 28 preprotein translocase

3982 252 228 component in transcription antitermination

3983 253 120 50S ribosomal subunit protein Lll

50S ribosomal subunit protein L1,
3984 253 144 regulates synthesis of Ll and L11

3985 255 198 50S ribosomal subunit protein L10

3986 255 174 50S ribosomal subunit protein L7/Li2
3987 258 32 RNA polymerase, beta subunit

3988 262 78 RNA polymerase, beta prime subunit
Peak
Numbe
r2

enzyme in methyl-directed mismatch
4170 473 18 repair

delta(2)-isopentenylpyrophosphate tRNA-
41'71 474 150 adenosine transferase

host factor I for bacteriophage Q beta
4172 475 10 replication, a growth-related protein
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GTP - binding subunit of protease specific
4173 476 10 for phage lambda cII repressor

protease specific for phage lambda cII
41.74 477 4 repressor

protease specific for phage lambda cII
41.75 478 10 repressor
4177 480 38 adenylosuccinate synthetase
4179 482 18 ribonuclease R
41.80 484 172 orf, hypothetical protein
Peak
Numbe
r4

23 737 174 30S ribosomal subunit protein S20
25 738 198 flavokinase and FAD synthetase
26 740 70 isoleucine tRNA synthetase

27 741 186 prolipoprotein signal peptidase (SPase II)
29 743 88 IspH protein
31 745 120 dihydrodipicolinate reductase

carbamoyl-phosphate synthetase,
32 746 10 glutamine (small) subunit

carbamoyl-phosphate synthase large
33 748 8 subunit
Peak
Numbe
r5

3-isopropylmalate isomerase
72 796 30 (dehydratase) subunit
74 799 10 2-isopropylmalate synthase

acetolactate synthase III, valine sensitive,
77 802 8 large subunit

acetolactate synthase III, valine sensitive,
78 804 6 small subunit
81 806 10 orf, hypothetical protein
82 806 204 putative apolipoprotein

septum formation; penicillin-binding
84 808 190 protein 3; peptidoglycan synthetase

85 810 204 meso-diaminopimelate-adding enzyme

86 811 174 D-alanine: D-alanine-adding enzyme

98



phospho- N -acetylm uramoyl- pentapeptide
87 812 88 transferase?

UDP-N-acetylmuramoylalanine-D-
88 814 228 glutamate ligase

cell division; membrane protein involved in
89 815 112 shape determination

UDP-N-acetylglucosamine: N-
acetylmuramyl- (pentapeptide)
pyrophosphoryl-undecaprenol N-

90 816 234 acetylglucosamine transferase

L-alanine adding enzyme, UDP-N-acetyl-
91 817 186 muramate:alanine ligase

D-alanine-D-alanine ligase B, affects cell
92 819 4 division

cell division protein; ingrowth of wall at
93 819 14 septum

ATP-binding cell division protein, septation
process, complexes with FtsZ, associated
with junctions of inner and outer

94 821 96 membranes
cell division; forms circumferential ring;
tubulin-like GTP-binding protein and

95 822 32 GTPase

UDP-3-O-acyl N-acetylglucosamine
96 823 32 deacetylase; lipid A biosynthesis

98 826 164 preprotein translocase; secretion protein
103 829 20 putative DNA repair protein
Peak
Numbe
r6

2,3,4,5-tetra hyd ropyridi ne- 2-ca rboxylate
166 901 14 N-succinyltransferase

protein PII; uridylyltransferase acts on
167 903 2 regulator of glnA
168 905 134 methionine aminopeptidase

169 906 44 30S ribosomal subunit protein S2

170 907 158 protein chain elongation factor EF-Ts
171 908 200 uridylate kinase
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172 909 216 ribosome releasing factor

2-C-methyl-D-erythritol 4-phosphate
synthase; 1-deoxy-D-xylulose 5-phosphate

173 910 28 reductoisomerase
undecaprenyl pyrophosphate synthetase
(di-trans,poly-cis-

174 911 76 decaprenylcistransferase)
175 912 126 CDP-diglyceride synthetase
176 913 202 putative protease

177 915 26 putative outer membrane antigen
UDP-3-O-(3-hydroxymyristoyl)-

179 917 30 glucosamine N-acyltransferase
(3R)-hydroxymyristol acyl carrier protein

180 918 54 dehydratase

UDP-N-acetylglucosamine
181 919 24 acetyltransferase; lipid A biosynthesis

tetraacyldisaccharide-1-P; lipid A
182 920 42 biosynthesis, penultimate step

RNAse HII, degrades RNA of DNA-RNA
183 921 54 hybrids

184 923 234 DNA polymerase III, alpha subunit

acetylCoA carboxylase, carboxytransferase
185 925 74 component, alpha subunit
188 929 236 tRNA(Ile)-lysidine synthetase
194 934 140 proline tRNA synthetase

D-methionine transport protein (ABC
197 936 12 superfamily, peri_bind)

D- and L-methionine transport protein
198 937 12 (ABC superfamily, membrane)

D- and L-methionine transport protein
199 938 10 (ABC superfamily, atp_bind)
Peak
Numbe
r7

positive and negative sensor protein for
400 1134 16 pho regulon
403 1139 2 maltodextrin glucosidase
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synthesis of queuine in tRNA; probably S-
adenosylmethionine tRNA

405 1141 160 ribosyltransferase-isomerase
406 1142 86 tRNA-guanine transglycosylase
407 1143 184 orf, hypothetical protein

protein secretion; membrane protein, part
408 1144 106 of the channel

409 1145 14 protein secretion, membrane protein
41.3 1148 110 orf, hypothetical protein

diaminohydroxyphosphoribosylaminopyrimi
dine deaminase; 5-amino-6-(5-

414 1149 86 phosphoribosylamino)uracil reductase
415 1150 48 riboflavin synthase, beta chain

416 1150 274 transcription termination; L factor
417 1151 26 thiamin-monophosphate kinase
41.8 1152 4 phosphatidylglycerophosphatase

gera nyltranstra nsferase (farnesyl-
421 1156 98 diphosphate synthase)
422 1156 100 exonuclease VII, small subunit
423 1157 2 sulfur transfer protein

protoheme IX farnesyltransferase (haeme
428 1162 16 O biosynthesis)

431 1165 2 cytochrome o ubiquinol oxidase subunit I

435 1170 2 possible regulator of murein genes

trigger factor; a molecular chaperone
436 1171 238 involved in cell division

ATP-dependent proteolytic subunit of cIpA-
clpP serine protease, heat shock protein

437 1172 54 F21.5

ATP-dependent specificity component of
438 1173 136 clpP serine protease, chaperone

DNA-binding, ATP-dependent protease La;
439 1175 8 heat shock K-protein

440 1177 14 DNA-binding protein HU-beta, NS1 (HU-1)
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1178
1179

64
4

peptidyl-prolyl cis-trans isomerase D
orf, hypothetical protein

1380 50 a minor lipoprotein

rod shape-determining membrane protein;
1381 62 sensitivity to radiation and drugs

1382
1384
1384
1385

1386
1389

40
74
238
84

6
110

cell elongation, e phase; peptidoglycan
synthetase; penicillin-binding protein 2
orf, hypothetical protein
orf, hypothetical protein
NAMN adenylyltransferase

