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Abstract

In the first part of this thesis we consider a manufacturer that introduces successive
generations of products, possibly on multiple similar production lines. We consider
two types of production phase for this firm; pilot production phase and full production
phase. Pilot production phase for a newly developed product is an experimental
production period in which a limited amount of production capacity of the production
line is allocated to produce the new product so that production process of the new
product is improved through cumulative production experience. At the conclusion of
the pilot production phase, a production methodology is formalized and the obtained
knowledge is utilized for full production.

The objective of the first part of this thesis is two-fold: First, to determine how
to operate the pilot production phase of a newly developed product; Second, to char-
acterize how production processes of a new product can be improved during its full
production. To achieve the first objective, we develop two separate models. First, we
consider a single production line alone. We analyze how to split production between
the new and existing product to maximize profits, considering that the new product
typically faces low yields initially. We show that it is never optimal to dedicate only
limited capacity to the new product, - i.e., pilot production is not optimal. We then
extend our view to multiple similar production lines when acquired knowledge can be
passed on across production lines. We determine conditions under which launching
pilot production becomes preferable. Finally, we consider the case of full produc-
tion where a lead production line scans information on process improvements on a
continuous basis with the remaining similar production lines during full production.

In the second part of this thesis we consider a single-product inventory system
that serves multiple demand classes, which differ in their backlog costs or service
level requirements. We develop a model for cost evaluation and optimization, under
the assumptions of Poisson demand, deterministic replenishment lead-time, and a
continuous-review (Q, R) policy with rationing. We show the value from a rationing
policy and how to incorporate into a multi-echelon setting the single-item model with
multiple demand classes.
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Chapter 1

Introduction

1.1 Main Scope

This thesis deals with two important topics in Operations Management that have

significant practical values. The first part of the thesis studies how pilot production

strategies should be developed for production firms and how the existence of process

commonality among different production facilities affect these strategies. The second

part of the thesis, on the other hand, studies the inventory problem where multiple

demand classes are served from the common inventory location. We analyze each

subject separately. We present each subject by using the following methodology; we

first construct the simplest setting and complete its analysis, then we extend our

analysis to more general setting. For the clarity of our presentation, all supporting

arguments and proofs will be presented in the appendices. We believe that our models

and key findings both provide practical interest in each subject and establish new lines

of further research in Operations Management field.

1.2 Process Commonality & Pilot Production

One common major challenge in many industries with shrinking product life cycles

and selling prices is to begin high volume production when the underlying production

process and technology are still ill-understood. Many firms are compelled to intro-
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duce new products constantly due to fierce competition in the market. At the same

time, however, they suffer from low production yield levels associated with the lack of

knowledge and experience in new production technologies. Hence, a through under-

standing of the dynamics of production yields is paramount for successful introduction

of new products.

Production yield is defined as the ratio of usable parts to the total production

quantity. When the production process is poorly understood, much of what has been

produced would result in being defective, which causes having low production yield

levels. As production continues, more problems related to the production process are

identified and solved that provide better understanding about the production process.

Through increasing production experience, employees gain better understanding of

the production process, bottlenecks in production process are identified and circum-

vented, machine down-times are minimized, which all together result in better quality

outputs. Hence, more production experience follows higher production yield levels,

i.e, learning-by-doing. These production yield improvements through production

experience play an important role in profitability of a firm. For instance, 1% increase

in production yield for a semiconductor fab producing 20, 000 wafers per month with

an average selling price of $2, 000/unit wafer can result in additional $4.8M revenue

in a year, which is almost entirely profit since only post production (i.e. storage and

distribution) costs need to be covered by the $4.8M.

As we have mentioned earlier, one major problem associated with the launching

of a new product is the lack of production experience, which leads to low production

yield levels. Pilot production phase for a newly developed product is an experimental

production period in which a limited amount of production capacity of the produc-

tion line is allocated to produce the new product so that the production process of

the new product is improved through cumulative production experience. During pi-

lot production phase manufacturers learn about the new recipes and tools required

for the new product through small scale production. At the conclusion of the pilot

production phase, the production methodology for the new product is better under-

stood, formalized, and the obtained knowledge is exploited for full production. One

12



major question that manufacturers, therefore, face is how to best learn about the

production processes and corresponding yields of new product generations. This fur-

ther begs the following two questions: is it better to improve the production process

quickly by allocating a whole production capacity to experimental production of a

new product? or is it better to improve the production process slowly, and still be

able to reap profits from the old product that has already high and stable production

yields? Answers to these questions are key to developing pilot production strategies,

hence, there is a strong need to develop robust models to explore how fast to learn

during pilot production phase.

In addition to process improvement through cumulative production experience,

knowledge sharing is another opportunity to improve production process when there

are multiple production lines with similar production processes. The production pro-

cess of a new product is initially improved through cumulative production experience

on a pilot production line. Then, acquired production experience and knowledge can

be shared with the other production lines before they start launching the full pro-

duction of the new product. Hence, having production lines with similar productions

processes is helpful in carrying out knowledge transfer across production lines. For

example, one of the largest automobile supplier, Visteon Corp., have recently started

standardizing equipment and processes in its different manufacturing facilities to en-

able better knowledge sharing and to prevent duplicate improvement efforts among

its plants. Intel's copy exactly strategy is another good example for the application of

production lines with similar production processes. Under the copy exactly strategy,

the whole manufacturing process (i.e., equipment set, process flow, suppliers, clean

room, and training methods) devised in a development plant is duplicated across

the other manufacturing plants for full production. As indicated in Clark (2002), by

standardizing equipment and processes among different fabs through copy exactly,

knowledge is transferred much faster and more efficiently among fabs. In addition,

products and workers can be easily shifted among fabs to smooth operations, and en-

gineers in different fabs with identical production lines can simultaneously deal with

arising problems. When acquired knowledge can be passed on across production lines

13



with similar production processes as pointed out by the aforementioned industry ex-

amples, it is essential to take this ability into account when developing effective pilot

production strategies for newly developed products.

Production process during full production period can further be monitored to ob-

tain additional yield improvements. When there are multiple production lines with

similar production processes, a lead production line with better production experi-

ence would share information on process improvements on a continuous basis with the

other production lines. Significant yield discrepancies among production lines dur-

ing full production represent opportunities to share knowledge about the production

process. For example, Intel Corp. exchanges employees across production lines with

similar production processes and holds frequent meetings among their engineers to

help close the gap in production yield levels. For example, Intel Corp. highly utilizes

exchanging its employees among its production lines to make the detection of flaws

in production processes easier. To illustrate, Bruce Sohn, the co-manager of Intel's

Rio Rancho plant, reports that "identical tools in two factories of Intel kept produc-

ing different defect rates. By swapping the workers who maintained the tool, Intel

learned that one group was cleaning the tool by wiping a towel in a circular motion;

the other wiped back and forth. One motion was against the grain of the metal,

spreading dirt particles rather than moving them." As supported by the previous ex-

ample, exchanging labor force and carrying out knowledge sharing meetings among

production lines with similar production processes are effective methods of further

process improvements, however, continuous process improvement through knowledge

and experience sharing process bears certain costs. For example, deployment of man-

agers and engineers for meetings and exchanging employees among production lines

cost both labor time and money. Hence, there is a strong need to develop a model

that i) weights benefits from process improvements through knowledge sharing dur-

ing full production and the resulting incurred costs; and ii) informs managers about

when it would be best to carry out knowledge sharing among production lines.

To provide insights into the dynamics of production yields during ramp-up, this

study considers a manufacturer that introduces successive generations of products,

14



possibly on multiple production lines with similar production processes. We consider

two types of production phase for this firm; pilot production phase and full produc-

tion phase. Our objective in this paper is two-fold. First, we would like to determine

how to operate the pilot production phase of a newly developed product. Second,

we would like to characterize how the production process of a new product can be

further improved during its full production phase. To determine how to operate the

pilot production phase, we develop two separate models. First, we consider a single

production line alone in chapter 2. We analyze how to split production between the

new and old product to maximize total profits, considering that the new product

typically faces low yields initially. We show that it is never optimal to dedicate only

limited capacity to the new product, -i.e., experimental production is not optimal.

We then extend our view to multiple similar production lines in chapter 2 when ac-

quired knowledge can be passed on across production lines. We determine conditions

under which launching pilot production becomes preferable. Next, in chapter 3, we

consider the case of full production where a lead production line scans information

on process improvements on a continuous basis with the remaining production lines.

We develop a helpful yield control model that considers the yield gap between a lead

production line and the other production lines during full production phase. Through

this yield control model, we analyze the trade-off between the benefits from knowledge

transfer from a lead production line during full production phase and any associated

cost incurred through sharing knowledge. We show that this trade-off reveals a simple

analysis that help managers in characterizing when knowledge sharing from a lead

production line is desirable for a given the cost of knowledge sharing event. Finally,

we summarize our main findings and point out some possible limitations and pitfalls

to the approaches presented in this paper.

1.3 Service Commonality & Multiple Demand Classes

The demand for a product can often be categorized into classes of different prior-

ity. Rationing inventory among these different customer classes is an important tool
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for managing inventory when requirements for service vary greatly among customer

classes. Issuing inventory to some customers while refusing or delaying the service

for others is a commonly used practice in many industries. The following examples

of inventory systems where different demand classes with different levels of service

priority arise provide a motivation:

* A spare parts provider company is responsible to handle the inventory of ser-

viceable parts of aircrafts. The company would face different types of demand

for spare parts. Keeping an aircraft grounded can be very expensive. Moreover,

the company has contractual agreements with some major airlines. Each of

these airlines is assigned a specific service-level such that certain percent of its

orders for spare parts must be filled within a pre-specified time window. Fur-

thermore, there are some customers with whom no contractual agreement exist.

The company, therefore, is in need of a operational support system to manage

its spare-part inventory to minimize its operational costs while satisfying the

promised service levels to its customers.

* A warehouse in a two-echelon inventory system for a single product has several

retailers located in different regions with different market sizes and different

profit margins. Each of these retailers offers three types of service delivery lead-

time: 1 day delivery, 3 days delivery, and 1 week delivery. Therefore, each of

these retailers faces 3 different types of demands for the single product, depend-

ing on different delivery lead-times chosen by customers upon their arrival. A

manager faces the challenge of deciding how much inventory to place at ware-

house and at each retailer to minimize the long term operational cost of this

two-echelon inventory system.

Analyzing inventory models with different customer classes based on different

service priorities has received some attention in the extant inventory management

literature. However, existing models suffer from a lack of generality to cover most

real problems or are very complicate to use. Hence, there is a strong need of having

transparent inventory management models with multiple demand classes that are easy
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to understand and to be easily implemented in practice. Therefore, our objective in

this study is to develop an approach that covers a wide variety of existing problems

while being fairly transparent and easy to implement.

To achieve so, we consider a single-product inventory system that serves multiple

demand classes, which differ in their backlog costs or service level requirements. We

develop a model for cost evaluation and optimization, under the assumptions of Pois-

son demand, deterministic replenishment lead-time, and a continuous-review (Q, R)

policy with rationing. We analyze three different problems: the service level problem,

the cost minimization problem, and the service time problem. The main objective in

each of these three problems is to find the optimal (Q, R) policy with rationing. The

service level problem aims to achieve a pre-specified service level for each demand

class by incurring the minimum long-run average inventory holding costs. The cost

minimization problem, on the other hand, simply aims to minimize the sum of long-

run average inventory holding and backlogging costs. In each of these aforementioned

problems demand classes differ from each other in terms of their different service-level

requirements and associated backlogging costs. The service time problem, however,

considers a more elaborate approach to differentiate demand classes, where there is

both an associated specific demand fulfillment lead-time and service level require-

ment to each demand class. It aims to satisfy the specified delivery time with the

pre-specified service level for each demand class by incurring the minimum long-run

inventory holding costs.

We develop transparent models to analyze each of the above mentioned three

problems and provide effective numerical solution algorithms for each of them. Fur-

thermore, we show the value of rationing policy and how to incorporate the single-item

model with multiple demand classes into a multi-echelon setting.
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Chapter 2

Pilot Production & Process

Improvement

2.1 Introduction & Literature Review

The work in this chapter draws on both, the process improvement literature and the

production yield management literature. The former branches into an area discussing

pilot production and one dedicated to full production. For example, Bohn and Ter-

wiesch (1999), Terwiesch and Bohn (2001), and Terwiesch and Xu (2004) discuss

process improvement during pilot production phase. The main theme of these earlier

works is that the production process can be improved by learning through deliber-

ate experiments or process changes during pilot production phase. Experiments and

process changes result in capacity reduction in the short run that causes a trade-off

between how much to learn through experiments and process changes and how much

to sacrifice from production to carry out experimentations and process changes. Our

pilot production model in section 3 of this paper is related to these earlier studies

since it focuses on interactions among capacity utilization and process improvement

during pilot production. However, it differs from Bohn and Terwiesch (1999) and

Terwiesch and Bohn (2001) in two aspects. First, we model the process improve-

ment through cumulative production experience, i.e., learning-by-doing rather than

carrying out controlled experiments. Therefore, production process in our model is
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improved by allocating more production capacity for pilot production rather more

capacity for experiments. Hence, to this end, our model shifts the emphasis onto:

trading production capacity among a new product undergoing pilot production and

an old product that has been already in its full production phase. Second, our model

follows a continuous time approach rather than a discrete time approach as used by

the aforementioned works.

Since we model process improvement through learning with cumulative production

experience, it is worth mentioning to cite what work has been done in the literature

along this dimension. We begin with synthesizing production learning models in the

literature. The traditional learning models in a typical manufacturing environment

can be divided into two categories; autonomous learning and induced learning. Au-

tonomous learning is the first generation learning model. It assumes that learning

is merely a by-product of increased cumulative production volumes, learning by

doing. Induced learning model, on the other hand, is a deliberate improvement pro-

cess, - i.e., knowledge-transfer. The first autonomous learning model was developed

by Wright in 1936, who concluded that manufacturing labor costs in the airframe in-

dustry decrease as cumulative production increases. Arrow (1962) later considered a

cumulative production experience model in which labor costs of production decrease

as cumulative investments in production process increase. Baloff (1971), Joskow and

Rozanski (1979), and Lieberman (1984) provided empirical support from a variety of

different industries, - musical instruments, semiconductors, apparels, auto assem-

bly, and nuclear power plants. Induced learning models, on the other hand, view

learning about the production process as a deliberate improvement process rather

than a solely autonomous process. For example, Mody (1989) considered cumula-

tive production experience as a combination of continuous adjustment process and

a team-work of skilled engineers rather than only a cost reduction process. And, he

concluded that the level of learning is strongly affected by knowledge creation about

production processes and how this knowledge is transferred within a production facil-

ity. Dorroh et al. (1994) stressed the importance of investing resources in attaining

knowledge about production processes rather than depending simply on autonomous
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learning. Hatch and Mowery (1998) showed that learning in early stages of semi-

conductor manufacturing is a function of allocation of engineering resources rather

than increasing production volumes. Adler (1990), who conducted a detailed field

study of a global high-tech company, defined learning as a continuous improvement

process through accumulation of knowledge about manufacturing process. Zangwill

and Kantor (1998) later arrived at the same conclusion. Dutton and Thomas (1984)

and Terwiesch and Bohn (2001) emphasized experimentation as a form of deliberate

learning. They concluded that the learning rate should no longer be treated as a

given constant, but rather as a dependent variable influenced by a firm's behavior.

Process improvement during full production also received important attention in

the literature. Studies along this dimension can be classified further into two streams;

improvement with process change and improvement through knowledge creation and

sharing. Fine (1986), Li and Rajagopalan (1998), and Carrillo and Gaimon (2000),

for example, provide a good literature review about how process change may benefit

process improvement. The common theme in process change models is that pro-

cess change provides process improvement through increasing effective production

capacity in the long run. Characterizing how process change or investment in pro-

cess change should be carried out given accumulated knowledge in the system is the

typical objective sought in these models. In this paper we do not model process im-

provement through process change. Instead, we follow in the footsteps of Lapre and

Wassenhove (2001), Argote and Ingram (2000), Szulanski (2000), Darr and Kurtzberg

(2000), Adler (1990), Mody (1989), and Argote et al. (1990) and analyze knowledge

creation and sharing among production facilities with similar production processes.

Specifically, we study the impact of process commonality across production lines on

knowledge creation and how that affects pilot production strategies. As Adler (1990)

points out, increasing competition in industries with short-life cycles increases the

importance of commonality of production lines at process design level. Commonal-

ity of production lines has two important advantages. First, process commonality

provides identical products worldwide, - this is key to gradual discontinuance strat-

egy of products with short-life cycles. Second, process commonality minimizes the
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risk of having operational problems propagated beyond managerial control due to

divergence in process designs. Intel's copy exactly strategy, as explained in detail in

McDonald (1998), further illustrates how common processes enable better knowledge

creation and sharing across production lines. We model knowledge creation and shar-

ing among production lines with similar production processes and show how process

commonality affects pilot production strategies. In contrast to the extant empirical

literature on knowledge creation and sharing, our model provides a descriptive ana-

lytical model that is supported by the existing empirical observations. Moreover, our

model in section 5, to the best of our knowledge, provides the first analytical approach

in characterizing when knowledge sharing should be desirable among production lines

with common production processes. Finally, it provides an analytical benchmark for

existing and future empirical models on when knowledge sharing should be carried

out among production lines with process commonalities.

Production yields greatly impact the economic performance of production pro-

cesses. Hence, there is a rich literature drawing attention on production yield man-

agement. As indicated by empirical findings of Mclvor et al. (1997), production

yield management is crucial for competitive industries with short-life cycles. Hence,

pilot production becomes primarily a production yield improvement period in which

firms strive to have as much process improvement as possible. Bohn and Terwiesch

(1999) detail the economic impact of production yield management. They conclude

that production yields are especially important in periods of constrained production

capacity. Literature on production yield improvement can be divided into two main

categories. First, the yield improvement is based on technical tools and methods.

Detect classifications, statistical process control studies, in-line product inspections

are some examples of methods cited in the literature along this direction. The in-

terested reader is referred to Bohn and Terwiesch (1999) for additional references.

Second, yield improvement is based on process and quality control. Some suggested

approaches for better process and quality control in the literature are: inspection

policies with better and quick information sharing among during the production pro-

cess Tang (1991); providing job security to obtain employee commitment to process
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improvement Repenning (2000); and duplication of process equipment between de-

velopment and manufacturing facilities in introducing new technologies Hatch and

Mowery (1998). We model the production yield improvement through accumulated

cumulative experience about the production process, i.e., the more production occurs,

the higher production yields are. The most relevant yield model to ours in literature

is developed in Terwiesch and Bohn (2001) where production yield is modelled to de-

pend on production time and processing capability. Production yields improve over

time in both models as production continues. However, our yield model does not

consider changes in processing capability, but considers changes in production rate.

2.2 Pilot Production Model

The objective of this section is to derive optimal pilot production strategies for new

product launches. Due to lack of production experience, the manufacturer initially

faces low yields in producing new products. Hence, the manufacturer aims at gain-

ing production experience through launching an experimental production on a single

production line that currently produces an old product that has mature yield levels.

Although the old product is still profitable, it will eventually become obsolete due to

competition from new products in the market. The principal question for the man-

ufacturer thus is whether he should allocate some limited capacity to experimental

production to gain experience in producing the new product while still reaping prof-

its from the mature product, or continue full production of the mature product and

launch the full production of the new product when the former becomes obsolete.

To answer this principal question we develop an optimization problem that max-

imizes profits, - single line capacity allocation problem (SLCAP). In this problem

we analyze two successive generations of a product on a single production line; an old

product and a new product. We assume the following environment: an old product

that currently has high and stable yields in production; and a new product that is

ready to be launched into high-volume production. The main parameters that impact

this analysis are time and price. Time considerations are: the time that the produc-
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tion life cycle of the old product comes to end is To; the earliest time of launching

the production of the new product is 0; dedicated time to the new product before

the launching of its successor is T. Price considerations are: the selling price of the

old product before the new product is introduced is ph.; the selling price of the old

product after the new product is introduced is pi; and the selling price of the new

product is Pl. We consider that the following generalizations are true for a new prod-

uct relative to the old one. A new product is launched into production before its

predecessor becomes obsolete, at time 0 < To. A new product performs better

than its predecessor. Hence, a new product causes the price of the old one to fall, -

pl < ph. The selling price of the new product does not decline much in its early life

cycle, - the selling price of the new product over [0, T] is constant at value Pl. Manu-

facturing costs in many industries are often constant, hence, it is possible to consider

that unit production cost of both the predecessor product and its successor have the

same value, -c $/product. We assume that demand is sufficient enough to entail

full production capacity, which is deterministic and denoted by K product/unit-time.

We model the production process in continuous time using known production rates

that correspond to the amount of product produced per unit-time. We assume that

the old product has matured yield levels by time t = 0, - i.e., 100% yield levels.

As to the new product, the firm has low yields during its initial production phase,

because of lack of experience. As the firm progresses through the production of the

new product, its yield levels and production experience will increase. The model

that is entailed assumes the following: the yield level of the new product at time t

is derived from a yield function y(Q(t)) E [0,1],- i.e., a function of the cumulative

production quantity of the new product over [0, t], Q(t); y(Q(t)) is increasing and

concave in Q(t) with initial yield level y(0); and the new product is produced at rate

x(t) E [0,1] product(s)/unit-time over [0, T], as shown below in figure 1: We denote

the capacity allocated to the new product at time t E [0, T] by x(t) E [0, K]. Given a

capacity allocation policy of x = {x(t) E [0, K], t E [0, T]} for the new product, the

total profit obtained from both the old and new generations of the product in period

[0, T] can be stated as follows, where it is assumed that any leftover product has
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Figure 2-1: Production Yield Function, y(Q(t))

zero salvage value:

To T T

11(x) = [K - x(t)][p0 - c]dt + x(t)[y(Q(t))p1 - c]dt + K[y(Q(t))pl - c]dt

This profit expression has three distinct parts: part I, - denotes profit from

sales of the old product over [0, To], where the old product is produced at rate K -

x(t) products/unit-time with yield level of 1; part II, - denotes profit from sales

of the new product over [0, T], where the new product is produced at rate x(t)

products/unit-time with yield function y(Q(.)); and part III, -denotes profit from

sales of the new product over the remaining time period [To, T] in which the new

product is produced at rate x(t) = K product/unit-time with yield function y(Q(.)).

The maximization of total profit from both generations of the product, under limited

production capacity entails the following inherent problem, - single line capacity

allocation problem (hereinafter, "SLCAP"):

(SLCAP) MaxH(x)

s.t < (t) < K t E [0, T]

A recap of all the parameters that impact the analysis in this section is as follows:
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To production end-time of the old product, where 0 < To,

T = dedicated time for the new product, where To < T,

x(t) = production rate of the new product at time t, x(t) E [0, K] Vt E [0, T],

Q(t) cumulative production quantity of the new product during [0, t],

y(Q(t)) = production yield level of the new product at time t, y(Q(t) E [0, 1],

p0 unit selling price of the old product before the launch of the new product,

p~ = unit selling price of the old product after the launch of the new product,

Pi = unit selling price of the new product during [0, T],

c = unit production cost per product in period [0, T],

rIl(x) = total profit obtained in period [0, T] given x = {x(t) E [0, K], t E [0, T]},

We would like to find out how fast we should learn about the production process

of the new product during its pilot production. We could learn quickly and improve

yields rapidly by allocating more production capacity for the new product. However,

by allocating more production capacity for the pilot production an opportunity cost

is incurred due to the reduction in the profitable output of the old product that

has already mature yield levels. SLCAP stated above reflects this trade-off and its

solution provides us with the optimal production capacity to be allocated for pilot

production. We next characterize the solution for SLCAP through the following

propositions:

Proposition The production of an old product stops permanently whenever a new

product is introduced.

Proposition 2 Optimal capacity allocation policy for problem SLCAP is of bang-

bang type; it is optimal to allocate the whole production capacity for a new product

immediately if 'O< ' foT y(Q(t))dt, otherwise it is optimal not to allocate anyPi To 0o

production capacity for a new product until the old product becomes obsolete.

In summary, propositions 1 & 2 imply that it is never optimal to dedicate only

limited capacity to the new product, - i.e., experimental production is not optimal,

furthermore, it is optimal to launch full production of a new product either imme-

diately or only when the mature product that is currently in production becomes
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obsolete. These results are robust to any production yield function that is concave-

increasing in cumulative production quantity. Hence, these results are quite general

and independent of any details on how production process is improved as long as

production yield levels are increasing at a decreasing rate as more production occurs.

Moreover, if production yield levels have random additive components due to process

excursions or tool failures, then the results still hold true as long as the expected pro-

duction yield levels are concave-increasing in cumulative production quantity. Also,

by following similar line of proof optimal policy can be shown to be still bang-bang

type even if selling prices and production cost were time dependent. Thus we do not

loose generality by assuming constant selling prices and production cost in our anal-

ysis. We also need to emphasize that we ignored the issue of strategic competition

in our analysis. Manufacturers may act strategically on how they allocate their total

production capacity depending on their competitors' actions in the market. For this

case, a different model is needed to determine the best capacity allocation between

consecutive generations of products. In addition, we ignored any possible uncertainty

in production capacity. Again, a different model is needed depending on how risk

sensitive the manufacturer is. However, we conjecture that bang-bang type of policy

would still hold true for any risk-neutral manufacturer. Moreover, we assumed that

production yield level on each production line is independent of those on other pro-

duction lines. We relax this assumption in the next section where we analyze how

pilot production lines are managed when there is a dependency among production

yield levels through knowledge transfer among production lines.

2.3 Pilot Production with Process Commonalities

In this section we extend our discussion to the case of multiple production lines with

similar production processes. With multiple production lines with similar produc-

tion processes experience gained on one production line could be transferred to other

production lines as well. Thus, it is not clear any more if the simple result for the

previous section will hold here, too. In particular, a manufacturer may now sacrifice
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some of the profit for the old product to gain experience on producing a new product

early on. In other words, a manufacturer may launch the new product on some of

its production lines to gain production experience while continuing the production of

the old product on the remaining production lines, i.e., - pilot production process.

