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Abstract

We present three problems motivated by order fulfillment in online retailing.
First, we focus on one warehouse or fulfillment center. To optimize the storage space

and labor, an e-tailer splits the warehouse into two regions with different storage densities.
One is for picking customer orders and the other to hold a reserve stock that replenishes the
picking area. Consequently, the warehouse is a two-stage serial system. We investigate an
inventory system where demand is stochastic by minimizing the total expected inventory-
related costs subject to a space constraint. We develop an approximate model for a periodic
review, nested ordering policy. Furthermore, we extend the formulation to account for
shipping delays and advance order information. We report on tests of the model with data
from a major e-tailer.

Second, we focus on the entire network of warehouses and customers. When a customer
order occurs, the e-tailer assigns the order to one or more of its warehouses and/or drop-
shippers, so as to minimize procurement and transportation costs, based on the available
current information. However, this assignment is necessarily myopic as it cannot account
for any subsequent customer orders or future inventory replenishments. We examine the
benefits from periodically re-evaluating these real-time assignments. We construct near-
optimal heuristics for the re-assignment for a large set of customer orders by minimizing
the total number of shipments. Finally, we present saving opportunities by testing the
heuristics on order data from a major e-tailer.

Third, we focus on the inventory allocation among warehouses for low-demand SKUs.
A large e-tailer strategically stocks inventory for SKUs with low demand. The motivations
are to provide a wide range of selections and faster customer fulfillment service. We assume
the e-tailer has the technological capability to manage and control the inventory globally:
all warehouses act as one to serve the global demand simultaneously. The e-tailer will
utilize its entire inventory, regardless of location, to serve demand. Given we stock certain
units of system inventory, we allocate inventory to warehouses by minimizing outbound
transportation costs. We analyze a few simple cases and present a methodology for more
general problems.

Thesis Supervisor: Stephen C. Graves
Title: Abraham J. Siegel Professor of Management Science & Engineering Systems
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Chapter 1

Introduction

In the decade since the Dotcom boom, many online retailers or e-tailers have come of

age. The existence and growth of these companies pose new challenges to efficient supply

chain management. While their market segmentations, operational scales, and supply chain

structures may differ, they share some common characteristics.

Large scale Unlimited by physical space in the store front, e-tailers often pride themselves

in having a universal selection of products and in providing a very customer-friendly

shopping experience. As a result, online retailers and/or their drop-shippers have very

large scale operations with hundreds of thousands of Stock-Keeping Units (SKUs) in

stock. The sheer size of the operations and catalogs poses a challenge to sound decision

making.

Logistics as a matter of trust Brynjolfsson and Smith [BSOO] conclude that trust is one

of the major criteria that customers use to evaluate online retailers. Moreover, empir-

ical research by Keeney [Kee99], Torkzadeh and Dhillon [TD02] shows that customers

consider the timely delivery of products to be a significant component of trust. Evi-

dently, the reliability and efficiency of the supply chain is crucial in online retailing.

High visibility With strong information technology capabilities, these companies can col-

lect virtually any data from the time customers start to browse on the website to

the time customers receive their orders. With this ability to collect an overwhelming

amount of data, making sound data-driven decisions requires sophisticated tools.

This availability of information also raises questions about how e-tailers should share

real-time information with their customers or suppliers. For instance, e-tailers may

want to display real-time inventory availability on their websites. However, this in-

formation may decrease demand at the time of an inventory shortage.

Assemble-to-order system Unlike bricks-and-mortar retailing, a major element of the

online retailing operations is an assemble-to-order system. Some customers order
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multiple items. Online retailers profit from bundling items by sending one shipment

to customers. The components of the assembly are the items in a customer order, and

the final product is an individual customer order. Compared with other assemble-to-

order systems, such as Dell, the assembly process is much simpler. The total number

of possible final products, however, explodes because the number of items offered is

large and customers can and will order any combination of items. The challenges in

general assemble-to-order systems still exist here: coordinating all items in an order

to be packed around the same time and allocating items among orders. A cluster of

literature on assemble-to-order flourished in the recent few years. Song and Zipkin

offer a comprehensive survey of general assemble-to-order systems in 2003 [SZ03].

Delay in demand fulfillment Unlike in physical stores, in online retailing there is typi-

cally a time delay between when a demand occurs and when inventory is consumed or

deployed to meet a customer order. At the time a demand occurs, the online retailer

and the customer reach an agreement on all aspects of the transaction. The com-

pletion of the transaction, or the time at which the customer receives the products,

however, may take place days after the initial transaction. Consequently, e-tailers can

exploit this order-to-delivery time window to reduce their costs. That is, by delaying

the decisions on inventory allocation, shipping methods, etc., e-tailers can utilize more

resources and information to make better decisions. Furthermore, e-tailers can employ

pricing schemes to entice certain customers to give an even longer order-to-delivery

time window.

This delay in demand fulfillment is in some ways analogous to having advance order

information, which has recently received attention in the research literature. For in-

stance, Hariharan and Zipkin [HZ95] show that advance customer orders improve sys-

tem performance the same way that replenishment leadtimes degrade it. Chen [CheOl]

develops an optimal pricing-replenishment policy for different classes of customers

with different shipping preferences. Gallego and Ozer [GO01, GO03] show an optimal

inventory stocking policy for stochastic systems with advance demand information.

Retailer-directed demand allocation In contrast to large retail chains, online retailers

have only one storefront, namely their web portal. In bricks-and-mortar retailing,

demand occurs at specific stores; a customer picks a store to visit and expects his/her

demand to be served at that store. In online retailing, customers cannot control how

their demand will be served. Rather, the e-tailer will decide which warehouse or

drop-shipper serves what demand. As a consequence, the e-tailer can utilize all of its
warehouses or fulfillment centers to serve the customer demand. This centralized de-

mand allocation poses new challenges and opportunities to minimize operating costs.

For instance, when should e-tailers use drop-shipper or in-house fulfillment? Which

16



warehouse should fulfill which demand? What subset of SKUs should be stocked in

each warehouse?

Netessine and Rudi [NR04b] analyze a game theoretical model involving a retailer

and a wholesaler, where either the retailer carries inventory or the wholesaler carries

inventory and the retailer drop-ships. They find both models to be system sub-

optimal. They extend the models to include multiple retailers [NR04a], and examine

a dual strategy of the retailer carrying inventory as well as drop-shipping. They find

that the two options have the potential to be Pareto optimal: retailer drop-ships only

or adopts the dual strategy.

In summary, in this increasingly competitive online marketplace with few barriers to

entry, the success or dominance of an e-tailer will depend on building an efficient customer

fulfillment process. This challenge can be seen as an opportunity to rethink the current

assumptions and to extend the current models in the literature. Even though hundreds of

billions of dollars of goods are sold on the Internet, there has been relatively little research

focusing on the issues particular to e-tailing supply chain management. In addition to

the ones mentioned above, some others include an overview of models in e-business by

Swaminathan Tayur [ST03] and a survey of research papers and case studies by Johnson

and Whang [JW02]. In this thesis, we present three problems motivated by the online

retailing fulfillment process. While these problems only cover a few of the important issues

in fulfillment, we believe they provide a glimpse of the variety of problems in online retailing.

In particular, we show how analytical tools can assist in this complex decision making

process, tactical or operational.

In Chapter 2, we focus on a single warehouse or fulfillment center. After a customer

orders online, the e-tailer assigns the order virtually to one of its order fulfillment centers. An

order fulfillment center is a large warehouse that might store several hundreds of thousands

of SKUs in a floor space of several hundred thousand square feet. The key objectives of

such a warehouse are to achieve a high utilization of its storage space and, at the same

time, be able to fill orders quickly and reliably with the least amount of effort.

To optimize storage space and labor, an e-tailer splits the warehouse into two storage

regions with different storage densities. One region is for picking customer orders and the

other holds reserve stock. The picking area is laid out to facilitate efficient picking by a

person; this limits the height and depth of the storage racks, as well as the quantity of

each SKU stored in the picking area. As a consequence, the storage density in the picking

area is relatively low. On the other hand, the reserve or deep-storage area has high storage

density; the purpose of the reserve area is to store larger quantities with the most efficient

use of space. Replenishment from outside suppliers will typically come in pallet loads and

be first stored in reserve storage. The inventory in reserve storage is then used to replenish

the picking area, usually in smaller quantities like cases or cartons. Consequently, the

17



inventory in the warehouse flows in a serial, two-stage fashion. We investigate a multi-

item inventory problem for a two-stage serial system where demand is stochastic and the

objective is to minimize the expected long-run average cost under space constraints. We

derive an approximate formulation for the serial two-stage model, and we generate a solution

procedure for computing multi-item periodic-review ordering policy under space constraints.

Moreover, we model to account for advance order information and shipping delays. Finally,

we report tests of the model on real data and the resulting managerial insights.

In Chapter 3, we focus on the entire network of warehouses and customers. When a

customer places an order on an e-tailer's website, the e-tailer, in real time, searches for

available fulfillment options from its order fulfillment centers or drop-shippers. The e-tailer

assigns the order to one or more warehouses virtually, mainly based on the transportation

cost of shipping the order from the warehouse(s) to the customer location and on the current

warehouse inventory availability. Depending on the inventory availability and customer

preferences, the e-tailer then quotes a promise-to-ship date to the customer. The promise-to-

ship date is the date by which the e-tailer promises to ship the order from the warehouse(s).

After the e-tailer assigns the order, the order enters the picking queue at the warehouse.

The order might wait six to eighteen hours before the items in the order are picked and

assembled into a shipment that is then given to a third party carrier to deliver the package(s)

to the customer location.

We show with examples that the real-time decision is necessarily myopic because the

e-tailer does not anticipate any future customer orders or inventory replenishment. We can

reduce the total transportation cost of shipping orders from warehouses by re-evaluating

the real-time assignment decisions, subject to the constraint that there is no violation of

the promise-to-sip date commitment for any customer order.

We formulate the re-evaluation problem as a network design problem, and we show that

the problem is NP-hard in complexity. By designing simple but effective heuristics, we are

able to improve greatly upon the real-time assignments. Our solution can generate large

savings to the e-tailer without any revamping of the current systems. Finally, we perform

worst-case analysis of the heuristics.

In Chapter 4, we focus on the inventory allocation among warehouses for low-demand

SKUs. A large e-tailer strategically stocks inventory for SKUs with low demand. One

motivation is to provide a wide range of selections; indeed such SKUs actually constitute a
significant portion of the total SKUs. The second incentive, of course, is to provide faster

customer fulfillment service. For many of these SKUs, the e-tailer may only stock a handful

of inventory units across all warehouses.

Here we focus on the effect of outbound transportation costs on the inventory allocation.

We assume that an e-tailer has several warehouses in the system. We also assume that it has

the technological capability to manage and control the inventory globally: all warehouses
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act as one to serve the global demand simultaneously. Specifically, the e-tailer will utilize its

entire inventory, regardless of location, to serve demand. Given that we stock certain units

of inventory in the system, we allocate inventory to warehouses by minimizing outbound

transportation costs from the warehouses to customers.

We propose an inventory planning process for low-demand SKUs. For some simple cases,

we find the inventory stocking policy that minimizes the outbound transportation costs. We

also present a methodology that is the first step in analyzing the general problems.
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Chapter 2

Inventory System in a Serial
Warehouse

2.1 Introduction and Motivation

For e-tailers, which operate with no physical stores, the efficient utilization of inventory,

storage space, and labor is paramount to achieving high levels of customer service and

company profits. After a customer orders online, an e-tailer assigns the order virtually to

one of its order fulfillment centers. An order fulfillment center is a large warehouse that

might store several hundred thousands of SKUs in a floor space of several hundred thousand

square feet. The key objectives of such a warehouse are to achieve a high utilization of its

storage space and, at the same time, be able to fill orders quickly and reliably with the

least amount of effort. These objectives are often conflicting as efficient space utilization

entails high-density storage, whereas efficient order picking requires ready access to the full

portfolio of SKUs, which results in low-density storage. Furthermore, to provide reliable

service at the minimum cost, an e-tailer needs to hold the right amount of inventory.

To optimize the storage space and labor, an e-tailer splits the warehouse into two storage

regions with different storage densities. One region is for picking customer orders and the

other to hold reserve stock. The picking area is laid out so as to facilitate efficient picking

by a person; this limits the height and depth of the storage racks, as well as the quantity of

each SKU stored in the picking area. As a consequence, the storage density in the picking

area is relatively low. On the other hand, the reserve or deep-storage area has high storage

density; the purpose of the reserve area is to store larger quantities with the most efficient

use of space. In the reserve area, most items are stored in pallet loads and moved by fork-lift

trucks. The pallets are stored in high-rise storage racks, with a depth of one or two pallets.

Replenishment from outside suppliers will typically come in pallet loads and be first

stored in reserve storage. The inventory in reserve storage is then used to replenish the
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picking area, usually in smaller quantities like cases or cartons. Consequently, the inven-

tory in the warehouse flows in a serial, two-stage fashion, as illustrated in Figure 2-1. To

determine the right amount of inventory entails the optimization of this inventory system.

In this research we investigate this multi-item inventory problem for a two-stage serial sys-

Deep-Storage Picking
Demand

Area Area

Figure 2-1: A Serial, Two-Stage Warehouse

tem with stochastic demand and the objective is to minimize the expected long-run average

cost under space constraints.

Our objective is to support both tactical and strategic decisions in the order fulfillment

center. At the tactical level, we intend for the model to guide decisions on the amount

of inventory and its deployment between the picking and reserve storage areas, as well as

on the replenishment frequency of the picking area. At the strategic level, in designing a

warehouse, one needs to decide how much space to allocate to reserve storage versus for

picking. We intend to explore how the operational effectiveness of the warehouse depends on

the amount of available storage space and its division between picking and reserve storage.

Clark and Scarf [CS60] consider an unconstrained serial inventory system and observe

that for the system with set-up costs at each stage, the optimal ordering policy, if one exists,

must be extremely complex. This observation remains true today and has driven subsequent

research to focus on heuristic policies. There is an extensive literature on the evaluation and

analysis of heuristic policies in various multi-echelon, stochastic inventory systems. Here we

contribute to this literature by providing an analysis and solution procedure for a periodic

review, heuristic ordering policy in a multi-item two-stage problem, from which we can

generate insights about the intrinsic trade-offs in a constrained warehouse operation.

The choice of a periodic review ordering policy for this inventory system is motivated

by several practical considerations. An e-tailer stocks an extremely wide range of products,

and as a consequence, needs to coordinate the replenishment of these products from the

various outside suppliers. For instance, the number of products an e-tailer orders from a

single supplier is often very large. Employing a periodic review policy reduces the fixed

replenishment costs by combining order replenishment for different products from the same

supplier. Furthermore, it facilitates the coordination of transportation, and other logistical

considerations, since it results in a regular repetitive schedule for replenishments [RaoO3].
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2.1.1 Literature Review

The field of stochastic multi-echelon inventory systems started in the 1960's with two papers

from Clark and Scarf [CS60, CS62]. In the first paper [CS60], they characterize the opti-

mal policy for a single-item, discrete-time, multi-echelon system by solving a finite-horizon

dynamic program. The optimal policy is a function of the total on-hand and on-order inven-

tory. The major assumptions of the model are: demand at each echelon is backlogged and

the ordering cost is linear, except a fixed ordering cost is permitted at the most upstream

stage. In the second paper [CS62], they examine a two-stage example in which the set-up

cost appear at both stages. They show that the optimal policy, if exists, may be quiet

complex.

A considerable body of research has evolved in the field since the publications by Clark

and Scarf. The subsequent research focuses on characterizing optimal policies for more gen-

eralized models as well as generating bounds and heuristic policies or approximate models.

We can view the literature by three principal inventory control policies: (s, S), (Q, R), and

(R, T). The first two policies have been studied extensively, while we employ a less studied

(R, T) policy. We discuss the three categories below.

The (s, S) policy, or basestock policy, is optimal in the Clark-Scarf model, which is

a discrete-time, periodic review model. At every period, if the inventory position is less

than or equal or s, then we order up to S. This model has been studied extensively.

Federgruen [Fed93] provides a comprehensive review of this literature from serial to assembly

systems. In particular, Federgruen and Zipkin [FZ84c] streamline the Clark-Scarf model

as well as extend it to the infinite horizon case. Schmidt and Nahmias [SN85] consider

the simplest assembly system of two components, and they characterize the optimal policy

assuming all ordering costs are linear. With the same assumption on ordering costs and

an additional assumption of the initial inventory levels satisfying certain simple conditions,

Rosling [Ros89] shows that an assembly system can be transformed into an equivalent serial

system. The basestock policy, therefore, is also optimal for all nodes in the assembly system.

Chen and Zheng [CZ94b] show an alternative proof of the above known optimality results

for serial and assembly systems.

Most recently, Chen [CheOO] derives the optimal policies for serial and assembly system

with batch ordering. A basestock policy (modified to accommodate the base order quanti-

ties), he suggests, is still optimal in the serial model with every stage ordering in batches.

He also shows the transformation from assembly to serial systems with batch ordering. All

of the discrete-time models mentioned so far assume that demand in each period is i.i.d.. To

extend the Clark-Scarf model to nonstationary demand or, specifically, Markov-modulated

demand, Chen and Song [CSO1] show that the optimal policy is an echelon basestock policy

with state-dependent order-up-to levels. Taking a step further, Muharremoglu and Tsit-

siklis [MT03] extend the results of Chen and Song to finite horizon and infinite horizon
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discounted cost problems with stochastic leadtimes.

Some examples of heuristic policies include Eppen and Schrage [ES81], Federgruen and

Zipkin [FZ84b, FZ84a], Jackson [Jac88]. The area of constructing effective bounds has also

been very active recently. To name a few, we have Gallego and Zipkin [GZ99], Zipkin [ZipOO],

and Dong and Lee [DL03]. Shang and Song [SS03] generate newsvendor-type lower and

upper bounds on the optimal echelon stocking policies of a serial infinite horizon problem.

They devise a simple heuristics that is within 1.5% of the optimal.