DNA polymerase III, delta subunit
leucine tRNA synthetase

glycerolphosphate auxotrophy in plsB
1090 1863 62 background

3-oxoacyl-[acyl-carrier-protein] synthase
1091 1864 38 III; acetylCoA ACP transacylase

malonyl-CoA- [acyl-carrier-protein]
1092 1865 34 transacylase

1866
1867

2
80

3-oxoacyl-[acyl-carrier-protein] reductase
acyl carrier protein
3-oxoacyl-[acyl-carrier-protein] synthase

1095 1868 2 II

1097 1870
1098 1871
1100 1872
1103 1877
1107 1880
Peak
Numbe
r 10

1203 1972

98
40
188
104
10

putative thymidylate kinase (EC 2.7.4.9)
thymidylate kinase
orf, hypothetical protein
orf, hypothetical protein
beta-N-acetylglucosaminidase

168 putative GTP-binding protein
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441
442
Peak
Numbe
r8
633

634

635
636
637
639

640
642
Peak
Numbe
r9

1093
1094



1204 1973 314 peptidyl-tRNA hydrolase

1207 1977 124 phosphoribosylpyrophosphate synthetase
4-diphosphocytidyl-2-C-methyl -D-

1208 1978 186 erythritol kinase
1209 1978 2 outer-membrane lipoprotein
1210 1979 4 glutamyl-tRNA reductase

1211 1981 228 peptide chain release factor RF-1

1212 1982 130 possible protoporphyrinogen oxidase

2-dehydro-3-deoxyphosphooctulonate
1215 1984 46 aldolase
Peak
Numbe
r 11

phenylalanine tRNA synthetase, alpha-
1714 2127 150 subunit

50S ribosomal subunit protein L20, and
1716 2126 84 regulator
1717 2126 68 50S ribosomal subunit protein A

1718 2125 102 protein chain initiation factor IF-3
1719 2124 126 threonine tRNA synthetase
Peak
Numbe
r 12

High-affinity zinc uptake system
1857 1984 14 periplasmic protein

High-affinity zinc uptake system ATP-
1858 1983 2 binding protein

High-affinity zinc uptake system
1859 1982 52 membrane protein

Holliday junction helicase subunit A;

1860 1981 158 branch migration; repair

Holliday junction helicase subunit B;

1861 1980 182 branch migration; repair

1862 1979 0 orf, hypothetical protein

Holliday junction nuclease; resolution of
1863 1979 90 structures; repair
1864 1978 74 orf, hypothetical protein

1866 1976 158 aspartate tRNA synthetase
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Peak
Numbe
r 13

2507 1294 96 GMP synthetase (glutamine-hydrolyzing)
2508 1292 46 IMP dehydrogenase
2509 1291 148 exonuclease VII, large subunit
2511 1289 180 putative GTP-binding factor
2514 1286 130 histidine tRNA synthetase

1-hydroxy-2-methyl-2-(E)-butenyl 4-
2515 1284 96 diphosphate synthase
2516 1283 4 putative membrane protein
2517 1282 98 orf, hypothetical protein
2518 1281 52 nucleoside diphosphate kinase
Peak
Numbe
r 14

2559 1228 20 tRNA-specific adenosine deaminase
2562 1226 10 orf, hypothetical protein

CoA: a po-[acyl-ca rrier-protein]
2563 1225 68 pantetheinephosphotransferase
2564 1224 20 pyridoxine biosynthesis

protein interacts with RecR and possibly
2565 1224 4 RecF proteins
2566 1223 156 GTP-binding protein
2567 1222 174 RNase III, ds RNA

2568 1221 218 leader peptidase (signal peptidase I)
GTP-binding elongation factor, may be

2569 1220 236 inner membrane protein

RNA polymerase, sigma-E factor; heat
2573 1216 8 shock and oxidative stress
Peak
Numbe
r 15
2593 1191 86 orf, hypothetical protein

2594 1190 158 23S rRNA pseudouridine synthase
2595 1189 48 orf, hypothetical protein

chorismate mutase-P and prephenate
2599 1187 36 dehydratase
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2606 1181 196 50S ribosomal subunit protein L19
tRNA methyltransferase; tRNA (guanine-7-

2607 1181 248 )-methyltransferase
2608 1180 154 16S rRNA processing protein

2609 1180 70 30S ribosomal subunit protein S16

GTP-binding export factor binds to signal
2610 1179 98 sequence, GTP and RNA

phage lambda replication; host DNA
synthesis; heat shock protein; protein

2614 1175 72 repair
2615 1174 80 orf, hypothetical protein

protein used in recombination and DNA
2616 1173 142 repair
2619 1171 12 orf, hypothetical protein
2620 1171 280 small protein B
Peak
Numbe
r 16

methionine adenosyltransferase 1 (AdoMet
synthetase); methyl and propylamine

2942 838 124 donor, corepressor of met genes
2946 834 246 orf, hypothetical protein
2947 833 8 glutathione synthetase
2948 833 12 orf, hypothetical protein
2949 832 178 orf, hypothetical protein
2950 831 4 putative protein transport
2951 830 26 orf, hypothetical protein

conserved hypothetical integral membrane
2952 830 22 protein
2954 829 44 putative ribosomal protein
2955 828 158 putative oxidase
2960 823 82 orf, hypothetical protein
Peak
Numbe
r 17

3064 716 182 putative O-sialoglycoprotein endopeptidase

3065 715 50 30S ribosomal subunit protein S21
3066 714 246 DNA biosynthesis; DNA primase
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RNA polymerase, sigma(70) factor;
regulation of proteins induced at high

3067 712 126 temperatures
3071 709 2 orf, hypothetical protein
Peak
Numbe
r 18

31.62 619 2 inducible ATP-independent RNA helicase
3163 617 0 lipoprotein

polynucleotide phosphorylase; cytidylate
3164 616 104 kinase activity

3165 614 180 30S ribosomal subunit protein S15
3166 613 44 tRNA pseudouridine 5S synthase
3167 613 114 ribosome-binding factor A

3168 611 82 protein chain initiation factor IF-2
3169 609 288 transcription pausing; L factor
31.70 608 176 orf, hypothetical protein
31.72 606 22 argininosuccinate synthetase
31.73 605 0 putative alkaline phosphatase I

3175 603 28 protein export - membrane protein
3176 602 8 phosphoglucosamine mutase
3177 601 16 7,8-dihydropteroate synthase

degrades sigma32, integral membrane
3178 600 72 peptidase, cell division protein
3179 598 12 23 S rRNA methyltransferase
3180 598 6 orf, hypothetical protein

transcription elongation factor: cleaves 3
3181 597 208 nucleotide of paused mRNA

D-alanyl-D-alanine carboxypeptidase,
3182 596 0 fraction B; penicillin-binding protein 4
3183 595 186 putative GTP-binding factor
3184 593 0 orf, hypothetical protein

3185 593 222 50S ribosomal subunit protein L27

3186 592 264 50S ribosomal subunit protein L21

3187 592 6 octaprenyl-diphosphate synthase
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3188 591 0

