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Abstract [6,11] by reducing them to extensions of the multi-
We consider the classical problem of optimal control armed bandit problem, the problem of repeatedly se-
(routing and sequencing) of a network of queues. We lecting one among many Markov processes, each with
prove that this problem is EXP-complete and, there- known transition probabilities and costs. The latter
fore, provably intractable. Similar results are estab- problem can be solved by an ingeniously simple in-
lished for restricted versions of the problem. A weaker dex calculation [4], and an optimal policy corresponds
result is also established for the restless bandit prob- to prioritizing the different classes by sorting their re-
lem. spective indices. Due to the difficulty of the problem,

research in this area has been deflected to approaches
1 - Introduction such as diffusion approximations [5] and certain other

rigorous approximation algorithms [2,7].
The optimal control of a network of queues is a well-

known, much studied, and notoriously difficult prob- In this paper we prove that the problem of finding
lem. We are given several servers, a set of customer an optimal control policy in a multiclass closed queu-
classes, and class-dependent probability distributions ng network is an intractable problem. Nobody was
for the service times. For each customer class, there really expecting an efficient algorithm for this prob-
is only one server that can serve customers of that lem, at least in this generality, and it would be trivial
class, but the same server might be eligible for several to show it NP-hard (the vanilla variety of intractabil-
classes. The class of a customer can change at each ser- ity available in the literature). However, our result is
vice completion time; for some customer classes, the much stronger: we show that the problem provably re-
new class is under our control; for others, the class quires exponential time for its solution, independently
change is probabilistic. We restrict ourselves to closed of the P vs. NP question. In particular, we show that
networks in which there is a finite number of customers it is EXP-complete.
that never leave the system and no external arrivals. There are many such intractability results in the
The throughput of a class of customers is defined as literature, starting from the classical ones about reg-
the steady-state average number of service comple- ular expression equivalence [9], Presburger arithmetic
tions for that class per unit time; our performance [3] and other logics such as, more recently, variants
measure will be a weighted sum of the throughputs of of Temporal Logic. However, in our experience this
the different classes. Operating the network amounts is the first intractability result for a practical and
to choosing the new class of a customer whose ser- important optimization problem that had been at-
vice has just been completed (routing) and choosing tacked in earnest over many decades - in contrast,
at each server which customer to serve next, out of NP-completeness theory is teeming with optimization
all eligible customers (sequencing). The problem is to problems.
come up with a routing and sequencing strategy - In the next section, we introduce the problem NET-
presumably based on the load of the other queues - WORK OF QUEUES, a relatively simplified version
so as to optimize weighted throughput. of the problems one finds in the literature. The proof

Networks of queues have many applications. If you that it can be solved in exponential time relies on the
lived in the former Soviet Union, your whole life was a fact that it can be rendered as a Markov decision pro-
network of queues. Many of us are sitting many hours cess with exponentially many states, which can then
every day in front of a complex network of queues: be solved by linear programming. To prove complete-
a computer. But the most important applications of ness, we rely on a heretofore untapped alternative
networks of queues are related to communication net- characterization of EXP, namely in terms of polyno-
works or manufacturing systems. There are preciously mial space bounded stochastic computation (recall the
few cases of the problem that have been satisfactorily formulation of polynomial space in [8] as polynomial
solved; for example, the problem is wide open even for time bounded stochastic computation; stochastic ma-
the case of two-server networks and exponential ser- chines behave like alternating ones, transforming time
vice time distributions. The few problems that have to space and space to the next exponential of time).
been solved are reviewed in [10]. Besides some ad hoc Besides the case of exponentially distributed service
techniques for very special cases, and computationally times, we show that the lower bound also holds for
explosive dynamic programming algorithms for oth- the case of deterministic service times, and for the
ers, we can only solve certain single-server problems case where service times have a discrete probability





distribution and routing is deterministic. However, if rational-valued functions i and w defined on C, sub-
both routing and the service times are deterministic, sets D and R of C, a set N(c) C C for each c E D,
the problem is easily shown to be PSPACE-complete. rational coefficients Pe,, for every c E R and c' E C,

Given that the multi-armed bandit problem is the the initial numbers ni(c) of customers of each class,
main tool for solving the few cases of networks of the set So of busy servers at time zero, the class c,
queues that we can solve, we study its most promis- of the customer being served by each server s E So,
ing extension, the restless bandit problem [12,13], and and a rational number K. The problem is to decide
show that it is PSPACE-complete even for determin- whether there exists a policy -r for which J"r > K.
istic problems.

Theorem 1. NETWORK OF QUEUES is EXP-
2 Networks of queues complete.

