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Abstract

We propose a robust optimization approach to analyzing three distinct classes of problems
related to the notion of equilibrium: the nominal variational inequality (VI) problem over a
polyhedron, the finite game under payoff uncertainty, and the network design problem under
demand uncertainty.

In the first part of the thesis, we demonstrate that the nominal VI problem is in fact a
special instance of a robust constraint. Using this insight and duality-based proof techniques
from robust optimization, we reformulate the VI problem over a polyhedron as a single-
level (and many-times continuously differentiable) optimization problem. This reformulation
applies even if the associated cost function has an asymmetric Jacobian matrix. We give
sufficient conditions for the convexity of this reformulation and thereby identify a class of
VIs, of which monotone affine (and possibly asymmetric) VIs are a special case, which may
be solved using widely-available and commercial-grade convex optimization software.

In the second part of the thesis, we propose a distribution-free model of incomplete-
information games, in which the players use a robust optimization approach to contend
with payoff uncertainty. Our "robust game" model relaxes the assumptions of Harsanyi's
Bayesian game model, and provides an alternative, distribution-free equilibrium concept, for
which, in contrast to ex post equilibria, existence is guaranteed. We show that computa-
tion of "robust-optimization equilibria" is analogous to that of Nash equilibria of complete-
information games. Our results cover incomplete-information games either involving or not
involving private information.

In the third part of the thesis, we consider uncertainty on the part of a mechanism
designer. Specifically, we present a novel, robust optimization model of the network design
problem (NDP) under demand uncertainty and congestion effects, and under either system-
optimal or user-optimal routing. We propose a corresponding branch and bound algorithm
which comprises the first constructive use of the price of anarchy concept. In addition,
we characterize conditions under which the robust NDP reduces to a less computationally
demanding problem, either a nominal counterpart or a single-level quadratic optimization
problem. Finally, we present a novel traffic "paradox," illustrating counterintuitive behavior
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of changes in cost relative to changes in demand.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research
Sloan School of Management
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Chapter 1

Introduction

1.1 Dealing with Data Uncertainty in Optimization

Traditionally, the field of optimization has considered problems with known and deterministic

objective value and constraint data. Research has focused on classifying problem complexity

and determining exact algorithms (for polynomially solvable problems) or approximation

algorithms and heuristics (for NP-hard problems). In practical applications, a decision

maker must often commit to a course of action in the face of either constraint or objective

data uncertainty.

One crude approach to dealing with such uncertainty is to ignore it and to simply fix

problem data at "nominal" values suspected to be "representative." Of course, if the realized

data do not match those used in the model, the model's optimal solution may, in practice,

be infeasible or drastically sub-optimal, depending on the nature of the uncertainty. An

alternative approach is to fix the unpredictable values in the model and then apply sensitivity

analysis. Unfortunately, this method addresses only data perturbations that are infinitesimal

or sufficiently small.

In contrast, stochastic programming incorporates data uncertainty directly into the model.

This approach assumes that the decision maker knows, a priori, a set of possibly realizable

scenarios (i.e., values of the data) and the full distribution giving the likelihood of realization
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of each. It then suggests a solution which produces the lowest average cost, where the aver-

age is taken over the aforementioned distribution. More advanced stochastic programming

methods may factor risk into the objective rather than considering only expectations.

Nevertheless, stochastic programming has several drawbacks. First, the truly risk-averse

decision maker may desire a guaranteed bound on the cost and may find such a guarantee

more attractive than a good average cost. Second, when the data distribution is sufficiently

complex, stochastic programming methods fall victim to the "curse of dimensionality." An

exact model may be computationally intractable and may even remain intractable under sim-

plifying approximations, including discretization, that do not excessively sacrifice accuracy.

Third, there are no rigorous, general results discussing realized feasibility and cost when the

true distribution is different (even to a small extent) from the one supposed in the model.

Fourth, and perhaps most importantly, in many real-world applications, full distributional

information on the uncertain quantities may be unavailable. In some situations, including

those in which the uncertainty is not fundamentally stochastic in nature, the very existence

of such a distribution may make little sense.

Fortunately, in light of these difficulties, robust optimization takes an approach to data

uncertainty much different than those taken by sensitivity analysis and stochastic optimiza-

tion. In robust optimization, data uncertainty is modeled as deterministic and is charac-

terized by an uncertainty set, whose shape may be a box, an ellipsoid, a polyhedron, etc.

In a robust optimization problem, one optimizes over the set of solutions feasible under all

realizations of data from the uncertainty set. In the case of objective data uncertainty, ro-

bust optimization selects the solution yielding the best cost under the corresponding least

favorable data realization. In this way, a robust optimization problem is either a minimax

or a maximin problem; it seeks solutions which are feasible and perform best under the

"worst-case" conditions allowed for by the given uncertainty set.

Robust optimization is an attractive problem-solving tool for several reasons. Unlike

sensitivity analysis, it incorporates data uncertainty directly into the model and can handle

perturbations of any (bounded) size. Unlike stochastic optimization, robust optimization is
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geared toward providing feasibility guarantees and cost bounds. In addition, robust opti-

mization often leads to computationally tractable problems and is not hobbled by the curse

of dimensionality. In some cases, even if robust optimization model assumptions are not

satisfied (e.g., the size of the allowable perturbation), one can still make high-probability

statements about feasibility. Lastly, robust optimization does not require detailed distribu-

tional information about the uncertain quantities. For these reasons, it is a valuable approach

to problems characterized by data uncertainty.

1.2 Contributions and Structure of the Thesis

In this thesis, we propose a robust optimization approach to analyzing three distinct classes

of problems: the nominal variational inequality (VI) problem over a polyhedron, the finite

game under payoff uncertainty, and the network design problem under demand uncertainty.

While not all of these problems are characterized by data uncertainty, they share a connection

with the concept of equilibrium. We begin the body of the thesis, in Chapter 2, with a brief

review of key results from the literature on robust optimization.

1.2.1 Nominal Variational Inequalities over Polyhedra

In Chapter 3, we demonstrate that, although the nominal VI problem involves no data un-

certainty, it is in fact a special instance of a robust constraint. Using this insight and the

duality-based proof techniques from the robust optimization literature, we reformulate the

variational inequality problem over a polyhedron as a single-level (and many-times continu-

ously differentiable) optimization problem. This reformulation applies even if the associated

cost function has an asymmetric Jacobian matrix. We give sufficient conditions for the con-

vexity of this reformulation. Accordingly, we provide a new approach, and one that draws

on results from convex optimization, to VI complexity analysis. More importantly, however,

we thereby identify a class of VIs, of which monotone affine (and possibly asymmetric) VIs

are a special case, which may be solved using widely-available and commercial-grade convex
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optimization software.

1.2.2 Games under Payoff Uncertainty

In Chapter 4, we turn our attention to a class of problems that do involve data uncertainty. In

particular, we propose a distribution-free model of incomplete-information games, in which

the players use a robust optimization approach to contend with payoff uncertainty. Our "ro-

bust game" model relaxes the assumptions of Harsanyi's Bayesian game model, and provides

an alternative, distribution-free equilibrium concept, which we call the "robust-optimization

equilibrium," to that of the ex post equilibrium. We prove that the robust-optimization

equilibria of an incomplete-information game subsume the ex post equilibria of the game

and are, unlike the latter, guaranteed to exist when the game is finite and has bounded

payoff uncertainty set. For arbitrary robust finite games with bounded polyhedral payoff

uncertainty sets, we show that one may solve for a robust-optimization equilibrium in much

the same way one would solve for a Nash equilibrium of a finite game with complete infor-

mation. Our results cover incomplete-information games without private information as well

as those involving potentially private information.

1.2.3 Network Design under Demand Uncertainty

Whereas, in Chapter 4, we consider a predetermined game mechanism and model the play-

ers as using robust optimization to deal with payoff uncertainty, in Chapter 5, we consider

a mechanism design problem in which the designer is uncertain of conditions affecting the

mechanism's performance. Specifically, we suggest a novel approach, based on robust opti-

mization, to the binary choice, arc construction network design problem (NDP), under de-

mand uncertainty, congestion effects, and either system-optimal (SO) or user-optimal (UO)

routing. We propose a branch and bound algorithm for solving the resulting robust NDP.

This algorithm comprises the first constructive use of the price of anarchy concept, which has

previously been employed only in a descriptive, rather than a prescriptive manner. More-

over, using the notion of the price of anarchy, we prove that the optimal solution of the
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robust NDP under SO routing is an approximately optimal solution to the robust NDP un-

der UO routing. In addition, we present conditions under which the robust NDP reduces

to a less computationally demanding problem, either a nominal counterpart or a single-level

quadratic optimization problem. Furthermore, we observe counterintuitive behavior, not yet

noted in the literature, of costs at equilibrium with respect to changes in traffic demands on

the network. The examples we present are analogous to Braess' Paradox [27] and illustrate

that an increase in traffic demands on a network may yield a strict decrease in the costs

at equilibrium. Finally, we establish convexity and monotonicity properties of functions

relating to the worst-case performance of a given network design decision.

1.3 Notation

We will use the following notation conventions throughout the thesis. Boldface letters will

denote vectors and matrices. In general, unless otherwise specified, upper case letters will

signify matrices, while lower case will denote vectors. We will use subscripts to denote

elements of a vector or matrix and superscripts to denote one entire vector or matrix in a

sequence. To designate uncertain coefficients and their nominal counterparts, we will use

the tilde (e.g., a) and the check (e.g., ), respectively. For a square, but not necessarily

symmetric matrix A, A 0 will denote that A is positive semidefinite. Likewise, A >- 0

will denote that A is positive definite.
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Chapter 2

Review of Robust Linear

Optimization

For the purpose of more precisely characterizing the robust optimization approach, let us

consider the mathematical optimization problem (MP)

P: min f(x)
x

S.t. x E X(61,, ,)

where x is the vector of decision variables, X( 1, 62,..., do) is the feasible region defined by

parameters 6i, i E 1, ... , w}, and f(x) is the objective function. In the above nominal MP,

we regard the parameter values as being fixed at 6i = i, i E 1,..., w}. Throughout the

rest of this thesis, we use the term "nominal" to denote problems defined by fixed parameter

values that are known with certainty.

Suppose instead that we do not know the exact values of these parameters 1, ... , , but

know that (1, ... , , ) belongs to some uncertainty set U. Under this model of uncertainty,
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the robust counterpart of the above nominal problem is given by

RP: min f(x)
x

s.t. x E X(6 1, 2, ... )) , V (l 2,...,)) E U.

Without loss of generality, we can restrict our discussion of data uncertainty to the con-

straints, since the objective can always be incorporated into the constraints (see, e.g., Section

2 of [18]).

Initial results on robust linear optimization were given by Soyster in [150]. Soyster

considered linear optimization problems (LPs) subject to column-wise uncertainty in the

constraint matrix. His model is equivalent to the LP in which all uncertain parameters have

been fixed at their worst-case values from the uncertainty set. Soyster's model is overly

conservative; in practice, it seems quite unlikely that the uncertain parameters would all

simultaneously realize their worst-case values. In addition, his model is specific to column-

wise uncertainty and does not easily generalize.

Twenty years later, Ben-Tal and Nemirovski [11, 12, 13] and, independently, El Ghaoui

et al. [45, 46], renewed the discussion of optimization under uncertainty. They examined

ellipsoidal models of uncertainty, which, for the robust LP case, are less conservative than the

column-wise model considered by Soyster. They showed that the robust counterpart of an

LP under such ellipsoidal uncertainty models is a second-order cone optimization problem

(SOCP). Furthermore, they remarked that polyhedral uncertainty can be regarded as a

special case of ellipsoidal uncertainty. As a result, LPs under polyhedral uncertainty of the

coefficient matrix can be solved via SOCPs.

Ellipsoidal uncertainty formulations of robustness are attractive in that they offer a

reduced level of conservatism, as compared with the Soyster model, and lead to efficient

solutions, via SOCPs, of LPs under uncertainty. Unfortunately, ellipsoidal uncertainty for-

mulations give rise to robust counterparts whose exact solution is more computationally

demanding than that of the corresponding nominal problem. In response to this drawback,

Bertsimas and Sim [17, 18] offered an alternative model of uncertainty, under which the
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robust counterpart of an LP is an LP. Their formulation yields essentially the same level of

conservatism as do those of Ben-Tal and Nemirovski and El Ghaoui et al.

Bertsimas, Pachamanova, and Sim [16] further extended the results of Bertsimas and Sim

[18] to the case of general polyhedral uncertainty of the coefficient matrix. In particular,

where A is an m x n coefficient matrix, they modeled the uncertainty set as a polyhedron

U = { ) Gvec(.vec( < d}, (2.1)

where G E R eX(mn), d cE R, and vec(A) R(mn)xl denotes the column vector obtained by

stacking the row vectors of the matrix A one on top of another. They considered the robust

LP given by

min c'x
x

s.t. Ax < b (2.2)

x S

VA E U.

where x E R n is the decision vector and S is a polyhedron defined by constraints that are

not subject to uncertainty. They showed that, if the number of constraints defining S is r,

then robust LP (2.2) in n variables and m + r constraints is equivalent to a nominal LP in

n + mtf variables and m2n + m + mft + r constraints.

A key element in the approach of Bertsimas et al. [16, 17, 18] is the use of dual vari-

ables and duality to reformulate robust constraints as equivalent nominal constraints over a

modestly higher-dimensional variable space.
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Chapter 3

Variational Inequalities through

Convex Programming: Insights from

Robust Optimization

3.1 Introduction

3.1.1 Variational Inequalities and Solution Methods

The variational inequality (VI) problem has engaged members of not only the optimization

community, but also the mathematics, transportation science, engineering, and economics

communities. Stated formally, given a set K C R and a mapping F : K --+ 1R, the VI

problem, denoted VI(K, F), is to find an x* E K such that

F(x*)'(x-x*) > 0, Vx K.

Variational inequalities subsume many other well-studied mathematical problems, including

the solution of systems of equations, complementarity problems, and a class of fixed point

problems. In addition, for any optimization problem over a closed, convex feasible region, the

first-order optimality conditions comprise a VI. Accordingly, the VI problem also generalizes
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convex optimization.

Stampacchia and his collaborators [67, 92, 103, 151, 152] first introduced VIs as a tool

for analyzing partial differential equations arising in mechanics. These early contributions,

including the seminal 1966 paper by Hartman and Stampacchia [67], focused on infinite-

dimensional VIs. In contrast, the study of finite-dimensional VIs grew out of the optimiza-

tion community's interest in nonlinear complementarity problems, first introduced by Cottle

[32, 33] in 1964. Soon thereafter, Lemke [89] extended the Lemke-Howson algorithm [90]

to the linear complementarity problem, and Scarf [145] gave a method for computing the

fixed points of a continuous mapping. These computational strides further bolstered the

optimization community's theoretical interest in complementarity problems. In 1972, Kara-

mardian [80] noted that the finite-dimensional complementarity problem is a special case of

the finite-dimensional VI problem.

Just as the VI problem is of interest to widely ranging research communities, its corre-

sponding computational solution methods are diverse. For a more complete discussion and

history of these computational approaches than the one we give in this section, we refer the

interested reader to the recent survey text by Facchinei and Pang [47], the monograph by

Patriksson [124], and the references in both texts. The survey article by Harker and Pang

[64] and the Ph.D. thesis of Hammond [63], as well as the references therein, also provide

insightful reviews of the VI problem and associated algorithms.

One class of techniques for solving the VI problem consists of equation-based methods.

These methods exploit the fact that x* solves VI(K, F) iff it satisfies a system of nonsmooth

equations. In one such approach, the system of equations formulates the VI problem's

solution set as the set of fixed points of a projection operator (see, e.g., Proposition 1.5.8 of

[47], which is originally due to Eaves [44]). In order to solve the VI problem, one may thus use

Newton methods or globally convergent techniques for solving such systems of nonsmooth

equations.

Alternatively, the KKT conditions of a VI comprise a mixed complementarity problem

(MiCP), involving both equations and nonnegativity constraints. The MiCP is equivalent,
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through a "complementarity function," to a system of equations alone, to which the afore-

mentioned Newton methods apply. Rather than transforming the MiCP representation of

the KKT conditions into a system of equations, one may treat them as a system of "con-

strained equations" and use interior point methods and smoothing techniques to handle this

potentially inequality-constrained system. These approaches are modified Newton methods,

tailored so that iterates satisfy a given constraint set. Interior point methods for solving VIs

are similar, although not identical, to the celebrated interior point algorithms for solving

linear and nonlinear convex optimization problems.

In contrast, instead of reformulating the VI problem as a system of equations or con-

strained equations, other contributors to the VI literature have suggested reformulating the

VI as an equivalent optimization problem. Most simply, it is well known (see, e.g., Theorem

1.3.1 of Facchinei and Pang [47]) that if the Jacobian of F, denoted by JF(x), is symmetric

Vx E K, then there exists a function f K - IR such that

Vf(x) = F(x), Vx E K.

If, in addition, K is convex, then x* solves VI(K, F) iff it is a stationary point of

min f(x). (3.1)
xEK

When F is furthermore monotone over K, or equivalently, when its Jacobian matrix is

positive semidefinite over K, the resulting optimization problem (3.1) is convex, and x* solves

VI(K, F) iff it is an optimal solution of (3.1). Depending on the exact form of this convex

program, one may apply any of a number of commercial solvers, including ILOG CPLEX,

ILOG Solver, Xpress-MP, and LINDO. Moreover, when F is affine and K is polyhedral,

problem (3.1) is a linearly constrained quadratic program (LCQP).

For a VI with possibly asymmetric JF(x), the concept of merit functions provides for

the reformulation as an equivalent optimization problem. For X D K, where X is a closed

set, a merit function for VI(K, F) is defined to be a nonnegative 0: X --. R such that x*
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solves VI(K, F) iff x* E X and 0 (x*) = 0. Thus, VI(K, F) is equivalent to minxcx O(x). Of

course, if X = IRn , then this reformulation yields an unconstrained optimization problem.

The earliest and most intuitive merit function, proposed by Zuhovickii, Poljak, and Primak

[174, 175, 176, 177] in the context of game-theoretic equilibrium computation, is the classical

primal gap function, given by

Ogap(X) sup uF(x)' (x- y). (3.2)
yEK

Despite its simplicity, the literature has deprecated the use of this gap function in practice,

because it may not be differentiable. Until 1989, the VI community regarded as an open

question the issue of whether there exists a continuously differentiable optimization problem

that equivalently reformulates VI(K,F). In that year Auchmuty [3], and independently

and soon thereafter Fukushima [55], proposed the regularized gap function, which altered

the classical gap function in a way that guaranteed continuous differentiability. Others

have since proposed numerous and varied merit functions, e.g., Wu, Florian and Marcotte

[170], Zhu and Marcotte [173], Taji and Fukushima [156], Yamashita and Fukushima [171],

Peng [125], and Yamashita, Taji, and Fukushima [172]. These merit functions give rise to

specialized iterative descent methods for their minimization and, as a consequence, for the

solution of the VI problem.

3.1.2 Complexity of VI Algorithms and VI Solver Availability

While the favored reformulations and associated algorithms for the VI problem have proved

to be practically useful, they are not without drawbacks. For instance, the merit function

approach to solving VIs involves an iterative descent method in which, at each iteration,

evaluation of the merit function and its gradient requires the computation of a projection

onto K. Under certain conditions, usually involving continuity and some version of mono-

tonicity, iterative descent methods for merit function minimization yield limit points that

are stationary points of the corresponding optimization problem (see, e.g., Section 10.6 in
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Facchinei and Pang [47] for an overview). However, even when these requirements are met,

the iterative descent algorithms may not converge in finite, let alone polynomial time.

In fact, the topic of complexity is not as often discussed in the VI literature as in other

areas of optimization. Most algorithms are guaranteed to yield asymptotic convergence, with

the exceptions of ellipsoid and interior point methods for VIs. In 1985, Liithi [97] offered

a specialized ellipsoid algorithm for the VI problem and proved its polynomial-time conver-

gence for strongly monotone VIs. Perakis [126] and Magnanti and Perakis [101] proposed a

class of ellipsoid-type algorithms ensuring polynomial-time convergence for a larger class of

VIs, namely those that are strongly-F-monotone. While these ellipsoid algorithms provide

important insights into the complexity of the VI problem, they are not applied in practice.

Specialized interior point methods provide a more computationally useful and still effi-

cient alternative to these ellipsoid algorithms. Indeed, polynomial-time interior point algo-

rithms are available for certain classes of VI problems. For example, in the early 1990's,

Harker and Xiao [65] proposed such an algorithm for the monotone affine VI problem, and

Tseng [157] proposed another algorithm for the more general monotone VI problem. More

recently, Sun and Zhao [154, 155] and Wu [168, 169] contributed efficient interior point

methods for the monotone variational inequality with polyhedral feasible region K and F

satisfying a "scaled Lipschitz condition."

Although interior point methods can efficiently solve interesting classes of VI problems,

commercial-grade software packages for these algorithms are not available to the same extent

as are commercial products for solving general convex QPs and other convex optimization

problems. Accordingly, to solve instances of the VI problem, one would ideally like to harness

the power of these industrial-strength convex optimization software packages. To the best

of our knowledge, in the absence of symmetry of JF(x), the reformulation of a VI as a

single-level, convex optimization problem, which is many-times continuously differentiable,

is not well understood.

As already noted, the VI literature includes reformulations for problem instances in which

F has a symmetric Jacobian over K. While the merit function technique further provides an
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optimization-based approach for the asymmetric case, merit functions are usually at most

once continuously differentiable (see, e.g., the discussion in Section 10.6 of [47] or Section 4.2

of [48]). More importantly, for almost all merit functions, evaluation of the function itself

requires solution of an optimization problem, generally involving a maximization over K.

Thus, the merit function approach requires the solution of a bilevel optimization problem, a

form that commercial optimization solvers cannot handle.

Finally, let us return to the case of a VI problem satisfying the symmetry and monotonic-

ity requirements ensuring the existence of an objective function f, as in (3.1), inducing an

equivalent convex optimization problem. Even in this case, identification of such an objective

function f requires the evaluation, in closed form, of the indefinite line integral

f(x) = F(x)'dx = (x + (x ))(x -x° ) dt,

where x0 is any vector in K. This integration is easy if F is affine. However, if F is nonlinear,

and especially if n, the dimension of the problem, is large, analytically evaluating such an

integral may be impractical. Ideally, one would like to develop a reformulation of the VI

problem that does not require such preprocessing in order to generate a convex optimization

problem for input into a commercial solver.

3.1.3 Contributions and Structure of this Chapter

In this chapter of the thesis, we study instances of VI(K, F) in which K is polyhedral.

To give an overview, we provide an approach to reformulating such VIs as optimization

problems. Our method avoids the difficulties discussed in Section 3.1.2 and is based on ideas

from robust optimization.

In more detail, our contributions are as follows.

1. In Section 3.2.1, we identify that VIs are in fact special instances of robust constraints.

We observe, in Section 3.2.3, that the same is true of mathematical programs with

equilibrium constraints (MPECs).
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2. In Section 3.2.1, we exploit this observation and utilize the duality-based proof tech-

niques from robust optimization in order to reformulate the set of KI constraints

(typically infinitely many) comprising the VI, as a system of finitely many constraints

whose size is polynomial in n and m. KI denotes the cardinality of the set K, and

m denotes the number of equalities in the standard-form representation of polyhe-

dral set K. We use this system to show that, when K is polyhedral, one can always

reformulate the VI, even under asymmetry of JF(x), as an equivalent, single-level op-

timization problem. The objective and constraint functions of this equivalent problem

are, in contrast to most merit functions, continuously differentiable as many times as

F(x) is. We extend this reformulation result to the general case in which K need not

be a polyhedron but is defined in terms of an arbitrary cone, i.e., not necessarily the

nonnegative orthant.

3. In Section 3.2.2, we give sufficient conditions for the convexity of the VI reformulation.

These sufficient conditions provide a new approach, and one that draws on results

from convex optimization, to VI complexity analysis. More importantly, however,

these sufficient conditions clearly identify a class of VI problems to which commercial,

single-level convex optimization solvers may be applied. Furthermore, specializing

this result to the affine case, we demonstrate that our reformulation is always convex

when F is both affine and monotone. Thus, a monotone affine VI problem can always

be reformulated as a convex LCQP, even when JF(x) is asymmetric. To illustrate

the sufficient conditions for convexity in the nonlinear case, in Section 3.2.4, we give

examples of VIs that have asymmetric JF(x) and satisfy these conditions.

4. In Section 3.2.5, we demonstrate that our VI reformulation can be viewed as equivalent

to the classical primal gap function (3.2). Thus, in order to obtain a merit-function-

based formulation that is continuously differentiable, one need not regularize the gap

function, as was previously thought.
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5. In Section 3.3, we consider the fact that our reformulation technique results in a modest

augmentation of the space of variables. We show that we may in fact reduce the number

of variables in our formulation so that it is comparable to the original variable space

and to the formulation (3.1).

3.2 Applying Duality-Based Techniques to VIs

Having reviewed, in Chapter 2, the robust optimization paradigm, it is clear that a VI

constraint on x*, which is of the form

F (x*)' (x - x*) > 0, Vx K, (3.3)

is, in fact, a special case of a robust constraint, in which it is as if x is subject to uncertainty

and known only to belong to K. That is, the robust optimization framework encompasses

the VI problem.

Accordingly, we use the duality-based techniques from robust optimization (see, e.g.,

Bertsimas and Sim [18]), to transform the robust constraint that comprises the VI problem

into a set of finitely many nominal constraints and, alternatively, into a corresponding op-

timization problem. We then give a sufficient condition for the convexity of this nominal

constraint set and the optimization problem it induces.

As already noted in Section 3.1.3, we focus our attention in this chapter of the thesis

on the class of VIs in which K is polyhedral. However, we also extend our results to more

general settings. We make no assumptions on the existence of solutions to the VI problems

we consider.
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3.2.1 Reformulation of a VI as a Nominal, Single-level Optimiza-

tion Problem

In the case of polyhedral K, the VI problem is equivalent to a robust linear constraint.

Without loss of generality, we may restrict our attention to standard-form instances,

K = {(x Rn Ax= b, x > _0) 0, (3.4)

where A CE ImXn and b E Rm . Reformulating K in standard form may require parallel

changes in F. For instance, recasting nonpositive variables as nonnegative ones requires

changes of sign in F, and replacement of free variables by the difference of nonnegative

variables requires augmenting the dimension of F.

We may now state and prove a constraint equivalence.

Theorem 3.2.1. Suppose that K is the nonempty polyhedron given by (3.4). Then, x* solves

VI(K, F) iff 3A* E Rm such that (x, A) = (x*, A*) satisfies

F(x)'x = b'A

Ax = b (3.5)

x>O
A'A < F(x).

Proof. As is well-known in the VI literature (see., e.g. Section 1.2 of [47]), by the definition

of the VI problem, x* E K satisfies (3.3) iff the following relation holds.

F (x*)'x* = min F (x*)' x
x

s.t. Ax = b (3.6)

x > 0.
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That is, x* must itself optimize the LP (3.6) it induces. This well-known observation is

credited to Eaves [44], who originally noted this equivalence in the context of the comple-

mentarity problem.

In LP (3.6), in the spirit of robust optimization, x* is treated as data and x is the vector

of decision variables. Since x* in this way parameterizes LP (3.6), we refer to this LP as

LP (x*). Its dual, to which we refer as DLP (x*), is

max b' (3.7)

s.t. A'A < F(x*).

Suppose that x* solves VI(K, F). Then LP(x*) has bounded optimal value, given by

F (x*)' x *. By LP strong duality, its dual, DLP (x*), is also feasible with bounded optimal

value equal to that of LP(x*). Let A* denote an optimal solution of DLP(x*). Then

(x*, X*) satisfies (3.5).

For the reverse direction, suppose that (x*, A*) satisfies system (3.5). Then, x* and A*

are primal and dual feasible for LP (x*) and DLP (x*), respectively. Since F (x*)' x* = b'A *,

by LP weak duality, x* must be optimal for LP (x*). Therefore, x* solves VI(K, F). E

Remark: Since the KKT conditions for an LP are closely related to its dual, it is

possible to prove Theorem 3.2.1 using these KKT conditions, rather than the dual LP in (3.7).

In Appendix A, we provide such an alternate proof.

Theorem 3.2.1 implies the following equivalence of the VI with an optimization problem.

Corollary 3.2.1. Suppose that K is the nonempty polyhedron given by (3.4). x* solves

VI(K, F) iff the following MP has optimal value zero and 3X* C Rm such that (x*, A*) is an
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optimal solution.

min F(x)'x - b'A
x,A

s.t. Ax = b (3.8)

x>O
A'A < F(x).

Proof. To begin, note that V (x, A) feasible for MP (3.8), x is a feasible solution of LP(x),

and A is a feasible solution of DLP(x). In addition, the objective function of MP (3.8)

represents the duality gap of this primal-dual pair of solutions. Consequently, if MP (3.8) is

feasible, by LP weak duality, its objective value is always nonnegative. From this observation

and the equivalence proved in Theorem (3.2.1), the result immediately follows. [

Remark: It is worth pausing to note that, if VI(K, F) has no solution, then MP (3.8)

either is infeasible or has a strictly positive optimal value. Consider any x* E K that does

not solve VI(K, F). While we make no assumptions on the boundedness of K, because

K $ 0, there are only two possibilities for LP (x*). If this LP is unbounded, then there does

not exist a A E Rm such that (x*, A) is feasible for MP (3.8). Otherwise, LP (x*) must be

bounded but have optimal value strictly less than F (x*)'x *. In this case, VA Rm such

that (x*, A) is feasible for MP (3.8), the corresponding objective value is, by weak duality,

strictly positive.

Corollary 3.2.1 establishes that any VI with polyhedral K can always be reformulated as

a nominal, single-level optimization problem, even under asymmetry of the Jacobian matrix

of the associated F(x). Thus, any such problem is always equivalent to an optimization

problem of a format compatible with commercial optimization software, which does not ac-

cept constraints that themselves involve optimization problems. Furthermore, the objective

and constraint functions of our reformulation (3.8) are, in contrast to most merit functions

in the VI literature, continuously differentiable as many times as F(x) is.
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For the affine VI, Corollary 3.2.1 implies that this problem can always be reformulated as a

linearly-constrained quadratic program (LCQP). This implication generalizes the well-known

equivalence (see, e.g., Section 1.5.3 of [47] or [167]) between the linear complementarity

problem and the quadratic program (QP).

We have thus far considered only polyhedral K. In fact, we may extend our VI reformu-

lation result to the more general case, in which K is defined in terms of an arbitrary cone

C C Rn . In this setting, C may be a cone other than the nonnegative orthant, in terms of

which all polyhedra are defined. Without loss of generality, consider

K = {x E Ax = b, x c O} $ 0. (3.9)

We use the convention that, for any cone C, x >-c 0 denotes that x E C, and x >-c 0 denotes

that x C int(C), the interior of C. Let C* denote the cone dual to C, i.e.,

C* = {J1E R I 'x > O, Vx E C.

We omit the proof of the following theorem, since it is analogous to that of Corollary 3.2.1.

For a review of conic duality, we refer the interested reader to Ben-Tal and Nemirovski [14].

Theorem 3.2.2. Consider VI(K, F), where K is given by (3.9). Suppose the following MP

has optimal value zero and 3A* E R'm such that (x*, A*) is an optimal solution.

min F(x)'x- b'A
x,A

s.t. Ax = b (3.10)

x c 0

A'A c* F(x).

Then x* solves VI(K, F).

Conversely, suppose that x* solves VI(K, F), that 3x C K such that x >-c 0, and that

3A E R'm such that A' -<c* F (x*). Then, MP (3.10) has optimal value zero, and 3A* E R'm
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such that (x*, A*) is an optimal solution.

Let MIm ',n c Rmn denote the space of m x n matrices, an C IRn2 denote the space of sym-

metric n x n matrices, and n_ denote the self-dual cone of symmetric, positive semidefinite,

n x n matrices. In addition, let us define the inner product of X E MIm 'n with Y E Mm 'n as

m n

XY = EEXijYij,
i=1 j=l1

where Xij and Yij are the (i, j)th elements of the matrices X and Y, respectively. Setting

C = n in Theorem 3.2.2, we obtain the following corollary, specific to VIs over subsets

of Sn. Note that, in terms of the notation conventions set forth in Section 1.3 and in this

section, for X E M/lI'n, X _sn+ is a stronger statement than X - 0, since the former requires

that X is symmetric, while the latter does not.