Production experience gathered on a pilot production line, then, can be transferred to

other production lines that have similar production processes as in pilot production

line. The higher the commonality in production processes between pilot production

line and any other production line implies the higher the amount of production expe-

rience transferred from pilot production line, hence the higher the benefit from pilot

production. Thus, the principle question here for a manufacturer is how to manage

pilot production for a new product when the manufacturer has multiple production

lines with similar production processes.

We develop two different models to analyze this principal question. The first

model analyzes how pilot production is managed when production yield levels are

deterministic. This model, moreover, provides insights on the trade-off between the

pace of pilot production and the cost of pilot production. The second model, on the

other hand, analyzes how pilot production is managed when production yield levels

have uncertainties. In the following, we describe and analyze each of these two models

separately.

2.3.1 Pilot Production with Deterministic Yield Levels

We consider production yield levels that increase at a decreasing rate as the cumula-

tive amount of production increases and do not involve any uncertainty. This implies

that the rate of increase in yield levels is known to certainty and it is not affected by

any unexpected excursions in production process and possible machine failures. We

consider a manufacturer that has total of n E Z + production lines. We argue that it is

enough to assign at most one production line for pilot production when yield levels are

deterministic because the same amount of production experience is accumulated no

matter how many pilot production lines are used. Thus, we consider that at most one

of the production lines is assigned as a pilot production line, which starts producing
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Figure 2-2: Knowledge Transfer Process with Similarity Index y E [0,1]

the new product at time t - 0 while the other production lines launch the production

of the new product by time T E [0, To]. The production process of the new product

on pilot production line is improved through cumulative production experience over

[0, T]. At the end of pilot production period, knowledge about the production process

is formed and transferred to all other production lines. All the parameters defined in

section 3 hold true here. We model the similarity between the pilot production line

and any of the other production lines through a similarity index -y E [0, 1] as shown

in figure 2, where the high level of -y implies a high level of similarity between pro-

duction processes. Furthermore, we consider that more knowledge can be transferred

from pilot production line as the similarity index increases. Hence, we assume the

following scheme for the similarity index: y = 1,- implies that both production lines

have identical production processes, hence, acquired knowledge on pilot production

line is completely transferred; 7 = 0, - implies that production processes have no

commonality, as a result, no knowledge is transferred; and -y E (0,1), - implies that

production processes have some commonality, therefore, some portion of the acquired

knowledge on pilot production line is transferred.

We also assume that the more knowledge transferred implies the higher produc-

tion yield levels in production line acquiring knowledge. Hence, the production line

acquiring knowledge from pilot production line begins to launch the new product with

higher yields as the similarity index -y increases. In addition we assume that the more

knowledge transferred implies the less effort in improving production yield levels in

production line acquiring knowledge. Hence, production yield levels on production

line acquiring knowledge improve at a slower rate as more knowledge is transferred,
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in other words, when there is higher similarity between production lines. This boils

down to the following production yield equations for the production line acquiring

knowledge, and for the pilot production line transferring knowledge, respectively:

y(Q(t- (1 - y) )), t [T,T]; and y(Q(t)), t [O,T]. According to this model,

production yield function on pilot production line is not affected by knowledge trans-

fer, i.e., y(Q(t)), t E [0, T]. However, production yield levels on any production line

transferring knowledge from pilot production line is obtained by shifting the pro-

duction yield function on pilot production line over time by (1 - T) - units, i.e.,

y(Q(t - (1 - ,) - )), t [,T]. This representation guarantees the following for

the production line acquiring knowledge: First, as the similarity index y increases,

its production yield function gets closer in shape to the production yield function

on pilot production line; Second, as the similarity index y decreases, its starting

production yield levels decreases, but its production yield levels improve at a faster

rate. These aforementioned features are depicted below in figure 3. We note that our

choice of model for knowledge transfer from pilot production line is not necessarily

unique. There might be many other ways to model it. Nevertheless, our knowledge

transfer model captures the two common critical factors: the more similarity among

production processes enables the more knowledge transfer from pilot production line;

and the more knowledge acquisition from pilot production line implies the slower rate

of improvement in production yields.
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In the following we first analyze whether pilot production would become desirable

in this setting. To simplify our presentation we assume that each production line

has a production rate of K units/unit-time. We denote the total profit from all nn

production lines by I(n, T(n)):

TK K Kt(n)K I K Ko-[PiY(-t)-c]dt+(n-1)[ - (pI - c) dt+ -[y(-(t-(1-)T(n)))pj-c]dt]l(n)
There are two distinct parts to this profit expression. They are: part I,-denotes

the profit from the pilot production line over [0, T]; and part II, - denotes the profit

from the remaining (n- 1) production lines over [0, T].

According to our model, pilot production is pursued whenever optimal production

launch time -r*(n) > 0. Otherwise, all production lines launch the full production of

new product simultaneously at time t = 0 and no pilot production occurs. The

following two propositions characterize when optimal production launch time * (n)

is non-zero for given n e Z+ production lines.

Proposition 3 For any n > 2, n E Z+ and y > 0.5 optimal production launch time

of a new product T*(n) is non-zero iff pL > (1 - .) ). y( T) + y(0).
Pi 

Above proposition implies that it becomes desirable to use pilot production when

there are multiple similar production lines with deterministic yield levels if i) the old

product is still profitable compared to the new product; ii) the similarity between

the pilot production line and other production lines is high enough; iii) there are

more production lines; and iv) the amount of dedicated time for the new product is

high enough. More interestingly these results show that the simple result of section

3, which indicates that pilot production is not optimal, does not hold true in general

when a manufacturer has multiple similar production lines and the ability to transfer

production experience across them. This result holds true for any production yield

function that is concave-increasing in cumulative production quantity. We need to

point out, however, that the result strongly depends on how we model knowledge

transfer process. Furthermore, total profit function J(n, r(n)) can be shown to be
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strictly concave in duration of pilot production T(n) for different knowledge transfer

models as well. For example, we would alternatively model production yield function

on production line acquiring knowledge by the following yield function, y(Q(t)) + (1-

y) .y(Q(r(n))), t E [(n), T]. This alternative yield model guarantees that production

yield levels of the production line acquiring knowledge increases as more knowledge is

transferred from pilot production line. This model, however, constraints production

line transferring knowledge to have the same process improvement rate as on pilot

production line as depicted in figure 4 below. Thus it becomes an appropriate model

when production yield levels in both the pilot production line and the production

line obtaining knowledge increase at the same rate regardless of when and how much

knowledge is transferred. Under this alternative knowledge transfer model, J(n, T(n))

still becomes concave in T(n).

We next consider the question of how much production capacity should be allo-

cated for pilot production. Sparing more production capacity for pilot production

increases the amount of production experience gathered through pilot production,

however, pilot production bears an opportunity cost due to producing the new prod-

uct instead of the old product that has higher production yield levels. Hence, there

exists a trade-off between the amount of experience obtained from pilot production

and opportunity cost incurred from pilot production. Thus we analyze this trade-off

to determine how much capacity should be allocated for pilot production. We allocate
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the total production rate K units/unit-time in the following scheme among n E Z +

production lines: allocate K units/unit-time of production rate for pilot productionn

line; and allocate the remaining capacity K.(n-1) units/unit-time equally among then

remaining (n- 1) production lines. Equal capacity allocation on the remaining (n- 1)

production lines simplifies our presentation. However, it does not limit our model be-

cause the essential trade-off does exist no matter how capacity is allocated among the

remaining production lines.

According to the above capacity allocation scheme, increasing the number of pro-

duction lines n refers to decreasing the amount of capacity allocated for pilot pro-

duction; similarly, decreasing the number of production lines n refers to increasing

the amount of capacity allocated for pilot production. For a given n E Z+ , the total

maximum profit from n production lines simply becomes fI(n, T*(n)), where *(n)

stands for optimal production launch time as stated before. We would like to char-

acterize how FJ(n, r*(n)) changes as the number of production lines n e Z +, in other

words, the capacity allocated for pilot production, changes. Namely, we would like to

determine whether it is better to allocate lower production capacity or higher produc-

tion capacity to pilot production to maximize profits. We begin with the following

proposition that checks whether using a pilot production line with smaller capacity

would result in higher profits for the most simple case:

Proposition 4 For 7y > 0.5, J(n = 2, r*(2)) > H(n = 1) if the price ratio
2.fg y(K.t)dt-fO y( K.t)dt-fT y( K(t-(1-a) To))dt

P > To and optimal knowledge transfer timepi To

T*(2) = To.

The above proposition simply shows that allocating half of the production capacity

for pilot production would bring higher profits than allocating the whole production

capacity for pilot production as long as the price ratio between the old product and

the new product exceeds certain threshold value. In other words, it shows that total

profit may further increase as the production capacity allocated for pilot production

is decreased if the old product is still profitable compared to the new product. This

proposition triggers us to ponder whether it is better off to dedicate even smaller
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production capacity for pilot production when the old product is still profitable.

To answer this question we next characterize how total maximum profit function

f(n, T*(n)) varies with the allocated production capacity for pilot production.

Proposition 5 If y > 0.5 and H(n = 2,T*(2)) > II(n = 1) hold true, then for

all n > 2, n Z+ total profit r(n, T*(n)) can be divided into two separate parts;

profit obtained from old product Ilold(n, T*(n)) and profit obtained from new product

INew(n,T *(n)) such that

i) IIold(n, T*(n)) is increasing and discrete-concave in n,

ii) IINew(n, T*(n)) is decreasing and discrete-convex in n.

The above proposition tells us that as we allocate less and less capacity for pilot

production, profit from the old product increases at a decreasing rate while profit

from the new product decreases at a decreasing rate under two sufficient conditions;

first, similarity index y is greater than or equal to 0.5; second, total profit with half

of the total production capacity allocated for pilot production is greater than that

with whole production capacity allocated for pilot production.

The first condition seems to limit the result in this proposition to pilot production

lines with high similarity index, however, it is indeed necessary to have high similar-

ity among production lines to benefit more from pilot production through knowledge

transfer, thus analyzing pilot production lines with high similarity index is appropri-

ate in our setting. Moreover, many manufacturers aim at having production lines

with similar production processes to enable better knowledge and technology trans-

fer among production lines. And, this supports our argument that pilot production

gains more importance when there is high commonality and standardization among

production lines. Intel Corp.'s copy exactly strategy is one extreme example in which

the target is to have similarity index = 1 among its semiconductor fabs.

The second condition, on the other hand, simply restates the result in previous

proposition. It is necessary to have (n = 2, T*(2)) > I(n = 1), otherwise reduction

in the production capacity for pilot production does not result in higher total profits.

Thus, this condition does not limit us in analyzing how total maximum profit function
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FJ(n, T* (n)) varies with the allocated production capacity for pilot production.

We showed in the above proposition that allocating less production capacity for

pilot production results in deriving higher profits from the old product, but lower

profits from the new product. And, the total profit is the sum of the profits from

the old product and the new product. Hence, there exists a trade-off between the

profits from the new product and the old product depending on how much production

capacity is allocated for pilot production. The following proposition makes this trade-

off more explicit.

Proposition 6 If y > 0.5 and rI(n = 2, *(2)) > H(n = 1) hold true, then

i) total profit fl(n, T*(n)) is unimodal in n, n E Z+,

ii) total profit HI(n, T*(n)) is increasing for all n < n* E Z +,

ii) total profit H(n, T*(n)) is decreasing for all n > n* E Z+.

Above proposition, in summary, shows that there is a unique optimal production

capacity to be allocated for pilot production. And, it can calculated through simple

optimality search. This is helpful in determining how much production capacity

managers should allocate for pilot production. Moreover, it clarifies the trade-off

between lower opportunity cost of pilot production and slower learning through pilot

production. It shows that this trade-off answers the question of how much production

capacity should be allocated for pilot production. Namely, maximum profit obtained

increases for a while as we reduce the amount of production capacity allocated for

pilot production because the old product is still profitable. However, the effect of

slower learning due to smaller production capacity outweighs the lower opportunity

cost of pilot production as we further reduce the allocated capacity. Hence, there

exists a unique optimal production capacity for pilot production when the old product

is still profitable and there is a high similarity between production lines. We note

that unimodality of total profit function in allocated production capacity for pilot

production is robust to any production yield function that is concave-increasing in

cumulative production quantity. And, it also holds true for the two knowledge transfer

models that we described earlier. We next illustrate how total profit function behaves
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with production capacity of pilot production through a numerical example.

2.3.2 Example:

Suppose that we have the following production yield function that is concave and

increasing in cumulative production quantity, Q(t):

y(Q(t))- yo+ 1y(Q~t))= yO + 1 l , Q(t) E [0, oo), y(Q(t)) E [0, 1)
1 + Q(t).PIR

We represent the initial production yield level by yo. It stands for the starting produc-

tion yield level before any prior production experience except any possible knowledge

transfer from other pilot production lines. We use an initial production yield of

Yo = 0.1, 10% production yield level, which is realistic for many production facilities

including semiconductor fabs and chemical processing plants. Also, we represent how

fast production experience improves production yield levels through variable PIR,

process improvement rate. It refers to how quickly manufacturers ramp-up their pro-

duction yield levels through production experience. We note that dy(Q(t)) > 0 andd(PIR)

d2 Y(Q(t)) < 0. This implies that production yield levels improve at a decreasing rate asd(PIR) 2

process improvement rate increases. Moreover, process improvement rate is strongly

affected by quality improvement efforts. Production lines or manufacturers would be

at different stages of maturity in terms of quality management. And, this may greatly

impact how they improve their production yield levels. Hence, we may even classify

production lines or manufacturers into different categories depending on how sensitive

their production yield levels to cumulative production experience. To illustrate this

classification, we consider two extreme cases; PIR = 0.00001 and PIR = 0.000004.

We choose the following parameters of interest: production time of interest for the

new product T = 12 months; and production end time for the old product To = 5

months; production rate K = 10,000 products/month; similarity index y = 0.8;

process improvement rate PIR = 0.00001; unit production cost c = $20; and unit

selling price for the new product P = $100. The following figures show how total

profit function II(n, r*(n)) behaves with respect to change in n E Z + for different
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unit selling prices, p = $80, $85 and $90, where price ratio stands for P_:0 - ~~~~~~~~~Pi
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It is interesting to note that total profit function is not very sensitive to changes

around the optimal n, i.e., 1% 5%. Some possible answers for this observation are:

having deterministic production yield levels, having only a single pilot production

line, and more importantly knowledge transfer happens at time To for all cases in

which II(2) > II(1). We next consider the same example when process improvement

rate PIR = 0.000004.

We observe from the above example that total profit becomes more sensitive as

process improvement rate gets smaller. This is because opportunity cost of pilot

production increases as production yield levels improve slowly due to smaller process

improvement rates.
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2.3.3 Pilot Production with Uncertain Yield Levels

Manufacturing processes on pilot production lines are often not mature, hence the

rate of process improvement may vary across pilot production lines making the same

product using the same technology. Sources of differences in process improvement

rates can be classified in various ways. Some of them are operator adjustments,

chemical contamination, ambient particles causing defects, process excursions, and

tool failures. These sources might have both systematic and random effects on pro-

cess improvement rates, which consequently result in random variations in production

yield levels on pilot production lines. We observe that in many industries multiple

production lines are often dedicated for pilot production to hedge against uncer-

tainties in process improvement rates. Running multiple pilot production lines may

provide the opportunity to tune up the manufacturing process through a comparative

monitoring across pilot production lines so that yield levels on pilot production lines

are balanced. The key question here that manufacturers face is how to manage pilot

production lines that have uncertain process improvement rates, therefore, uncertain

production yield levels.

The model here analyzes how pilot production is managed when production yield

levels have uncertainties. We have already argued earlier that it is sufficient to have at

most a single pilot production line when yield levels are known with certainty. This is

because no additional production experience would be generated if we have multiple

pilot production lines with deterministic yield levels. However, the same notion would

not hold true when yield levels are not known with certainty in advance. Having

multiple pilot production lines gives us the benefit of comparing yield levels among

multiple lines and picking up the pilot production line with the highest yield level to

transfer production experience to other production lines. However, this benefit has

a trade-off because each additional pilot production line carries an opportunity cost.

Here we develop a simple model to analyze this trade-off.

We consider a manufacturer that has total of n E Z+ production lines, each

with production capacity of K units/unit-time. Out of these n production lines,
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m of them are dedicated as pilot production lines and remaining (n - m) produc-

tion lines continue producing the old product. We assume that production yield

on each pilot production line is random due to immaturity in production process,

however, expected production yield on each pilot production line improves through

cumulative production experience. We assume random production yield level of the

form Y(Q(t), e) = y(Q(t)) + e, where represents the random change in production

yield level due to variability in production process and y(Q(t)) is still defined as the

same as earlier. Y(Q(t), e) has a cumulative distribution function Fy(.) with mean

p = y(Q(t)) + E[e] and variance o2 = Var( e). We assume mean and variance values

such that Y(Q(t), e) is almost certainly non-negative. We note that we have modelled

the randomness in production yield levels with an additive random term. Alterna-

tively, we could model randomness in production yield levels with a multiplicative

random term, i.e., Y(Q(t), ) = y(Q(t)) (1 + e). Similar analysis can be carried out

under this alternative model as well. We focus on the additive random term model

purely for the clarity of presentation.

Pilot production lines start producing the new product at time t = 0 and ex-

pected production yield level for the new product on each pilot production line im-

proves with cumulative production while the remaining production lines continue

milking profits out from the old product. At the end of pilot production period

[0, T m(n)], Tm (n) [0, To], actual realizations of production yield levels on pilot pro-

duction lines are compared with each other and pilot production line with the high-

est yield realization is chosen to transfer knowledge to all other production lines.

Knowledge transfer occurs at time Tm(n) from the chosen pilot production line to all

other production lines. Production of the old product is stopped and all production

lines produce the new product over the remaining production period, [m(n), T]. We

represent the production yield level in pilot production line i {1, 2, ..., m} by the

random variable Yi(Q(t), ei) = y(Q(t)) + ei. Thus the highest random production

yield level among all pilot production lines at time Tm(n) will be Yh(Q(Tm(n)),) =

max {Yi(Q(Tm(n)), ei)} where = {el, e2,..., Em} and we assume that yield levels
i(Q(m(n)),)'s are mutually independent. Moreover, we assume that productionY~(Q(Tm(nl)),ei)'s are mutually independent. Moreover, we assume that production
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yield levels for the new product are updated in the following scheme immediately

after knowledge transfer occurs: production yield level on each pilot production line

becomes Yh(Q(t),^) for t E [m(n),T]; whereas, production yield level on each of

the remaining (n - m) production lines becomes Yh(Q(t - (1 - y) Tm(n)),) for

t E [Tm(n),T]. According to this chosen scheme, knowledge gap between pilot pro-

duction lines and the remaining production lines decreases as the similarity index y

increases; thus the production line acquiring knowledge from pilot production line

begins to launch the new product with higher expected yield level. We note that

this knowledge transfer scheme presumes that all pilot production lines have exactly

the same production process, i.e., similarity index among pilot production lines is 1.

This assumption is for the clarity of presenting knowledge transfer scheme. And, a

similar analysis can be carried out if similarity index among pilot production lines is

less than 1.

We represent the total expected profit from all n production lines by E[HI(rm(n), m)],

which is the sum of expected profits from the old and new product over production

period [0, T] as shown below:

AT

E[n(rm(n),m)] =(n - m) [K (p - c) Tm. (n)+j K [P1 E[Yh(Q(t-
(n)

rTM (n)

(1 -'y) Tm(n)),)] - c]dt] + m [f K [pi E[Y(Q(t), E)]
T~~~~~~~~~~~~~~~~T

- c]dt + K [Pl E[Yh(Q(t),')] - c]dt]

The above expression for total expected profit has four distinct parts. The first part

is the expected profit over [0, 'm(n)] from the old product on (n- m) production

lines. The second part is the expected profit over [Tm(n),T] from the new product

on (n - m) production lines. The third part is the expected profit over [0, Tm(n)]

from the new product on m pilot production lines. And, the last part is the expected

profit over [Tm (n), T] from the new product on m production lines that are dedicated

as pilot production lines over [0, Tm(n)]. In the following we characterize how total

expected profit changes with respect to number of pilot production lines m.
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Proposition 7 If E[Yh(Q(t),)] is increasing and discrete-concave in m Z + and

similarity index between pilot production lines and the remaining production lines

?_ > 0.5, then the total expected profit E[I(rm(n), m)] is discrete-concave for all m <

n E Z+.

This proposition simply emphasizes the trade-off between the benefit from multiple

pilot production lines and opportunity cost associated with pilot production lines.

Simply put, it shows that it is better-off to have one more pilot production line if the

gain in expected profit by dedicating one more line as a pilot production line is larger

than the opportunity cost incurred in doing so. Furthermore, this result indicates that

it would be better off to use multiple production lines when there are uncertainties

ill production yield levels. We illustrate the model here with the following numerical

example:

2.3.4 Example:

We consider random production yield level of the form Y(Q(t), e) = y(Q(t))+e, where

the random change in production yield level on each production line due to variabil-

ity in production process, , is Uniformly distributed over [-u, u], u E (0,1]. We

assume identical distributions on random change for all production lines for clarity of

presenting the example. Production yield levels for the new product in pilot produc-

tion lines improve through cumulative production experience and have the following

form over t [0, m(n)): Y(Q(t),ei) = y(Q(t)) + cj, where i Uniform[-u,u], i E

{11, 2, ..., m}. To derive an explicit expression for total expected profit, we first eval-

uate E[Yh(Q(Tm(n)),)] = E[im{l,2ax m}{y(Q(t) + el}]. Suppose that Yh(Q(rm(n)),)
iE{1,2..,m}

has a cumulative probability distribution Fh (.). We use the following relation between

m random variables and the maximum among them in deriving Fh(.):

P(Yh(Q(t), ) < Yh) = P(ie{ m} Y(Q(t)) + ei Y = u
i=1
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Taking the expectation of Yh(Q(t),-') yields that E[Yh(Q(t), E)] = z dFh(z)dz =
m.(z-((Q(t))-u))mlY(Q(t))+u z [m(z-(Y(Q(t))2.u)m ]dz = y(Q(t)) + (m-1).u Similarly, we can derive

E[Yh(Q(t- (1 -7) . m(n)),] = y(Q(t- (1-') Tm(n))) + (m-1)u. Total expected

profit then will have the following expression:

E[n(rm(n), m)] =(n -m) . [K. (p - c) . Trm(n) + K [pl y(Q(t - (1 -')
(n)

rT

m(n)))- c]dt] + m. K * [pi y(Q(t)) - cdt+

+ u nh- (T - Tm(n)) K plm+l
(m-1).u is increasing and discrete-

We can easily show that E[Yh(Q(t), )] = y(Q(t)) + m+1)u is increasing and discrete-

concave in m E Z+. Therefore, using the previous proposition this implies that

E[II(rm(n),m)] is discrete-concave in m E Z+. Thus we can uniquely determine

how many of production lines assign as pilot production lines. We use the following

1-gothsaeainpeiufunction for y(Q(t)) [0,1), y(Q(t)) = o + + , the same as in previous
Q(t)-PIR

example. And, we choose the following parameters of interest, which are also the

same as in previous example: production time of interest for the new product T = 12

months; production end time for the old product To 5 months; production rate

K = 10, 000 products/month; similarity index 3' = 0.8; total number of production

lines n = 20; Uniform distribution over [-u = -0.1,u = 0.1]; initial yield level

yo = 0.1; process improvement rate PIR = 0.00001; unit production cost c = $20;

and unit selling price for the new product pi = $100. Figure 5 below shows how total

expected profit function E[I(Tm(n),m)] behaves with respect to change in m Z +

for different unit selling prices, p = $60, $70 and $80, where price ratio stands for

N.
P1

Figure 5 depicts that decreasing price ratio favors increasing the number of
Pi

pilot production lines as expected. It becomes favorable to initiate the production

of the new product in more pilot production lines as the profit margin of the new

product increases compared to that of the old product.

In this section we extended our discussion in section 3 to the case of multiple sim-
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ilar production lines. We modelled that with multiple production lines with similar

production processes experience gained on one production line could be transferred

to other production lines as well. And, we showed that the simple result for the pre-

vious section would not hold here if there is enough similarity of production processes

among production lines to enable knowledge transfer among them. In particular, we

showed that a manufacturer may now sacrifice some of the profit for the old product

to gain experience on producing a new product early on. In other words, a man-

ufacturer may now launch the new product on some of its production lines to gain

production experience while continuing the production of the old product on the re-

maining production lines, i.e., - pilot production process. And, production experience

gathered on a pilot production line, then, can be transferred to other production lines

that have similar production processes as in pilot production line. We indicated that

the principle question for a manufacturer with multiple production lines with simi-

lar production processes is how to manage pilot production for a new product. We

analyzed this principle question in two different environments; pilot production with

deterministic production yield levels and pilot production lines with uncertain yield

levels. For each scenario, we derived conditions on when pilot production becomes

desirable and furthermore characterized how total profits change with the allocated

capacity for pilot production, which are essential in designing pilot production strate-

gies upon existence of multiple production lines. In the next section, however, we

focus on how production processes of a new product can be improved during its full

production. Although production process of a new product is improved through pilot

production, the quality of the production process is still being monitored during full

production for further improvements. And, in the next section, we analyze trade-offs

involved in this continuous improvement process.
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Chapter 3

Process Improvement during Full

Production

3.1 Introduction

Although production process of a new product is improved through pilot production

when there are multiple similar production lines, the quality of the production process

is still being monitored during full production for further improvements. The objec-

tive of this chapter is to characterize how production processes of a new product can

be improved during its full production. We consider the case of full production where

a lead production line scans information on process improvements on a continuous

basis with the remaining production lines. However, this knowledge sharing process

involves costs that need to be traded-off with benefits from process improvements.