The (Q, R) policy is a continuous review policy. Inventory positions are monitored con-

tinuously and we order Q units whenever the inventory position is below R. The (Q, R)

policy is also well studied and optimal for the continuous time case. Axsater [Axs93a]

reviews the literature on continuous review policies for multi-echelon, stochastic systems.

First, there is the literature on one-for-one replenishment policies or (S - 1, S) policy in

a one-warehouse-n-retailer setting. All locations have (S - 1, S) policies. When an item

at a retailer or local site fails, it is sent to the warehouse to repair. At the same time, a

local inventory unit replaces the failed item and the local site orders a replenishment from

the warehouse. The METRIC approximation by Sherbrooke [She68] assumes that replen-

ishment leadtimes for the local sites are independent. It then led to modeling the number

of outstanding orders at a local site as a Poisson random variable, which is completely

characterized by its mean. Therefore, the METRIC approximation is a single parameter

approximation. Graves [Gra85] determines the mean and the variance of the number of

outstanding orders, and, therefore characterizes a two-parameter approximation. Muck-

stadt [Muc73] extends the METRIC model to indentured parts (MODMETRIC). Sher-

brooke [She86] extends Grave's approximation to the multi-indenture case. Lee [Lee87]

considers the same framework with the added dimension of lateral transshipment: the re-

tailers are grouped such that retailers among the same group can transship among each

other. Later, Svoronos and Zipkin [SZ91] allow stochastic leadtimes but preserve the order

sequence. Recently, Wang, Cohen and Zheng [WCZOO] relax the i.i.d. assumption on depot

replenishment leadtimes and allow the depot replenishment leadtimes to depend on the

local site.

A large cluster of literature also exists on general (Q, R) or batch-ordering policies.

Some examples of heuristic policies include De Bodt and Graves [DG85], Deuermeyer and

Schwarz [DS81], Svoronos and Zipkin [SZ88], Axsater [Axs90Ob], and Chen and Zheng [CZ94a].

Closest to our model in spirit is the De Bodt & Graves [DG85] paper. They develop a simi-

lar two-stage serial model for a continuous review (Q, R) policy. They provide approximate

performance measures under a nested policy assumption: whenever a stage receives a ship-

ment, a batch must be immediately sent down to its downstream stage. They do not make

an assumption about the form of the demand distribution. We, however, consider a peri-

odic review (R, T) policy. There has been some progress to establish near-optimal heuristic
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policies with a guaranteed, worst-case performance. Chen [Che99] characterizes a continu-

ous review heuristic policy for a two-stage inventory system. The long-run average cost is

guaranteed to be within 6% of optimality, where demand is Poisson, leadtime at stage 2 is

zero, and both stages incur a fixed order cost.

There are some exact results for continuous review models. Axsater [Axs93b] provides

exact cost results for a two-echelon system with one central warehouse and multiple identical

retailers. He assume that leadtimes are constant and the retailers face independent Poisson

demand. Later in 2000, he generalizes the solution to Compound Poisson demand and

nonidentical retailers [AxsOO]. Chen and Zheng [CZ97] provide exact results where the

central warehouse uses echelon stock reorder point policies. Cheung and Hausman [CHOO]

show the exact results for the central warehouse where the retailers are nonidentical.

As we have shown, because of their optimality, both (s, S) and (Q, R) policies have been

extensively studies. In comparison, the (R, T) policy does not receive as much attention.

Hadley and Whitin [HW63] and Naddor [Nad82] have studied the (R, T) policy in their

books. Graves [Gra96] analyzes a multi-echelon system with general system topology. He

assumes that at each location there is a schedule of preset replenishment times, and argues

that such scheduled shipments are common in practice to utilize the transportation resources

efficiently. Most recently, Rao [RaoO3] analyzed the properties of the single-stage (R, T)

model, as a counterpart of Roundy [Rou86] and Zheng [Zhe92] for a deterministic periodic

review model and stochastic (Q, R) model, but with certain demand function restrictions.

In the extension, he develops a two-stage serial system which is similar to our model but

has different assumptions on the interaction between echelons.

In section two, we review the single-stage periodic review model and its most recent

results, and present the two-stage serial model. In section three, we show numerical results.

In section four, we test the solution procedure on real data sets. In section five, we introduce

an extension that accounts for shipping delays and advance demand information.

2.2 Model Formulation and Solution Approach

We first present the key assumptions in the single-stage and two-stage models, while addi-

tional assumptions apply only to the two-stage model will be introduced later.

A-1 The demand process is stationary for the relevant time horizon.

A-2 Each stage has a constant known nonzero lead time.

A-3 When on-hand inventory at stage 1 is depleted, demand at stage 1 is backlogged and

a penalty cost per backorder is charged.

A-4 Backorder costs are high. As a result, demand backorder quantities are small. We will

provide more details on this assumption later in the section.
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A-5 Each echelon follows a periodic-review (R, T) policy, where R is the order-up-to level

and T is the review period.

We assume stationary demand in A-i, whereas in the e-tailing setting, there are usually

two distinct demand patterns for the off-peak and peak season. Within each season, it is

reasonable to assume stationary demand. We can treat the two seasons as two separate

models. We can relax A-2 to allow stochastic lead times, and will comment on this extension

later in the paper. Our assumption on the cost penalty is more applicable when the fixed

cost component of backorder is much larger than the time variable component, as is the

case in e-tailing. We note that the formulation under our backorder cost assumption may

be less convenient for theoretical analysis, but it is easier in computation.

To facilitate the discussion, we list the following standard definitions:

I(t) on-hand inventory or inventory physically in the warehouse at time t,

B(t) amount of unfulfilled customer demand at t,

IL(t) inventory level or net inventory at t,

equivalent to I(t)- B(t),

O(t) amount of on-order or inventory in transit to warehouse at t,

IP(t) inventory position at t,

equivalent to IL(t) + O(t).

Following the literature convention, we denote stage 1 as the downstream stage that serves

external demand, and stage 2 as the upstream stage that replenishes stage 1 and is replen-

ished by outside suppliers. In the e-tailing setting, stage 1 is the picking area and stage 2

is the deep storage area. We state the control policy in terms of echelon stock, which is the

total inventory in the current stage and all its downstream stages.

We first review the single-item single-stage periodic-review (R, T) model [HW63, p. 237-

245]. Extending the single-stage model, we then present the two-stage model, an uncon-

strained single-item serial model.

2.2.1 Single-Stage Model Review

We denote

C(.) expected total cost per unit time,

1 replenishment lead time,

d expected demand per unit time,

a fixed order, or replenishment, cost,
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h holding cost per item per unit time,

b backorder cost per item,

f(xjl) probability density function of demand over a time interval of length 1

nominally corresponding to the lead time demand.

We assume that discrete units of inventory can be approximated by continuous quantities.

We follow the inventory literature [e.g., HW63, p. 237-245], and approximate the expected

total cost per unit time as:

C(R, T) - + h (R-d(l + T) + (x - R)f(xll + T)dx (2.1)

We compare Equation (2.1) with the exact model for Poisson demand in Appendix A.1, and

we observe that the main approximation is the underestimation of the holding-cost term.

Figure (2-2) is an inventory diagram for the single-stage model. The x-axis represents time,

R

t t+l t+T t+l+T

Figure 2-2: Single-Stage Inventory Level and Position

and the y-axis represents inventory amount. The solid line indicates inventory level, and the

dotted line indicates inventory position when it differs from the inventory level. The time

between [t + l, t + l + T] is a typical replenishment cycle, assuming we receive a replenishment

at t + 1. The holding-cost term in Equation (2.1) is equivalent to I+ E[IL(t)] dt,

whereas in the exact model it is f+T E[I(t)] dt. That is, we approximate on-hand

inventory with net inventory. This error is small, however, when backorder is small and

infrequent as assumed in 4, thus on-hand inventory is nearly the same as net inventory. The

backorder term is slightly overestimated, since in Equation (2.1) we assume that we start

each replenishment cycle with zero backorders.

For a given value of T, C(R, T) in Equation (2.1) is convex in R. We can obtain the
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optimal value of R for a given value of T:

Ifb _ b (2.2)f (xll + T) dx = b T < h (2.2)

R = O, T> 
h

Given a value of R, C(R, T) is not convex in T.
b

We search over values of T in the range (0, ), and use Equation (2.2) to find the best

choice of R for a given value of T, and Equation (2.1) to determine the minimal value of

expected total cost.

2.2.2 A Two-Stage Serial Model

Now we consider our approximate two-stage serial (R,T) model based on §2.2.1. We use

the subscript 2 to indicate echelon stock in IL, I, IP, whereas we use the subscript 2 to

indicate stage 2 inventory on-order in 0. We define IL 2 (t), the echelon inventory level at

time t for stage 2, by:

IL2(t) = 12(t)- B(t),

where 2 (t) is the echelon inventory at stage 2, which is the sum of on-hand inventory at

stage 2, on-hand inventory at stage 1, and inventory in transit from stage 1 to stage 2.

Similarly, we define the echelon inventory position for stage 2 as

IP2(t) = L2(t) + 0 2(t),

where 02 (t) is the inventory amount in transit from outside suppliers to the warehouse.

Here we first present the remaining assumptions of the two-stage model.

A-6 To coordinate the replenishment of both stages, we impose a constraint on the review

periods of both echelon, T2 = nT1, where n is a positive integer. Furthermore, the

ordering policies are time-phased so that stage 1 places a replenishment order when

stage 2 receives its replenishment.

This assumption results in a periodic-review version of a nested policy [e.g., Lov72, WCW73]:

whenever a stage reorders, its downstream stages also reorder. Whereas this assumption on

the ordering policy simplifies analysis, it is not unreasonable in our periodic-review context

where one would desire to coordinate the less-frequent replenishment of the deep-storage

area with that of the picking area.

We demonstrate the policy behavior through an example in Figure (2-3) for n = 3. In
this figure, echelon 2 orders at time 0 and T2, and receives its replenishments 12 leadtime

later, at time 12 and 12 + T2 . Echelon 1 orders at time 12, 12 + T1, and 12 + 2T1 , and receives
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0 12 12 + (n - 1)T1 12 + 11 + T2

V _ _ __ '2

Figure 2-3: A Two-Stage Inventory Diagram for n = 3

its replenishment 11 leadtime later, at time 12 + 11, 12 + 11 + T1, and 12 + 11 + 2T1. Since n = 3,

there are three inventory replenishment (reviews) of echelon 1 for each replenishment of

echelon-2 inventory. We define an order cycle of length T2 as the time between consecutive

echelon-2 inventory replenishments, such as [12,12 + T2].

A-7 At the last replenishment of echelon 1 in each cycle, such as at t = 12 + (n - 1)T1, stage

1 orders all of the remaining on-hand inventory from stage 2. That is, as in Figure (2-

3), the inventory position of stage 1 merges with the inventory level of echelon 2 at

the last replenishment in a cycle, IP1 (12 + (n - 1)T1) = IL 2 (12 + (n - 1)T1).

We call the last echelon-1 replenishment in a cycle an exhaustive replenishment, and the

other (n- 1) echelon-1 replenishment normal replenishment. We have (n- 1) normal replen-

ishments for every exhaustive replenishment in this ordering policy. There are two reasons

for this assumption. i) Holding inventory in reserve at the last replenishment of the picking

area in an order cycle has very limited value. One might as well put everything into the

picking area, given that a replenishment of the reserve area will arrive soon. Furthermore,

we expect that the "extra stock" that is moved from reserve into the picking area, if any,

should be quite small on average. If the extra stock is large, then we could decrease the

value of R2. ii) This assumption simplifies the analysis of the model, as we avoid having

to keep track of the remnant inventory left in reserve at the end of each order cycle. With

this assumption, inventory in reserve is depleted when an order arrives from the outside

supplier.

To ensure the (n - 1) normal replenishment of stage 1 are well-behaved, or, they order

up to R1 at the start of the cycle, we make two additional assumptions. We state both

assumptions for an order cycle in which stage 2 orders at time t = 0, as depicted in Figure (2-

3).
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A-8 IL 2(12 + (n - 2)T) > R1.

This assumption ensures that echelon 2 has sufficient inventory to raise the stage 1 inventory

position to R1 for every normal replenishment. Since IL 2(-r) is nonincreasing in an order

cycle for 12 < T < 12 + T2, this assumption also implies that echelon-2 inventory level is

greater than R1 for the first (n - 1) replenishment in a cycle, IL2(12 + mT1) > R1, V 0 <

m < n - 2. However, we make no assumption on the inventory level at the exhaustive

replenishment, such as on IL 2(12 + (n- 1)T1).

A-9 IP ( 2 ) = IL2 ( 2) < R1.

We denote IP-(t), IL-(t) as the inventory positive or level before an event occurs at time

t. Due to A-7, the echelon inventory level in stage 2 is equivalent to the inventory position

in stage 1 just before the shipment from the outside supplier arrives at time 12. We assume

that this inventory level is less than or equal to R1, so that the inventory position at stage

1 can be returned to its order-up-to point R1 at time 12, but not more than R1.

We denote D(t, t + T) as the total demand from time t to t + r. If echelon 2 orders up

to R2 at time t, then for A-8 to be valid, we must have that demand during 12 + (n - 2)T1

is no more than R2 - R:

D(t, t + 2 + (n - 2)T1 ) < R2 - R1. (2.3)

For A-9 to be valid, we must have that demand during 12 + T2 time period is greater than

R2 - R1 :
D(t, t + 12 + T2 ) > R2 - R1 . (2.4)

We expect that the accuracy of our cost expressions will depend on the probability that the

above two equations hold true. We argue here that in the e-tailing setting, these probabilities

should be quiet high. The order-up-to point for the reserve area, R 2, needs to cover demand

over an interval of length T2 +l1 +12; the order-up-to point for the picking area, R1, needs to

cover demand over the interval of length T1 + 11. Thus, we expect their difference R2 - R1 to

be roughly the expected demand over an interval of length (n - 1)T +f 12, and Equation (2.3)

and (2.4) are likely to be true as long as the leadtime 12 is not too large relative to the review

periods T1 and T2 .

To develop the cost expressions, we derive the cost elements separately. The expected

fixed order cost per unit time is:
al a2a-+ . (2.5)
T1 T 2 '

Since by assumptions, we order after every review period.

To derive the holding cost element, we examine echelon 1 and 2 separately. We approx-

h2 12+T E[IL2(t)] d, thatimate the echelon 2 holding cost as in the single-stage model, - / E[IL 2(t)] dt, that
2 1
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is

h2 (R2 - d (12 + T2 /2)). (2.6)

The holding cost for echelon 1 needs more discussion. For the (n - 1) normal replenish-

ment cycles, we can approximate the holding cost for each cycle just as in the single-stage

model. Here, we use assumptions A-8 and A-9 to ensure that the inventory position for

stage 1 is exactly the order-up-to point, R1, at the start of each of the (n - 1) normal

replenishment cycles. The expected inventory level for an exhaustive replenishment cy-

cle, however, requires a slightly different development. In Figure (2-3), the time during

[12 + 11 + (n - 1)T, 12 + 11 + T2] is an exhaustive replenishment cycle for stage 1. The

inventory level at the start of the cycle is R 2 - D (0, 12 + 11 + (n - 1)T1). The inventory

level at the end of the cycle is R 2 - D (0, 12 + 11 + T2 ). The average net inventory in the

cycle is, therefore,

1 E[+ 2+T jil(t)]dt= R2-d 11 +12+T2-2) 2
T1 1l+12+(n-1)Tl

which we will use as an approximation for the on-hand inventory at stage 1 in an exhaustive

replenishment cycle. We can then write the holding cost at stage 1 as

h ( n (R1 - d(ll + T1/2)) + - (R2 - d(ll + 12 + T2 - T1/2))) (2.7)

Similarly, we derive the backorder costs for normal and exhaustive replenishment sep-

arately. The expected number of backorders during each normal replenishment cycle is

f (x - RI)f(xT 1 + l1)dx. The expected number of backorders during an exhaustive re-

plenishment cycle is fSR(x - R 2)f(xjT 2 + 11 + 12)dx. We express the expected backorder

cost per unit time as

b 1 If` 0(0 -
(7 x - R1)f (xlT1 + l)dx + - (x -R 2)f(xIT2 + 11 + 12)dx (2.8)

T1 n ]I n 2

Summing up Equations (2.5) to (2.8), we have the expected average total cost C(R 1, R2, T1, T2, n).

Substituting the constraint nT1 for T2 , we have the cost function C(R 1, R 2, n, T1). We write

the optimization problem P as:

min C(R, R2, T, n)

n, R1, R2 E Z+

T1 >0
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where

C = al + T2+h2 (R 2 -d (1 2 + T22

+ hi Rl-d 1l + +- R2 - d ll + 12 + T2 -n n 2
b n-1 I10

T1 1 n 2

For given values of (T1 , n), the cost function C(R 1, R2, n, Ti) is a convex function in

R1, R2. We can find solutions of R1 , R 2 according to the following equations:

JR f(xIT + ll)dx = (2.9)
1 b'
00 oo ~ h l Ti h 2 T2

f(x]T2 + 11 + 12)dx = + (2.10)

OC OC
Equations (2.9) and (2.10) are a result of setting Oi OR to be zero. For Equation (2.9)

02C
and (2.10) to have unique minimums of R 1,R 2 given Tl,n, we need to have 0R2 =

bn-1 2C b
f(R1T, + 11) > 0 and R2 = f(R 2 T2 + 11 + 12) > 0. As in the single-stage

T n aR2 T2
model, for demand distributions that have f(xlt) > 0, Vx > 0, t > 0, Equations (2.9) and

(2.10) have unique solutions. However, the cost function C(R, R2 , n, T) is not convex in

T1 or n.

We can search over given values of T1 and n. The value of n is a positive integer. Note

that for large value of TI or n in Equation (2.10), we set R 2 = 0. Therefore, we search over

the range of values of (T1 , n) such that (hi + nh2 )Tl < b. If the value of Ti is restricted to

be a multiple of some minimal review period (e.g., a day), it is simple just to tabulate over

the values of T1 and n. For problems with a large range of (T1, n), we consider using simple

gradient methods like Newton's method or Steepest Descent method where the step size

can be determined by Amijo's rule. We can use the starting value of T D - EOQ _ 2ai
d V hi d

from the single-stage deterministic problem. We can use the starting value of nD a2 hi
a h2

from the deterministic demand two-stage problem. The starting values of Ri and R 2 can

be determined accordingly given TID and nD.