Corollary 3.2.2. Consider an arbitrary F Mn' - M'",n and VI (K, F), where

K = {XE Mnn Ai X = bi, i = ,..., m; X sn }, (3.11)

Ai E Mn n, and bi E R, i {1,..., m}. Suppose the following MP has optimal value zero

and 3A* E Rm such that (X*, A*) is an optimal solution.

min F(X) X- b'AXEn,n

s.t. Ai * X = bi, i = , . . ., m (3.12)

X -sn 

S :Ai n F(X).
i=l

Then X* solves VI(K, F).

Conversely, suppose that X* solves VI(K, F), that 3X E K such that X >-sn 0, and that

3A E R such that im=l AiAi Sn+ F (X*). Then, MP (3.12) has optimal value zero, and

3A* R such that (X*, A*) is an optimal solution.
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Remark: Note that when

n n

F(X) = Xi G + H,
i=1 j=l1

where G ij E Mn,,n H E M n ,n, i,j E (1,...,n, the objective function of MP (3.12) is

quadratic in X and A.

3.2.2 Convexity of Reformulations

Having discussed a VI reformulation that uses duality-based techniques from robust opti-

mization, we next use this reformulation to analyze the complexity of the original VI. In

particular, converting the VI into a single-level optimization problem facilitates certification

of polynomial-time complexity. Indeed, one need not bother proving the polynomial-time

convergence of an algorithm specifically tailored to the VI. Rather, if our proposed optimiza-

tion problem reformulation is solvable in polynomial time (e.g., if it is convex and satisfies

other complexity conditions), then the complexity of the original VI is polynomial time. To

understand the justification of this result, note that if the standard-form representation of

a polyhedron K involves m + n constraints and n variables, then VI reformulation (3.8)

is defined by m + 2n constraints in m + n variables. In the following theorem, we give a

sufficient condition for the convexity of this reformulation.

Theorem 3.2.3. Suppose that K is the nonempty polyhedron given by (3.4). If Fj(x) is a

concave function over K, Vj {1, ... , n}, and F(x)'x is a convex function over K, then

system (3.5) defines a convex feasible region and MP (3.8) defines a convex optimization

problem.

Proof. The result for MP (3.8) follows immediately from Corollary 3.2.1. If we replace the

constraint F(x)'x = b'A in system (3.5) with F(x)'x < b'A, we obtain a resulting system

that is equivalent to (3.5). The reason is that, as explained in the proof of Corollary 3.2.1,

F(x)'x - b' is the duality gap of primal-dual pair (3.6) and (3.7) and therefore cannot
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be strictly negative. Accordingly, the convexity of the solution set of system (3.5) follows

immediately from Theorem 3.2.1. D

Remark: It is worth noting that if K is not, without reformulation, a subset of the

nonnegative orthant, then the concavity requirements on Fj(x) in Theorem 3.2.3 may be

directly stated as follows. If, Vx E K, xj > 0, then the sufficient condition asks that Fj(x)

be concave, as before. Alternatively, if, Vx K, xj < 0, then the sufficient condition asks

that Fj(x) be convex. Otherwise, the sufficient condition asks that Fj(x) be affine.

Returning to our discussion of the implications and significance of Theorem 3.2.3, if

VI(K, F) satisfies the theorem's conditions, it is equivalent to a convex optimization problem,

given by MP (3.8), and can therefore be solved by commercial convex optimization software.

For the affine case, the conditions of Theorem 3.2.3 simplify considerably. In particular,

when F(x) is affine, the following equivalence holds. Fj(x) is a concave function over K,

Vj E {1, ... , n}, and F(x)'x is a convex function over K iff F is monotone over K. The reason

is that monotonicity holds iff JF(x) S 0 (see, e.g., Proposition 2.3.2 of [47]). Accordingly,

any affine monotone VI is polynomially solvable using a commercial QP solver applied to

a convex LCQP. In contrast, when F(x) is not affine, the aforementioned equivalence fails.

In particular, if Fj(x) is a concave function over K, Vj C {1,..., n}, but F(x) is not affine,

then monotonicity on K is necessary, but not sufficient for F(x)'x to be a convex function

over K. For example, for n = 1, K = [0, oc), and F(x) = -e - x + 1, F(x) is concave and

monotone over K, but F(x). x is concave for x > 2.

We summarize the above discussion of the affine case in the following corollary.

Corollary 3.2.3. Suppose that K is the nonempty polyhedron given by (3.4), and that

F(x) = Gx + h, with G >- 0, but not necessarily symmetric. Then, system (3.5) is a set of

quadratic constraints defining a convex feasible region and MP (3.8) is a convex LCQP.

Similarly, for the setting of VI(K, F) with K C S, we have the following analogous

result.
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Corollary 3.2.4. Suppose that K is given by (3.11), and that

n n

F(X) = E Xj Gj + H,
i=1 j=l

where Gi j E Mn n, H E Mn'n, i, j E {1,..., n}. Suppose that g >- 0, where

g = [vec (G1 l), vec (G12 ) ... , vec (Gn) I ... , vec (G) ,... vec(G n n ) ]

and vec(G ij ) denotes the column vector obtained by stacking the row vectors of the matrix

Gi j one on top of another. Then, MP (3.12) is convex, with a quadratic objective.

Proof. The result follows, since F(X) = vec (X)' g vec (X) + vec (H). O

Returning to the case of polyhedral K, in the next subsection, we extend the discussion

to the mathematical program with equilibrium constraints (MPEC). Before doing so, let

us pause to underscore, as we did in Section 3.1, that our contribution sheds additional

light on VI complexity analysis by offering an insightful method - one that leverages the

theory of convex optimization - of determining that a VI is efficiently solvable. However, we

believe the appeal of our approach is due as much, if not more so, to the fact that it extends

the applicability of commercial, single-level optimization solvers to a larger class of VIs. In

contrast, the VI literature has focused on developing specialized iterative algorithms for these

problems. As we noted in the introduction, commercial optimization packages for single-level

problems are available, supported, and refined through practice to a greater extent than are

solvers specific to VIs. Therefore, it is to one's benefit to use these commercial solvers if

possible.

3.2.3 Reformulation of an MPEC as a Single-Level Optimization

Problem

We now observe that the MPEC is, like the VI, a special case of the robust optimization

problem. Let SOL(K,F) denote the solution set of VI(K,F). Using this notation, the
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MPEC is the following optimization problem whose constraints include a parameterized VI.

min g (u, x
uEIn1, xE]n2

s.t. (u, x)

x E 

K(u) denotes a feasible region parameterized

sion variables, and F(u; ) denotes a function,

values are elements in Rn2. Analogously, x is

ables. Because the parameterized VI is a class

that the MPEC is a special case of the robus

reformulation results in Section 3.2.1 extend t,

:)

E S

SOL (K(u), F(u; )).

(3.13)

by the vector u of so-called upper-level deci-

which is also parameterized by u and whose

called the vector of lower-level decision vari-

s of instances of robust constraints, it follows

t optimization problem. Accordingly, the VI

o MPECs.

In general, the exact value of u may determine not only the coefficients in the constraints

defining K(u) but also the number of constraints. Let us focus on instances in which u

affects only the coefficients in the constraints, i.e., cases in which the following condition

holds.

Condition 3.2.1. Vu E R'n such that 3x E IRn2 with (u, x) E S, 3m < oc for which K(u)

is a nonempty polyhedron given in standard form by

K(u) = {x E Rn2 [A(u)] x = b(u), x > 0),

with [A(u)] E RmXn2 and b(u) E Rm .

Theorem 3.2.1 yields the following corollary.

Corollary 3.2.5. Consider MPEC (3.13) satisfying Condition 3.2.1. Then, (u*, x*) is an

optimal solution of MPEC (3.13) iff3* E IRm such that (u, x, A) = (u*, x*, A*) is an optimal
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solution of the following problem.

min g (u, x)
u,x,A

s.t. (u, x) E S

F(u;x)'x = b(u)'A (3.14)

[A(u)] x = b(u)

x > O
[A(u)]'A < F(u;x).

The fact that the MPEC with polyhedral K(u) may be converted into a single-level op-

timization problem is well known in the literature (see, e.g., [96]). The classical single-level

MPEC reformulation is KKT-based, in that it dictates replacement of the VI constraint with

its KKT conditions. In contrast, the derivation method used in Corollary 3.2.5 and in the

proof of Theorem 3.2.1 is based on LP duality. Especially when K(u) is not, without augmen-

tation of the lower-level space of variables, in standard form, the duality-based reformulation

may be appealing. In particular, although the two approaches are closely related, unlike its

KKT-based analog, the duality-based reformulation does not give rise to complementarity

constraints in the resulting single-level optimization equivalent of the MPEC. In some set-

tings, this lack of complementarity constraints may facilitate identification of convexity of

the MPEC reformulation and may provide greater flexibility for further manipulation of this

reformulation.

In general, certifying the convexity of MPEC reformulation (3.14) is a bit more involved

than doing the same for VI reformulation (3.5). Specifically, if K(u) and F(u; ) truly depend

on u, in general, the reformulation will be nonconvex. For example, if the dependence on u

is linear, then reformulation (3.14) will contain terms involving products of the upper- and

lower-level decision variables. Otherwise, in the simple case in which K(u) and F(u; ) are

constant with respect to all feasible u, reformulation (3.14) is convex if S is convex, if the
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upper-level objective g is convex, and if, Vu feasible for the MPEC, K(u) and F(u; ) satisfy

the conditions of Theorem 3.2.3.

3.2.4 Examples Admitting Reformulation as Convex Programs

Returning to the topic of VIs, in this subsection, we illustrate our VI reformulation technique

with examples of VI(K, F) satisfying the conditions of Theorem 3.2.3. Recall that these

conditions are sufficient for the convexity of the VI reformulations given in Section 3.2.1.

As noted in that section, if F(x) is affine, then VI(K, F) is always equivalent to an LCQP,

even if JF(x) is asymmetric. Moreover, this LCQP is convex as long as F(x) is monotone.

Since it is obvious that there exist such instances involving monotone F(x) with asymmetric

JF(x), we give examples only of instances with nonlinear F(x).

Example 1. Let K C R_ be a bounded polyhedron, where R+ denotes the nonnegative

orthant. Let F(x) = H(x) + Gx + h, where G is asymmetric, and

Hj(x)= lnxj, j = 1,...,n

G >O.

Because F is continuous and K is compact and convex, this VI problem is guaranteed to

possess a solution (see, e.g., Corollary 2.2.5 of [47]).

Example 2. Consider the same setting as Example 1, but with

Hj(x) = x, j = ,n.

Example 3. Finally, consider any K C R2 \{(0, 0)} such that (3, 3) K. Let

F(x) ( ln(2x1 + x2)
ln(xl + 2 2) 
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Clearly, (, ) is a solution of this VI. By inspection, it is not obvious that this example

satisfies the sufficient conditions of Theorem 3.2.3. However, one may symbolically compute,

e.g., using MAPLE, the eigenvalues of the Hessians of Fi(x), F2 (x), and F(x)'x. In doing

so, it becomes clear by inspection that, because K C R+2 , the signs of these eigenvalues over

K imply the concavity of Fj(x), j E {1, 2}, and the convexity of F(x)'x over K (see, e.g.,

Proposition B.4 of Bertsekas [15]).

3.2.5 Connection with the Classical Gap Function

Thus far, we have shown that the VI over a polyhedron can always be reformulated as a

single-level optimization problem, even when the corresponding Jacobian is asymmetric. In

addition, we gave sufficient conditions for the convexity of these equivalent optimization

problems and thereby identified a class of VIs which can be solved using, as a black box,

convex optimization and the widely available commercial solvers for such problems.

In this subsection, we consider a connection between our approach and the merit function

approach, the latter of which induces bilevel programming reformulations of VIs. Recall the

classical primal gap function,

gap (X) sup F (x)' (x-y).
yEK

Interestingly, for K given by (3.4), our reformulation of VI(K, F) as equivalent optimization

problem (3.8), is in fact equivalent to minXEK Ogap(x). To see why, let KD(x) denote the

feasible region of DLP(x), as given by (3.7). Indeed, since K is closed,

gap (x) = F(x)'x - min F (x)'y
yEK

= F(x)'x- max b'A
XEKD(x)

= min [F(x)'x- b',] .
,XEKD (x)

Recall that the objective and constraint functions of reformulation (3.8) are continuously

differentiable as many times as F(x) is. Accordingly, the classical primal gap function does
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in fact induce a continuously differentiable merit-type function, but it is one that is defined

over a modestly higher-dimensional space.

3.3 Concise Reformulations

Inspired by the robust optimization paradigm, our results in the previous section extend the

equivalence with single-level optimization to a larger class of VIs. One may note that this

extension appears to come at a minor cost, in that our reformulations are in an augmented

space of higher dimension than the original problem. We underscore that this enlargement

is indeed modest in size; whereas K, as given in (3.4), is defined by m + n constraints in n

variables, the VI reformulation (3.8) is defined by m + 2n constraints in m + n variables.

Moreover, as we now show, we can in fact give a reduced, i.e., a more concise, reformula-

tion of VI(K, F), by eliminating redundant variables and constraints from (3.8). This more

concise reformulation preserves the convexity of (3.8).

Just as we restricted our attention, without loss of generality to the case of K in stan-

dard form, we may furthermore assume, without loss of generality, that A, as it appears in

definition (3.4) of K, is of full rank (Theorem 2.5 of Bertsimas and Tsitsiklis [19]). Accord-

ingly, in the optimization reformulation (3.8) of VI(K, F), we may use any basis matrix B

of A, together with the constraint Ax = b, to eliminate redundant variables. In particular,

without loss of generality, assume that A = [B, AN], where AN are the non-basic columns

of A induced by the basis matrix B. Let the corresponding vectors of basic and nonbasic

variables be denoted by XB and XN, respectively. Let

Q -B-1AN C nx(n-m)

I

r = E n,

where I and 0 are the appropriately dimensioned identity matrix and vector of zeros, respec-
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tively. We can thus eliminate XB by rewriting

xB) = QXN + r.
XN

Consequently, the optimization reformulation (3.8) of VI(K, F) can equivalently be rewritten

as the following MP in 2n constraints and n variables.

min F (QXN + r)' [QXN + r] - b'A
XN,A

QxN+r > 0 (3.15)

A'A < F(QXN+r).

Furthermore, it is clear that convexity of formulation (3.8) implies that of (3.15), since, in

moving from the former to the latter, we have simply projected the former onto a lower-

dimensional space.

An alternative concise formulation may be given in the case of affine VI(K,F), with

F(x) = Gx + h, and G nonsingular. For this purpose, let us assume that K is not in

standard form, but instead given by

K = {x R I Ax > b} 0,

where A E Rein and b C Re. This form of K yields a slightly different form of optimization

problem than (3.8) that is equivalent to VI(K, F). Namely, we obtain the following MP in

n + 2f constraints and n + f variables.

min x'Gx + h'x - b'A
x,A

s.t. Ax > b (3.16)

A'X = Gx+h

A > O.
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We may eliminate x by rewriting it in terms of A.

x = G-1A' - G-lh.

Letting

6 = A [G-1]'A'

h = -h'[G-1]'A '

A = AG-1A'

b = AG-lh+b,

formulation (3.16) then becomes the following MP in 2 constraints and f variables.

min 'G, + (i
s.t. A AX >
s.t. A >b

- b) A

(3.17)

A > O.

Again, it is clear that convexity of formulation (3.16) implies that of (3.17), since G 0

implies G > 0.
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Chapter 4

Robust Game Theory

4.1 Introduction

4.1.1 Finite Games with Complete Information

Game theory is a field in economics that examines multi-agent decision problems, in which

the rewards to each agent, or player, can depend not only on his action, but also on the

actions of the other players. In his seminal paper [116], John Nash introduced the notion of

an equilibrium of a game. He defined an equilibrium as a profile of players' strategies, such

that no player has incentive to unilaterally deviate from his strategy, given the strategies of

the other players.

In [116] and [117], Nash focused on non-cooperative, simultaneous-move, one-shot, finite

games with complete information, a class of games encompassing various situations in eco-

nomics. "Simultaneous-move" refers to the fact that the players choose strategies without

knowing those selected by the other players. "One-shot" means that the game is played only

once. "Finite" connotes that there are a finite number of players, each having a finite number

of actions, over which mixed strategies in these actions may be defined. Finally, "complete

information" implies that all parameters of the game, including individual players' payoff

functions, are common knowledge.

In his analysis, Nash modeled each player as rational and wanting to maximize his ex-
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pected payoff with respect to the probability distributions given by the mixed strategies.

Nash proved that each game of the aforementioned type has an equilibrium in mixed strate-

gies. In fact, Nash gave two existence proofs, one in [116] based on Kakutani's Fixed Point

Theorem [79] and one in [117] based on the less general Brouwer's Fixed Point Theorem [28].

Nash's equilibrium concept and existence theorem have become a cornerstone in the field

of game theory and earned him the 1994 Nobel Prize in Economics. The concept is regarded

as practically significant largely because, under the standard assumptions that players are

rational and that the structure of a game is common knowledge, the concept offers a possible

approach to predicting the outcome of the game. The argument is as follows. Any rational

player who thinks his opponents will use certain strategies should never play anything other

than a best response to those strategies. By the common knowledge assumption, the other

players know this, the player knows that the other players know this, etc., ad infinitum.

Thus, the players may be able to reach consistent predictions of what each other will play.

The classical game theory literature concludes from this observation that we should expect

the realized behavior in a game to belong to the set of equilibria. As discussed in the

introduction of Fudenberg and Levine [53], in practice, this conclusion can prove to be

unreliable. Nonetheless, the concept of Nash equilibrium remains the central idea in game

theory, in part because no solution concept has been offered that overcomes these prediction

issues.

4.1.2 Finite Games with Incomplete Information

While the existence of an equilibrium can be asked in any game, Nash's existence result

addresses only non-cooperative, simultaneous-move, one-shot, finite games with complete

information. Of course, in real-world, game-theoretic situations, players are often uncertain

of some aspects of the structure of the game, such as payoff functions.

Harsanyi [66] modeled these incomplete-information games as what he called "Bayesian

games." He defined a player's "type" as an encoding of information available to that player,

including knowledge of his own payoff function and beliefs about other players' payoff func-

52



tions. In this way, he used type spaces to model incomplete-information games, in which

some players may have private information. He assumed that the players share a common-

knowledge prior probability distribution over the type space. Harsanyi suggested that each

player would use this prior probability distribution, together with his type, to derive a

conditional probability distribution on the parameter values remaining unknown to him.

Furthermore, he assumed that each player's goal would then be to, using a Bayesian ap-

proach in this way, maximize his expected payoff with respect to both the aforementioned

conditional probability distribution and the mixed strategies of the players.

In this framework, Harsanyi extended Nash's result to non-cooperative, simultaneous-

move, one-shot, finite games with incomplete information. In particular, he showed that

any Bayesian game is equivalent to an extensive-form game with complete, but imperfect

information. This extensive-form game, in turn, is known to have a static-form represen-

tation. Using an equilibrium existence result more general than Nash's and due to Debreu

[41], Harsanyi thus proved the existence of equilibria, which he called "Bayesian equilibria,"

in Bayesian games. For his work on games with incomplete information, he won the 1994

Nobel Prize in Economics, alongside Nash and Selten.

Harsanyi's work relaxes the assumption that all parameters affecting the payoffs of the

players are known with certainty. His model technique is essentially analogous to the stochas-

tic programming approach to data uncertainty in mathematical optimization problems. As

in stochastic programming, Harsanyi's model assumes the availability of full prior distri-

butional information for all unknown parameters. In addition, his analysis assumes that

all players use the same prior, and that this fact is common knowledge. Many, including

Morris [112] and Wilson [165], have questioned the common prior and common knowledge

aspects of these assumptions. Nonetheless, Harsanyi's Bayesian model remains the accepted

convention for analyzing static games with incomplete information.

Some contributions to the literature have relaxed the common prior and common knowl-

edge assumptions of Harsanyi's model. Perhaps most importantly, Mertens and Zamir [109]

formalized the notion of a "universal type space," a type space large enough to capture
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players' higher-order beliefs, players' use of different prior probability distributions on the

uncertain parameters, and the absence of common knowledge of these priors.

Taking a different approach, other contributors to the game theory literature have offered

distribution-free equilibrium concepts for incomplete-information games. These analyses

address the possibility that distributional information is not available to the players, or that

they opt not to use potentially inaccurate distributional information. The notion of an ex

post equilibrium is the most common distribution-free solution concept and is especially

prevalent in the auction theory literature. Holmstrbm and Myerson [75] first introduced this

notion under the name "uniform incentive compatibility," and Cramer and McLean [37] first

used it in the context of auctions. The ex post equilibrium is a refinement of the Bayesian

equilibrium and is an appealing solution concept, because it is relevant even when the players

lack distributional information on the uncertain parameters. However, it is a strong concept,

and ex post equilibria need not exist in an incomplete-information game.

4.1.3 Contributions and Structure of this Chapter

The contributions of this chapter of the thesis are as follows.

1. We propose a distribution-free, robust optimization model for games with incomplete

information. Our model relaxes the assumptions of Harsanyi's Bayesian games model,

and at the same time provides a more general equilibrium concept than that of the ex

post equilibrium.

Specifically, in Section 4.2, we formally propose the robust optimization model for

non-cooperative, simultaneous-move, one-shot, finite games with incomplete informa-

tion. We start by discussing precedents, from the game theory literature, for using

a worst-case approach to uncertainty, in the absence of probability distributions. We

then note the novelty of our approach with respect to these works. After setting forth

our model, we describe the "robust games," analogous to Harsanyi's Bayesian games,

to which this approach gives rise. We compare the equilibrium conditions for such

robust games to those for Bayesian equilibria and ex post equilibria. Furthermore, we
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note that any ex post equilibria of an incomplete-information game are what we call

"robust-optimization equilibria," i.e., equilibria of the corresponding robust game, just

as they are Bayesian equilibria under Harsanyi's model. We then discuss our union of

the notion of equilibrium with the robust optimization paradigm, and we give interpre-

tations of mixed strategies in the context of robust games. We relate this discussion

and these interpretations to those in the literature on complete-information games.

At the end of Section 4.2, to concretize the idea of a robust game, we present

some examples. In addition, we use one of these examples to illustrate that ex post

equilibria need not exist, thereby motivating the need for an alternate distribution-free

equilibrium concept.

Let us pause to note that, for the sake of simplicity, in Sections 4.2 through 4.5,

we focus on situations of uncertainty in which no player has private information. This

focus allows for a clearer and a sufficiently rich discussion of the main ideas underlying

our model and results, without hindering the reader's understanding through the use

of cumbersome notation and references to results from the theory of Banach spaces.

Such notation and results are required for the general case of incomplete-information

games involving potentially private information. In Section 4.6, we extend our analysis

to this general case.

2. In Section 4.3, we prove the existence of equilibria in robust finite games with bounded

uncertainty sets and no private information.

3. In Section 4.4, we formulate the set of equilibria of an arbitrary robust finite game,

with bounded polyhedral uncertainty set and no private information, as the dimension-

reducing, component-wise projection of the solution set of a system of multilinear

equalities and inequalities. We provide a general method for approximately comput-

ing sample robust-optimization equilibria, and we present numerical results from the

application of this method. For a special class of such games, we show equivalence to

finite games with complete payoff information and the same action spaces. As a result,

in order to compute sample equilibria for robust games in this class, one need only
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solve for the equilibria of the corresponding complete-information game.

4. In Section 4.5, we compare properties of robust finite games with those of the cor-

responding complete-information games, in which the uncertain payoff parameters of

the former are commonly known to take fixed, nominal values. In the absence of pri-

vate information, these nominal games are precisely the Bayesian games arising from

attributing symmetric probability distributions over the uncertainty sets of the corre-

sponding robust games. In addition, turning our attention to a notion of symmetry

unrelated to the symmetry of probability distributions, we extend the definition of a

symmetric game, i.e., one in which the players are indistinguishable with respect to

the structure of the game, to the robust game setting. We prove the existence of sym-

metric equilibria in symmetric, robust finite games with bounded uncertainty sets and

no private information.

5. In Section 4.6, we generalize our model to the case with potentially private information.

We extend our existence result to this context and generalize our computation method

to such situations involving private information and finite type spaces.

4.1.4 Notation

In addition to the notation conventions outlined in Section 1.3, we will also use the following

shorthand. vec(A) will denote the column vector obtained by stacking the row vectors of

the matrix A one on top of another. Thus, if A is an m x n matrix, vec(A) will be a mn x 1

vector.

4.2 A Robust Approach to Payoff Uncertainty in Games

As an alternative to Harsanyi's model and the notion of the ex post equilibrium, we pro-

pose a new distribution-free model of and equilibrium concept for incomplete-information

games. Our model is based on robust optimization, in which one takes a deterministic ap-

proach to uncertainty and seeks to optimize worst-case performance, where the worst case
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is taken with respect to a set of possible values for the uncertain parameters. Let us note

that, in Sections 4.2 through 4.5, we will focus on incomplete-information games without

private information. In Section 4.6, we will extend our analysis to the general case involving

potentially private information.

4.2.1 Precedents for a Worst-Case Approach

In fact, the game theory literature is ripe with precedents for using a worst-case approach.

The field arose in large part from von Neumann's and Morgenstern's "max-min" formulation

of behavior in games [161]. More recently, for example, Goldberg et al. [59] proposed a

worst-case, competitive-analysis approach to auction mechanism design. In the more general

context of normal-form games, several authors, including Gilboa and Schmeidler [58], Dow

and Werlang [43], Klibanoff [81], Lo [94], and Marinacci [106], have argued for a max-

min-based approach to "ambiguous uncertainty," uncertainty in the absence of probabilistic

information. They contend that expected utility models are well-suited for decision-theoretic

situations characterized by "risk," uncertainty with distributional information, but that these

models do not capture behavior observed in practice in situations of ambiguous uncertainty.'

As Dow and Werlang [43] note, the former type of uncertainty is exemplified by the outcome

of a coin toss, while the latter is typified by the outcome of a horse race.

While the max-min approaches of Gilboa and Schmeidler, Dow and Werlang, Klibanoff,

Lo, and Marinacci share the worst-case perspective of our model, their approaches are fun-

damentally different from ours for at least three reasons. First, these authors consider

complete-information games, whereas we address incomplete-information games. In their

models, players know, with certainty, the payoffs under given tuples of actions, but do not

know which tuple of actions will be played. In our model, the players may be uncertain

of the payoffs, even under given tuples of actions. Accordingly, the aforementioned authors

use a pessimistic approach to model each player's uncertainty of the other players' behav-

iors, whereas we use a worst-case approach to model each player's uncertainty of the payoff

1 Knight [82] was one of the first to draw a distinction between these two forms of uncertainty.

57



functions themselves.

Second, although these authors take a worst-case approach to some extent, their models

are nonetheless inherently probabilistic, unlike our approach, which is fundamentally de-

terministic. Klibanoff [81] and Lo [94] model each player's uncertainty of the other players'

behaviors using the notion of multiple prior probability distributions. They characterize each

player as believing his counterparts' actions are a realization from some unknown probabil-

ity distribution, belonging to a family of known multiple priors. Each player then seeks to

maximize his minimum expected utility, where the minimum is taken with respect to this set

of multiple priors. Gilboa and Schmeidler [58], Dow and Werlang [43], and Marinacci [106]

propose a related approach using non-additive probability distributions in place of sets of

multiple priors. Unlike these authors, we offer a model in which the players give no consider-

ation whatsoever to probability distributions over the uncertain values. Under our approach,

the players regard the uncertain values as simply unknown and not as realizations from some

probability distribution, even a distribution that is itself not exactly known. Consequently,

our model of the players' responses to uncertainty is distribution-free and deterministic in

nature.

Third, these authors offer no guidelines for equilibria computation in the context of their

models. In contrast, in Section 4.4, we propose such a computation method. Despite these

differences, the aforementioned authors' contributions provide ample support for the robust

optimization model we propose for games with incomplete information.

In addition, since the submission of this chapter of the thesis for publication, Hyafil and

Boutilier [77] have recently offered a worst-case approach for incomplete-information games,

based on the distribution-free decision criterion of minimax regret, popular in the online

optimization literature [24]. Their approach is in contrast to our framework of modeling

the players as each seeking to maximize his worst-case expected payoff. Hyafil and Boutilier

provide an existence result for a very restricted, special case of incomplete-information games,

involving private information, but finite type spaces. They offer no ideas on computation of

their equilibria.
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Having discussed some precedents for taking a worst-case approach to analyzing game-

theoretic situations, let us now formalize our robust games model.

4.2.2 Formalization of the Robust Game Model

In our robust optimization model of incomplete-information games, we assume that the

players commonly know only an uncertainty set of possible values of the uncertain payoff

function parameters. 2 They need not, as Harsanyi's model additionally assumes, have dis-

tributional information for this uncertainty set. In addition, we suppose that each player

uses a robust optimization, and therefore a worst-case, approach to the uncertainty, rather

than seeking, as in Harsanyi's model, to optimize "average" performance with respect to a

distribution over the uncertainty set. In the game theory literature, the "performance" of a

player's mixed strategy is measured by his expected payoff. Accordingly, in our model, given

the other players' strategies, each player seeks to maximize his worst-case expected payoff.

The worst-case is taken with respect to the uncertainty set, and the expectation is taken,

as in complete-information games, over the mixed strategies of the players. Analogous to

Harsanyi's "Bayesian game" terminology, we call the resulting games "robust games," and we

refer to their equilibria as "robust-optimization equilibria" of the corresponding incomplete-

information games.

In this section we will formalize our robust game model and its relation to Nash's and

Harsanyi's models for the complete- and incomplete-information settings, respectively. We

will also compare the notion of ex post equilibrium with the concept of robust-optimization

equilibrium.

Let us first define some terms and establish some notation. Suppose there are N players

and that player i E {1,..., N} has ai > 1 possible actions.

Definition 4.2.1. A game is said to be finite if the number of players N and the number

of actions ai available to each player i E {1,..., N} are all finite.

2Incomplete-information games in the absence of distributional information are sometimes called "games
in informational form" [76].
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So, we will use the term "robust finite game" to refer to robust games that have finitely

many players with finitely many actions each, even when the uncertainty sets are not finite.

In the complete-information game setting, a multi-dimensional payoff matrix P, indexed

over {1,..., N} x N=l{1,..., ai}, records the payoffs to the players under all possible action

profiles for the players. In particular, for i E {1,..., N}, (jl,... ,jN) E fI 1{1, ... ai},

let Pi2jl . N) denote the payoff to player i when player i' E {1,. . ., N} plays action ji E

{,...,ai,}. Let

ai A

Sai Xi C R ai Xi 0, ji
ji=1

That is, Sai is the set of mixed strategies over action space {1,..., ai}. Let us define r

U x liN Sai -- I N as the vector function mapping a payoff matrix and the mixed strategies

of N players to a vector of expected payoffs to the N players. In particular, ri (P; xl,..., xN)

will denote the expected payoff to player i when the payoff matrix is given by P and player

i' E {1,..., N) plays mixed strategy xi E Sai,. That is,

al ai aN N

ri(P;xl, xN) = ..... .F pi 
ji=1 ji=l jN=1 i=1

Now that we have established some notation, we can formulate the best response corre-

spondence in our robust optimization model for games with incomplete payoff information.

We will compare this correspondence with those in Nash's and Harsanyi's models for the

complete- and incomplete-information cases, respectively. In the remainder of this chapter,

we will use the following shorthands.

N
X-i ( 1 Xi - 1 i+'., N) S A Sai, (4.1)

i=l
N

(X-i, i) (X1 xi-1,Uixi+, ... , Xi ) i

i'-i
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Every model of a game attributes some objective to each player. A player's objective in

turn determines the set of best responses to the other players' strategies.

Definition 4.2.2. A player's strategy is called a best response to the other players' strate-

gies if, given the latter, he has no incentive to unilaterally deviate from his aforementioned

strategy.

In the complete-information game setting, with payoff matrix P, the classical model

assumes that each player seeks to maximize his expected payoff. So, player i's best response

to the other players' strategies x-i E S_i belongs, by definition, to

arg max 7ri (P; x-i, u) .
uiESai

In games with incomplete payoff information, the payoff matrix P is subject to uncer-

tainty. In Harsanyi's Bayesian model, in the context of games without private information, in

which the type spaces are singletons, player i's best response to the other players' strategies

x- i S-i must belong to

arg max E 7i (P;x-i,ui)
UiESai ' 'P-,

In our robust model, for the case without private information, player i's best response to

the other players' strategies x - i E Si must belong to

arg max inf i (P 
uiESai PEU ( u)

Thus, in moving from Harsanyi's Bayesian approach to our robust optimization model, we

replace the expectation in the definition of the best response correspondence with an infimum

operator.