3189
3190
3191
3192
31.93
31.94

590
589
589
588
588
587

202
0
0
2
4
28

3195 586 16

regulatory factor of maltose metabolism;
similar to Ner repressor protein of phage
Mu

first step in murein biosynthesis;UDP-N-
glucosamine 1-carboxyvinyltransferase
orf, hypothetical protein
orf, hypothetical protein
orf, hypothetical protein
orf, hypothetical protein
orf, hypothetical protein
putative ATP-binding component of a
transport system

3196 585 0 orf, hypothetical protein
3197 584 6 putative isomerase
3198 583 0 orf, hypothetical protein
3199 583 0 orf, hypothetical protein
3200 582 2 orf, hypothetical protein

putative ATP-binding component of a
3201 581 12 transport system

RNA polymerase, sigma(54 or 60) factor;
3202 580 0 nitrogen and fermentation regulation

3203 579 6 probable sigma-54 modulation protein

phosphotransferase system enzyme IIA,
3204 579 0 regulates N metabolism
3205 578 22 orf, hypothetical protein
Peak
Numbe
r 19
3279
3280
3281
3282
3283
3284
3287

3288

496
496
495
495
494
494
492

0

0

0

14
0

0

152

putative transferase
orf, hypothetical protein
dehydroshikimate reductase
orf, hypothetical protein
putative DNA topoisomerase
orf, hypothetical protein
peptide deformylase

10-formyltetrahydrofolate: L-methionyl-
491 188 tRNA(fMet) N-formyltransferase

107



3289 490 22 16S rRNA m5C967 methyltransferase
3290 489 0 transport of potassium
3291 488 0 mechanosensitive channel

3292 487 8 Zn(II)-responsive transcriptional regulator
3293 486 0 orf, hypothetical protein

3294 486 134 50S ribosomal subunit protein L17
3295 485 142 RNA polymerase, alpha subunit

3296 484 168 30S ribosomal subunit protein S4

3297 484 64 30S ribosomal subunit protein S11l

3298 483 64 30S ribosomal subunit protein S13

3299 483 2 50S ribosomal subunit protein L36

3300 482 112 putative ATPase subunit of translocase

3301 481 198 50S ribosomal subunit protein L15

3302 481 70 50S ribosomal subunit protein L30

3303 481 94 30S ribosomal subunit protein S5

3304 480 166 50S ribosomal subunit protein L18

3305 480 160 50S ribosomal subunit protein L6
30S ribosomal subunit protein S8, and

3306 479 96 regulator

3307 479 76 30S ribosomal subunit protein S14

3308 479 88 50S ribosomal subunit protein L5

3309 478 174 50S ribosomal subunit protein L24

3310 478 80 50S ribosomal subunit protein L14

33:11 477 92 30S ribosomal subunit protein S17

3312 477 52 50S ribosomal subunit protein L29

3313 477 80 50S ribosomal subunit protein L16

3314 476 76 30S ribosomal subunit protein S3
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476 126 50S ribosomal subunit protein L22

3316 475 54 30S ribosomal subunit protein S19

3317 475 82 50S ribosomal subunit protein L2

3318 474 60 50S ribosomal subunit protein L23

50S ribosomal subunit protein L4,
3319 474 88 regulates expression of S10 operon

3320 473 96 50S ribosomal subunit protein L3

3321 473 46 30S ribosomal subunit protein S10

calcium-binding protein required for
3322 472 0 initiation of chromosome replication

putative export protein A for general
3323 471 0 secretion pathway (GSP)

putative export protein C for general
3324 470 0 secretion pathway (GSP)

putative export protein D for general
3325 468 0 secretion pathway (GSP)

putative export protein E for general
secretion pathway (GSP); Type II traffic

3326 467 2 warden ATPase
putative export protein F for general

3327 465 0 secretion pathway (GSP)

putative export protein G for general
3328 465 0 secretion pathway (GSP); pilin-like

putative export protein H for general
3329 464 0 secretion pathway (GSP)

putative export protein I for general
3330 464 0 secretion pathway (GSP)

putative export protein for general
3331 463 0 secretion pathway (GSP)

putative export protein K for general
3332 462 0 secretion pathway (GSP)

putative export protein L for general
3333 461 0 secretion pathway (GSP)

putative export protein M for general
3334 460 0 secretion pathway (GSP)
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bifunctional prepilin peptidase: leader
peptidase; N-methyltransferase; part of

3335 460 0 general secretion pathway (GSP)

3336 459 0 bacterioferrin, an iron storage homoprotein

regulatory or redox component complexing
3337 459 0 with Bfr, in iron storage and mobility
4473 493 0 orf, hypothetical protein
Peak
Numbe
r 20

3635 115 30 formamidopyrimidine DNA glycosylase

3636 114 52 50S ribosomal subunit protein L33

3637 114 100 50S ribosomal subunit protein L28
3638 114 26 DNA repair protein

flavoprotein affecting synthesis of DNA and
3639 112 32 pantothenate metabolism
3640 112 18 deoxyuridinetriphosphatase
3641 111 0 putative transcriptional regulator

3642 110 4 orotate phosphoribosyltransferase
3643 110 0 RNase PH
3644 109 14 putative alpha helix protein
3645 108 0 DNA-damage-inducible protein
3646 107 0 orf, hypothetical protein
3647 105 0 putative enzyme
3648 104 142 guanylate kinase
3649 104 20 RNA polymerase, omega subunit

(p)ppGpp synthetase II; also guanosine-
3,5-bis pyrophosphate 3-

3650 102 90 pyrophosphohydrolase

3651 101 0 tRNA (Guanosine-2-O-)-methyltransferase
Peak
Numbe
r 21

L-glutamine: D-fructose-6-phosphate
3729 13 16 aminotransferase
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N-acetyl glucosamine-1-phosphate
3730 11 96 uridyltransferase

membrane-bound ATP synthase, F sector,
3731 10 36 epsilon-subunit

membrane-bound ATP synthase, F1 sector,
3732 9 50 beta-subunit

membrane-bound ATP synthase, F sector,
3733 8 50 gamma-subunit

membrane-bound ATP synthase, F1 sector,
3734 7 82 alpha-subunit

membrane-bound ATP synthase, F1 sector,
3735 6 18 delta-subunit

membrane-bound ATP synthase, FO sector,
3736 5 38 subunit b

membrane-bound ATP synthase, FO sector,
3737 5 2 subunit c

membrane-bound ATP synthase, FO sector,
3738 4 66 subunit a

membrane-bound ATP synthase,
dispensable protein, affects expression of

3739 3 0 atpB
glucose-inhibited division; chromosome

3740 2 82 replication?
glucose-inhibited division; chromosome

3741 1 42 replication?
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Chapter 4

Conclusions and future directions
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It now seems clear that structure, in biology once the province of x-ray

crystallographers and electron microscopists is gradually entering the mainstream where

it promises to yield a physical, not an abstract picture of cellular processes. It is likely

that although three-dimensional space is now thought of as a confounding factor - an

extra set of variables taking simple ordinary differential equations into the realm of less

tractable partial differential equations, or an extra level of complexity in an already

dizzying web of protein interactions, that it will instead prove to be a unifying and

simplifying factor; the spatial integration of protein machines and functional modules is

likely used by the cell, allowing it to control cross-talk between components or precisely

control the positions at which cellular events take place. Thus an understanding of spatial

organization may help us to rise in a natural way from the level of individual components

to higher levels of organization. "From protein words, to the sentences and paragraphs of

biology" [1].