A network of queues consists of a finite set of servers Outline of the proof: For the upper bound, notice
S and a finite set C of customer classes. For each class that the problem is a Markov decision process, that is
c E C, we are given the identity c(c) E S of the only we are given a Markov chain with possible decisions
server who can serve customers of that class, and the that affect the transition probabilities and costs, and
mean service time ~p(c). Service times are indepen- we seek to find a policy that minimizes the average
dent exponentially distributed random variables with cost. It it is known that if the optimal average cost
the prescribed mean. The set C is partitioned into is the same for any initial state, then such a problem
two subsets, R and D. Whenever a class c customer can be reformulated as a linear program, and thus
completes service, it gets transformed into a customer solved in polynomial time [1]. For the general case
of some new class c'. For each c E D, we are given in which the optimal average cost may be different
a set N(c) C C and c' is allowed to be an element for different initial states, the problem is still solvable
of N(c) of our choice. If on the other hand c E R, in polynomial- time- by means of linear programming
the new class c' is determined at random according to techniques. But of course, the number of states in the
given probabilities p,,l. Markov process (and thus, the number of variables in

The queueing network is controlled by making de- the linear program), is exponential in the data.
cisions of the following nature: each time that a cus- To show completeness, we shall rely on a novel char-
tomer of some class c E D completes service, we choose acterization of EXP. A stochastic Turing machine is
its-next class c' E N(c) - these are routing decisions. a Turing machine whose states are divided into two
In addition, at each service completion time, any free parts: the nondeterministic states and the stochas-
server can choose to remain idle or to start serving an tic states; assume, without loss of generality, that all
eligible customer. We only consider non-preemptive state-symbol combinations, except for the final ones,
policies; that is, once a server starts serving a cus- have two possible continuations. We also assume that
tomer, it must continue until service is completed. the machine is precise, that is, on input z it only visits

A queueing network of the type described here is the first Il tape squares, and it stops after exactly 2111
closed: no new customers arrive and no customers can steps. We say that the machine accepts an input 2 if in
leave the network; in particular, the total number of the (doubly exponential) tree of computations on in-
customers is conserved. At any point in time, the state he , it has the following property: there is a way to
of the network consists of the following information: put a, it has the following property: there is a way toof the network consists of the following information: choose one branch out of every nondeterministic nodechoose one branch out of every nondeterministic node
a) how many customers of each class are present in such that the majority of the leaves are accepting. We
the system, and b) the class of the customer (if any) assume that the machine has only two tape symbols,
served at each server. 0 and 1.

A policy is a rule for making decisions at service The STOCHASTIC IN-PLACE ACCEPTANCE
completion times, as a function of the current state of problem is the following: Given a stochastic Turing
the network. Due to the independence and exponen- machine M and an integer n in unary, does M accept
tiality of the service times, the state of the network the input consisting of n zeroes?
evolves as a Markov chain under any fixed policy.

Let us fix the initial state of the network. For any Lemma 1. STOCHASTIC IN-PLACE ACCEP-
policy 7r and any class c E C, the number a' (t) of class TANCE is EXP-complete.
c service completions until time t is a well-defined ran- Sketch of proof: In [8] it was shown that stochas-
dom variable. We then consider as our performance tic Turing machines operating within polynomial time
measure the weighted throughput accept all of PSPACE. It is also known that alternat-

ing Turing machines with polynomial space comprise
Jt = lim sup - E w(c)E[a~(t)], all of EXP. Using the same technique as in [8] starting

t--_ t O from this result, we show that EXP is precisely the
eEC class of languages decided by stochastic Turing ma-

where w(c) are given weights and E[.] denotes expec- chines within polynomial space. To convert to linear
tation. We are interested in finding a policy that max- space is standard (use padding), and to rephrase the
imizes J', as well as the corresponding optimal value problem in a form with no explicit input, just absorb
of J.r the input in the machine itself. E

We can now provide a formal definition of the prob- We shall reduce this problem to NETWORK OF
lem NETWORK OF QUEUES. An instance is speci- QUEUES. We are given a stochastic Turing machine
fied by the finite sets C, S, the function a : C F- S, M and an integer n. We will be making the following



additional assumptions on M. We first assume that also free to choose one of the two available choices
the start state is never visited again. Furthermore, for (s',i',r'). If s E R, then (s',i',r') is chosen at
given an arbitrary configuration of the Turing machine random among the two possibilities. [In queueing net-
(state, head position, tape contents), the computation work terms, these choices can be viewed as routing
is guaranteed to end after at most 2' steps. When the steps first to a server labeled by (s, i, r) and then to
computation ends, the tape has again n zeroes, and another server labeled by (s, i, r; s', i', r').]
the head is at the initial position. We finally assume Once (s, i, r; s', i, r') has been selected, the route
that the transition function of the machine has been to be followed during the excursion is the following:
modified so that when an end state is reached, tobe followed during the excursion is the following:modified so that when an end state is reached, the a) Go through all of the servers ql,... qk, hl,...,h,n,
machine does not halt but starts running again with a) Go through all of the servers kipped; finally, go
the same initial configuration. witit except for q, and hi that are skipped; finally, gothe same initial configuration. through server gil-v.