Note that Vi E {1, . .., N} and V (x- i , ui) S, by the linearity of 7i over U and by the
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linearity of the expectation operator,

E ri (P; xu ) = 7ri (E [ ;x ,u , (4.2)
P P

where E [P] denotes the component-wise expected value of P. Hence, in the Bayesian game

setting, the average expected payoffs and expected average payoffs are in fact equivalent.3

Recall, from Harsanyi [66], that any Bayesian game with incomplete information is equivalent

to a static game with complete but imperfect information. As indicated by Equation (4.2),

in the absence of private information, a Bayesian game is equivalent to a finite game with

complete and perfect information, with the same action spaces and with payoff matrix E [P].

In contrast, under the robust model, the worst-case expected payoff expressed above is

no less than, and is generally strictly greater than, the expected worst-case payoff. That is,

i (P;x inf ([P] ;xi ui)PEU - \ PE U ' '

where infpE [P] denotes the component-wise infimum of P. Thus, a robust finite game

without private information is, in general, not equivalent to the complete-information, finite

game with the same action spaces and with payoff matrix commonly known to be infPEU [P] .

We will see in Section 4.4 that this equivalence does, however, hold for certain classes of

robust games.4

3We use the terms "average" and "expected" in an effort to distinguish between two different types of
expectations, namely, the expectation ("average") taken with respect to the distribution over the uncertainty
set of payoff parameter values and the expectation ("expected payoff") taken with respect to the distributions
induced by the players' mixed strategies.

40ne could model each player as wishing to maximize his expected worst-case payoff, rather than, as
we have done, his worst-case expected payoff. We chose the latter over the former for two reasons. First,
the former model is not, while the latter model is, in the spirit of robust optimization, in which we seek
to optimize a worst-case version of the nominal objective, i.e., the expected payoff. Second, while a robust
approach is by its nature pessimistic, the former model is even more, and perhaps excessively, pessimistic.
In it, each player assumes that the uncertain data realization will be maximally hostile with respect to
the action outcomes of the randomizations yielded by all the players' mixed strategies. In contrast, in the
robust model we propose, the maximal hostility is assumed by the players to be with respect to the mixed
strategy probability distributions themselves; i.e., the "adversary" does not have the benefit of seeing the
action outcomes of the randomizations, before he is forced to choose values of the uncertain data.

If one nonetheless opts, despite these drawbacks, to model each player as seeking to maximize his expected
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We are now ready to apply the concept of equilibrium to robust finite games.

Definition 4.2.3. A tuple of strategies is said to be an equilibrium if each player's strategy

is a best response to the other players' strategies.

Accordingly, the criterion for an equilibrium is completely determined by the best re-

sponse correspondence, which in turn is completely determined by the players' objectives.

For example, in the complete-information game setting, (x l ,..., xN) E S is said to be a

Nash equilibrium iff, Vi E {1,..., N},

xi E arg max 7Ti (P;x - i, u). (4.3)
uiESai

Similarly, under Harsanyi's model for finite games with incomplete payoff information and

with no private information, (x, ... , x N ) E S is said to be an equilibrium iff, Vi E {1, ... , N},

xi E arg max E 7i (;x, u)] . (4.4)

Finally, under our robust model for finite games with incomplete payoff information and

with no private information, (x l ,..., xN) E S is said to be an equilibrium, i.e., a robust-

optimization equilibrium of the corresponding game with incomplete information, iff, Vi E

{1,., N},

xi C arg max inf i (P;x i, u) (4.5)
UESa i PEU 

Let us contrast the equilibrium concepts arising from Harsanyi's Bayesian game model

and our robust game model with the notion of the ex post equilibrium, defined as follows.

Definition 4.2.4. A tuple of strategies is said to be an ex post equilibrium if each player's

strategy is a best response to the other players' strategies, under all possible realizations of

worst-case payoff, rather than his worst-case expected payoff, the game with incomplete information will be

equivalent to one with complete information and with payoff matrix infpEU [P]. Accordingly, the existence

and computation results that we will present in this chapter for the robust model follow trivially for this
excessively pessimistic model.
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the uncertain data.

More precisely, in the absence of private information, (x1,.. ., xN) C S is said to be an ex

post equilibrium iff, Vi E {1,..., N},

x e arg max ri (P;X- ,u) VP E U. (4.6)
Ui E Sa i

By definition, an ex post equilibrium must be an equilibrium of every nominal game in

the family of nominal games arising from U. This condition is quite strong. In fact, it is easy

to show that every ex post equilibrium of an incomplete-information game is an equilibrium

of any corresponding Bayesian game arising from the assignment of a distribution over the

set U. Similarly, we have the following lemma, establishing an analogous result for the set

of robust-optimization equilibria.

Lemma 4.2.1. The set of ex post equilibria of an incomplete-information game with no

private information is contained in the corresponding set of robust-optimization equilibria.

Proof. Suppose (x l ,... ,xN) E S is an ex post equilibrium of the incomplete-information

game with uncertainty set U. Suppose, 3i E {1,..., N} and 3ui E Sai, such that

inf i (P; i ) C inf i ( ; -i, ui).
PEU PEU

By the definition of ex post equilibrium,

i (P; < X-iuxi) VP E U,

yielding a contradiction of the fact that infpeu ri (P;x ,xi) is the greatest lower bound

on 7ri (P; Xi, i) over P E U. Therefore, Vi E {1,.. ., N}, and Vui E Sai,

inf 7Ti (P; i, xi) > inf 7i (P; xi, ui) 
PEU PEU

establishing that (xI, ... , xN ) E S is an equilibrium of the corresponding robust game. [
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In Section 4.2.5, we will illustrate, with examples, our robust optimization model for

games with incomplete information. Using one of these examples, in Section 4.2.6, we will

demonstrate that, in general, ex post equilibria do not exist in incomplete-information games.

Before giving these examples, we wish to address two questions that the reader may have

regarding our approach. In Section 4.2.3, we will discuss why, in the context of distribution-

free, incomplete-information games, it is reasonable, and in fact natural, to combine the

notion of equilibrium with a worst-case viewpoint. In Section 4.2.4, we will discuss our

motivation for considering mixed strategies.

4.2.3 Why Combine Equilibrium and Worst-Case Notions?

Recall that, with the exception of two-person, zero-sum games with complete information,

mixed strategy equilibria do not generally consist of max-min strategies. That is, a player's

strategy in a mixed-strategy equilibrium is not generally the one guaranteeing him the best

possible expected payoff when his counterparts collude to minimize this quantity. The reason

is that a player's counterparts generally have incentive to deviate from such collusive behav-

ior, in order to try to individually maximize their own payoffs. In turn, the player himself

therefore generally has incentive to deviate from the aforementioned max-min strategy.

In contrast, the robust optimization paradigm is fundamentally such a max-min, or a

worst-case, approach. In our robust games model, given his counterparts' strategies, each

player formulates a best response as the solution of a robust optimization problem. Based on

the discussion in the preceding paragraph, one may worry that, by analogy, best responses

based on robust optimization are not conducive to equilibrium. This analogy fails, and this

worry is therefore unfounded, for the following reason. In our model, a player's counterparts

are outside the scope of that player's pessimistic viewpoint. In particular, each player takes

a worst-case view only of the uncertain parameters that define his payoff function, under a

given tuple of his counterparts' strategies. Each player does not take a worst-case approach

to his uncertainty with respect to this tuple itself, as is done in classical max-min strategies.

Indeed, "nature," rather than any of the players themselves, selects these unknown payoff
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parameter values. Accordingly, in order for the analogy to hold, nature must be a participant,

on the same footing as the other players, in the game. However, nature receives no payoff in

the game, and therefore cannot be characterized as a player itself.

Thus, it is indeed reasonable to combine, as we have done, the notion of equilibrium with

the robust optimization paradigm. Let us now explain why this union is in fact natural, in

the context of incomplete-information games. If the players commonly know that they all

take a robust optimization approach to the payoff uncertainty, then they would all commonly

know each others' best response correspondences. Armed with this common knowledge, the

players could then attempt to mutually predict each other's behavior, just as they could

in a complete-information game, as discussed in Section 4.1.1. Recall from this discussion

that the set of Nash equilibria are the set of consistent such mutual predictions in a finite,

complete-information game. Analogously, the set of equilibria of a robust finite game are

the set of consistent such mutual predictions in the corresponding finite, distribution-free,

incomplete-information game. As such, our notion of equilibrium in a robust game offers

a natural approach to attempting to predict the outcomes of such incomplete-information

games.

4.2.4 Interpretation of Mixed Strategies

We will now explain our motivation for considering mixed strategies, and we will relate

this discussion to interpretations of mixed strategies in the context of complete-information

games (see, for example, Chapter 3 of Osborne and Rubinstein [119]). In the case of finite

games with complete information, some game theorists support the literal interpretation of

mixed strategies as actual randomizations by the players over their action spaces. Others

are dissatisfied with this viewpoint. The latter group note the following property of mixed

strategy equilibria, in finite, complete-information games. In response to his counterparts'

behaviors in any such equilibrium, each player's mixed strategy does as well, but no better

than the actions contained in its support. The opponents of the literal interpretation there-

fore argue that this lack of strict preference for randomization undermines the belief that

66



players randomize in reality.

In the case of robust finite games, this argument against the literal interpretation does

not hold. In particular, because of the infimum in the worst-case expected payoff function,

this function is nonlinear. Consequently, for any mixed strategy equilibrium in such a game,

in response to his counterparts' behavior in this equilibrium, each player will, in general,

strictly prefer his mixed strategy over the actions in its support. Accordingly, one may

argue that the literal viewpoint of mixed strategies is more justified in the context of robust

games than it is in the context of complete-information games.

One may nonetheless remain dissatisfied with this belief that players randomize in real-

world, game-theoretic settings, even those involving payoff uncertainty. Let us then con-

sider an alternative interpretation of mixed strategies. In the literature on finite, complete-

information games, some have advocated the viewpoint of mixed strategy equilibria as lim-

iting, empirical frequencies of actions played, when the game is repeated.

The same empirical frequency interpretation extends to robust finite games. Imagine

that the players engage concurrently in many instances of the same game, with the same,

unknown payoff matrix P. Suppose the players know that P is constant across all instances,

but are uncertain of its true value. As before, suppose each player knows only an uncertainty

set to which P belongs, has no distributional information with respect to this set, and takes

a worst-case approach to this uncertainty. Lastly, suppose that, in each instance of the game,

each agent may play a different action. Each player thus builds, in essence, a "portfolio"

of actions. The payoff from each action in the portfolio is determined by the other players'

actions in the corresponding instance of the game and by the single unknown value of P.

Accordingly, we may view the mixed strategy equilibria as the limiting, empirical frequencies

describing each player's level of diversification within his portfolio of actions. Note that this

portfolio interpretation can be recast in terms of sequentially repeated games, in which the

players know that the uncertain payoff matrix is constant over all rounds, and in which they

(lo not receive their payoffs until the final round is played. That is, the players do not know,

until at least after play has terminated, the true value of P.
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4.2.5 Examples of Robust Finite Games

Having presented our robust games model and addressed some interpretation issues, we will

now illustrate our approach with a few examples.

Example 1. Robust Inspection Game

Consider the classical inspection game discussed in [54]. The row player, the employee,

can either shirk or work (actions 1 and 2, respectively). The column player, his employer, can

either inspect or not inspect (actions 1 and 2, respectively). The purpose of inspecting is to

learn whether the employee is working. The two players simultaneously select their actions.

When the employee works, he suffers an opportunity cost 9, and his employer enjoys a value

of work output of v. When the employer inspects, she suffers an opportunity cost of h. If

she inspects and finds the employee shirking, she need not pay him his wage w. Otherwise,

she must pay him w. In the nominal version of the game, , w, , and h are commonly

known with certainty by the players. In practice, it seems reasonable that the opportunity

costs and the value of work output (e.g., subject to unpredictable defects) would be subject

to uncertainty. To this end, suppose that v, , and h are subject to independent uncertainty,

the nature of which is common knowledge between the two players. For example, we may

consider the robust game in which the payoff uncertainty set is given by

~U ={( (0, -h) (w, W) [,9] [, [hh]
{((w-g,v-w-h) (w-g,v-w) 

Example 2. Robust Free-Rider Problem

Consider the symmetric version of the classical, 2-player, free-rider problem discussed

in [54]. Each player must make a binary decision of whether or not (actions 1 and 2,

respectively) to contribute to the construction of a public good. The players make their

decisions simultaneously. If a player contributes, the player incurs some cost , which is

subject to minor uncertainty (e.g., because projected costs are rarely accurate), in a way

that is common knowledge to the two players. If the public good is built, each player enjoys
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a payoff of 1. The good will not be built unless at least one player contributes. So, we may

consider the resulting robust game with payoff uncertainty set

U ((E + A] ,
(1, - ) (0,0)

for some fixed A > 0.

Example 3. Robust Network Routing

Network routing games, formulated as early as 1952 by Wardrop [164], have become

an increasingly popular topic in the game theory literature. Within the last five years,

Papadimitriou [120] and others have studied the so-called "price of anarchy," or the difference

between total payoffs at equilibria versus at Pareto optimality.

Consider a network routing game, in which N internet service providers must each con-

tract for the use of a single "path" in a network of a paths (e.g., servers, wiring, etc.). The

providers must make these arrangements simultaneously and prior to knowing the demand

to be faced (i.e., the amount of data their customers will want to route). So, each provider's

action space is the set of paths in the network. Suppose edge latencies in the network are

linear and additive, and that the payoff to provider i when he uses path i is given by the

negative of total latency experienced on edge ji. That is, higher latencies yield lower payoffs.

Specifically, we can express the uncertain payoff matrix P as a function, P, of the uncer-

tain demands to be faced. Let di denote the uncertain demand to be faced by provider i.

Vi {1, . . ., N, V(jl,..., jN) E {1,...,a}N, let

P(ijl. ,jN) (jl...N) A(,., ,,)diI,
{i' I ji,=Ji}

where A(i,j,) are nonnegative coefficients that account for the fact that the marginal latencies

may differ by provider and path. The demand uncertainty may arise from the fact that

the providers commonly know the total demand D to be faced by all of them, but do
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not know how this demand will be distributed among them (e.g., uncertainty of projected

subscribership for a future year). For example, the uncertainty set may be given by

U = {P(d .. dN) D, d di, i, ... ,

where

N

D > Ed,
i=l1

di > 0, i,.

are commonly known by the players.

4.2.6 Nonexistence of Ex Post Equilibria

We will now use the incomplete-information inspection game presented in Example 1 to

illustrate that not all incomplete-information games have an ex post equilibrium. Each

possible realization of (, , h) E [g, !] x [v, ] x [h,h] gives rise to a nominal game, i.e.,

a game with complete information. It is easy to show that each such game has a unique

equilibrium in which the employee shirks (action 1) with probability h/w and the employer

inspects (action 1) with probability /w. So, unless g = and h = h, this incomplete-

information game has no ex post equilibria.

Accordingly, the ex post equilibrium concept cannot be applied to all games with incom-

plete information, because such equilibria need not exist. In contrast, in the next section,

we will prove that any robust finite game with bounded uncertainty set has an equilibrium.

In this way, robust games offer an alternative distribution-free notion of equilibrium, whose

existence is guaranteed.
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4.3 Existence of Equilibria in Robust Finite Games

Having formalized and given examples illustrating our robust optimization model of games

with incomplete payoff information, let us now establish the existence of equilibria in the

resulting robust games, when these games are finite and have bounded uncertainty sets. Our

proof of existence directly uses Kakutani's Fixed Point Theorem [79] and parallels Nash's

first existence proof in [116]. As already mentioned, we focus in this section on incomplete-

information games not involving private information. In Section 4.6, we extend our existence

result to the general case involving potentially private information.

To begin, let us state Kakutani's theorem and a relevant definition. Kakutani's definition

of upper semi-continuity relates to mappings from a closed, bounded, convex set S in a

Euclidean space into the family of all closed, convex subsets of S. 2 will denote the power

set of S.

Definition 4.3.1 (Kakutani

semi-continuous if

[79]). A point-to-set mapping : S -+ 2s is called upper

yn C E (x ), n = 1,2,3,...

lim xn = x
n-oCO

lim yn = y

imply that y CE (x). In other words, the graph of @I(x) must be closed.

Theorem 4.3.1 (Kakutani's Fixed Point Theorem [79]). IfS is a closed, bounded, and

convex set in a Euclidean space, and d) is an upper semi-continuous point-to-set mapping of

S into the family of closed, convex subsets of S, then 3x E S s.t. x E (x).

To use Kakutani's Fixed Point Theorem, we must first establish some properties of the

-worst-case expected payoff functions, given by

(4.7)Pi ( x , x) inf 7ri (P; x x )
PEU
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i E {1,..., N}. In an N-person, robust finite game, let U C RNn-I=lai be the uncertainty

set of possible payoff matrices P.

Lemma 4.3.1. Let U C RNt =lai be bounded. Then, V(x1, ...,xN) C I al +' +aN and

WV > 0, 36 (E, xl,...,XN) > 0 such that, VP E U and Vi E {1,...,N},

11 (yl ... , Y)- (xl,. .. ,XN) 11 < d (E, X

-o7i (P; XI,-, XN) I

implies

Iri (P; y , ·. N) < e.

Proof. V(x1, .. ,xN) E I al +"+aN, and Ve > 0, consider (, x1 ,..., xN ) given by

6 (e, X,..., XN) min(E, 1)
N /

2(2N- 1)M. ai
i=1

max max Ix 
tjiE{ ,...,a 2} 

where 1 < M < oc satisfies

N

Vi E {1,-NJ, V(jl,...,jN) H{i,, ,ai}, V E U.
i=1

P(ij, iJN)l < M,

The result follows from algebraic manipulation. O

Lemma 4.3.1 immediately gives rise to the following continuity result, which we therefore

state without proof.

Lemma 4.3.2. Let U C RINHiNlai be bounded. Then, Vi {1,...,N}, Pi (xl,...,xN) is

continuous on Ral +'aN

Similarly, it is trivial to prove the following lemma.

Lemma 4.3.3. Vi E {1,..., N} and Vx- i E S-i fixed, pi (x- i, xi) is concave in x i.
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We are now ready to prove the existence of equilibria in robust finite games with bounded

uncertainty sets.

Theorem 4.3.2 (Existence of Equilibria in Robust Finite Games). Any N-person,

non-cooperative, simultaneous-move, one-shot robust game, in which N < o, in which player

i c {1,.. ., N} has 1 < ai < o possible actions, in which the uncertainty set of payoff

matrices U C INl ai is bounded, and in which there is no private information, has an

equilibrium.

Proof. We will proceed by constructing a point-to-set mapping that satisfies the conditions

of Kakutani's Fixed Point Theorem [79], and whose fixed points are precisely the equilibria

of the robust game. To begin, clearly, S is closed, bounded, and convex, since Sai is,

Vi E {1,..., N}. Define S 2 as

1(x .. ., X )

= (yl, yN)ES yiE arg max pi(x-i, ui), 1..., N . (4.8)

Let us show that 1 (xl..., xN) # 0, V (x1,..., xN) E S. By Lemma 4.3.2, Vi E {1,..., N},

Vx- i E S-i fixed, pi (x l ,... ,xN) is continuous on Sai, a nonempty, closed, and bounded

subset of IRai. Thus, by Weierstrass' Theorem,

arg max pi (x-i, ui ) 0.
uiESai

Accordingly, V (x l ,..., xN) E S,

· (x1,...,xN) # 0.

It is obvious from the definition of 4, that V (xl,..., xN) E S, (x l ,..., xN) C S, and

that (xl,..., xN) is an equilibrium of the robust game iff it is a fixed point of . Thus, we

need only prove the existence of a fixed point of 4. Let us therefore establish that '4 satisfies

73



the remaining conditions of Kakutani's Fixed Point Theorem; that is, we must show that D

maps S into a family of closed, convex sets, and that d is upper semi-continuous.

Let us first prove that, V (xl,... ,xN) S, (xl,..., xN) is a convex set. Suppose

(U . .., UN), (V,..., vN) E (x, ... , XN).

Then, by the definition of d, Vi E 1,..., N}, Vy i E Sa,

Pi (x-i, ui) = Pi (x-i, vi)

It follows that, VA E [0, 1], Vyi E Sai

Api (x", u) + (1- A)pi (x-i, vi) > pi(x-i, yi).

By the concavity result of Lemma 4.3.3,

A(u .. .U N) + (1 - )(V1 ... , VN) CE (, (xl,. .. , IN).

Let us now show that is upper semi-continuous, per Kakutani's definition. Suppose

that, for n = 1, 2, 3, .. .,

SX1 ,n . N,n

(y1 ,n yNn)
lim (x 1 '

lim (xl n, .n--oc(

lim (yl n,
n--oo0

.. XN,n)

* Y Nn)

E() (xl'n,x Nn)

= (Ul , U) E S

= (V1,...,VN) G S.

By the definition of d>, we know that, Vn = 1, 2, 3,..., Vi E {1,..., N} and Vwi E Sai,
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Taking the limit of both sides, and using Lemma 4.3.2 (continuity of Pi), we obtain that,

Vi E {1,..., N} and Vwi Sai,

Pi (i, vi ) > Pi ( - i, i) 

Hence,

(v, ,vN) )E ,(Ul ".uN),

and <D is upper semi-continuous. Note that the fact that (xl,..., xN) is closed follows

from the fact that is upper semi-continuous (take (x1n,...,x N ) = (ul,..., N) =

(x1, .. xN), Vnr= 1,2,3,.. ).

This completes the proof that satisfies the conditions of Kakutani's Fixed Point The-

orem, and thereby establishes the existence of an equilibrium in the robust game. D

4.4 Computing Sample Equilibria of Robust Games

In Section 4.3, we established the existence of robust-optimization equilibria in any finite,

incomplete-information game with bounded uncertainty set and no private information. In

this section, for any resulting robust game with bounded polyhedral uncertainty set, we show

that the set of equilibria is a projection of the set of solutions to a system of multilinear

equalities and inequalities. This projection is a simple component-wise one, into a space of

lower dimension. Based on this formulation, we present an approximate computation method

for finding a sample equilibrium of such a robust game. We provide numerical results from

the application of our method. Finally, we describe a class of robust finite games whose

set of equilibria are precisely the set of equilibria in a related complete-information, finite

game in the same action spaces. As noted before, in this section, we focus on robust games

not involving private information. In Section 4.6, we provide a more general result on the

computation of robust-optimization equilibria in games with private information.
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4.4.1 Review for Complete-Information, Finite Games

Before describing our technique for finding robust-optimization equilibria, let us review the

state of the art for complete-information, finite games.

Solving for an equilibrium of a general complete-information, finite game is regarded as a

difficult task [120]. Two-person, zero-sum games are the exception. As noted in von Stengel

[162], in any such game, the set of Nash equilibria is precisely the set of maximinimizers,

as defined by von Neumann and Morgenstern [161]. Accordingly, the equilibria are pairs of

solutions of two separate LPs, one for each player, and the set of equilibria is therefore convex.

For non-fixed-sum games, solving for Nash equilibria is more computationally demanding,

and the set of equilibria is generally nonconvex. As discussed in McKelvey and McLennan

[107], the set of Nash equilibria can be cast as the solution set of several well-known problems

in the optimization literature: fixed point problems, nonlinear complementarity problems

(linear in the case of two-player games), stationary point problems, systems of multilinear

equalities and inequalities, and unconstrained penalty function minimization problems, in

which a penalty is incurred for violations of the multilinear constraints.

Algorithms for finding sample Nash equilibria exploit special properties of these for-

mulations. Traditionally, the most well-regarded algorithm for two-player, non-fixed-sum,

complete-information, finite games has been the Lemke-Howson path-following algorithm

[90] for linear complementarity problems. For this more general class of problems, the

algorithm's worst-case runtime is exponential. The worst-case runtime in the specific appli-

cation context of two-person games is unknown. For N-player complete-information, finite

games with N > 2, the traditionally favored algorithms have been different versions of path-

following methods based on Scarf's simplicial subdivision approach [145, 146] to computing

fixed points of a continuous function on a compact set. These simplicial subdivision algo-

rithms include that of van der Laan and Talman [158, 159], and their worst-case runtimes

are also exponential. The Lemke-Howson and simplicial subdivision algorithms form the

backbone of the well-known game theory software Gambit [108].

More recent approaches to solving for sample Nash equilibria have exploited the multilin-
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ear system formulation, and have applied general root-finding methods to the complemen-

tarity conditions that arise from this system. For an overview of the formulation, we refer

the reader to Chapter 6 of [153]. For a comparison of these Gr6bner basis and homotopy

continuation methods of computation with the more traditional Gambit software, we refer

the reader to Datta [40]. Govindan's and Wilson's [60] global Newton method similarly uses

the multilinear system formulation. Finally, Porter, Nudelman, and Shoham [130] offer a

potential shortcut, which exploits the fact that, for complete-information games, it is easier

to solve for a Nash equilibrium with a fixed support, and that smaller supports yield lower

runtimes.

These more recent numerical techniques are more powerful in terms of their aptitudes at

computing all equilibria of a complete-information, finite game, a more difficult task than

computing a single, sample equilibrium. For example, PHCpack [160] can find all isolated

roots of a system of polynomials.

4.4.2 Robust Finite Games

Multilinear System Formulation for Equilibria

In this subsection, we show that the set of equilibria of a robust finite game, with bounded

polyhedral uncertainty set and no private information, is the projection of the solution set of

a system of multilinear equalities and inequalities. The projection is a simple component-wise

projection into a space of lower dimension.

As a basis of comparison, for an N-player, complete-information, finite game, in which

player i has action space {1,..., ai}, and in which the payoff matrix is P, let us formulate

the multilinear system whose solutions are the set of Nash equilibria. From Condition (4.3),
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we see that (xl,..., xN) is a Nash equilibrium iff it satisfies the following system:

ri (P;x
-i, xi - ei) > 0° i = 1,- N; ji = , ai

e/xi = 1, i = 1,..., N
Xi > 0, i= 1,..., N,

where e is the vector, of appropriate dimension, of all ones, and where e. denotes the jh

unit vector in Rai

Analogously, from Condition (4.5), (x1 ,... ,x N ) is an equilibrium of the robust finite

game with closed and bounded uncertainty set U C RN Hil ai, and with no private informa-

tion, iff

minri (P;x-i,xi)-max min ri (;xi, ui) > O, i=1,.., N
PEU uiESai PEU 

e'xi = 1, i=l,.., N

xi > , i=l,..., N.

Stated in another way, (xl,... , xN ) is an equilibrium of the robust finite game iff, for each

i E {1,..., N}, xi is a max-min strategy in a two-person, zero-sum game between player i

and an adversary. In this two-person, zero-sum game, the payoff matrix is determined by

x-i, and the adversary's strategy space is U.

Although the above system may not seem amenable to reformulation as a system of

multilinear equalities and inequalities, we establish in Theorem 4.4.1 that, when U is a

bounded polyhedron, the system can, in fact, be reformulated in this way. Before stating

and proving this theorem, let us state and prove the following lemma, inspired by the LP

duality proof techniques used in [18].

Lemma 4.4.1. Let U C IN l= a be a bounded polyhedral set, given by

U = {P F vec(P) > d} 0, (4.9)
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where

vec (P) - (P('ij1. iN))i=1,..,N; (jl,..,jN)H={1 ai}

Let G(f), E {1, . ., k}, denote the extreme points of U. Vi E {1,

the following three conditions are equivalent.

..,N}, V (x-,u) E S,

Condition 1)

Condition 2) zi < 7ri (G(f); x-i, ui), = 1,.

Condition 3) 3rli E Rm such that

., k.

r > _ Zi

= Yi (x) Ui

i 0> O,

where Yi (x- i) E R(N In = ai)xai denotes the matrix such that

= 7 (P;x-,u).

Proof. Conditions 1 and 2 are equivalent, since by the linearity of 7ri in P,

min 7i (P;
PEU

-i, u i) min 7ri (G(f);x , u) .
tE(1I...,k}

To prove the equivalence of Conditions 1 and 3, consider the following primal-dual pair,

in which (x- i, ui ) is treated as data.

mmin
vec(P)

vec (P)' Yi (x-i) ui (4.11)

s.t. F. vec (P)
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zi L< min 7ri(f3 X-i'Ui)

vec (P)'YYi (x-') u'



max d'r/i
7/i

s.t. F'r = Yi (x-i) ui (4.12)

ri > 0.

Since U ~ 0, Problem (4.11) is feasible. Suppose (x- i, ui ) satisfies Condition 1. Then,

Problem (4.11) is also bounded. By strong duality, Problem (4.12) is feasible and bounded

with optimal value equal to that of Problem (4.11). Thus, Condition 3 is satisfied. For the

other direction, suppose Condition 3 is satisfied. Then, Problem (4.12) is feasible. By weak

duality, Condition 1 must hold. O

Theorem 4.4.1 (Computation of Equilibria in Robust Finite Games). Consider the

N-player robust game, in which player i E {1,.. , N} has action set {1, .. , ai}, 1 < ai < oc,

in which the payoff uncertainty set U c RNHil ai is polyhedral, bounded, and given by (4.9),

and in which there is no private information. Let G(f), f C {1,...,k}, denote the extreme

points of U. The following three conditions are equivalent.

Condition 1) (X 1,..., XN) is an equilibrium of the robust game.

Condition 2) Vi E {1, ... , N}, 3zi R, 'i E Rk, /i E IR such that (xl, ... , xN, zi, i, ,i)

satisfies

Zi= i

zi - ri (G(f); xl1 ... X N) < o, ...-, k

e/xi= 1

xi > 0 (4.13)

e'i= 1

k

ZO sTi (G(f); , e) - i < O, i= 1,...,ai

oi > 0,
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where e is the vector, of appropriate dimension, of all ones, and where e i is the jith

unit vector in Iai .

Ni= aiCondition 3) Vi E {1,..., N}, 3ri E I m , i E INiN i such that (x l ,

satisfies

(ei)' yi (x-i) e <

F/ri yi (X-i) Xi =

e/xi
ex =

'', X N, i, i)

ji : ,...,ai

0

1 (4.14)

0

F > d,

where Yi (x-i) e i(Na=)1 ai)Xai is as defined in (4.10).

Proof. Since U is closed and bounded, Condition 1 is equivalent, by Relation (4.5), to

(Xl,...,xN ) E S

xi E arg max min
uiESai PEU

i(p;x i,u)] i=1,...,N.

In turn, these constraints are equivalent to the requirement that, Vi E {1,.

such that (xi, zi) is a maximizer of the following robust LP.

max Zi
Ui ,Zi

s.t. Zi < min 7i (P;xi, ui)
PEU

etu i = 1

ui > 0.

(4.15)

In this robust LP, x - i is regarded as given data, and e denotes the vector, of appropriate
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dimension, of all ones.

Suppose Condition 1 is satisfied. Then, by Lemma 4.4.1, 3zi c R and riC Rm such that

(xi, zi) is an optimal solution of the maximization problem in the primal-dual pair

max Zi
Ui Zi

= 1, . . ., k (4.16)
u i =eu 1

ui > o0,

min i

s.t. e'8i = 1 (4.17)

k

LOeTi (G(f);x-, ej) - i , ii = 1,,ai
f=l

oi > 0,

and such that (xi, r/i, zi) is an optimal solution of the maximization problem in the primal-

dual pair

max
Ui, 7 ,Zi

Zi

s.t. i-d d'ri < 0

F/ni - Yi (x -i) Ui

min
~z ,V i

eu i =

Ui , 7i

= 0 (4.18)

1

> 0,

vi

s.t. F 2i > d

8i
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S.t. i < ri (G(f); x-, u ,



robust game robust game
using constraints using extreme points complete-info game

variables atot + N(m + v) atot + N(k + 2) atot
constraints 2atot + N(2m + v + 1) 2atot + N(2k + 3) 2atot + N

maximum degree N N N

Table 4.1: Sizes of multilinear systems for equilibria

Conditions 2 and 3 follow from LP strong duality.

For the reverse direction, suppose that Condition 2 holds. Then, Vi E {1, ... , N}, and

for x-i, (xi, zi) is a feasible solution of (4.16), and (i, Xi) is a feasible solution of (4.17),

such that zi = ¢i. By LP weak duality, (xi, zi) is an optimizer of (4.16). Equivalently, by

Lemma 4.4.1, (xi, zi) is an optimizer of (4.15), and Condition 1 follows.

Similarly, suppose that Condition 3 holds. Vi C {1,..., N}, let

Zi = d'r i

vi = max (i)'yi (x-i) e.

Then, for x-i, (xi, i, zi) is a feasible solution of (4.18) and (vi,vi) is a feasible solution

of (4.19) such that zi > vi. By LP weak duality, (xi, ri, Zi) is an optimizer of (4.18).

Equivalently, by Lemma 4.4.1, (xi, zi) is an optimizer of (4.15), and Condition 1 follows. D

Remark: Note that Systems (4.13) and (4.14) are derived using the extreme-point

and constraint representations of the polyhedral set U, respectively. These systems are

very sparse as a result of their multilinearity. In addition, it is possible to formulate Sys-

tem (4.14) more compactly if U can be described by m constraints and only v variables,

-with v < N i 1 ai. Let atot = -IN ai, v and m be the number of variables and con-

straints, respectively, needed to define U, and k be the number of extreme points of U.