It is interesting to note the history of structure in biology, starting from chemistry

where the knowledge of the specific configuration of atoms, bond lengths, and angles

gives an ability to predict chemical properties and reactivity. These structural properties

prove often to be as important as the atoms themselves. We learn in organic chemistry

that certain nucleophilic substitution reactions will occur by unimolecular as opposed to

bimolecular reaction dynamics based on the steric hindrance of atoms bonded to the

electrophile. And it is the specific configurations as well as the atoms in enzyme catalytic

sites that allow them to lower the energy barrier of reactions. Indeed, it is in chemistry

that we first learn of both the simplifying and the unifying power of understanding
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structure; the full quantum mechanical description of even simple organic molecules is

not analytically solvable. Yet the simplifying properties of their structures along with

simplified electronic properties make their behavior predictable.

In biology the investigation of structure has moved in two directions: up from

simple molecules, from the first protein structure, myoglobin (-20KD)[2], solved in 1957

to more recent structures of massive machines like the ribosome (2500 KD) in 2000[3];

and down in microscopy from the resolution of simple cells, to subcellular organelles and

to the <2nm resolution of 2-D electron crystallography [4]. Thus these two approaches to

structure are converging such that they almost merge, for instance in the docking of the

atomic structure of tubulin into electron density plots of electron tomograms. Even, three-

dimensional reconstructions of entire bacterial cells do not seem so distant a dream.

As these processes converge, and as structure becomes more heavily integrated in

biology it will be of great importance for structural biologists, grounded primarily in the

atomic level structure of proteins, and molecular biologists and geneticists grounded in

genes and genome sequences to learn each other's language. It is worth noting the role

that theory may play. It was the theory of quantum mechanics that finally elucidated the

rules behind chemical structures. Linus Pauling famously derived the alpha helix and beta

sheet using paper models. Watson and Crick solved the structure of DNA building

models from a simple x-ray diffraction pattern. And the physical theories of diffraction

and the mathematics of Fourier transforms give us the atomic coordinates from crystal

structures. It is likely that theory will play an important role in the generation of and the

understanding of new structural data.
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This thesis has centered around a set of theoretical approaches for unraveling one

particular structure in the cell, the chromosome, and specifically, the bacterial

chromosome. Chromosome structure both bacterial and eukaryotic represents an

important link between the abstract logical representations of biological data as

information and the physical structural ones. In chapter 2, I describe an extension of the

framework of constraint based optimality, successful in other areas of systems biology, to

the study of chromosome structure.

In chapter 3, I describe the first comparative genomics method of searching for

actual constraints by finding patterns likely related to three-dimensional folding in

genome sequences. I show that the pair-wise constraints from this search recapitulate

known structural details about the chromosome and are strikingly correlated with

genome-wide expression data suggesting that they are selected for proximity to the

transcription machinery. Moreover, I show that specific periodicities in the positions of

these pairs yield new insight into the likely fold of the chromosome

There are many extensions of the work in both chapters. While current

experimental technologies are not of high enough resolution to see chromosome three-

dimensional structure at the level of individual genes, signals of structure within the

genome sequence may provide important insights. Even after high-resolution structures

are available comparison between genomes will provide knowledge or at least

suggestions of functional roles. In particular, if it can be rigorously shown that there is

evolutionary selection for spatial relationships between points, this will provide strong

evidence of functional links.
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There are potentially immediate extensions of the methods of chapter 3 to

eukaryotes. Since it is transcription that appears to be driving the signals we uncover and

there is already ample evidence of transcriptional organization of the nucleus, we may

expect to find similar signals in eukaryotic chromosomes. However, because eukaryotic

nuclear organization seems flexible and perhaps even probabilistic in nature it will be

important to understand what exactly these genomic signals mean before they can be

applied for prediction [5]. Also, such pair-wise patterns are only one potential means of

looking for structure in genome sequences. Other methods or more sophisticated

adaptations of the methods we apply may generate cleaner structural signals.

The more theoretical methods of chapter 2, interestingly, are more applicable to

concrete experimental data. It will, of course, be experiment that validates any of the

predictions made in chapter 3 and experiments are the most obvious means to generate

the large set of constraints necessary to solve the full structure of the chromosome even at

a moderate level of resolution of 10kb (-8000 distance constraints for C. crescentus). I

outline below two promising experimental methodologies to generate a large number of

constraints for structure determination.

The first technology is an extension of the cross-linking methodology known as

chromosome conformation capture or 3C [6]. The basic technology consists of measuring

the frequency with which two chromosomal loci cross-link in vivo. This frequency is

inversely related to the spatial distance between loci in the cell. Thus by measuring the

frequency of pairing between all pairs of n loci, one can completely fill the matrix of

distances between them and solve the structure.
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Currently the method involves cross-linking, cutting the genome at known sites

using a restriction enzyme, and joining the ends of the cross-linked material by ligation

under dilute conditions where only cross-linked fragments should join. The sequences of

the junctions between fragments are then quantitatively measured using polymerase chain

reaction (PCR). PCR limits the number of pairs of points that can be examined,

restricting an experiment to around 100-200 pairs of points or all pairs of 10-15 loci.

There are other means of measuring the amount of individual junctions which

should require minimal technological innovation, and by virtue of their massive

parallelism allow 400,000 to 1,000,000s of junctions to be measured (all pairs of 1000 to

2000 loci.) This would be over an order of magnitude above the resolution of

fluorescence microscopy and give the relative positions of all points simultaneously

where fluorescence microscopy can only follow a few..

The first technology is the custom microarray which can now contain over

400,000 features. Junctions could be labeled and bound, yielding in a single experiment

the amounts of all 400,000 junctions. In an interesting parallel many of the considerations

and algorithms described in Appendix 2 for the design of oligonucleotide probes for

transcriptional analysis could be used to design oligonucleotide probes for 3C junctions.

Some technical hurdles remain, such as the removal of fragments that ligate to

themselves through intramolecular ligation which make up most of material after the

ligation reaction and the 3C method has also not yet been optimized for bacteria. Both of

these obstacles however, should be minor.

The second and perhaps even more promising technology for high-resolution 3C

is polony sequencing.[7].Using massively parallel sequencing one can directly sequence
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millions ofjunctions, digitally counting the number of each. With current polony

technology this would generate 1,000,000 or more reads from a single reaction. The

dynamic range would be even broader than that of the microarray and the method could

potentially count all junctions in an unbiased way, without having to select a subset to

synthesize on an array or to amplify with PCR. The same technical hurdles as described

for array 3C apply. Additionally, the increased dynamic range means that any highly

abundant species could comprise most of the digital reads. However, such species could

be selectively removed and the range of signal would give the advantage of even finer

resolution on the distances.

Despite its many advantages 3C makes a measurement of chromosome structure

in a population of cells. With cryoelectron tomography it is now possible to obtain three-

dimensional high-resolution images of individual cells in almost their native state without

sectioning. The technology is based on the ability to align images taken with a

transmission electron microscope over a set of different tilt angles of the object. The two-

dimensional diffraction pattern at each tilt makes up one slice of the complete three-

dimensional Fourier transform and with enough tilts the original three-dimensional image

can be reconstructed. Because the information in many of the tilts is partially redundant,

each image can be taken at a relatively low dose of electrons which prevents damage to

the structures, but also has the consequence of high level of noise. By averaging over all

of the aligned images the noise can be removed and a full three-dimensional structure at

< 6nm resolution can be obtained.