The principle question for a manufacturer is thus when to transfer knowledge from a

lead production line about process improvements for a new product.

To answer this question we form a yield control mechanism for a production line so

that its production process can benefit from that of a lead production line. This yield

control mechanism is based on yield differences which stand out as an opportunity

to improve production yields through knowledge transfer. We characterize when

knowledge transfer from a lead production line should be desirable.
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3.2 General Framework

Generally, production lines during full production fall into the following two cate-

gories. First, lead production lines, - generally associated with high yield levels,

and denoted here as Production-line 1. Second, dominated production lines,- gen-

erally associated with low yield levels, and denoted here as Production-line 2. The

yield level at time t in Production-line j is given by yj(Q(t)), j E {1,2}, t e [0, T].

First set of assumptions are: production lines 1 and 2 will launch full production of

a new product at time t = 0; production lines and 2 will have the same initial yield

levels; and the yield levels of both production lines will increase through cumulative

production experience over time.

Production-line 2 is subordinate to Production-line 1, hence, its learning curve

will accelerate more slowly and its yield levels will also be lower. The mathematical

expression is given by y(Q(t)) y2 (Q(t)) for all t E [0,T]. Hence, the reason

for production line to transfer knowledge to production line 2. The second set of

assumptions, which are functions of yield levels are: when knowledge transfer happens

at time E [0, T], the yield function of Production-line is not affected, however,

the yield function of Production-line 2 is increased by y(Q(T)) - y 2 (Q(r)), - i.e.,

the new yield function in Production-line 2 becomes y2 (Q(t)) + yj(Q(T))- Y2(Q(T)),

t E (T, T]; T is finite - T < o; yl(Q(t)) - y2(Q(t)) is a continuous real-valued

concave non-decreasing function, - yield difference between the two production lines,

increases at a decreasing rate when there is no knowledge transfer between them;

there are N > 0, N E Z knowledge-transfer events during time period [0, T]; for each

knowledge-transfer event there is an associated fixed cost F; the vector of times at

which knowledge-transfer events occur are T = (Ti, T2 , ... , TN), such that 0 < i <

ri+ 1 < T, for i E { 1, N- 1}; yield control policy (N, T) is as such that knowledge-

transfer events occur at times i, i E {1, Nj} and the result of knowledge transfer is

an increase in 2(Q(-ri)) by yI(Q(Tri))- y2 (Q(Ti)) at time i. To this extent, the yield
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control problem (YCP) is given by:

T IT(YCP) Max - N F+ [P y1 (Q(t)) -c]dt + Ip1 y2(Q(t),N, T) -c]dt

s.t N > 0, N E Z and < < ri+1 < T, i c {1,N-1l}.

where y2(Q(t),N, T) denotes that yield level in Production-line 2 depends on yield

control policy (N, r) and Pi and c refer to unit selling price and unit cost, respectively.

Proposition 8 Given AY(t) = y1(Q(t)) - y 2 (Q(t),N,T) O,t E [O,T] under con-

trol policy (N, T) and given h = P. Then, (YCP) is equivalent to the following

minimization problem:

IT
(YCP/E) Min N. F + h ZAY(t)dt

s.t N > O,N Z and O < i < i+1 < T, i E {1, N-1}.

According to the above proposition, a positive yield difference between the two pro-

duction lines indicates that there is an opportunity cost for not producing at the same

yield levels. A constant h = Pi > 0 represents the incurred opportunity cost of having

one unit of yield difference per unit time. Under linear cost structure, the incurred

opportunity cost is at the rate H(Ay) = h /Ay when the yield difference at time t is

Ay.

Given that, there are incurred opportunity costs for having non-zero yield dis-

crepancy between the production lines, and a fixed cost F for transferring knowledge,

the objective of the problem (YCP/E) is to find a knowledge transfer policy (N, r)

that minimizes the sum of opportunity costs that is due to yield differences between

the two production lines, and the cost of transferring knowledge over a finite horizon

[0, T] starting with a zero initial yield difference level, - i.e., AY(0) = 0.

Proposition 9 Under control policy (N, r), where N > 0, N E Z andT = ( 1 , T2 , ... , TN)

such that 0 T < i+1 < T, for i E {i1,N-1}, if AY(t) = yl(Q(t))-y 2(Q(t),N, -)

is real-valued continuous function on [0, T] such that dAY(t) 0 and t < fordt addty O o
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t [0, T], then the objective function in (YCP/E) can be replaced by the following

expression, C(N, T):

N +l

C(N, ) =N. F + E h [Y(t) - AY(Ti)]dt.
i=o ri

Assuming that, there are N meetings between the production lines over the pro-

duction period [0, T], solution to (YCP/E) provides optimal times to carry out N

knowledge-transfer events. Since the objective function in (YCP/E) is a contin-

uous real-valued function on a set G = {0 < < Ti+1 < T, i E [1,N - 11],

N > 0, N Z, T E [0, oo)} that is compact and non-empty, by Weierstrass' the-

orem G contains a vector {T1,T2 ,...,TN} that minimizes the objective function in

(YCP/E). The first order optimality conditions for (YCP/E) provides the following

set of difference equations with boundary conditions To = 0 and TN+1 = T:

d
[yl(Ti) - Y2 (Ti)] - [Yl(Ti-1) - Y2 (Ti-1)] = dT(Yl(Ti) - y2 (Ti)) (Ti+1 - Ti), i E [ 1, NI

The above set of difference equations can be reduced to a single equation with a single

variable T1, - time of the first knowledge-transfer event, which can be easily solved

to optimality. Once the optimal T1 is found, the rest of N- knowledge transfer

times, Ti i E [12, NI], can be recursively calculated. The obtained solution(s) can

be easily tested with the second order optimality conditions to determine the global

minimum for (YCP/E). Once the optimal vector of meeting times T* is obtained,

the objective function can be rewritten with the optimal knowledge transfer times.

And, the resulting objective function can be optimized with the decision variable

N > 0, N E Z to determine the optimal number of knowledge-transfer events. The

following proposition provides upper bound on the optimal number of knowledge-

transfer events.

Proposition 10 Optimal number of knowledge-transfer events N > 0, N E Z in
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(YCP/E) is bounded by the following expression:

N Nmax = af h AY(t)dtF

The next issue is to determine the conditions that guarantee a unique solution for

(YCP/E). The following proposition provides the necessary conditions when yield

difference functions yi(Q(t)) - y2 (Q(t)) are piecewise-linear-concave.

Proposition 11 Suppose that:

i) (t) = yI(Q(t)) - y2(Q(t)) is a piecewise-linear-concave function,

that is piecewise continuous and bounded over [0, T]; and

ii) {fl, f2, ... , f m } is the set of distinct components of y(t) such that

y(t) = max~ff, f2, ..., f m} and 0 < f/'+l < fig i e [I1, N - 11].

If f_ < 1/COS(N m+1)2, then there exists a unique solution for (YCP/E).

3.3 Example

The following example illustrates the production yield control model. Consider a

linear yield difference function y(t) = y1(Q(t))-y 2 (Q(t)), t E [0, T] and N > 0, N e Z

number of knowledge-transfer events between the two production lines. According to

Proposition 8 and 9, the objective function in (YCP/E) becomes:

N 'ri+l N T

C(N,T) = N.F+i J h. [A\Y(t)-ZAY(-ri)]dt = N.F+y'(t) h f [t-ri]dt
i=O Ti i-O Ti

Taking the partial derivatives with respect to N decision variables {Ti, T 2 , ... , TN} and

equating them to zero give the following first order optimality conditions:

OC(N,T) = '(t) h (2Ti-i-1-i+) = 0, i E {11, NJ}, o = , N+ = T
'OTi

Let H = (hij) denote the corresponding Hessian matrix of the objective function

C(N, T). The non-zero elements of H are hi,i = 2 y'(Tri), hi,i_ = y'(ri-1), and
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hi,i+ = -y'(Ti), i e {11, NI}, hi,0 = hN,N+1 = 0. The linear function y(t) satisfies the

conditions stated in Proposition 7. Hence, the Hessian matrix H = (hij) is positive

definite, and the solution to first-order optimality conditions results in the global

minimum for (YCP/E). The solution to the set of indifference equations that resulted

from the first-order optimality conditions provides the following optimal knowledge

transfer times Ti = i , i {1, Nj}. This implies that each knowledge-transfer event

is successively carried out units of time after the preceding knowledge-transferN

event. The optimal number of knowledge-transfer events N* can also be determined

by optimizing C(N, T*) over N > 0, N E Z. C(N,T*) = N.F+ Y (t)-h-T2 can be shown

to be strictly convex in N. Hence, the optimal number of knowledge-transfer events

is the greatest non-negative integer N such that N < T y(.
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Chapter 4

Inventory Management with Multiple

Demand Classes

4.1 Introduction & Literature Review

In this chapter we consider a single-product inventory system that serves multiple

demand classes, which differ in their backlog costs or service level requirements. We

develop a model for cost evaluation and optimization, under the assumptions of Pois-

son demand, deterministic replenishment lead-time, and a continuous-review (Q, R)

policy with rationing. We show the value from a rationing policy. We begin our study

with an extensive literature review to lay down what has been done in the inventory

management literature with multiple demand classes.

The literature on inventory management with multiple demand classes can be

divided into two categories depending on review type: periodic-review models and

continuous-review models. The first studies have focused on periodic review models,

where inventory levels are observed periodically at pre-specified time points. Further

studies later on shifted the focus to continuous review models where the inventory

levels are continuously observed over time. The initial stream of studies in inventory

literature on multiple demand classes has begun with analyzing periodic-review mod-

els. Veinott (1965) carried out the first study to analyze a periodic-review inventory

model with several demand classes for a single product. He analyzed a multi-period
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model where random demands from m different classes occur in each period. He

assumed that demand classes are differentiated based on either their occurrence time

during a period or relative importance to fill them. Moreover, he assumed that there

is an inventory replenishment opportunity with zero replenishment lead-time at the

beginning of each period. He divided each period into several subintervals. He ap-

plied the following sequence of events in each subinterval: fill any backlogged demand

starting with backlogs from highest priority demand class from on hand inventory,

observe the demand from all classes at the beginning of the subinterval, fill demands

starting from highest priority demand class from on hand inventory, backlog any un-

filled demand. He assigned a different backlogging cost for each demand class. He

showed that it is optimal to replenish inventory with a base stock policy. He further

pointed out that rather than using a policy of filling demands from a demand class as

much as possible before filling demands from the next highest demand class, critical

inventory levels can be used to ration the on hand inventory among demand classes.

He depicted this policy in a special case with two demand classes: high priority and

low priority demand class. Under the proposed "critical level policy," demands from

either class are satisfied as they occur until the inventory level depletes to a speci-

fied level, - critical level -, then only high priority demands are filled from on hand

inventory while low priority demands are backlogged. Veinott (1965) introduced this

inventory rationing policy, however, he did not analyze it in his paper.

The proposed critical level policy has been analyzed subsequently by Topkis

(1968). Similar to Veinott (1965), he analyzed a periodic review inventory model

with multiple stochastic demand classes for a single product. He first considered a

single period inventory model with several stochastic demand classes that are dif-

ferentiated based on different backlogging costs. He divided the single period into

subintervals. At the beginning of each subinterval, demand for that interval from all

classes is observed and a decision is made on how much outstanding demand from

each demand class is to satisfied. Any unsatisfied demand is either outsourced or

backlogged to the next subinterval. He showed that the optimal inventory alloca-

tion policy within each subinterval is characterized by a n x k dimensional matrix

54



{z~: t = 1, 2, ... , k; j = 1, 2, ..., n} such that in subinterval t one satisfies as much class

j demand as possible as long as the inventory on hand is not below z3 and there is

ino backlogged demand from any demand class that has higher priority than class j.

The main limitation of his model is that there is only a single replenishment opportu-

nity, which is at the beginning of the period. He next extends his model to one with

multiple replenishment periods where there is an opportunity to replenish inventory

at the beginning of each period. He assumes that any backlogged demand at the end

of each period is cleared by an immediate order so that no backlogged demand is

carried to the next period. The later assumption enables him to conclude that the

optimal rationing policy in each period is as described in his previous single period

model. Moreover, he shows that the optimal rationing policy in each period is myopic

if unmet demand in each subinterval is fully backlogged to the next subinterval. And,

a base stock policy is optimal for ordering in each period. This extended model is not

general enough to allow demands to be backordered between periods. However, it is

the first model in the literature that analyzed the critical level policy suggested in

Veinott (1965) and it inspired further studies in inventory management with multiple

demand classes.

Similar periodic review models to Topkis (1968) are studied by Kaplan (1969) and

Evans (1968). Different from Topkis (1968) these two studies focused on only two

demand classes. Evans (1968) essentially analyzed the same multi period model in

Topkis (1968) when there are only two demand classes assuming any unfilled demand

is lost. He showed the same result as in Topkis (1968) that the optimal ordering policy

is a base stock policy and the optimal rationing policy is of critical level policy with a

single critical inventory level so that only demands from high demand class are filled

when the inventory level drops to the critical level. Kaplan (1969) also analyzed the

same multi period model in Topkis (1968) when there are only two demand classes.

However, contrary to Evans (1968), Kaplan (1969) confined his model to only a critical

level policy and assumed that any unfilled demand is fully backlogged. He showed

the existence of optimal critical levels and provided an algorithm to find them.

After Kaplan (1969)'s work, periodic-review models with multiple demand classes
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have not received much attention for a while. Recently, Katircioglu and Atkins (1996)

analyzed a periodic-review inventory system with multiple stochastic demand classes

and fixed positive replenishment lead-time. In contrast to the previous literature on

periodic-review models with multiple demand classes, they allowed unfilled demand

to be fully backlogged to the next period and considered positive replenishment lead-

times. Moreover, they required an associated service level for each demand class,

which has also not been analyzed in previous literature. They first showed that there

is no one-to-one mapping between a model with service levels and a model with back-

ordering costs when backordering costs are linear in the amount backlogged. Hence,

they chose to use quadratic backordering costs as an alternative. They formulated two

problems: one with backordering costs in the objective function, "the cost problem"

and one with service level constraints, "the service problem." In the cost problem they

allowed negative inventory allocations for demand classes in each period and showed

that a myopic heuristic allocation policy that considers only the current period is

optimal. In the service problem, they developed a heuristic in which they considered

controlling expected backorders only for some future period. They used the myopic

heuristic allocation policy obtained in the cost problem for the service problem. They

tested the effectiveness of these heuristics using simulation and observed that heuris-

tics provide service levels close to the target service levels. However, this model has

a limitation that it allows negative inventory allocations that are hard to explain and

implement.

Another current study on periodic-review models is carried out by Frank, Zhang,

and Duenyas (1999). They analyzed a periodic-review inventory model with two

demand classes: a deterministic demand class and a stochastic demand class. They

assumed that the deterministic demand must be filled immediately in each period

while unfilled stochastic demands during the period is lost. Demands are observed

at the beginning of each period and a decision is made on how much to order and

how much demand from the stochastic demand class to fill. They assume that there

is a fixed ordering cost and the replenishment lead-time is zero. For a finite horizon

discounted model, they showed that the optimal ordering and rationing policies are
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state dependent and do not have simple structures. Hence, they proposed a simple

heuristic (s, k, S) policy such that k determines the number of periods for which

existing inventory is used to fill deterministic demand before ordering. This study

departs from previous literature in terms of how rationing is applied because the

objective of rationing is chosen to avoid incurring high fixed ordering costs rather

than saving inventory for high priority demand.

Continuous review models in the literature can be divided into two categories:

models with (s, Q) ordering policies and models with base stock ordering policies.

The first continuous-review model was studied by Nahmias and Demmy (1981). They

considered a continuous-review inventory policy with two stochastic demand classes:

a high priority and a low priority demand class. They assumed that inventory is

replenished according to a (s, Q) policy and inventory is rationed according to critical

level policy that has been suggested by Veinott (1965). They assumed a fixed critical

level such that when the inventory level drops to this level, all low priority demands

are backordered while high priority demands are continued to be filled. In a different

approach from previous literature, they focused specifically on determining expres-

sions for expected backorders under a fixed critical level policy rather than deriving

optimal ordering and rationing policies. They first considered a single period model

with the assumption that demand from both classes occur simultaneously at the end

of the period. They derived expressions for expected backorders, which may require

numerical methods to compute. They elaborated on how this single period model

can be extended to a multi-period model with zero replenishment lead-time. Next,

they considered (s, Q) ordering policy with independent Poisson demand processes

for both demand classes and fixed positive replenishment lead-times. They simplified

their analysis by assuming that at most one order is outstanding at any time. This

assumption implies that when the reorder point is reached and a replenishment order

is triggered, the inventory level and inventory position become identical. This allows

them to calculate expected backorders for both demand classes. However, the expres-

sions simply become approximations due to the assumption that no more than one

order is allowed to be outstanding. Their model can be simply extended to compound
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Poisson demand processes as done by Moon and Kang (1998), who derived approxi-

mate expressions for fill rates for both demand classes. Moreover, they extended the

single period model of Nahmias and Demmy (1981) to multiple demand classes with

multiple critical levels. They assumed that all demands occur simultaneously at the

end of the period and obtained expected backorder expressions for each demand class.

However, they did not consider extending the (s, Q) model of Nahmias and Demmy

(1981) with more than two demand classes. Deshpande et al. (2003) analyzed the

same (s, Q) model with two demand classes as in Nahmias and Demmy (1981). Simi-

lar to Nahmias and Demmy (1981), they assumed a stationary critical level to ration

inventory. However, their objective was to optimize ordering and rationing policy

parameters rather than developing service level expression for each demand class.

Unlike Nahmias and Demmy (1981) they did not constrain themselves to at most

a single outstanding order, therefore, their model is more realistic than the one in

Nahmias and Demmy (1981). Allowing more than one order to be outstanding poses

a problem of characterizing how backorders are filled by replenishment orders. To

handle this problem, they developed an interesting "threshold clearing mechanism"

to fill backorders. The main idea of threshold clearing mechanism is to assume that

the on hand inventory level a replenishment lead-time back equals to s + Q and to

assume that the critical level policy is followed subsequently. In other words, exact

analysis through keeping track of every replenishment order is difficult, hence, this

mechanism assumes that virtual replenishment orders have occurred a lead-time back

to raise the inventory level on hand to s + Q. Assuming this mechanism to fill backo-

rders enables deriving expressions for expected number of backorders for both classes.

Based on these expressions, they developed algorithms to calculate the optimal order-

ing and rationing parameters. To test the effectiveness of their model, they compared

their results numerically with a better backlog clearing mechanism, "priority clearing

mechanism," where high priority backorders are filled before low priority backorders.

And, they recommended using a hybrid policy in which the optimal ordering and ra-

tioning parameters are determined by the model with "threshold clearing mechanism"

and backordered demands are filled through "priority clearing mechanism." The main
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contribution of this work is to provide an interesting heuristic approach to handle the

problem of filling backorders. Optimal ordering and rationing policies for an (s, Q)

inventory system even with only two demand classes is still unknown.

Melchiors et al. (2000) also analyzed (s, Q) inventory model with two demand

classes. Similar to the above studies, they used a stationary critical level policy to

ration the inventory among the two demand classes. Unlike Nahmias and Demmy

(1981) and Deshpande et al. (2003), they considered a lost sales environment so that

demands from the low priority class are rejected whenever inventory level drops to the

critical level. Similar to Nahmias and Demmy (1981), they assumed that at most one

order is outstanding, demand process from each demand class is Poisson, and there

is a fixed positive replenishment lead-time. In a lost sales environment, assuming

s < Q implies that at most one order is outstanding. Hence, the analysis in this work

is exact whereas the analysis in Nahmias and Demmy (1981) results in an approxi-

mation because of the allowed backorders. They carried out a similar analysis as in

Nahmias and Demmy (1981) and derived an exact expression for the expected cost.

And, they presented an optimization procedure based on enumeration and bounding.

They, however, did not generalize their model to more than two demand classes. Mel-

chiors (2001), on the other hand, extended the model in Melchiors et al. (2000) to

multiple Poisson demand classes with stochastic replenishment lead-times. He consid-

ered two types of critical level policy to ration the inventory among demand classes:

a stationary critical policy where critical levels are constant, and a non-stationary

critical level policy where critical levels are allowed to depend on the elapsed time

since the outstanding order is triggered. We note that a time dependent critical level

policy has been first used by Topkis (1968) in a periodic-review environment and

has not been analyzed since then. Hence, Melchiors (2001) is the first study con-

sidering time remembering critical level policy in a continuous review environment.

He formulated a Markov Decision model where the decisions are allowed to depend

on the inventory level and the time elapsed since the replenishment order has been

placed if the inventory level is below the reordering inventory level. He showed that

the optimal policy is a non-stationary critical level policy when replenishment lead
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times are deterministic. Moreover, he showed that the critical levels decrease over the

replenishment period. He carried out a numerical study to compare the simple sta-

tionary critical policy with the time dependent critical level policy. He observed that

the difference in optimal cost between two policies is higher than 2 percent for only

a few cases in all his examples. Hence, he suggested to use a stationary critical level

policy because of its simplicity to apply. The main contribution of this work is that

it proved that the optimal rationing policy is a non-stationary critical level policy in

an (s, Q) inventory model with multiple Poisson demand classes, fixed replenishment

lead-time, and lost-sales environment. Moreover, this work has an important contri-

bution by considering a non-stationary critical level policy that provides an important

benchmark to evaluate the stationary critical level policy employed by Nahmias and

Demmy (1981), Melchiors et al. (2000), and Deshpande et al. (2003). There is no

work in the literature, however, analyzing a non-stationary critical level policy for an

(s, Q) inventory model allowing backorders, even with only two demand classes.

In contrast to the (s, Q) inventory models, continuous-review models with base

stock ordering policies have not gotten much attention in literature. Dekker et al.

(1998) provided the first study for an inventory model with two demand classes and

one-for-one replenishment policy. They assumed that the demand process for both

classes is Poisson and there is a positive fixed replenishment lead-time. They also

allowed unfilled demands to be backordered. They furthermore assumed that a sta-

tionary critical level policy is used to ration inventory between the two demand classes.

The model is similar to the one in Nahmias and Demmy (1981) except that a one-for-

one replenishment policy is applied instead of a (s, Q) policy. Hence, it is possible that

more than one order is outstanding, which is not the case in Nahmias and Demmy

(1981). Allowing more than one order to be outstanding again creates difficulties

here in filling backorders, which has been analyzed in Deshpande et al. (2003) for an

(s, Q) inventory model with backorders. Namely, when there is a backorder for high

priority demand, upon arrival of a replenishment order, it is optimal to first use the

replenishment order to fill these backorders for high priority demand. Inventory level

refers to on hand inventory minus all the existing backlogs while inventory position
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refers to inventory level plus all the existing orders that are on replenishment process.

According to their model, when the inventory level is at least at the critical level, it is

optimal to use the replenishment order to fill any backorders for low priority demand

before replenishing the inventory. However, when the inventory level is below the

critical level upon arrival of a replenishment order and there are backorders for low

priority demand, we have to make a decision whether to use the incoming order to

fill backorders for low priority demand or to replenish the inventory instead. To deal

with this dilemma, they considered three methods to handle incoming replenishment

orders. In the first method, replenishment order is first used to satisfy backorders for

high-priority demand before filling backorders for low priority demand; and if there

are no backorders, inventory is replenished. The second method is first to satisfy

backorders for high priority demand, then replenish the inventory until a critical level

is reached before filling backorders for low priority demand. These two methods do

not require keeping track of what demand class triggered the arriving replenishment

order. The third method differentiates the incoming order depending on what de-

mand class issued it. If the incoming order is triggered by a high priority demand,

then replenishing the inventory to critical level has priority over filling backorders for

low priority demand. If the incoming order is triggered by a low priority demand,

then filling backorders for low priority demand has priority over increasing inventory

level to the critical level. The last method results in lower service for high priority

demand class, but it decreases the length of a stock-out for low priority demand class.

Stock-out probabilities are numerically evaluated for the three different methods to

handle incoming backorders. They observed that the way incoming replenishment

orders are handled have a significant influence on service levels. All three methods

suggested result in approximate expressions for the service levels and Dekker et al.

(1998) emphasizes the importance of how incoming replenishment orders are han-

dled. Optimal method to handle incoming replenishment orders even for two demand

classes is an open question in literature and no attempt in the literature has been

made so far to determine it.

Dekker et al. (2000) extends the model in Dekker et al. (1998) to multiple de-
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mand classes with stochastic replenishment leadtimes, but switching to a lost sales

environment rather than allowing backorders. They assumed one-for-one replenish-

mnent policy and stationary critical level policy to ration inventory among demand

classes. Since they assumed a lost sales environment, handling incoming replenish-

mnent orders does not become a difficult task; each incoming replenishment order

simply replenishes the inventory. They utilized the previously derived results in in-

ventory literature about base-stock policies with lost sales environment and stochastic

replenishment leadtimes to characterize state dependent demand arrival rates. By us-

ing these state dependent demand rates, they derived the expressions for the service

level for each demand class and for the expected cost of the system. They also de-

veloped numerical solution methods to efficiently calculate the optimal base stock

level and critical levels with or without service level constraints. We note that opti-

mizing policy parameters subject to service levels has previously been carried out by

Katircioglu and Atkins (1996) for a periodic-review model.

All studies mentioned above in the literature assumed an uncapacitated exoge-

nous supply system and did not analyze how capacity affects inventory ordering and

rationing decisions upon existence of multiple demand classes. Ha (1997a), on the

other hand, considered a make-to-order production system with a single production

facility and multiple demand classes for the end product. He assumed that any de-

mand that is not satisfied immediately from on hand inventory is lost. Moreover, he

assumed that production time of a single unit is exponentially distributed and de-

mand process from each demand class is Poisson. He considered Markovian policies

such that control actions are taken only considering the current state of the system.