For n = 1, we can solve the problem as a single-stage problem whose cost parameters are

h = hi + h2, a = al + a2, and 1 = 11 + 12. However, the cost of the n = 1 two-stage problem

is not equivalent to such a single-stage problem due to a minor accounting difference in

holding cost. Specifically, the holding cost term in the n = 1 two-stage problem is h2dll

more than that of the single-stage problem. In the single-stage problem, a replenishment
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cycle starts (i.e. inventory arrives at the warehouse) at 12 + 11 if we order up to R at time

0. Recall the two-stage problem, at 12, inventory arrives at stage 2, but then it takes an

additional 11 time periods to arrives to stage 1. That is, during (12, 12 + 11), inventory is in

transit from stage 2 to stage 1. Therefore, we charge holding cost h2 during (12,12 + 11) in

the two-stage problem, whereas no holding cost was charged in the single-stage problem in

the same time interval. Because of this minor accounting difference, we charge an additional

of h2dll in the n = 1 two-stage problem.

2.2.3 Multi-Item Two-Stage Model with Space Constraints

In the context of an order fulfillment center in e-tailing, we need to solve the two-stage

inventory problem for each SKU. When the warehouse has limited space, a space constraint

couples together all of the SKUs. Here we consider two different space constraints: i) on the

total space in an order fulfillment center, covering both the picking and deep-storage area,

and ii) on the space in stage 1 only, the picking area. We introduce additional notations:

M number of SKUs in storage,

'yik storage space required by a unit of SKU i, (e.g., cubic in. per item), in stage k.

Typically, il > i2

Aij average inventory per unit time of SKU i in echelon j,

Sj available space in echelon j.

Space Constraint on Echelon 2

In e-tailing, stage 1 and stage 2 are in the same warehouse, and, therefore, share the total

space in the warehouse. Imposing a constraint on the total space seems natural. However,

there may be flexibility in deciding how much space to devote to picking and how much

for reserve storage. Denote Ci as the total expected cost per unit time of SKU i, then we

formulate the problem as:

M

min Ci(Ril,Ri2,Til,ni)
i=l
M

s.t. Z YilAil + "/i2(Ai2 - Ail) < S2 (2.11)
i=l
ni, Ril, Ri2 G Z, Vi

Ti > O, Vi,

where for each SKU i, we determine the average inventory in stage 1 A 1 from Equation (2.7).

Equation (2.7) is equivalent to hA 1. We find the average inventory in echelon 2 A2 in
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Equation (2.6), which gives h2A 2. We use the average inventory in the space constraint

as proxy for the actual space requirements, which will depend upon warehouse-specific

utilization factors.

We solve the problem by solving the dual problem. Denote 0 to be the Lagrangian

Multiplier. Given 0, the Lagrangian function is:

M

L(R,/2,n,Tl,0) = Ci(RilRi2,niTil)
i=l

M

= Z Ci(Ril,Ri 2, ni,Til, ) - OS2, (2.12)
i=l

where R 1, R2 , n, T 1 are vectors whose ith component is for SKU i, and the cost function Ci

has the same cost structure as Ci but with modified holding costs. Specifically, we set the

holding costs in Ci, denoted as hij, as:

hil +- hil + (yil - i2)

hi2 -- hi2 + -fi2.
The dual function q can be written as:

M

q(O) mOn Ci(Ril,Ri2, ni,Til, )- S 2 . (213)

Ril,Ri2,niEZ+ i=1

For a given value of 0, we solve Equation (2.13) as M separable problems, each of which is

a single-item problem with modified holding costs. We can then solve the dual problem:

max q(0)

s.t. 0 > 0.

Space Constraint on Echelon 1

In e-tailing, the larger the picking area, the more difficult it is to pick items efficiently. For

example, a worker picks items from a list of customer orders. The larger the picking area,
the longer the route he or she may have to walk to complete the task. Therefore, other

things begin equal, labor costs are higher per customer order when the picking area is larger.
We impose a space constraint on echelon 1 to ensure efficient picking or efficient utilization

of labor. It may be possible to augment reserve space by, say, adding some trailers in the
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yard or finding a close storage building. Here we impose a constraint only on echelon 1,

and we formulate the problem as:

M

min Ci (Ril, Ri2, T, ni)
i=l
M

s.t. -yiA il < S1, (2.14)

Ril, Ri2, ni C +, Vi

Til > 0, i,

Similar to the procedures in the previous section, we again solve for the dual problem.

Given the value of 0, the dual function can be solved by solving M separable single-item

minimization problems, where we set the holding costs as hij:

h -i hil + -yil

hi2- hi2

2.3 Numerical Study

Our numerical study addresses a few important questions on the single-stage and two-stage

single-item model: how computationally efficient are the approximate models, especially in

comparison to the exact models? How sub-optimal are the approximate models relative

to the exact models? Can we identify any parameters for predicting a priori the relative

performance?

We implement the solution of four single-item models for Poisson demand in Matlab:

1) the approximate single-stage model in § 2.1, 2) the exact single-stage model in Ap-

pendix A.1, 3) the two-stage model in § 2.2, and 4) the exact two-stage model derived in

Appendix A.2. For each model, we employ the steepest descent method, and determine the

step size using Amijo's rule. We randomly selected a set of starting values in addition to

using the optimal values from the deterministic models.

Since the single-stage model is the basis for the two-stage model, we first compare it with

the exact single-stage model. For the sake of comparison, we perform the comparison using

the input data sets from Zheng [Zhe92] and Rao [Rao03]. For all problems, the lead time

is normalized to 1. Demand is Poisson with rate d = 5, 25, 50. Set-up cost is taken to be

a = 1, 5, 25,100, backorder cost to be b = 5, 10, 25,100, and holding cost to be h = 1, 10, 25.

We note that the units for the backorder cost here differ from that in Zheng [Zhe92] and

Rao [RaoO3]. Their units is per item per unit time, whereas ours is per item. We solve a

total of 144 problems for both the approximate and exact model.
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hT
The term h in Equation (2.2) represents the probability of stock-out during a replen-

ishment cycle for a given review period T. Suppose that we set the review period T to
2a hTD

the deterministic problem optimal value (TD = ), and define P1 = . We expect

that pi is a good estimate of the optimal stock-out probability in the stochastic demand

problem, and the accuracy of the approximate model depends on the magnitude of pi. That

is, we expect the approximate model to be less accurate for larger values of Pl.

Table (2.1) presents the exact and approximate solutions for four examples, which all

share the same parameter values of a, h, d, and 1 but have different values of b.

Numerical Examples: a = 25, h = 10, d = 25, 1 = 1

Exact

b TE RE TotalCostE AvgInvenE SafetyStockE
100 0.46 47 244.2 16.21 10.38
25 0.52 43 201.2 11.65 4.97
10 0.63 40 164.4 7.81 -0.82

5 0 0 125.0 0 0

Approxi mate

b TA RA TotalCostA AvgI nvenA SafetyStockA P1

100 0.47 47 244.20 16.20 10.35 0.04
25 0.53 43 201.27 11.52 4.70 0.18
10 1 38 187.16 4.13 -12 0.45
5 0.5 34 137.49 4.30 -3.50 0.89

Table 2.1: The Single-Stage Exact and Approximate Solutions

We use superscript E and A to denote solutions from the exact and approximate model,

respectively. The columns TotalCost and AvgInven contain the long-run average cost

and the average inventory. The column SafetyStock is the expected inventory level at

the end of a cycle (denoted by s in Figure 2-2). The columns TotalCostA, AvgInvenA,

and SafetyStockA are computed using the exact model cost function given the resulting

(R, T)'s from the approximate model. In the Exact table, for b = 5, the optimal solution

is to carry no inventory, therefore, we have no values for all terms except the total cost

term. We list p in the Approximate table for each example. We observe that the gap

between the exact and approximate solutions varies directly with Pl; for these examples, the

approximate model appears quite accurate for pi < 0.18, but is not accurate for pi > 0.45.

In Table (2.2), we summarize the comparison of the approximate and exact single-stage

models for the 144 problems. We group the test problems according to their pi value. For

each interval of Pl, we denote J as a subset of all problems in this range, and I as the subset

of J whose optimal solution carries non-zero inventory (i.e., R > 0). Column JI indicates

the number of problems that have their pi value in the range specified by the pi column;
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P1 Il JI T R TC AvgInven
< 0.04 30 31 0.03 2 0.37% 2.47%

0.04- 0.11 29 31 0.04 2 0.47%0 2.20%

0.12- 0.29 31 33 0.16 3 5.41% 17.8%
0.30- 0.80 21 27 0.39 5 5.18% 25.1%

> 0.80 0 22 - - - -

Table 2.2: Summary of the Approximate and Exact Single-Stage Model Comparison

column II indicates the number of problems that have their pi value in the specified range

and that have non-zero inventory in their optimal solution. To evaluate the quality of the

approximate model, we report in the table the following measures:

1

I ITE TAI
ViEI

= max RE -R A

1 ITotalCost - TotalCost 100 TiC - 100
ViE I TotalCostE

A1 AvgInvenE - AvgInvenA 100
III AvgInvenE

As predicted, we see from Table 2.2 that the approximate model is quite accurate for

small values of Pl, e.g., pi < 0.11. In an e-tailing setting, we expect such small values for Pl,

as the fixed order cost a and the holding cost h are quite low relative to the backorder cost

b. We will discuss this more in the next section. Both the exact and approximate models

run less than a second.

To compare the approximate two-stage single-item model with the exact model (given

in Appendix A.2), we solved a total of 36 problems. For these test problems we set the

fixed replenishment cost to be (al, a2) = (1,4), the echelon holding cost to be (hl, h2) =

(0.2, 0.8), (0.8, 0.2), (2, 8), (8, 2), (5, 20), (20, 5), the echelon lead time to be (1,12) = (1, 2), (1, 8),

the backorder cost to be b = 10, and the demand rate to be d = 5, 25, 50. In addition to Pl,
h2TD hlTD 1 2a2h2 2aihi 

we define p2 as -+ b - b +V
b b b d d

Table 2.3 displays three numerical examples of the exact and approximate two-stage

model. All examples share the same value of a, h, 1, b but have different values of demand

rate d. Again, we use superscript E and A to label solutions from the exact and approximate

model. The Avglnvenl column is the average inventory in echelon 1 and the AvgInven2

column is the average inventory in echelon 2. Also, we list the value of P2 in the approximate

table for each example. We observe that, at least for these three examples, the exact and

approximate solutions are close.
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Numerical Examples:

(al, a2) = (1,4), (hi, h2) = (0.8,0.2), (11,12) = (1,2),b = 10

Exact

d T1 nE Rf Rl TotalCostE AvgInven- AvgInven'
5 0.81 4 14 36 12.87 6.48 17.91

25 0.34 4 45 123 32.04 15.13 56.00
50 0.25 4 79 221 48.63 22.03 96.00

Approximate

d TA nA RA R A TotalCostA AvgInvenA AvgInvenA P2

5 0.79 4 14 37 12.96 6.69 19.10 0.11
25 0.34 4 45 126 32.26 15.39 59.00 0.05
50 0.24 5 79 235 49.30 22.61 105.00 0.04

Table 2.3: The Two-Stage Exact and Approximate Solutions

Again, we denote J as a subset of all problems and I as the subset of J

solution carries inventory. Here each subset has 12 problems. Let

whose optimal

h = maxInE -n I
ViEI

1 loo100

R = TIl E '2e E ilooVTiE r it i T b 100

We summarize the results in Table 2.4. The approximate model is computationally more ef-

P2 III IJI T 6 R1 R2 TC AvgInvenl AvgInven2
< 0.12 10 12 0.05 1 0.02 0.04 4.52% 6.88% 10.58%

0.12- 0.23 4 12 0.25 0 0.07 0.05 11.75% 18.96% 17.23%
0.24- 0.71 2 12 0.14 0 0 0.10 3.87% 47.95% 44.81%

Table 2.4: Summary of the Approximate and Exact Two-Stage Model Comparison

ficient than the exact model. We observe that the optimal solution does not carry inventory

when P2 is large, and that a better approximation is more likely when P2 is small.

2.4 Application to Industry Data

We test the two-stage model with space constraints and its solution approach to data from a

major global e-tailer. The purpose of the study is to examine how the model applies to this

setting, and to obtain managerial insights. Of particular interest are the questions of how to

38



allocate space between the reserve and picking area, and how the structure of the inventory

policies depends upon the space allocation as well as on various problem parameters.

2.4.1 Data

Weekly demand data were collected from a warehouse in a six-week period for about 400,000

SKUs. Rather than computing the inventory policies for this large number of SKUs, we

first group the SKUs into aggregate product categories. For each category, we then derive a

"typical" SKU whose average demand rate and standard deviation are input parameters to

the inventory model. We assume that all SKUs in a category have the same cost parameters

and replenishment lead times. The assumption is quite realistic because the products are

very homogenous within a category, e.g., high-demand books, low-demand DVDs. The

optimal inventory policy of the "typical" SKU is then applied to each SKU in the category.

We justify this aggregation based on our intent to explore the applicability of the model

in this context, and to uncover managerial insights. We divide SKUs into eight product

types and three demand volumes to create twenty-four mutually exclusive categories. The

product types include books, DVD, music, software, video, and video games. The demand

volume is divided into fast, medium, and slow.

For each category, we estimate the demand rate and standard deviation for a "typi-

cal" SKU to ensure a good approximation for the resulting total average inventory of the

category. We propose to do this with a simple average for both the demand rate and the

standard deviation:
N N

gi, -- Oi (2.15)
i= 1 i=1

where i is the SKU index, N is the number of SKUs in the category, pi is the demand rate,

and ai is the standard deviation of demand per unit time for SKU i. We expect this will

provide a reasonable estimate of the total average inventory for the category, since a good

rough estimate of the total average inventory, assuming a periodic review order-up-to policy

for all of the SKUs in the category, is:

N T N N T N

i= i= l i=1

where T is the review period, I is the lead time, and k is some positive constant. That is,

we expect the cycle stock to vary linearly with the average demand rate ft, and the safety

stock to vary linearly with the average standard deviation d .

We apply this approximation method to each category as along as the Coefficient of

Variation (CV) of SKUs in a category is fairly consistent. To examine that, we plotted

a CV histogram for each category, where each SKU's CV is tabulated. Figure 2-4 is an
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example. For those categories that have more than one spike or have long tails in the CV

U 150(

1 oo00

50(

-O 0.5 1 1.5 2 2.5

Coefficient of Variation

Figure 2-4: Coefficient of Variation Histogram for a Category

histogram, we further divide the category into sub-categories.

2.4.2 Results

We report on the fast and medium demand categories. The optimal inventory policy for

the items in the slow-demand categories is to store in only one area typically, either picking

or reserve, or not stock at all. Therefore, we have a total of 16 categories as input to our

constrained two-stage model.

The cost parameters are obtained from the retailer in consideration of the warehouse's

actual operation. The set-up cost or fixed replenishment cost of echelon 2 for an individual

SKU is zero or near zero. This is because each supplier replenishes a large number of SKUs

in a coordinated way, so that it is quite difficult to discern the ordering cost at an individual

item level. However, there are economies of scale associated with the joint replenishment of

a set of items by a single supplier, which takes the form of a lower bound on T2, the review

period for echelon 2. The ratio of holding over backorder cost, , ranges from 0.07 to 0.56.

We normalize the echelon 1 lead-time to be one time unit for all categories; this lead-time

represents the time for the picking area to be replenished by the reserve area. The echelon 2

lead time, namely the lead time from external suppliers, ranges from 2.1 to 10.7 time units.

To examine the intrinsic trade-offs in the warehouse, we parameterize the echelon 1

set-up cost al and the Lagrangian Multiplier 0 associated with a space constraint. The

results are shown in Figure 2-5. Note that the axis are scaled to disguise the real data. For

all figures in Figure 2-5, each line corresponds to a value of al as indicated in the legend,

and the points on each line are associated with 0 = [2.4, 0.4, 0.2, 0] from left to right. We

test the same input data on two problems. One problem has a space constraint on the

picking area; the total warehouse space versus the total cost are shown in the top-left figure
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in Figure 2-5, and the picking-area space versus the total cost are shown in the top-right

figure. Similarly, the other problem has a space constraint on the total warehouse area; the

results are shown on the bottom two figures.

Echelon 1 constrained
80

60

40

20

11

Echelon 1 constrained
80

60

V
40

20

n1
0 50 100 150 0 50 100 150

Echelon 2 constrained

0 50 100
Total Space

Echelon 2 constrained

V;
o

m

150
Stage 1 Space

0

Figure 2-5: Echelon 1 or 2 Constrained Problem

As expected, as the warehouse space tightens, that is, as 0 increases, the total cost

increases and the total space decreases due to the tighter constraint. In the unconstrained

problem results ( = 0), all categories have single-stage solutions in both problems. This is

because the echelon 2 set-up cost a2 is zero, and we did not impose a constraint on T2.

Transition to a two-stage solution

In this section, we investigate how the inventory policies for different items change as a

space constraint tightens. In a constrained multi-item two-stage warehouse, we wish to

know which SKUs are to be stored in both stages and which SKUs are only in stage 1. It is

also useful to predict this type of profiling in the event that demand increases or the number

of SKUs increases, which results in a more constrained warehouse. We first examine the

deterministic demand case for some insight.