In order to distinguish the chromosome in an electron microscopic image the

DNA must be labeled with an electron dense material so that it is highly diffractive to
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incident electrons. To track both the structure and the sequence simultaneously one

would like both a distinguishable nonspecific DNA label and a sequence specific label.

This would allow the curve of the chromosome to be tracked and specific sequences

pinpointed in the same image. One method for sequence specifically labeling DNA is to

use small -1 nm gold clusters, by coupling them to labeled nucleotides. One can

incorporate these labeled clusters at specific sequences, and introduce sequence specific

numbers of clusters at each of these incorporation sites. The most difficult hurdle is how

to introduce any such label without grossly altering the structure of the cell or the

chromosome. Various means might provide a solution including cross-linking before

labeling, or performing the entire process in polyacrylamide gels which could capture the

chromosome structure in a three-dimensional net of polymer. Though the hurdles here are

more significant than for 3C, it is likely that cryoelectron tomography may provide the

most detailed views of individual chromosomes in the near future. In fact, labeling of

individual loci using the FLASH technique has already been performed (Shapiro personal

communication).

The combined set of cross-linking and electron microscopic technologies promise

to deliver high resolution structures of the chromosome in the near future. I emphasize

that ultimately the genome sequence and its structure may be viewed as one entity, in the

same way that the actual coordinates of amino acids on a protein fold yield an

understanding of catalysis or binding, the positions of genes and regulatory regions,

heterochromatin, and supercoils in space will tell us about factories, and assembly and

regulation in the cell. Indeed it seems that the structure of an entire cell may not be so far
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off. Then, the relation of the information stored in the genome and its realization in

proteins and membranes and RNA will be encompassed in an integrated, physical whole.
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On the complete determination of biological systems

(previously published as Selinger DW, Wright MA, and Church GM
Trends in Biotechnology 2003 Jun;21(6):251-4)
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Abstract

The nascent field of systems biology ambitiously proposes to integrate information from

large-scale biology projects to create computational models which are, in some sense,

complete. However, the details of what would constitute a complete systems level

description of an organism are far from clear. To provide a framework for this difficult

question, it is useful to define a model as a set of rules that maps a set of inputs, e.g.

descriptions of the cell's environment, to a set of outputs, e.g. the concentrations of all its

RNAs, proteins, etc. We show how the properties of a model affect the required

experimental sampling and we estimate the number of experiments needed to "complete"

a particular model. Based on these estimates, we suggest that the complete determination

of a biological system is a concrete, achievable goal.
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Scientific investigation has long been a technology-limited endeavor: from

Aristotle's passive observations, to Galileo's experimental probings, to our own

elaborately contrived and controlled micro-dissections of nature. New technologies, in

the form of systematic, quantitative, large-scale experiments with machine-readable

outputs have recently unleashed a torrent of data onto the biological community, resulting

in abundant speculation about the future of post genomic biology.

With new tools, naturally come new goals. Classical molecular methods forced us

to focus our gaze on small numbers of molecules at a time, so we laboriously built up

descriptions in human language, pictures, and the occasional video clip. The overarching

goal of biology, if there was one, was to compile a large number of systems that are

interesting (those that define a general rule, break one, or appeal to us as idiosyncratic

human beings) or applicable (those that contribute to the engineering, reverse-

engineering, or modification of a system). The defining feature of this "compilation

strategy" is that it is more a process than a goal. It specifies no endpoint other than

continual accumulation.

Completion in biology

Long the goal of physicists searching for a "theory of everything", completion has

now become a pervasive idea in biology, raising the question of where it rightfully

applies and whether it constitutes a new sort of goal for biological inquiry. The

proliferation of the "-ome" suffix attests to widespread acceptance that biology is rife
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with things to be completed, whether it's the genome, the transcriptome, or the proteome.

Already genome projects and large scale experiments have yielded important advances in

medicine, biotechnology and basic research. Systems level descriptions promise

predictions for cell, organ, and organismal behavior.

There seem to be two distinct levels of completion. The first, and conceptually

simpler of the two, is "parts list completion." Completion at this level is defined as the

fraction of observed to total predicted parts. This is well underway, and consists of the

various "ome" projects. The second, more ambitious and less well-defined level of

completion, is at the level of "systems biology", the study of how the parts work together

to form a functioning biological system' 2. There is no clear correspondence between

these two levels of completion. A nearly complete parts list could lead to an inaccurate

description of the system if the missing parts were crucial for system function. For

example, a model may be wildly inaccurate due to the omission of a single essential gene.

But how can we know when a systems level description is complete? Whereas

crystallographers can state an Rfree to describe the extent of agreement between a

structural model and the data from which it was derived, biologists still lack a coherent

framework for deciding the extent to which a model of a biological system is consistent

with experimental data. Such a framework would be useful for setting systems biology

goals, assessing progress, and identifying areas in need of further investigation.
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A model for modeling

We can think of a systems level description as a formal mathematical construct, or

model. Thus, consideration of the properties of a model is necessary to understand in

what sense one might be considered complete. A model can be defined as a set of rules

which maps a set of inputs (Fig. 1, blue area), e.g. descriptions of the cell's environment,

to a set of outputs (Fig. 1, yellow area), e.g. the concentration of all of its RNAs. Large-

scale experimental sampling of input-output pairs (Fig. 1, yellow-red dots), such as

condition-transcriptome pairs, may be used to derive these rules3.

In order to specify a particular model we must make certain decisions about its

basic properties (Table 1). Firstly, we must decide on the inputs and outputs. This choice

will depend, for example, on whether we are interested in predicting transcriptomes from

temperature and pH, or in predicting successive molecular states. Secondly, we must

decide on the range of values the inputs can assume. Finally, we must decide on what

level of accuracy and precision we require in our predictions. If we are predicting relative

RNA levels, do we need predictions such as, "upregulation by a factor of 3.3 ±0.1" or

would a predicted factor of 3 1 allow us to reach the same biological conclusions? Once

we have made these three decisions, we must choose a rule type that will allow us to

realize the model, i.e. one that will allow us to map our chosen input space to our chosen

output space with the desired level of accuracy and precision.

From these basic model properties we can determine how many measurements, at

least to the order of magnitude, it would take to populate the space of all possible inputs

126



o o S, P

= 0

q < o- CCDO

·O C

~e.. . oF D

° ct o "-
CD r

CD C P

0o z< CD -

CD

C, D- 
0,

0 0 m m 

w a J? St q 3 3 1
db

aa 3

_ _

ioi;

0 --.C

D i_.
_ _

+3 o-m &O

:2

w

C P
W I

60D or3
o

0 S
P-,

i
-cDj.~CD



(e.g. conditions) with enough measured outputs (e.g. transcriptomes, proteomes, etc.) to

make prediction feasible. In other words, how many measurements are needed to

adequately sample input space to allow the rule parameters to be determined. A similar

issue has been addressed in the field of supervised learning by the theory PAC (Probably

Approximately Correct)4 which gives the probability that a given number of

measurements will generate rules of a given accuracy. Of course, once a model has been

generated, its accuracy must then be verified by additional experiments that were not

used to infer the rules.