Moreover, assumptions on exponentially distributed production times and Poisson

demand process makes the system memoryless, which enables him to conclude that

a Markovian policy is optimal. Also, there are no backorders in this model, hence,

it makes the replenishment process easier, i.e. all produced products increase the

inventory level. He models a dynamic production control and demand acceptance

model such that the production facility at any time chooses to produce or stop pro-

duction and the production facility may either satisfy an arriving demand or reject
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it. He considered an optimal control policy that minimizes the expected discounted

system cost over an infinite horizon. He showed that the optimal production policy is

a stationary base stock production policy. Furthermore, he showed that a stationary

critical level policy is optimal. The main contribution of this work is that it lays

out sufficient conditions that lead critical level policy to be optimal in a capacitated

production system. However, the main limitation of the model is that only expo-

nentially distributed production times are considered, which may not be realistic for

many applications. Ha (1997b) extended the study in Ha (1997a) further by allowing

backorders to occur. However, he only considered two demand classes, which limits

its application. Similar to Ha (1997a), he assumed that there is a single production

facility that produces a single type of product with exponential production times.

He also assumed that there are only two Poisson demand classes with different back-

ordering costs. He developed a Markov Decision model to determine the optimal

production policy and inventory rationing policy among all Markovian policies. Since

the system is memoryless, a Markovian policy will indeed be the optimal policy. At

any time, three possible actions can be taken in the system: do not produce, produce

either to increase on hand inventory by one unit or to decrease one unit of backorder

either from high priority or from low priority demand class. Similar to Ha (1997a),

he considered an optimal control policy that minimizes the expected discounted sys-

tem cost over an infinite horizon. He showed that there exists an optimal switching

curve S(y), where y stands for the number of backorders from low priority demand

class, that determines both the optimal production and optimal rationing decisions.

He showed that the optimal control policy has the following form: production for

filling high priority backorders has the highest priority; when there are only low pri-

ority backorders, it is optimal to produce to increase on hand inventory level if the

inventory level is below critical level S(y) and to produce to fill low priority backo-

rders otherwise; when there is no backordered demand, it is optimal to produce to

increase inventory on hand if the inventory level is below S(O) and to stop production

otherwise; it is optimal to fill low priority demand from on hand inventory as far as

the inventory level is above S(y + 1) and to backorder it otherwise. Moreover, he
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showed that a switching curve S(y) is decreasing in y, the number of backorders for

low priority class. This implies reserving less inventory for high priority demand class

when the number of backorders from low priority class increases. Unlike the results in

Ha (1997a) where stationary base stock and critical levels are optimal, both optimal

critical levels to ration inventory and optimal base stock level depend on the size of

the backlogged demand from low priority demand class. Limitations of this model

are two-fold. First, the optimal policy holds true only for two demand classes and it

is not certain it will hold true for more than two demand classes. Second, the form

of the optimal policy is not known if production times are not Markovian. Finding

either optimal or good heuristic production and rationing policies for make-to-stock

production systems with more than two demand classes and backordering is still an

open question and there has not been a study carried out in the literature to analyze

it.

4.2 General Framework

Consider a single facility that carries inventory for a single type of product to

serve N E Z+ different types of customer classes. A customer class is characterized

by a group of demands that have either identical service level requirements or impose

identical penalty costs if they are not filled immediately from inventory. Holding

inventory has a financial burden for the facility. This financial impact increases

further when demands are not known with certainty. Uncertain demands poses an

important challenge for the facility on how much inventory to hold either to satisfy the

pre-specified service level requirements or to incur minimum amount of penalty costs

for not serving demands on time. Therefore, the facility seeks to find an inventory

management policy that will enable it either to achieve pre-specified service level

requirements with minimum possible inventory holding costs or to incur minimum

amount of inventory holding costs and minimum amount of penalty costs for any

orders that are delayed. We analyze how to manage the inventory at this single

facility under the following assumptions:
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* inventory is replenished according to a continuous-review (Q, R) replenishment

policy;

* there is a fixed positive replenishment lead-time L > 0;

* the demand classes are ranked according to their priority to the facility: class-

1 has the highest priority and class-N has the lowest priority, as shown in

Figure 4-1;

* the demand from class-i, Di, i E [, NI] follows a stationary Poisson process

with rate Ai, i E [1, NI], independent of demand processes from other demand

classes;

* any demand not satisfied immediately from on-hand inventory is fully back-

logged until it is filled;

* inventory holding costs are incurred at rate h > 0 per unit per unit time;

* the associated backlogging cost for demand class-i is bi > 0, i [, NJ], per

unit-backordered per unit-time;

* inventory is rationed among the N demand classes by using a critical level

policy, c = {co, c1, ..., cN_ 1 ci E Z+ U {0} and ci-1 < ci, i {, N- 1}}; and

* incoming replenishment orders are allocated on a first-come-first-served basis

either to fill existing backorders or to increase the on hand inventory level

., Demand Class-1
./

Supply nl-rdc --
( Inventory .. Demand Class-2

Q Lcto

", Demand Class-N

Figure 4-1: Single-Product Inventory Problem with Multiple Demand Classes

65



Under continuous-review (Q, R) replenishment policy, inventory position, which is

the sum of the inventory level and any outstanding replenishment orders, is observed

continuously. A replenishment order of size Q is placed with an outside supplier

whenever the inventory position drops to level R. The outside supplier delivers re-

plenishment requests after a fixed positive replenishment lead-time L. The inventory

is rationed according to the critical level policy among the N demand classes. Under

the critical level policy, for each demand class there is a critical stock level at and

below which demand from that class is not satisfied from stock on hand. In this

way inventory is reserved to serve demand from higher priority demand classes. The

critical level for demand from class i is ci-1 , i E {1, NI}. If the physical inventory

is at or below this level then the demand from class i is backordered. Whenever

a replenishment request of size Q is received, the incoming replenishment quantity

is allocated on a first-come-first-served basis between filling existing backorders and

increasing the physical on-hand inventory.

The critical level c refers to the reserved inventory for demand class 1 because

any demand from other demand classes is backordered once the on-hand inventory

level reaches this level. Similarly, c2 - c1 refers to the reserved inventory for both

demand class 1 and demand class 2 because only demands from class and class 2

are served once the on-hand inventory level reaches the critical level c2 ; and exactly

c2 - c1 units of inventory is used in common to serve demands from demand class

1 and demand class 2. In general, c1 refers to the reserved inventory for demand

class and ci - cij1 refers to the reserved inventory for demand classes 1 through i,

i [, N- 11]. Let us denote the reserved on hand inventory levels by = c1 and

Si = Ci- Ci-1, i e [11, N - 11].

Our next step is to map our inventory problem into an equivalent inventory system

that provides a more transparent analysis. This equivalent inventory system assumes

the following:

* there are N different stockage shelves within the single facility;

* each shelf is designated to hold inventory for a different demand class;
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* stockage shelves are numbered such that demands from demand class i is served

from the inventory at shelf i and the inventory at shelf i is replenished from

the inventory at shelf i + 1, i E [11, NI], where shelf N + 1 refers to the outside

supplier. The inventory at shelf i, therefore, faces two types of demand: regular

demands from demand class i and inventory replenishment requests for shelf

i- 1;

* inventory at shelf N is replenished with a continuous-review (Q, R) replenish-

ment policy from an outside supplier with R - SN while the inventory at shelf

i is replenished from shelf i + 1 with a one-for-one base stock policy with base

stock level si, i E [1, N - 1]

* The inventory replenishment leadtime for shelf N is L > 0 time-units while the

inventory of shelf i is immediately replenished from shelf i + 1, i E [ 1, N - 11];

* any unfilled demand or replenishment request at shelf i is backordered at shelf

i until it is filled; and

* existing backorders at each shelf are filled on a FCFS (first-come-first-served)

basis as soon as a replenishment order arrives there.

The above described inventory system can be considered a special serial inventory

system with N installations, where there is a locational demand at each installation

as shown in Figure 4-2. Each of N different demand classes is assigned to a differ-

VN A QN-1 A A VA

Q '\'
DN DN-1 D 2 D 

Figure 4-2: Serial Inventory System with Demand at Each Installation

ent installation. The most upstream installation corresponds to the lowest priority

demand class, - i.e., demand class-N -, and the most downstream installation cor-

responds to the highest priority demand class,- i.e., demand class-1. The remaining
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demand classes are assigned to the remaining installations in the order of increasing

priority towards the downstream installation. Each installation replenishes its inven-

tory from its immediate upstream installation, where installation N replenishes from

an outside supplier. The replenishment leadtime for installation i is given by i = 0

time-units, i E [1, N- 11], which represents the required time to replenish inventory

firom the immediate upstream installation when there is enough inventory available

there, while the replenishment leadtime at installation N is eN = L time-units. Any

demand that is not filled immediately at each location by inventory on-hand is fully

backordered until enough inventory becomes available.

The inventory at installation i [ 1, N- 11] is replenished with a one-for-one base

stock policy. Whenever there is one unit of demand at installation i E [1, N- 1], the

inventory level at installation i is reduced by one unit and installation i places one

unit of replenishment request to the immediate upstream installation i + 1. When

one unit of demand occurs at installation i, this demand is immediately satisfied if

there is available inventory on-hand at installation i; otherwise, it is backordered

at installation i until enough inventory becomes available. Also, upon arrival of a

demand at installation i [1, N- 11], a replenishment request is placed to the most

immediate upstream installation, installation i + 1. The replenishment request for

installation i [,N- 11] is filled immediately if there is available inventory on-

hand at installation i + 1. Otherwise, it is delayed until sufficient inventory becomes

available at installation i + 1.

The inventory at installation N, on the other hand, is replenished from an outside

supplier with a continuous-review (Q, R) replenishment policy. The inventory level at

installation N is observed continuously and a replenishment order of size Q is placed

to an outside supplier whenever the inventory position at installation N drops to an

inventory ordering level R. Installation N obtains incoming replenishment orders of

size Q that arrive after L time-units since they were placed.

The demand at installation i [, NJ] consists of the regular demands from de-

mand class i and replenishment requests from installation i - 1. Hence, backorders

at installation i are of two types: backorders created by the regular demands from

68



demand class i and backorders created by the replenishment requests from the imme-

diate downstream installation. Upon arrival of a replenishment order to installation

i E [, NI], any outstanding backorders at installation i are randomly filled. Clear-

ing backorders randomly at each installation is clearly not optimal. However, it is

also not that far from optimal. The reason is that the way the backorders are filled

at each installation only matters when the incoming replenishment order Q is not

enough to fill all outstanding backorders at installation N, and the probability of

running into this case is very low. Using the inventory control mechanism described

above, we can characterize the inventory dynamics in the serial inventory system,

which enables us to derive explicit expressions for inventory levels and backorder lev-

els at each installation. These expressions further help us characterize the required

performance measures in managing the inventories at each installation. We use the

following notation to analyze the inventory dynamics in the serial inventory system,

where i [, Nl]:

ILi(t) = inventory level at time t at installation i,

IPi(t) = inventory position (inventory level + inventory on order) at time

t at installation i,

Bi(t) = number of backorders at time t at installation i,

Bi,i- (t) = number of backorders at time t at installation i that are due to

demand from installation i - 1,

Bi,i(t) = number of backorders at time t at installation i that are due to

demand at installation i,

Di(t, t + £i) = demand during time interval (t, t + £i] from demand class i,

We can characterize how inventory level at each installation evolves over time using

the following inventory dynamics equations for the serial inventory system, where

[.]+ denotes the positive part of the inside expression, i.e, [.]+ = max([.], 0), and

69



i E [, ANI]:

ILi(t+£i) = IPi(t)-[Di(t, t+£i) + Di-l(t, t + i) + -" + Dl(t, t +ti)]-Bi+l,i(t) (4. 1)

Bi(t) = [-ILi(t)]+ (4.2)

Bi(t) = Bi,i(t) + Bi,i-1 (t), (4.3)

BN+I,N(t) = 0 (4.4)

The result in (4.1) has been developed by Graves (1985). The intuitive explanation

for this provided by Graves (1985) is as follows. At time t the outstanding orders for

installation i are either in-transit to installation i or are backordered at the immediate

upstream installation i + 1. All items that were in-transit at time t will arrive at

installation i by time t + i. But, none of the backorders at installation i + at

time t can arrive at installation i by time t + £i because of the shipment time £i from

installation i + 1 to installation i. Furthermore, any demand during the time interval

(t, t + £i] diminishes inventory level and any outstanding order created by the demand

during the time interval (t, t + £i] can not be filled by time t + i. Therefore, at time

t + i, the backorders at installation i + 1 from time t, Bi+l,i(t), and the demand

during the time interval (t, t + fi], j= Dj(t, t + ei), must be outstanding. Hence, the

inventory level at time t + li at installation i simply equals to the inventory position

at time t at installation i minus the sum of Bi+1,i(t) and Z=i Dj(t, t + £i).

The equations (4.2), (4.3), and (4.4) on the other hand, tell us that backorder level

at installation i is the negative part of the inventory level; backorders at installation i

consists of backorders created by exogenous demand at installation i and backorders

created by replenishment requests from the immediate downstream installation; and

the outside supplier has enough capacity not to have any backorders, respectively.

The replenishment leadtime for the most upstream installation is N = L >

0, the same as the replenishment leadtime for the inventory facility, whereas the

replenishment leadtime for all other installations are zero, i = 0, i E [, N- 11].

Furthermore, inventory at any installation i E [1, N- 1] is replenished according to a
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continuous review one-for-one replenishment policy with base-stock level si. Hence,

inventory position at installation i simply equals the base-stock level si. Replacing

these quantities into equations (4.1)- (4.4) provides the following set of equations in

steady-state:

N
ILN = IPN-E DfL (4.5)

i=1

IL = si -Bi+,i, for i = 1,...,N- 1 (4.6)

Bi = [-ILi] + (4.7)

Bi = Bi,i + Bi,i_ (4.8)

BN+1,N = 0 (4.9)

B1,0 = 0 (4.10)

The steady state distribution of inventory level at each installation can be de-

termined using the following sequential approach, starting from the most upstream

installation N and moving downstream installations.

* Step 1: Set i = N. Determine the steady-state distribution of ILN, the inventory

level at installation N.

For i = N, we use the equation (4.5). The inventory at installation N is

replenished through a continuous review (Q, R) policy with R = N. Hence,

the inventory position in steady-state at installation N, IPN, has a continuous-

time Markov chain and has a unique stationary limiting distribution, i.e. the

inventory position at installation N in steady-state is Uniformly distributed over

[R+1, R+Q] (p.193 Zipkin 2003). Moreover, the distribution of EZ-l Di(t, t+L)

is known. Hence, the steady-state distribution of ILN can be easily derived

through convolution.

* Step 2: Derive the steady-state distribution of Bi = [-ILi]+, backorders at

installation i.

* Step 3: Determine the steady-state distribution of Bi,i-
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Backorders at each installation are filled randomly. Hence, the likelihood that

a backordered demand at installation i [, NJ] is from demand class-i is

proportional to the demand rate of demand class-i. Given a backorder level Bi at

installation i, the conditional distribution of Bi,i1 has a Binomial distribution.

Hence, the steady-state distribution of Bi,i_ can be derived by conditioning on

Bi.

* Step 4: Derive the steady-state distribution of ILi_1.

We already derived the distribution of Bi,i_ in the previous step. Hence, we

can determine the distribution of ILi_1 from (4.6).

* Step 5: Set i := i - 1. Move to the next downstream installation and go to Step

2.

Continuing in this sequential fashion starting from the most upstream installa-

tion eventually provides us the steady- state distributions of inventory levels at all

installations in the serial inventory system. Furthermore, knowing the steady-state

distributions of inventory levels at all installations enables us to derive the required

performance measures in managing the inventory at each installation, i.e. expected

on-hand inventory at each installation, expected backorders in each installation, and

desired service level at each installation.

We next analyze three different problems for cost evaluation and optimization

using the aforementioned mapping to the serial inventory system. For the clarity of

our presentation, our analysis for these three problems is based on N = 3 demand

classes, nevertheless, our analysis holds true for any number of demand classes. We

begin with describing the Service Level Problem.

4.3 Service Level Problem

The service level problem considers an associated service level for each demand

class that measures what percentage of demand from each demand class is filled on

time. Assigning a service level to a demand class rather than a penalty cost for
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not filling orders on time is of great interest for managers because specifying service

levels is easier than determining how much it would cost if customer demands are not

filled on time. The objective here is to find out how much inventory to hold for each

demand class so that the total expected inventory holding costs are minimized while

satisfying pre-specified service levels associated with demand classes.

We consider three demand classes, where class-1 refers to the highest priority de-

mand class with the highest service level requirement and class-3 refers to the lowest

priority demand class with the lowest service level requirement. We map the service

level problem into an equivalent serial inventory system with three installations in

total as described earlier and shown in Figure 4-3. Hence, total expected inventory

Fill-Rate3 Fill-Rate2 Fill-Rate1

t3 A 2 A 0
Q

D3 D2 D 

Figure 4-3: 3 Demand Classes with Fill-Rate Requirements

3
holding costs are simply (h, inventory holding cost rate). (Expected on-hand inven-

i=1
tory at installation i). We define the service level requirement for class-i, i E {1, 2, 3}

as the long-run percentage of class-i demands that are filled immediately from on-hand

inventory. Since arrivals of class-i demands are Poisson distributed, the service level

requirement for class-i simply becomes equivalent to the long-run probability that

on-hand inventory at installation i E {1, 2, 3} is greater than zero, i.e. P(ILi > 0).

Installation 3 manages its inventory with a continuous-review (Q, R) policy with

R = s3. Hence, for a given value of inventory ordering quantity Q, inventory level at

installation 3 depends only on the inventory reorder level s3. Therefore, we denote the

expected on-hand inventory and service level at installation 3 simply by E[IL 3 (s3)]+

and P(IL 3(s 3 ) > 0), respectively. Inventory at installation 2 is replenished with a

one-for-one replenishment process; and its inventory level also depends on how the

inventory is replenished at the upstream installation 3. Hence, E[IL 2(s 2, s3)]+ and
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P(IL 2 (s 2, 83) > 0) denote the expected on-hand inventory level and service level

requirement at installation 2, respectively. Similarly, inventory at installation 1 is

replenished with a one-for-one replenishment process; and its inventory level also is

affected by how inventory is replenished at the upstream installations. Therefore,

E[IL (sl, s2, s3)]+ and P(IL 2(sl, s2, s3) > 0) denote the expected on-hand inventory

level and service level requirement at installation 1, respectively. We also denote the

pre-specified minimum service-level requirement for class-i by i E [0,1], i E {1, 2, 3}.

The optimization problem of interest for N = 3 demand classes can be stated as

follows:

Min h (E[ILi(si, s2, s3)]+ + E[IL2(s2 , s3)]+ + E[IL 3 (s3 )]+ )

s.t

P(IL1(s, 2, 3) > 0) > 

P(IL2(s2, 83) > 0) > 2

P(IL3 (s3 ) > 0) Ž /3

s1 ,s 2, C Z + and s3 E Z

Inventory reorder level s3 at installation 3 can take any integer value. However,

stockage levels at installation 1 and installation 2 must be positive since both of

these two installations replenish their inventories through a one-for-one inventory

replenishment policy and there is a service level requirement for each installation.

Therefore, 3 can take any integer value while s1 and 2 must take positive integer

values.

We note that s = 0 implies that demand class 1 and demand class 2 combine

together and treated as a single single demand class. Similarly, 2 = 0 implies that

demand class 2 and demand class 3 are merged and treated as a single demand

class. Each of these two cases results in an optimization problem with only N = 2

installations rather than N = 3 installations. Furthermore, si = 0 and 2 = 0

together imply that all three demand classes are treated as a single demand class.

This last case, on the other hand, results in an optimization problem with a single
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installation rather than N = 3 installations.

To solve the above optimization problem, we need to derive explicit expressions

for the expected on-hand inventory and the service level at each installation. As

we describe earlier, we begin with deriving the steady-state distribution of inventory

level at installation 3, which enables us to calculate the expected on-hand inventory

at installation 3. The steady-state distribution of inventory level IL 3 at installation

3 can be calculated by conditioning on IP 3, the inventory position at installation 3,

which is Uniformly distributed over [s3 + 1, s3 + Q], as follows:

S3+Q

P(IL3 = i) = P(DfL + DL + DL =j-i) (4.11)
j=s3+1

Knowing the steady-state distribution of IL 3 enables us to derive both the ex-

pected on-hand inventory level E[IL3 (s3 )]+ and service level requirement at installa-

tion 3 as shown below, where for the service level problem the service level measure

at any installation is simply the probability that on-hand inventory level on that

installation is positive,- i.e, fill-rate type service level:

s3+Q

E[IL3(s3)]+ = i P(IL3 = i) (4.12)
i=1

S3 +Q

P(IL3 (s3) > O) = > P(IL3 = i) (4.13)
i=1

Next, we derive the distributions of B3 and B3,2 as shown below:

P(B3 = i) =P(IL 3 = -i), for i Z+ and P(B3 = O) = P(IL 3 > 0) (4.14)

P(B3 ,2 =i)=ZP(B3=y). (j) A +A2.( (4.15)
j=i (4.15

Having derived the distribution of B3,2 enables us to determine the distribution

of IL 2, the inventory level at installation 2, which is shown below:

P(IL 2 = i) = P(B3,2 = s2 - i), i Z, i _< s 2 (4.16)
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Expected on-hand inventory at installation 2 is a function of both the reorder level

s3 and s2. And, knowing the steady-state distribution of IL2 enables us to derive both

the expected on-hand inventory level E[IL 2 (s3 , s2)]+ and service level requirement at

installation 2 as shown below:

00

E[IL2(s3, s2)]+ = E i P(IL 2 = i) (4.17)
i=1

00

P(IL 2 (s3, s2) > 0) = P(IL 2 = i) (4.18)
i=1

Next, we derive the distributions of B2 and B2,1 as shown below:

P(B 2 = i) =P(IL2 = -i), for i C Z+ and P(B2 = 0) = P(IL 2 > 0) (4.19)

P(B2,1 i) = P)B2 j). () + A ) A2 ) i (4.20)
j=i Al+A Al+2

Having derived the distribution of B2,1 we can determine the distribution of IL1,

the inventory level at installation 1, which is shown below:

P(IL1 =i) = P(B2,1 = s1 - i), i Z, i < s81 (4.21)

Expected on-hand inventory at installation 1 is a function of the reorder levels 3 ,

s2, and sl. Furthermore, from the steady-state distribution of IL1 , we derive both the

expected on-hand inventory level E[ILi(s 3, s2, s1)]+ and the service level requirement

at installation 1 as indicated below:

00

E[IL1 ( 3, s2, Sl)]+ = i . P(IL1 = i) (4.22)
i=1

P(IL1(s3,s2,sl) > O) = P(IL1 = i) (4.23)
i=1

We have so far derived all the expressions that we need to characterize the objective

function and service level constraints in the service level problem, which becomes a

non-linear integer programming problem. Next, we need to solve it for optimality to
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determine the minimum inventory requirements. We also develop an optimal solution

algorithm for the service level problem in the Numerical Algorithms section.

4.4 Cost Minimization Problem

Different from the service level problem, the cost minimization problem simply

aims to determine the inventory policy that minimizes the total inventory costs that

consist of expected inventory holding costs, and expected backlogging costs for not

filling demands on time. It is important to point out that the cost minimization

problem has a considerable drawback in practice because it requires measuring the

cost of not filling customers orders on time - backlogging costs - which is often very

hard to measure accurately in practice. Nevertheless, it is a good alternative model

to the service level problem when accurate estimates of backlogging costs exist. We

denote the backlogging cost per unit backlogged per unit time associated with class-i

demands by bi,i, i Ec [1, NJ]. Similarly, the optimization problem of interest for N = 3

demand classes can be stated as follows, where we note that inventory holding cost

h is the same for all demand classes. However, the backlogging costs are different

across different demand classes:

Min h. (E[ILl(s3 , s 2, sl)]+ + E[IL2(s3 , 2)]+ + E[IL 3 (s3 )]+)+

b,1'- E[B,1 (83, 2 , 81)] + b2,2 E[B 2,2 (s3 , s2 )] + b3 ,3 E[B3,3(83)]

s.t

8 1, s2, E Z+ U {O} and s83 Z

We have already derived the expected on-hand inventory level at each installation

in (4.12), (4.17), and (4.22) for the service level problem. The same expressions hold

true for the cost minimization problem as well. Different from the service level prob-

lem, we additionally need to derive expressions for expected backorders that belong to

each installation, i.e, E[Bi,i], i E {1, 2, 3}. These expressions can be similarly derived

using the distribution of inventory level at each installation. We utilize the fact that
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the conditional distribution of backorders Bi,iIBi = x, i E {1, 2, 3}, is Binomial with

parameters C and x E Z + U {0}. Hence, E[Bi,iIBi = x] simply equals x EAi 

Namely,

00 A3

E[B3,3(s 3 )] = E[B3,3B3 = x] P(B 3 = x) = A + A + A E[B3 (s3 )] (4.24)

E[B 2, 2(s3 , 82)] = E[B2,2 lB2 =x] P(B 2 x) E[B2(83 8 2)] (4.25)
i=EA 12+2AI E[B2(= s=)Al(4.25

oo

E[B1,l(s3,s 2,s)] = i P(B1 = i) (4.26)
i=l

The cost minimization problem also becomes a non-linear integer programming prob-

lem. And, effective solution methods can be easily developed.