We first consider a space constraint on picking area only. According to Schwarz [Sch73],

the two-stage cost for constant deterministic demand of a single item is:

a2 + nal + +dTC(n, T) a + (nh + hi) 
nT 2

(2.16)

41

CS

u



The optimal cost is then

C* = 2(a2 + n*al)(n*h 2 + hl)d (2.17)C* = + hl~d (2.17)
n*

where n* is the optimal n satisfying

n*(n*- 1) < 2 hi < n*(n* + 1). (2.18)
- al h2 

For the multi-item constrained problem, we solve

min Ci(ni, T)
i

s.t. EyiAi(Ti) < S

ni CZ+, TiO 0, Vi

where Ci is as in Equation (2.16) and Ai = i is the average inventory in picking area for
2

SKU i. Let the total picking area space be S = S, C be the corresponding optimal cost, 0

be the corresponding Lagrangian multiplier. Then,

mn, Ci + -i ( Ai -niEZ+
Ti>O

min Ci + yiAi - S
niEZ+

i Ti O

z. y2(a2i + niali)(ih 2i + (hli + Oyi))di_ 
i

and hi is:

hi(ti - 1) < a2i hl i + OYi < i (i + 1). (2.19)
ali h2i

For a different value of the pick area area S = S, let C be the corresponding cost , 0 be

the corresponding Lagrangian multiplier, and ni be the optimal n. If the space constraint

tightens from S to S, S < S, then the corresponding Lagrangian multiplier increases 0 >

9 [Ber99]. As a results, the optimal value of ni increases ni > hi, Vi.

As the space constraint tightens, the optimal ni moves from 1 to 2. We want to find

the at which a SKU first turns into two stage, i.e, ni = 2, from Equation (2.19). The

resulting 0 is (we omit the index i here):

=hi (2 l 2 _ 1), (2.20)
"Y1 a 2 hl
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where the term 71 is the space taken by an item in stage 1. The value 9 is the threshold at

which the item transitions from a single-stage solution (store only in picking) to a multi-

stage solution (store in both the reserve and picking area). The larger the value of 0 is, the

tighter the space constraint must be before the SKU is stored in reserve.

Similarly, the threshold value 0 for the problem where both the picking and reserve areas

are constrained is,

i 2ah2)= - I 1 (2.21)
71 hla2 Ia _ 1 + 2a

where Y2 is the space taken by an item in stage 2.

Remark. The deterministic problem shows that regardless of whether the picking-area is
al hi

constrained or the entire warehouse is constrained, among items that have the same -, h 

and al ratios, SKUs with small holding cost and large volume are more likely to move to
72

a two-stage solution first as the space tightens.

In an attempt to find similar insights in the stochastic models, we compute the con-

strained models based on the exact two-stage model in Appendix A.2 for the 16 categories.

For each value of in an increment of 0.1, we find the optimal n for each category. How-

ever, often, there is no unique . We denote as the smallest 0 such that n* = 2 for each

category. It is most evident that five of the six categories with large echelon 2 lead times

have the smallest such 0 among all categories. We conclude that SKUs with long echelon-2

lead times tend to move to a two-stage solution first as a space constraint tightens.

2.5 Extension - Allocating Space for WIP

In most of the inventory models in the literature, inventory is immediately depleted when

demand occurs. As we mentioned in Chapter 1, this assumption is not entirely accurate

in the e-tailing setting. There is usually a random delay between when demand occurs

and when the demand is fulfilled. For instance, in order to qualify for free shipping, an

e-tailer might impose a service delay of, say, five to ten days to fill the order. Also, for

demanded items that are part of a multi-item order, there might be a random delay to fill

the order if some of the items are out of stock; the entire order might wait in the warehouse

until all items are available. In this sense, the order fulfillment process is more like a

make-to-assemble process: products can be any subset of all items, and customer orders are

assembled after their replenishment are received.

There are two implications from this. First, we need to account for the space consumed

by these items. Second, we have an opportunity to modify our inventory policies to take

advantage of this delay, as it is much like advance order information.

We call items in the warehouse that were assigned to customer orders but are waiting
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to be shipped as Work In Process (WIP). We propose to model the WIP for an item as a

M/G/oo queue. That is, we assume that demand is from a Poisson process, and the delay

follows a general distribution. We also effectively assume that the item has a high service

level, so that all demand immediately enters the M/G/oo queue; in reality, when the item

stocks out, subsequent demand is delayed before it could become WIP. More formally, for

single SKU, we denote

d Poisson demand arrival rate,

Y time from a customer order placement

to the time until all items in the order are assembled

That is, random variable Y represents the extra delay in demand fulfillment in online

retailing. Let Y be the expected value of Y. Thus, in steady state, the amount of WIP has

a Poisson distribution with mean dY.

The actual distribution of Y may depend on the ordering policy, multi-item demand

patterns, and assembly priority policy. As an approximation, we can determine Y from

historical data. Then, we can incorporate the term into our models to account for the WIP

queue in stage 1:
M

min ZCi(Ril,Ri2,Til,ni)
i=l
M

s.t. Evil (Ail + difi) S,
i=1

ni, Ril, Ri2 E Z+, Vi

Til >_ 0, Vi

where di is the arrival rate of SKU i and Yi is the random relay of SKU i. The first constraint

represents the space of the average inventory amount and the space taken by the WIP. This

extended model, however, only incorporates the use of space. Future research should also

consider the impact of WIP on the inventory model.

In this chapter, we formulate an approximate two-stage serial model for a multi-item

inventory system with space constraints. We benchmark the approximate single-stage and

two-stage models with the exact models, and show that the approximate models performs

well under our assumptions. We also report tests on the model using real-world data. We

conclude that allocation of picking and deep-storage area space depend on the product mix,

where long-echelon 2 leadtime is an important factor.
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Chapter 3

Order-Warehouse Assignments

3.1 Introduction

When a customer places an order on an e-tailer's website, the e-tailer, in real time, searches

for available fulfillment options from its order fulfillment centers (warehouses) or drop-

shippers. The e-tailer assigns the order to one or more warehouses virtually, mainly based

on the transportation cost of shipping the order from the warehouse(s) to the customer

location and on the current warehouse inventory availability. Depending on the inventory

availability and customer preferences, the e-tailer then quotes a promise-to-ship date to

the customer. The promise-to-ship date is the date by which the e-tailer promises to ship

the order. If the order has multiple items, then the e-tailer may not be able to ship the

order from one location. As a result, it may assign the order to multiple warehouses or

drop-shippers and the order is split. After the e-tailer assigns the order, each item in the

order enters the picking queue at its designated warehouse. The order might wait six to

eighteen hours before the items in the order are picked and assembled into a shipment. The

shipment is then given to a third party carrier to deliver the package(s) to the customer

location.

We present Example 3.1.1 to illustrate the real-time assignment decision.

Example 3.1.1. Suppose a customer located at Chicago orders one unit of CD, as indicated

in the dash box in Figure 3-1. Seconds later, a customer from Boston orders a unit of the

same CD and a book as in the solid box. In real time, the e-tailer searches for its available

inventory ill all of its warehouses: Warehouse 1 near New York and Warehouse 2 by San

Francisco. Both warehouses have one unit of the CD available, and the e-tailer will make

the assignment to minimize transportation costs. When 01 arrives, both warehouses can

satisfy the order. The e-tailer chooses the cheaper option to ship the CD from New York,

so the e-tailer assigns the CD inventory in Warehouse 1 to 01. When 02 arrives, there is

only one fulfillment option. Without placing an inventory replenishment order, the e-tailer
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Orders Customer Location Items

01 CHICAGO 1 CD ,

02 BOSTON 1 CD, 1 BOOK

Warehouse 1 Warehouse 2
NEW YORK SAN FRANCISCO

11CD 0
0 BOOKBOOK

Figure 3-1: Real-Time Assignments, Three Shipments - Example 3.1.1.

fulfills the second order with two shipments: Warehouse 2 can ship the CD and Warehouse

1 can ship the book to the second customer. We have a total of three shipments for the two

orders.

In the transportation cost of shipping a package, the fixed cost component is very

significant. We display the current Ground Commercial rates within the US continent from

UPS in Figure (3-2) [UPS05]. We display both the rates for shipping to Zone 1 from Zone

2 (the closest zone) and from Zone 8 (the farthest zone). We see that in both instances

12

10 Zone 8 x

x X
8- X X68 x

x * * *

4 Zone 2

2

0) 2 4 6 8 10
Weight (LBs)

Figure 3-2: UPS Ground Commercial Rates Within the US Continent

the shipping cost consists of a fixed cost of about $5 per shipment, plus a variable cost

that is linear in the weight of the package. Furthermore, for small shipments the fixed

cost represents the majority of the shipping costs. As a consequence, reducing the number

of shipments is a very good proxy for minimizing the transportation costs in the e-tailing

setting. For example, consider an order that weighs about eight pounds. It is cheaper to

ship a single package of eight pounds from Zone 8 than to ship two four-pound packages

from Zone 2. The difference is even more pronounced at smaller weights. For example,

shipping a two-pound package and a six-pound package from Zone 2 costs $10.60, while

shipping one eight-pound package from Zone 8 costs $10.05. For items that can typically
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be fit into the few standard packages, their weight is at most a few pounds, e.g., books,

CDs, DVDs. Therefore, the e-tailer minimizes its transportation costs by minimizing the

number of shipments.

If we consider the two orders in Example 3.1.1 alone, we can reduce the number of

shipments to two, as illustrated in Figure 3-3 by changing the order-warehouse assignments.

We assign the first customer order 01 to Warehouse 2 and the second 02 to Warehouse

1. Example 3.1.1 is a bit extreme and the modification to the initial assignments is very

Orders Customer Location Items

01 CHICAGO 1 CD 

02 BOSTON 1 CD, 1 BOOK

Warehouse 1 Warehouse 2
NEW YORK SAN FRANCISCO

CD /1 CD

0 BOOK

Figure 3-3: Re-Evaluation Reduces No. of Shipments to 2 - Example 3.1.1.

straightforward. To appreciate the difficulty and the subtlety of the problem, we discuss

Example 3.1.2 next.

Example 3.1.2. We have four customer orders, labeled as 01, 02, 03, 04 in the sequence

of arrival, and three warehouses, labeled as W1, W2, W3. The warehouses carry five SKUs,

with the names CD, book, toy, camera, and DVD. The real-time assignment is as indicated

in Figure 3-4. The first customer order is for one unit of CD, and the e-tailer assigns it to

W1 W2 W3

OOK mTOYI

BOOK:

I - 111 - - Ill lll lll

CD = CAMERAI

I BOOK! I DVD
Iii=llllll - =11 I _I 111 111I

LEGEND
C 01 '' 02 : 03 "' 04

Figure 3-4: Read-Time Assignments, 6 Shipments - Example 3.1.2.

W2, possibly because the first customer is nearest to W2 or W2 is the only warehouse with

the CD in stock at the time. The second order 02 consists of the book and the toy. The e-

tailer assigns the book to W2 and the toy to W3. Suppose that an inventory replenishment
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of books is received at W3 between the arrivals of 02 and 03. The e-tailer then assigns 03

to W3. Finally, there are two shipments for customer 04: the CD and book from W1 and

the camera and DVD from W2. Thus, there are six shipments for the four orders, and it

may be unclear how we can shuffle the assignments to reduce the number of shipments. In

W1 W2 W3
ii mllI I lll t

CD ii, BOOK * TOY|

-= , IBOOK
I = J
I CAMERAR
- 1

:BOO E DVD I
421111110 gill11 III I III zl ~

LEGEND
O 1 . 02 03 ,' 04

Figure 3-5: Re-Evaluation Reduces Number of Shipments from 6 to 4 - Example 3.1.2.

Figure (3-5), we reduce the number of shipments from six to four, which is clearly the best

we can do.

We show with examples that the real-time decision is necessarily myopic because the

e-tailer does not anticipate any future customer orders or inventory replenishment. The real-

time assignment is myopic in practice because the e-tailer wants to reserve the inventory for

the customer, then inform the customer with confidence that inventory is available and that

the order can be fulfilled by the promise-to-ship date. The real-time assignment is myopic

also because of two main challenges. The large number of customer orders and the need to

provide customers with a very quick response in real time make efficient assignment difficult.

We conjecture that we can reduce the total transportation cost of shipping orders from

warehouses by re-evaluating the real-time assignment decisions, subject to the constraint

that the promise-to-ship date commitment for any customer order is guaranteed.

This shuffling of assignments is also practically feasible. Even when all items in an

order are available at the warehouse, the order may wait 8 to 16 hours until the order

is released to be picked and sent for shipping. If one or more of the items in the order

is not available, then the rest of the order is reserved and waits until the missing items

arrive. By re-evaluating the real-time decision, the e-tailer can also afford more decision

making time. We pose a problem to re-evaluate the real-time decisions. We consider the

queue of not-yet-picked customers orders at a random time and their real-time warehouse

assignments. We re-evaluate these real-time decisions to reduce the shipping cost without

violating the promise-to-ship date commitments for these orders. The not-yet-picked orders

are the orders that have not yet been released to be picked at each warehouse. We take
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inventory availability and the real-time quoted promise-to-ship dates as given. We call this

optimization of snapshot order assignments as the re-evaluation problem.

We will show in later sections that this snapshot optimization problem is difficulty

theoretically (belong to the NP-hard complexity class) and in practice. For now, exact

methods cannot solve realistically dimensioned cases. In the e-tailing setting, the problem

size is especially large. For an off-season snapshot at a large e-tailer, there are 1 million

orders with 2 to 3 million units waiting to be picked. There are up to 10 warehouses. The

total number of SKUs in those orders ranges from 500,000 to 800,000. In the peak season,

the number of orders can reach three or five times of the off-season.

We, therefore, develop efficient and easy-to-implement sub-optimal heuristics to solve the

re-evaluation problem. Given the real-time assignment decisions, we take the natural path to

construct an improvement heuristic that starts with a feasible solution and iteratively finds

better solutions. We also derive bounds to determine the sub-optimality of our heuristics.

In the following sections, we discuss the problem formulation and our heuristic solution

approach. We also summarize some computational experiments on sets of real data from a

global e-tailer.

3.2 Problem Formulation

We present two formulations of the re-evaluation problem, where one is based on the set

partitioning problem, and another is a network design formulation. Both formulation shed

light on the underlying structure and difficulty of the problem.

3.2.1 Formulation 1

For this set-partitioning based formulation, we first examine the real-time assignment deci-

sion for a single order. For now, we assume that we have enough inventory across warehouses

in the network to satisfy the order. Without this assumption, we have a set-packing prob-

lem, where some of the items in an order may be unassigned. We start with some notation.

k index for warehouses

I set of SKUs, where I = m and i is the index.

N = {1,. . ., n}, a collection of all possible subsets of

the order, i.e., Cl, 1 e N, is the 1th subset of the order

A a m by n matrix such that ail is the number of

of SKU i included in subset Cl
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di units of SKU i in the order

u order size, or the number of units in the order, u = di

e, a n by 1 vector of 1's

Ylk = 1 if subset Cl is shipped out of warehouse k; =0 otherwise.

Sik inventory units of SKU i available at warehouse k

We denote the following formulation of assigning an order to warehouses as P.

min E Ylk
V ,k

s.t. E E ail Ylk =di, V i
Vk V 

Eail Ylk < Sik, V i, k
VI

Ylk e (O, 1), , k

The first constraint guarantees that the required number of each SKU in the order is shipped.

The second constraint is a supply constraint: the amount of SKU i shipped from warehouse

k cannot exceed the supply of SKU i in warehouse k.

Suppose we substitute index r for (1, k), and restrict each SKU to have at most one unit

in the order (di = 1) and allow supply to be infinite. This problem is a set partitioning

problem:

min Er
Vr

s.t. Ay = en

Yr G {0,1}.

Now we examine all orders in the re-evaluation problem. Again, we assume that inven-

tory in the network can satisfy all orders. E-tailers can fulfill orders either by inventory

physically in the warehouse or inventory on order. We modify the previous notations and

introduce new notations.

j index for customer orders, J is the order set

Ij set of unique SKUs in order j

Nj = 1, ..., nj }, a subset collection of order j with nj subsets

N = {Ni,..., Nj, ... }, and the total number of subsets is n = nj

For each SKU, we denote Ji as the set of orders with at least one unit of SKU i. We
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call the re-evaluation problem as Q:

min E ylk
Vj IENj,k

s.t. a Yj = diJ,

Vk IeNj

5 E a yj < Sik,
jEJi IENj

lk {o, 1},

V j, i Ij

V i,k

Vj, 1 Nj, k

The major difference from problem P is the second constraint. Here the total amount of

SKU i shipping from warehouse k for all orders should be no more than the supply in
warehouse k.

Let uj be the size, or number of units, of order j and mj be the number of SKUs in
order j. In problem Q, the number of binary decision variable is nK, or K 2uj in the

j
worst case. The number of first constraints is m = j mj < I I[IJ , the number of second
constraints is IK[. Notice n could be exponential in the input data. In problem Q, the

number of binary variables can be exponential and the number of constraints is linear in

the input data.

3.2.2 Formulation 2

We can also formulate the re-evaluation problem as a network design problem, specially, a

fixed-charge multi-commodity flow problem [AS04]. We redefine the decision variables, but

keep the previously defined notations.

XJk units of SKU i shipped from warehouse k to customer j

Yjk binary variable to indicate a shipment from k to j

We also denote set Ki as the set of warehouses carrying SKU i inventory, Ji as the set of

customer orders containing nonzero units of SKU i.

We denote the following formulation as MIP.

min E Yjk
j,k

s. t. E i = d,
kEK(i)

E :jk S,

jEJi

o < Xk d Yjk,

Yjk C {O, 1},

ViE I, jE Ji

V iE I, kE Ki

V i e I, jE Ji, k e K

Vj, k
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Notice that a commodity is a SKU. Variable x is a continuous variable here because for

any given choice of y, we can decompose the problem into a transportation problem by

SKU, and there exists an optimal integer solution for each transportation problem. The

first constraint assures that the demand is met for each SKU in each order. The second

constraint assures that the amount of each SKU shipped from each warehouse does not

exceed the supply. Problem MZP has IJIIKI binary variables and IIIIJI IKI continuous

variables. It has I IKI + II IJI + II IJI IKI number of constraints. The number of constraints

and variables is linear in the input data.

3.2.3 Complexity

In this section, we aim to show that our general re-evaluation problem is NP-hard by proving

that some simple special cases of the problem are NP-hard. First, we introduce a decision

problem that we use in the following proof.