We can readily determine how the properties of a model affect the number of

measurements required to derive its rules (Table 1). A larger number of inputs and

outputs requires more individual measurements per input-output pair, i.e. sample (Row I).

A larger range of input values may require a greater number of samples (Row II). A

higher desired accuracy generally will require more samples and increased accuracy for

the individual measurements (Row III). Finally, a more complex rule type will likely

require more samples (Row IV). If nearby points in input space do not map to nearby

points in output space then we must sample the space more densely. It should be noted

that, because the output space is simply a function of the input space, we can focus

exclusively on the properties of the input space and rule type when considering the

required experimental sampling density.
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Model Types

The choice of a model type is a critical part of any completion effort as it

determines the type of rules which need to be discovered and the number and type of

measurements which need to be made. There are a host of issues, discussed in several

recent reviews5 8, which must be considered when planning a modeling strategy. Table 2

gives examples of model types organized by the level of detail of their predictions i.e.

outputs. On one end of the spectrum, we can imagine atomic level, or even subatomic

level descriptions of a complete cell. While large-scale measurements at this level are not

forthcoming in the foreseeable future these model types set an upper bound on detail.

Towards the lower end of the detail spectrum we have boolean models, which we can

build from logical statements such as, "if the lac repressor is bound to the operator then

the lac operon is off."

As we move from more to less detailed models we make certain trade-offs. The

more detailed models make fewer assumptions, and are therefore potentially more

accurate for the systems they describe. On the other hand, they tend to be more

problematic with regard to computability and measurement, and are therefore difficult to

apply to large systems. Furthermore, computational predictions at too high a level of

detail may not be useful for human understanding of the biological phenomena under

study. As we enhance our ability to make large numbers of measurements, we may be

able to generate enough input-output pairs to allow the complete determination of more

and more detailed model types.
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Practical Application

Now let's consider specific examples of projects we might wish to complete. A

useful model for many biological purposes is one in which the resulting expression level

of each gene can be predicted using the input levels of all of the genes. Such a model

would predict the effects of overexpression, genetic knockouts, or even various

environmental stimuli, provided that the effects of those stimuli on individual genes are

known. In fact, historically, much of genetic research has been devoted to finding small

parts of such a model. Specifically, we consider a discrete transcriptional network model

which maps all N genes as inputs to all N genes as outputs, where the genes can take on

three levels of expression (low, medium, and high) and each gene has at most K direct

regulators (Table 3). We consider this model for organisms that span a wide range of

complexity: AMycoplasma pneumoniae, Escherichia coli, and Homo sapiens.

A very simple cell, like M. pneumoniae, is an example of a cell with a minimal

number of genes (low N) which also seems to lack any transcriptional regulation (low K)

and lives in an exquisitely controlled environment within its human host 9. At an

intermediate level is E. coli which can live in many environments and consequently has

more genes and requires more genetic regulation (intermediate N and K). At the upper

extreme are humans which have a large number of genes and highly complex regulatory

mechanisms. Additionally, as multicellular organisms, humans have abundant

intercellular communication and a large number of cell types, each potentially with its

own set of transcriptional states.

132



0 CD I--, cn := lo g> rg e3cn -" 0 =
0 Hn CD C

r . o 0 °D
t -:, 5 -

M . oaC < t UP

- . C D- '.

o o

1 0 
II

-Ivcr
SE
ab

0

i

z

tb 

t a*0 _ aa3z

b 

r 
8 0

A C) 

0 0
o og o

I
9

c?.

I.

ag
CL

ma

C

3I
3

It

-I
ao0
U

i



In Table 3 we use formulae given by Krupal ° to estimate the upper and lower

bounds for the number of microarray experiments needed to complete the discrete

transcriptional network model described above. The lower bound is related to the amount

of information needed to specify the network structure and mapping functions. The lower

bound assumes that each microarray experiment is maximally informative and

independent from previous measurements. It also assumes perfectly efficient use of

experimental measurements to determine model parameters. These assumptions make it

likely that this estimate is far below the actual number of measurements needed. The

upper bound reflects the number of random experiments needed to complete the model

with a 99% probability of success, and is probably a more realistic estimate. It is

important to note that the upper bound estimate grows rapidly (exponentially) with the

maximum number of regulatory connections (K) per gene. Fortunately, genes tend to

have a low number of regulatory inputs, making an estimate based on a low K

reasonable. It is also encouraging to note that the upper bound estimate grows very

slowly (logarithmically) with the number of genes (N), making determination feasible

even for very large genetic networks.

The upper bound of 80 experiments for M. pneumoniae is already feasible with

current technology. While 40,000 microarrays for E. coli and 700,000 for human may

seem daunting, we should keep in mind that the initial version of the human genome

required approximately 30-40 million sequencing reads' 1,12, a number that was not

practical with the technology available when the project was first proposed.

Other methods have been described for inferring rules directly from large-scale

datasets and for estimating the number of measurements necessary for a given level of
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accuracy3' 13, ' 4. Additionally, current microbial models based on flux balance analysis

have shown considerable progress towards a complete description of metabolism, with

mappings from culture conditions and genotype (input) to growth phenotype (output) that

reach accuracies greater than 90% (106/116)15. Models of this type have even been

shown to be predictive of the biological evolution of metabolic fluxes16 . Additional

refinements promise to further increase their accuracyI7.

Conclusion

With the advent of large-scale projects, synthesis has become an important goal in

biology. Completion of a large number of genome projects, and the pursued completion

of other "ome" projects, raises the question of what it might mean to complete a systems

biology project and what might be gained from such an effort. We have found it useful to

consider this question within a framework for modeling and show how the number of

experiments necessary can be related to the model properties. Furthermore, we present

an example of a discrete transcriptional network model and estimate the number of

experiments necessary for its completion. When viewed through the framework of

modeling, the complete determination of a biological system becomes a concrete,

achievable goal.
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Appendix 2

An open-source oligomicroarray standard for human
and mouse

(Previously published as Wright MA and Church GM
Nature Biotechnology 20, 1082 - 1083 (2002))

138



DNA microarrays have transformed biology, allowing the expression levels of thousands

of genes to be measured simultaneously [1, 2.] However, the variety of chip designs and

the lack of information about the probes used severely limits the use of the data. As a way

of addressing these problems, we have designed a probe standard, a set of 121,000 70-

base oligonucleotides for the mouse and human transcriptomes, together with a probe

selection algorithm. We make the probe sequences and the code for the algorithm freely

available on our web site, http://arep.med.harvard.edu/probes.htm.

Open-source standards of this sort have many advantages. With sequence and design

information available, probe quality can be closely monitored and the community can

suggest improvements. Probe sequences can be directly linked to microarray

measurements, allowing detailed troubleshooting and analysis of biologically meaningful

fine structure [3, 4]. By annotating the probe sequences, the probes and design methods

can be optimized by iteration of experiment and probe design.

Our algorithm terminates once it has found probes that satisfy a set of conditions for

sensitivity, specificity, and uniformity, rather than searching for optimal probes as, for

70-mers, many equally specific and sensitive probes may be chosen for the same

target[5]. Using this strategy, our algorithm can select probes for human and mouse

where algorithms that demand optimality are unsuccessful[6.]