Table 4.1 summarizes the sizes of the different multilinear systems of equalities and inequal-

ities whose solution sets are precisely the set of equilibria of an N-player game in which

player i E {1,..., N} has action space {1,..., ai}.
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Computation Method

For robust finite games with bounded polyhedral uncertainty sets and no private information,

we showed in Section 4.4.2 that the set of equilibria is a projection of the solution set of

a system of multilinear equalities and inequalities. This projection is a simple component-

wise projection into a space of lower dimension. Currently available and computationally

effective solvers for large polynomial systems tend to be specific to systems of equations and

not inequalities. Accordingly, we propose to solve the multilinear systems for the robust-

optimization equilibria by converting any such system into a corresponding penalty function,

and then solving the resulting unconstrained minimization problem. The penalty method

we use is based on Courant's quadratic loss technique [34], which Fiacco and McCormick

later more fully developed in [49].

To more concretely describe our approach, consider any system

gn(Y) = O, n c E (4.20)

gn(Y) nE I,

with y E I V, II < oo, and EI < oc. Let

1 1
h(y) 2 [gn(y)]2 + 2 E [max {gn(y), 0}]2.

nEE nEI

Since h(y) > 0, Vy E RV, it is easy to see that y satisfies System (4.20) iff

h(y) = min h(u) = 0.
uEIRV

So, we can solve System (4.20) by solving the unconstrained minimization problem

min h(u).
uERv

For the unconstrained minimization problem, we propose the use of a pseudo-Newton
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method using the Armijo rule (see, for example, [15]) for determining step size at each

iteration. Each pseudo-Newton method run attempts to find a single point satisfying the

constraints. It is possible, though not guaranteed, that, when the system of constraints has

more than one solution, multiple pseudo-Newton method runs may identify multiple, distinct

approximate solutions of the system. Furthermore, in contrast to most other state-of-the-art

polynomial system solvers, this method is capable of finding non-isolated, as well as isolated

solutions.

In the next subsection, we present numerical results from the implementation of this

technique for approximately computing a sample robust-optimization equilibrium.

Numerical Results

For each problem instance, we formulated the set of equilibria using System (4.13). We

executed all computations in MATLAB 6.5.0 R13, running on the Red Hat Linux 7.2-1 op-

erating system, on a Dell with a Pentium IV processor, at 1.7 GHz with 512 MB RAM.

To encourage the numerical method to find points satisfying the nonnegativity and normal-

ization constraints on xi and Oi , i E {1,..., N}, we multiplied the amount of violation of

each such constraint by M = 100, before halving the square of this violation. We initialized

all runs of the pseudo-Newton method by, for each i E {1, ... , N}, randomly generating

xi and 0i , satisfying the aforementioned nonnegativity and normalization constraints. We

initialized zi to be the maximum possible value satisfying the upper-bound constraint on zi,

and we set Xi either equal to zi or to the minimum possible value allowed by the lower-bound

constraint on i. For each pseudo-Newton method run, we terminated the run if the current

and previous iterate were too close, if the norm of the direction was too small, if the penalty

was already sufficiently small, or if the number of iterations already executed was too large.

We executed the method on the robust inspection game, described in Example 1 in
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Section 4.2.5, with

g= 8, v= 16, h= 4, w= 15,

9= 12, v= 24, h= 6.

The multilinear system for the equilibria of this robust game has 22 constraints in 10 vari-

ables, after elimination of some redundant variables. We terminated the pseudo-Newton

method run once the penalty function dipped below 10-8 . As will follow from Theorem 4.4.2,

in the unique equilibrium of this robust game, the employee (row player) shirks (plays action

1) with probability x1 = 2/5, and the employer (column player) inspects (plays action 1)

with probability x2 = 4/5. Our numerical method terminates at (x1, x2) = (0.4000, 0.8000)

after 0.5000 seconds of one pseudo-Newton run, requiring 71 iterations.

In addition, we executed the method on the robust free-rider game, described in Exam-

ple 2 in Section 4.2.5, with

c= 1/4, c= 5/8.

The multilinear system for the equilibria of this robust game has 18 constraints in 8 variables,

after elimination of some redundant variables. We terminated each pseudo-Newton method

run once the penalty function dipped below 10-10 or the number of iterations reached 2000.

We used M = 1, since the method did not seem to be attracted to strategy profiles outside

of the simplex. Let x denote the probability with which player i E {1, 2} contributes. As

will follow from Theorem 4.4.2, this robust game has 3 equilibria (x1, x2): (1,0), (0,1), and

(1 - , 1 - ) = (3/8,3/8). We made 15 sequential runs of the pseudo-Newton method,

each initialized at a randomly generated point. These 15 runs required 1.8458 minutes, with

each run executing an average of 1,652.1 iterations in an average of 7.3827 seconds. Termi-

nal points with penalty function less than 10-10 included (0.0000, 0.9999), (0.9999, 0.0000),

(0.3750, 0.3751), and (0.3751, 0.3750). This example demonstrates that the method is capa-

ble of finding multiple equilibria, and possibly all equilibria, of a robust game.
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Lastly, we executed the method on several instances of the robust network routing game,

described in Example 3 in Section 4.2.5. The instances differ in terms of their values of

N, the number of players, and a, the number of paths available. The resulting versions of

System (4.13) consist of 2N2 + N(2a + 3) constraints in N2 + N(2 + a) variables.

For all the instances, we used the same values for D and A. In particular, we set D = 5

and A(i,ji) to be a realization of the uniform distribution on [0, 4]. The computational results

for these robust network routing games are summarized in Table 4.2. For each instance,

we made only one run of the pseudo-Newton method, and terminated it after the lesser

of 50 iterations or the minimum number of iterations required to produce an iterate with

associated penalty less than 10- 5 . The "vars" and "constr's" columns in Table 4.2 give the

number of variables and constraints, respectively, in System (4.13) for each problem instance.

The "iters" column gives the number of iterations executed. The "penalty" column gives

the penalty value of the final iterate. Finally, the "proportional error" column gives

penalty

min min {i, l/ i
ic{1,.. ,N}

where ~i and hi denote the values of zi and Xi in the final iterate. We could obviously achieve

better speed or accuracy by varying the cap on the number of iterations and the penalty

threshold used to decide whether to terminate the pseudo-Newton method run.

These numerical results demonstrate that a practical method, simple in nature and gen-

eral in its applicability, exists for approximately solving, with considerable accuracy and

speed, for sample equilibria of robust games of small size. Furthermore, with longer run-

times and lower accuracy, this method may be capable of finding solutions for robust finite

games of larger size.

A Special Class of Robust Finite Games

Under certain conditions, the set of equilibria of a robust finite game is equivalent to that of

a related finite game with complete payoff information, with the same number of players, and
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vars constr's cpu time iters penalty proportional
(mins) II_ I_ error

N = 2, a = 2 12 22 0.0612 37 7.9811 x 10-6 1.8850 x 10-7

N = 3, a = 2 21 39 0.3887 17 5.5489 x 10-8 8.0825 x 10-10
N = 3, a = 3 24 45 1.4572 50 9.7746 x 10- 3 2.2952 x 10 - 4

N = 4, a = 2 32 60 3.4895 50 9.2659 x 10- 3 1.3192 x 10- 4

N = 4, a = 3 36 68 3.8935 50 1.2910 x 10-1 3.0427 x 10 - 3

N = 4, a = 4 40 76 4.7893 50 3.8569 1.4566 x 10-1
N = 5, a = 2 45 85 7.3268 50 5.7834 x 10-1 7.7508 x 10- 3

N = 5, a = 3 50 95 9.2945 50 1.3551 2.5495 x 10-2
N = 5, a = 4 55 105 12.6322 50 3.4239 8.7083 x 10-2
N = 5, a = 5 60 115 17.6880 50 15.3203 5.9287 x 10-1

Table 4.2: Numerical results for instances of robust network routing game

with the same action spaces. In these cases, equilibria computation for the robust game will

reduce to computation in the context of the related complete-information finite game. As

shown in Table 4.1, the multilinear systems arising from robust finite games are larger than

those arising from complete-information, finite games with the same number of players and

with the same action spaces. Thus, it will be computationally beneficial to take advantage

of this equivalence when it holds. As we will discuss in Section 4.5, the complete-information

equivalent of the robust finite game will generally not be the nominal (i.e., average) version

of the robust game.

The following theorem establishes sufficient conditions for the equivalence of a robust

finite game with a complete-information finite game having the same number of players and

the same action spaces.

Theorem 4.4.2. Consider the robust finite game, without private information and in which

the payoff uncertainty set is

(4.21)
U = { P (A, ,V88
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where

Uf = [f,, - fe [,f , fE {1,...,v}}, (4.22)

and P is a continuous and differentiable vector function. Suppose that, Vi E {1,...,N}

and V E 1,... ,v), 3(i, £) E {-1, 0, 1} such that, V(j,... , jN) E 1i=l {1,...,aij and

V(fl...,) CUf,

sign (fe [P(,. .jN) (fl, ' , fv)](fl...fv)=(fl . .)) (i. )

Then (xl,..., xN) is an equilibrium of this robust game if it is a Nash equilibrium of the

complete-information, finite game, with the same number of players and the same action

spaces, and in which the payoff matrix is Q, defined by

z = P .iN (h .. ,h)Q(jl,..,jN) ---j,,jN) ' ' *

fe e(i,) < 

f, nK(i, f) > O.

Proof. Let Ai {1,. .. ,ai} and A Ni=l Ai. Q E U implies that, Vi E {1,...,N},

V (X- i, u i) E S, i (Q; x-i, U i) > min 7i (; x-i, Ui). Conversely, Vi, V (x-i, ui) E S,
PcU

mnin 7i .X- i .. . ji i(imin ) (7*) u.)

ji=11 ji=1 jN=1 i'l--
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The equality follows since, by the definition of h, Vi E {1, ... , N}, V(jl,.., jN) E A,

P(l,..,jN) (hl, h)< P(jl, P ,jN) (f'' , 'f)

Therefore, Vi E {1,..., N}, V (x- i, u) E S,

= ri (Q; x , ui) 

By Relation (4.5), (X , ... ,x N) E S is an equilibrium of the robust finite game iff,

xi E arg max [min ri
uESai PEU

(P; x-i )] = arg max [i (Q; X - , u )].
U'ESai

Let us give an example of an application of Theorem 4.4.2. For i E {1,..., N}, let I(i)+

and I(i)- form a partition of {1,..., v}. Consider U given as in Theorem 4.4.2, with the

function P defined as follows. Vi E {1,..., N} and V(jl,... , jN) E A,

P(.l ,iN) (f, I I f') 

E i , ..)+. jN)f t
eEI(i)+

e 7(il - ... iN) ft
tEI(i)-

4.5 Comparison of Robust and Bayesian Finite Games

Having established, in Section 4.4, a computation method for identifying equilibria of robust

finite games without private information, in this section, using illustrative examples, we
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Z l ... N) e -
£EI(i)+ eEi(i)-

i, N)> 0, .(jl,,JN) -

Then

i N) f"(jl,...,jN)ft

=: 1,...,V.

V Ul' ·.. ' M E Uf.

min 7i (P; X- ,U
PEU i I



compare properties of these robust games with those of their nominal-game counterparts. By

Equation (4.2), each nominal game we present is in fact equivalent to the Bayesian game that

assigns a symmetric distribution to the uncertainty set in the corresponding robust game.

Thus, our comparisons can be said to be between robust games and these corresponding

Bayesian games.

In this same vein of comparison, turning our attention to a notion of symmetry unrelated

to the symmetry of probability distributions, we end this section by discussing symmetric

robust games, i.e., those in which the players are indistinguishable with respect to the game

structure. We prove the existence of symmetric, robust-optimization equilibria in these

games, thereby establishing a result analogous to Nash's existence theorem for symmetric

Nash equilibria of symmetric, complete-information, finite games [117].

4.5.1 Equilibria Sets Are Generally Not Equivalent

The set of equilibria of a robust finite game and that of its nominal counterpart, e.g., the

Bayesian game which assigns a symmetric distribution to the uncertainty set, may be dis-

joint. For example, consider the two-player inspection game presented in Example 1 in

Section 4.2.5, with

.C [8,12], vE [16,24], hE [4,6], w= 15,

4= 10, vE 20, h= 5.

The nominal version of the game has payoff matrix

( (0, -h) (, -w) (0, -5) (15, -15)

(w-4,-w-h) (w-4,-w) 2 V(5,0) (5,5) J

For the values given above, the nominal game has a unique equilibrium, in which the employee

shirks with probability 1/3 and the employer inspects with probability 2/3. In contrast, by

Theorem 4.4.2, the robust game is equivalent to the complete-information inspection game
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with payoff matrix

(0,-h) (w,-w) = (0,-6) (15,-15)

(w-g,v-w-h) (w-g,v-w)J V (3,-5) (3,1)

Thus, the robust game has a different, unique equilibrium, in which the employee shirks with

probability 2/5 and the employer inspects with probability 4/5.

It is not surprising that the worker would shirk with higher probability and the employer

would inspect with higher probability in the robust game than in the nominal game (i.e., in

the Bayesian game assigning a symmetric distribution over the uncertainty set). Indeed, in

moving from the average parameter values, as used in the nominal game, to the worst-case

parameter values, as used in the robust game, the employee's opportunity cost of working

increases, and the employer's cost of inspecting increases. As the employee's opportunity

cost of working increases, the employer expects that the employee will be less willing to

work. In order to make the employee indifferent between shirking and working, the employer

must therefore be more prone to inspect, despite her higher inspection cost. Conversely, as

the employer's cost of inspecting increases, the employee expects that the employer will be

less willing to inspect. In order to make the employer indifferent between inspecting and not

inspecting, the employee must therefore be more prone to shirk.

4.5.2 Sizes of Sets of Equilibria

The set of equilibria of a robust finite game may be smaller or larger than that of the

corresponding Bayesian game assigning a symmetric distribution over the uncertainty set.

For an extreme example in which the set of equilibria of a robust finite game is smaller than

that of the nominal-game counterpart, consider the robust game without private information

and with payoff uncertainty set

(f, 2) (2, f)
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Consider the nominal version of the game in which f = f = 2 is commonly known with

certainty by the players. In this game, all pairs of mixed strategies for the two players

are Nash equilibria. In contrast, by Theorem 4.4.2, the robust game is equivalent to the

complete-information game with payoff matrix

(2, 0) (0,2)

(0,2) (2,0) /

i.e., is equivalent to the classical, complete-information game of matching pennies (see, for

example, [54]), and therefore has a unique equilibrium. In moving from the robust game to

its Bayesian counterpart, the set of equilibria shrinks, because the payoff uncertainty results

in reduced indifference, by each player, between his two actions.

Conversely, for an equally extreme example in which the set of equilibria of a robust

finite game is larger than that of the corresponding nominal game, consider the robust game

without private information and with payoff uncertainty set

{( (1,(2)i (f-, fi ) (fl, f2) E [0, 8] x [0, 4] .
(f2, fl) (fl,f2) 

Consider the nominal version of the game in which (fi, f2) = (l, f2) = (4, 2) is commonly

known with certainty by the players. This nominal game is now equivalent to the complete-

information game of matching pennies and therefore has a unique equilibrium. In contrast,

by Theorem 4.4.2, the robust game is equivalent to the complete-information game with

payoff matrix

( (0,0) (0, 0)

(0,0) (0,0))

Thus, all pairs of mixed strategies for the two players are equilibria of the robust game.

In moving from the robust game to its Bayesian counterpart, the set of equilibria expands,

because the payoff uncertainty results in increased indifference, by each player, between his
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two actions.

4.5.3 Zero-sum Becomes Non-fixed-sum under Uncertainty

In general, if we subject to uncertainty the payoff matrix in a zero-sum game, the resulting

robust game will not be a fixed-sum game. For example, consider the payoff uncertainty set

4
(fl,-fl) (f2,-f2) (, f2, f3, f4)E [f, f-] 

(f3, -f3) (4, -f4) =1

In the nominal version of this game, the players commonly know with certainty that

(fl,f2,f3, f4) = (flf2,f3,f4),

for some (fi, f2, 3, 4) c [ILl[fe,f]. In contrast, by Theorem 4.4.2, the robust game is

equivalent to the complete-information game, with payoff matrix

(fl,-fl) (2,-f2)

(f3,-3) (4, -f4)

which is not fixed-sum unless f- fe is constant for E {1, 2, 3, 4}. This result is not

surprising, since the two players' worst-case perspectives need not agree.

4.5.4 Symmetric Robust Games and Symmetric Equilibria

Let us turn our attention to symmetric games and their symmetric equilibria, which comprise

an important topic in the game theory literature. We end this section by showing that

symmetric equilibria are guaranteed to exist in symmetric, robust finite games, just as they

are in symmetric, complete-information, finite games.

Stated very generally, a symmetric game is one in which the players are indistinguishable

with respect to the game's structure (action and strategy spaces, payoff functions, informa-
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tion, etc.). More formally, we have the following definition.

Definition 4.5.1. A finite game with complete information is said to be symmetric if

all players have the same action space, all players' payoff functions are invariant under

permutations of the other players' actions, and all players' payoff functions are equivalent.

That is, a complete-information game is symmetric if

ai = a,
i T-iI

(j-i,ji) =- Pij(-i)i)

i = 1,..,N

i,i = 1,, N; (j-i, ji) E 1,..., a N ; V E EN-1,

where

(j-i, j

(jo(-i), j)

and EN-1 denotes the set of permutations of N - 1 elements.

A tuple of players' strategies will be said to be symmetric if all players' strategies in

the tuple are identical. In particular, a symmetric equilibrium refers to an equilibrium

in which all players play the same strategy.

Similarly, this definition extends, as follows, to robust finite games.

Definition 4.5.2. A robust finite game with uncertainty set U C RNl=lai and no private

information is said to be symmetric if

ai = a,

Pi (x -i , Xi ) = Pit (x(-i), xi),

i = 1,...,N

i i' = 1,..., N; (x- i, i ) C S; Vd C EN-1,

where (xo(-i), Xi ) denotes (x(l),... , x(i-) xi, xi, (i+l),..., X(N)).

Accordingly, for example, the robust game presented in Example 2 of Section 4.2.5 is sym-

metric.
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In [117], Nash proved the existence of symmetric equilibria in symmetric, finite games

with complete information. We state and prove the following analogous existence result for

robust games.

Theorem 4.5.1 (Existence of Symmetric Equilibria in Symmetric Robust Finite

Games). Any N-person, non-cooperative, simultaneous-move, one-shot, symmetric robust

game, in which N < oc, in which each player i E {1,..., N} has 1 < a < oc possible actions,

in which the uncertainty set of payoff matrices U C R NaN is bounded, and in which there is

no private information, has a symmetric equilibrium.

Proof. By the definition of symmetry of a robust game, there exists a function p: S -+ R

such that p p= i, Vi E 1,..., N}. Now define : S - 2S as

((X) = {yCSa yeargmaxp(x-i,u)

where x - i denotes the (N - 1)-tuple (x,x,...,x). The N-tuple (x,x,...,x) E S is a

symmetric equilibrium of the robust game iff x is a fixed point of I. From an argument

paralleling that given in the proof of Theorem 4.3.2, it follows that q) satisfies Kakutani's

Fixed Point Theorem. O

Symmetric games with incomplete information may be of particular interest for two rea-

sons. First, incomplete-information games, in which the players are indistinguishable with

respect to the game structure, may be especially amenable to the common prior assumption

in Harsanyi's model and to its analog, the assumption of a common uncertainty set, in our

robust game model. Second, the multilinear system formulations for symmetric equilibria of

symmetric, robust finite games are smaller, by a factor of N, than those for the general equi-

libria of these games. Indeed, in systems (4.13) and (4.14), if we replace xi, i E {1,. .. , N,

by the single a x 1 vector variable x, subsequent elimination of redundancies then reduces

the number of variables and constraints in these systems by a factor of N. Thus, we may be

able to compute symmetric equilibria of symmetric, robust finite games more quickly and
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accurately, and with less computational effort, than we can compute the general equilibria

of these games.

4.6 Robust Games with Private Information

In the preceding sections, we proposed a robust optimization approach and a corresponding

distribution-free equilibrium concept for modeling incomplete-information games. We proved

existence and computation results. Until now, we have focused on incomplete-information

games without private information. In this section, we extend our discussion to the general

case, involving potentially private information.

4.6.1 Extension of Model

As in the preceding sections of this chapter of the thesis, consider an N-person, incomplete-

information game, in which player i E {1,..., N} has ai < oc possible actions, and in which

each player is in some way uncertain of the multi-dimensional payoff matrix P that param-

eterizes the expected payoff vector function 7r. Suppose that each player may have private

information about P or about the other players' beliefs. For each player i {1,..., N),

his potentially private information may be encoded in his "type" Oi. Since the information

is potentially private, player i may be uncertain of the type Oi, of player i', i' # i. Let U

denote, as before, a set of possible payoff matrices P. Let i denote the set of possible types

of player i C {1,..., N}, and (9 = l (Oi.

In using separate notation for the unknown payoff parameters P and the players' types

0, we make explicit the difference between the actual payoff parameters and the players'

beliefs about these parameters and about the other players' convictions. In addition, this

notation allows us to very clearly address the situation in which players may both possess

private information and yet still be uncertain of the parameters affecting their own payoffs.

In fact, the model we propose in this section is sufficiently flexible to simultaneously capture

the case of no private information (the Ei are singletons, Vi {1,.. ., N}), the differential
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information setting involving all-but-self uncertainty (each Oi E Oi is consistent with only a

single Pi), and the aforementioned differential information case in which agents may possess

private information, while also being uncertain of both their own and others' payoff functions.

In the same spirit as does Harsanyi, we assume that the players commonly know a

"prior" set V C U x of realizable tuples of payoff parameters and type vectors. While

Harsanyi furthermore assumes, in terms of our notation, that the players commonly know a

distribution over this set V, we assume that the players lack such distributional information

or have chosen not to use it. Player i's type Oi induces the subset Vi(i) of V consistent with

Oi,

V¼(0i) = {(P, -i, i) E V.

That is, Vi(Oi) gives the set of tuples of payoff matrices and type vectors that player i, when

he is of type Oi, believes are possible. As does Harsanyi, throughout the remainder of this

section, we require that ni =1Vi(Oi) # 0, yO E e such that {(P, 0) E V} s 0, and that the

true payoff matrix P belongs to the projection of N vVi(0i) onto U. The first requirement

ensures that the players' beliefs are consistent, and implies that 0 belongs to the projection

of ni=vi(0 i ) onto O, i.e., that the players believe that the true type vector is possible. The

second requirement ensures that the players believe that the true payoff matrix is possible.

In the private information setting, for i E {1,..., N, player i's pure strategies are

mappings from his type Oi to his action space {1,..., ai . His so-called behavioral strategies

(see, for example, Chapter 3 of [54] for an introduction to behavioral strategies) are mappings

from his type Oi to probability distributions over his action space {1,..., ai}. More formally,

we denote a behavioral strategy for player i by b i : Oi Sai. That is, under behavioral

strategy bi , if player i is of type i, then he plays action ji {1,..., ai} with probability
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b (i). Let us define the notationi

Bai a {bi : Oi SSai}
N

B IBai
i=l
N

i'=lB- i H ii,=1

b-i(0_i)_ (1(01) ,...,bi-1(i_l), bi+(Oi+l) .. ., b (N))

(b-i(_i), bi(0i)) a (bl(1),... bN(N ))

Recall that, in Harsanyi's model, each player seeks to optimize his average performance,

i.e., his average expected payoff, where the average is taken with respect to a probability

distribution over Vi(Oi). That is, in terms of our notation, in Harsanyi's model, the set of

best responses by player i E {1, ... , N}, when he is of type Oi E Ej, to b-i(.) is given by

arg max( E 7ri (P;b-i(0_i),ui) |i] )
uiESai (P,)Evi(i)I

where the expectation is taken with respect to the conditional probability distribution in-

duced by i over V. We use the notation b-i(.) to highlight the fact that b - i is a function.

Since the best response correspondence completely determines the criterion for equilibrium,

it follows that the tuple of behavioral strategies (b(.),..., bN(.)) E B is a Bayesian equi-

librium in Harsanyi's model iff, Vi E {1, ... , N},

bi(0i) E arg max ( E [i (P; b (0-i), u) i), v8oi E e6.
uiESi (,)EVi(oi)

In contrast to Harsanyi, we assume that each player i E {1, ... , N} lacks distributional

information over V and Vi(0i) and therefore seeks to optimize his worst-case performance,

i.e., his worst-case expected payoff, where the worst case is taken with respect to Vi(Oi).

Therefore, in a robust game involving private information, the set of best responses by
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player i E {1,.. ., N}, when he is of type i E Oi, to b-i(.) is given by the set

arg max inf [Ti (P;b i(ei), u)1)
u'ESai (P,o)EVi(0i)I

Accordingly, the tuple of behavioral strategies (bl(.),...,bN(.)) E B is an equilibrium of

the robust game with private information, i.e., is a robust-optimization equilibrium of the

corresponding incomplete-information game, iff, Vi E {1,..., N},

bi(0i) C arg max ( inf [7i (P;b-i(O_i) ,u )]) V i EO.
uiESai (,0)CV(0i) 

Before turning to the issue of equilibria existence, let us revisit the relation of the ex

post equilibria of an incomplete-information game to the corresponding robust-optimization

equilibria, this time in the context involving potentially private information. In any such

game, the tuple of behavioral strategies (b1(.),..., bN(.)) E B is an ex post equilibrium of

the incomplete-information game, iff, Vi E {1, ... , N},

bi(0i) E arg max ([7ri (P; b(-i),ui)]), VOi E Ei; V (, 0) E Vi(Oi).
UiE Sai (I

By a proof analogous to that of Lemma 4.2.1, we may extend the result of that lemma to

the general case involving potentially private information.

Lemma 4.6.1. The set of ex post equilibria of an incomplete-information game is contained

in the corresponding set of robust-optimization equilibria.

4.6.2 Existence of Equilibria

We will now extend our existence result from Section 4.3, in which we considered robust

finite games without private information, to general robust finite games. Let us start by

considering such games in which all of the players' type spaces are finite, i.e., Vi E {1,..., N},

Oi = {1, . . ., ti}, where ti < oc. Recall that player i's pure strategies are mappings from Oi
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to {1,..., ai}. Then, the set of player i's pure strategies is simply {1,..., ai}t i. Similarly,

player i's behavioral strategies can be encoded as ai x ti matrices, where column f E Oi gives

player i's randomization over his action space when he is of type Oi = . More precisely,

Bai {= XEIaix t i I XeE Sai, E (Oi},

where Xe denotes the th column of the matrix X. Let us define the additional shorthands

--i Ol °1 ' Oi-l ' Oi+l ' ON)

Ti (i; X-i, xi) inf [Ti (t; X- i xi)],

where X i denotes the 0 th column of the matrix X i . That is, i denotes player i's worst-casei i

expected payoff function.

Theorem 4.6.1. Consider an N-person, non-cooperative, simultaneous-move, one-shot ro-

bust game, in which N < oc, in which player i E {1, ... , N} has 1 < a < possible actions,

and in which the prior uncertainty set of payoff matrices U C R1liN i ai is bounded. Suppose

that, Vi E {1,... , N}, player i 's type space is given by Oi = {1,..., ti}, where ti < oo. Then

the robust game has an equilibrium in B.

Proof. Let us define the point-to-set mapping : B - 2 B, where 2B is the power set of B,

as

' ( 1,.. .,XN) = {(y,. . yN) B Y C arg max Ti (i; X-i, ui),
Ui ESai

Vi {1,...,N}, VOi C ) Oi.

It is obvious that (X1,..., XN) is a behavioral strategy equilibrium of the robust game iff

it is a fixed point of T. That satisfies the conditions of Kakutani's Fixed Point Theorem

[79] follows from the facts that, Vi E {1,..., N} and VOi E Oi, i (i; X-i, xi) is continuous

on B-i x Sai and is concave in x i over Sai for fixed X - i E Bi. The details of the proof are
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analogous to those in our proof of Theorem 4.3.2, and we therefore omit them.

Having treated the case in which all of the players' type spaces are finite, let us now

consider the more general case in which there may exist an i E {1,..., N} such that oi = oc.

If player i has infinitely many types, his behavioral strategies

Ba {b: )i Sa}I

cannot be encoded as finite matrices but are functions with infinite domains, and there-

fore belong to an infinite dimensional space. Kakutani's Fixed Point Theorem applies to

correspondences defined over Euclidean spaces, which are, by definition, finite dimensional.

Accordingly, we cannot use Kakutani's theorem to prove the existence of behavioral strategy

equilibria in robust finite games in which at least one player's type space is infinite. Instead,

we need a fixed point theorem that applies to Banach spaces. The following fixed point result

of Bohnenblust and Karlin [23] generalizes Kakutani's theorem to Banach spaces. Before

stating it, we first recall a relevant definition.

Definition 4.6.1 (as stated in Smart [148]). Let S and T be subsets of a normed space.

I is called a K-mapping of S into T if the following two conditions hold.

1. Vs S, @(s) C T, @(s) - 0, and @(s) is compact and convex.

2. The graph {(s, t) I t E @(s)} is closed in S x T.

Theorem 4.6.2 (Bohnenblust and Karlin [23], as restated in Smart [148]). Let M

be a closed, convex subset of a Banach space, and let L be a K-mapping of M into a compact

subset M' of M. Then x E M such that x E (x).

In order to apply this theorem to prove the existence of behavioral strategy equilibria in

robust finite games with private information and potentially infinite type spaces,5 we must

5 Recall that a game is said to be finite if the number of players and the number of actions available to
each player are all finite. Accordingly, it is possible for a finite game with incomplete information to involve
infinite type spaces.
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first establish some preliminary results. In the next two lemmas, Vi C {1, ... , N}, we consider

the metric space (Bi x Sai) [d], with metric d defined as follows. V (b-i(.), xi) , (f-i(.), yi) E

Bi x Sai 

d ((b-i(.), xi), (f-i(), yi))

max { yi - xil 0xo, max
i'E{1.. ,N}\{i}
i, {.1 .ai ,}

sup
Oi, EOi /

ft (i, ) - b'i, (')] }

Lemma 4.6.2. Let U C RNHlai be bounded. Then Ve > 0, 36(e) > 0 such that, Vi E

{1,..., N}, Vi E 3Oi, and V(b-i(.), xi), (f-i(.), yi) E B x S,

< 6(e)

implies that, V (P, 0) E Vi(i),

7 -i (P;f-i(oi),yi) - 7ri (P; b-(0-i), Xi) < E.

Proof. Ve > 0, consider

6(e)
min {e, 1}

2 (2N- 1) M I i= ai

where 1 < M < oc satisfies

N

.., N}, V(, ... , j) E I{1.M, Vi E I{1,. .. ,ail}, VP E U.

The result follows from algebraic manipulation.

Lemma 4.6.2 immediately gives rise to the following continuity result.
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Lemma 4.6.3. Let U c ]N
I -N =l ai be bounded. Then Vi {1,...,N}, VOi E Oi,

Ti(0i; b- x) )in [w (P;b '( ), xi)]

is continuous on B-i x Sai.

In addition, it is trivial to prove the following lemma.

Lemma 4.6.4. Vi E {1,...,N}, VOi E i, and Vb-i() B_i fixed, i(Oi;b-i(.),xi) is

concave in x i over Sai.

We may now apply Bohnenblust's and Karlin's fixed point theorem to prove the existence

of behavioral strategy equilibria in robust finite games with potentially infinite type spaces.

Theorem 4.6.3 (Existence of Equilibria in Robust Finite Games). Consider an N-

person, non-cooperative, simultaneous-move, one-shot robust game, in which N < oc, in

which player i E {1,..., N} has 1 < ai < oc possible actions, in which player i's type space

is given by Oi, and in which the prior uncertainty set of payoff matrices U C INHl 1H i is

bounded. This robust game has an equilibrium in B.