Minimum Edge Coloring

INSTANCE: G = (V, E), positive integer K

QUESTION: Can the edge set E be partitioned into disjoint sets E 1,...,Ek, with

k < K, such that for every subset 1 < i < k, no two edges in Ei share a common

endpoint or node in G?

The Minimum Edge Coloring problem is a known NP-Complete problem [Hol81].

Figure 3-6 is an example of edge coloring. The graph can be partitioned into two

colors: one formed by the solid edges (1,4), (2,3) and another by the dotted edges

(1,2), (3,4).

,

Figure 3-6: Edge Coloring

2-SKU K-Warehouse

We state a special case of the general re-evaluation problem where each customer

orders exactly two items and there are K warehouses.

INSTANCE: n distinct items or SKUs, K warehouses and each warehouse has one

unit of the n SKUs, m orders and each order has one unit each of 2 distinct SKUs.
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QUESTION: Can the m orders be satisfied from the K warehouses with at most m

shipments?

Proposition 3.2.1. The 2-SKU K-Warehouse decision problem is NP-complete.

Proof. We transform Minimum Edge Coloring to 2-SKU K-Warehouse.

Suppose we have G = (V, E), let each item be a node in G and n = IVI and let each

order be an edge in G and m = EJ.

Clearly, this transformation can be done in polynomial time. It remains to show that

E can be partitioned into k < K disjoint sets iff the m orders can be satisfied from the K

warehouses with at most m shipments.

First, suppose E can be partitioned into k < K disjoint sets, E 1,..., Ek. For 1 < i < k,

no two edges in Ei share a common endpoint in G and Ei contains a matching of the n

elements. For the set of orders correspond to edges in Ei, no two orders share a common

element. In other words, Ei represents orders that can be satisfied entirely from Warehouse

i. We then can satisfy the orders from k warehouses and each order can be satisfied from

one warehouse.

Conversely, suppose we have m shipments. Then each order can be satisfied from one of

the k < K warehouses. This corresponds to partitioning the orders into k < K sets, where

no two orders in the same set share a common item. Therefore, all edges can be partitioned

into k < K disjoint sets. ·

Corollary 3.2.1. The problem of minimizing the number of shipments by assigning 2-SKU

orders to K warehouses is NP-hard.

Proof. From Proposition 3.2.1, we see that a special case of assigning 2-SKU orders to K

warehouses, the 2-SKU K-warehouse problem, is NP-complete. By restriction, the general

2-SKU K-warehouse problem is also NP-complete. Therefore, the optimization problem is

NP-hard. ·

Next we introduce a decision problem that we use in the following proof.

Exact Cover by 3SETS (X3C)

INSTANCE: A finite set X with IXI = 3q, a collection C of 3-element subsets of X

QUESTION: Does C contain an exact cover for X, that is, a subset collection C' C C

such that every element of X occurs in exactly one member of C'?

The X3C problem is a known NP-Complete problem [GJ79].

3-SKU 2-Warehouse

We state a special case of the general re-evaluation problem where each customer has

exactly three items and there are two warehouses.
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INSTANCE: m distinct elements or SKUs, n distinct orders and each order has 3

distinct elements, Warehouse 1 has one of each m elements, and Warehouse 2 has

3n - m elements just enough to fulfill the rest of the n - m/3 orders

QUESTION: Can the n orders be satisfied from the two warehouses with at most n

shipments?

Proposition 3.2.2. The 3-SKU 2-Warehouse decision problem is NP-complete.

Proof. We show the NP-completeness by transforming X3C to 3-SKU 2-Warehouse.

Let the m elements be the set X and m = 3q.

Let the n orders be C the collection of 3-element subsets of X, and each order corre-

sponds to a 3-element subset.

Clearly, this transformation can be done in polynomial time. It remains to show that

C contains an exact cover for X iff the n orders can be satisfied from the two warehouses

with at most n shipments.

First, suppose we have an exact cover for X, C' C C. Then the set of m/3 = q orders,

where each order corresponds to a subset in C', can be satisfied from Warehouse 1. Every

element in Warehouse 1 is in exactly one order in C'. The rest of the n - q order can be

satisfied from Warehouse 2 by definition. We then have one shipment for each order and n

shipments total.

Conversely, suppose we have a solution where n orders are satisfied by the two ware-

houses with n shipments. Then, each order is satisfied from one warehouse. There are exact

m/3 orders satisfied Warehouse 1. Then those q = m/3 orders form an exact cover of the

3q elements in Warehouse 1. The collection of subsets C' C C corresponds to the q orders

from Warehouse 1 is an exact cover for X. ·

Corollary 3.2.2. The problem of minimizing the number of shipments by assigning 3-SKU

orders to 2 warehouses is NP-hard.

Proof. From Proposition 3.2.2, we see that a special case of assigning 3-SKU orders to 2

warehouses, the 3-SKU 2 warehouses problem, is NP-complete. By restriction, the general

3-SKU 2 warehouses problem is also NP-complete. Therefore, the optimization problem is

NP-hard. ·

Corollary 3.2.3. The problem of minimizing the number of shipments by assigning orders
to warehouses is NP-hard.

We have shown that special cases of the re-evaluation problem are NP-hard. Therefore,

the general problem of assigning orders to warehouses such that the number of shipments

is minimized is NP-hard. We show that we need efficient and easy to implement heuristics

to solve the re-evaluation problem.
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3.2.4 Literature Review

There are two clusters of literature that are most relevant to our problem: network design

problems and local search algorithms, a wide class of improvement algorithms.

The literature on network design problems is directly related to the second formulation

of the re-evaluation problem. Magnanti and Wong [MW84] provides a survey of models

and classic solution methods of the general network design problem up to 1985. They show

that the problem is very flexible and contains a number of well known network optimization

problems as special cases: minimal spanning trees, shortest paths, vehicle routing problems,

facility location problems, etc. Minoux [Min89] surveys the models and solution methods of

the variants of the general problems. He discusses the general models using minimum cost

multicommodity flows, models of tree-like networks, models using nonsimultaneous single-

commodity or multicommodity flows. Balakrishnan, Magmanti, and Mirchandani [BMM97]

list an annotated bibliographies on network design since 1985. The focus of the survey is on

uncapacitated network design, capacitated network design, network loading, and network

restoration problems.

The general form of a network design problem is the multicommodity network design

problem. Let n be the number of nodes and m be the number of edges in a graph, then we

have the following [BMM97]:

min ci x i + fy
iEI

s.t. .fx i = bi Vi E Z

x i < kiy Vi E I

xi < Ky
iEI
xi >0 ViEZ
yEY

where I is a set of commodities, ci E Rm is a vector of edge cost per unit of flow, f E im

is a vector of edge design or installation cost, f is a node-edge incidence matrix, bi CE I is

a vector of node supplies or demand, ki is a vector of edge capacity for commodity i, and

K is the edge capacity for all commodities. There are two types of decision variables: each

element in the vector x i E IRm models the continuous choice of routing commodity i flow

on edges , and each element of y E lR
m models the discrete design choice of installing edges.

The total cost is the sum of installation and routing costs.

The first constraint is a flow balance constraint. The second constraint ensures no flow is

routed on the arcs that are not installed and edge capacity on each commodity is satisfied.

The third constraint imposes the total capacity on each edge for all commodities. Our

problem is a fixed charge uncapacitated multicommodity flow problem, a special case of
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the general network design problem. Specifically, our model has the following properties: it

only has installation costs but no routing costs, it has no bundling capacity constraint on

all commodities, the graph topology is bipartite, and each commodity has multiple origins

and multiple destinations. The current literature has made the greatest progress in solving

uncapacitated problems. Most progress, however, has been made on single-origin single-

destination problem, which is the simplest case of the uncapacitated problem. Our model

has a simple cost structure and topology and has no side constraints, but has multiple origin

and multiple destination.

Many of the special cases of the fixed charge design problem, e.g., the Steiner Tree prob-

lem, are known to be difficult to solve or NP-hard in complexity. The fixed charge problem

then is also NP-hard [MW84]. In addition to the theoretical arguments, substantial em-

pirical evidence also confirms the difficulty of the problem on large-scale instances [e.g.,

BG73, Won85]. Balakrishnan, Magnanti, and Wong[BMW89] develop a dual-ascent algo-

rithm for the fixed-charge network design problem. They test problems with up to 500

integer and 1.98 million continuous variables and constraints. The procedure shows promis-

ing results of 1 to 4% of optimality. Holmberg and Hellstrand [HH98] show a Lagrangian

heuristic within a branch-and-bound framework to find the exact optimal solution. Judging

by the size of the instance solved in the current literature, none are close to the scale of our

problem.

There is a vast amount of literature on local search or neighborhood search. Neigh-

borhood search is the inspiration of our proposed heuristics, and the neighborhood of our

heuristics is exponentially large. We refer the readers to an extensive survey by Aarts and

Lestra [EL97]. Ahuja, Ergun, Orlin, and Punnen [AEOP02] provide a comprehensive sur-

vey on very large-scale neighborhood search techniques. Neighborhood search algorithms

are a wide class of improvement algorithms that try to improve iteratively by searching the

"neighborhood" of the current solution. Our first formulation shows the proximity to set

partitioning problems. We can view our heuristics as a type of local search procedure for

partitioning problem, which involves transferring or exchanging elements between clusters.

In our problem, the clusters are customer orders and the elements are inventory units. We

refer readers to Thompson and Orlin [TO89] for more discussion of the literature.

We can also view our heuristics as a network flow based improvement algorithm, which

use network flow techniques to identify improving neighborhoods. In our heuristics, by

solving a transportation problem, we are able to identify cyclic exchanges of items among

customer orders. Some of these algorithms in the literature characterize improvement moves

by negative cost disjoint cycles in a so called "improvement graph". For example, Thompson

and Psaraftis [TP93] apply the technique to vehicle routing problems. They try to reduce

the total cost of a set of routes by transferring demand among routes cyclically. Their

results show the local search method as either comparable to or better than the vehicle
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routing heuristic algorithms. Ahuja, Orlin and Sharma [AOS01] apply the technique to

the capacitated minimum spanning tree problem. Using variants of shortest path label-

correcting algorithms, they are able to identify cycles that exchange nodes among multiple

subtrees simultaneously. Their results can improve the best available solution for most of

the benchmark instances by as much as 18%. Others effectively apply the search method to

minimum makespan parallel machine scheduling problem [FNS04], and capacitated facility

location problem [AOP+04].

An application close in flavor to ours is the paper by Talluri [Tal96] on daily airline

fleet assignment problem. The fleet assignment problem can be modeled as an integer mul-

ticommodity flow problem subject to side constraints and each commodity is a fleet. The

problem assigns fleet types to flight legs. After a fleet assignment problem is solved dur-

ing the planning stage, often the airlines need to change the assignment to accommodate

updated demand forecast, disruptions to the schedule, or breakdowns. He develops a swap-

ping procedure to identify and change the fleet types on flights from a given solution. The

exchanges are identified by finding negative cost cycles in a related network.

3.3 Complex Network Properties

In solving the problem, we understand that specially tailored heuristics are more likely to

outperform any general heuristics. To develop any solution procedure tailored to the prob-

lem structure, we must examine the problem data carefully. In this section, we summarize

the important characteristics of the customer orders and the real-time assignments in the

e-tailing setting.

To facilitate the presentation, we introduce the following definitions.

Definition 3.3.1.

A single order is a customer order that consists of exactly one unit.

A multi order is a customer order that consists of more than one unit, may have more

than one SKU or multiple units of one SKU.

A split order is a customer order split over warehouses in the real-time assignment, i.e.,

multi orders that require more than one shipment.

A single shipment is a one-unit shipment of a split order, that is, a shipment of a single

unit that is part of a multi order.

A double shipment is a two-unit shipment of a split order.

Recall that once customer orders are placed, the orders are assigned to one or more

warehouses and entered to a picking queue. We take a snapshot of all the orders that are
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waiting to be picked at a random time. We examine a few such data sets in the off season

from a large e-tailer and one data set from the peak season, as illustrated in Table 3.1. The

off-season data is taken at random days during a period of five months in 2004 and the

peak-season is a random day in December, 2004. The term "Total orders" represents the

Off-Peak Season Peak Season
Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5

Total orders 869K 925K 918K 956K 1.55M
Total SKUs 411K 385K 388K 406K 526K
Single orders 64% 65% 66% 65% 56%

Multi orders 36% 35% 34% 35% 44%

Split orders 3.9% 3.9% 3.7% 3.6% 6.4%

Table 3.1: Snapshot Data

total number of customer orders that have not yet been picked. The term "Total SKUs" is

the number of unique SKUs among the total number of orders. "SingLe orders", "Multi

order", and "Split orders" are the percentages of single, multi, and split orders among

"Total orders". Overall, the snapshot data is very consistent from day to day during the

off-peak season. There are close to 1 million orders with 2 to 3 million units in the not-

yet-picked queue for the snapshot data. Furthermore, the size of orders tends to follow a

geometric distribution.

Comparing with the peak season snapshot data, the off-peak season has less orders.

Also, the percentage of multi orders and split orders are less in the off-peak season. The

real-time assignments in the snapshot data split about 10% of the multi orders in the off-

peak season and 18% in the peak season. Overall, the number of shipments in each split

order is two or three shipments with few exceptions. There is at least one single shipment

in more than 80% of the split orders. Over 90%0 of the split orders have at least one single

shipment or one double shipment. We will discuss the implication of these numbers in the

later section. In particular, we exploit the abundance of the single and double shipments

in our heuristics.

To investigate whether the problem can be decomposed into a number of smaller prob-

lems, we examined the connectivity of the order-SKU graph constructed for the snapshot of

the not-yet-picked queue . There is one node for each SKU and we connect two SKU nodes

when an order that includes both SKUs exists. We find that there exists one very large

component in the graph, containing the majority of the SKU's. Furthermore, any removal

of small subsets of SKU's does not change the connectivity of the graph. Therefore, we do

not see a clear way to decompose the problem by considering a limited number of orders or

SKUs.

Our exploration of the order-SKU network in the e-tailing setting echoes the the-

ory of random graphs. Solomonoff and Rapoport [SR51] and independently Erd6s and
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Renyi [ER59] study a very simple model of network called Poisson random graphs. In a

graph with n nodes, a random edge is independently chosen with probability of p to connect

any two nodes in the graph. They show that in the limit of a large n, the degrees of the

nodes in the graph is Poisson distributed. They also demonstrate that when the value of

p is high, a large percentage of the nodes are joined together in a single giant component.

Recently, Newman [NewO3] reviews the development in complex networks. The empirical

studies of networks, such as the Internet, social networks, and biological networks, show

some common properties among the different complex networks. In particular, as repro-

duced by the random graphs, the network exhibits the "small-world effect", or most pairs

of nodes in most real-world networks seem to be connected by a short path through the

network. Our order-SKU network is not as simple as the Poisson random graphs: our edges

are correlated. Our network, however, seems to have the small-world effect.

3.4 Heuristic Approach

In solving the re-evaluation optimization problem, we already have an initial feasible solu-

tion, i.e., the real-time assignments. It seems natural to focus on improvement algorithms,

by which we iteratively create better solutions. The focus on improvement algorithms is

also driven by two major practical concerns: i) Improvement algorithms generate a feasi-

ble solution at every iteration. After each iteration, we can implement the recommended

changes to the incumbent assignments to get an improved order assignment. This facilitates

the implementation of this solution approach greatly, since we always have a feasible solu-

tion, even if there were a sudden termination of the algorithm. ii) Retrieving data in the

setting of a large e-tailer is time consuming, because of the large scale of the information

systems and data storages in place. A wide class of improvement algorithms is local search

algorithms which searches for the "neighborhood" of the current solution at each iteration.

Local search algorithms allow the users to retrieve only a small amount of data pertaining

to the neighborhood for each iteration. Therefore, we can improve overall running time by

solving the problem and retrieving data in parallel.

One key idea of the heuristics is using the single orders to "fix" the split orders. The

motivation is twofold. First, single orders always entail a single shipment and therefore are

very flexible in their assignment. Also, we know that the special case of our network design

problem where all orders are single orders is an easy transportation problem. Second, the

vast majority of split orders in the real-time assignment include a single shipment. By

re-assigning a single order from warehouse A to warehouse B, we free up a unit of inventory

at warehouse A that might be used to avoid a split order. Our Example 3.1.1 illustrates

such an instance.

We start with the real-time assignments and iteratively improve upon it by reducing
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the number of shipments at each iteration. Clearly, the number of splits within an order

in iteration t + 1 is never more than the number of splits in iteration t. We observe in all

data sets that the majority of the orders in the real-time assignments are already of one

shipment. Typically, the percentage of the multi-item orders with no splits is around 30%

of all orders. We do not consider those orders in the heuristics. In summary, the input data

of the heuristics include all single orders, split orders in the initial assignment as well as all

"free" or unassigned inventory at the time the snapshot was taken.

Note that we can treat all unassigned inventory as single orders. We can assume that

they are assigned to a dummy customer and have an infinitely long promise-to-ship date.

We also assume that all on-order inventory will arrive to the warehouse at the expected due

date. That is, we assume that on-order inventory will arrive at the date promised by the

supplier.

Our heuristics consist of two distinct parts. We name the first part as Order Swap as

we consider split orders one at a time and examine possible swaps. The second part is SKU

Exchange as we consider one SKU at a time and examine possible cyclic exchanges. In

our implementation, we start with Order Swap and then proceed to SKU Exchange on the

remaining split orders. We view Order Swap as a fast and extremely simple greedy algorithm

to exploit the abundance of unassigned inventory and single orders. To incur incremental

benefits, we employ the efficient but more time consuming SKU Exchange heuristic. For the

rest of the section, we refer to single orders to include single orders as well as uncommitted

inventory.

In the remainder of the section, we discuss the details of the heuristics and present their

worst-case analysis.

3.4.1 Order Swap

Order Swap exploits the flexibility of single orders and the abundance of unassigned in-

ventory. We start with the split orders in the initial assignment. Let j be the index for

split orders, and let k be the index for warehouses. For each order j, we examine each

warehouse k. If k has sufficient single orders to swap with j such that the entire order of j

can be fulfilled at k, then we complete the swap. We terminate examining order j if a swap

involving j has occurred or all warehouses have been considered. The heuristic is named

for considering one order at a time. Figure (3-7) specifies the general implementation. We

illustrate the Order Swap heuristic with the following example.