We shall now construct a network of queues. The through a specialserver.
different servers and customers in the network will be b) Go through server.
used to simulate different parts of the machine. c) Go through servers hi, girl and q.
a) Corresponding to the ith square of the tape, i = d) Go through the router server. Then, go through the
1,..., n, we have two servers, gio and gil. For each servers tt.... k ... A ho, except for servers q,and
i, there is a single customer Gi that can be served hi that are skipped. Also, go through server i
by either of these two servers. However, if Gi wants We assume that each service along the above described
byto move from one of these two servers to the other, route takes zero time, with the following two excep-
to must gove from one of these twoial server thao th we all ther, tions: the mean service time at the special server is 1;
it must go throuergh a special server that we call the also, the mean service time at server q, in part (c) of
ob If the machine has k states, we introduce servers the route is 1 + E if s is a final nonaccepting state and

b) If the machine has k states, we introduce servers
qi, .. .p,, qand a single customer Q that can only be 1 otherwise. Here, e is a very small number.

served by one of these servers. We choose the weights w(c) as follows. The weight
c) Finally, we have a set of servers h 1, .. h, , and a of all customers other than the test customer is a very
single customer H that can only be served by one of large number B. The weight of the test customer is
these servers. unity at the base server and zero elsewhere.

We assume that the mean service time for the cus- The network is initialized with the test customer
tomers Q, H, and Gi, i 1, ... , n, is unity at every at the base server, each customer Gi at server gio,
eligible server. We will say that the network is in customer Q at server qi, where i is the start state of
a busy state if each one of these customers is being the Turing machine, and customer H at state hi where
served at some eligible server. A busy state in which i is the initial position of the head. Thus, the initial
no customer Gi is at the router server is called defi- state of the network encodes the starting configuration
nite. Note that there is a one-to-one correspondence of the Turing machine.
between definite states of the network and a configura- We will now describe a particular policy lr* for con-
tion of the Turing machine, according to the following trolling the queueing network and which simulates the
conventions: customer Gi is served at gio (respectively, stochastic Turing machine. (We will argue later that
gil) if and only if the ith square contains the symbol this policy is optimal.) Under policy 7r*, the cus-
o (respectively, 1); customer Q is served at qi if and tomers Q, H, and Gi, i = 1,...,n, remain always
only if the machine is at state i; customer H is served busy. In general, they keep getting served over and
at hi if and only if the head scans the ith square. over at the same server with some exceptions to be

Each transition of the Tur- described shortly. Suppose that the test customer is
ing machine can be viewed as a 6-tuple of the form at the base server and that the network is at a definite
(s, i, r; s', i', r') where s is the current state, i is the state. Then, the test customer will make an excursion
current position of the head, r is the symbol in the ith corresponding to the transition (s, i, r; s', i', r') of the
square, s' is the new state, i' is the new position of the Turing machine. Let to be the time that the excursion
head, and r' is the symbol written on the tape. The starts. As long as (s, i, r) corresponds to the current
rules of operation of the Turing machine can always configuration of the Turing machine and as long as the
be described by specifying for each (s, i, r), two differ- network is simulating it correctly, the test customer
ent continuations (s', i', r'). (If s is a stochastic state, will not meet any other customer during part (a) of
one of the two continuations is chosen at random; for its route and that part gets traversed in zero time.
nondeterministic states, we are free to choose one of Part (b) takes unit expected time. By the memoryless
the two options.) property of exponential distributions, we may assume