The probes are 70-mers, selected from the representative transcripts of the UniGene

database (http://www.ncbi.nlm.nih.gov/UniGene; August 3, 2001, build #138). We
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identify them by the GenBank identifier and the UniGene cluster of their target so that

they can be tracked through future UniGene updates. Our criteria are a BLAST [7]

threshold for specificity [5, 8], secondary structure prediction [9], and sequence

complexity calculations for sensitivity (J. Deris, personal communication), and a melting

temperature window (see http://www.operon.com/oligos/webfaq.php#calculations) for

uniformity. We also select probes from within 1,000 bases of the 3' end of the transcript

to reflect the :3' bias generated by poly(A) priming during the cDNA synthesis step of

many microarray protocols. Although there are alternative ways of predicting specificity

[6, 8] and melting temperature [10], none of these alternatives has been shown to be

significantly more valuable for 70-mer selection. More details of our methods are

available at http://arep.med.harvard.edu/probes.htm.

Table 1 summarizes data for our probe sets and compares human probes selected using

our design criteria with those selected by Operon Technologies (Alameda, CA;

http://www.operon.com/arrays/arraysets.php). The comparison was carried out between

probes designed for the same UniGene cluster by calculating the score of each probe for

each of the criteria used in our algorithm. Our human probe set is much larger than

Operon's (65,062 versus 13,975) and contains no significant BLAST hits (bit score > 50),

whereas Operon's contains 1,496.

Using our initial criteria, we were able to choose probes from 56,037 mouse and 65,062

human UniGene clusters [11 ]. Our algorithm did not find probes that met these criteria
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Table 1. Summary statistics for human and mouse probe sets and comparison with human

probe set from Operon Technologies*

Shaded Rows: Our Oligos/ Unshaded Rows: Operon Oligos

1. Number of transcripts from which probes were selected 2. Melting temperature calculated by the formula Tm = 81.5 +

16.6*log[Na+] +41*(G+C)/length - 500/length with [Na+] taken to be [.1] see

http://www.operon.com/oligos/webfaq.php#calculations. We note that other methods of Tm calculation exist, notably [11] but that for

Human Mouse

(N=65,062)1 (N=56,037)

Min Max Average Stdev Min Max Average Stdev

Tm2

LZ3

RNA4

Distance 5

BLAST 6

73

71

21

10

.1

.1

1

1

0

0

83

83

39

41

33.8

36.5

1000

4297

0

70

76.2

77.1

29.3

29.2

10.2

13.8

334.7

244.8

0

14.5

2.9

2.4

1.2

1.2

4.6

4.7

242.3

179.1

0

25.9

70

26

0.1

1

0

78

31

32.6

1000

0

74

29.2

7.8

219

0

2.7

0.9

3.7

197.7

0

/i-mers mIe uIerence etIween me ms calculateu using tmese memoas is neglgliole .. sequence complexity score calculatea Dy

comparing the length of the string (in characters) before and after gzip. 4. RNAfold score -(AG) calculated by the Vienna group's

RNAfold algorithn 6. Distance of 3' most base of the probe from the 3' end of the transcript. 7. Maximum number of identities in a

BLAST alignment (with bit score over 50) with a transcript in a different cluster of unigene.
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from among the remaining one-third of the UniGene clusters. We are currently working

to choose probes from these remaining clusters by making the criteria less stringent,

specifically the 3' distance restriction. It should be noted that some UniGene clusters may

contain multiple splice variants. In these cases, the probes target a particular exon or

splice junction in the representative transcript and are linked to this transcript by their

position in the sequence and GenBank identifier.

In the future, as knowledge of the human and mouse transcriptomes increases, the list of

probes will include each exon and splice junction of each transcript from which subsets

could be chosen for particular applications. The list presented here is currently the largest

freely available list of probes for which the selection criteria are rigorous and publicly

disclosed. Synthesis and testing of the probes is currently underway. They are intended as

a community resource, and input about the probes or the design methods is welcome.

This is a starting point from which to develop an optimized and comprehensive

transcriptional oligonucleotide standard. Indeed, our designs are currently being tested by

the Programs in Genomics Applications initiative of the National Heart, Lung, and Blood

Institute, a large-scale collaborative functional genomics effort that involves groups from

across the United States. In choosing our criteria and developing our algorithm, we are

grateful to Joe DeRisi and to Operon Technologies, as well as to Affymetrix (Santa Clara,

CA), which has released sequence information for its Escherichia coli chip.
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Supplemental Material on Oligonucleotide Design Considerations

Length

Shorter probe sequences are more specific to their targets since a mismatch will

alter the stability of a shorter duplex by a greater percentage than it will alter the stability

of a larger duplex. On the contrary, longer sequences form more stable duplexes and are

consequently more sensitive; they will bind reliably at lower target concentrations. 50 to

70 base probes represent an optimum of sensitivity and specificity for transcriptional

profiling [5].

Uniformity

Since all probe hybridizations occur simultaneously on a chip, the entire set of

probe/target duplexes must have similar stabilities. Otherwise, at a given hybridization

temperature some probes will form duplexes that are too stable (leading to cross-

hybridization with close matches) and other duplexes will be unstable and unable to

effectively bind their target.

The melting temperature or Tm, the temperature at which equal numbers of single

and double stranded DNA forms are present at equilibrium, is a reliable measure of

duplex stability for 50 -70mer probes [6]. We define a range of acceptable Tm for probes

to enforce uniform stabilities across the probe set.
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Sensitivity

Probes should be capable of detecting a wide range of target concentrations and

therefore capable of forming stable probe/target duplexes at both low and high

concentrations of the target. By choosing 50-70mer probes within a restricted Tm range

close to the temperature of the experiment, we can ensure that most probes have high

sensitivity.

Intrastrand basepairing can impair sensitivity by causing probes to preferentially

pair with themselves, instead of target. For each potential probe we calculate the most

stable secondary structure[7] and attempt to choose probes with low propensity for stable

secondary structure formation.

Specificity

Under hybridization conditions probe/non-target DNA duplexes should be

unstable and the probe target duplex should be stable. To calculate the potential

contribution of probe/non-target duplexes we must consider all possible hybridizations

between each probe in the probe set with each DNA in the target pool.

If the target species are of average length M nucleotides with probe sequences of length L

nucleotides, there are a total of

T M i
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hybridizations (global alignments) per probe sequence pair. There are M-L+1 potential

probes per target and N-1 non target sequences to calculate alignments. The thermal

stabilities of each of the hybridized duplexes will depend on the specific base pairing,

stacking interactions, loops, and mismatches of its configuration. Although it is possible

to calculate these stabilities to high precision using measured thermodynamic parameters

for each type of interaction, for problems of this scale these calculations are prohibitively

expensive. We make approximations that allow us to use sequence alignment methods to

calculate potential probe/DNA duplexes. These approximations amount to assuming

averages values for each type of interaction and searching with word matches to seed

longer alignments. We use the megaBLAST [8] algorithm to perform all alignments and

use the bit score to approximate the energy of duplex formation. We then use a threshold

for the maximum bit score of a probe alignment with non-target DNA.