Proof. We will proceed by constructing a point-to-set mapping that satisfies the conditions

of Bohnenblust's and Karlin's fixed point theorem, and whose fixed points are precisely the

behavioral strategy equilibria of the robust game with private information. Recall that, for

a non-empty set Oi, the vector space of all bounded functions defined on Oi is a Banach

space under the supremum norm (Theorem 3-2.4 of [98]). Furthermore, the direct product

of finitely many Banach spaces is a Banach space (Theorem 2-4.6 of [98]). Accordingly,

N

F = If{f' :Ei Iai fi is bounded}
i=l

is a Banach space. In the notation we used to state Bohnenblust's and Karlin's fixed point

theorem, take M1 = M' = B. B is a convex, closed, and compact subset of F.
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Let us define the point-to-set mapping I : B -- 2B as

(bl(.)...,bN(.)) = {(yl()..., y() E B yi(Oi) arg max Ti (i; b-(.), u')
Ui ESai

Vi {1,, N} i E i}

The rest of the proof follows similarly to that of Theorem 4.3.2. ]

4.6.3 Computation of Equilibria

lHaving extended our equilibria existence result to incomplete-information games involving

private information, let us now establish that one may compute these robust-optimization

equilibria, when the players' type spaces are finite, via a formulation analogous to the one

we gave in Section 4.4 for the case without private information.

Theorem 4.6.4. Consider an N-person, non-cooperative, simultaneous-move, one-shot ro-

bust game, in which N < oc, in which player i E {1,..., N} has 1 < ai < oc possible actions,

and in which the prior uncertainty set of payoff matrices U c RINnIl ai is bounded. Suppose

Vi E {1,..., N}, player i's type space is given by Ei = {1, ... , ti}, where ti < oc. Let

V(0) = {(P,) E V}

Ti(oi) = ((0-i, Oi) C I V (0-i, Oi) Of,

and Proj (A, A') denote the projection of a set A onto a set A'. In addition, suppose that, Vi E

{1,... , N, VOi E Oi, VO E Ti(0i), there exists a polyhedron U(O) = Proj(V(6), U). Then,

the set of behavioral strategy equilibria of the robust game is the component-wise projection

of the solution set of a system of multilinear equalities and inequalities.

Proof. Since Vi E {1, . .., N}, ti < c,

Ba = {X E ERati Xe E Sai, E i}.
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(X1,...,X N ) C B is an equilibrium of this robust game iff, Vi E {1,..., N, Vi E i,

3z E R such that (X0i, zi) is a maximizer of the following robust LP, in which X-i is

regarded as data.

max z i
x i i

e Xi = 1

X > 0
°i -

where e E Rai is the vector of all ones. The proof follows analogously to that of Theo-

rem 4.4.1, since ITi(Oi)I < oc and IOil < cx. o[

4.7 Conclusions

We make several contributions in this chapter of the thesis. We propose a novel, distribution-

free model, based on robust optimization, of games with incomplete information, and we

offer a corresponding distribution-free, robust-optimization equilibrium concept. We ad-

dress incomplete-information games without private information as well as those involving

potentially private information. Our robust optimization model of such games relaxes the

assumptions of Harsanyi's Bayesian games model and simultaneously gives a notion of equi-

librium that subsumes the e post equilibrium concept. In addition, we prove the existence

of equilibria in any such robust finite game, when the payoff uncertainty set is bounded.

This existence result is in contrast to the fact that incomplete-information games need not

have any ex post equilibria. For any robust finite game with bounded polyhedral payoff

uncertainty set and finite type spaces, we formulate the set of equilibria as the dimension-

reducing, component-wise projection of the solution set of a system of multilinear equations

and inequalities. We suggest a computational method for approximately solving such sys-

tems and give numerical results of the implementation of this method. Furthermore, we
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describe a special class of robust finite games, whose equilibria are precisely those of a re-

lated complete-information game with the same number of players and the same action

spaces. Using illustrative examples of robust games from this special class, we compare

properties of robust finite games with those of their Bayesian-game counterparts. Moreover,

we prove that symmetric equilibria exist in symmetric, robust finite games with bounded

uncertainty sets.

We hope that these contributions will provide a new perspective on games with incomplete

information.

107



108



Chapter 5

Robust Transportation Network

Design in User- and

System-Equilibrium Environments

5.1 Introduction

Network design is a central problem in the field of combinatorial optimization. Over the past

fifty years, it has drawn considerable attention from the operations research, transportation

planning, telecommunications engineering, computer science, and economics communities.

In addition to attracting intense theoretical interest, the network design problem is of marked

practical importance. Indeed, network planning and implementation, whether in the context

of roadway, public utilities, or telecommunications systems, has an enormous impact on

people's daily lives.

The general network design problem (NDP) is a mixed integer optimization problem,

whose formulation involves a set of binary construction decision variables, a set of continu-

ous arc capacity variables, and a set of continuous network operation variables, the last of

which specifies, e.g., routing of flow on the resulting network. An NDP's objective function

may depend on all three sets of variables. In the problem's most permissive instances, the
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constraints dictate only conservation and nonnegativity of flow. In instances with more spe-

cific requirements, the constraints may additionally prescribe that arc capacity restrictions,

design expenditure limits, and equilibrium conditions on flow be satisfied.

The NDP's difficulty arises, in part, from the tradeoff between design and operational

decisions; in the absence of design or routing costs, the problem may significantly simplify.

For example, in the presence of linear construction expenses and the absence of arc capacity

design costs and flow costs, the NDP reduces to the minimal spanning tree problem. In

contrast, when there are no design expenses and the total flow costs are linear, the NDP

simplifies to the shortest path problem. The steiner tree, multicommodity flow, traveling

salesman, vehicle routing, and facility location problems are also special cases of the NDP.

For a thorough review of the NDP, its special forms, and solution methods, we refer

the reader to Magnanti's and Wong's [102] survey paper, to the annotated bibliography of

Balakrishnan, Magnanti, and Mirchandani [5], and to the references therein. In addition, the

review articles of Gendron et al. [56] and Minoux [110, 111] also provide insightful overviews

of the topic.

Contributors to the literature on computational approaches to the NDP have proposed

numerous exact and approximate solution methods. In general, these methods belong to

one of the following three categories: approaches based on Benders decomposition [9] (e.g.,

Geoffrion and Graves [57], Hoang [72], Magnanti et al. [100], Balakrishnan [4], and Rardin

and Wolsey [134]), branch and bound algorithms (e.g., Scott [147], Boyce et al. [25], Hoang

[71], LeBlanc [87], Boyce and Soberanes [26], Dionne and Florian [42], Rothengatter [139],

and Los and Lardinois [95]), and Lagrangian relaxation and dual ascent methods (e.g.,

Rardin and Choe [133], Balakrishnan, Magnanti, and Wong [6], Hochbaum and Segev [73],

and Hellstrand et al. [69]).

Although there has been progress on numerically solving the NDP, the problem is a diffi-

cult one whose general form is NP-hard. Johnson et al. [78] proved that the uncapacitated

budget design problem, the version of the NDP on which we will focus in this chapter, is

also NP-hard. In this version of the problem, arcs are built with limitless capacity, and

110



the design decisions have no impact on the objective function, but their costs must satisfy

a budget constraint. Wong [166] furthermore established that even approximately solving a

simplified version of the budget design problem is difficult. Specifically, he focused on the

problem in which all origin-destination (O-D) pairs have unit demand. In this setting, Wong

proved that it is NP-hard to merely solve this specialized NDP to within a factor of nl- e

times optimality, where n is the number of nodes in the network, and > 0 is an arbitrary

constant. Similarly, Plesnik [129] established that approximately solving a budget design

problem with a minimax objective is also NP-hard.

Not surprisingly, given these hardness results for the NDP, other contributors to the lit-

erature have proposed heuristic methods for the problem's solution. Starting from a feasible

design solution, these heuristics attempt to find local optima, or at least "good" solutions of

the NDP. Many of them proceed by iteratively adding or deleting to the set of edges to be

built;, or by interchanging pairs of edges from the sets of arcs to be constructed and those

not to be built. For example, Scott [147], Billheimer and Gray [21], Boffey and Hinxman

[22], Dionne and Florian [42], Los and Lardinois [95], and Wong [166] have proposed such

heuristic methods. In addition, others have offered stochastic heuristic methods based on

local search, simulated annealing, evolutionary algorithms, and tabu search (e.g., Crainic et

al. [36], Crainic and Gendreau [35], Randall et al. [132], and Kumar and Banerjee [84]).

5.1.1 The Network Equilibrium Problem

The objective and constraints of an NDP are defined, in part, by the criterion according

to which network performance is measured. Common measures in the literature attempt to

capture the total cost, possibly monetary or related to delays, experienced by all units of

flow in the network. In turn, this performance depends on the behavior of the users of the

system. Each such agent may act in an altruistic, cooperative manner aimed at minimizing

the total cost experienced by all users of the system. Alternatively, on the opposite extreme,

each agent may behave in a selfish, noncooperative fashion, routing his flow in an effort to

minimize his own cost and disregarding the effect of his decisions on others.
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As a result of congestion effects, the actions of one user of a network may affect the

costs experienced by other users. In this way, network routing behavior may be studied

in the context of game theory (see, e.g., Wardrop [164], Rosenthal [137, 138], Haurie and

Marcotte [68], and Roughgarden and Tardos [143, 144]). Accordingly, the questions of how

to define network routing equilibria and of whether such equilibria exist naturally arise. In

a way, a flow that minimizes total system cost can be said to be at equilibrium, in that it

satisfies optimality conditions. Similarly, selfish behavior may give rise to a different kind of

equilibrium flow, akin to the Nash equilibrium of a noncooperative game, in which, roughly

speaking, no user has incentive to unilaterally deviate by rerouting some flow.

In the context of transportation, Wardrop [164] gave two principles characterizing equilib-

ria resulting from altruistic and selfish behavior. Dafermos and Sparrow [39] later introduced

the terms "system optimal" (SO) and "user optimal" (UO) to distinguish between the two.

Wardrop's user-optimal principle requires that, at user-optimal equilibrium, any path car-

rying a strictly positive amount of flow between a given origin and destination must be a

minimum-cost path for that O-D pair. In the literature, when not explicitly specified, the

term network equilibrium generally refers to a user-optimal flow solution. We use the same

convention in this chapter of the thesis.

For a thorough review of the network equilibrium problem (NEP) and corresponding so-

lution methods, we refer the interested reader to the texts by Nagurney [114] and Patriksson

[123], to the survey articles by Florian and Hearn [50] and Magnanti [99], and to the refer-

ences therein. In addition, since the NEP is an instance of the variational inequality (VI)

problem, VI solution methods may be applied to NEPs. For a complete discussion of the

history of the VI problem and its solution methods, the interested reader may consult the

recent survey text by Facchinei and Pang [47], the monograph by Patriksson [124], and the

references in both texts. The review article by Harker and Pang [64] and the Ph.D. thesis

of Hammond [63], as well as the references therein, also provide insightful reviews of the VI

problem and associated algorithms. Moreover, in Chapter 3 of this thesis, we reformulate

the possibly asymmetric VI problem over a polyhedron as a single-level (and many-times
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continuously differentiable) optimization problem. We provide sufficient conditions for the

convexity of this reformulation and prove, as a special case, that any monotone affine VI may

be reformulated as a convex, linearly constrained quadratic optimization problem (LCQP).

Thus, the NEP can be reformulated as a single-level optimization problem. When arc usage

costs are affine and monotone with respect to arc flows, this optimization problem is a convex

]LCQP.

5.1.2 The Price of Anarchy

Because a selfish agent's actions may increase the cost to others more than they decrease

the cost to the agent himself, such noncooperative behavior may yield a total system cost

that is suboptimal. Pigou (p. 194, [128]) was perhaps the first to illustrate that selfish,

noncooperative behavior may induce a strictly higher total system cost than that resulting

from altruistic, cooperative actions. Koutsoupias and Papadimitriou [83] first proposed

quantifying this inefficiency of UO with respect to SO. They introduced the term "price of

anarchy" to refer to the inefficiency that arises from the decentralization inherent in user

optimality.

Koutsoupias' and Papadimitriou's work has sparked intense activity in the computer

science, operations research, transportation, and telecommunications communities. Indeed,

the literature on the price of anarchy is vast and increasing, as others have since further

examined the inefficiency that may arise from decentralization and competition. Roughgar-

den and Tardos [143, 144] and Roughgarden [141] bounded the price of anarchy of network

performance in the context of uncapacitated edges and arbitrary network topology. They

considered different families of separable arc cost functions, describing settings in which the

flow on a given arc affects the cost on that arc alone. As a special case, Roughgarden and

Tardos proved that under separable, linear cost (per unit flow) functions, the price of anar-

chy is no greater than 4/3, and that this bound is tight. Chau and Sim [29] proved that this

bound also applies when the arc cost functions are nonseparable but symmetric. Perakis

[127] generalized the bound and the discussion to networks with nonseparable, asymmetric,
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and nonlinear costs, as well as to the settings of multi-period pricing and competitive supply

chains. In addition, Correa, Schulz, and Stier [31] extended Roughgarden's and Tardos'

results to the case of capacitated networks with separable arc cost functions.

5.1.3 Network Design under Selfish Routing and Demand Uncer-

tainty

While the NDP is a mature area in combinatorial optimization, the analysis of instances

under selfish routing or demand uncertainty, though very relevant in practice, is not fully

developed. Despite the rich literatures on the network equilibrium problem and the price of

anarchy, the NDP community has generally favored versions of the NDP involving centrally

controlled, SO routing. It has furthermore focused on problem instances involving known,

fixed demands.

For many network contexts, most notably public roadways and other transit systems,

the SO flow and demand certainty assumptions are unrealistic. Indeed, in real-world trans-

portation networks lacking a central authority directing traffic, users cannot be expected to

behave in an altruistic way that benefits the community as a whole. Moreover, at least in

part because of the long period of time required for a network's physical construction, during

the planning phase, it is usually impossible to predict, with certainty, the network demands

that will arise on the completed network.

The NDP under selfish routing is an instance of the mathematical program with equi-

librium constraints (MPEC), which in turn is a generalization of the bilevel optimization

problem. For an overview of MPECs, we refer the interested reader to the text by Luo,

Pang, and Ralph [96]. In contrast, the NDP under SO routing has a natural formulation

as a single-level optimization problem. In this way, not surprisingly, the former problem is

more difficult than the latter.

This increased difficulty is due, in part, to the phenomenon illustrated by Braess' Paradox

[27], which Murchland [113] introduced to the transportation community. In Braess' Para-

dox, the removal of an edge from a network results in an equilibrium flow solution whose
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total system cost is strictly less than that for the original network. Thus, Braess' seemingly

counterintuitive example demonstrates that providing greater choice to selfish users, as op-

posed to centrally controlled users, can actually have a deleterious effect on the total system

cost. Therefore, even in the network design problem with zero arc construction costs, it may

be beneficial to exclude some arcs from the set of edges to be built.

The following works provide a representative, though not comprehensive, sample of the

literature on the NDP under selfish routing. LeBlanc [87] considered the separable arc

usage cost setting and proposed a branch and bound algorithm for the problem's solution.

Others, including LeBlanc and Boyce [88] and Marcotte [104, 105], have employed solution

algorithms specialized to bilevel optimization problems. In a different vein, drawing on ideas

from the literature on the price of anarchy, Roughgarden [140] gave optimal inapproximability

results for the NDP under selfish routing, arc construction costs of zero, and separable and

nondecreasing arc usage costs. He considered the objective of minimizing the total system

arc usage cost at equilibrium. Essentially, Roughgarden showed that unless P = NP, in this

setting, there is no better approximation algorithm for this NDP than the "algorithm" of

building the entire network.

Rather than addressing selfish routing considerations, others have assumed SO routing

but have accounted for the network planner's uncertainty of the exact values of demands, i.e.,

traffic rates, on the network. Riis and Andersen [135], Lisser et al. [93], Andrade et al. [1],

and Waller and Ziliaskopoulos [163], to name a few, have modeled this demand uncertainty

via probability distributions and have proposed solution approaches based on stochastic op-

timization. In contrast, others have addressed demand uncertainty deterministically, using

the robust optimization paradigm. For instance, Chekuri et al. [30], Ord6fiez and Zhao [118],

and Atamturk and Zhang [2] presented robust optimization models of a version of the NDP,

under demand uncertainty, and in which the network planner is to determine edge capacities

for a given set of edges. Chekuri et al. [30] sought the minimum-cost capacity allocation

that can accommodate any realization from the uncertainty set of demands. Ord6fiez and

,Zhao [118] treated the capacity allocation costs via a design budget and sought to minimize
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linear routing costs. Atamturk and Zhang [2] considered an objective arising from the sum

of capacity allocation and linear routing costs. Finally, Gutierrez et al. [61] offered a deter-

ministic approach (though not one based on the robust optimization paradigm) to the NDP,

under demand uncertainty, and in which the network planner is to determine the edge set

to be built.

Although there has been some work on the NDP under selfish routing and known demands

and on the NDP under SO routing and demand uncertainty, research in these areas is far from

complete. For instance, among the contributions on the latter topic, robust optimization and

other deterministic treatments of the problem have modeled total system routing costs as

linear functions of the flow variables, and have thereby ignored the possibility of congestion

effects. That is, they have modeled the cost per unit flow on an arc as a constant, rather than

as a function of the flow variables. In contrast, the latter model more realistically captures

conditions inherent in many real-world networks, including transportation and data systems.

Furthermore, the robust optimization analyses of the NDP under demand uncertainty have

focused on the capacity allocation problem, rather than the binary choice, arc construction

problem. In the latter problem, the network designer must select a subset of arcs to be

built, each with unlimited capacity. Finally, to our knowledge, no one has yet addressed,

let alone from a robust optimization standpoint, the network design problem under both

demand uncertainty and selfish routing, in the presence of congestion effects.

5.1.4 Contributions and Structure of this Chapter

In this chapter of the thesis, we make several contributions.

1. We propose a novel approach, based on robust optimization, to the binary choice, arc

construction NDP, under demand uncertainty, congestion effects, and selfish routing.

Our model also addresses the problem under SO routing.

2. We offer solution methods for the resulting robust NDP. In particular, we propose

a branch and bound algorithm for exactly solving instances of this problem under

SO routing and for heuristically solving instances of this problem under UO routing.
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Moreover, we prove that the optimal solution to the robust NDP under SO routing

performs, in the UO setting, within a factor of the price of anarchy times the optimal

performance. In addition, we present conditions under which the robust NDP reduces

to a nominal counterpart. We also characterize settings in which the robust NDP, itself

a multilevel optimization problem, reduces to a single-level quadratic optimization

problem.

3. Our branch and bound algorithm comprises the first constructive use of the price

of anarchy, which has previously been employed only in a descriptive, rather than a

prescriptive manner. Specifically, the algorithm computes upper bounds, based on the

price of anarchy, in an effort to prune the branch and bound tree. In fact, these upper

bounds illustrate the more general point that the use of approximation algorithms

within branch and bound schemes may allow for reduced computational effort in these

schemes.

4. We observe counterintuitive behavior, not yet noted in the literature, of costs at equi-

librium with respect to changes in traffic demands on the network. The examples we

present are analogous to Braess' Paradox [27] and illustrate that an increase in traffic

demands on a network may yield a strict decrease in the costs at equilibrium.

5. Finally, we establish convexity and monotonicity properties of functions relating to

the worst-case performance of a given network design decision. These properties are

central to understanding the solution methods we propose and to appreciating the

relative levels of difficulty among the SO and UO versions of the robust NDP and their

nominal counterparts.

The structure of this chapter is as follows. In Section 5.2, we present our robust optimiza-

tion model of the NDP under demand uncertainty and congestion effects, and under either

SO or UO routing. We discuss, in Section 5.3, convexity and monotonicity properties of and

reformulations related to these robust NDP problems. We give conditions under which the

robust NDP reduces to a nominal counterpart, and we present examples of counterintuitive
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behavior of costs with respect to traffic demands. Motivated by the fact that the robust

NDP under SO routing may be easier to solve than the same problem under UO routing,

we prove, in Section 5.4, that the former problem provides a price-of-anarchy-approximate

solution to the latter problem. In Section 5.5, we propose our branch and bound algorithm

for the robust NDP. Finally, in Section 5.6, we present conditions under which the robust

NDP under UO routing reduces to a single-level, nonconvex, quadratically constrained linear

optimization problem (QCLP).

5.1.5 Notation

In addition to the notation conventions outlined in Section 1.3, throughout this chapter, f

and F will denote flow vectors over the space of arcs and paths, respectively.

5.2 Formulation of the Robust Network Design Prob-

lem

In this section, we propose a distribution-free, robust optimization model for the binary

choice, arc construction NDP, under demand uncertainty and congestion effects. We address

both the SO and UO versions of this problem, giving extra attention to the latter setting,

in which we view selfish-routing as a non-atomic congestion game.

Before we present our model, let us first establish our notation and review some relevant,

basic definitions and results from the literature.

5.2.1 Review of NDP Definitions and Classical NEP Results

Consider a network G(V, A), where V and A are the sets of nodes and arcs, respectively.

Let W denote the set of O-D pairs, Pw denote the set of paths connecting O-D pair w E W,

and P denote the set of all paths, i.e., P = UwwPw. Let s and t denote the wth origin

and destination, respectively. For a set S, let IS] denote its cardinality. Let f E RJIAI and
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F E RIP I denote vectors of flows on arcs and paths, respectively.

To capture the cost information on the network, let c(f): ·RIAI 1 RIA1 denote a vector

function mapping a vector of arc flows to the vector of arc costs per unit flow. In particular,

ca(f) denotes the cost incurred by each unit of flow on arc a. Similarly, C(F): RIIPI -+ RIP

denotes a vector function mapping a vector of path flows to the vector of path costs per unit

flow. That is, Cp(F) denotes the cost incurred by each unit of flow on path p.

A vector of path flows F gives rise to a corresponding vector of arc flows f as follows

fa = -{pEP I aEp} Fp, a E A, (5.1)

where, with a slight abuse of notation, a E p denotes that path p contains arc a. Conversely,

a vector of path flows F is consistent with a given vector of arc flows f if the pair of vectors

satisfies relation (5.1). Note, however, that there may be multiple, distinct path flow vectors

consistent with a single, given arc flow vector. Similarly, for any pair of consistent arc and

path flows f and F, respectively, the vector of path costs arises from the vector of arc costs

according to

Cp(F) = Ca (f), p P.
aEp

The way in which the amount of flow on one arc or path affects the cost on another arc

or path often plays an important role in the analysis of the network equilibrium problem

(NEP), and therefore, of the NDP. To that end, recall the following definitions.

Definition 5.2.1. For a set X C R n, a vector function c: X - R is said to be separable

if its Jacobian matrix Jc(x) is diagonal, Vx E X. c is symmetric if Jc(x) is a symmetric

matrix, Vx E X. If c is not symmetric, it is called asymmetric.

Suppose that the arc set A has not yet been built, and that a network designer is to

determine, through a collection of binary decisions, a subset of A to be constructed. We

focus on situations in which all constructed arcs are uncapacitated. For the remainder of
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this section, we state definitions and results in the context of such a network whose arc set

is to be determined.

Let the network planner's decision be denoted by y E {0, l)IAI. That is, Ya = 1 if arc

a E A is to be built, and Ya = 0 otherwise. The network planner's design yields subnetwork

G (V, A(y)), where

A(y) = {aCAIya= }

Similarly, let P(y) denote the set of constructed paths induced by arc construction decision

vector y. Formally,

P(Y) = { P y, = 1, Va E p.

In this way, the set of feasible flows on network G (V, A(y)) depends both on y and on

the vector of O-D pair demands d CE Il w l, where d w E W, denotes the amount of flow

to be routed from s E V to t E V. Let KA(y, d) and Kp(y, d) denote the set of feasible

flows on the sets of arcs and paths, respectively. Specifically, KA(y, d) is the set of f C IJIAI

such that, Vw E W, 3fW E RIJAI satisfying

f= fw,
wEW

fW= ,

f > O,

dw,

f(,v) = -d,
0,

fW> 

w c W; a E A\A(y),

w E W,

V = Sw,

V = tw,

otherwise,

wE W; V E V.

Note that f is the vector of arc flows associated solely with the wth O-D pair.
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Similarly,



Kp(y, d) is the set of F E RIPI satisfying

E Fp = dw, w E W,
pEP

Fp = 0, p E P\P(y), (5.3)

F > 0.

Note that, for given y and d, KA(y,d) and Kp(y,d) define polyhedra in RIJAI and RIPI,

respectively.

Throughout this chapter of the thesis, we will often want to refer to the set of design

solutions yielding networks in which all of the O-D pairs are connected. Stated formally,

y E {0, l}IAI is connectivity feasible if KA(y, e) # 0, or equivalently, if Kp(y, e) Z 0, where

e i R Iw is the vector of all ones. Note that KA(y,e) 0 iff KA(y,d) 0, Vd E RIW,

and that Kp(y,e) - 0 iff Kp(y,d) - 0, Vd E IWI. The reason is that, Vd > 0, any

elements of KA(y, d) and Kp(y, d) are scaled versions of elements of KA(y, e) and Kp(y, e),

respectively. As a shorthand, let us define

Y = {yE {0, KA(ye) } = {y E {0, 1}l Kp(y,e) 0}.

Using this notation, let us formalize the definition for the total cost in the system experi-

enced by all units of flow and the definition for the corresponding notion of system optimality.

Recall from Section 5.1 that this total system cost is a common performance measure in the

NDP literature.

Definition 5.2.2. For a given y E Y, a given d E RI W ', and a given f E KA(y,d), the

quantity c(f)'f is called the total system cost of arc flow vector f. Similarly, for a given

F E Kp(y, d), C(F)'F is called the total system cost of path flow vector F.

Definition 5.2.3. For a given y E Y, and a given d C RwII , f E KA(y, d) is a system-

optimal (SO) vector of arc flows for network G (V, A(y)) with arc costs c, if f E SOA(y, d),
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where

SOA(y,d) = arg min c(f)'f (5.4)
f

s.t. f E KA(y,d).

Similarly, F Kp(y, d) is a system-optimal vector of path flows for network G (V, A(y))

with path costs C if F E SOp(y, d), where

SOp(y,d) = arg min C(F)'F (5.5)
F

s.t. F C Kp(y, d).

The following definition formalizes Wardrop's concept of user-optimality (UO), as men-

tioned in Section 5.1. Essentially, a flow vector is said to be at Wardrop equilibrium if all

flow travels on minimum-cost paths.

Definition 5.2.4. For a given y E Y, and a given d E IWf I, F E Kp(y, d) is a Wardrop

equilibrium vector of path flows for network G (V, A(y)) with path costs C if Vw W,

Vp1,P2 E Pw(Y),

Fp, >0 == Cp (F) < Cp2(F). (5.6)

Similarly, f C KA(y, d) is a Wardrop equilibrium vector of arc flows for network G (V, A(y))

with arc costs c if 3F Kp(y,d) satisfying both (5.1) and (5.6). We denote the set of

Wardrop arc- and path-flow equilibria by UOA(y, d) and UOp(y, d), respectively.

For the remainder of this chapter of the thesis, unless otherwise noted, we will use the

terms equilibrium, user-optimum, and Wardrop equilibrium interchangeably. However, note

that Wardrop's equilibrium concept is not the only such formalization of network equilibrium.

In fact, there is another version of network equilibrium, which in the absence of continuity
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and monotonicity of the cost functions, differs from Wardrop's definition. We compare these

two notions of equilibrium in Appendix B. In this chapter of the thesis, we consider only

continuous and monotone cost functions. (The one exception to this rule is Example 5.3.3

in Section 5.3.2, in which we relax the monotonicity assumption in order to illustrate an

example of paradoxical behavior of costs at equilibrium). Accordingly, we appropriately

invoke Wardrop's definition of equilibrium throughout this chapter.

Let us now recall the definition of monotonicity.

Definition 5.2.5. A vector function c : X -- Rn is said to be monotone on X if, Vx1, x 2 E

X.

[C(X )-C(X)] ' (X -X > o0.

If this inequality is strict, Vxl , x2 E X with x'l x2 , then c is called strictly monotone.

The following theorem establishes an equivalent and perhaps easier means of verifying mono-

tonicity.

Theorem 5.2.1 (see, e.g., Proposition 2.3.2 of [47]). c : X -+ InR is monotone on X

iff Jc(x) 5 0, Vx E X. c X --L Rn is strictly monotone on X iff Jc(x) s 0, Vx E X.

Therefore, if c(x) is affine, i.e., if c(x) = Gx + h, then c is monotone iff G 0 and is

strictly monotone iff G > 0. In the context of network routing costs, monotonicity of the

vector of arc cost functions implies that the vector of path cost functions is also monotone.

On the topic of existence and uniqueness of Wardrop equilibria, we state a central result.

Theorem 5.2.2 (see, e.g., Florian and Hearn [50]). Consider a network G(V, A) with

continuous cost functions. Vy E Y, Vd E RIWI, there exists a Wardrop equilibrium on

G (V. A(y)). Moreover, under strict monotonicity of the vector of cost functions, the equilib-

rium is unique.

Next, recall that the Wardrop equilibrium conditions are equivalent to a variational
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inequality (VI) problem. The VI problem VI(K, C) is to find an x* E K such that

C(x*)'(x - x*) > o, Vx K.

Theorem 5.2.3 (Smith [149], Dafermos [38]). Consider a network G(V, A) with path

cost functions C. For a given y E Y, and a given d E RIWW I path flow vector F E Kp(y, d)

is a Wardrop equilibrium iff it solves VI (Kp(y, d), C). Alternatively, if c is the vector of

arc cost functions consistent with C, arc flow vector f E KA(Y, d) is a Wardrop equilibrium

iff it solves VI (KA(y, d), c).

Lastly, to end this section, recall that the problems of determining SO and UO flow

solutions are closely related, as noted, e.g., by Beckmann et al. [8] and Dafermos and

Sparrow [39]. Indeed, given G(V, A), y E Y, c: IRIAI RAI, C IPI R1Pl, and d E RIW

consider problems (5.4) and (5.5) of finding corresponding SO arc and path flow solutions.

From the first-order optimality conditions, and from Theorem 5.2.3, a flow solution is SO iff

it is UO on the same network with a different set of costs, given by the vector of marginal

costs of the original network. In terms of the arc flow variables, this vector of marginal costs

is given by

Vf [c(f)'f] = [Jc(f)]'f + c(f),

and its ath element, a E A, represents the rate of change of the total system cost with respect

to changes in f. Similarly, in terms of the path flow variables, the vector of marginal costs

is given by

VF [C(F)'F] = [JC(F)]'F + C(F),

and its pth element, p E P, represents the rate of change of the total system cost with respect

to changes in Fp. Conversely, when the vector of arc cost functions is affine and symmetric,

a flow is UO iff it is twice the SO flow solution on the same network with the same costs,
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but with demands d/2.

5.2.2 Modeling the NDP under Demand Uncertainty

Having established our notation, given formal definitions of system- and user-optimality,

and reviewed related theoretical results from the literature, in this section, we formalize

our model of the network design problem under demand uncertainty. In some parts of this

formralization, we can, without loss of clarity, develop the discussion from only one of either

the arc-flow or path-flow perspectives. In such contexts, we let the reader extrapolate the

analogous treatment from the alternate perspective.

In order to properly frame our robust network design model, let us recall the correspond-

ing nominal version of the problem. That is, consider the NDP in which a network planner

is given a virtual network G(V, A), a set W of O-D pairs, and a vector of known demands

d C IRlWI for these O-D pairs. The planner wishes to determine which arcs to build, each

with unlimited capacity. His choice is denoted by decision vector y E {O, 1}IAl.

We first discuss the constraints restricting the network planner's decision. Suppose that,

in building arc a, he incurs a cost of ba, and that he has a construction budget of B. That

is, y must satisfy the budget constraint b'y < B. In addition, it must yield a network

G (V; A(y)) all of whose O-D pairs are connected. That is, y must belong to Y.

The network designer's objective is to build the subset of arcs which will minimize the

total cost in the system, under either SO or UO routing. These two traffic routing paradigms

give rise to two different versions of this nominal NDP, which we denote NDPso (d) and

ND PUo (d), respectively. Under SO routing, the planner's objective, as a function of y,

may be stated mathematically as (so (y, d), where

(so(y,d) = min{c(f)'f f E KA(y,d)}.

That is, so (y, d) denotes the total system cost of network G(V, A(y)), with arc costs c,

under SO routing for demand vector d.
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Under non-uniqueness of user-optima, definition of the planner's objective in NDPuo (d)

requires some care. In general, different equilibria may give rise to different arc or path costs

and therefore to different values of the total cost in the system. Since the network planner

does not control the traffic flow, he therefore has no way of specifying, or perhaps even of

predicting, which equilibrium will arise. Accordingly, we consider the version of the nominal

problem NDPo (d) whose objective function is the highest total system cost induced by

any equilibrium, i.e., whose objective function is uo (y, d), where

(uo(y, d) = max c(f)j I f UOA (y,d)}.

Stated mathematically, the nominal NDP problems, with construction budget B, are

given as follows.

NDPso(d) : min{so (y,d) yC{0,l} AI, b'y< B, KA(y,e) 0},

NDPuo (d) min {uo(y,d) yE { 0, }l AI b'y<B, KA(y,e) 0}.