Example 3.4.1. We consider performing the Order Swap procedure on 01 as illustrated

in Figure 3-8. 01 has one unit of SKU X and Y currently assigned to warehouse 1 and 2.

02 and 03 are the single orders at warehouse 3. There are no single orders at warehouse 1

or 2, so we consider warehouse 3 next. The entire order of 01 is currently not assigned to
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algorithm Order Swap:
input: an initial feasible solution

1. for each split order j = 1,..., J do

1.1. for each warehouse k = 1, ..., K do

1.1.1. let Ijk be the set of items in order j currently not assigned to k.
1.1.2. if k's single orders contain Ijk,

then make swap, go to j + 1.
else go to k + 1.

Figure 3-7: Order Swap Algorithm

W1 W2

LEGEND

r 0o1 _ 02

W3

"y I

r11I 1116

r" 03

Figure 3-8: Order Swap Example 3.4.1.

warehouse 3: 113 = {XY}. The set of single orders at warehouse 3 contains {XY} and we

can make the swap. The assignments after the swap is illustrated in Figure 3-9

W1

I = II 
11l lJ

W2

!: .-

LEGEND

- 01 o_ 02

W3

r 03

Figure 3-9: Order Swap Example 3.4.1- After a Swap.

Order Swap with time dimension

The actual problem we need to solve has a time dimension. First, we need to consider the

promise-to-ship dates quoted by the e-tailer when customer orders occur. Second, we need

to differentiate whether the unit of inventory assigned to the customer order is physically

in the warehouse or on order. Recall the re-evaluation problem solves on the snapshot data

taken on customer orders that are already placed but have not yet been picked. We then
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create T time periods with respect to the time the snapshot was taken. In general, time

period 0 is the snapshot time, time period t < T is t days in the future of the snapshot

date, and time period T is T days or more in the future of the snapshot date. We denote

vi promise-to-ship date of item i in the real-time assignment,

ui time at which the inventory committed to item i arrives to the warehouse.

To ensure that customer service level promised at the real time is not violated, we add the

following constraint in Order Swap: it is feasible to swap item il with i2 of the same SKU

iff ui, < vi2 and ui2 < vi. That is, a swap is feasible if the e-tailer can still ship the orders

within the promised dates after the swap.

3.4.2 SKU Exchange

The second key idea of the heuristics is to consider one SKU at a time. The main motivation

is the special case of the general re-evaluation problem, where all orders are single orders.

This special case can be formulated as a transportation problem and we know that poly-

nomial algorithms can solve those problems optimally. In SKU Exchange, we start with

a sequence of SKUs. For each SKU in the sequence, we can construct and solve a trans-

portation problem that attempts to reduce the number of split orders. After solving each

transportation problem, we update the affected orders, and continue with the next SKU.

We terminate at the end of the SKU sequence. The transportation problem allocates the

supply of the SKU at the supply nodes (the warehouses) to the demand nodes (orders that

include the SKU). Figure (3-10) is a general implementation.

algorithm SKU Exchange:
input: an initial feasible solution

1. generate a sequence of SKU A = {1, 2, ..., n}.
2. for each SKU a = 1,...,n do,

2.1. construct a transportation problem for SKU a.
2.2. solve the transportation problem a.
2.3. update orders affected by a.

Figure 3-10: SKU Exchange Algorithm

SKU Exchange of single shipments

We only consider SKUs that have single orders or uncommitted inventory, as well as split

orders with single shipments that consist of SKU a. We start with the following example

to illustrate the transportation problem before we summarize the details.
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Example 3.4.2. We consider a batch of orders with the real-time assignment listed in

Figure (3-11). We construct the corresponding maximization transportation problem for

WI W2 W3

X...., , .... ,.v._..
Y UV

LEGEND

01 --_ 02 'i 03

Figure 3-11: Real-Time Assignments - Example 3.4.2

SKU Y in Figure 3-12. Each warehouse represents a supply node, and each order with

1- i

1 iW2

1- 

Figure 3-12: Transportation Problem for SKU Y - Example 3.4.2

a single shipment of SKU Y represents a demand node. From Figure (3-12), we see that

the supply at each supply node is the available units of SKU Y at the warehouse for re-

assignment, and the demand at each demand node is the number of units of SKU Y in the

order. A unit of flow from supply node k to demand node j signifies that warehouse k ships

a unit of SKU Y to fill order j's requirement.

Definition 3.4.1. Let the set of profitable warehouses of shipment y in order j be Pj(y)

such that, Vk C Pj(y), while maintaining other shipments, shipping the shipment y from

warehouse k reduces a split in order j.

That is, there will be one less shipment if warehouse k supplies the SKU Y for order

j. The arc profit for arc (k,j),Vk Pj(Y) is 1, signifying that a unit flow on this arc

results in one less shipment. The arc cost is zero for all other arcs. In Figure 3-12, Pi (Y) =

{3},P 2(Y) = 0,P3 (Y) = {2}, and only arcs (2, 3) and (3, 1) (the dark arcs) have a profit

of 1.

By inspection, we see that the optimal solution is to send one unit of flow along arcs,

(1,2), (2,3) and (3,1). The optimal solution corresponds to the results in Figure (3-13).

We reduce the number of shipments in the three orders from 5 to 3.
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Figure 3-13: Re-Evaluation Reduces No. of Shipments from 5 to 3 - Example 3.4.2

Figure (3-14) is an augmenting cycle with respect to the initial solution: 03 -- WI

02 --* W3 -* 01 - W2 - 03. Starting from the initial solution, the augmentation

(W-i (nV_1 o

®I>

(W3)

3
:@~

Figure 3-14: Augmenting Cycle - Example 3.4.2

increases one unit of flow on the forward arcs (warehouse to order) and decrease one unit

of flow on the backward (order to warehouse) arcs. After we augment the cycle from the

initial solution, we reach the optimal solution of the transportation problem of Y. We

can interpret the augmenting cycle in the context of the problem: a backward arc (j, k)

represents un-assigning the inventory unit of Y that's currently assigned to order j into

warehouse k; a forward arc (k, j) represents assigning an inventory unit of Y in warehouse

k to order j. We now can see the cyclic exchanges that are required to implement the

solution: we un-assign the unit of Y at WI to 03, and re-assign it to 02; we un-assign

the inventory from W3 to 02, and re-assign it to 01; we un-assign the inventory from W2

to 01, and re-assign it to 03. That is, by implementing the cyclic exchange of SKU Y

according to 03 -~ 02 - 01 -- 03, we arrive at the solution in Figure (3-13). The term

SKU Exchange is named in view of the one or more cyclic exchanges in each transportation

problem.

With the discussion of Example 3.4.2, we are now ready for a general specification of

SKU Exchange. Let's first define an admissible order and shipment.

Definition 3.4.2. Split order j is an admissible order of SKU a if

1) order j has SKU a in a single shipment, and
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2) order j has only one single shipment of SKU a.

Then, that single shipment is an admissible shipment of SKU a.

That is, each admissible order of SKU a only has one admissible shipment. Let the

notation {X, YZ} represent an order having three items, one unit of each SKU X, Y, Z.

The unit of X is currently committed at warehouse 1, and the units of Y and Z are

committed at warehouse 2. Then order {X, YZ} is an admissible order of X. In addition,

order {X, YX} is also an admissible order of X but order {X, X} is not an admissible order

of X.

We construct a maximization transportation problem for each relevant SKU according

to Figure (3-15). Below we describe the details of the transportation problem for SKU a.

A-

SKY10 S

- d

- 1

Figure 3-15: Transportation Problem of a SKU

Supply: Each supply node represents a warehouse. The supply available at warehouse Wk

is Sk, representing the number of single orders (including uncommitted inventory) of a

as well as the number of admissible shipments of a in admissible orders, all currently

assigned to warehouse Wk.

Demand: Demand node S represents the single orders, and ds is the total number of single

orders of SKU a. All other demand nodes represent an admissible order of a, which

is do in sum.

Arcs: We permit arcs from every supply node to every demand node.

Costs: The cost of every arc to demand node S is zero, since there is no reduction in the

number of shipments from any re-assignment of a single order. The profit of an arc

to an admissible order Oj from its profitable warehouse Wk E Pj(a) is 1, since this

would reduce one shipment. The cost of an arc to Oj from all other warehouses is

zero.
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Observation. Note that if the supply or demand of every node is exactly one, we have an

assignment problem.

As we mentioned earlier in the section, one major practical advantage of the heuristics

is the ability to solve and implement one cyclic exchange at a time while maintaining a

feasible solution at each iteration. While the major objective is to minimize the number of

shipments, we also want to do so without implementing any unnecessary exchanges. That

is, we have another objective of minimizing the number of exchanges from the initial real-

time solution. This objective is easy to add on to the current transportation problem by

modifying some arc costs. As denoted before, let j be a demand node and k be a supply

node. Arc (k, j) has an additional profit of ne if there are n committed inventory units

currently in warehouse k and whose associated demand node is j. The value of e is specified

as 0 < e < 1. To ensure the objective of minimizing number of exchanges is a secondary
1 K

objective, we set the value of e as e < -, where m = sk is the total number of supply
k=l

units in the transportation problem.

In a realistic setting, we want to minimize the total transportation costs, instead of

the number of shipments. Recall we approximate the transportation costs by the number

of shipments, because the items we consider tend to have small weight and thus have a

significant fixed cost in the shipment. Note that we can naturally extend the transportation

problem to incorporate actual transportation costs. Let's illustrate the cost modification

with a previous example, Example 3.4.2. Consider arc (k, j), let cj (k) be the transportation

cost of shipping a unit of SKU Y from warehouse k in order j. For example, if j = 1, then

cl (3) is the transportation of shipping one package containing one unit of SKU Y and Z

from warehouse 3. Let warehouse kj be the current location of SKU Y in order j. Then,

we set the profit of arc (k,j) as ckj = cj(kj) - cj(k).

SKU Exchange with double shipments

In the real data sets we have examined, a large percentage of the split orders in the real-time

assignment (over 85%) have at least one single shipment. A larger percentage (94%) of the

split orders have at least one single or double shipment. To include more orders in the SKU

Exchange heuristic, we can also incorporate all orders with double shipments. We start the

discussion with the following example.

Example 3.4.3. We consider a batch of orders with real-time assignment in Figure 3-16.

Here the only change from Figure (3-11) is that the first order has a double shipment

of YX instead of a single shipment of Y. Similarly, we implement a SKU Y transportation

problem for the batch of orders, which all have a single or double shipment of Y. The

resulting transportation problem, as shown in Figure (3-17), resembles Figure (3-12). Again,
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Figure 3-16: Real-Time Assignments - Example 3.4.3
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Figure 3-17: Transportation Problem for SKU Y - Example 3.4.3

the darkness of the arcs indicates the relative amount of arc profit. The only difference is

the arc cost of are (3, 1). In Figure 3-12, one unit of flow on arc (3, 1) indicates that we

supply one unit of SKU Y in warehouse 3 to order 1, which reduces one split. However, in

the current example, such unit of flow on the arc does not reduce one split. The split can be

reduced only if the unit of SKU X can also be supplied from warehouse 3. Therefore, in our

current example, we set the arc cost of (3, 1) to be, P31, the probability that SKU X can also

be shipped from warehouse 3. There are many ways one could estimate such probabilities.

For instance, we could estimate the probabilities based on the expected outcome of solving

the transportation problem for SKU X. For the sake of convenience, we simply set P31 = 0.5.

In summary, to include double shipments in the heuristics, we augment the definition

of admissible orders and shipments.

Definition 3.4.3. Split order j is an admissible order of SKU a if

1) order j has SKU a in a single shipment or a double shipment, and

2) order j has only either either single or double shipment which has only one unit of SKU

a.

Then, that shipment is an admissible shipment of SKU a.

For example, the order {Y, XZ} is an admissible order of X but {X, XZ} is not an

admissible order of X.
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The transportation problem is still defined as in Figure 3-15 with some slight augmen-

tations in arc costs.

Costs: The profit of an arc to an admissible order Oj from its profitable warehouse Wk C

Pj(a) is 1 if the admissible shipment of Oj is a single shipment; 0.5 if the admissible

shipment of Oj is a double shipment.

There are other ways to include orders with double shipments. For example, we can

treat each double shipment as a "special" SKU, and formulate a transportation problem

for such "special" SKU. We find that such a heuristic is not very efficient in comparison,

because the number of double shipments can be very large and the number of orders having

a particular double shipment is very small.

SKU Exchange with time dimension

The actual transportation problem that we need to solve is a bit more complex. We augment

the transportation problem with a time dimension. Recall we have T time periods with

respect to the snapshot date. We outline the general idea in the following and discuss the

implementation details in the next section "Implementation".

Figure 3-18 is a condensed representation of a transportation problem, where each square

block contains a collection of nodes. Figure 3-19 is a full-scale representation of a trans-

portation problem. In both representations, arcs are drawn from blocks to blocks, which

indicates that every node in a block has arcs going to every node in a connected block.

F7

so - LIi

S1- FI

St ---
Fil - d] -dt

E T ( d,
T -- 1

ST m

Figure 3-18: Condensed Representation of a Transportation Problem

Supply: We have T 1 supply blocks, where each block contains a supply node for each

warehouse as in the problem with no time dimension in Figure 3-15. Each supply

node of warehouse k in time block t has a supply of Skt. The supply available at all
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Figure 3-19: Transportation Problem of One SKU (with Simplified Arcs)
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warehouses for the snapshot time block, so = K= skO, reflects the on-hand inventory,

whereas the supply for future time blocks, st = Ek=l skt, t > 0, is the on-order

inventory that will arrive during the time block.

Demand: We have T demand blocks, one for each promise-to-ship date category. Each

demand block contains order nodes as in Figure 3-15. Demand block t has a single-

order node St with dt number of single orders whose promise-to-ship date is t. Each

admissible shipment of SKU a with promise-to-ship date t has a node in demand block

t.

Arcs: We permit arcs from the nodes with nonzero supply in supply block t2 to the demand

nodes in demand block tl, V t > t2.

3.4.3 Worst-Case Analysis

In this section, we analyze the closeness of our heuristics to the optimal solution. We perform

worst-case analysis. First recall the following notations in the problem of minimizing number

of shipments.

K number of warehouses

J number of customer orders

uj number of items (not SKUs) in order j

We also define a constant for each order Hj as the maximum number of shipments order j

can possibly have: the minimum of number of warehouses or number of items,

Hj = min(K, uj).

We denote H accordingly as the ratio of maximum number of shipments over the minimum

number of shipments the J customer orders can possibly have,

H - EVj H
J

Let's recall the definition of approximation algorithms.

Definition 3.4.4. A p-approximation algorithm for a problem P is a polynomial-time

algorithm that returns a feasible solution to P of cost within a factor of p of the optimal

cost. If P is a minimization problem, then ALG < p ·OPT, where ALG is the cost of an

algorithm and OPT is the cost of the optimal.

That is, we want to find a polynomial-time algorithm that is "close" to the optimal.

Closeness is measured by a guaranteed factor of the optimal. Essentially, p is the constant
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ALG
upper bound of OPTOPT'
Remark. In the problem of minimizing the number of shipments given orders and warehouse

supplies, any algorithmic solution is at most H · OPT.

In other words, this problem has an obvious worst-case constant factor bound for any

algorithm.

In the real data, we observe certain properties in the customer orders. Let Z be a random

variable representing the size of an order. We find that Z is geometrically distributed with

the probability of an order having size k, Pk = q(1 - q)k-l, k = 1, 2,..., where 0 < q < 1

is the parameter of Z. We can find the constant factor H for such set of orders.

Proposition 3.4.1. In the problem of minimizing number of shipments given J orders

whose sizes are geometrically distributed with parameter q and supplies in K warehouses,

the worst-case bound for any algorithmic solution, given J is large, is

1-(1 -q)K 1-- e- K/ q

q q

~vCj min(K, uj)Proof. Given H is defined as , we can write H as

H = nk min(K,k)

k=l

nk
where nk is the number of order with uj = k. We let Pk = - where Pk is the percentage

of orders having order size k. We then have

00

H = pk min(K, k).
k=l

Given J is very large and the orders are geometrically distributed in size, Pk can be seen as

the PMF of Z. We have

oo

E[Z] = ZkPk
k=l
K oc

= Zkpk + Z (K + (k-K))pk
k=l k=K+l

oo

H + A (k - K)pk, where Pk = q(1- q)k-
k=K+1
oo

= H+ j (1- q)Kpj
j=1

= H + (1-q)KE[Z].
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1
Therefore, since E[Z] = -,

q

H = E[Z] (1- (1- q)K) 1-(1 q)K < e- q
q q

We see that the bound is small for large values of q, which is obvious since a large q

indicates that there is a large proportion of single orders.

To consider only the multi orders, we denote Z' as the size of a multi order. We start

with a Lemma.

Lemma 3.4.1. Let X be a discrete random variable with PMF Pk, k 1, 2,... and X' be

a related random variable such that P(X' 1) = 0 and P(X' = ) c Pk, Vk > 2 and

constant c. Then, we have

E[X'] = E[X] + 1

iff X is geometrically distributed.

Proof. Suppose X is geometrically distributed and we define the expectation of X' as

0o

E[X'] = P(X'> )
x=O

oo

= P(X'>O)+ P(X>xlX>l)
x=1

= 1+ P(X>y+llX> 1)
y=O

= +P(X> y)
y=O

= 1 + E[X].

The above equation is a result of the memoryless property of geometric distribution. Since

the geometric distribution is the only discrete distribution that has as the property, X is

geometrically distributed if the E[X'] = 1 + E[X]. C

Corollary 3.4.1. In the problem of minimizing number of shipments in multi orders given

orders whose sizes are geometrically distributed with parameter q and supplies in K ware-

houses, the worst-case bound for any algorithmic solution, given the number of orders is
1 - e- ( K - 1) / q

large, is 1 + 
q

Proof. We have E[Z'] = E[Z] + 1, and H = min(K, k) because we are onlyk=2 1-pl
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considering multi-item orders, where Pk is the PMF of Z. Then,

E[Z'] = H + 1 ((1 - q)KE[Z]).