4.5 Service Time Problem

Timely fulfillment of orders is an important customer service measure in manufactur-

ing and distribution practice. Many companies have set targets for fulfilling customer

orders within a certain time period. One commonly used service measure is the per-

centage of times that orders are completely fulfilled when they are due. For example,

when a manufacturer promises to provide a 90% service level for orders within 3 weeks

of the demand arrival, it simply means that the orders are fulfilled after 3 weeks 9 out

of 10 times. If the manufacturer promises instant fulfillment, then this boils down to

the service level measure we analyze earlier in the service level problem - fill-rate

type service level. In the service level problem our objective has been to satisfy each

customer order immediately while satisfying certain service level requirement for each

demand class. In this section, however, we generalize our customer service measure

by incorporating a service time for each demand class. This new service measure is

suitable for production/distribution environments where at least some demand classes
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are willing to wait for a specific time interval for the delivery of their orders.

We next model and formulate this problem for any finite number of demand

classes. Consider a single location inventory system with N different demand classes

and its equivalent serial inventory system with N installations. As described earlier,

whenever a class-i demand occurs at installation i E [11, NJ], a replenishment request

is placed at the immediate upstream installation i + 1, that fills the replenishment

request immediately if it has available inventory. Installation N, on the other hand,

places its replenishment request of size Q to an outside supplier whenever inventory

position at installation N drops to level SN. And, each replenishment to installation

N arrives in L time-units. We assume that class-i demand has a service time of wi

time-units. In other words, a class-i demand arriving at time t has a due-date at time

t + wi. We also assume that demands are not filled earlier than their due-dates. This

assumption may be violated in practice. However, it is realistic in many JIT (Just-

in-Time) environments where customers expect deliveries exactly at the promised

date.

Installation i [, N- 11] replenishes its inventory with a one-for-one replen-

ishment process. Each replenishment request from the downstream installation at

installation i makes the installation i to order one unit immediately. However, each

class-i demand makes the installation i to order one unit after wi time units. At

installation i, replenishment requests are filled immediately while the fulfillment of

each class-i demand at installation i is postponed at least wi time units.

Each class-i demand that arrived at installation i over (t - wi, t] is filled later than

time t. Moreover, each demand at any downstream installation j E [1, i - 11] creates

a replenishment request at installation i E [, N- 11], which is filled immediately at

installation i. These replenishment requests from downstream installations, therefore,

decrease the inventory position at installation i. The following relation takes into

account the aforementioned arguments and provides us with the inventory level at
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installation i at time t + £i:

i-1

ILi(t + ei) = i - Z Dj(t, t + fi) - Di(t - wi, t - wi + fi) - Bi+1,i(t) (4.27)
j=l

(4.27) simply tells us that anything that is on order to installation i and not back-

logged at installation i + 1 at time t arrives at installation i over (t, t + £i]. And, local

demands at installation 1 through i - 1 over (t, t + £i] create replenishment requests at

installation i under one-for-one replenishment policy that reduce the inventory level

at installation i. We note that we make no assumption on the relation between the

replenishment leadtime and service time window at installation i.

The above expression in (4.27) is for any installation i e [1, N - 1]. Similarly, we

can develop an expression for the inventory level at installation N. Hence, ILN(t+-N),

inventory level at the last installation N at time t + eN has the following form:

N-1

ILN(t + eN) = IPN(t) + DN(t - WN, t) - E Dj(t, t + N) - DN(t - WN, t - WN + EN)
j=l

(4.28)

Our model development for the service time problem so far is general for a serial

inventory system with exogenous demand at each installation. As described earlier in

Section 4, we can map the original service time problem with N demand classes into an

equivalent serial inventory system when internal replenishment leadtimes in the serial

inventory system for multiple demand classes are all zero, i.e, £i = 0, i E [11, N - 11]

while replenishment leadtime at installation N is positive, N = L. Applying this

mapping yields the following relation for the inventory level at each installation.

ILi(t) = si- Bi+1,i(t), i [, N- 11] (4.29)

N-1
ILN(t + L) = IPN(t) - E Dj(t, t + L) - DN(t, t- WN + L) (4.30)

j=1
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To help us in characterizing the service-time-fill-rates in the equivalent serial in-

ventory system, we define the amount of replenishment arriving to installation to i

from installation i + 1 during time period (t, t + wi] by Ai(t, t + wi), i E [1, N]:

Ai(t, t + wi) - the amount of replenishment arriving to installation i in (t, t + wi]
i-1

= Dj(t,t + wi) + Di(t-wi, t) (4.31)
j=1

We also observe that a class-i demand arriving at time t will be satisfied within wi

units of time after its arrival if the inventory level at installation i at time t plus the

total replenishment to installation i over (t, t + wi] is greater than zero.

P(class-i demand filled within (t, t + wi] ) = P(ILi(t) + Ai(t, t + wi) > O)

Combining equations (4.29), (4.30), and (4.31) provides us with the following

expression(s), where i [, N - 11]:

P(class-i demand filled within (t, t + wi] ) = P(si - Bi+l,i(t)+ (4.32)
i-1

E Dj(t, t + wi) + Di(t-wi, t) > O)
j=l

P(class-N demand filled within (t, t + WN] ) = P(IPN(t - L)- (4.33)
N-1
E Dj(t-L, t) - D(t-L, t-wN)+
j=l
N-1

E Dj(t, t + N)+ DN(t- WN, t) > 0)
j=

Equilibrium distribution of inventory level at each installation exists, hence, in

steady state the above set of equations become as follows, where DI denotes the
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equilibrium distribution of demand over w time units at installation i E [1, NIl]:

i-1
P(class-i demand filled within wi time units) P(s i - Bi+l,i + E Djwi + Dwi > 0)

j=1

N-1
P(class-N demand filled within WN time units) = P(IPN - D- DL-wN+

j=1l

N-1

5D]N + DN > 0) (4.34)
j=l

As we mentioned earlier, IPN, the inventory position at installation N in (4.34),

has a Uniform distribution over [SN + 1, SN + Q]. Using the above steady-state expres-

sions in (4.29) - (4.34), we can derive all desired performance measures to construct

our optimization problem. Namely, the service time problem simply aims to find out

the optimal one-for-one base stock levels si, i E [, N - 1 I] and optimal reorder point

sN at installation N that minimize the average inventory holding costs subject to each

service level requirement for each demand class, where the service level requirement

for each demand class consists of filling its orders on the pre-specified due date with

a pre-specified percentage - i.e, service time demand fulfillment rate:

N

Min h E E[ILi(N, N-1, , Si)]+

i=1

s.t

P(class-i demand filled within wi) > pi, i E [11, NI]

s E Z+ U {0},i [, N- 1] and SN E Z

One very important attribute of the service time problem is that it can be used

to serve as a system design tool. It enables us to construct cost curves that reflect

the trade-off between holding inventory and achieved service time demand fulfilment

rate for each demand class. Using these cost curves, we can synthesize the impact of

providing shorter service time windows on total inventory costs.
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Example

In this example, we consider that there are only three demand classes for the

service time problem. Demand is Poisson distributed with rates Al = 8 units/year,

A2 = 12 units/year, and A3 = 16 units/year for demand class 1, demand class 2,

and demand class 3, respectively. Inventory is replenished from an outside supplier

with a replenishment lead-time of 3 months. Replenishment requests are done with

a one-for-one replenishment process, Q = 1 units. Demand class has a service time

window wl = 3 days; demand class 2 has a service time window w2 = 7 days; and

demand class 3 has a service time window w3 = 15 days. Also, minimum service

level for demand class 1 is 1 = 0.98; minimum service level for demand class 2 is

02 = 0.93; and minimum service level for demand class 3 is /3 = 0.77. Inventory

dynamics at each installation in the equivalent serial inventory system in steady state

become as follows:

IL1 = si - B2,1 (4.35)

IL 2 = 2-B 3,2

2
|IP3 -ED DL-w3, if w3 < L;

j=1IL = < j- (4.36)
IP3 - D Dw3-L, if w3 >L.

Using the above expressions for distributions of inventory levels at installations,

expected on hand inventory and service level at each installation can be easily derived.

Minimizing the sum of the expected on hand inventories subject to the required

minimum service level requirements result in the following optimal solution, si = 1

unit, 2 = 3 units, and s3 = 9 units. If the service time for each demand class is

zero wi = 0, i E {1, 2, 3}, then the problem boils down to the service level problem.

Stocking sl = 1, 2 = 3, and s3 = 9 units in the service level problem results in the

following service levels 0.98, 0.91, and 0.45 for demand class 1, class 2, and class 3,

respectively. The difference in service levels between the service time problem and

the service level problem clearly shows the benefit of having service time in reducing
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the amount of inventory to hold. Furthermore, if we treat all demand classes as if

they were all class 1 with a service time w1 = 3 days and a minimum service level

1 = 0.98, then the optimal base-stock level for this single demand class problem will

be s = 16 units.

4.6 Numerical Algorithms

In this section we develop numerical algorithm(s) for the service level problem

that we analyzed earlier. We first consider the simplest scenario when there are only

two demand classes N = 2 and order replenishment process is one-for-one with an

order size of Q = 1 unit. Later, we extend our findings to solution algorithms for

N demand classes. In this simple case with two demand classes, our problem maps

to a serial inventory system with two installations that has the following forms of

inventory equations in steady-state:

IL2 = s2 - (DL + DL)

IL1 = S - B2,1

We begin with developing a numerical solution method for the service level prob-

lem that can be stated as follows, where the objective is to minimize total expected

inventory holding costs while satisfying fill-rate service level constraints for the two

demand classes:

Min h. (E[IL2(s2)]+ + E[IL1 (s2, s1)]+)

s.t

P(IL2(s2) > 0) > 2

P(ILl(82,81) > O) > 1

S2 e Z, s, E Z+ U {0}

We next analyze the objective function in the above service level problem in more
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detail. Since inventory holding cost rate h is constant, we can simply minimize the

sum of expected on-hand inventory levels while satisfying service level constraints. For

a given set of installation base stock levels, (2, Sl), at installations we denote total

expected on-hand inventories with TC(s2, sl) = E[IL2]+ + E[IL1]+. Furthermore,

the expected on-hand inventory at installation i E {1, 2} can be written as follows:

E[lLi]+ = E[ILi + [ILi]-] = E[ILi] + E[Bi]

E[IL2]+ = 2 - E[(D L + D L)] + E[B2]

E[IL]+ = s - E[B2,1] + E[B1]

(4.37)

(4.38)

(4.39)

Since E[B2] = E[B2,2] + E[B2,1] holds true, we can write TC(s 2,

form:

sj) in the following

TC(s 2 , 81) = 2 + $1 - E[(D + DL)] + E[B2,2 (s2 )] + E[Bl(8 2 , 81)] (4.40)

For a given backorder level at installation 2, backorders that are due to demand

at installation 2 are Binomially distributed with rate " 2. Hence, we can further
Ai+A2'

write down the following explicit expression for expected backorders for demand class

2 that are due at installation 2:

,A2 E[B2] =00 L L
E[B2,2(2)] = AE[B2A1 + A -i . P(DL + D2L = s2 + i) (4.41)

Al A2E[ = Al + A2i=1

Similarly, expected backorders at installation 1 can be written in the following explicit

form that depends on both stockage levels sl and s2:

00

E[Bl(s2, 81)] = Z(i - 81) P(B2,1 = i)
i='51

00 ) (J Al )i .( A )(ji (44 )= Z(i -S+) (= ( 4.42)
i=s1 j= ( + a + A2
P(D ±D = 2 ±j)
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Let us now consider that one unit of stock is moved from installation 1 and placed

into installation 2. This change in total allocation of stocks results in a new total

expected on-hand inventory that is represented by the following expression:

TC(s2 + 1,s1 - 1) = s2 + sl - E[Df + D2] + E[B2,2(s2 + 1)] + E[Bi(s2 + 1, sl - 1)]

By moving one unit from installation 1 to installation 2, backorders at installation 2

that are destined to installation 2 changes in the following way:

E[B2,2(s2 + 1)] A2 iP(DL + D2L = 2 + + i)
i=1

A2 00

A +A (i1)P(DI + D2 = s2 + i)
i=i

= E[B 2, 2(s2)] - A AP(DL + DL> SŽ2 + 1)

The above expression simply provides a relation between E[B2,2(s2 + 1)] and

E[B2,2 (s2)]. Similarly, we can derive the following relation between E[B1 (s2+1, si -1)]

and E[Bi(s2, Sl)], which informs us on how shifting one unit of stock to the upstream

installation changes expected backorder level at installation 1:

E[Bi(82 + 1 ,81 -1)] = ] (i-(81 - 1)). ()i=l- -1 ' A1 --2) (1 ) Al + -2 A + '2=s-l- j=i

P(Df + DL = 2 + 1 + j)

Z( i 1) (- Si) ) (A+ A )i-1 (/A2)(j-i).2 8i ~j= i
tS1 2 X 2

P(D E[B( 2 ) 1 + 2 P(B2 ( 2 1) > )
=E[B,(s2, SI)] + A P(B2,1(82 + 1)> sI)

Using the above derived relations between expected backorder levels at installation

1 and 2, we can derive the following relation between total expected on-hand inventory
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before one unit of stock is moved and after it is moved:

TC(s2 + 1,81 -1) = s2 + s1-E[D + D2L] + E[B2,2(s2 + 1)] + E[Bi(s2 + 1,81 s- 1)]

= s2 + s - E[Df + D L] + E[B 2,2 (s2 )]- A2 P(B 2 (s2 ) > O)82 + 81 1 2 - ~~A1 ± A2

±E[B (82 , Si)] + A2 P(B ( 2 + 1, Si - 1) > 0)

TC(s 2, s81) A2 [P(B2(s2)> ) - P(Bl(s 2 + 1,s81 - 1) >0)]
A + A2

Let us now compare TC(s 2 +1, si-1) with TC(s 2, Sl). To achieve this comparison,

we need to determine the relation between P(B 2(s 2) > 0) and P(Bi(s 2 +l, s1-1) > 0).

And, the following proposition provides this information.

Proposition 12 For sl E Z + U {0}, s2 E Z, the following inequality holds true,

P(B2(s2) > O) > P(Bl(s 2 + 1, s1 - 1) > O)

We know that TC(s2 +1, s1-1) = TC(s2,s)- - 2 . [P(B2(s2) > 0)-P(Bi(s 2+

1,s l-1) > 0)]. Furthermore, P(B 2 (s2 ) > O) > P(Bi(s 2 + 1,s 1 - 1) > 0) holds

true. Hence, moving one unit of stock from the downstream installation 1 to the

upstream installation 2 results in a decrease in total expected on-hand inventory

level. We next develop a sequential solution method that helps us in characterizing

the optimal solution method for Service Level Problem with two demand classes and

Q = 1. We call this auxiliary solution method as Single-Pass-Algorithm. Single pass

algorithm finds the stockage level at each installation sequentially starting with the

most upstream installation. Namely, when there are only two installations

s2 = min{s2 : P(IL2(s2) > O) > 2}

s = min{sl' 2 : P(IL ( 2, s) > 0) > f1}

s2 gives the minimum stock level at installation 2 such that the fill rate requirement

at installation 2 is satisfied. Hence, s2 is a lower bound on the optimal stock level

at installation 2. Stock level at installation 1 does not affect the fill rate level at

87



installation 2. However, the fill rate level at installation 1 is affected by the stock

level at installation 2. Hence, Single-Pass-Algorithm first finds the minimum stock

level -2 at installation 2 that satisfies the fill rate requirement at installation 2, then

it moves to installation 1. And, for this given stock level 2 at installation 2, it

finds the minimum stock level s1 at installation that satisfies the required fill rate

at installation 1. After defining how Single-Pass-Algorithm works, we develop the

following result that indicates how the solution for Single-Pass-Algorithm changes as

we move units between the two installations.

Proposition 13 If 8 1(s2) Z + denotes the optimal stockage level at installation 1

for a given 2 E Z stockage level at installation 2, then the following holds true

S1 (s 2 + 1) E {s1 (2)- 1, 1(s2)}

The above result simply implies that if one unit of stock is added to installation

2, the solution at installation 1 for Single-Pass-Algorithm after this addition is either

the same as before the addition or it is only one unit less than the solution before

the addition. Once we solve the Single-Pass-Algorithm, we obtain the following set of

solutions, (2, ?1). The last result implies that adding one more unit into installation

2 results in a new feasible solution that is either (2 + 1, 1) or (2 + 1, -1 - 1). The

total on-hand inventory level with solution set (2 + 1, s1) is surely larger than that

with solution set (s2,sx). However, the on-hand inventory level with solution set

('2 + 1, S1 - 1) is smaller than that with (2, s1) because we already show earlier that

shifting one unit of stock from a downstream installation to an upstream results in

a lower total on-hand inventory level. This observation suggests that applying first

Single-Pass-Algorithm and then shifting stocks from installation 1 to installation 2

as far as service level requirements are still satisfied results in an optimal solution set

(s*, s*) for our problem with two installations. The formal description of this optimal

solution algorithm is as follows:

Algorithm for Two Demand Classes:

1. carry out Single-Pass-Algorithm to determine s2 and s1,
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2. set 2 = s2, s1(s2) = ?1, s8 = s2, 8* = s, and cost = TC(s 2, s1),

3. DO WHILE P(IL1(s2 + 1, 8s(s 2 ) - 1 > 0) l

set 2 = s2 + 1, 1(82) = 1(82 - 1) - 1 and cost = TC(s 2 , s1(s2))

END DO

Next, we extend the above optimal solution algorithm for a problem with more

than two demand classes. To achieve this, we first develop the extension to the

result in Proposition 13 for any finite number of demand classes. For a problem with

N demand classes, the Single-Pass-Algorithm is about solving the following set of

equations sequentially:

SN = min{sN: P(ILN(sN) > O) > N}

sN- = min{sNi- SN : P(ILN(SN,SN-1) > 0) > N-1}

l = min{sixsN,sN-1,. , 2) P(ILi('N,sN-1," **,551) > 0) > Oi}

The following proposition characterizes how the solution for the Single-Pass-Algorithm

changes as we change the stockage level at some installation. And, we utilize this re-

sult later on our solution algorithm.

Proposition 14 If the solution for Single-Pass-Algorithm is increased by one unit

at some installation i E [Il, Ni], i.e, s - si + 1, then the solution for Single-Pass-

Algorithm for all downstream installations changes at most one installation.

For the clarity of presentation we present a solution algorithm for a problem

with N = 3 demand classes. However, a similar development applies for any finite

number of demand classes. Consider now the equivalent serial inventory system with

3 installations. Then, the total on-hand inventory level for a given set of stockage

level (3, s2, Si) becomes,

3 3

TC(s 3 , 2, 81) = $i- Z E[DL ] ± E[B3 ,3 (s3 )] + E[B2,2 (s3, 82)] + E[BI(s 3, 82, Si)]
i=1 i=
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Let us now consider how an increase in stockage level at any of the three instal-

lation affects total on-hand inventory level. There are three options to increase the

stockage level; adding unit(s) to installation 3; installation 2; or installation 1. First,

suppose that one unit of stock is added to installation 3 so that (3 + 1, s2, S1) becomes

the new set of stockage levels. This additional inventory at installation 3 results in

decrease in expected backorders at all three installations as indicated below:

A 3

- 3,3(S3) = E[B3,3(s3)] - E[B3,3(s3 + 1)] = - P(B3(s3 ) > O)
A

A2,2(83) = E[B2,2 (s3 , s2)] - E[B2,2 (s3 + 1, S2)]

A1(S3 ) = E[B(s 3 , 2, S1)] - E[Bi(s 3 + 1, s2, 1)]

We characterize the total change in expected backorders through adding one unit of

stock in the following proposition.

Proposition 15 For a problem with three demand classes, the decrease in total ex-

pected backorders through adding one unit of stock at installation 3 is less than or

equal to one unit.

The above proposition implies that adding one unit of stock at installation 3

decreases the total expected backorders by one unit at most, therefore, increasing the

stock level at installation 3 by one unit increases the total expected on-hand inventory

level. This further implies that increasing the stockage level at installation 3 increases

inventory holding costs. Let us now consider that the stockage level at installation

2 is increased by one unit so that (3, s2 + 1, S1) becomes the new set of stockage

levels. Similarly, the increase in stockage level at installation 2 results in decrease in

expected backorders both at installation 2 and installation 1 as shown below:

A2,2(s2) = E[B 2, 2(s3 , s2)] - E[B 2,2(S3 , s2 + 1)]

Al(s2) = E[B1 (s3 , 2, S1)] - E[B(s 3 , s2 + 1, S1)]

We characterize the above mentioned decrease in expected backorders at installation

2 in the following proposition.
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Proposition 16 For a problem with three demand classes, the decrease in total ex-

pected backorders through adding one unit of stock at installation 2 is less than or

equal to one unit.

Similarly, the above proposition implies that increasing the stockage level at in-

stallation 2 by one unit results in a decrease in expected backorders that is less than

or equal to one unit. Therefore, increasing the stockage level at installation 2 by

one unit increases the expected on-hand inventory level at installation 2, hence, the

expected inventory holding costs. Lastly, we consider adding one unit of stock at

installation 1 so that the new set of stockage levels becomes (3, s2, S1 + 1). This

additional one unit of stock at installation 1 does not affect the expected backorder

levels at the upstream installations 2 and 3, hence, only expected backorder level

at installation decreases with the additional of one unit of stock at installation 1,

i.e Ail(sl) = E[Bl(s 3 , s 2, sl)] - E[Bl(s 3 , s 2, sl + 1)]. We characterize the decrease in

the expected backorder level at installation 1 with the increase in stockage level at

installation in the following proposition.

Proposition 17 For a problem with three demand classes, the decrease in total ex-

pected backorders through adding one unit of stock at installation 1 is less than or

equal to one unit.

Similar to the previous two results, the above result simply implies that increasing

the stockage level at installation by one unit results in a decrease in expected

backorders that is less than or equal to one unit. Increasing the stockage level at

installation 1 by one unit, hence, increases the expected on-hand inventory level and

the expected inventory holding costs.

In summary the above derived results together imply the following important

finding: increasing stockage level at any of the three installations results in a decrease

in expected backorders that is less than or equal to one unit. Hence, the total expected

on-hand inventory level increases with the increase in stockage levels. Namely, it holds

true that TC(s 3, s2, Sl) is an increasing function in stockage levels 3 , s2, and sl. Using

the similar approach we can easily show that the same property holds true for the
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general case TC(sN, SN-1, ... , sI). Next, we develop our last auxiliary result that helps

us derive an optimal solution algorithm when there are N = 3 demand classes.

In this last result we would like to derive how total expected on-hand inventory

level TC(s 3 , s2, S1) changes as we move one unit of stock from a downstream instal-

lation and place it to an upstream installation. We characterize how this change in

TC(s 3 , s2, sl) occurs in the following proposition:

Proposition 18 For a given set of stockage levels S3 E Z, s2 and S1 E Z + U {O},

i) TC(s 3 , 82 + 1, 1 - 1) < TC(s 3 , s2, S1)

ii) TC(s 3 + 1, 2 - 1, S1) < TC(s3 , s2, S1)

The above proposition simply tells us that total expected on-hand inventory level

TC(.) decreases as we move stocks from downstream installations to upstream instal-

lations. The same result can be easily derived for any finite number of demand classes

using the same procedure. Next, we gather all our findings together to construct an

optimal solution algorithm. Before we construct our optimal solution algorithm we

restate all our main results so far for the sake of clarity,

* Single-Pass-Algorithm yields a feasible solution for Service Level Problem,

* Single-Pass-Algorithm provides Service-Level-Problem with a feasible solution

that has the smallest value of the sum of stockage levels, i.e min Ei-l Si,

* If the solution for Single-Pass-Algorithm is increased by one unit at some instal-

lation i [, NJl], i.e, s - si + 1, then the solution for Single-Pass-Algorithm

for all downstream installations changes at most one installation by one unit

decrease.

* For a given set of stockage levels {s3, s2, S}, increasing the stockage level at

any installation results in an increase in the objective function value TC(.) of

Service Level Problem,
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* For a given set of stockage levels {s 3 , 2 , S1}, shifting the stocks from downstream

installations to upstream installations yields lower total on-hand inventory level,

hence, lower objective function value TC(.) for Service Level Problem,

Algorithm for Three Demand Classes: We now suggest a numerical solution

algorithm for the Service Level Problem and discuss why it yields an optimal solution.

Consider now the Service Level Problem with 3 demand classes. First, we suggest

applying Single-Pass-Algorithm to obtain a good feasible solution for Service Level

Problem. Let the solution set obtained by Single-Pass-Algorithm (SPA) be {S3, s2, s1}

such that the following holds true:

s3 = min{s3 : P(IL3(s3) > O) > A3}

s2 = min{s2 1s3 : P(IL2( 3 , 2) > ) > 32}

S1 = min{s1 s3 , s'2 : P(IL ( 3 , s2 , sl) > 0) > /1}

Clearly, the sum of stockage levels S = + + 1 obtained through Single-

Pass-Algorithm provides a lower bound on the sum of stockage levels for an optimal

solution for Service Level Problem. Hence, the optimal solution has the sum of stocks

that is either or greater than . Increasing stockage levels obtained in Single-Pass-

Algorithm still yields a feasible set of stockage levels, however, we show that increasing

stockage levels increases total expected on-hand inventory level, and therefore, the

objective function value in Service Level Problem. Therefore, the sum of stockage

levels in an optimal solution must be exactly equal to S = S3 + S2 + S1. Also, we show

that shifting stocks from downstream installations to upstream installations decreases

the objective function value TC(.) of the Service Level Problem. Hence, moving stocks

to upstream installations as long as feasibility is satisfied results in a better solution.