In contrast, in real-world settings, network designers are often uncertain of the exact

value of the vector of demands d on the network. In our robust model of the NDP under

demand uncertainty, we assume that the planner knows only an uncertainty set D C 1 lWh

of possible values that this vector of demands may realize. We further assume that he

either lacks distributional information on D or that he opts not to use potentially inaccurate

distributional information. For the remainder of this chapter of the thesis, we assume that

D is closed and bounded, and that the arc and path cost functions are continuous.

Recall that the robust optimization paradigm seeks to optimize worst-case performance

with respect to the uncertainty (see, e.g., [11, 12, 13], [16, 17, 18], [45, 46], [150]). In

the nominal versions of the problem, under the known vector of traffic demands d, the

performance of decision vector y C RIAI is given by the total system cost under the SO flow

pattern or least favorable UO flow pattern induced by y. In this way, it is natural to define

the robust counterparts of these problems by transforming the nominal objectives to measure
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worst-case performance with respect to the uncertain demand vector d( E D. Whereas the

nominal versions of the problem are parameterized by d, the robust versions of the problem

are parameterized by D. In the SO and UO versions of the problem, the objective functions

of the network designer, who takes a robust approach to demand uncertainty, are thus given

by

TSo(D; y) = max (so (Y ) dE D},

Tuo (D; y) = max {&o(y d) IdD},

respectively.

Denoting the robust NDPs under SO and UO routing by RNDPso(D) and RNDPo(D),

respectively, we formally define these problems as follows.

RNDPso(D) min {Tso(D; y) y {0, 1} Al) b'y < B, KA(y,e) 0},

RNDPuo(D) min{ruo(D;y) y E {0. 1}IA, b'y < B, KA(y,e) 0}.

One may think of the formulation of RNDPso(D) in the following way. A network

planner must select a subset of arcs to construct. Only after he builds the network, an

adversary selects from D a vector of the true values of the demands. The adversary's selec-

tion is maximally hostile with respect to the planner's chosen design. With the knowledge

of the true values of the demands, the network planner may then system-optimally route

the flow arising from this demand realization. In this way, RNDPso(D) is an adjustable

robust optimization problem, as defined by Ben-Tal et al. [10]. That is, some decisions in

RNL)Pso(D) must be made before, while other decisions may be made after the revelation

of the true values of the uncertain parameters, i.e., the true demands.

One may interpret RNDPuo(D) in a similar fashion. After the network planner has

determined the subset of arcs to build, an adversary selects from D a vector of demands,

and a corresponding equilibrium flow vector for these demands. The adversary selects the

values that are maximally hostile with respect to the network designer's decisions.
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5.3 Properties of the Robust NDP

In this section, we discuss properties of the robust NDP, whose formulation we gave in the

previous section. This discussion will allow for a better understanding of the level of difficulty

of RNDPvo(D) with respect to RNDPso(D) and of each robust NDP with respect to its

nominal counterpart. Moreover, our analysis in this section will also provide deeper insight

into the solution methods we propose in Sections 5.4 - 5.6.

To begin this discussion, recall the fundamental fact that, in order to solve any opti-

mization problem, one must carry out two tasks. First, at a high level, one must navigate

through the feasible region in order to identify an optimal solution. Second, at a lower level,

one must be able to evaluate the objective function at given feasible solutions visited along

the way. Moreover, in order to efficiently, i.e., in polynomial time, solve any optimization

problem, it is necessary that one be able to efficiently evaluate the objective function at any

given feasible solution.

In this section, we focus on properties of the robust NDP that relate specifically to the

second of these two requirements, i.e., to the performance evaluation of given feasible arc

design solution vectors. That is, we study the worst-case performance functions rso(D; y)

and -uo(D; y), defined in the previous section.

5.3.1 Convexity

To better understand the difficulty of evaluating Tso(D; y) and Tuo(D; y), and to develop

some insight into possible computation methods, in this section, let us examine the convexity,

or lack thereof, of some related sets and of the functions so(Y, d) and uo(Y, d) in d.

Recall from Section 5.2.1 that, for a given G(V, A), a given W, a given y E {O, l}IAI, and

a given d C IR]W I, KA (y, d) and Kp (y, d), the sets of feasible arc and path flow vectors,

respectively, are bounded polyhedra. In addition, recall that monotonicity of the vector of arc

cost functions implies that the vector of path cost functions is also monotone. Accordingly, if

the vector of arc cost functions is monotone, it follows that the sets of user-optima, UOA(y, d)

and UOP(y, d), are convex (see, e.g., Theorem 2.3.5 of [47]). Similarly, if c(f)'f is a convex
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function of f (e.g., if c(f) is monotone and affine), then the sets of system-optima, SOA(y, d)

and SOp(y, d) are convex.

However, for a given y E {0, 1}lAl, the set of tuples of demand vectors and corresponding

system-optima or user-optima need not be convex, even when the vector of arc cost functions

is monotone and affine. Without loss of clarity, and for the sake of brevity, we frame this

discussion in terms of the arc flow rather than the path flow variables. Stated formally, for

a given y, neither of the sets

{ (d,f) d C D, f E SOA(Y, d)}, (5.7)

{ (d,f) d E D, f E UOA(y,d)} (5.8)

need be convex.

Example 5.3.1. As a means of illustrating, consider the example of G (V, A(y)) and W

pictured in Figure 5-1. In this network, there is a single O-D pair and two arcs connecting

this pair. The first arc has cost function 10f and the second arc has cost function f2 + 100,

where fi is the amount of flow on arc i E {1, 2}. Thus, the vector of arc cost functions is

separable. It is also continuous and strictly monotone, and therefore, for any given demand

d to be routed from s to t, there is a corresponding unique SO flow and a corresponding

unique UO flow (Theorem 5.2.2).

f2 + 100

Figure 5-1: The set of tuples of demand vectors and corresponding SO or UO flows may be
nonconvex.

Suppose D = [1, oc). One may easily verify that (d, fil, f2) = (1, 1, 0) and (d, fl, f2) =
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(6, 56/11, 10/11) belong to set (5.7). However, their equally-weighted average does not belong

to (5.7), since the unique SO flow solution for d = 3.5 is given by (fi, f2) = (3.5, 0). Similarly,

one may easily verify that (d, fl, f2) = (1, 1, 0) and (d, fl, f2) = (11, 111/11, 10/11) belong to

set (5.8). However, their equally-weighted average does not belong to (5.8), since the unique

UO flow solution for d = 6 is given by (fi, f2) = (6, 0). Thus, sets (5.7) and (5.8) are indeed

nonconvex, despite the fact that D = [1, oo) is a convex set.

In analyzing the worst-case performance functions Tso(D; y) and ruo(D; y), for a given

y Y, we may view these functions as maximizations of so(y, d) and (uo(y, d), respec-

tively, over d E D. Alternatively, we may think of rso(D; y) and ruo(D; y) as maximizations

of c(f)'f over (d, f) in sets (5.7) and (5.8), respectively. From either perspective, we may

wish to determine whether the aforementioned objective functions, so(y, d), (uo(Y, d), and

c(f)'f, are convex in the corresponding variables.

With respect to the second perspective, given that sets (5.7) and (5.8) may be nonconvex

even when D is convex, it is somewhat irrelevant to ask whether c(f)'f is a convex function

over (5.7) and (5.8). Accordingly, let us instead take the first perspective. That is, let

us view rso(D;y) and ruo(D;y), for a given y Y, as maximizations of so(y, d) and

(uo(y, d), respectively, over d E D. We wish to determine whether for a given y, (so (y, d)

and (uo (y, d) are convex functions of d over D.

If such convexity were to hold, it would follow that, for any given y and for any given

closed, bounded, and convex set D, rso (D; y) and ruo (D; y) would comprise maximizations

of convex functions of d over the convex set D. As a result, it would follow that the values

of TSo (D; y) and TUo (D; y) are realized at extreme points of D. For polyhedral D, this

conclusion would, in turn, suggest a finite, though not necessarily polynomial-time, algorithm

for computing rso (D; y) and ruo (D; y) -namely, evaluating so (y, d) and (Uo (y, d),

respectively, at each of the extreme points of D. For other more sophisticated algorithms

for maximizing a convex function over a convex set, see Floudas [51] and the survey paper

of Floudas and Visweswaran [52].

We first consider so (y, d) and prove the following positive result relating to convexity.
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Theorem 5.3.1. Consider any network G(V, A) and any set W of O-D pairs defined over

V. Let D be a closed, bounded, and convex uncertainty set. Suppose that c(f)'f is a convex

function of f over RJAI. Then, for any fixed y C Y, Cso (y, d) is a convex function of d over

D.

Proof. Suppose D is closed, bounded, and convex, and let d l , d2 E D. Let

fi E argmin {c(f)'f f E KA (y, d) , i E {1,2}.

VA E [0, 1], let

f3 = argmin {c(f)'f f E KA (y, Ad+ (1- A)d2) }. (5.9)

Then

(so (y, Adl + (1- A)d 2)

< c (Afl+ (1 - )f 2)' [Af' + (1 - A)f2]

< Ac(fl)'f' (1- A)c (f 2) f2

= AXso (y, dl) + (1 - A)(so (y, d2) .

The first inequality follows from the fact that

Af' + (1 - A)f2 E KA (y, Ad1 + (1 - A)d2),

but need not be a corresponding SO flow solution, i.e., need not belong to the set of optima

given in (5.9). The second inequality follows from the assumption that c(f)'f is a convex

function of f over RIAL [O

Remark: When c(f) is affine and given by c(f) = Gf + h, recall that c(f)'f is a convex

-function of f over RIAI iff G >- 0.

In contrast, we have the following negative result relating to the convexity of the function
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(uo (y, d) in d.

Example 5.3.2. To establish that uo (y, d) need not be a convex function of d, consider

the example of G (V, A(y)) and W pictured in Figure 5-2. In this network, there are two

O-D pairs. The first destination t and second source s2 correspond to the same node in

the graph. The first O-D pair is connected by arc 1, with cost function 15fi + 9f3, where

fi denotes the flow on arc i C {1, 2, 3}. The second O-D pair is connected by arcs 2 and 3,

with cost functions 3f2 + 5f3 + 10 and 5f2 + 10f3 + 5, respectively. Note that the vector of

arc costs is therefore of the form c(f) = Gf + h, with G >- 0. Consequently, Vd E RIWl,

there is a corresponding unique equilibrium flow solution.

3f2 + 5f3 + 10

Figure 5-2: (uo (y, d) may be a nonconvex function of d over D.

Let

D = {(di,d 2) d=4, d2 c [0.80,2.5]}.

Consider d1 = (d', d}) = (4, 0.80) c D. One may easily verify that (fi, f2, f3) = (4, 0, 0.80)

is the corresponding unique equilibrium flow, yielding uo (y, dl) = 279.20. Similarly, for

d2 = (d2, d2 ) = (4,1) D, one may verify that (fl, f2, f3) = (4,0,1) is the corresponding

unique equilibrium flow solution, yielding uo (y, d2) = 291.00. Finally, for d3 = (d 3, d32) =

(4, 2.50) G D, the corresponding unique UO flow solution is (fl, f2, f3) = (4, 2.50, 0), yielding

(uo (y, d3) = 283.75. Since d2 is a convex combination of d1 and d3 , it follows that (uo (y, d)

is a nonconvex function of d over D.

Thus, we have established that, under mild assumptions, for a given y E Y, so(y, d)

is a convex function of d over D. In contrast, (uo(Y, d) need not be a convex function
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of d over D. To see that (uo(y, d) furthermore need not be a concave function of d over

D, recall Example 5.3.1. The total system costs at the unique equilibria corresponding to

d = 1, d = 6, and d = 11 are 10, 360, and 1110, respectively. Since the total system cost

at equilibrium for d = 6 is strictly less than the average of those for d = 1 and d = 11, it

follows that (uo(Y, d) need not be a concave function of d over D.

5.3.2 Equilibrium Costs May Decrease When Demands Increase

In this section, we further discuss properties of Tuo(D; y) and (uo(Y, d). We again consider

settings in which D is closed, bounded, and convex, and in which the vector of arc cost func-

tions is monotone. Recall from the previous section that, under these conditions, Tuo(D; y)

need not realize its value at an extreme point of D. Our discussion in this section is moti-

vated by the question of whether there exists a nontrivial subset of D, different from the set

of extreme points, on which Tuo (D; y) may be guaranteed to realize its value. Specifically,

we examine whether Tuo (D; y) can be guaranteed to realize its value on the boundary of

). That is, we wish to determine whether an increase in the traffic demands may yield a

decrease in total system cost at equilibrium.

In the special case of a network involving a single O-D pair, we establish mild conditions

under which UO total system costs are guaranteed not to decrease when demand increases.

We prove that, under such conditions, the robust NDP therefore reduces to a nominal NDP.

We give an analogous result for the SO setting. Focusing on the UO setting in the more

general case, we demonstrate that, unfortunately, the same guarantee cannot be made. In

particular, even under affine and monotone arc cost functions, if there is more than one

O-D pair, costs may decrease as demands increase, and the worst-case vector of demands

corresponding to a given y may in fact lie in the interior of D. This seemingly counter-

intuitive behavior of costs, under UO flows and with respect to changes in traffic rates,

has not yet been noted in the literature. In this way, the examples we present suggest

a novel network equilibrium "paradox," analogous to Braess' Paradox [27], but stemming

from changes in traffic rates rather than addition or deletion of edges from the network.
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Single O-D Pair Setting: A Monotonicity Result

For the special case of a network with a single O-D pair, under mild assumptions, an increase

in demand is guaranteed not to yield a decrease in total system cost. For the sake of clarity,

we frame this discussion in terms of the path flow variables and path cost functions, rather

than their arc-based counterparts.

To begin, let us consider the more general setting involving possibly multiple O-D pairs.

We wish to examine the dependence of minimal path costs, under UO flow solutions, on the

vector d of demands on the network. In order to guarantee existence of equilibrium flow

solutions, let us assume, as we do throughout this chapter of the thesis, that the arc cost

functions are continuous. Furthermore, we consider only y E Y. Recall from Wardrop's

principle that an equilibrium flow routes all demand for O-D pair w E W, on paths in

Pw(y) having minimal costs. Stated formally, at an equilibrium F E UOp(y, d), Vw E W,

Vp P(Y),

Cp(F) A -/w (y, d), Fp > 0,
> A. (y, d), Fp = 0,

where (y, d) denotes the cost on used paths p E P,(y), or, alternatively, the minimal

path cost over p E Pw(y).

In the same multicommodity network setting as we consider in this chapter, Hall [62]

proved the following monotonicity result with respect to the dependence of Aw on d. When

the vector of arc cost functions is separable, and each such arc cost is positive valued,

continuous, and increasing in the amount of flow on that arc, and when y and d,, w' ~ w, are

held fixed, A,(y, d) is a nondecreasing function of d,. 1 Hall's proof uses ideas from sensitivity

analysis of convex optimization problems. For the single commodity network setting, i.e.,

IWI = 1, again involving separable, positive-valued, continuous, and nondecreasing arc cost

1 Hall did not consider networks with variable arc sets A(y). However, his result naturally extends to
this setting. For the sake of accurately discussing his work in the context of this chapter of the thesis, we
introduce this dependence of A, on y.
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functions, Lin, Roughgarden, and Tardos [91] gave an alternate proof that is combinatorial

in nature.

We now extend Hall's result to the case of multicommodity networks with nonseparable

and possibly even asymmetric arc costs. In contrast to both the proof techniques of Hall and

Lin, Roughgarden, and Tardos, we base our proof on results from the theory of variational

inequalities.

Before stating and proving this extension, we must clarify the setting we will consider.

Under non-uniqueness of equilibria, different equilibria may give rise to different values of

the vector of path cost functions and may thereby yield different values of the minimal path

cost for each O-D pair. In such settings, A(y, d) is not a well-defined function. Therefore,

let us consider only settings in which the set of UO flow solutions satisfies the following

property.

Definition 5.3.1 (see, e.g., Section 2.3.1 of [47]). UOp(y, d) is C-unique if there exists

some constant vector H, such that, VF E UOp(y, d), C(F) = H.

Under equilibrium uniqueness, UOp(y, d) is a singleton and is therefore trivially C-

unique. More interestingly, it is well-known that UOp(y, d) is C-unique if C is "pseudo

monotone plus." While the definition of this characteristic is beyond the scope of this

chapter, we note that it is automatically satisfied if C is symmetric and monotone, which

occurs if c is symmetric and monotone. However, C-uniqueness may also hold under less

restrictive conditions that allow for asymmetry. For a more detailed discussion, we refer the

interested reader to Section 2.3.1 of [47].

Under C-uniqueness of UOp(y, d), the function A : Y x WI - RIWM is well-defined.

Specifically, it may be expressed in terms of any F E UOp(y, d) as follows.

Aw(y, d) = min Cp(F). (5.10)
pEPt(y)

We now state and prove our extension of Hall's monotonicity result.

Proposition 5.3.1. Consider a network G(V, A), with O-D pair set W and a vector C of
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continuous path cost functions. Suppose that C is monotone over Il+P I. Furthermore, suppose

that UOp(y, d) is C-unique. Vy E Y, Vw E W, Vd1 EC R IWl, V¥A c +,

dq =
dl + A,

implies A (y, d2) > A, (y, dl).

Proof. Let

Fi G UOp (y,di),

q w,

q = w,

i c {1,2}.

By C-uniqueness and definition (5.10) of A, it follows that

C (Fi) Fi i C {1,2}.

However, Vi j E {1,2}, Fj need not route flow on paths with minimal costs, as induced

by C (Fi). Accordingly,

(i,j) E {(1, 2), (2, 1)}.

Since C is monotone over RI!P, by definition,

< [C (F2) -C (F 1)]' (F2 - F)

= C (F2 )' F2 + C (F1)'F1 - C (F1) F2 - C (F2)'F 1

< A (y, d2)' d2 + (y, dl)' dl - X (y, dl) ' d2 - A (y, d2 )' d1

= [ (y, d2) -X (y, dl)] ' (d 2 - d l )

= A [Aw (y, d2) - AW (y, dl)] .

Since > , this concludes the proof.
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To summarize, under continuous and monotone path costs, and under C-uniqueness of

the corresponding set of path-flow equilibria, A,,(y, d) is a nondecreasing function of d,

when all other arguments are held fixed. In turn, this result implies the following theorem,

in which D need not be connected, i.e., need not be convex.

Theorem 5.3.2. Consider a network G(V, A), with a single O-D pair and a vector C of

continuous path cost functions. Suppose that C is monotone over IRlP. Furthermore, sup-

pose that UOp(y, d) is C-unique. Then, for a given y, (uo(Y, d) is a nondecreasing func-

tion of d C IRt. In addition, if D is closed and bounded, then the corresponding problem

RNDPuo(D) is equivalent to NDPuo(d), where

d = maxd.
dED

Proof. By Proposition 5.3.1, Vy E Y, ruo(D; y) = uo(Y, d). D

In the next section, we show that, in more general settings, involving either multiple

C)-D pairs or non-monotone costs, an increase in demand may yield a strict decrease in total

system cost at equilibrium. However, we first prove a result, analogous to Theorem 5.3.2,

but relevant to the the case of SO routing.

Theorem 5.3.3. Consider a network G(V, A), with a single O-D pair and a vector C of

continuous path cost functions. Suppose that C is monotone over RIPI. Furthermore, suppose

that C(F)'F > O, VF C RIPI. Then, Vy C Y, (so(y, d) is a nondecreasing function of d E R+.

Furthermore, if D is closed and bounded, then the corresponding problem RNDPso(D) is

equivalent to NDPso(d), where

d = maxd.
deD
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Proof. Consider 0 < d < d2. Let

Fi C SOp (y,di), i c {1,2}.

Note that, since there is only one O-D pair, dlF2 c Kp (y, d), but need not belong to

SOp (y, dl). Therefore,

cdF2
c( ld

) F2
)'dd2 ]

> C(F1)'F 1. (5.12)

By the monotonicity of C over RIPI

O < [C (F2) -C (d2F2
2

d2 -d (F2)- C (F2
td2

-d2)
dl)2

)]/F2

Dividing through by d 2d-, and recalling that d < d2 and that C(F)'F > 0, VF E RIPI, we

obtain

d.C d2F) F2 < C (d2F2 < C (F2 )F 2 .

Relation (5.13) precludes the possibility that

(so (y, d1) > C (F2)' F2

since this inequality would contradict (5.12).

creasing function of d R+.

Finally, it follows that, Vy Y,

Tso(D; y)

Accordingly, Vy E Y, so (Y, d) is a nonde-

= (so(y, d),

and, therefore, RNDPso(D) = NDPso(d). O
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Counter-Intuitive Examples under UO Routing

In the previous section, for a network with a single O-D pair, we gave sufficient conditions

under which the equilibrium path cost and total system cost under UO routing is a nonde-

creasing function of d, the demand associated with the O-D pair. In this section, we show

that, when there is more than one O-D pair, or when the path cost functions are not mono-

tone (equivalently, the arc cost functions are not monotone), an increase in demands may

yield a strict decrease in cost.

To begin, note that Proposition 5.3.1 says nothing about the effect that a change in dw

may have on A,(y, .), for w, w' W with w' f w, or on the total system cost under UO

routing. In addition, Proposition 5.3.1 says nothing about the effect that a change in dw

may have on O-D pair w's minimal path cost, when the arc cost functions are not monotone,

even if the gradient of each arc cost function is a nonnegative vector. In the remainder of

this section, we explore the nature of these relationships between d and the total system

and minimal path costs. We show that an increase in demands can actually lead to a strict

decrease in total system cost and in minimal path costs under UO routing. These examples

may be viewed as analogous to Braess' Paradox [27] and illustrate counter-intuitive behavior

not yet observed in the literature.

To that end, reconsider Example 5.3.2. In addition to illustrating that (uo(Y, d) need

not; be a convex function of d over D, this example also demonstrates three facts. First,

recall that the move from d2 to d3 increases the level of demand d2 corresponding to O-D

pair 2 and holds the level of demand d fixed. Although d3 > d2 , the total system cost

strictly decreases in moving from d2 to d3 . Accordingly, an increase in traffic demands

may yield a strict decrease in the total system cost. Second, in light of this possibility,

Example 5.3.2 furthermore demonstrates that the maximal value of (uo(Y, d) over D (i.e.,

ru;o(D; y), the worst-case total system cost under UO routing) may be realized on the interior

of D. Consequently, to compute Tuo(D; y), it is insufficient to consider only the boundary

of D, let alone, in case D is convex, to consider only the extreme points of D. Third,

Example 5.3.2 offers the following insight into the dependence of A(y, d) on d. In moving
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from d2 to d3 in this example, note that the minimal path costs for O-D pairs 1 and 2 change

from 69 to 60 and from 15 to 17.5, respectively. In this way, the increase in d2 causes the

minimal path cost for the first O-D pair to decrease significantly. That is, an increase in

traffic demands can result in a decrease in equilibrium path costs.

Furthermore, let us modify Example 5.3.2 so that we instead have

D = (di, d2) d1 E [3.90,4.05, d2 E [0.80, 2.5] }.

Consider d4 = (d , d4) = (4.05,2.5) E D. The corresponding unique UO flow solution is

(4.05,2.5, 0), yielding minimal path costs of 60.75 and 17.5 for O-D pairs 1 and 2, respec-

tively, and yielding (uO (y, d4) = 289.79. Thus, even if the demands for both O-D pairs

simultaneously increase, as they do in moving from d2 to d4, the minimal path cost of one

O-D pair and the total system cost may strictly decrease.

Furthermore, let us consider the relationship between demands and costs when the vector

of arc cost functions is not monotone.

Example 5.3.3. As a means of illustrating, consider the example of G (V, A(y)) and W

pictured in Figure 5-3. In this network, there is a single O-D pair and two arcs connecting

this pair. The first arc has cost function 10fl + 20f2 and the second arc has cost function

9fl + f2 + 1, where fi is the amount of flow on arc i C {1, 2}. Not that the vector of arc cost

functions in this example is not monotone, since the matrix

(r1 20

is indefinite.

For d < 1/19, there is a unique Wardrop equilibrium flow solution in which all demand

is routed on arc 1 at cost 10d for a total system cost of 10d2. For d > 1, the unique Wardrop

equilibrium flow solution has all demand on arc 2 at cost d + 1, for a total system cost of
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10f + 20f2

9fi + f2 + 

Figure 5-3: Without monotonicity, (uo (y, d) may decrease when d increases.

d2 + d. For d E (1/19, 1], the following flow solutions are both Wardrop equilibria.

f = (f1,f 2) = (d, ),

f = (fi,f2) = I-(19d-1,1-d).
18

The first of these flow solutions yields arc costs of 1Od and a total system cost of 10d2. The

second yields arc costs 85d+5, for a total system cost of 85d2+5d

Accordingly,

{10d2, dO, (01],

d2+d, dE(l, o).

In particular, in moving from d = 1 to d = 2, uvo (y, d) actually decreases from 10 to 6. Thus,

when the vector of arc costs is not monotone, the worst-case total system cost under UO

routing, as based on Wardrop's principle, can in fact decrease even when demands increase.

We digress momentarily to recall, as mentioned in Section 5.2.1, that Wardrop's principle

is not the only network equilibrium concept contained in the literature. As we discuss in

Appendix B, Example 5.3.3 also illustrates how Wardrop's principle may differ from other

equilibrium notions when monotonicity fails to hold.

Furthermore, note that Nagurney [115] observed a phenomenon related, but not identical,

to the one we have just presented. In particular, she showed that an increase in traffic
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demands on a network can yield a decrease in the total system "emissions" of the network.

She defined the emissions to be a linear function, unrelated to the arc and path costs, of

the arc flow variables. Nagurney's observation thus differs, for two major reasons, from the

ones we present here. First, while the total system emissions are a linear function of the

arc flow variables, the total system cost may be a nonlinear function of these variables. In

particular, in our examples in this section, the total system cost is a quadratic function

of the arc flows. Second, and more importantly, the coefficients defining the total system

emissions are constant with respect to the flow variables and in no way influence flow costs

or flow routing. In contrast, the arc cost functions that determine total system cost not only

influence but essentially determine flow routing. Indeed, a selfish agent selects the path that

minimizes the cost he experiences. Thus, it is perhaps more surprising that an increase in

demands on the network could yield a decrease in minimal path costs and total system cost,

than it is that the same increase could yield a decrease in total system emissions.

5.3.3 A Single-Level Optimization Reformulation of Tuo(D; y)

In Sections 5.3.1 and 5.3.2, we discussed several properties of rso(D; y) and Tuo(D; y). In

particular, for D closed, bounded, and convex, we proved that, for a fixed y E Y, Tso(D; y)

is guaranteed to realize its value at an extreme point of D. Thus, when D is furthermore

polyhedral, in order to evaluate Tso(D;y), one could evaluate (so(y,d), for d equal to

each of the extreme points of D, and then take the maximum of these values. When D is

a polyhedron and the vector of arc cost usage functions is monotone and affine, each such

(so(y, d) is given by a convex, linearly constrained quadratic optimization problem (LCQP).

In contrast, we showed that for D convex, closed, and bounded, ruo(D;y) need not

realize its value at a boundary point, let alone at an extreme point of D. Thus, while we

have already established at least one way of evaluating so(D; y) when D is polyhedral,

we have not yet proposed a method for computing Tuo(D;y). In this section, we offer a

single-level optimization reformulation of Tuo(D; y). From the definition of Tuo(D; y) in

Section 5.2.2, note that uo(D;y) is the optimal value of a mathematical program with
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equilibrium constraints (MPEC). Under monotone and affine arc usage costs, for instance,

this MPEC's objective is a convex function of its variables. However, the objective is to

maximize, rather than minimize, this function. As such, not surprisingly, the single-level

optimization reformulation we derive for Tro(D; y), under general costs, is nonconvex. While

neither the MPEC nor the single-level formulation of ruo(D; y) may provide a satisfactorily

practical means of exactly evaluating this function, the latter allows for greater manipulation

of the problem. In particular, under monotone and affine arc usage cost functions, it yields

a Lagrangian relaxation method of computing an upper bound on uo(D; y).

For conciseness of notation, we frame the discussion in this section in terms of the path

flow variables and path usage costs. In practice, because the number of paths in a graph may

be exponential in the number of arcs in the graph, one should use the arc-based formulation,

whose derivation is analogous to the path-based one we present.

The single-level optimization reformulation we propose for TUO (D; y) is motivated by the

results of Chapter 3 of this thesis. In that chapter, we cast the variational inequality (VI)

and the MPEC as special instances of the robust optimization problem. Using duality-based

proof techniques from robust optimization, we gave equivalent, single-level optimization

reformulations of the VI and MPEC. In particular, recall Theorem 3.2.1 from Section 3.2.1

of this thesis. From Theorems 5.2.3 and 3.2.1, it immediately follows that, Vy E 0, 1)IAl,

Vd E RlW I, F E UOp(y, d) iff 3A E RIWI such that

C(F)'F < d'A,

S Fp = dw, wEW,

Fp = O, p E P\P(y), (5.14)

F > 0,

Aw < Cp(F), Vw E W; Vp E Pw(Y).

Note that the A appearing in this system is precisely the vector of minimal path costs at
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equilibrium, as discussed in Section 5.3.2. Finally, this equivalence implies that

Tuo(D;y) = max C(F)'F
d,F,X

s.t. (F, A) satisfies system (5.14), parameterized by d (5.15)

d ED.

In general, this single-level optimization reformulation (5.15) is nonconvex due, in part, to

the bilinear term d'A in the first constraint of (5.14). Consequently, it may not be practical

to exactly compute Tuo(D; y) using a commercial solver.

When C(F) is affine and monotone with respect to F, and D is a polyhedral, Tuo(D; y)

is equivalent to a nonconvex, quadratically constrained quadratic optimization problem

(QCQP). The nonconvexity in this setting is due not only to the bilinear term d'A, but

also to the curvature of the objective function. Methods for solving indefinite QCQPs exist

in the literature (see, e.g., Floudas [51]). However, corresponding software is not available

to the same extent as are commercial convex optimization solvers.

Nonetheless, when C(F) is affine and monotone with respect to F, and when D is poly-

hedral, one may use commercial optimization software to upper-bound QCQP (5.15) and to

thereby upper-bound Tuo(D; y). In particular, consider the following Lagrangian function

L(D, y;) ):R+ -+ IR of (5.15), parameterized by D and y E Y and given by

L(D, y;) = ax C(F)'F-o [C(F)'F - ']
d,F,\

s.t. Fp = w, w W
pE Pw,

Fp = 0, p E P\P(y)

F>O

Aw < Cp(F), Vw E W; Vp E Pw(y)

ED.
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By weak duality, VO > 0, L(D, y; 0) > Tuo(D; y). Furthermore, this inequality may be strict,

VO > 0, if there is a duality gap for this primal-dual pair. For any fixed 0 > 0, L(D, y; 0) is

the optimal value of an LCQP with indefinite objective function. We propose to solve this

LCQP via an equivalent linear, mixed integer optimization problem (MIP), whose integer

variables are binary. We justify this equivalence in the following theorem.

Theorem 5.3.4. For Q E IWx", r E Rn , E n, and Ad E Rm, LCQP

min {x'Qx + r'x 4Yx > ~} (5.16)
x 2

is equivalent to the following linear, MIP with binary integer variables.

1 1min -rx + II
x,p 2 2

s.t. Qx+r- ' = 0

x > ?P (5.17)

Hi < Mmi,

Ox - i M (1 - i), i 1,., m

> , E 0, l}m ,

where i denotes the ith row of the matrix 1, and where M E R is a sufficiently large,

positive number.

Proof. The Karush-Kuhn-Tucker (KKT) conditions of any linearly constrained optimization

problem are necessary (see, e.g., Lemma 5.1.4 of Bazaraa and Shetty [7]). Note that Q may

be indefinite and LCQP therefore need not be convex. Accordingly, the KKT conditions,

while necessary, need not be sufficient for the optimality of a feasible solution of LCQP (5.16).

Consider any KKT point x of LCQP (5.16). That is, consider any x E IRn such that
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3i[ C I R m satisfying

Qx+r- b'p = 0 (5.18)

i=1,...,m. (5.19)

For any such KKT point, x, with corresponding vector i of multipliers, the objective value

of LCQP (5.16) may be rewritten as follows. Into the objective function of LCQP (5.16), we

may substitute for Qx from (5.18) and, subsequently, for x''i from (5.19), to obtain

-x'Qx + r'x
2

1
2x' [V'/ - r] + r'x
2
1

= 2 '; + -2r'x,
2 2

which is linear in x and /t.

Furthermore, observe that, for sufficiently large M > 0, the complementarity con-

straints (5.19) of the KKT conditions hold iff 3 EC IRm such that

Pi < Mi, i= 

¢'ix- i < M (1 - i), i = 

E {o 0, m.