We now introduce a test customer T whose prop- that customers Q, H and Gi started service at the
erties will encourage the network to simulate the servers q,, hi and gi,, respectively, at time to. When
machine. There is a base server at which the test each one of them completes service, it moves to a new
customer is served for zero time. Then, the test server, as follows: Q goes to q,., H goes to hi,, and
customer makes an excursion through the network Gi goes to gi,l via the router server. Thus, the time
along one of several possible routes, each possible elapsed from time to, until the test customer can start
route corresponding to one of the possible transitions service at q, is equal to the maximum of four indepen-
(s, i, r; s', i', r') of the Turing machine. Choosing a dent unit mean exponential random variables. When
particular route is done as follows. The test customer the test customer reaches the router server and if the
first chooses (s, i, r). If s E D, the test customer is service of Gi there has not been yet completed, the



test customer will have to wait there until the router 3 Extensions and special cases
server is free. The test customer will not experience There are several variations of the problem NET-
any other delay during part (d) of the route, because WORK OF QUEUES that are also intractable; we
it skips the servers to which Q, H and Gi went. At the review some of them below.
end of the excursion, the network is in a new definite The following two results are obtained with minor
state that encodes the new configuration of the Tur- modifications of the proof of Theorem 1.
ing machine. If s is not a nonaccepting final state, the
mean duration of this excursion is always the same and Corollary 1: NETWORK OF QUEUES remains
equal to some (easily computable) rational number d; EXP-complete under each one of the following alter-
otherwise, the mean duration is d +. The second pos- native performance measures:
sibility occurs with probability p, once every 2n excur- a) c w(c)E[a(Fl*)1, where t* is a given deterministic
sions where p is the fraction of nonaccepting leaves in terminal time.
the stochastic Turing machine being simulated. Since b)c Z= w(c)E[e-tt(C)], where C is a positive dis-
there are n+2 customers other than the test customer, count rate and ti(c) is the ith service completion time
the weighted throughput corresponding to this policy of some customer of class c.
is equal to B(n + 2) + 1/(d + E2-p). Recall that we Corollary 2: NETWORK OF QUEUES remains
have a "yes" instance of STOCHASTIC IN-PLACE EXP-complete if the service times are deterministic
ACCEPTANCE if and only if p < 1/2; equivalently, (instead of exponentially distributed).
if and only if the weighted throughput of policy ire is
larger than K = B(n + 2) + 1/(d + e2-n+1 ). The following result is also proved by a similar re-

We will now argue that no other policy could have duction of the STOCHASTIC IN-PLACE ACCEP-
better weighted throughput. This will complete the TANCE PROBLEM. However, the encoding of the
reduction: We first note that since the weight given to Turing machine and the specifics of the reduction are
the customers Q, H, and Gi is very large, an optimal quite different. The proof will be provided in the full
policy must keep these customers busy all of the time. paper.

No matter which route is chosen by the test cus- Theorem 2: The problem remains EXP-complete if
tomer, parts (a) and (c) of the route go through servers the service times are random variables taking values in
that are currently busy by customers Q, H and Gi for a finite range, even if routing is entirely deterministic.
some i. The time that the test customer will have to
wait at these servers will be minimized if these servers If all sources of randomness are removed, however, the
appear in part (c) of the route, right after the spe- problem may become much easier. The proof of the
cial server, and not in part (a). (The idea is that next result is similar to the proof of Theorem 1, except
while the test customer is at the special server, Q, H that instead of a stochastic Turing machine, we are
and Gi have an opportunity to free up their respec- now simulating a space-bounded deterministic Turing
tive servers.) Thus, the test server must choose a route machine.
that corresponds to a transition (s, i, r; s', i', Ir) of the Theorem 3: If routing and the service times are de-
Turing machine or else suffer some additional delay. terministic, then the problem is PSPACE-complete.
Also, customers Q, H, and Gi must go to servers q,,,
his and gi,,; otherwise, the test customer will suffer
extra delay during part (d) of the route. The conclu- A special case of the queueing network problem is
sion is that if 7r* is not followed, the mean duration of obtained if we put some restrictions on the mecha-
the test customer's excursion increases by a quantity nism with which the customers change classes. More
of size 0(1). This is not enough to establish the opti- precisely, let us assume that there are several types
mality of 7r*, for the following reason: it might still be of customers and that the type of a customer never
profitable to violate re* for some time in order to bring changes. Let us then assume that the class of a cus-
the network to a more favorable state that will result tomer is a pair consisting of the customer's type and
in much higher payoffs down the line. However, the the customer's location in the network. Note that this
only possible future payoff would be to bring the net- restriction is violated by the network that we con-
work to a state from which the penalty due to a final structed in the proof of Theorem 1. (For example,
nonaccepting state will become less likely. This payoff the test customer may visit the same server in parts
is at most e, and with E chosen small, the expected (a) and (d) of its route, but its class will be different
future payoff cannot exceed the price paid. (This ar- at each visit.) However, we can show that Corollary 2
gument can made formal by using an easy lemma on and Theorems 2-3 still hold.
optimality conditions in Markov decision theory.) Out of all queueing control problems, there is a rel-