This observation suggests that we should begin with moving stocks from installation

1 to installation 3 as long as service level requirements are still satisfied. When no

more stock is allowed to be shifted from installation 1 to installation 3, we next move

stocks to installation 2 instead of installation 3 as long as feasibility is preserved.
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When no more stock is able to be moved to installation 2, we begin moving stocks

from installation 2 to installation 3; and we continue this move from installation 2 to

installation 3 as long as feasibility is preserved. This lateral shift of stocks does not

change the optimal sum of stockage levels. Moreover, by shifting stocks to upstream

installations while still satisfying feasibility further reduces the objective function

value, which guarantees that the resulting set of stockage levels is indeed the optimal

set of stockage levels. The formal description of this optimal solution algorithm is as

follows:

Algorithm for Three Demand Classes:

1. carry out Single-Pass-Algorithm to determine s, s, and S,

2. set S3 = s3, 2 = s2, = 1; and cost = TC(s 3 , s2, S1),

3. DO WHILE (service

set 3 = S3 + 1, S1 =

END DO

4. DO WHILE (service

set 2 = 2 + 1, 1 =

END DO

5. DO WHILE (service

set s3 = S3 + 1, 2 =

END DO

level at installation i) > /i, Vi E {1, 2, 3}

s - 1 and cost = TC(s 3 , s2, s1)

level at installation i) > /i, Vi E {1, 2, 3}

s - 1 and cost = TC(s 3, s2, S1)

level at installation i) > i, Vi E {1, 2, 3}

s2- 1 and cost = TC(s 3, s2, s1)

The above solution algorithm can be easily extended using the similar approach

to account for any finite number of demand classes. To illustrate the above presented

optimal solution algorithm we provide the following example:

Example

Consider that there are three demand classes with Poisson arrival rates A1 = 8

units/year, A2 = 12 units/year, and A3 = 16 units/year for demand class 1, class 2,
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and class 3, respectively. Constant order replenishment leadtime is L = 3 months.

Inventory is replenished through a one-for-one replenishment process with order size

Q = 1. Class demands require a fill-rate of 99%, class 2 demands require a fill-rate

of 94%, and class 3 demands require a fill-rate of 87%. Service Level Problem finds

out the optimal set of stockage levels {s 3 , 2, S} that minimizes the long-run average

inventory holding costs while satisfying the required service level requirements. Ap-

plying Single-Pass-Algorithm yields the following stockage levels: s3 = 13, ?2 = 1, and

s = 2. And, the total expected on-hand inventory level under these stockage levels

becomes TC( 3, s2, l) = 7.0905. Shifting stocks from installation 1 to installation 3

violates feasibility. Hence, we move stocks from installation 1 to installation 2 instead.

Due to feasibility requirement we are only able to move one unit from installation 1

to installation 2, which results in 3 = 13, s2 = 2, s, = 1. And, this move produces

total expected on-hand inventory level TC(s 3, s2, sl) = 7.0778. Since moving any

unit from installation 2 to installation 3 violates feasibility, {s 3 = 13, s2 = 2, sl = 1}

becomes indeed the optimal solution set of stockage levels.

If fill-rate requirements become 99% for class 1, 93% for class 2, and 70% for class

3, then Single-Pass-Algorithm yields = 11, = 2, and sl = 2. And, this solution

yields total expected on-hand inventory level TC(9 3 , s2,sl) = 6.2410. It is feasible

to move one unit from installation 1 to installation 3, which yields total expected

on-hand inventory level TC(s 3 + 1, s2, sl - 1) = 6.1413. Since no stock is feasible to

move from installation 1 to installation 2, and from installation 2 to installation 3,

optimal solution set of stockage levels becomes {83 = 12, 2 = 2, s = 1.

In conclusion, we are able to develop a solution algorithm for Service Level Prob-

lem with one-for-one replenishment process such that it yields an optimal solution.

Since the Service Time Problem is similar in structure to the Service Level Problem,

the presented solution algorithm can be easily suited to solve the Service Time Prob-

lem as well. Furthermore, this solution algorithm can be modified to solve Service

Level Problem with (R, Q) replenishment process. Suppose that order size Q is fixed.

Then, it is clear that we need to set ordering level R high enough to meet the ser-

vice requirement at the most upstream installation N. Moreover, increasing ordering
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level R improves service level not only at installation N, but also at all downstream

installations. Hence, for given order size Q, our solution algorithm provides the opti-

mal ordering level at installation N and optimal base-stock levels at all downstream

installations. Furthermore, to determine the optimal ordering quantity Q, we can

easily construct a search algorithm over the possible range of ordering size Q; and

apply the solution algorithm for each of the possible ordering size to pick up the best

Q.
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Chapter 5

Summary & Future Research

We present in our paper several descriptive models with the objective of guiding

a manufacturer about the optimal experimental and pilot production strategies for

a new product that he plans to launch. We first analyze the question of how much

capacity should be allocated for experimental production. To answer this question

we develop an optimization problem that maximizes profits, - single line capacity

allocation problem (SLCAP). Analysis of this problem provides us with the following

result: it is never optimal to dedicate only limited capacity to the new product,

-- i.e., experimental production is not optimal. Further analysis also has yielded

that it is optimal to launch full production of a new product either immediately or

only when the mature product that is currently in production becomes obsolete. This

result is quite interesting because experimental production is commonly used in many

industries, which is in contrast to our derived result. Hence, our result lays out some

sufficient conditions that suggest not to using experimental production. This is quite

helpful for managers to determine what factors they need to focus on in developing

experimental production strategies for their newly developed products. To the best

of our knowledge, the previous work on experimental production in literature have

not considered the issue of capacity allocation explicitly, thus our model extends the

previous work in literature by explicitly modelling the capacity trade-off between two

consecutive generations of products to develop experimental production strategies.

It is also worth mentioning that we model production yield levels as a function
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of cumulative production experience. Specifically, we treat production yield levels as

an increasing-concave function of cumulative production quantity. Production expe-

rience models developed in the literature assume unit cost of production goes down

with more production experience. We can easily develop a corresponding one-to-one

mapping between unit production cost and production yield levels. This mapping

is quite useful since we can characterize process improvement not only through re-

ductions in unit production cost, but also through improvement in production yield

levels. Hence, our production yield model generalizes the previously developed yield

models in the literature.

We realize that additional questions arise from the insights obtained from the

experimental production model. First, experimental production model treats each

production line independent of other existing production lines. However, if there

are multiple production lines with similar production processes, experience gained

on one production line could be transferred to other production lines. Thus, it is

not clear any more if the simple result for the experimental production model will

hold true when there are multiple production lines with similar production processes.

Second, experimental production model treats production yield levels as deterministic

parameters. And, it is important to check what effect uncertain production yields,

coupled with multiple production lines with similar production processes, would have

on experimental and pilot production strategies.

These questions are answered by developing a knowledge transfer model among

production lines. The two important characteristics of this model are: First, the

higher the similarity in production processes between pilot production line and any

other production line implies the higher the amount of production experience trans-

ferred from pilot production line; hence, the higher the benefit from pilot production.

Second, the more production capacity for pilot production implies the faster im-

provement in production process, hence, the more production experience is gathered

through pilot production.

We first show when a pilot production method becomes a desirable production

strategy. We consider two different environments; production yields with no uncer-
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tainties and production yields with uncertainties. Next, we show how benefit from

pilot production varies with the allocated production capacity for pilot production.

Specifically, we derive conditions that guarantee that total profit function is discrete-

unimodal with respect to allocated capacity for pilot production. These results pro-

vide managers guidelines on how to derive the most benefit from pilot production

through optimal capacity allocation. Moreover, the model itself sheds light on trade-

off between the pace of improvement through pilot production and the opportunity

cost involved with pilot production Hence, our model make the trade-offs involved

with pilot production more transparent for managers.

Next, we develop a model to characterize how production processes of a new

product can be improved during its full production. To achieve this, we consider

the case of full production where a lead production line scans information on process

improvements on a continuous basis with the remaining production lines. However,

this knowledge sharing process involves costs that need to be traded-off with benefits

from process improvements. We determine when knowledge from a lead production

line about process improvements for a new product should be transferred through

a yield control mechanism. Furthermore, we provide an example to illustrate our

suggested yield control mechanism. The developed yield control mechanism is based

on yield differences which stand out as an opportunity to improve production yields

through knowledge transfer. Observing yield differences among production lines is

fairly easy task to achieve; therefore, the yield control mechanism would become a

benchmark tool for managers on deciding when it would be best to transfer knowledge

among production lines.

In conclusion, we would like to point out some possible limitations and pitfalls

to the approaches presented here. First, we have implicitly assumed that there is no

competition. Second, additive random production yield model described in this paper

has not been modelled in literature before. There is not much work in literature on

how uncertainty in production process is reflected on production yield levels. There-

fore, it is necessary to have further empirical justification for our additive random

production yield model. Third, total profit function in section 4 for a deterministic
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production yield environment results in not being very sensitive to changes in n, to-

tal number of production lines. Some possible limitations for this result are: yield

levels are all deterministic; and a single knowledge transfer is event is considered. We

conjecture that the sensitivity would be higher if we consider a more flexible model

with multiple knowledge transfer opportunities. We plan to test our conjecture in

our future work. Finally, our yield control mechanism in section 5 assumes that

yield difference between the lead production line and any other production line is

increasing-concave as far as there is a knowledge and experience gap between them.

It would be helpful if we can further generalize this assumption to a larger extent.

Furthermore, it would be also useful to derive a mapping between different indus-

tries and their corresponding yield difference functions. Moreover, our yield control

mechanism assumes only a fixed cost associated with knowledge transfer; extension

to include variable costs associated with knowledge transfer would be of interest to

make the model more realistic. These aforementioned extensions are in our agenda

for our future work.

We have presented an inventory control policy for an inventory system with mul-

tiple classes of customers. We developed an equivalent problem in the form of a serial

inventory system in which each demand class is assigned to a different installation.

Our approach has the following main features to be noted:

* It provides a more transparent model than any existing literature on inventory

models with multiple demand classes,

* Different from the existing literature, it is not limited to only two demand

classes; it covers any number of demand classes,

* It provides a flexible choice of objective specification; either assigning a service

level requirement or a backordering cost for each demand class,

* It allows lot size replenishment orders,

* It suggests numerical algorithms to determine how much inventory to stock,
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* It would be easily extended to multi-echelon models, where there are multiple

demand classes at each echelon.

We realize that there are important extensions to the current developed models.

First, we view our system as a single location inventory system serving a single product

to multiple demand classes. Extending our single location model to a multi-echelon

system where each location in the lowest echelon faces multiple demand classes is an

interesting problem with great practical value. Second, we assume that any demand

that is not filled on its due-date is fully backordered. There may exist applications

in which, unfilled orders are simply lost or expedited to outside sources by incurring

cost. Hence, there is a practical value to model the lost-sales environment as well. We

conjecture that our mapping into serial inventory system would allow us to model the

lost sales environment as well. Third, we use a FCFS (first-come-first-served) priority

fulfillment to model how backorders are cleared upon arrival of replenishment orders.

FCFS priority fulfillment is not necessarily optimal, but it is also intuitively clear that

it is not a bad backorder clearing method since it only becomes effective only when

demand realization during lead-time becomes really high. It is valuable to provide

alternative clearing mechanisms to have benchmarks for FCFS priority fulfillment.
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Appendix A

Proofs of Propositions

Proposition 1:

The production of an old product stops permanently whenever a new product is

introduced.

Proof. Suppose that optimal allocation policy x* = {x(t) e [0, K], t E [0, T]} is

decreasing over a small time interval, i.e., for some A > 0 and [r - A, T + A] C [0, T],

x(t) = for t [--A, ], x(t) = x for t E [, r+ A], where > x. Consider, instead,

an alternative policy xP that is increasing over the same interval, i.e., x(t) = x for

t ( - A, r) and x(t) = for t E (, T + A). Consider whether the alternative policy

xP has any improvement on the total profit over x*. The difference in profits between

the two policies becomes:

H(xP) - II(x) =P x A [y(Q( - A) + x A) - y(Q(r - A))]-

Pi x* A. [y(Q(r - A) + . A) - y(Q(r - A))]

> o iff Y(Q( - )+ .A) - Y(Q( - )) >
X.A

y(Q(7 - A) + .A) - y(Q(T - A))
Y.A

This last inequality holds true for any y(Q(t)) since it is concave and non-decreasing

by assumption. This implies that the alternative policy xP results in improvement

over the policy x*; this is a contradiction because x* was the optimal policy. Hence,
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the optimal policy x*

for r < 2 E [0, T].

T. Suppose that the

K Vt E [ - , +6].
optimality:

has a non-decreasing trajectory over time, - i.e., x(rl) < x(T2)

Consider now a small interval [ - , r + ] [0, T] around

optimal trajectory over this interval is such that 0 < x(t) <

Then, x(r) has to satisfy the following necessary condition for

OL (x*) _ a (fTo (t)dt)

oX (T) & ()

9 (fT y ( (t)) dt)K .-pi .
ax ():

(o x(t) y (Q (t)) dt)

ax ()

Evaluating the partial derivatives yields the following:

= p1. [y(Q(r))+ x(t) y'(Q(t))dt + K* Pi y'(Q(t))dt. (i)

Moreover, x(T + 6) must also satisfy

the following holds true:

the necessary condition for optimality. Hence,

p = p y(Q( + )) + x(t) .y'(Q(t))dt +K Pi . y'(Q(t))dt. (ii)
+6 T

Subtracting the terms in equation (i) from those in (ii) results in:

IT+.I x(t). y'(Q(t))dt = y(Q(T + 6)) - y(Q(7))

Dividing both sides by and taking the limit as approaches to zero result in the

following:

x(T) y'(Q(T)) = y'(Q(T))

This expression results in a contraction since x(T) is not necessarily equal to 1. And,

a similar contradiction can be shown when x(r - ) E (0, K) is chosen to satisfy

the necessary condition. This implies that the optimal trajectory x(t) E {0, K} Vt E

[i- - 6, r + 6]. Moreover, it has been shown earlier that optimal trajectory is increasing

in time. These two results together imply that there exists T E [0, T] such that the
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optimal trajectory x(t) = 0 t E [0, T] and the optimal trajectory x(t) = K Vt E (T, T].

U

Proposition 2:

Optimal capacity allocation policy for problem SLCAP is of bang-bang type; it is

optimal to allocate the whole production capacity for a new product immediately if

i1. < - .fo y(Q(t))dt, otherwise it is optimal not to allocate any production capacity

for a new product until the old product becomes obsolete.

Proof. For a given optimal policy x the result in proposition 1 implies that, there

exists E [0, T] such that x(t) = 0 Vt E [0,T ] and x(t) = K Vt E (, T]. Total profit

function then becomes:

/0 T

H(x) = ]K . (po - c)dt+ K (y(Q(t - )) PI -c)dt

Total profit function is convex in T E [0, To] because d2 -x) K .y'(Q(T - 7)) > 0

holds true. Since the objective is to maximize total profit, optimal production launch

time T* E {0, To . If T* = 0, then total profit becomes fo K (y(Q(t)) Pi - c)dt. If

7 * = To, then total profit becomes K. (po -c)dt + ff K. (y(Q(t- To)) pi - c)dt.
TCombining these two expressions implies that * = 0 iff fo (y(Q(t)) pi -c)dt >

jT (ph - c)dt + fTO (y(Q(t- T 0)) - c)dt. Further simplification implies that * = 0

ifi' f < f .foT y(Q(t))dt. Similarly, * = T iff > 1 oT0 y(Q(t))dt. p I, ToL. p -

Proposition 3:

For any n > 2, n E Z + and y > 0.5 optimal production launch time of a new product

7-* (n) is non-zero iff > (1 - y) y( T) + y y(O).
P1

Proof. For any n > 2, n E Z + and y > 0.5, let *(n) denote the optimal

production launch time of a new product. Let us first show that di(n, T(n)) is strictly

concave in (n) for all n E Z+ and y > 0.5. For all n E Z+ the second derivative of
following, d (((n,r(n))) = (K\2 I 1(n, v-(n)) with respect to -(n) simply yields the following, (n) - p,[(1-
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)2y (T-(1-n7).r(n)))_? 2 .y'Q .7.r(n))], where y'(.) denotes the first derivative

of y(.). Since y(.) is concave-increasing and T - (1 - ) - > y * r, it holds true that

y'( .7'r(n)) > y'( .(T-(1-'y)-T(n))). Furthermore, (1- y)2 72' holds true for 7 >
0.5. Hence, (1_y)2 .y' K-(T-(1-')-T(n))) < 2.y'(K-.7.-T(n)) holds true for > 0.5,

which implies that d2 11(n,r(n)) < 0 for y > 0.5. Hence, FJ(n, T(n)) is strictly concave indr(n) 2

Tr(n) for all n E Z + and y > 0.5. Let us now show that the sufficient condition(=,)

holds; suppose that r*(n) > 0. This implies that profit function must be increasing

over a small interval from zero, [0, e], e > 0 because profit function is concave in T(n)

for all n E Z + and 7 > 0.5 as shown in previous proposition. Hence, we must have

limd n((n)) IT(n)= > 0, which implies that pl - Pi [(1 - y(K T) + y y()] >
e-+O dT(n) 0

0. Second, let us now show that the necessary condition(=) holds; suppose that

I M~~~~~~~~~~~~~~~~~~~~l(n,,(n))pOP1l.[(1-7).y(Q(T))+ 7.- y(Q())] holds true. This implies that dnT(,n)) I(n)=0 > 0

snedln,r(n)) = K[~since d(n,()n)) = K Io-P1'[(1--)'y(K*(T-(1- -) (n))) + y(K T(n))]].
This implies that profit function must be at least increasing over a small interval,

hence, optimal production launch time r* > 0. 

Proposition 4:

For 7y > 0.5, H(n = 2, r*(2)) > H(n = 1) iff the price ratio P >
Pi

2 fOT y(Kt)dt-fo y( K' t)dt-T y( f.(t-(1-fy).To))dt
Tot MI°d (- 2 )tand optimal knowledge transfer time r* (2) =
TO

To0 .

Proof. Let us first show that for concave-increasing y(Q(.)), y7 > 0.5, and

E [0, To], the following inequality holds true: T(Q(t-(-)T))dt > (fT y(Q(t-' ~~~~~~~~~~~~~~(T-'-) -
(1-7y) r))dt). Let the following hold true through change of variable, fT y(Q(t - (1-

~).~))~~T =1 ;-y) ,7y) .T))dt = fT.( Y )' y(Q(t))dt. y(Q(t)) is a concave function in Q(t), hence, the area

underneath y(Q(t)) over the interval [T- (1-7) T, 7'T] is at least as large as the area of

a trapezoid constructed with end points at the boundaries of the same interval. This

implies the following inequality: fT-(-).' y(Q(t))dt > ( )))Y(()) (T-).
Subtracting ((1-) .y(Q(T-(1-7) .r))+7.y (Q(7.r))) .-(T-T) from the right hand

side of the above inequality results in: ( - 0.5). (y(Q(T- (1- 7) T))- y(Q(y -))),
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that is > 0 since _ > 0.5 and y(Q(t)) is increasing in Q(t). Hence, the following

inequality holds true: y(Q(T(1-)'T))+y(Q(T)) (T - T) > ((1- 7) y(Q(T - (1-
2

7y) r-)) + 'y y(Q('y - T))) (T - -) Combining the two inequalities implies that

f.T ( 17)T y(Q(t))dt > ((1 -y)-.y(Q(T-(1-y).-T))+7.y(Q(7.-T))) (T-T). The term on

RHS is equivalent to (T-r) (- (f7T y(Q(t-(1-y) -r))dt). Replacing this expression

yields the desired inequality, y() > fy(Q(t- (1 -y) r))dt. After(T-'r) O r

showing this inequality holds true, let us now proof the statement in this proposition

holds true. First, let us show that sufficient condition(=*) holds true. Suppose that

II(n = 2, r*(2)) > HI(n = 1) holds true. Then, the following inequality simply follows,

P-**(2) > 2.foT y(K.t)dt-f T y(TK.t)dt- f( 2) y(K.(t-(1-).-T*(2)))dt (1) Through

change of variable the following equality holds true: 2. f y(K. t)dt- foT y(2 t)dt =

fiY y( . t)dt. Replacing this equality in (1) results in, . *(2) > f y( 2. t)dt-Pi

fT(2) y(K (t - (1-) . T*(2)))dt (2). RHS > 0 and LHS = 0 in limit when T* - 0.
This implies that r* > 0 because LHS > RHS. Hence, we can divide both sides in

2T tKd T
(2) by 7-*(2), P > f T Y( 2't)dt-fr(2)Y( 2-(t-(1-Y)'r*(2)))dt(3C(2) by T* (2), -p > 2 

T y(~.t~dtf~?U 2 ..(2) (3). Consider T*(2) E (0, T],
Pi T* (2)

the following inequality holds true because y(.) is an increasing function fT y( t)dt >
T >

ff(2) Y(K ~.(t-(1--y).,r*(2)))dtT( 2) Y( (*2)- (2)))d. Multiplying both sides of the previous equality by ;. and tak-T~~~~~~~~~~~~1 ~~~f2 (K* (2)yK (-1-y-r*2)d
ing some terms to LHS produce the following 2 t)dt-(2)(2 (t-(1-)*(2)))dt

,r *(2)

,y (t-(- )*(2)))dt Using the result in Lemma 1 on RHS of the previous in-
f 2T.( tdtf K t 1-y ,r (2)dt ~TK

equality implies the following: T 2 (2) Y( 2 (t-(-)(2)))dt KTr* (2) > - ~(f, Y( '

(t- (1 - 7) -T))dt) =,* (4). Combining inequalities in (3) and (4) yields that
(T' t t-f()Y't-1-'r'(2)))dt T

*2> _ f (K .(t - (1 - 7) . ))dt)r=,.* (5).
P1 T(2)2

Moreover, I(n = 2, T(2)) is concave in r(2) for y7 > 0.5, hence, optimal T*(2) E (0, To]

must satisfy first order optimality condition. Namely, p - - (rT y(.K (t - (1 -

T K. t( )7)d)rT7). ))dt)j=,*(2) for T*(2) E (0, To), and P > - (f y(2 (t - (1 y) T))dt)I=To

for r*(2) = To. Combining these first order optimality conditions with the inequality
2 2in (5) yields that T*(2) = To and > f T Y( t)dt-f T Y((t-(1-)T))dt SetPi To

us show that necessary condition( ) holds true. Suppose that T*(2) = To and the

following inequality holds true O > r y(Kmt)dt f y( 2 t)dt-f y( 2 (t-(1-).To))dt MultiPi To

plying both sides by K. P. To, subtracting K. T. c from both sides, collecting some
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terms of RHS on LHS, and replacing To by r*(2) yield that f" K [Pi' y(2- (t-

(1 - ) r(2))) - c]dt + o (p - c)dt+

fTT(2) K [Pi Y( (t - ( -y). r*(2))) - c]dt > foT K [ y(K. t) - c]dt, which2~~~~

simply means n(n = 2, r*(2)) > H(n = 1). *

Proposition 5:

If Y > 0.5 and HI(n = 2, r*(2)) > II(n = 1) hold true, then for all n > 2, n e Z +

total profit HII(n, r*(n)) can be divided into two separate parts; profit obtained from

old product 11 01d (n, T*(n)) and profit obtained from new product lNew(n, r*(n)) such

that

i) IHold(n, r*(n)) is increasing and discrete-concave in n,

ii)IINew(n, r(n)) is decreasing and discrete-convex in n.

Proof. Suppose that > 0.5 and H(n = 2,r*(2)) > (n = 1) hold true.

Then, an earlier proposition implies that r*(2) = To. Let us first show that *(n)

is increasing in n Z+ for -y > 0.5. (n, T(n)) is strictly concave in r(n) for all

n E Z + and > 0.5. Hence, optimal r*(n) [0, To] must satisfy the following first

order condition: PO = (1 - ) y(K (T (1-Y) *(n))) + - y(

Let RHS be denoted by G(r*(n),n). Since G(r*(n),n) equals to a constant and

r*(n) is a function of n, we can take the implicit derivative of r*(n) with respect
to n dr*(n) _ G(1*(n),n) 

to n: dn )=-Evaluating the expressions results in, dT*(n) 1
Or* (n)

*(n))(1-*y)-y '(' (T-(l- y)r*(n)))+,y * (n)-yK fy-T*(n))(().T (n)).(-)- ( .(T--).T (n)))+-()-( .y.(n)) The numerator is > 0 be-
_(1_7)2.*y,(Kan.(T_(l1-?).r, (n)))+72*y'( -.,r* (n))

cause y'(-) > 0. Also, the denominator is > 0 since y'(' (T - (1 - ) T*(n))) <

y'(K 7-Y r*(n)) and (1- _ y)2 < 2 for -y > 0.5. Hence, d*(n) > holds true. This im---n- - dn > 0 holds true. This im-
plies that r* (n) is increasing in n E Z+. This result implies that r* (n) = To holds true

for all n > 2, n G Z +. Total profit 11(n, r*(n) = To) can be divided into two exclusive

parts; total profit from the old product and total profit from the new product. Let

total profit obtained from old product be o11 01d (n, T* (n) = To). (n-1) production lines

with production rate K on each of them produce the old product over [0, r* (n) = To].n

Hence, Iold(n, T'(n) = To) = (n- 1). K (p - c) To. Let total profit obtained
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from new product be IINew(, r*(n) = To). Similarly, these (n- 1) production lines

produce the new product over [r* (n) = To, T] plus the pilot production line with pro-

duction rate K produces the new product over [0, T]. Hence, IINew(n, T*(n) = To)
(n1)f~ ~.[pl'y(-.(t-(1-?).To))-c~dt+L foT~ ·(n-1)f r* * ( -(t-(1- )To))-C-dt+ go *(.[p y(.t)-c]dt. Let us first show

that I10old(n, r*(n) = To) is increasing and discrete-concave in n. Let AIIold(n, r*(n) =

To) = IIold(n, *(n) = To)- Hol(n- 1, *(n - 1) = T). Then, AH old(n, *(n) =

To)= (-1) K. (pl - c) To > 0, hence IIold(n, r*(n) = To) is increasing in n.