Low sequence complexity can also lower specificity. Low complexity (simple

repeat) sequences are prevalent in many transcriptomes and also prevalent within the pool

of cDNAs. Probes with low complexity regions are therefore likely to form partially

stable duplexes with many non-targets and, since the ratio of cross-hybridization to true

signal can be approximated by

Z (-/JAGij)
j2i

e(--- AGii)

(where AGij represents the energy of duplex formation for sequence i with sequence j,)
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the sum of these many partially stable duplexes can make a large contribution to the

signal. We calculate the complexity of potential probes by compression (high

compressibility indicates low complexity) and attempt to choose probes that are of high

complexity.

The Algorithm

Our algorithm, based on the above criteria, is written in perl, uses BLAST to

evaluate non-target hybridizations, calls the RNAfold program[7] to calculate secondary

structure, and gzip to calculate sequence complexity based on compressibility. The

probes it selects meet a set of quality criteria defined by thresholds. It is divided into two

programs and requires a set of parameters to be specified by the user.

Array.pl

Construct an array containing the information from BLAST alignments for each sequence

and select at most n sequences of Lmax > length > Lmin with BLAST alignments of

BLAST bit score < t

Score.pl

Score each ofl'the initial n probes per sequence chosen by array.pl for Tm, AG,, and C.

Select at most m that have scores in the required ranges.
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Outline of the Algorithm

The steps of the algorithm are listed below

1. Align target sequences against database of repeats and do not consider any

aligned subsequences for potential probes

2. Align target sequences against database of all sequences

3. Parse to remove alignments with sequences in target's sequence cluster

4. Parse to generate an alignment array

5. Starting at 3' end, select first n probes with BLAST scores below t. If a

sequence is accepted into the set of n, then jump j bases toward the 5' end. If

not, move i bases towards the 5' end. Stop examining sequences if Dmax is

reached

6. Calculate Tm, C, and AG,, for the n probes from step 5

7. Select first m probes with scores that lie in the required ranges for each of the

criteria
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Score.pl outputs the probes and the scores in a text file.

First Selection

Table 2: Parameter Values used in the Selection

Number of Initial Probes

Number of Final Probes

BLAST Threshold

Tm Window

RNAfold Maximum

Compressibility

Maximum

Length Window

Maximum 3' Distance

Increment size

Jump size

Human

7

1

50

72.5 - 83.0

Best

35

70- 70

1000

1

39

Mouse

7

1

50

70-80

Best

35

60-70

1000

1

39
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Results

The algorithm chose a total of 121,000 probes from the human and mouse

UniGene sets. Using stringent criteria, its success rate per cluster was about 2/3. Some

statistics are summarized below.

Table 3: Selection Statistics

Input Output

Human 96,826 65,062

Mouse 85,923 56,037

150



References

1. Gress, T.M., et al., Hybridization fingerprinting of high-density cDNA-library
arrays with cDNA pools derivedfrom whole tissues. Mamm Genome, 1992.
3(11): p. 609-19.

2. Selinger, D.W., et al., RNA expression analysis using a 30 base pair resolution
Escherichia coli genome array. Nat Biotechnol, 2000. 18(12): p. 1262-8.

3. Schena, M., et al., Quantitative monitoring of gene expression patterns with a
complementary DNA microarray. Science, 1995. 270(5235): p. 467-70.

4. Li, F. and G.D. Stormo, Selection of optimal DNA oligos for gene expression
arrays. Bioinformatics, 2001. 17(11): p. 1067-76.

5. Hughes, T.R., et al., Expression profiling using microarrays fabricated by an ink-
jet oligonucleotide synthesizer. Nat Biotechnol, 2001. 19(4): p. 342-7.

6. SantaLucia, J., Jr., H.T. Allawi, and P.A. Seneviratne, Improved nearest-neighbor
parametersfor predicting DNA duplex stability. Biochemistry, 1996. 35(11): p.
3555-62.

7. Wuchty, S., et al., Complete suboptimalfolding of RNA and the stability of
secondary structures. Biopolymers, 1999. 49(2): p. 145-65.

8. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3):
p. 403-10.

9. Boguski, M.S. and G.D. Schuler, ESTablishing a human transcript map. Nat
Genet, 1995. 10(4): p. 369-71.

10. Dandekar, T., et al., Re-annotating the Mycoplasma pneumoniae genome
sequence: adding value, function and reading frames. Nucleic Acids Res, 2000.
28(17): p. 3278-88.

151



MATTHEW A. WRIGHT
George M. Church Laboratory Phone: 617 432 5917
232 New Research Building E-mail: maw@mit.edu
Harvard Medical School
77 Avenue Louis Pasteur, Boston MA 02115

EDUCATION
Massachusetts Institute of Technology (Ph.D. expected September 2005)
Theoretical Chemistry with coursework in Chemistry, Physics, Biophysics, Applied Mathematics, Computer Science,
and Biology
Thesis Topic: Approaches to Determining the Three-Dimensional Structure and Dynamics of Bacterial Chromosomes

University of Southern Maine, B.A., B.M. Summa Cum Laude 1999
Majors in Chemistry and Music Performance with coursework in Chemistry, Physics, Mathematics, and Music
Thesis Topic: Synthesis of Functionalized Group 14 and 15 Metallocyclopentadienes

RESEARCH EXPERIENCE
Harvard Medical School - George M. Church 2000-2005
Developed first methods to detect evolutionary signals of large-scale 3-D chromosome structure in genome sequences.
Developed novel methods for analyzing the relationship between gene function and 3-D chromosome structure using
constraint based optimization and the mathematics of distance geometry. Developed algorithms for designing
oligonucleotide microarray probes.

Caltech - Rudolf A. Marcus 1999-2000
Studied the rate of long-range electron transfer in DNA in collaboration with J. Barton

University of Southern Maine - Henry J. Tracy 1998-1999
Developed a general reaction scheme for the synthesis of functionalized metallocyclopentadienes.

TEACHING EXPERIENCE
Teaching Fellow, Harvard University - Genomics and Computational Biology Fall 2001
Teaching Assistant, Massachusetts Institute of Technology - General Chemistry Fall 2000
Teaching Assistant, Caltech - Synthesis and Analysis of Organic and Inorganic Compounds Spring 1999

PUBLICATIONS
Wright MA, Kharchenko P, Church GM, Segr& D
Optimal Three-Dimensional Functional Organization of Bacterial Chromosomes
(Manuscript in Preparation)

Segr6 D, Zucker J, Katz J, Lin X, D'Haeseleer P, Rindone WP, Kharchenko P, Nguyen D, Wright MA, Church GM.
From annotated genomes to metabolic flux models and kinetic parameter fitting.
OMICS. 2003 Fall;7(3):301-16.

Selinger DW, Wright MA, and Church GM
On the complete determination of biological systems
Trends in Biotechnology 2003 Jun;21(6):251-4

Wright MA Segre D, Church GM
4-D Modeling of Bacterial Chromosome Structure
International Conference on Systems Biology, 2002
(Extended Abstract)

Wright MA, Church GM
An open-source oligomicroarray standard for human and mouse.
Nature Biotechnology 2002 Nov;20(11):1082-3



MITLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.5668 Fax: 617.253.1690
Email: docs@mit.edu
http://libraries. mit. edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Some pages in the original document contain color
pictures or graphics that will not scan or reproduce well.