If x* is an optimal solution of LCQP (5.16), then it is a KKT point of LCQP (5.16).

Namely, it is the KKT point yielding the highest objective value of LCQP (5.16). Therefore,

3 (*, *) such that (x*, *, *) is an optimal solution of MIP (5.17) with

*Qx* + rx*
2

1 .
=IVb*+1r/X*.

2 2

For the reverse direction, suppose that (x*, /*, *) is an optimal solution of MIP (5.17).

146

ti Wyx - i = 0,

1



Then, from the definition of MIP (5.17), x* is the KKT point of LCQP (5.16) yielding the

highest objective value. That is, x* is an optimal solution of LCQP (5.16). ]

Thus, when D is polyhedral and C(F) is affine and monotone with respect to F, VO > 0,

one may compute LCQP L(D, y; 0) by solving a linear MIP with binary integer variables.

This MIP thereby yields an upper bound on Tuo(D;y). In order to derive the best such

possible upper-bound on Tuo(D; y), one would ideally like to solve mino>0 L(D, y; 0). Sup-

pose one knew the optimal solution 0* to lie in [0, ]. Since, Vy C Y, L(D, y; 0) is a convex

function of (see, e.g., Theorem 6.3.1 of [7]), and since 0 is a scalar variable, one could

approximately identify * using Fibonacci search over [0,8 (see, e.g., Section 8.1 of [7]).

Hiowever, in general, one may not a priori know 8. In this setting, one may select an ar-

bitrary 0 and perform Fibonacci search to obtain minOe[0 ] L(D, y; 8), which provides an

upper bound, though perhaps not the best such bound, on 7ro(D; y).

Finally, let us briefly consider Tso(D; y). Recall that, for a given y and d, the necessary

and sufficient conditions for a flow solution to be SO comprise a VI. Accordingly, just as for

Tuo(D; y), Theorem 3.2.1 suggests a reformulation of Tso(D; y) as a single-level optimization

problem, analogous, though not identical, to (5.15). However, this analogous reformulation

also contains constraints involving a term that is bilinear in the decision variables. In this

way, the single-level optimization reformulation of Tso(D; y) obscures this function's con-

vexity properties, which we proved in Section 5.3.1. For this reason, we omit the explicit

statement of this reformulation of Tso(D; y).

5.3.4 Difficulty of the Robust vs. the Nominal NDP

In Sections 5.3.1 - 5.3.3, we discussed properties and reformulations relating to the robust

NDF'. These properties seem to suggest that RNDPUo(D) is in general a more difficult

problem than is RNDPso(D). Let us now compare the computational demands of each of

these problems with respect to those of its nominal counterpart.

In RNDPso(D), recall that the worst-case performance, rso(D; y) of a design decision y

is given by the optimal value of a bilevel optimization problem. When D is closed, bounded,
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and convex, and when c(f)'f is a convex function of f, this bilevel optimization problem con-

stitutes a maximization of a convex function over a convex set. In contrast, in NDPso (d),

the performance of a design solution y is given by the total system cost at a SO flow for

y and d. Thus, evaluating the performance of y in the nominal setting requires only the

solution of (5.4). When c(f)'f is a convex function of f, problem (5.4) is linearly constrained

and convex. When c is furthermore affine, this problem is an LCQP.

In RNDPuo(D), recall that the worst-case performance, ruo(D; y), of a design decision

vector y is a mathematical program with equilibrium constraints (MPEC). Even when D

is polyhedral and c is affine and monotone with respect to the flow variables, uo(D; y)

represents the maximization over d of a function that may be neither convex nor concave in d

and that may strictly decrease under increases in d. Consider, in contrast, the requirements

of performance evaluation in NDPuo (d). Under the same conditions, i.e., when D is

polyhedral and c is affine and monotone with respect to the flow variables, the set of equilibria

for any given y Y is a polyhedron (see, e.g., Theorems 2.3.5 and 2.4.13 of [47]). Thus,

in this setting, determining the performance of a design solution requires, at worst, the

maximization of a convex function over a polyhedron.

5.4 An Approximate Solution of RNDPUo(D) Based on

the Price of Anarchy

In light of the comparative difficulty of solving RNDPo(D) to solving RNDPso(D), we

establish in this section that the optimal solution to the latter problem offers an approximate

solution to the former. The accuracy of this approximation is given by the price of anarchy.

In this way, we extend the NDP approximation result of Roughgarden [140] to the context

of NDPs involving nonseparable arc costs and to the robust NDP setting.
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5.4.1 Price of Anarchy Review

Let us begin by briefly reviewing some definitions and results from the literature on the price

of anarchy. This measure of inefficiency is defined as the ratio of the highest total system cost

under any equilibrium to the minimal total system cost, i.e., the cost under a SO solution.

In the following definition, we specialize the description of the price of anarchy to the NDP

context. That is, this definition takes into account the dependence of UO and SO solutions

on the arc design vector y and on the vector d of demands for the O-D pairs.

Definition 5.4.1. Consider a network G(V, A) with vector of arc cost functions c. For a

given y E Y, the price of anarchy of the resulting network, under given demand rates

dl E IW'lI, is defined as

(uo(Y, d)
(so(Y, d)'

where (uo(y, d) and so(y, d) are defined as in Section 5.2.2.

As mentioned in Section 5.1.2, several contributors to the literature have derived tight

bounds on the price of anarchy that are independent of network topology and of d. For

example, Perakis [127] derived a tight bound, whose exact value depends on the degree of

nonlinearity, denoted by a, and the degree of asymmetry, denoted by 72, of the vector of arc

cost functions.2 Specifically, Perakis considered the more general setting of VI(K, c), with

K C R'. She defined

y2 = supl S(x) -1 Jc(x) S(x)
xEK

where

S(x) = Jc(x) + [Jc(x)]'
2

2 Perakis [127] denotes the degrees of nonlinearity and asymmetry by A and c2 , respectively. In this chapter
of the thesis, we use A to refer to the arc set of a graph and c to denote the vector of cost functions. Therefore,
in order to avoid confusion, we use nI and y2 to discuss the measures of nonlinearity and asymmetry.
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In addition, she let r, be a constant greater than or equal to one and satisfying

1
-A'Jc(x)t < 'Jc(z)j < ,I'Jc(x)u, Vx, z E K; Vt C in.
K

Perakis proved that, in this general VI(K, c) setting, the price of anarchy of a network can

be no greater than

4- 4-y2 , 2 < 2/K,

2*{ 2 _ 2(*K- 1), 72 > 2/K.

In the context of network flows, it is easy to show that, if the arc cost functions are affine,

then ; = 1. Furthermore, if the arc cost functions are symmetric, 7 2 = 1. As a result, in the

case of affine and symmetric arc costs, Perakis' bound simplifies to the bound of 4/3 due to

Roughgarden and Tardos [143, 144] and Roughgarden [141].

Consider the context of a network whose arc set A(y) is determined by a vector, y E

Y, of binary design variables. In this setting, y thereby also determines the collection

of arc cost functions to be associated with the resulting network and, consequently, the

corresponding degrees of nonlinearity and asymmetry, K(y) and 72(y), respectively. As a

result, for networks whose arc set is a function of y, Perakis' bound is also a function of

y. We denote this y-dependent version of Perakis' bound by cZ(y). To clarify, this bound

depends on y only because y determines the collection of, and therefore the degrees of

nonlinearity and asymmetry of, the arc cost functions. The dependence is not because y

determines the network topology as well. In some settings, oa(y) is a constant Vy E Y.

For instance, (e) = 1, where e E RIAI denotes the vector of all ones, implies K(y) = 1,

Vy E {0, l}IAI. Similarly, y2 (e) = 1 implies y2 (y) = 1, Vy E {0, l}IAI. Accordingly, in

settings with K;(e) = y2(e) = 1, a(y) = 4/3, Vy C Y.

As discussed in Section 5.1.3, Roughgarden [140] considered a version of the nominal NDP

involving no construction budget constraint and separable arc cost functions. In terms of the

notation of Section 5.2.2, he considered NDPuo(d) with B > ZaEA ba, and Jc(f) a diagonal
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matrix. For G(V, A) and W given, he established the following result, which we rephrase in

terms of our notation. Let a > 1 be a bound on the price of anarchy for G (V, A(y)), Vy E Y.

Then, setting y = e, where e E IRIAI is the vector of all ones (denoting that all arcs be built),

is an a-approximation algorithm for the aforementioned "unbudgeted" NDP with separable

arc costs. To address cases with prohibitively high a, Roughgarden proved an alternate

approximation bound of IVI, where V is the set of nodes in the network. He showed that

building the entire arc set is also a -VI-approximation algorithm for the NDP, and that no

better approximation algorithm exists, unless P = NP. In essence, Roughgarden established

that, in the absence of a budget constraint, one cannot efficiently find a better approximate

solution to NDPuo(d) than the solution of building the entire arc set.

5.4.2 An Approximation Result

In the nominal or robust NDP with active construction budget constraint, i.e., with B <

EzaEA ba, y = e may be an infeasible solution, if it is too costly to build the entire edge set.

In the following theorem, we extend Roughgarden's approximation result to the NDP with

nonseparable arc costs and with active construction budget constraint. This theorem also

generalizes Roughgarden's result to the robust NDP setting.

Theorem 5.4.1. Consider a network G(V, A), with O-D pair set W and a vector of con-

tinuous arc cost functions c. Suppose that D C RIlW', the uncertainty set of demands d, is

closed and bounded. Let a(y) denote an upper bound on the price of anarchy of subnetwork

G (V, A(y)) and

a = max c(y)
Y

s.t. yE Y.

Furthermore, let Y*o and Y*o denote optimal solutions of RNDPso(D) and RNDPuo(D),
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respectively. That is,

E argmin{Tso(D;y) y E {0 , }lAl, b'y
Y 

E arg min {ruo
Y

(D;y) yC {O, 1}lAI, b'y

< B, KA(y, e) 

< B, KA(y, e) 

Then, Yso is a-optimal for RNDPuo(D), i.e.,

To (D; Y 0o) < ruo(D;y o)CTuo(D;o) < o (D;o).

Proof. The first inequality (5.20) holds since yo is feasible, but not necessarily optimal for

RNDPuo(D). Vy E Y, let

dso(y) E argmax(so(y,d),
dED

duo(y) E argmax (uo(y, d),
dED

(5.21)

E argmin {c(f)'f

C argmax{c(f)'f

f E KA (y,d) } = SOA(y,d),

f E UOA(y,d)}.

In other words, dso(y) and duo(y) denote the vectors of demands giving rise to the worst-

case total system costs under SO and UO routing, respectively. For a given y E Y and a

given d, fso(y, d) denotes a corresponding SO flow solution, and fuo(y, d) is a corresponding

UO flow solution giving rise to the highest possible total system cost.

Vy Y,

Tuo(D; y) = c (fuo (y, duo))' fuo (y, duo)

< c C (fso (y, duo)) fo (, duo)

< a c (fso (y, dso))' fso (y, dso)

= c T-so (D;y).
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The equalities hold by the definitions of TUO(D; y) and Tso(D; y), respectively. The first

inequality follows from the definition of a, and the second inequality holds since ca > 0 and

since duo(y) E D but need not belong to

arg max (so(Y, d).
Therefore, taking we obt ED

Therefore, taking y = Yo, we obtain

Tuo (D; YSo) < a . Tso (D;Yyo).

To complete the proof, we need to show that TSO (D; Y*O) < TUO (D; YO). To begin,

Vy C {O, 1}IAI, and Vd E RWl,

UOA(y, d) C KA(y, d),

but it may be the case that

UOA(y, d) n SOA(y, d) = 0.

Therefore,

(so(Y, d) < Cuo(Y, d).

'Taking the maximum over d D of both sides, we obtain

Tso(D;y) < Tuo(D;y).

Taking the minimum over y C {0, I}IAI such that b'y < B and KA(Y, e) 4 0, the desired

result follows. O
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Remark: As made clear in the proof, Theorem 5.4.1 is not an immediate consequence

of the definition of the price of anarchy. Indeed, the price of anarchy compares costs induced

by a single design vector y E Y, under UO versus SO routing. That is, as an immediate

consequence of the definition,

Tso (D; y) < uo (D; y) a Tso (D; y).

In contrast, Theorem 5.4.1 compares the costs induced by two different design vectors, Y*o

versus Yso, both under UO routing. For the purpose of a side-by-side comparison, recall that

the theorem establishes that

Tuo(D;y*o) < ruo(D;yso) < ' Tuo(D;yuo).

In addition, note that, when D = {d}, i.e., is a singleton, the theorem says that the

optimal solution of NDPso (d) is a-optimal for NDPuo (). Furthermore, Vy E {O, l) iAI,

KA(y,d) C KA(e,d),

where e E RIAI denotes the vector of all ones. Accordingly, in the context of the unbudgeted

version of the nominal NDP, Y* = e, as in Roughgarden's approximation result under

separable arc costs.

In the NDP setting, either robust or nominal, when there is no construction budget, it

requires virtually no computational effort to set Y*o = e, the vector of all ones. In contrast,

when B < aA ba, and y must satisfy the budget constraint b'y < B, computing Y*o is,

in general, quite difficult. Thus, while Theorem 5.4.1 identifies an approximate solution of

RNDPUo(D), it does not identify an approximation algorithm. Indeed, Y*o represents the

optimal solution to an optimization problem with binary integer constraints. Furthermore,

in the robust setting, as we discussed in Section 5.3, simply evaluating Tso(D;y) requires

the solution of a bilevel optimization problem, which is, in general, NP-hard.
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Nonetheless, as the discussion in Section 5.3 also suggested, evaluating Tso(D; y) should

generally, from a practical standpoint, be significantly easier than computing rTU(D;y).

Accordingly, solving RNDPso(D) and thereby identifying Y*o may be significantly easier

than solving RNDPUO(D). Thus, the approximation result presented in Theorem 5.4.1 may

prove useful, especially in cases in which c is relatively close to one.

5.5 A Branch and Bound Algorithm for the Robust

NDP

Recall the two fundamental requirements for solving any optimization problem. At a high

level, one must navigate through the feasible region in order to identify an optimal solution.

At a lower level, one must evaluate the performance of given feasible solutions visited along

the way. In the preceding parts of this chapter, we have discussed methods for carrying

out only the latter task. Indeed, in Section 5.3, we proposed ways of computing Tso(D; y)

and ruo(D; y), the worst-case performances of design decision vector y under SO and UO

routing, respectively. In this section, we address the high level task of navigating through

the feasible region of the robust NDP in search of an optimal solution.

Specifically, we propose a branch and bound algorithm for solving RNDPso(D) and

RNDPuo(D). When Tso(D; y) and Tuo(D; y) can be computed exactly, the algorithm deter-

mines a connectivity and budget feasible design, y*, minimizing Tso(D; y) for RNDPso(D)

and 'ruo(D; y) for RNDPUo(D). It outputs this optimal design solution and the correspond-

ing optimal objective value, either TSO (D; y*) or TrO (D; y*). For cases in which Tuo(D; y)

cannot be computed exactly but can be upper-bounded, we propose a variation of the al-

gorithm that heuristically solves RNDPuo(D). In particular, this heuristic version of the

algorithm determines a feasible design solution y* that minimizes this upper bound. In this

setting, the method outputs the resulting heuristic solution y* and a range to which the cor-

responding exact value of rUO (D; y*), though it cannot be computed precisely, is guaranteed

to belong.
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Our branch and bound method is based on LeBlanc's [87] branch and bound algorithm

for the nominal NDP under UO routing. However, our approach differs from LeBlanc's work

in several ways. First, and most importantly, as already noted, LeBlanc's method applies

only to the nominal NDP under UO routing. In contrast, our algorithm and our analysis in

this section address the robust NDP under either SO or UO routing. Therefore, our method

covers the nominal NDP under UO routing, but as a special case of the more general robust

setting. Second, while LeBlanc's method uses only lower bounds, we not only use analogous

lower bounds but also suggest upper bounds that may be helpful in pruning the branch and

bound tree. In particular, in the context of UO routing, our upper bounds are based on

the price of anarchy. In this way, our algorithm represents the first prescriptive, rather than

descriptive, use of the concept of the price of anarchy. Third, in presenting his treatment

of the NDP, LeBlanc discussed only problems involving vectors of separable arc-usage cost

functions. In fact, his method also applies to NDPs involving nonseparable cost functions.

The discussion we give here directly addresses the general case of nonseparable and possibly

even asymmetric arc cost functions.

5.5.1 Notation and Definitions

Before presenting our branch and bound algorithm for the robust NDP, let us establish some

notation and definitions. For an introduction to branch and bound algorithms for optimiza-

tion problems involving integer constraints, we refer the interested reader to Bertsimas and

Weismantel [20].

The algorithm we present in this section induces a branch and bound tree. Nodes in the

tree represent varying levels of commitment with respect to design decisions. For instance,

each leaf node in the tree corresponds to a fully-specified design vector y E {0, l}IAl. Recall

that Ya = 1 denotes that arc a A is to be constructed, and Ya = 0 denotes that it is

not. In contrast, each non-leaf node corresponds to a partially specified design vector -r E

-1, 0, 1}IAI. As with fully-specified design vectors, 7ra = 1 and ra = 0 denote, respectively,

that arc a E A is or is not to be constructed. In addition, ra = -1 denotes that arc a G A
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may or may not be constructed. For the sake of brevity, we will refer to fully-specified and

partially-specified design solutions as full and partial solutions, respectively.

Definition 5.5.1. Let S(7r) denote the set of full solutions that are successors or descen-

dants of 7r. That is,

S(7r) = {y E {O, 1 }il AI Ya = ra, Va E A s.t. ra E {O, 1}}.

Furthermore, define the

Va E A,

yes-completion of r to be the unique y E {O, 1}iAI such that,

Ya =
1,

7Ta C { 1},

7ra = -1.

Similarly, define the no-completion of 7r to be the unique y E {O, 1}[AI such that, Va E A,

Ya =
O,

7a C {0, 1,

Ta = -1.

Figure 5-4 illustrates an example, in which A] = 5, of a subtree of a branch and bound

tree. This subtree is rooted at r = (-1, 1, -1, -1, 0) and contains all of the corresponding

successor partial and full solutions, including the yes- and no-completions of 7r.

Recall that not all design vectors y E {0, 1) lAI, and therefore not all leaf nodes in the

branch and bound tree, are necessarily feasible with respect to the construction budget and

the connectivity of the O-D pairs. As before, let Y denote the set of connectivity feasible

full solutions, i.e.,

Y = {y E {0, 1}IAI I KA(y,e) 0}),

where e E RIWI denotes the vector of all ones.
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partial solution r

(-1, 1,-1, -1, 0)

do not build arc 3 build arc 3

(-1, 1, 0, -1, 0) (-1, 1, 1, -1, 0)

(0, 1, 0,0,0) (1,, 1,0,0) (1,1,1,1,0)
no-completion completion yes-completion

set S(7r) of full solutions

Figure 5-4: A branch and bound subtree rooted at r

5.5.2 Bounding the Performance of a Partial Solution's Descen-

dants

Having set forth the notation and terminology we will use in presenting our branch and

bound algorithm, we now establish the bounds we will use in the algorithm.

First, consider the context of SO routing. For any partial design solution or E {-1, 0, })IAI,

we wish to lower- and upper-bound the worst-case performance of any descendant of 7r. As

one would intuitively expect, V7r C f-1, 0, l}IAl, the best- and worst-performing descendants

of xr, under SO routing, are its yes- and no-completions, respectively.

Lemma 5.5.1. Vr E {-1, O, }lIAI, let yl and y0 denote the yes- and no-completions, re-

spectively, of 7r. Let D C RIWI. If yl E Y, then

Tso (D;yl) < Tso (D;y), Vy E S(7r) n Y. (5.22)
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In addition, if yo E Y, then

TSo (D; y) < -so (D; y), Vy E S(i) n Y.

Proof. Suppose yl C Y and consider any y e S(r) n Y. Vd E RW'l, KA (y, d)

thereby implying (5.22). Suppose, in addition, that y E Y. Vd E RIw l,

Ka (y, d), thereby implying (5.23).

(5.23)

C KA (yl, d),

KA (y°, d) 

Next, consider the context of UO routing. Recall Braess' Paradox [27], as discussed in

Section 5.1.3. Braess' example demonstrates that, in the nominal NDP setting, any partial

design solution ir may have a completion that performs strictly better than the corresponding

yes-completion. Since the nominal NDP is a special instance of the robust NDP, this result

extends to the robust NDP context as well. Accordingly, for a given or E {-1, 0, I}IAI for

which S(r) nY 0, there may be a y E S(7r) nY such that TUo (D; y') > Tuo (D; y), where

yl is the yes-completion of ir. For this reason, analogous to LeBlanc's [87] lower bound in

the nominal NDP setting, we lower-bound Tvo (D; y) by Tso (D; yl). Unlike LeBlanc, we

additionally prove an upper bound on TUo (D; y). Like the aforementioned lower bound, this

upper bound is also derived from a comparison of performance under UO and SO routing.

Lemma 5.5.2. NV/r E {-1, 0, 1}IAI, let yl and y0 denote the yes- and no-completions, re-

spectively, of wi. Let D C IlW l If yl E Y, then

Tso (D;yl) < Tuo (D;y), Vy E S(x) n Y.

Let ct be a bound on the price of anarchy for G (V, A(y)), Vy C Y. If yO E Y, then

uo(D; y) < c rso(D; y0 ), Vy E S(w) n Y.
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Proof. Vy E Y, let dso(y) and do(y) be defined as in (5.21). In addition, Vy E Y,

Vd E RlW, let fso(y, d) and fuo(Y, d) be defined as in (5.21). Suppose yl E Y and consider

any y E S(rr) n Y. We already showed, in the course of the proof of Theorem 5.4.1, that

Vy C Y,

Tso(D;y) < Tuo(D;y) < ar Tso(D;y).

Therefore, the desired result follows from Lemma 5.5.1. []

5.5.3 The Branch and Bound Algorithm

We now present the branch and bound algorithm for RNDPso(D) and RNDPuo(D). So

that we may cover both problems simultaneously, let us introduce some additional notation.

Let p E {SO, UO} denote a routing paradigm, either system-optimal or user-optimal. For

7Tr {-1, 0, 1}, such that S(ir) n Y -# 0, let LBp (S(rr)) denote a lower bound on rp(D; y),

Vy E S(7r) n Y. In particular, in accordance with Lemmas 5.5.1 and 5.5.2, let

LBp (S(7r)) = so (D; y), p E {SO, UO},

where yl is the yes-completion of 7r. Similarly, if y0 is the no-completion of 7r and y E Y,

then let UBp (S(r)) denote an upper bound on p(D;y), Vy E S(r) n Y. Specifically, as

suggested by Lemmas 5.5.1 and 5.5.2, let

UB (S(rr)) = (D;y), = SO,
& Trso (D; y °), p UO.

For clarity and conciseness of exposition, in presenting the steps of our branch and bound

algorithm, we initially assume that rso(D; y) and Tuo(D; y) can both be computed exactly.

Under these conditions, for RNDPso(D) or RNDPo(D), the algorithm determines the

connectivity and budget feasible design solution, y*, that exactly minimizes rso(D; y) or
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ro(D; y), respectively. It outputs this optimal solution and the corresponding objective

value.

After presenting this exact version of the algorithm, we describe alterations to the algo-

rithm that enable the heuristic solution of RNDPvo(D), when Tuo(D; y) cannot be com-

puted exactly but can be upper-bounded. Under these conditions, the altered algorithm

determines the connectivity and budget feasible design solution, y*, that minimizes the

aforementioned upper bound on Tuo(D; y). It outputs both this heuristic solution, y*, and

a range of values to which the corresponding TUo (D; y*) is guaranteed to belong.

Robust NDP Branch and Bound Algorithm.
Input: node set V

virtual arc set A

set W of O-D pairs

demand uncertainty set D

vector function c: RI AI t IRAI giving the costs per unit flow

vector of design costs b

design budget B

a bound a on the price of anarchy for any subnetwork of G(V, A)

Output: a connectivity and budget feasible y minimizing Tp(D; y)

the corresponding value of p(D; y)

Step 1. Initialize.

a. Set Q := {-e}. where e E IIAI is the vector of all ones.

b. Set UB* := oc.

c. For any y E Y such that b'y < B, set

Y* := Y,

OPT := rp(D;y).

Step 2. If Q = 0, then output y*, output OPT, and stop.
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Otherwise, branch as follows.

a. Select r EC Q and a' E A such that ra = -1. Set

Q := Q\{TT

If LBp (S(it)) > min {OPT, UB*}, then restart step 2. (All descendants of 7r are

no better than the current incumbent solution y* or the optimal descendant of

the partial solutions in Q).

b. Set ir i, i E {0, 1} according to

a= a',i,
7rt :-=

ITra,

(5.24)
a 74 a'

Step 3. Consider 7r°:

a. Let y0 1 denote the yes-completion of Ir. If KA (yo,', e) = 0, where e E IRlWI is

the vector of all ones, then proceed to step 4. (S (r °) n Y = 0).

b. If {a G A I =-1} = 0 (i.e., i °t is a full solution), and if Tp (D; ro° ) < OPT,

then set

y* := wr° ,

OPT := TP (D; rr) .

c. If {a G A I ro = -I} 0 (i.e., °roc. If~aEA]%= is not a full solution), and if LBp (S (7°)) <

min {OPT, UB*}, then set Q := Q U {wt°}.

Step 4. Consider rl:

a. Let yl,0 denote the no-completion of t 1. If b' (y1 ,0) > B, then go to step 2. (None
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of the descendants of r1 is budget-feasible).

b. If {a E A I r = -1} = 0 (i.e., r' is a full solution), and if Tp (D; 7r1 ) < OPT,
then set

y* := 7l

OPT := (D; 7).

c. If {a E A 7a -1} 0 (i.e., 1 is not a full solution), and if LBp (S (r)) =

LBp (S (r)) < min {OPT, UB*}, then set Q := Q U {r}.

d. If y 0 E Y, then set UB* := min {UB*, UBp (S (r 1))}.

Step 5. Go to step 2.

From Lemmas 5.5.1 and 5.5.2, the correctness of this branch and bound algorithm, when
Tso(D; y) and ruo(D; y) can be computed exactly, immediately follows.

Theorem 5.5.1. The Robust NDP Branch and Bound Algorithm correctly solves RNDPp(D),
Vp E {SO, UO}.

Example 5.5.1. To better illustrate the features of and ideas behind our branch and bound
algorithm, consider the following simple example of RNDPUo(D), pictured in Figure 5-5.
In this example, there are two disjoint O-D pairs. The first is connected by arcs 1 (top) and
2 (bottom), and the second is connected by arcs 3 (top) and 4 (bottom). The vector of arc
construction costs is given by b = (1, 2, 1, 2). The arc cost functions are given by

Ca(f) { {100, a E {1, 3}

10fa, a E {2, 4}.

Suppose the construction budget B = 4 and the demand uncertainty set D is given by

D = {dE RWI d E [8,12], d2 E [9,15]; 14 - 6 <-- 
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b l = 1 b3 = 1

C3(f)= 100

b2=2 b4 =2

b2 = 2 b4 = 2

C2 (f) = 10f2 c4 (f) 10f4

Figure 5-5: A simple example of RNDPUo(D)

Because the flow associated with each O-D pair in this example does not affect the costs on

the arcs of the other O-D pair, we may decouple the two O-D pairs in evaluating Tuo(D; y).

In this way, in this example, it is relatively easy to compute Tuo(D;y) exactly, Vy E Y.

Despite its simplicity, the example allows us to clarify the algorithm's features.

The purpose of the lower bounds computed in the course of the branch and bound

algorithm are relatively self-explanatory. Nonetheless, to illustrate their use, suppose, at

some point in the execution of the branch and bound algorithm on this example, we reach

the full solution y* = (0, 1, 1, 0). Suppose that, at this point in the execution, this full solution

is the best full solution found so far, with TUo (D; y*) = 2340. Furthermore, suppose the

algorithm next considers either adding partial solution r = (0, 1, 0, -1) to Q or branching on

rr. For the yes-completion yl = (0, 1, 0, 1) of 7r, the algorithm computes Tso (D; yl) = 2890.

This value provides a lower bound on Tuo(D; y), for all connectivity feasible descendants

y of rit. In light of this bound, even if y* = (0, 1, 1, 0) is a suboptimal solution (in fact, it

is suboptimal), any feasible descendant of r is even worse than y*. Thus, the algorithm

excludes r from further consideration.

Next, let us illustrate the purpose of the upper bounds computed in the course of the

algorithm. Suppose, in this example, we add partial solution ir = (1, 1, 1, -1) to the list Q of

"candidate" partial solutions requiring further attention. One may verify that Tso (D; y0) =

2050, where y0 = (1, 1, 1, 0), i.e., is the no-completion of 7r. In addition, note that c(f) is a

separable vector function. Accordingly, it follows from Roughgarden and Tardos [143, 144]

164



and Roughgarden [141] that the price of anarchy, for any subnetwork of the one pictured in

Figure 5-5, is bounded by 4/3. Thus,

4 1
Tuo(D; y) < 37- (D; y°) = 2733 , Vy E S(7r) n Y.

That is, any full solution y that descends from partial solution r yields a worst-case total

system cost under UO routing of at most 2733½. Suppose that the branch and bound

algorithm considers adding w = (1, -1, 0, -1) to the candidate list Q or branching on w, if

it is already in Q. Let yl = (1, 1, 0, 1), i.e., the yes-completion of w. Since

Tuo(D;y) > 7so (D;yl) = 2800, Vy ES(w)n Y,

all descendants of w yield higher worst-case costs than any descendant of 7r. Consequently,

the branch of the tree emanating from w may be excluded from further consideration; all

of its descendants are clearly suboptimal. In this way, our branch and bound algorithm

prescriptively uses the concept of the price of anarchy in an effort to eliminate suboptimal

branches of the branch and bound tree and to thereby save on computational effort.

Fully carrying out the branch and bound algorithm on this example, and always branching

on the partial solution in Q with corresponding minimal lower bound, we correctly identify

the exact optimal solution y* = (1, 1, 1, 0), with corresponding Tvo (D; y*) = 2140. In the

course of executing the algorithm, we reach only six of the sixteen total leaf nodes in the

branch and bound tree. In addition, the algorithm requires that we evaluate TUO(D; y) at

only four of these six leaf nodes, as the other two are infeasible.

Heuristic Solution of RNDPuo(D) via Branch and Bound Algorithm

IAs would any exact algorithm for solving RNDPso(D) and RNDPuo(D), the exact ver-

sion of the branch and bound algorithm we propose requires computation of Tso(D; y) and

-1Lo(D; y), respectively, for various feasible solutions considered in the course of the algo-

rithm. When TSo(D; y) can be computed exactly, the algorithm provides an exact solution
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method for RNDPso(D). Recall that, when the arc costs are monotone and affine, and D

is a bounded polyhedron, so(D; y) may be computed as the maximum value of (so(y, d)

over the extreme points of D. We summarize the major features of the exact branch and

bound algorithm for RNDPso(D) in Figure 5-6. Furthermore, when both rso(D; y) and

Tuo(D;y) can be computed exactly, the branch and bound algorithm provides an exact

solution method for RNDPuo(D).

df node:

ed on SO cost if build everything else

sed on SO cost if build nothing else

0

0

Leaf node:
Exactly compute Tso(D; y)
Look at extreme points of D

Figure 5-6: Features of the exact branch and bound algorithm for RNDPso(D)

As we discussed in Section 5.3, it is difficult to exactly evaluate ruo(D; y), even when

D is a polyhedron and the arc cost functions are monotone and affine. In such cases, as

proposed in Section 5.3.3, one can compute, via Lagrangian relaxation, an upper bound on

Tuo(D; y) in place of its true value. Accordingly, one can thereby use the following variation

on the proposed branch and bound algorithm to heuristically solve RNDPuo(D).

In particular, for y Y, let L*(D,y) denote the upper bound on ruo(D;y) obtained

by Lagrangian relaxation. Recall from the proof of Theorem 5.4.1 that c T 0rso (D; y) is also

an upper bound on Tuo(D; y). Consider a variation of the branch and bound algorithm for

RNDPuo(D) in which, in Steps 3.b and 4.b of the algorithm, one uses the minimum of the
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two aforementioned upper bounds, i.e.,

min {L*(D, y), c r-so (D; y) }, (5.25)

in place of UO(D; y) itself. This variation of the algorithm solves for the feasible design

solution for which upper bound (5.25) on Tuo(D; y) is minimal. In Figure 5-7, we illustrate

the main features of this version of the algorithm.