As a result,

1 (1 - q)K 1- (1 q)K- 1e-(K -1)/qH= 1+ - = 1+ < 1+ 
q q(l -q) q q

We will show the following sections that Order Swap and SKU Exchange can perform

arbitrarily bad. That is, this worst-case bound is tight for both heuristics. However, the

typical real data we observe does not exhibit the worst-case characteristics.

Order Swap

Order Swap performs well when there is a large amount of single orders or unassigned

inventory, especially at the warehouses where the inventory of a large subset of SKUs are
carried. This heuristic aims entirely at reducing all split orders to one shipment. However,

it ignores reducing split orders with more than n > 2 shipments to orders with 2,.. ., n - 1

shipments. In other words, the worst case of the heuristics can be extremely poor. We

will show with the following tight example that Order Swap can perform arbitrarily bad.

Following the previous convention, let A, B, C} be an order with a single shipment of A

in warehouse 1, a single shipment of B in 2, a single shipment of C in 3.

Example 3.4.4. There are 3 warehouses and 3 SKUs A, B, and C. Suppose that we have

three orders ABC, where each order has one unit of each SKU. Let their initial assignments

be {A, B, C}, {B, C, A}, and {C, A, B}.

Since there are no single orders in any warehouses, Order Swap does not improve upon

the initial solution. However, the optimal solution has 3 shipments (OPT = 3) for the

three orders: assigning one order of ABC to each warehouse. The heuristic solution has

9 shipments, equivalent to 3 OPT. We also have H = K = 3. Therefore, the worst-case
ALG

bound is tight for Order Swap, = H. Since Order Swap relies on the abundance ofOPT
single orders, it is obvious that Order Swap can perform arbitrarily bad in the absence of

single orders.

Now let's suppose that there is ample amount of single orders. That is, let's suppose

that if warehouse k stocks SKU i, then at any time it has infinite amount of uncommitted

inventory of SKU i; if warehouse k does not stock SKU i, then at any time it has zero
amount of SKU i. The problem of minimizing the number of shipments is still NP-hard.

It basically reduces to minimizing the number of shipments for each order, which is a set

cover problem.
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Proposition 3.4.2. Assume that there is an infinite amount of inventory at the warehouses

for the SKUs that are in stock. That is, let I be the set of SKUs and Ik c I be the subset of

SKUs carried by warehouse k. Then, the supply of SKUs in Ik at warehouse k is infinitely
H

large. The Order Swap heuristic solution is at most - OPT for multi orders.
2

Proof. The supply constraint in MIPZ is xik = sk, which is the supply at warehouse

k of SKU i. If s' - o, the constraint is eliminated. If warehouse k does not stock SKU

i, s = 0, then x k = 0 for all orders. Therefore, the supply constraint can be eliminated

entirely. The problem can be decoupled by orders. We consider orders individually, and we
ALG

want to find the largest ratio of OPTOPT'
For an order j, we claim that the worst-case bound is not tight. For the worst-case bound

Hj to be tight, in the worst case, the optimal solution has one shipment and the heuristics

have Hj shipments for each order. However, if the optimal solution has one shipment so

does the heuristic solution. Because if the optimal has one shipment at warehouse k, then

warehouse k must stock all of the SKUs in order j. Since there is infinitely amount of

uncommitted inventory for the SKUs in order j, then the heuristic solution can also ship

the order from warehouse k. Therefore, H is not tight. In the worst case, the optimal

solution has to have more than one shipment for each order. As a result, the largest bound

that can be constructed is H OPT: the heuristic solution having H shipments and the

optimal solution having 2 shipments. ·

We show with the following example that this bound is tight.

Example 3.4.5. Let the set of SKUs be A, B, C}. Suppose we stock I = A, B} in

warehouse 1, I2 = B, C} in 2, and I3 = A, C} in 3. That is, warehouse 1 only stocks SKU

A and B but not C. Suppose there are n identical order of ABC (one unit of each SKU)

and their initial assignments have three shipments for each order.

Since no warehouse can ship all three SKUs in the order, we cannot improve upon the

initial solution using Order Swap. Therefore, the heuristic solution has 3n shipments. In

the optimal solution, we can ship two out of three SKUs from one warehouse. Therefore,

the optimal solution has 2n shipments. The heuristic solution is · OPT. Since H = 3, we
H

show that the bound of - is tight.
2

Corollary 3.4.2. Given infinite supply for stocked SKUs and orders are geometrically dis-
1 1 - ( - q)K-1 1 1e - (K - )/ q

tributed, the worst bound for multi orders is + ( q) 2 +
2 2q 2 2q

Recall q is the parameter for order size Z. For instance, with values of q = 0.5, K = 5,

the bound is 1.44.
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We have shown that the Order Swap heuristic can perform arbitrarily bad. In particular,

the worst cases take place when single orders are scarce and the orders are large in size.

However, Order Swap performs well in practice because

* majority of the split orders have two shipments in the real-time assignment,

* ample amount of single orders and uncommitted inventory.

SKU Exchange

The SKU Exchange heuristics complements the Order Swap heuristics. SKU Exchange

considers reducing split orders with n > 2 shipments to 2, 3, ..., n - 1 shipments, whereas

Order Swap does not. The Order Swap heuristics also complements the SKU Exchange.

For a split order considered in SKU Exchange, each shipment of the order can only be

re-assigned to a warehouse where the order occupies in the real-time assignment. We show

with the following tight example that the H ·OPT bound is tight.

Example 3.4.6. Suppose we have three warehouses and two SKUs A, B. There is only

one order 01 of AB. The initial assignment for 01 is {A, B, }. That is, there are two

shipments with A in warehouse 1 and B in warehouse 2. W1 only stocks SKU A, W2 only

stocks SKU B, and W3 stocks both SKU A, B.

When applying SKU Exchange heuristic to the example, we cannot improve upon the

initial solution. Since we only consider moving SKU A to W2 and SKU B to Wi, but only

W3 can satisfy 01. Here H = 2. The heuristic solution has 2 shipments and the optimal

solution has 1 shipment. Therefore, the bound of H ·OPT is tight.

Even given infinity amount of supply for the stocked SKUs, the above example still

shows that H OPT is tight. The SKU Exchange can perform arbitrarily bad. The SKU

Exchange procedure performs poorly when the warehouses currently occupied by the order

do not carry the entire or large portion of the SKUs in the order. Order Swap complements

that shortcoming by considering shipping the order from warehouses other than it currently

occupies. However, SKU Exchange replies much less on the abundance of single orders or

uncommitted inventory than Order Swap.

3.4.4 Generate Exchanges

Here we analyze the running time of the transportation problem in SKU Exchange and argue

why solving a transportation problem is preferred than solving an assignment problem. In

addition, the transportation problem only gives the number of extra shipments reduced but

does not give the specific exchanges. We discuss the details of finding the implementable

exchanges. We start with some notations. Here is the input data to the transportation
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problem for each SKU a.

np no. of admissible orders of SKU a

ng no. of single orders with SKU a

K total no. of warehouses

T no. of time periods

nl no. of supply nodes in transportation problem a

n2 no. of demand nodes in transportation problem a

Since we have one demand node in each time period for all single orders, and one demand

node for each admissible orders, we have

n2 < np+ T.

Clearly, the maximum number of supply nodes is in the order of KT. Therefore,

nl < KT.

Let n be the number of nodes in a graph. Here n = nl + n2, then,

n np + T(K + 1)

In addition, we can set the maximum arc cost as C = 1, and the maximum arc capacity

as U < np + ng. There are many efficient minimum cost flow algorithms that can be applied

to the transportation problem. To state as an example, we can apply the Primal-Dual

Algorithm with a running time of O(min(nU, nC)) [AM093].

Remark. We have a running time of O(np + TK) for the transportation problems.

Solving the transportation problem alone does not give the exact inventory exchanges

for orders. In practice, we need to find the exact exchanges. We perform a simple procedure

to extract the exact exchanges from the transportation problem solution.

Example 3.4.7. We have a transportation problem for SKU a in Figure 3-20, where only

the nonzero-cost arcs are indicated. We want to find the exact exchanges after solving the
transportation problem.

A dark arc (k, j) in Figure 3-20 has a profit of 1, indicating that warehouse k is a

profitable warehouse of order j. A light arc (k, j) in the figure has a profit of e < 1,

indicating that the unit of SKU a in order j is currently assigned at warehouse k. The

zero-cost arcs are not drawn in the figure. As we defined perviously, nodes in supply block

tl have arcs to nodes in demand block t 2 only if t < t2.
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Figure 3-20: Example 3.4.7, Only Zero-Cost Arcs

We see that the supply of warehouse 1 in time block 0 is slo = 3. From the light arcs,

we know that slo includes the inventory currently assigned to demand node S, 02, 06,

where SI is a single order included in the node S. We can arrive at the same conclusion for

the other supply nodes. If we push one unit of flow on each of the light arcs, we obtain the

current solution. Figure 3-21 is an optimal solution of the transportation problem, where

each drawn arc has one unit of flow and each dotted arc has a cost of 0.

To find the exact exchanges from the optimal solution, we need to find augmenting

cycles to reach the optimal solution from the current solution, e.g., in Example 3.4.2. We

can also do that for the optimal solution by inspecting Figure 3-21. Table 3.2 is another

representation of the initial and optimal solution. The bolded orders represent orders whose

assignments have not been changed by solving the transportation problem. For example,

(k, t) Supply Initial Soln. Optimal Soln.
(1,0) 3 S1, 02, 06 S1, 01, 06
(2,0) 2 05, 07 03, 04
(3,0) 2 01, 03 02, 05
(1,6) 1 S2 S 2

(1,7) 1 04 07

Table 3.2: Example 3.4.7, Changes in the Initial and Optimal Solution.

for supply (1, 0) in warehouse 1 time block 0, there are three unit of inventory of SKU a. In

the initial solution, the three units were assigned to order 02, 06 and S. In the optimal

solution, they are assigned to order S, 01, and 06. We can see that the assignment of

77



Supply Block 0

1

11

Block 7

)X 1

); 1

3 -

2- 

2-,

Supply

1 -

Supply

- -- - -,. 11

Figure 3-21: Example 3.4.7, an Optimal Solution

06 and S1 have not been changed. However, the unit that was assigned to 02 is now

assigned to 01. Another example is supply (2,0). The two unit of supply were assigned

to 05 and 07 but now are assigned to 03 and 04. We use the notation Oi - Oj to

represent un-assigning the unit of SKU a from order Oi and re-assigning it to Oj. Then,

the re-assignment of either 05 -+ 03, 07 --+ 04 or 05 -- 04, 07 -- 03 is a result of the

optimal solution.

By examining each supply (k, t), we can find the exact exchanges. One way to realize

the exchange is: 02 - 01 --+ 02, 07 03 -+ 05 --+ 04 - 07. In short, we have a swap

between 02 and 01 and a cyclic exchange between 07, 03, 05, 04.

We summarize the process in Figure 3-22. Let 11(k, t) be the list of orders assigned to

the supply in (k, t) in the initial solution, and I 2(k, t) in the optimal solution. Note that

the procedure always return cyclic exchanges, because every order is included in the initial

as well as the optimal solution.

This process takes O(np + ng) running time, and we have the exact exchanges thereafter.

That is, we examine each unit of inventory once, and for each unit we look up if the unit

can be assigned to itself (0(1) time if the information is stored in a hash table).

Remark. The running time of solving the transportation problem and finding the exact

exchanges thereafter is of O(np + ng + TK).

The transportation problem has the flavor of an assignment problem. Certainly, when all

demand and supplies are of one unit, the transportation problem is an assignment problem.

An alternative algorithm is to formulate a bipartite weighted matching problem, which is
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algorithm Find Exchanges:
input: 11,12

1. for each (k, t) do,

1.1 remove order j if j E Ii(k,t),j E I2(k,t).

1.2 while Il(k,t) 4 , I 2(k,t) 0 do,

1.2.1 assign i j s.t. i E I(k,t),j E I2(k,t),
1.2.2 remove i, j from Il (k, t), I2 (k, t).

Figure 3-22: Finding Exact Exchanges

the assignment problem. In this case, nl = n2 = np + nrig, C = 1, and U = 1. Every unit

of inventory of SKU a is listed as a supply node as well as a demand node. We would

have the exact exchange after solving the assignment problem. The running time of the

Hungarian Algorithm, which is the a direct implementation of the Primal-Dual Algorithm

for the minimum cost flow problem, is O(nlS(n, m, C)) [AM093], where S(n, m, C) is the

running time of solving a shortest path problem with number of nodes n and arcs m. The

shortest path problem is on the order of O(n2).

Remark. The corresponding assignment problem has a running time complexity of 0(n3 ) =

O((np + ng)3 ).

Observation. In the case that the number of warehouses K and the number of time buckets

T are small, the transportation problem performs significantly faster than the assignment

problem.

3.5 Implementation

In this section, we describe in details the data and heuristic requirement in the implemen-

tation.

3.5.1 Data and Parameters

At the placement of a customer order, the e-tailer quotes a promise-to-ship date to the

customer. Since items in the order may be shipped from different warehouses and/or in

different times, we assume that each item i in customer order j is given a promise-to-ship

date vi in the real-time assignment. In addition, a unit of inventory is assigned to item i in

real time and its inventory status is given as zi. Specifically,

i 0, if the inventory assigned to item i is physically available

1, if the inventory assigned to item i is on order

79



For example, i = 1 if a customer orders a book that's not yet been published.

In summary, we require the vector Ai = (ai, ji, ki, vi, zi) for each item i as the real-

time assignment in the re-evaluation problem. The elements of vector Ai represent the SKU

ai, order ji, assigned warehouse ki, promise-to-ship date vi, and assigned inventory status

zi. We view the Ai's as the input data to the heuristic procedure.

In addition to the input data, we make the following assumptions on the operations and

services.

Inventory replenishment We define ui as the time at which the inventory assigned to

item i would arrive at warehouse. Given no additional inventory replenishment infor-

mation, we set ui = zivi. That is, on order inventory would arrive on the promise-to-

ship date. We consider ui to be the supply date and vi to be the demand date of item

i.

Order promise-to-ship date Since the promise-to-date is a promise by items or ship-

ments, we need to define the promise-to-ship date for the order: let Vj be the earliest

promise-to-ship dates of all items in the order, Vj = min. vi.
i:3i=3

Time dimension We create T time periods with respect to the snapshot date. We define

time period 0 as the time at which the snapshot was taken. Time period t, 0 < t < T,

is t days in the future of the snapshot date, and time period T is T days or more in the

future of the snapshot date. As a result, we set the range of the promise-to-ship date

vi to be 1,2, ...,T. Since we may be solving the re-evaluation problem periodically,

those orders will eventually be in the specific day category. Accordingly, the range

of ui is 0, 1, ...,T, and ui = 0 represents the assigned inventory is physically in the

warehouse in the real-time assignment. The value of T is an adjustable parameter in

the heuristics.

Split Order j is not a split order if 1) all items in the order are to be shipped from one

warehouse, and 2) all items can be shipped before the promise-to-ship date of the

order, ui < Vj, Vi : ji = j.

Shipments The number of shipments in an order j is defined by the following. Items in the

same warehouse and can be shipped before the order promise-to-ship date, ui < Vj,

are in the same shipment; items in the same warehouse and having the same value

promise-to-ship date of ui > Vj are in the same shipment.

3.5.2 Order Swap

The Order Swap heuristic follows the general algorithm listed in Figure 3-7. In the following,

we specify the detailed rules of swapping.
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Recall it is feasible to swap item i and i2 of the same SKU iff ui, < vi2 and ui2 < vi,.

That is, the customer service level promised at the real time cannot be violated after the

swap. To be more specific about the swap of item i in split order j and i of single

order at k, we examine such different scenarios. For item i 2, because of the relationship of

Ui2 = i2Vi2, where Zi2 c {0, 1}, we have the following scenarios:

1) if zi2 = 0, then ui2 = 0 < vi2

2) if zi2 = 1, then ui 2 = vi2 > 0

However, for item i, because of vi = Vj by construction, we have scenarios:

1) if zix = 0, then uil = 0 < Vj

2) if zi = 1 and vi, = Vj, then ui =Vj > 0

3) if zi1 = 1 and vil > Vj, then ui, > Vj > 0

Considering all the scenarios, we have

Remark. In Order Swap, it is profitable to swap item i in a split order j with item i2 of

single order in warehouse k, for all il in j, if il and i2 satisfy the following condition:

1) if uil = 0 < Vj, then ui2 = 0 or ui2 = vi2 < Vj

2) if ui = Vj > 0, then ui = 0, vi2 Vj or ui2 = vi2 = Vj

3) if ui > Vj > 0, then ui2 = 0 and vi2 < vi2

If there are many such item as i2 in the above discussion, we may start with the items

that have later supply date ui2.

3.5.3 SKU Exchange

Recall that in SKU Exchange, we solve a transportation problem for each SKU. We have

a demand node for each admissible split order. For each such order j, we denote Cj to be

the collection of shipments in order j. Each shipment is defined by the warehouse assigned

at the real time as well as the promise-to-ship date, Cj = {(tl, W), ..., (t, Wn)).

For each SKU a in an admissible shipment (t, w), we represent the order in transporta-

tion problem a as a demand node in demand block t.

Remark. For a demand node in block t representing an admissible shipment (t, w) in order

j, profitable arcs are from warehouse w1 in supply block t such that tl < t and

1) if t < Vj, then (tl,wi) E Cj\(t,w)

2) if tl < Vj, then (Vj,wl) E Cj \ (t, w)
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We set the profit to be cl = 1 if the shipment (t, w) is a single shipment and c2 = 0.5 if a

double shipment. In addition, we set the profit from supply node (t, w) to be to minimize

the number of exchanges w. r. t. to the real-time assignment.