There is one last detail that must be dealt with. atively small class for which optimal policies can be
We define the class of the test customer to be what is efficiently computed. These are problems involving
left of its route until it returns to the base server. We a single server who chooses between one of several
also define the class of customers Q, H, and Gi, to customer streams [6]. The fundamental reason why
be the server at which they happen to be located. In these problems are solvable is that they can be refor-
this way, the network that we have constructed here mulated as "branching bandits problems" [11], which
is an instance of NETWORK OF QUEUES and the is one of the succesfull extensions of the multi-armed
reduction is now complete. OF bandit problem [4]. Optimal policies in such problems

can be found by computing a number of indices -



known as Gittins indices - and there are polynomial 2. D. Bertsimas, I. C. Paschalidis, and J. N. Tsit-
time algorithms available for doing so. Thus, there siklis, "Optimization of Multiclass Queueing Net-
may be some hope of enlarging the class of efficiently works: Polyhedral and Nonlinear Characteriza-
solvable queueing control problems, by deriving effi- tions of Achievable Performance", to appear in
cient solution procedures for other generalizations of the Annals of Applied Probability, 1994.
the multi-armed bandit problem. The most interest- 3. M. J. Fischer and M. O. Rabin "Super-
ing generalization that has been proposed so far is exponential complexity of Presburger arith-
the "restless bandit problem" [12,13] and this raises metic," Complezity of Computation (R. M. Karp,
the question whether the restless bandit problem is ed.), SIAM-AMS Symp. in Applied Mathematics,
as "easy" as the original multi-armed bandit problem. 1974.
Our results below establish that this is unlikely to be 4. J. C. Gittins, Multi-Armed Bandit Allocation In-
the case. dices, J. Wiley, New York, 1989.

In the RESTLESS BANDITS problem we are given 5. J. M. Harrison, Brownian Motion and Stochastic
n Markov chains (bandits) Xi(t), i = 1,..., n, t = Flow Systems, Prentice Hall, 1985.
0, 1,..., that evolve on a common finite state space 6. G. P. Klimov, "Time sharing service systems I",
S = {1,..., M}. These Markov chains are coupled Theory of Probability and Applications, Vol. 19,
(and controlled) as follows. At each time t we choose 1974, pp. 532-551.
one of the bandits, say bandit i(t), to be played. For 7. S. Kumar, P.R. Kumar, "Performance bounds for
i = i(t), Xi(t + 1) is determined according to a tran- queueing networks and scheduling policies", to
sition probability matrix P, and for every i y i(t), appear in the IEEE Trans. on Automatic Con-
Xi(t + 1) is determined according to some other tran- trol, 1994.
sition probability matrix Q. At each time step, we 8. C. H. Papadimitriou "Games against nature,"
incur a cost of the form Proc. of the 24th FOCS Conf., pp. 446-450; also

J.CSS 31, pp. 288-301, 1985.
C(t) = c(Xi(t)) + d(Xi(t)), 9. L. J. Stockmeyer and A. R. Meyer "Word prob-

ii(t) tlems requiring exponential time," Proc. of the 5th
STOC Conf., pp.1 -9, 1973.

where c and d are given rational-valued functions de- 10. J. Walrand, An Introduction to Queueing Net-
fined on the state space S. A policy 7r is a map- works, Prentice Hall, Englewood Cliffs, NJ, 1988.
ping 7r : S'n - fl..... ,n} which at any time de- 11. G. Weiss, "Branching bandit processes", Proba-
cides which bandit is to be played next, as a func- bility in the Engineering and Informational Sci-
tion of the states of the different bandits; that is, ences, Vol. 2, 1988, pp. 269-278.
i(t) = r(Xl (t), .. ., X(t)). Let the average expected 12. R. R. Weber nd G. Weiss, "On an index policy for
cost of a policy be defined as restless bandits", J. of Applied Probability, Vol.

27, 1990, pp. 637-648; addendum in Vol. 23, 1991,
T pp. 429-430.

limsup1E E[C(t)]. 13. P. Whittle, "Restless bandits: activity allocation
t- T too in a changing world", in A Celebration of Applied

Probability, J. Gani (ed.), J. Applied Probability,

We are interested in finding a policy with minimal Vol. 25A, 1988, pp. 287-298.
average expected cost.

The classical multi-armed bandit problem is the
special case of the above in which we have Q equal
to the identity matrix and d = 0 (bandits not played
do not move and do not incur any costs).

We shall actually show that the restless bandits
problem is difficult even for the special case where the
transition probability matrices P, Q correspond to de-
terministic transition rules, with one transition rule
applying to all the bandits that are not played and
another applying to the one which is played.

Theorem 4: RESTLESS BANDITS with determin-
istic transition rules is PSPACE-hard. Cl
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