If node:

ed on SO cost if build everything else

ed on price of anarchy
ld SO cost if build nothing else

Leaf ode:
UB rUo(D; y) based on

1) Single-level reformulation (Section 5.3.3)
Lagrangian relaxation
Equivalent MIP

2) Price of anarchy and SO cost

Figure 5-7: Features of the heuristic branch and bound algorithm for RNDPUo(D)

For this heuristic solution y*, we would like the algorithm to output a range of values to

which 'vo (D; y*), though it cannot be computed exactly, is guaranteed to belong. We have

established a heuristic version of the branch and bound algorithm that already computes

the upper bound of such a range. We now describe how to augment the algorithm so that it

also computes a lower bound on vo (D; y*).

To begin, recall from the proof of Theorem 5.4.1 that ruo (D; y) > Tso (D; y), Vy E Y.

For a second valid lower bound, recall that, for any given y E Y, uo(D;y) is itself an

MPEC. We established in Section 5.3.3 that, when D is a polyhedron and the arc cost func-

tions are monotone and affine, this MPEC is equivalent to a nonconvex QCQP. Any local
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optimum of this QCQP thus yields a second valid lower bound on ruo (D; y*). Accordingly,

we add the following final step to the heuristic version of the branch and bound algorithm

for RNDPuo(D). At termination, the algorithm computes a lower bound on Tuo (D; y*) by

computing the maximum of rso (D; y*) and a locally optimal objective value of the afore-

mentioned QCQP. Note that, when y* is the yes-completion of its parent partial solution, it

inherits the lower bound rso (D; y*) from this parent.

In this way, the heuristic version of our branch and bound algorithm not only identifies

the feasible design solution y* for which upper bound (5.25) on Tuo(D; y) is minimal, but

also determines a range of values to which Tuo (D; y*) is guaranteed to belong.

Other Implementation Issues

Let us now justify and comment on measures built into the branch and bound algorithm to

save on computational effort. Note that calls to p(D; y) are not limited to steps in which the

algorithm reaches a leaf node. Indeed, at a non-leaf node r, in order to evaluate LBp (S(ii))

and UBp (S(7r)), the algorithm must compute so(D; y), where y is the appropriate com-

pletion of r. Fortunately, however, the algorithm need not compute these bounds at every

branch step. Indeed, consider a partial solution r with ra = -1, a C A. Consider, as given

in equation (5.24), the children nodes 7rl and r° induced by branching on arc a. Since

LBp (S ()) = LBp (S (r)),

7r1 inherits its lower bound from r. Similarly, if the no-completion of r belongs to Y, then

so does the no-completion of 7r°, and furthermore,

UBp(S ()) = UBp(S ()).

In this way, since 7rt inherits its upper bound from 7r, the algorithm must update UB* only

when it considers child node 1.rl

In addition to evaluating Tp(D; y), the branch and bound algorithm must assess whether
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partial solutions have any descendants that are feasible with respect to the construction

budget and with respect to the the connectedness of the O-D pairs. The former assessment

can be made by computing the total construction cost of the no-completion of the partial

solution in question. The latter may be made by performing breadth first search, or a

similar method, on the graph induced by the yes-completion of the partial solution. Again,

the algorithm need not make these assessments at every branch step. The reason is that, if

3y E( S (r) such that b'y < B, then 3y E S (r0 ) such that b'y < B. As such, the algorithm

need only check budget feasibility when considering child node 7rl. Similarly, if By E S (r)

such that y E Y, then ly E S (r') such that y E Y. Consequently, the algorithm need only

verify connectivity when considering child node r °.

Lastly, let us discuss the breadth of NDP instances to which our branch and bound

algorithm may be applied. The version of the algorithm we propose addresses robust (or

nominal) NDPs in which the network designer is planning the edge set "from scratch," rather

than adding to an existing arc set. One can easily modify the algorithm to address the latter

scenario. Specifically, in this setting, one should initialize Q to be the singleton partial

solution rr such that the following holds. ra = 1 if a is a pre-existing arc, and 7a = -1,

otherwise. In addition, in this context, if the no-completion of r is connectivity feasible,

one should initialize UB* differently. In particular, rather than initializing UB* := oo, one

should instead initialize UB* to oa UBp (S (rr)).

5.6 A Single-level QCLP Reformulation of RNDPuo(D)

In the previous section, we proposed a branch and bound algorithm for solving the robust

NDP. Even in the most favorable circumstances, whether in the context of RNDPso(D) or

RNDPUo(D), carrying out this branch and bound algorithm requires significant computa-

tional effort. As such, we wish to identify classes of instances of these problems for which

better solution methods exist. In Section 5.3.2, with Theorems 5.3.2 and 5.3.3, we identified

conditions under which RNDPUo(D) and RNDPso(D), respectively, reduce to nominal

problems. These instances involve networks with only a single O-D pair and arbitrary net-
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work topology.

In this section, we examine RNDPuo(D) settings involving multiple O-D pairs, each

connected by a set of parallel arcs, with a vector of separable, affine, and strictly monotone

arc cost functions. For two reasons, this class of instances of RNDPvo(D) admits a simpler

solution approach relative to the branch and bound algorithm. First, in this setting, we are

able to parametrically solve, in closed form, for the unique UO flow solution, as a function

of y and d. As a result, we are able to solve for (uo(Y, d) in closed form. Recall that,

in contrast, such a closed-form solution is not usually attainable for the general case. We

derive these closed-form solutions in Section 5.6.1. Second, we are able to characterize a

necessary and sufficient condition for all realizations of d from D to yield UO flow solutions

in which, Vy E Y, all built arcs are used. We establish this necessary and sufficient condition

in Section 5.6.2.

As we discuss in Section 5.6.3, these two properties allow us to formulate RNDPUo(D)

as a min-max problem over y E Y and d C D, respectively. Exploiting convexity proper-

ties relating to the inner maximization problem, and using duality techniques from robust

optimization, we can rewrite the min-max as a single-level optimization problem over poly-

nomials. Specifically, this problem is a quadratically constrained linear optimization problem

(QCLP). In part because it captures the binary integer constraints on y, this QCLP is a

nonconvex problem. However, in light of recent advances in (nonconvex) optimization over

polynomials (see Lasserre [85, 86], Henrion and Lasserre [70], Parrilo and Sturmfels [122],

Parrilo [121], and Prajna et al. [131]), for small instances of RNDPuo(D), this solution

approach may be attractive.

5.6.1 Solving the NEP in Closed Form under Parallel Arcs

Consider a graph G(V, A) with a set W of O-D pairs, each connected by a collection of

parallel arcs. Equivalently, since P = A in this setting, we may refer to these parallel arcs

as paths. For the sake of clarity of notation, let us continue the discussion using the path,

rather than the arc, terminology. Let nw = IPw], that is, the number of paths (equivalently,
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the number of arcs), connecting O-D pair w E W in G(V, A).

For the purpose of the discussion in this section of the thesis, let us introduce notation,

for the vector of flow variables and vector of path (i.e., arc) cost functions, whose numbering

convention differs slightly from the one we use in the rest of this chapter. In particular, let the

vector of path flows be denoted by F = (F1,..., FlWl) E RIPI, where Fw E Rn and F', p E

{1,..., n,}, denotes the flow on the pth path connecting O-D pair w. Similarly, let C(F) =

(C1(F),..., CIwI(F)) E 1RIPI, where CW(F) E Rnw and CP (F), p X {1, . . ., n}, denotes the

cost induced by flow F on the pth path connecting O-D pair w. Let us similarly define slightly

different notation for the vector of binary design decisions. Let y = (yl,..., ylWl) E {0, 1}IPI,

where yU = 1 denotes that the pth path connecting O-D pair w is built, and yp' = 0 denotes

that it is not built.

Suppose that the path cost functions are given as follows.

Cp(F) = gwF + h, w E W; p E {1,...,nw}, (5.26)

where gpw > 0 and h > 0, Vw E W, Vp E {1..., nw}. This setting is pictured in Figure 5-8.

Thus, the path cost functions are affine, separable, and strictly monotone. Accordingly,

And~~~t ) 4 * *0 O

g F, + h.t,

Figure 5-8: An NDP with parallel paths and separable and affine path cost functions

Vy E Y, Vd E RWI, there is a unique equilibrium flow solution (Theorem 5.2.2). Without

loss of generality, assume that, Vw E W,

h' < h < ... < h. (5.27)

171

)



In the following proposition, we solve for the unique equilibrium, in closed form, as a

function of y and d. Our result generalizes the exact equilibration algorithm of Dafermos

and Sparrow [39] to the setting involving a variable arc set that depends on y. We first

establish some notation to be used in the proposition. For w E W, p E {1, . . .,nw - 1}, let

P w pl (hw _ hw yw

[j= gW j=1 9g

and let

i~WuJ (y j= n (hw -hT) yj
nw ()= [E g 0°

For p E {1,..., n, - 1}, note that the two endpoints of interval Ip(y) are equal whenever

hp+ = h. Therefore, we include both endpoints in the interval in order to ensure that the

interval is well defined when this equality holds. Note that, Vw E W, Vp E {1,... , nw- 1},

p+l (hw h) y P (hww-h) y (h - h) yEPl - > P
j=l gjS j=1 9g j=1 

Thus, Vw W, Vp {1, . . ., n}, I(y) is indeed well defined.

Proposition 5.6.1. Consider a graph G(V, A) with a set W of O-D pairs, each connected

by parallel paths. Suppose that the vector of path cost functions C(F) is given by (5.26) and

satisfies the ordering in (5.27). Consider any y Y. Let d E IRlWl, with d > 0. Suppose

dw Ip(y), w C W, where p {1,..., nw}. Let F(y, d) denote the unique UO flow solution

induced by y and d. Then

yq [ p 9 q , q p 1 d.,Eq ,

Fq(y,d) = (5.28)

0, q =p+ I,...,n,.
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In addition, Vw E W,

P= A;< - dw
A,(y,d) =

Finally, the total cost in the system at this unique UO flow solution is

j 'yf dw + dw
(uo(y,d) = dwAw(y,d) = =

wEW WEW 'j=1 

Proof. By strict monotonicity of C and Theorem 5.2.2, Vy E Y, and Vd E RIIW l, there exists

a unique UO flow solution.

Consider F(y, d), as given by equation (5.28). Let us first establish that the expressions

in (5.28) are well defined. Recall that Vw E W, Vj E {1,..., nw}, g > 0, where g is

as in (5.26). From y E Y, it follows that Vw E W, j E {1, . . . ,nw} such that yw = 1.

Accordingly, the denominators of the fractions appearing in F are all nonzero, and F(y, d),

as given by equation (5.28), is well defined.

We must next show that F(y, d) E Kp(y, d), i.e., that it is a feasible vector of path flows

with respect to y and d. From (5.28) itself, we may conclude that yq' = 0 implies FqW = 0.

Vw E W, let p E {1,..., n,} denote the index such that dw E I(y). From the definition of

Ip (y), we have

P (hw - h) yw

Adding YP= (h -h)Y > to both sides, and using the fact that h < hp, Vq E {1, .,p}, we

obtain

P (h] - ht w w P (hw _hw)ywE V j q + dw > E q > .
j=1 9j j=1 Sj
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This nonnegativity relation implies that F > 0. Lastly, Vw E W,

nw

Fq (y,d)
q=l

p

= q
q=l I

- dw.

Thus, F(y, d) Kp(y, d).

Having established that F(y, d) is a feasible vector of path flows, let us show that it

satisfies Wardrop's Principle, given in Definition 5.2.4. Vw E W, Vq E {1,... ,p} such that

YqW = 1 (thereby implying Fqw(y, d) > 0), we have

gq Fq (y, d) + hqq q q
W- gq

EP 3 jT + d,+ hqj 9
g?

(5.29)

Furthermore, dtw E Ip(y) implies that

dwl w w•
j=1 gw

p

j=l

(hpw+l h) yw

This inequality, together with equation (5.29), implies that

< h+ < h 2 <

Thus, F(y, d) satisfies Wardrop's Principle. [O

Note that, Vw E W, if dw exactly equals an endpoint of an interval, then dw belongs

to Ip(y) for at least two distinct p E {1,...,nw}. Suppose that P E {1,..., nw - 1}

and P2 {2,... n}, such that P2 > Pi + 1 and such that d E I(y) and d E I(y).

dw E I (y) implies

pl+l

dw < :
j=1

(hp+ - h ) yj
gw
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while dw I (y) implies

f (hw - h ) YjW

j=1 j

p1+1 (hpl + -hg) y;

j=l 9g1

Therefore, dw E Il (y) and dw C Ip2(y) imply thatPliP

2, ... ,P2,d -- , ( h - h) yjW
j= 1

dw E (y), = Pl,Pl 1,.

Membership condition (5.30) may arise with P2 > Pi + if

h, = , e = + 1,p + 2,... ,P2,

or if h, > h}il and e E {P1 + 2 ,...,P2} imply that yjw = 0, Vj {1, 2,.

(5.30)

(5.31)

.. i,-1}. In the

latter case, since - 1 > Pi + 1, it follows that dw = 0, thereby violating the assumption in

Proposition 5.6.1 that d > 0. Therefore, within the context of Proposition 5.6.1, membership

condition (5.30) implies (5.31).

Under (5.30) and (5.31), setting p = in formula (5.28) yields the same value of F(y, d),

V CE {P l,l -+ 1,.. .,P2}. Indeed, Vq C {Pl + 1,...,p2}, F(y,d) = 0, since, VW E {Pl +

f (h - h)+ dw
j=1 9J

In addition, Vq E {1,..., pi, Ve E {Pl, pi + 1, ... , P2},
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(hj -he) yj
= E g +dw = 0.
j=1 gjv

e (h>--h-)yj

j=1 9
rJ

97 gj=l gWj= 9

hp+l-qw
gw
pq

I p + l, p + 2 ... ) P2

· ,P2

I:=f (h~w-hw ) 3"
j= j

+ ll(hw - 3'yy
W



from which we obtain that

hp,+l qFqw(y,d) = y g h

The next corollary follows directly from Proposition 5.6.1 and algebraic manipulation.

We therefore omit its proof.

Corollary 5.6.1. Consider a graph G(V, A) with a set W of

parallel paths. Suppose that the vector of path cost functions

satisfies the ordering in (5.27). Consider any y E Y and any

Vw E W,

Aw(y, d) =

O-D pairs, each connected by

C(F) is given by (5.26) and

d E RWw , with d > O. Then,

h-y P ij + dw
j=l gV wrinl

j= g.
g7

That is, for y E Y fixed, Aw(y, d) is a piecewise-linear, concave, and strictly increasing

function of dw.

Note that Proposition 5.6.1 and Corollary 5.6.1 both demonstrate that, as one would

expect in this setting, Aw(Y, d) does not depend on dw,, for w' E W with w' -h w.

5.6.2 Heavy Traffic Conditions

Consider the closed-form formulae, given in Proposition 5.6.1, for the unique F(y,d) E

UOp(y, d), for the corresponding Auo(y, d), and for (uo(Y, d), where y E Y and d > 0 are

arbitrary. Recall that our goal in deriving these quantities is to reformulate

RNDPuo(D) min max{uo (y d) E D} Y E Y, b'y < B}

in order to facilitate this problem's solution. The formulae given in Proposition 5.6.1 are

conditioned on d belonging to Ip(y), where p E {1,..., n,}. In this way, p, and therefore

the formulae themselves, implicitly depend on y and d. Because of this implicit dependence,
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the formulae may be of little help in refraining RNDPUo(D) as a single-level optimization

problem.

Corollary 5.6.1 allows us to rewrite (uo(Y, d) in closed form as an explicit function of y

and d.

(uo(y,d) = ZdwAw(y,d) = Zdwr min 9
wEW wEW j=1 i

However, again, this formula for (uo(y, d) is too complicated to be useful in manipulating

RNDPuo(D) in the way that we would like.

In this section, we characterize "heavy traffic" conditions in which, Vd E D, Vy E Y,

Vw W, dw is guaranteed to belong to IWw(y). In such settings, the dependence on y and

d of the expressions for the UO flow, for Aw(y, d), and for (uo(y, d) automatically becomes

explicit, without complicated reformulation. Essentially, this condition ensures that, for any

design decision y, and for any demand realization d in D, y and d induce an equilibrium

flow solution in which all built paths (equivalently, in this setting, arcs) carry positive flow.

Corollary 5.6.2. Consider a graph G(V,A) with a set W of O-D pairs, each connected

by parallel paths. Suppose that the vector of path cost functions C(F) is given by (5.26),

and satisfies the ordering in (5.27). Let F(y, d) denote the unique equilibrium flow solution

corresponding to design vector y E Y and demand vector d E IRlW!. Consider a set D of

demand vectors. The following two conditions are equivalent.

Condition 1) Vd E D, Vw E W, d, > Ep h1-h.'

Condition 2) Vy Y, Vd D, Vw E W, Vp E {1,...,nw}, ypw = 1 implies

Fp(y, d) > 0.

Proof. Suppose that Condition 1 holds. Then, Vd E D, Vw E W,

nw h - hW nw hw - h yw
dw > E w > E g> (5.32)

p=l p p=l
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implying that, dw E 'n(y), Vy E Y.

{ 1,, nw},

F (y, d)

Therefore, by Proposition 5.6.1, Vw E W, Vq E

w ep I )Yg ± + d1
- Yq nw gq YP

pl gp

From inequality (5.32), we have

nw (hw - hw) ywE p __ +dw >
pal 9P

nw=

p=l

(hw - hw) p
gW
Ph7w- 

Thus, yp = 1 implies Fp(y, d) > 0.

For the reverse direction, suppose that Condition 2 holds. Consider y = e, the vector

of all ones. Consider any d E D. Condition 2 states that Fp (y, d) > 0, Vw E W, Vp E

{1,..., n,}. Since F is a UO flow solution, it follows that, Vp E {1,..., nw},

gp Fp (y, d) + hp = = gnw F (y, d) + hn

where the inequality follows from the facts that g w > 0.

summing over p E {1,..., nw}, we obtain

Dividing through by gp and

nw

dw = E
p=l

Fp (y, d) >
nw h - hW

z- nw P
9"

Thus, Condition 1 holds. O

5.6.3 A QCLP Reformulation of RNDPuo(D)

In this section, we prove that, under a particular form of uncertainty set and under the

heavy traffic conditions characterized in Section 5.6.2, RNDPuo(D) may be reformulated

as a single-level QCLP.

Theorem 5.6.1. Consider a graph G(V, A) with a set W of O-D pairs, each connected by
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parallel paths. Let the vector of path cost functions C(F) be given by (5.26) and satisfy the

ordering in (5.27). Let b = (bl,..., blWl), where bpw denotes the cost of constructing the pth

path (i.e., arc) connecting the wth O-D pair. Let

D = {I RI WI dw EE [didw+dw] ,w W;

where > 0, > 0, and Fr > 0 are given parameters. Furthermore, suppose that D satisfies

Condition of Corollary 5.6.2. Then, RNDPuo(D) is equivalent to the following QCLP.

Fr + E (vw + zw)
wEW

nw w

s.t. (VW + r) YPW
p=l 9P

nwl W

p-lI 9P-

+ 2dwdw + d,

b'y < B

ey w > 1,

= 0,

v>O
r > 0,

where e is the appropriately dimensioned vector of all ones.

Proof. To begin, let us rewrite

D = {d EIRI 3u E RlWl s.t. w = dw + wdW, wEW; O< u <e,
wE Uw },
wEW

where e E RIWI is the vector of all ones. For any 0 < u < e, let d E D be given by
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wEW

min
yEIIPI

rER
V,zElIWI

pi> d Y p wYPpW g
nw

= d p=l
p=l

wE W

w W (5.33)

w E W

wEW; pE{1,..., nw}

<F ,d - w

9PW

P ( - YW)



d, = dw + udw. From Condition 1 of Corollary 5.6.2, and from Proposition 5.6.1,

n w +~2

p=l g w
wEW p=l gp

= EW
WEW I wpl

EP=1 g p~

r C1 Ezplg]

hp yp (dw

PP
+ dwuw) + dPw + 2dwdwuw +

nw

E
-p=l YP

[EW 1
+mx 5~~ [Z -

n v w

l dw w + 2dwdwuw + cw2lp:: ^2w2
s.t. O < u < e

uw< rF.
wEW

Let u** denote an optimal solution of LCQP (5.34).

In addition, let u* denote an optimal solution of the following feasible and bounded linear

program (LP) in u. Without loss of generality, we may assume that u* E {0, 1}lwl

max 
wEW

nw g
Ep=l gw

[nw

-p=1

hp cdw + 2dwdw + dw uw
gPV I

s.t. O<u<e

ELuw < F.
wEW

(5.35)

The following system establishes that the optimal values of LCQP (5.34) and LP (5.35)

are equivalent. The equality in this system holds by the fact that u* E {O, 1}lWl. The first

inequality follows from the fact that u* is a feasible, but not necessarily optimal solution of

LCQP (5.34). From 0 < u** < e, the second inequality holds. Finally, the third inequality
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Therefore,

Tuo(D;y) = E
wEW

(5.34)



follows from the fact that u** is a feasible, but not necessarily optimal solution of LP (5.35).

[nw

E
-p=l

PwwP dW + 2dwdW i] UW

s~W

1 ]
-W Cp= gp

[ -]wGW CP" gp

' P dw + 2dwdw.*p=l gPw
p=1 gWiutiy 2dd· 4

+ d (w)2

+ dW (w) ]

+ d2 (**\'2
1

nw YwP
p=l gpW[ -

hpw dwuw* + 2dwdwu **
9PW W 

I [ w
wE< W w y _
wEW Ep= g -=l

W w

hp
2d^d + + 2dwdw W .

Since LP (5.35) is feasible and bounded, its dual is also feasible and bounded and has an

optimal value equal to that of LP (5.35). This dual LP is given by

Fr + Vw
wEW

1
s.t. v+ r > [ ]

p=_l gp 

[nw

E
-p=l

hpyp dw

9p
+ 2dwdw + d]

v>O
r > 0.

Since y E {0, 1}IPl and g > O, we may multiply the first constraint through by Epnwl >
Furthermore, letting

d nw hp yp
z C T w

nw W 9
p gp p=l P

w E W,

we obtain that RNDPuo(D) is equivalent to (5.33).
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nw

-p=l
< E

wW

min
rERI, vERlWI 'I

wEW

E

+ d2

I nw hypwdw 2~, Z U
n. Y I: C W

WGW EP jgw == Pp lg



5.7 Conclusions

In this chapter of the thesis, we propose a novel, distribution-free, robust optimization model

of the binary choice, arc construction NDP, under demand uncertainty, congestion effects,

and either UO or SO routing. We offer methods for solving the resulting robust NDP.

In particular, we propose a branch and bound algorithm for exactly or heuristically solving

instances under SO or UO routing, respectively. Whereas the price of anarchy has previously

been used only in a descriptive, rather than a prescriptive, manner, our branch and bound

algorithm constructively uses this measure of inefficiency. Moreover, we prove that the

robust NDP under SO routing gives a price-of-anarchy-approximate solution to the robust

NDP under UO routing. In addition, we present conditions under which the robust NDP

reduces to a less computationally demanding problem. We give two such sufficient conditions.

Under the first, the robust NDP reduces to a nominal counterpart, and under the second,

it is equivalent to a single-level quadratic optimization problem. Furthermore, we observe

counterintuitive behavior, not yet noted in the literature, of costs at equilibrium with respect

to changes in traffic demands on the network. The examples we present are analogous to

Braess' Paradox [27] and illustrate that an increase in traffic demands on a network may yield

a strict decrease in the costs at equilibrium. Finally, we establish convexity and monotonicity

properties of functions relating to the worst-case performance of a given network design

decision. These properties motivate the solution methods we propose and underscore the

relative levels of difficulty among the SO and UO versions of the robust NDP and their

nominal counterparts.
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Chapter 6

Conclusions

In this thesis, we offer a novel, distribution-free, robust optimization approach to three classes

of equilibrium-related problems.

In the first part of the thesis, we explore the nominal variational inequality (VI) problem.

Interestingly, although the data in the problem are regarded as being known with certainty,

the VI is in fact a special instance of a robust constraint. Exploiting this insight, we use

duality-based proof techniques from the robust optimization literature in order to reformu-

late the VI over a polyhedron as a single-level optimization problem. This reformulation

applies even if the associated cost function has an asymmetric Jacobian matrix. Moreover,

in contrast to other reformulation approaches in the VI literature which produce problems

that are at most; once differentiable, our reformulation yields an optimization problem that is

many-times continuously differentiable. We give sufficient conditions for the convexity of this

reformulation and thereby identify a class of VIs which may be solved using widely-available

and commercial-grade convex optimization software. We prove that monotone affine (and

possibly asymmetric) VIs are special instances of this class.

In the second part of the thesis, we consider an equilibrium-related problem that does

involve data uncertainty, namely the finite game with incomplete information. Using the ro-

bust optimization paradigm, we propose a distribution-free model of incomplete-information

games, in which the players use a robust optimization approach to contend with payoff un-
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certainty. Our "robust game" model relaxes the assumptions of Harsanyi's Bayesian game

model, and provides an alternative, distribution-free equilibrium concept, for which, in con-

trast to ex post equilibria, existence is guaranteed. We show that computation of "robust-

optimization equilibria" is analogous to that of Nash equilibria of complete-information

games. Namely, for arbitrary robust finite games with bounded polyhedral payoff uncer-

tainty sets, we provide a formulation of the set of robust-optimization equilibria as the

dimension-reducing, component-wise projection of the solution set of a system of multilin-

ear equalities and inequalities. We suggest that sample solutions of such systems can be

approximately computed using a pseudo-Newton method applied to an appropriate penalty

function. To demonstrate the practicality of this computational approach, we present nu-

merical results of implementation. For a special class of robust finite games, we show that

the set of robust-optimization equilibria is equivalent to the more easily computable Nash

equilibria set of a complete-information game, with the same number of players and the

same action spaces. Finally, we compare properties of robust finite games with those of

the corresponding Bayesian games. Our results cover incomplete-information games without

private information as well as those involving potentially private information.

Finally, in the third part of the thesis, we consider an alternate game-theoretical per-

spective on data uncertainty, namely, that of a mechanism designer. Specifically, we propose

a novel, robust optimization model of the binary choice, arc construction network design

problem (NDP), under demand uncertainty, congestion effects, and either system-optimal

(SO) or user-optimal (UO) routing. We offer a branch and bound algorithm for solving

the resulting robust NDP. This algorithm comprises the first constructive use of the price

of anarchy concept, which has previously been employed only in a descriptive, rather than

a prescriptive manner. Moreover, we prove that the optimal solution of the robust NDP

under SO routing is a price-of-anarchy-approximate solution to the robust NDP under UO

routing. In addition, we present conditions under which the robust NDP reduces to a less

computationally demanding problem, either a nominal counterpart or a single-level quadratic

optimization problem. Furthermore, we observe a novel traffic "paradox" relating to changes
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in costs at equilibrium with respect to changes in traffic demands on the network. The ex-

amples we present are analogous to Braess' Paradox [27] and illustrate that an increase in

traffic demands on a network may yield a strict decrease in the costs at equilibrium. Finally,

we establish convexity and monotonicity properties of functions relating to the worst-case

performance of a given network design decision. These properties motivate the solution

methods we propose and underscore the relative levels of difficulty among the SO and UO

versions of the robust NDP and their nominal counterparts.

Thus, in this thesis, we extend the reach of the robust optimization paradigm to the

field of game theory and to the nominal variational inequality problem. We thereby show

that ideas from robust optimization are useful not only in settings characterized by data

uncertainty, but also, interestingly, in contexts with known and certain data as well.
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Appendix A

An Alternate Derivation of the VI

Reformulation

In this appendix, we give an alternate proof, based on the

Theorem 3.2.1.

KKT conditions for LP (3.6), of

Proof. As mentioned in our first proof of Theorem 3.2.1, it is well known that x* E K solves

VI(K, F) iff x* itself optimizes the LP (3.6) it induces. Consider K given, as before, by

(3.4). Since the KKT conditions are necessary and sufficient for the optimality of an LP,

x* solves VI(K, F) iff 3A* E Rm, /M* E n such that (x, A, ) = (x*, A*, M/*) satisfies the

following KKT system corresponding to LP (3.6). This equivalence is also well known in the

VI literature (see, e.g., Proposition 1.2.1 of Facchinei and Pang [47]).

F(x) - A'A- = 0

Ax = b

x > 0 (A.1)

> o

I-jXj = 0, j E {1,...,n}.

Suppose 3A* E Rm , * E R n such that (x, A,) = (x*, A*, *) satisfies KKT sys-
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tem (A.1). Then, from the first constraint and the fact that * > 0, it follows that

F(x*) > A'X*.

In addition, taking the inner product of x* and the left-hand side of the first constraint, and

using the other constraints in (A.1), one obtains 0 = F (x*)' x * - b*'A*. Therefore, (x*, A*)

satisfies (3.5).

For the reverse direction, suppose that (x*, A*) satisfies system (3.5). Let /* G R n be

given by

Xj* > 0

Fj (x*)- A*,Hj* = ( )~~~~~
where Aj denotes the jth column of the matrix A.

Vj {1,. .. , n}.

Clearly, * > 0 and j*xj*

Suppose j E {1,. . ..,n} such that xj > 0 and Fj (x*) > AjA*.

= 0,

Then,

F (x*)'x* > b',*, thereby yielding a contradiction. Accordingly, (x*, X*, t*) satisfies KKT

system (A.1), i.e., x* solves VI(K, F). F
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Appendix B

Comparison of Notions of Network

Equilibrium

In this appendix, we compare Wardrop's concept of network equilibrium with an alternate

definition, given by Dafermos and Sparrow [39]. Wardrop's equilibrium concept requires

that all flow travels on minimum-cost paths. Dafermos' and Sparrow's notion of equilibrium

requires that no fraction of the flow on one path may be rerouted to a different path in a

way that strictly decreases the cost experienced by the rerouted flow.

Definition B.1.1 (Dafermos and Sparrow [39]). For a given y E {O, }1IAI, and a given

d E ]RL"w , F E Kp(y, d) is a user-optimal, or equilibrium vector of path flows for network

G (V A(y)) with path costs C if, Vw E W, Vp1,p 2 C Pw(Y), V6 E (O, Fp],

fpl > 0 = C1 (F) C p2 (F') 

where F' E Kp(y, d) is given by

Fp-6, p=Pl,

Fp = Fp + , p=p2,

Fp, otherwise.
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This equilibrium concept is sometimes referred to as a "Nash flow" (see, e.g. Roughgarden

and Tardos [143, 144]).

We can more clearly contrast the two equilibrium concepts by recasting them in layman's

terms. Essentially, Wardrop's equilibrium concept requires that no units of flow are "envious"

of other units of flow associated with the same O-D pair (i.e., because the latter units

experience a lower cost than the former). In contrast, a Nash flow solution requires that no

flow has incentive to unilaterally deviate to a different path. In some settings, Wardrop's

equilibrium concept and that of the Nash flow are equivalent.

Theorem B.1.1 (Dafermos and Sparrow [39]). Consider a network G(V, A) with con-

tinuous and monotone path cost functions C. For a given y E {O, llAI, and a given d E RIlw,

F C Kp(y, d) satisfies Definition B.1.1, i.e., is a Nash flow, iff it is a Wardrop equilibrium,

i.e., iff it satisfies Definition 5.2.4.

In other settings, the two equilibrium concepts are not equivalent. For instance, recall

Example 5.3.3 which we presented in Section 5.3.2. In this example, f = (fl, f2) = (1,0)

is a Wardrop equilibrium since c(1,0) = c2 (1,0) = 10. However, it is not a Nash flow,

since some (in fact all) of the flow has incentive to unilaterally deviate to another path.

Indeed, c2 (1 - , ) < 10, VE E (0, 1]. Therefore, under arc costs that are not monotone with

respect to the arc flows, a Wardrop equilibrium need not be a Nash flow; i.e., the incentive

to deviate may occur without some units of flow "envying" other units of flow. Conversely,

under discontinuous arc cost functions, a Nash flow need not be a Wardrop equilibrium; i.e.,

there may be no incentive to deviate, even when there is "envy." Consider the example given

in Appendix B.1 of Roughgarden [142]. This example involves a graph like the one pictured

in Example 5.3.3 in Section 5.3.2, but with arc cost functions

f0, C [,] c 1 fi[0>
cl(f) f E [ 1 (f) = 2 3

1 , 1, fl>§-
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One may verify that f = (fi, f2) = (, 2) is a Nash flow. However, it is not a Wardrop

equilibrium, since c1 (1, ) < C2 (1, ).

Although this potential nonequivalence between the Wardrop equilibrium and Nash flow

concepts is worth noting, it is not relevant in the majority of Chapter 5 of this thesis, in

which our discussion relates to concepts of network equilibrium. Indeed, all vectors of arc

cost functions we consider in Chapter 5 are continuous, and, with the exception of the vector

of arc cost functions in Example 5.3.3, all are monotone with respect to the arc flows.
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