Consider now the forward difference AfIold(n + 1, r*(n + 1) To)-AI\old(n, r*(n) =

To) = -,) K (p~ - c) To < 0, which implies that IHOld(n, *(n) = To) is

discrete-concave in n. Similarly, A\IINew(n,T*(n) = To) = IINew(n, r*(n) = To)-

IINew(n - 1, r*(n- 1) = To). We can easily show that dAIINew(n,rT*(n)=TO) < 0 Thisato

implies that AHNew(n, r*(n) = To) < AIFlNew(n, r*(n) = 0). Moreover, it is easy to

show that AHIINew(n, r*(n) = 0) < 0. Hence, AHINew(n, r*(n) = To) < 0 holds true,

hence AHINew(n, Tr*(n) = To) is decreasing in n. Consider now the forward differ-

ence ArHNew(n + 1, *(n + 1) = To)- AINew(n, r*(n) = To). Let us now show that

AHNew(n+ 1, *(n+ 1) = To)-AHIINew(n, T*(n) = To) > O for all n > 2. The following

holds true for all n > 2 because y(-) is increasing and concave:

IK K[y(~ KK _ Y( .t ) -[Yn 1 n)-y- ) 

Moreover, y() is a continuous function on

over the same interval. This implies that

IT-(1--)-To K K
(-)To Y([y( -t)-Y( ' t)]dt-

JrTO n-to n

K K[y(-. t) - (n t)] > 
7 To, T-(1 -) To] hence, it is integrable

[~y To, T - (1 - -y) To], hence, it is integrable

T-(1-y).To K K
[y(-.t - y( .*t)]dt > 0

.To [n ' t Yn +1

which is simply equivalent to:

1 -(-y)To K 2
* ~~~y( . t)dt - -n+l J. 10 n

T-(1y)To K 2(n - 1)y( .t)dt >
J.To n- n

T-(1-y)To K 1
f To y(- .t)dt + --

'TO 7 n - 1
T-(1-y)To K ny(-. t)dt -
.To Y 7n + 1
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fT--(1-y)To K n-2 T-(1-).To K

J.To Y +- -1 n-d1 JTo Y(n - 1

JYTO ~ ~ ~ ~ ~ ~ ~~~(.Td-O~).To 
]Derivative of L1HS with respect to 7y yields that -[ * (K (T-( 'To))-2

n~~+1 n+ -- n
(K.(T-(1-'y).Tb)) + Y (K.(T-(1-'y)To))] < [I (- ' t) +n Y(n t) 2

Y[(K -(,y )] = -_ [Y( - t) + ( K t) - 2. y(K(T-(1-y7)TO))] < 0. Hence,

LIHS is decreasing in [0,1]. This implies that LHS(y = ) > LHS, hence,

I1 .oT-To I *t)dt _ 2 .fT-To K 1 f[-To K;i,*;fT-To y(~ t)dt - :T y (- ' t)dt + ;- 1 -T -y(-l t)dt > LHS.
1 T K t 2. fo y(K.d+Moreover, RHS is decreasing in To, hence t)dt - f0o y(- .t)dt +

_l *T(K * t)dt > LHS holds true. Taking LHS to the other side yields that:

f 1-,,or 2. T T 2(n-l)* t)dt + n . T- (1) ' Y( . t)dt - _ 0 y( * t)dt- n
r1+- '+1 n-l ' +Toj(~~~~~~~~~~~~~~~~ ~ ~~~ ~ ~~~~~~~~~~~~~~~~~~~-2T-(1-o KT KT 1,).To

~Jqjr'~~ldTt 1 Lo (-t)dt + ( t)dt > 0. More-

over, multiplying both sides by K ip preserves the inequality and yields AIINew(n +

1, T*(n +l 1= To)- New(n,) = To -ANe(, *() = To) > 0. This implies that INew(n, T*(n) = To)

is discrete-convex in n. 

Proposition 6:

If > 0.5 and HII(n 2, T*(2)) > H(n = 1) hold true, then

i) total profit HI(n, r*(n)) is unimodal in n, n e Z +,

ii) total profit YJ(n, T*(n)) is increasing for all n < n* Z+ ,

ii) total profit H(n, T*(n)) is decreasing for all n > n* C Z +.

Proof. We begin with showing i). Suppose that ?y > 0.5 and FI(n = 2, T*(2)) >

1(n = 1) hold true. It is shown earlier that r*(2) = To and r*(n) is increasing in

n Z+. Hence, -r*(n) = To holds true for all n > 2, n E Z+. Consider A I(n, T*(n)) =

lI(n,T*(n) = To) - H(n - 1,T*(n - 1) = To). More explicitly AH(n, T*(n)) = [

K. pO' -To +- AINe (n, -*(n) To) n. (n - 1) To show unimodality of

l(n, r*(n) = To), it is enough to show that it has at most one change in its sign.

Given its explicit form, it holds true that AI(n, r*(n)) has at most one change in its

sign if AIIN(n, r*(n) = To) .n (n-1)is monotone in n. Let the forward difference of

-AHINew(n, T*(n) = To) n. (n- 1) be represented by R(n) = n. [-AHNew(n+ 1, T*(n+
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1) = To) (n+ 1)+ AIINew(n, r*(n) = To) (n - 1)]. Let us now show that R(n) > 0 for

all n > 2, n E Z +. First, y(.) is increasing and concave, hence the following inequality

holds true for all n > 2 n E Z+ andt E [O,T]: y( -t)-_-y(K- t ) > Y( t)-

n y+' y(K.t). Collecting terms on LHS and then multiplying both sides by (n+ 1) yield

2.n-y(K-t)-(n-l)-y(lj t) - (n+l) y( . t) > 0. Since LHS is a continuous function

of t on [y To T-(1-y) To], it is integrable over the same interval. This implies that
£T-(1-Vy).To Y T-(1-7T 1,)'To K

2 'n' TO Y(I 'l'-T2. n. fT()O y(Kn * t)dt- (n-1) T(l7)TO y( K t)- (n + 1) T(1 To( K
T-(1 y --To 1 K\ T --.To Y Kt) > . Rearranging terms yields, 2 T(1-7) T y(K. t)dt - (1)To y( +1 . t) -TO n fl~~~~Jy-TO

T (1--y)-To T (1-,y).Ko£Y-0-,).Yo KfTo(1-7)° y(K- t)+ 2 (n- 1). f -(-). o(K .t)dt - n* f(o y( +1 t) -
(n- 2). fT()To y(1K--- t) > 0 the sum of the first three terms on LHS obtains its

highest value at y = 1, hence, 2. fT y(K . t)dt f (+l t) y( t)+ 2. (n --
T 1)£- -,).o T _ 1£-O-y).ro T1,)T y (K. t)dt - 7)To y( K1 t) - (n - 2) r(1-)T y t) >0

holds true. Moreover, both the sum of the last three terms and the sum of all

terms on LHS are decreasing in To. Hence, replacing To = 0 for the first three

terms still preserves the inequality: 2 T y(. t)dt- fo y(' t) - f y(K t)
~~~~~~~~~~T(1-,y.oT( ')T 1-,y)-To K t +2.(n-1) f(1)o y(K.t)dtn-r.f (-).To y(K.t)-(n-2).fT( y(n_ .t) >

0. Multiplying both sides by n K Pi yields that R(n) > 0, for all n > 2, n E Z +.

This implies that -AIINew(n, T*(n) = To) n. (n - 1) is increasing in n > 2, n E Z + .

This further implies that AlH(n, r*(n) = To) has at most one change in its sign, hence,

n(n, * (n) = To) is unimodal in n E Z +.

Next, we show that ii) and iii) hold true. Suppose that y > 0.5 and H(n =

2, r*(2)) > II(n = 1) hold true. It is shown earlier that r*(2) = To and r*(n) is

increasing in n E Z +. Hence, r*(n) = To holds true for all n > 2, n E Z+. Consider

ArI(n, r*(n) = To). It is easy to show that AlH(n, r*(n) = To) > 0 iff K. po To >

-AHNew(n,Tr*(n) = To).n.- (n- 1) for all n > 2, n E Z+. Moreover, we showed earlier

that -AIINew(n, r*(n) = To). n. (n- 1) is increasing in n > 2, n E Z +. This implies

that there exists an n* E Z + such that AH(n, T*(n) = To) > 0 on [1, n*). Hence,

I7(n, r*(n)) is increasing for all n < n*, n E Z +. Similarly, All(n, r*(n) = To) < 0 for

all n > n*,n E Z+, hence, ll(n,r*(n)) is decreasing for all n> n*,n E Z +.
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Proposition 7:

If E[Yh(Q(t), )] is increasing and discrete-concave in m E Z + and similarity index

between pilot production lines and the remaining production lines y > 0.5, then the

total expected profit E[Il(rm(n), m)] is discrete-concave for all m < n E Z +.

Proof. Suppose that E[Yh(Q(t), )] is increasing and discrete-concave in rn E Z +

and similarity index 'y > 0.5. Let m, n E Z+ such that m < n. E[I(rm(n), m)] has

the following expression:

E[I(rm(n), m)] = m . K pi y(K t)dt + (n - m) [K pl· rm(n) +

T-(1-y).m(n) m-1
jfmn K. pi .y(K t)dt] + K pi . 1 u
v.,rm () m+1

(T - m(n)) [mr + y (n - m)]

Let E[(Trm(n), m)] be the interpolation of the function E[II(rm(n), m)] on the real

domain, R+ - R+ . The function E[I(rm(n),m)] is continuous and differentiable

on [0, oo). We observe by differentiation that d2 E[ft(,r(n),m)] = (n -m).K 2 .p 1 .

[-(1 7 y)2 y'(K(T - (1 - 7y) rm(n))) + 72 y(K y. T m(n))], which is negative

for - > 0.5. Hence, E[ I(rm(n),m)] is strictly concave in m E [0, oo). Applying

the Envelope Theorem implies that the derivative of E[II(rm(n), m)] with respect to

m is given by the partial derivative of E[lI(rm(n),m)] with respect to m, holding

rm(n) fixed at the optimal choice, dE[- (m(n),m)= E[(m())] m(n)=(n ) Hence,

dE[f((),m)] = K plO· rm(n) + K Pi [f0 y(K t)dt -.f() y(K. t)dt +dm 0YT~n

(2*u (T (1 (T(n))](M~j ( -m i) r nT -mm (i-

Derivative of this last expression with respect to mn yields that d2 E[nI("m(n),m)] -din 2

-4. K' Pi' ( M+l), 1 which is negative. Thus, E[)(Trm(n), m)] is concave in m E R +.

Since E[fi(rm(n), m)] is both continuous and concave in real domain, it implies that

E[rl(rm(n), m)] is discrete-concave in m e Z + .
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Proposition 8:

Given AY(t) = yi(Q(t))- y2 (Q(t),N, T) > O,t E [0, T] under control policy (N, T)

and given h = P1. Then, (YCP) is equivalent to the following minimization problem:

Min N. F+
TI h AY(t)dt

s.t N>O,NEZandO<i<Ti+l <T, i{jl,N-11}.

Proof. The objective function in (YCP) can be reformulated as follows:

JT[y(t)-y2(t, (N, r))]dt - 2T c-N. F + 2pl 

Considering the negative of the above expression and eliminating the terms indepen-

dent of the control policy (N, r) imply the following equivalent problem for (YCP)

where y2(t, (N, r)) indicates that the yield level in production line 2 at time t that

depends on control policy (N, r):

T
Min N. F +pl [y(t)- y2(t, (N, T))]dt

s.t N>0,NEZandO<rTi,<ri+1<T, i{I1,N-11}

Substituting AY (t) = yl (t)- y2(t, (N r)) and h = pi produce the following expres-

sion:

T

Min N. F +h AY(t)dt

s.t N > 0, N E Z and 0 < _ri < i+ _ T, i e {1l, N-11}

U
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Proposition 9:

Under control policy (N, T), where N > 0, N E Z and r =- ( 1, r2,..., TN) such that

0 < ri < ri+ 1 < T, for i E 1, N- 1, if AY(t) = y(Q(t)) - y2(Q(t),N, ) is

real-valued continuous function on [0, T] such that dAY(t) > 0 and dY(t) < fordt dt 2

t E [0, T], then the objective function in (YCP/E) can be replaced by the following

expression, C(N, r):

N fTi+l
C(N, r) = N F + E, h [Y(t) - AY(,ri)ldt.

i-a Ti

Proof. Let Ai denote the increase in yield level in production line 2 after knowl-

edge transfer at time ri. At each knowledge transfer at time Ti, i e { 1, N }, the yield

function in production line 2 is shifted up by an amount 2(ri) - y(ri). Hence, we

have A1 = Y(rl)-y 2 (r1 ) and Ai = [Yl(Ti)-Y2(ri)]-[Yl(i-)-Y2(ri-1)], i E {2, ..., N}.

Defining k = max{j : rj < t},then the cumulative increase in yield level in produc-

tion line 2 by time t E [0, T] becomes Y~=4 Ai. Hence, the yield difference at time t

under control policy (N,r) can be represented by AY(t) = yl(t)- Y2(t) =1- Ai,

t E [0,T]. Then, for N > 0,N E Z and 0 T< < T 1< T, i E {11,N- 11}

fT N
h.- AY(t)dt = f h. AY(t)dt, To0 = 0 and TN+ = T,

i=O TiN k+l
= ij| h. [yl(t) - y2(t) - Ai]dt,

i=o1
N +

= | h. [(YI(t) - Y2(t)) - (Y(ri) - Y2(i))]dt,
i=o Ti

Replacing this new expression in the objective function of (YCP/E), the following

equivalent objective function, C(N, r) is obtained,

N ri+l

C(N, ) = N F + hE J [AY(t) - AY(rTi)]dt
i Ti
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Proposition 10:

Optimal number of knowledge-transfer events N > 0, N E Z in (YCP/E) is bounded

by the following expression:

N < Nmax = f h AY(t)dt
F

Proof. Let C(N = 0, r) represent the total cost of yield discrepancy when there is

no knowledge transfer between the two lines. And also, let C(N = oo, r) represent the

total cost of yield discrepancy when there is a continuous knowledge transfer between

the two lines over the period [0, T]. If N = 0, then C(N = , T) = foT h AY(t)dt.

If N = oc, then the yield level in production line 2 exactly follows the yield level

in production line 1. Hence no opportunity cost exists, C(N = oc, r) = 0. The

cost of maximum number of meetings achievable should be less than or equal to the

maximum benefit obtained by decreasing the total cost of yield discrepancy, - i.e.,

N F C(N = c, r)- C(N = 0, r). Hence, the following relation holds true,

:N < Nmax -- f h AY(t)dt
F

Proposition 11:

Suppose that:

i) y(t) = Yl(Q(t)) - y2 (Q(t)) is a piecewise-linear-concave function, that is

piecewise continuous and bounded over [0, T]; and

ii) {fl, f2, ... , f m } is the set of distinct components of y(t) such that

y(t) = max{fl, f 2,, f.,m} and < f < fi',i E [Il, N-1il].

If fl < 1/COS(Nm x1)2, then there exists a unique solution for (YCP/E).

Proof. Suppose that f < f- 1/cos(N( +l) 2 . Since N < Nmax, cos(N <) Nmax_]X ineN_ Nmax (m+l --

COS(N-) holds true, then f '< 'm 1/COS(Nmx+l) 2 o f _< f". 1/cos(Nm+l) 2.

Moreover, 0 < f+l < f, i E [, N- 1] f < y'(ri) f;, i E ll, Nl. Hence,
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f < f'-) --os( ) y'(ri-) < y'(i)' 1/cos( +l)2. Let H = (hij) denote the

Hessian matrix of the objective function in (YCP/E). The elements of the Hessian

matrix when y(t) is piecewise linear concave become as follows: hi, i = 2 y'(ri),

hi, i- = -y'(Ti-1), hi, i+1 = -y'(Ti), h, o = hN, N+1 = 0, i E [Il, NJ]. Hence, H is a

tridiagonal N x N real matrix with positive diagonal entries since y'(t) > 0, t E [0, T].

It is shown in Johnson and company in 1996 that hi, i-l hi-,, i < 1- hi, i h i-1-4
1/cos(-1 )2, i E [2, N] implies det(H) > 0 when H is a tridiagonal matrix with

positive diagonal entries. This condition is satisfied by the Hessian matrix H = (hij)

of the objective function in (YCP/E) and inherited by all the principal submatrices of

H. This implies that all principal minors of H are positive, hence the Hessian matrix

H is positive definite. Hence, the objective function in (YCP/E) is strictly jointly

convex in decision variables, {T1, Tr2 , ... , rN}. Hence, there exists a unique solution for

(YCP/E). 

Proposition 12

For s E Z+ U {0}, s2 E Z, the following inequality holds true,

P(B2(s2) > ) > P(Bl(s 2 + 1,81 - 1) > O)

Proof. Let us first consider P(B2(s2) > 0),

00

P(B2(s2) > 0) = 2 (D + D = s 2 + i)
i=1

= (D + DL = 2 + 1 + i) + P(DL + D = S2 + 1)
i=1

= P(B2 (s2 + 1) > O) + P(DL + DL = S2 + 1)

Let us now consider P(Bl (s2 + 1, - 1) > 0),

P(Bl(S2 + 1, S-1) > 0) = P(B2 ,1(s2 + 1) > S -1)
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By definition, for i E Z + U {O}, P(B 2 (s 2 + 1) = i) > P(B 2,1(s2 + 1) = i) holds true.

This implies P(B 2 (s 2 + 1) > 0) > P(B 2,1(s2 + 1) > sl - 1), for any Sl E Z+, s2 E Z.

Hence, the following desired result P(B2 (s2 + 1) > 0) + P(Di + D = 2 + 1) >

P(B 2 ,1(s2 + 1) > s1) holds true. 

Proposition 13

If Sj (s2) E Z + denotes the optimal stockage level at installation 1 for a given 52 Z

stockage level at installation 2, then the following holds true

-S(S2 + 1) e {1l(s2) - 1,1(s2)}

Proof. Suppose that (s2) denotes the optimal stockage level at installation

for a given stockage level at installation 2, 2. Hence, S1(S2) satisfies the following

S (S2) = min{s[s82 P(IL(s 2, sI) > 0) > _1}, which implies that P(IL(s 2, S1(s 2)) >

0) > #1. Increasing stockage level at installation 2 increases the fill-rate at installation

1, hence, P(ILl(s 2 ,sl(s 2 )) > O) < P(ILl(s 2 + 1, ?1(s2)) > 0), which implies that

s1 (2 + 1) _ F1 (s2). Suppose now that 1 (2 + 1) + 1 < 1 (s2) holds true. This implies

that P(ILl(s2, Sl(s2 + 1) + 1) > 0) < l. However, P(ILl(s2 + 1, 1s(s2 + 1)) > 0) >

/1 holds true. Furthermore, moving one unit from installation 2 to installation 1

results in a fill-rate at installation 1 that is at least as large as before the move, i.e,

P(IL1 (S2, SI (s2 + 1) + 1) > 0) > P(IL(s 2 + 1, (s2 + 1)) > 0) > /1. This implies

that P(ILl(s 2 , 'S(s2 + 1) + 1) > 0) > 1 . This result is a contradiction. Hence,

S1(S2 + 1) + 1 1(s2) holds true. Since we showed that S1(S2 + 1) < s1(s2) and

s1(s2+1)+1 > si(s2), these results together imply that s(s2+1) E {(I(s2)-1 1S(s2)}.

Proposition 14

If the solution for Single-Pass-Algorithm is increased by one unit at some installation

i E [, NI], i.e, si - s'i + 1, then the solution for Single-Pass-Algorithm for all

downstream installations changes at most one installation.

117



Proof. Let = {j j E [, Nl]} be the solution for Single-Pass-Algorithm.

Let the stockage level at some installation i E [, NJ] be increased by one unit so

that the new stockage level at installation i becomes s- + 1. The fill-rate at any

upstream installation j E [i + 1, NJ] does not depend on stockage level at installation

i, hence, the solution for Single-Pass-Algorithm for these upstream installations does

not change.

Let us first consider the change in stockage level at installation i- 1 and let us

show that the change is at most one unit. To achieve this, let the new stockage level

at installation i- 1 be s_. Increasing the stockage level at installation i improves

the fill-rate at installation i- 1, hence, si- < i-1 holds true. Suppose now that

$i-_ < i-1 - 1. This implies that P(ILi-( N,SN- 1, ., Si, si-_ + 1) > 0) < i-.

Also, it holds true that P(ILi_-( NS.N_,. . , Si + 1, ii-1) > 0) > i-1. Moving one

unit from installation i to installation i- 1 improves fill-rate at installation i- 1.

Hence, P(ILi_1(N,N_1,* *,Si ,Si-I + 1) > 0) > i-, holds true. This results in

contradiction, hence, si- > si- - 1. Together with the previous result, it holds true

that i-1 E {si-1- 1, si-1}. This implies that at most one change occurs at the most

immediate downstream installation.

Let us now suppose that there is at most one change in downstream installations

i-1, i-2, ... ,i-k, for some k E [, i-2]. This implies that either (Si-, Si-2, -, i-k)

or (i-1, si-2, ... , Si-_p- 1, .. , si-k) for some p < k holds true. Let us treat these two

cases separately.

First, let the new stockage levels at installations i- 1,..., i- k be (Si, si-2, 

·, si-k). Represent the new stockage level at installation i- (k + 1) with i-(k+l)

Increasing the stockage level at installation i improves the fill-rate at installation i-

(k+1), hence, Si-(k+l) < i-(k+1) holds true. Suppose that Si-(k+l) < Si-(k+l)-l. This

implies that P(ILi(k+l)(N, SN-1 , ', Si i-1,' '*, Si-k, Si-(k+l) + 1) > ) < i-(k+l)

It also holds true that P(ILi-(k+1)(9N, SN-1 ., Si' + 1, Si_-1 , Sk, Si-(k+l)) > O) >

!5 i-(k+l). Moving one unit of stock from installation ito installation i-(k+ 1) improves

the fill-rate at installation i - (k + 1). Hence, P(ILi(+)(9N,sNj1, . Si,'i-l,. 

·, S_, Si-(k+l) + 1) > ) > i-(k+1) holds true. This results in contradiction. Hence,
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Si-(k+l) S(k+l)- 1 holds true. si-(k+l) < Si-(k+l) and i-(k+1) > Si-(k+1)- 1

together imply that i-(k+) E { -(k+l)- 1, Si-(k+1)}. This implies that there is at

most one change in downstream installations i- 1, i- 2, -.. , i-k, i- (k + 1).

Second, let the new stockage levels at installations i - 1,..., i - k be (i_, si-2, * 

*, si-p- 1,..., Si-k) for some p < k. Increasing the stockage level at installation i

improves the fill-rate at installation i- (k + 1), hence, Si-(k+l) < Si-(k+l) holds true.

Suppose that si-(k+l) < Si-(k+l) holds true. This implies that P(ILi-(k+l)(SN, SN-1,

, Si, S-I, ' , Si-k, Si-(k+1)) > 0) < /pi-(k+l). - It also holds true that P(ILi-(k+)(SN, sN-,

· + * S-, sj + 1, s-l,, Si-k, Si-(k+l)) > 0) > /Pi-(k+l)- Since p < i, moving one

unit of stock from installation i to installation i - p improves the fill-rate at installa-

tion i- (k + 1). Hence, P(ILi_(k+l)(SN, SN-1, ', Si, Si-l, " ', Si-p, ", Si-k, Si-(k+l)) >

0) > /i-(k+l). This results in a contradiction. Hence, Si-(k+l) > Si-(k+l) holds

true. Si-(k+l) Si-(k+l) and Si-(k+l) > S-(k+l) together imply that i-(k+l) =

Si_(k+l). This implies that there is at most one change in downstream installations

i- 1, i- 2,. ., i- k, i - (k + 1). This completes the induction argument. Hence, if

the solution for Single-Pass-Algorithm is increased by one unit at some installation

i [1, NJl, the solution for Single-Pass-Algorithm for all downstream installations

changes at most one installation. 

Proposition 15

For a problem with three demand classes, the decrease in total expected backorders

through adding one unit of stock at installation 3 is less than or equal to one unit.

Proof. Suppose that stockage level at installation 3 is increased by one unit so

that the new set of stockage levels becomes (3 + 1, S2, Si). The decrease in expected

backorders that belong to installation 3 simply becomes A3,3 (53) = P(B3 (s3) > O)

The decrease in expected backorders that belong to installation 2 becomes A2 ,2 (s3 ) =

2 ·[E[B2(s3, s2)]- E[B2 (s3 + 1, S2 )]]. It is easy to show that E[B2(s3 , s 2)]-Al +A2''
E[B 2(s3 + 1, 2)] < E[B 2 (s3 , 0)] - E[B2(s3 + 1, 0)]. Moreover, it holds true that

E[B2(s3, 0)] = E[B3 ,2(s3 )] and E[B2 (s3 + 1, 0)] = E[B3 ,2(s3 + 1)]. This implies that
A/2,2 (s3 ) < . [E[B3(s3) - E[B3(s3 + 1)]] - . P(B3(s3 ) > 0). The decrease in
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expected backorders at installation 1 becomes Al (3) = E[B1 (s3, s2, Sl)]- E[B1 (s3 +

1, s2, Sl)]. Moreover, it is easy to show that E[Bl(s 3 , s2, Sl)]- E[B(s 3 + 1, s2, sl)] <

E[B(s 3 , s 2, 0)] - E[Bl(s 3 + 1, s2,0)]. Since E[Bl(s 3, s 2, 0)] = E[B 2,1(s3 , s 2)] and

E[B(s 3 + 1, s2,0)] = E[B2, 1(s3 + 1, s2)] hold true, we can write E[Bl(s 3, s 2, sl)] -

E[BI(3 + 1, 2, )] < E[B2,(S3,S2)] -E[B 2,(S3 + 1, 2)] = · - [E[B2(S 3 , 2 )]-' -- ~~~~~~~~~~~~~~~Al +A2

E[B2(s3 + 1, 2)]]. Furthermore, it also holds true that E[B 2(s3, 2)]- E[B2 (s 3 +

1, s2)] < E[B 2(s3 , 0)]-E[B 2 (s3 +1, 0)]. And, E[B2 (s83, 0)] = E[B3,2 (s3 )] and E[B 2 (s3 +

1,0)] = E[B3 ,2 (s3 + 1)] hold true. Replacing these expressions into the earlier in-

equality results in A1 (s3 ) = E[B1 (s3, s2, sl)] - E[Bl(s 3 + 1, s2, Sl)] < -. [E[B3 (s3 )] -

E[B 3 (s3 + 1)]]. Combining all the above derived expressions for the decrease in ex-

pected backorders implies that A3 ,3 (S3 ) + A 2,2 (s83 ) + Al(s3) < [E[B3(s3 )] - E[B3 (s3 +

1)]] = P(B 3 (s3 ) > 0). Since P(B3(s3 ) > 0) < 1, this implies that the total decrease

in expected backorders when one unit of stock is added at installation 3 is less than

or equal to one unit. 

Proposition 16

For a problem with three demand classes, the decrease in total expected backorders

through adding one unit of stock at installation 2 is less than or equal to one unit.

Proof. Suppose that stockage level at installation 2 is increased by one unit so

that the new set of stockage levels becomes (S3, S2 + 1, Si). This increase in stockage

level does not affect the expected backorders at the upstream installation 3, however,

it decreases the expected backorders that belong to installation 2 and 1. The decrease

in expected backorders at installation 2 becomes E[B2,2 (s3, s2)]- E[B2,2 (s3 , s2 + 1)] =

A2 ·[E[B2 (S3, 82)]- E[B 2 (s3 , S2 + 1)]]- The decrease in expected backorders at
Al +A2

installation 1, on the other hand, becomes E[Bl(s 3, 2, sl)]- E[Bl( 3 , S2 + 1, sl)].

It is easy to show that E[B(s 3, s2, sl)] - E[Bl(s3 , 2 + 1, sl)] < E[B1(s3, 2,0)] -

E[B 1 ( 8 3 , 82 + 1,0)] (i). Since E[Bl(s 3 , 2, 0)] = E[B2,1(s3 , 82)] and E[B 1 (s3 , 2 +

1,0)] = E[B2,1(s3, s2 + 1)], it holds true that E[Bl(s 3,s 2, sl)]-E[B 1 (s3 , s2 + 1, sl)] <

:\ ·[E[B2 (s 3 , s2)]- E[B 2 (s3 , S2 + 1)]] (ii). Combining the two inequalities in (i) and

(ii) implies that total decrease in expected backorders is simply less than or equal to
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E[B 2 (s3 , s2)] - E[B 2 (s3, s2 + 1)]], which is equivalent to P(B3, 2(s3) > s2). Hence, the

total decrease in expected backorders when one unit of stock is added at installation

2 is less than or equal to one unit. *

Proposition 17

For a problem with three demand classes, the decrease in total expected backorders

through adding one unit of stock at installation 1 is less than or equal to one unit.

Proof. Suppose that stockage level at installation 1 is increased by one unit so

that the new set of stockage levels becomes (S3, S2, Si + 1). This increase in stockage

level does not affect the expected backorders at the upstream installation 3 and 2.

And, it only decreases the expected backorders at installation 1. The decrease in

expected backorders at installation 1 becomes E[B1 (s3, s2, s)] - E[B1 (S3, S2, Si +

1)] = P(B 2,1 (s3 , s2) > s5). This simply implies that increasing the stockage level at

installation 1 by one unit decreases the expected backorders at installation 1 at most

by one unit. 

Proposition 18

For a given set of stockage levels 3 E Z, S2 and sl E Z + U {O},

i) TC(s 3 , S2 + 1, S1 - 1) < TC(83, s2, 1)

ii) TC(s3 + 1,82 - 1, S1) < TC(s3, s 2, SI)

Proof. We begin with showing the first inequality. Consider total expected on-

hand inventory level function TC(s 3 , s2, si) for a set of stockage levels {s83, S2, S1},

which can be written in the following form: TC(s 3, s2, Sl) = S3 + s2 + s - E[DL] +

E[B3,3(s3)] + E[B2 ,2(s 3, s2)] + E[B1 (s3, S2, Si)]. Now, consider stockage levels {S3, S2 +

1, s1-1}, which results in TC(s 3, s2 + 1, s1 -1) = s3+ s2 + sl-E[DL] + E[B3,3 (s3)] +

E[B2,2(s 3,s 2 + 1)] + E[B(s 3 ,s 2 + 1, - 1)]. Moreover, we can also write down
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E[B 2,2 (s3 , 82 + 1)] and E[Bi(s 3 , 82 + 1,81 - 1)] in the following forms:

A2
E[B2,2(S3, 82 + 1)] = E[B2 ,2 (s3, 82)] - + A. P(B2 (s3 , 82) > 0)

.E[B (83, 82 + 1,81 - 1)] = E[B ( 3 , s2, s81)] + A 2 P(Bl (S3 2 + 1,81- 1) > O)Al + A2 P((s,2+,1 )>0

Replacing these above expressions in TC(s 3 , 2 + 1, S1 - 1) simply yields TC(s 3 , 2 +

1, s - 1) =TC(s 3,s 2, s) - -2 [P(B2(s3 , 2) > O) - P(B (3, 82 + 1, s 1 - 1) > 0)]

Moreover, it holds true that P(B 2 (s83 , 2) > )-P(Bl(s 3, 82+1, s1-1) > 0) > 0, which

implies that TC(s 3 , s2 + 1, s - 1) > TC(s 3 , s2, si). To show the second inequality,

consider stockage levels {3 + 1, 82 - 1, 81}, which results in TC(s3 + 1, 82 - 1, s1) =

s83+82+ -E[L)L] +E[B3, 3 (s3 + 1)] +E[B2, 2 (s3 + 1, 2 -1)] +E[BI (s3 + 1, 2-1, 81)].

Ve can write dowvn E[B3 ,3(s3 + 1)], E[B 2,2(s3 + 1, s2 -1)], and E[B 1(s3 + 1, s2 -1, s1)]

in the following forms:

A3E[B 3,3 (S3 + 1)] E[B3,3 (s3 )] - A1 + A2 + A3 P(B 3 (S3 ) > 0)

A 3 A2E[B2 ,2 (S3 + 1, - 1)] = E[B2 ,2 (s3 , 82)] + 1 + A2 + A3 A1 A2Al1 q- )2 q- )3 Al1 - ),2
P(B2 (s3 + 1, 2-1) > 0)

A,1 A3E[B (s3 -+ 1, s2 -1, S)] = E[Bi(s3 , 82, Si)] + A + A 1 + A2 + 3
Al+A)2 ,+A)2 +)A3

P(BI(s + 1, s 2 -1, 1) > 0)

Replacing the previous expressions in TC(s 3 + 1, s2 - 1, Si) results in

TC(s3 + 1, s2 - 1, s) = TC(s 3 , S2, 81S) - + A 3 [P(B3 (s3) > A) - 1 \ 2Al + A2 ± A3 [((s)>)-Al + A2

P(B2 (s3 + 1, 2 - 1) > 0)- A1 + P(Bi (s3 + 1,82 - 1, s)

>0)]
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where P(B3(s3 ) > O) > P(B2(s3 + 1,s 2 -1) > ) > P(Bi(s 3 + 1,s 2 - 1,s81) > 0),

which implies that TC(s 3 + 1, s2 - 1, s) < TC( 3 , s2 , s1). 
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Appendix B

Comparing with Threshold Clearing

Mechanism

We next compare our serial inventory mapping to the model developed by Desh-

pande et. al (2003) for two demand classes; high-priority and low-priority demand

classes. Furthermore, we show that our model with two demand classes produces the

same performance measures in distribution as in Deshpande et. al (2003), hence, the

same inventory costs.

Deshpande et. al (2003) develop an inventory rationing mechanism that combines

the well known critical level policy with a Threshold Clearing mechanism to clear

backorders upon arrival of replenishment orders. The main assumptions in their

model are: there are two demand classes; class 1 (high priority demand class) and

class 2 (low priority demand class); each demand class has an independent Poisson

process; there is a positive fixed replenishment leadtime; and inventory is replenished

with a continuous-review (Q,R) policy with rationing. Some important properties of

continuous review (Q, R) policy with rationing level K are as follows:

Inventory position is continuously observed and a replenishment order of size Q

is placed whenever inventory position drops to or below level R. When on-hand

inventory level drops to the level K, class 2 demands ( low priority) begin to backlog.

When on-hand inventory level drops to zero, class demands (high priority) also

begin to backlog. When an inventory replenishment order Q arrives, inventory level
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is raised up if there are no backorders. If, however, there are backorders upon arrival of

a replenishment order, then incoming replenishment order must be rationed between

backorders from class 1 and class 2 according to a chosen backlog clearing policy.

Hence, a continuous-review (Q, R) policy with rationing in a backlog environment

needs to have a pre-specified backlog clearing policy to handle incoming replenishment

orders.

Deshpande et. al (2003) develop their Threshold Clearing mechanism to handle

incoming replenishment orders for an inventory rationing model with two demand

classes. Before we describe this clearing mechanism in detail, we provide the following

notation:

T = replenishment leadtime

K = inventory rationing level

OH(t) = on-hand inventory level at time t

IP(t) = inventory position at time t

D (t, t + r) = demand from class 1 during time interval (t, t + r]

D2(t, t + r) = demand from class 2 during time interval (t, t + r]

D(t,t+T) = Di (t, t +) + D2 (t, t +r)

BO1 (t) = class backorders at time t

BO 2(t) = class 2 backorders at time t

tK = the time of the IP(t) - Kth demand arrival in the interval (t, t + r]

For a given value y of the inventory position at time t, IP(t), the following equa-

tions represent the dynamics of the random variables for on-hand inventory, class 1

backorders, and class 2 backorders, as stated in Deshpande et. al (2003):

OH(t +T) = y - D(t, t +T) if D(t, t +r)< y -K,

OH(t + ) = [K-Dl(tK, t + )]+ if D(t, t + r) > y -K,
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BO,(t + -r) = [Dl(tK, t + ) - K]+

BO2(t + r) = D2(tK, t + T)

In steady state the above set of equations can be represented as follows, where

the inventory position IP has value of y and we use the following representation

for the random variables in steady-state: OH(t + r) ~ OH, BO (t + r) BO,

Bo2(t + ) Bo2, D(t, t+ ) D Di(tK, t + ) D, D2(tK, t + f) D2:

OH=y-D
OH=[K-D1]+

if D < y-K,

if DT > y- K,

B01 = [D1 - K]+

B02 = D2

Using the above inventory dynamics in steady-state, the distribution of backorders

for class 1 and class 2 can be easily derived under Threshold Clearing mechanism.

The details are as follows, where IP refers to random variable for inventory position

in steady-state:

P(BO2 = i) =P(D2 = i)

1 R+Q=-. 
Q y=R+l

K-1
1 E

Q y=R+l

I K-1

1 Q y=MaR+lR-1
Qy-Maxi

P(D2 = ilIP = y)

P(D2 = iIP =
R+Q

y=Maz(KR+l)y=Max(K,R+l)
P(D2 = iIP = y)

P(D2 = iIP = y)+

+Q oo

-J1 Z P(D2 = zIP = y, DT = ) P(D = X)
(K,R+1) x=i+y-K
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BO (t + r) = [D1 (tK, t +r) -K] +

BO2(t + r) = D2(tK, t + )

In steady state the above set of equations can be represented as follows, where

the inventory position IP has value of y and we use the following representation

for the random variables in steady-state: OH(t + r) ~ OH, BO1 (t + Tr) BO1,

BO02(t + T) BO02, D(t, t + T) DT, D1(tK, t + T) - D1, D2(tK, t + T) D2:

OH=y-DT

OH = [K- D] +

if D < y- K,

if DT > y- K,

BO1 = [D1 -K] +

B02 = D2

Using the above inventory dynamics in steady-state, the distribution of backorders

for class 1 and class 2 can be easily derived under Threshold Clearing mechanism.

The details are as follows, where IP refers to random variable for inventory position

in steady-state:

P(B0 2 = i) =P(D2 = i)

1 R+Q
=- -* P(D2

y=R+l

K-1
=Q E P(D2

y=R+l1

K-1
=1. E P(D2

y=R+l

R+Q
1. M

Q y=Max(K,R+l

= ilIP = y)

R+Q=i[IP=y)+ . E
y=Max(K,R+l)

P(D2 = iIP = y)

= ilIP = y)+

o0

E P(D = |P = y, DT = X) P(D = X)
) x=i+y-K
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1 E E K-y ( A2 )i-n ( A1 K-y-(i-n).
=Q E i-n AlA A+A2--qY=R+l n=O 'i-n + ;

+n *(* R+Q 00 (x-(y-K))
y=Max(K,R+l) x=i+y-K

( . 2 Ai 2) x - (y - K ) - i P(Dr = x)
l+ \2 A1 + \2

When there are only two demand classes, the distribution of class 2 backorders

in our model becomes as follows, where we note that class 2 backorders refer to

backorders at installation 2 that are created by the exogenous demand at installation

2 in the equivalent serial inventory system:

s2+Q 00

By-s2= i) = Z + .( 2)(A +A )j - '.P(DL = j+y), for all i E Z+
Q Y_2_ _~ \/Al + -\ 2 Al + A2

We show that the expression for P(B0 2 = i) is equivalent to the expression for

P(B2,2 = i) for all i E Z + U {O}. The details of this equivalency is provided in Section

B.1. Similarly, P(BO 1 = i) and P(B1,l = i) have the following expressions, where by

the same token an equivalency can be built between them.

P(BO1 = i) =P(

1

Q

1

Q

1

Q

[D -K] + = i)
R+Q

* 2 P(D = lIP = y)
y=R+l

R+Q oo

* E E P(D1=iIP = y, DL=x).P(DL=x)
y=R+l x=y+i

R+Q E (x-(y-/K) +A
· E E Kx-(y- (1 i .)K+i. ( +A2 )x-yiP(DL=X)
y=R+l x=y+i 

1 82+Q oo
P(Blyl = i) = ls E E

y=s2+1 =s1+i

A )s_+i _ A2(1 i) ( \2 A1 + A_______2)j-(s1+i)P(D = j+y)

We show in Section B.2 that the expression for P(BO 1 = i) is equivalent to the

expression for P(Bl,j = i) for all i E Z+ U {O} under the following mapping: s = K
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and 2 = R- K. Next, we show that distribution of on-hand inventory level under

Threshold Clearing mechanism is equivalent to that in our model. The following

probability for on-hand inventory level holds true for Threshold Clearing mechanism:

1 r+Q

P(OH = i) = S P(OH = iIP = y)
y=r+l

r+Q
| F P(D = - i), if i [K, y],
Q y=r+l

1 r+Q (x-(y-K))(A1 )K-i(A2 )--xY+iP(D = x),if i E (0, K)z~~~~~~~~~~~~~
y=r+l =y-i
r+Q 00 x-y+K
r+ Z Zxy (x-(y-K))(Al ) (A 2)x-y+K-zp(Dr = x), ifi = 0,E E E ( z 1\1 k+lqA2 ! I\1 Al-2 1 a ,J

y=r+l x=y z=K

Similarly, distribution of on-hand inventory level in our model can be derived eas-

ily. Furthermore, we show that on hand inventory levels are the same in distribution

for both models with only two demand classes. The details of this result is given in

Section B.3. Since our model with two demand classes yields inventory levels that

are the same in distribution as the one in Desphande et. al (2003), our model with

only two demand classes results in the same performance measures and the same

inventory costs as the ones in Deshpande et. al (2003). In addition to achieving the

same performance with the most recent study in literature, our model, furthermore,

provides a more transparent analysis and can handle any number of demand classes

with an easy extension to multi-echelon setting, which are the main advantages of

our model over the existing studies in inventory management literature.

B.1 Distributions of Backorders for Class 2

We first replace s = K and s2 = R- K in the expression for P(B 2, 2 = i). This

results in the following expression:

P(B2,2 = i) = . E E (i) -j( P(DL +Y)1 R-K+ jA2 A ) A· P(DL = j + 
y=R-K+i j=i
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R-K+Q
We change the limits of summation so that E P(DL = j + y) is equivalent to

y=R-K+1
R+Q
E P(DL j + y - K). We replace this equivalent expression back in P(B2 ,2 i),

y=R+l1
which becomes:

R+Q oo

P(B2,2 -- i) '- ~ . i A 2 A 2 P(B21- - )j P(DL j y K)Qy=R+l j=i \ 2 A+ 2

The first summation in the above expression is from y = R + 1 to y = R + Q. We

can divide this summation into two parts with a variable K E [0, R + Q]. The first

part is the summation of the same expression from y = R + 1 to y = K - 1. And,

the second part is the summation of the same expression from y = Max(K, R + 1) to

y = R + Q as depicted below:

1 K-1 o o/ A

P(B2,2=i)=. E ( (A +A)---(A AA )J-i' P(DL j + y - K)+
y=R+l j=i YiyAl+A 2 A ( iY

K-1 co AE E (j 2)i .( Al)j-i .P(DL =j + y- K)
Qy=Max(K,R+l) j=i Al+2 Al 2

We introduce a new variable x and replace x = j + y - K in the second summation

expression in P(B 2,2 = i), which yields the following expression:

K-1 oA j 
P(B2 ,2 =i)=. Z () (A+A) (Al+A)3.P(DL j+y-K)+

y=R+l j=i
K-1 1 x - (y-K) (A2 )i.

Q y=Max(K,R+l) x=i+y-K + 2

A1 )2-(y-K)-i * P(DL = X)
A1 + 2

Similarly, we introduce a new variable n and replace n = j - i in the first sum-
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mation expression in P(B 2,2 = i), which yields the following:

P(B2 ,2 = i)
K-1 , n+ O

Q y=R+l n=O i \1 + 2
.(A 1 )nP(DL=n

' + 2
+i+y-K)

-K))K-1 oo

+ 1 E E i
Q y=Max(K,R+l) x=i+y-K

A1 )x-(y-K)-i .P(DL = X)
Al+ 2

We can replace (n+i) (Al )nP(DL= n + i + y- K) with (1A2)i-(K - y).
n=O +A 2

e-(Al +A2)L.

00

equality E
n=0

into P(B 2,2

( n+i) . (l-L)n+i-(-y)E i J (n+i-(K-y))! '
n=O

(n+i) (l .L)n+i-(K-y) i
D i (n+i-(K-y))! =On=0

Moreover, for K > y, we have the following

(-y) (lL)n e l' L . Replacing this last equality-n n!

= i) provides us with the following:

, (K - y)
Ln=O i- nJ

.( A2 )i

A + 2

(A1 + A2 )i-(K-Y). e-(A1+A2)-L.

1
(A1 L) n . eAl.L 1

. + '
n!Q

K-1 oo

E X
y=Max(K,R+l) x=i+y-K

- (y
i
-K)) . ( A2 )i.

A +A2

)x-(y-K)-i P(DL = x)
l + 2 f 

Further simplification of the first summation part in the above expression results

in:

K-1 i K
* y= i-
y=R+l n=O

K-1
1 

-Z 2 ) iA2
-nyJ) 1>

1l )(K-y)-i e-A2L . (A1. L)
A 1 + A2 n!

+

y-=Max(K,R+l)

00i -

E x
x=i+y-K

- (y
i

-K)) ( A2 i

A1 )x-(-K)-i . p(DL = X)

A + 2

Moreover, we have the following equality (A 2 )i (AAl)(K-y)-i e-L (ALn =

( A2 )in.(_ AAl)(Ky)_i+n.(_2)n e A2 L- (AL)n which further simplifies to (A A2A )in.
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'(;a)"A

P(B2,2 = i)

K-1

,. E
y=R+l

1

Q

P(B2,2 = i)
_ 1
Q



(A )(K-y)-i4-n. (A2 L)n.e-X2'L
(A 1 +4 A2 .- Replacing this last equality into P(B 2, 2 =

following:

P(B2 ,2 = i)
K-1

- '. * 

Q y=R+l
i

n=O

K - y A2

i-n J 1 -+)2
K-1 oo

1

y=MQ(KR) =i+y-Ky= Max( K,R+ l) x=i+y- K

i) yields the

)i-n( A 1 )(K-y)-i+n (2L) n - A2L
A1 + 2 n!

X - (y
i

- K)) A2 )i

A + 2
( A1 )X-(y-K)-i

P(DL = x)

This shows that P(B 2,2 = i) = P(B0 2 = i) for all i E Z + U {0}. Hence, steady-
state distribution of class 2 backorders are the same for the random clearing mech-
anism we developed and the threshold clearing mechanism developed by Desphande
et al. (2003) if we use the following mapping, s = K and s2 = R - K.

IB.2 Distributions of Backorders for Class 1

We replace s = K and s2 = R - K in the previous expression for P(B1,1
T[?his results in the following expression:

= i).

p (B,1 = i) =-
1 R-K+Q

y=R-K+
Q y=R-K+1

00j=Ki

L jK+i K
1 i) A1 A 2-( K+i A2 )j-(K+i)p(DL = j+y)

)i A1+2 A A2

We change the limits of summation so that

R+Q

z
y:= R+l

becom

R-K+Q

zE
y=R-K+1

P(DL = j + y) is equivalent to

P(DL = j + y - K). We replace this expression back in P(B1,1
.es:

= i), which

1 R+Q oo

P(B1,1 =i) =- R j=K+iQy=R+l j=K+i

i
K+i

(>1 )K+i
A1 +A 2

A2 )i-(K+i)

+ A2

P(DL = + y-K)

We introduce a new variable x and replace x = j + y- K in P(B2 ,2 = i), which
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yields the following expression:

P(Bi = i) = ( - (y -K i ' A2 )X-Y-i.P(DL = X)
Q Z=R~l x~i\y K+/ Al ±A 2 A1 + A2

This shows that P(B1,1 = i) = P(B0 1 = i) for all i e Z + U {O}. Hence, steady-

state distribution of class 1 backorders are the same for random clearing mechanism

and Threshold clearing mechanism if we use the following mapping, s = K and

s2 = R - K.

B.3 Distributions of On-hand Inventory Level

To derive the distributions of on-hand inventory level, we need to consider two

cases that are feasible, where IL+ denotes the on-hand inventory level in steady-state:

(IL + > 0, IL + = s$) and (IL + = 0,0 < IL + < s). We first consider the region in

which i > sl. If IL ++ IL + = i > sl, then we can conclude that IL + = i- s1. Hence,

1 s2+Q

P(IL + + IL+ = i) = P(IL+ = i- si) = Z P(DL = y-i + sl), for i > s
y=s2+1

Next, we consider the case in which i < s. If IL + + IL + = i < s, then we can

conclude that IL + = i < s. Hence,

S2+Q

P(IL~+PILB+ = ) = i E P(IL+ =ilIP y)
y=S2+1

s82+Q

E P(B2,1 = s- i), for i (0, s),
y=s2+1
S2+Q c0

IQ Z' P(B2,1=n), fori= 0,
y=s 2+1 n=s1

s2 +Q oo

J Q1 8 E li (Sl)AlA 2)S i(A A2 )j- +iP(D j +)iQ .~ 1- A1 =i ±y)y=s2+1 j=sl-Z
i2 s+Q oo 00i Q E E E ()( A (1"2-)jnp(DL =j+ Y)

y=s2+1 n=sl j=n
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We would like to show that the expression for P(IL + + IL + = i) is equivalent

to the expression for P(OH = i) for all i E Z+ U {O}. We first replace si = K and

2 = R- K in the previous expressions for P(IL + + IL + = i). This results in the

following expressions:

R-K+¢
1, .
Q Ey=R-K-

P(IL+ + IL+

P(IL++IL + = i) =

1 R-K+Q

-i) = -Q E P(DL'-y-i+K),
y=R-K+1

Q oo? 00

+1 j=K-i (2

P(DL = j + y), for i E (0, K),
R-K+Q oo ooR. E E ( )n

y=R-K+i n=K j=n

fori > K

C-i. (A2 j-K+i .\1P +A2 D

. ( A2 )j-n P(DL = j + )
Al+1\21

for i = O,

P(DL = y - i + K) is equivalent to
R+Q

E
y=R+l

R-K+Q R+Q
E P(DL=j + y) is equivalent to E P(DL = j + y

y=R-K+1 y=R+l
in expressions for P(IL + + IL + = i) results in the following:

R+Q
P(IL + IL+ = i) = -. E P(DL = y - ),

y=R+l

P(IL++IL+ = i) =

P(DL = y - i). And,
1

- K). Replacing these

for i > K

R+Q oo. E E (_ j ( A K-i. 2 -K+i.
y--R+1 j-=K-iK- A2 ) \ +A2

P(DL = j + y -K), for i (0, K),
R+Q j oo

. E E (. ( Al )
y=R' F, l n Al+2y=R+l nK j=n

2 )j- * p(DL .(Al+~)J\. j + y-K),

for i = 0,

Furthermore, we introduce a new variable x such that x = j + y - K. Replacing

x into above expression for P(IL + + IL + = i) yields the following:

1 R+Q

P(IL+ + IL+ = ) : . P(D = y -i),
y=R+l

for i> K
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y=R-K+1
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P(IL++IL+ = i) =

R+Q * -xz ' . (K-i 1+A2 (1 +Ž2.)x-+) L = )
y=R+l x=y-i

for i E (0, K),

R+Q x-y+K oo (-K)) ( )n . ( A2 )j-nZ ~ ~ ((-) ' E xE F, _3.z -P(DL X)
y=R+l n=K j=nL A

for i = 0,

This shows that P(IL+ + IL + = i) = P(OH = i) for all i E Z+ U {0}. Hence,

steady-state distribution of on-hand inventory level is the same for the random clear-

ing mechanism that we developed and the threshold clearing mechanism developed

by Deshpande et al. (2003) if we use the following mapping, s = K and s2 = R- K.
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