3.6 Computations

We implement the heuristics on several real data sets from a global e-tailer. To examine

the sub-optimality of the heuristics on the data, we would like to benchmark the heuristic

solutions with the optimal solutions. However, the entire re-evaluation problem is too large

to be solved optimally in Cplex due to the lack of computer memory. Instead, we extract

a much smaller test data set to benchmark the heuristic solutions. In this section, we first

discuss the results from the test data sets, and then present the benefits in the real data

sets. Here all results from Order Swap utilize the version with a time dimension; all results

from SKU Exchange consider the single and double shipments with a time dimension.

3.6.1 On Test Data

The snapshot data of all not-yet-picked orders include all orders that were placed before the

snapshot time. We extract a subset of orders which were placed on the day of the snapshot

date. The resulting orders are the reduced test data. The reduced test data sets generally

have 110-120K orders, 100K SKUs, and 7 warehouses. The reduced re-evaluation problem

can be solved with no time dimension in Cplex within minutes [AS04]. That is, we ignore

the promise-to-ship date for each order in the test data.

Table (3.3) displays the summary of a few test data sets. We observe that overall

the data sets are very similar. The columns "SingLe orders", "MuLti orders", "Split

Data Set Single orders Multi orders Split orders Split
A 56.7K 62.7K 10.5K 11.3K
B 55.2K 65.0K 10.2K 10.9K
C 52.4K 61.8K 9.6K 10.2K
D 45.8K 54.8K 8.1K 8.6K

Table 3.3: Test Data

orders" are as defined in §3.3. The column "Split" represents the number of splits or

extra shipments in the data, which is the number of shipments minus the number of orders.

We implemented the heuristics on the test data sets and Table (3.4) displays the re-

sults. In Table (3.4), Algorithm 0 is the optimal solution from Cplex, ALgorithm 1 is the

Order Swap procedure, and A Lgorithm 2 is the combined Order Swap and SKU Exchange
procedure. The column "Shipments" represents the number of shipments reduced from

the real-time assignments. Since we minimize the number of shipments in the re-evaluation
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Data Set Algorithms Shipments (%) of Opt. (%) of Splits Time (sec)
A 0 6074 100 54 300

1 5466 89.9 48.5 12
2 5862 96.5 52.0 188

B 0 5836 100 53.3 300
1 5175 88.6 47.3 12
2 5669 97.1 51.8 150

C 0 5566 100 54.4 300
1 4984 89.5 48.9 8
2 5407 97.1 52.8 122

D 0 4435 100 51.3 300
1 3974 89.6 46 8
2 4371 98.6 50.6 162

Table 3.4: Heuristic Results on Test data

problem, it; is equivalent to maximize the number of shipments reduced from the real-time

assignments. The column (Y) of Opt. is the reduced shipments in the heuristic solution

as a percentage of the reduced shipments in the optimal solution. The column (Y) of

Sp l its is the reduced shipments in the heuristic solution as a percentage of the total extra

shipments in the real-time assignments. The running time of the optimal is approximately

300 seconds.

We implement the heuristics on UNIX machines with 1.5 GHz processors and 1GB RAM.

We extract the necessary data using a text processor Perl. For each SKU in the sequence,

we solve each transportation problem in Cplex. We then update the affected orders back in

Perl. Overall, the Order Swap runs within seconds, and the combined procedure of Order

Swap and SKU Exchange terminates within a few minutes. We did not optimize the running

time. The running time can be reduced further by streamlining the implementations.

Comparing with the optimal solution, we see that the heuristic procedure Order Swap

performs well by itself. This phenomenon can be explained by the large amount of un-

assigned inventory for many SKUs in the system. However, to reap additional benefits, we

need to implement the SKU Exchange heuristic procedure after the Order Swap procedure.

In the SKU Exchange results, we start with a random sequence of SKUs. For each SKUs,

we solve a transportation problem. To investigate the impact of how SKUs are sequenced,

we perform tests on running the SKU Exchange heuristics based on sorted SKU sequence,

e.g., sorting SKUs by the size of their transportation problems (size of nodes or supplies),

sorting SKUs by the amount of uncommitted inventory. We find that the sequence of SKUs

have little impact on the heuristic results.

In the Order Swap results, we examine the (order, warehouse) pair randomly. We test

the heuristics by using different random sequence of orders and warehouses. Again, we find

insignificant evidence that the sequence of orders or warehouses affect the heuristic results.
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3.6.2 On the Entire Data

Having seen that the heuristics perform well on the test data sets comparing to the optimal

solutions, we implement the procedures on the entire data sets. Table (3.5) presents the

data summary. Each data set of A,B,C,D includes all the not-yet-picked orders from a

Data Set Single orders Multi orders Split orders Splits
A 600K 314K 34K 38K
B 618K 338K 34K 38K
C 624K 338K 35K 38K
D 625K 329K 33K 36K
E 875K 680K 99K 112K

Table 3.5: Entire Data (Not-Yet-Picked Orders)

snapshot, which is a randomly chosen day during a five month off-season period in 2004.

The data set E is from a randomly chosen day in the peak season of 2004. We use T = 12

time buckets.

We list the heuristic solution on the entire data sets in Table (3.6). The columns are

Data Set Algorithms Shipments (%) of Splits Time (sec)
A 1 11,028 29 43

2 15,643 40.9 732
B 1 13,058 34.2 32

2 19,579 51.3 893
C 1 13,795 35.9 28

2 20,074 52.2 820
D 1 12,937 35.6 26

2 19,055 52.4 862
E 1 37,862 34 89

2 55,408 49.6 2931

Table 3.6: Heuristic Results on Entire Data

defined as in Table (3.4). Since we do not have the optimal solution for the entire data

set, we eliminated the rows correspond to A lgorithm 0. Notice that the number of extra

shipments we can reduce from the heuristics ranges from 15K to 20K consistently. Also,

note that, for the off-peak data, the number of extra shipments reduced ranges from 40% to

50% of the total number of extra shipments in the real-time assignments. These numbers

also resemble those in Table (3.4). Even though we have no optimal solution here to

benchmark the heuristic solution, we claim that the data sets are well-behaved and the

entire-data solutions resembles the test-data solutions. The number of reduced shipments

is more significant for data set E, the peak season data. Again, we made no attempts to

optimize the running times.
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3.6.3 Summary

As the not-yet-picked queue corresponds to orders for one or two days, we expect that we can

re-solve the re-evaluation problem in one or two days. Suppose that the off-peak season data

resembles our random snapshot data of A, B, C, D. We estimate that we can reduce 15K

to 20K of extra shipments from the real-time assignments for each re-evaluation problem.

Suppose that each extra shipment reduced saves approximately $1 to $2. We conjecture that

there is a significant opportunity for cost reduction by solving the re-evaluation problems.

We estimate that the cost reduction can range from $2.7 million to $14.6 million per year.

Our heuristic is relatively easy to implement, as each iteration translates into a series

of swaps or cyclic exchanges among a limited set of orders. We can feed these exchanges

into the e-tailer's existing order-management systems, and as such, are optimistic that

implementation is possible.

We conclude that there is an opportunity to reduce the transportation costs for an e-

tailer by means of a re-evaluation of its real-time fulfillment decisions. We have developed

a heuristic to do this re-evaluation and shown with preliminary testing that it results in

better decisions by utilizing more resources and more information.

3.7 Bounds and Extensions

In this section, we show the lower bounds of the general re-evaluation problem. Recall the

following problem is the LP relaxation of the MIPT with variable transportation costs.

(L'P) min f EZ Yjk + E E jkjk
j,k i j,kS~~.t. E ==iV CI, kE Ki

jJi
x jk=dj, Vi E I, j E Ji

kGK(i)

0 < k < d Yjk, Vi E I, j Ji, k K

Yjk > 0, Vj, k

Recall that all uncommitted inventory can be treated as a single order from a dummy

customer and infinitely long promise-to-ship date. Therefore, in the first constraint, the

equality indicate that all supplies in the warehouses are "used" to satisfy customer orders.

The following problem is the dual of LP and Pt, qj, and rj are the dual variablesk i kdr1~aete ulvaibe
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associated with the first three constraints in LP, respectively.

max P + E E d q
i6I kcKi iCI jJi

s.t. k + qj-r < Ck,

E di r < f,
rk > 

V i E I,j E Ji,k E Ki

V j, k

V i I,j Ji, kE Ki

We can decompose D by SKUs. That is, given the r I's satisfying

i

for each SKU i, we have the following sub-problem Sf3i:

Si(ri ) = max s p + dqi

s.t. P + q < rk + Cjk, V j Ji, k Ki,

where r is the a vector of rik's. We can take the dual of subproblem Sti. Let ajk be the

dual variable associated with the constraint and we denote the dual of SI3i as SD i.

Ti(ri) = min Z (Cjk + rk) jk
jEJi,kEKi

s.t. i k = , V k E Ki
jEJi

aejk=dj, ViEJi,
kEKi

ajk > O, VjE Ji,k Ki

Therefore, for a set of feasible rjk's, we can solve III transportation problems, and we arrive

at a feasible solution to D. Notice that we employ transportation problem in our SKU

Exchange heuristics.

Let ZMIP be the optimal objective value of MIZT, Z£p be the optimal objective value

of £P, and ZDz be the optimal objective value of D. Then,

Zp < ZMIP

because MIT' is a more constrained minimization problem. Also,

ZD = Zzp
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because of strong duality. For a set of feasible values of ri's,

ET(ri) = ES,(ri)
i i

because of strong duality and Ei Si(ri) is the objective value of a feasible solution of D.

Therefore, for a set of feasible value of ri's,

ETi(r i) < ZD = Zp < ZMIP.
i

That is, solving III transportation problems give a solution lower bound on the objective

value of M4ZP. To find the best lower bounds on the MIZP, we can use sub-gradient

methods to solve the following Q.

max E Ti(ri )

iEI
s.t. Zjdc rJf, jCJkEK K

rk > , Vi I, j Ji,k K

We have shown that we can exploit the special structure of the dual of the LP relax to

generate lower bounds on the optimal solution. This Dual-ascent methods have been proven

effective for a number of difficult problems. Erlenkoter [Erl78] uses a dual-ascent procedure

for uncapacitated facility location problem. Wong [Won84] uses the method for the Steiner

tree problem. Balakrishnan, Magnanti, and Wong [BMW89] use it for a large-scale uncapac-

itated network design problem where each commodity has a single origin and destination.

Their results are guaranteed to be within 1 to 4% of optimality. Raghavan [Rag94] studies

the procedure on network design problem with connectivity requirements. His algorithm

also solves optimally the special cases of the k-edge-disjoint path and k-node-disjoint path

problems. The solutions from the dual-ascent procedure are within 4% of the optimal for

typical telecommunication applications and within 1% of the optimality for Steiner tree

problems. Future research needs to explore the dual-ascent method on our model as well.

By construction, the re-evaluation optimization problem is based on a snapshot of not-

yet-picked orders at a random time. We employ effective heuristics to solve the problem.

Naturally, we need to solve this problem on a rolling horizon basis. Immediate future re-

search should address how often to solve the problem. Considering the heuristics developed

in this chapter, we could solve the less time consuming and simple Order Swap procedure

very frequently during a day, and solve the more time consuming SKU Exchange procedure

daily.

Recall our heuristics are improvement algorithms based on the initial feasible solution,

the real-time assignment. The effectiveness of our heuristics certainly depends on the real-
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time assignment. We should explore the impact of the real-time assignment on the sub-

optimality of the heuristics.

Finally, we take the promise-to-ship or the delivery promise as given in the model. We

believe e-tailers can further improve costs by optimizing the delivery date quotation.
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Chapter 4

Inventory Allocation for
Low-Demand SKUs

4.1 Introduction

A large e-tailer strategically stocks inventory for SKUs with low demand for several reasons.

One motivation is to provide a wide range of selections, since such SKUs actually constitute

a significant portion of the total SKUs. The second incentive, of course, is to provide faster

customer fulfillment service. The third motivation is to gain a competitive advantage from

other online retailer. Suppose that an e-tailer only drop-ships the low-demand SKUs, its

drop-shipper who serves many online retailers, may choose to satisfy a competitor's demand.

For many of these SKUs, the e-tailer may only stock a handful of inventory units across all

warehouses.

Inventory planning for low-demand SKUs is challenging because the discrete effect is

much more pronounced while the current inventory models often assume all variables are

continuous. We illustrate the discrete effect with the following example.

Example 4.1.1. Suppose that we have two demand regions in the system, and one has 30%

of the total demand and another has 70%. The total demand is a Poisson distribution with

rate d, which is the expected demand in leadtime. We want to stock enough inventory in

the system so that the fill rate (prob. of a customer served by on-hand inventory) is at least

90%. We can plan inventory according to two ways: global planning (plan for the entire

system) or regional planning (plan for the two regions separately). According to Table 4.1,

d Global Planning Regional Planning
0.5 2 4
10 15 17

Table 4.1: Example of the Discrete Effect
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if the demand in leadtime is low d = 0.5, then we stock 2 units of system inventory to

reach the desired fill rate in global planning but we stock 4 units in the system in regional

planning. Because of the discrete effect, we stock twice as much inventory if we employ a

different inventory planning process. Whereas, for high-demand SKUs d = 10, the relative

difference is not as extreme.

Efficient inventory planning for low-demand SKUs is also important in the retailing

setting. We observe the demand follows the Pareto Law (law of the vital few and trivial

many): the majority of the SKUs have low sales volume. Table 4.2 displays the percentage

of SKUs by sale volume. The data is based on a six-week demand data in 2003 from a large

Percentage of SKUs Fast Medium Slow
Books 2.6 5.3 92.1
Music 2.5 4.5 93.0
DVD 3.1 3.9 93.0

Table 4.2: Histogram of SKUs by Sale Volume

e-tailer. Notice that the "Slow" or low-demand SKUs are more than 90% of the SKUs in the

books, music, and DVD product category. The "Slow" SKUs typically have 0.2-0.8 units of

average weekly demand. Therefore, the impact of poor inventory planning on low-demand

SKUs is very significant.

Here we focus on the effect of inventory allocation on outbound transportation costs.

We assume that an e-tailer has several warehouses in the system. We also assume that it has

the technological capability to manage and control the inventory globally: all warehouses

act as one to serve the global demand simultaneously. Specifically, the e-tailer will utilize

its entire inventory, regardless of location, to serve demand. Given we stock certain units of

inventory in the system, we intend to discover how best to allocate inventory to warehouses

by considering outbound transportation costs from the warehouses to customers. The focus

on transportation costs is a result of the system control policy, and we refer the reader to

§ 4.2 for the discussion.

We envision the inventory planning process for low-demand SKUs takes two stages. In

the first stage, the managers decide the total system inventory units to stock according

to the system fill rate and costs. In the second stage, given the total system inventory,

she decides the inventory allocation according to the minimum transportation cost. Given

the minimum transportation cost, she may want to increase or decrease the total system

inventory. The process can iterate back and forth between the two stages.

4.1.1 Literature Review

A loosely related cluster of literature is on risk pooling. Typically, they consider a distribu-

tion system with 1 depot and n retailers, where the depot supplies the retailers. In so called

90



"joint order effect", the depot does not carry inventory but is used to pool risk over the

outside-supplier leadtime. In "depot effect", the depot holds inventory and uses it between

system replenishments to rebalance retailer inventories which have become unbalanced due

to different demand. Some sample papers are: Schwarz, et al. [SDB84], Jonsson and Sil-

ver [JS87], Jackson [Jac88], McGavin, et al. [MSW93]. They discuss how to allocate the

inventory arriving at the depot to the individual retailers. Our model is different. Because

all warehouses face the same demand in our model, in a sense, the global execution policy

already balances the individual warehouse inventory.

A more tightly related cluster of literature addresses lateral transshipment. A significant

number of papers have considered a single-item, multi-location, periodic review inventory

systems with lateral transshipments. The main objective often is to define the optimal policy

for reordering at each location and the optimal policy for transferring among the locations.

Some notable early papers are: Gross [Gro63], Krishnan and Rao [KR65], Das [Das75],

and Karmarkar and Patel [KP77]. Robinson [Rob90O] extends Krishnan and Rao's work to a

multiperiod model using a stochastic dynamic program. At the beginning of each period, the

inventory position at each of n locations are reviewed, additional inventory is ordered from

outside suppliers, and then demand is observed. Before demand is satisfied, transshipment

can take place among the locations. The leadtimes for ordering and transshipment are

assumed to be zero. He shows that the optimal policy is a basestock policy.

Many early publications on lateral transshipment focus on two-location systems, since

it is the first step to understanding multi-location problems. Tagaras [Tag89] treats a two-

location problem by minimizing the expected cost per period. Inventory level is reviewed

at the beginning of each period, and both locations employ an order-up-to policy. When

the demand exceeds the order-up-to level at one location but not at the other, then lat-

eral transshipment takes place before demand must be satisfied. The outside and pooling

replenishment times for the two locations' supply are assumed to be zero. Tagaras and Co-

hen [TC92] extend this model by adding nonzero constant supply leadtime. They consider

transshipment policies that are based on on-hand inventory or inventory position at each

location. Archibald, et al. [AST97] characterize the optimal policy by considering lateral

transshipments as well as emergency orders. Rudi, Kapur, and Pyke [RKP01], recently,

consider a decentralized model. They find transshipment prices that lead to joint-profit

maximization. Recently, Hu, Duenyas, and Kapuscinski [HDK04] first address the issue of

capacity uncertainty. They characterize the optimal ordering and transshipment policy for

two locations facing capacity uncertainty. At the beginning of each period, production quan-

tities at the two locations are determined, then the production and demand uncertainties

are revealed, transshipment decisions are then made, and demand is satisfied and unsatis-

fied demand is lost. Contrary to earlier results, they characterize the optimal transshipment

policy as a rationing policy.
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Other papers consider continuous review inventory systems with lateral transshipments.

Dada [Dad92] analyzes a two-echelon one-warehouse-N-service center system where lateral

transshipments are allowed on the lower-echelon when a stock-out occurs. He develops

exact solutions when each location stocks only one unit, and approximates the general case.

Lee [Lee87] develops a model for repairable items where lateral transshipments between

identical bases are allowed when one base is out of stock. He approximates the expected

number of backorders and lateral transshipments when a high service level is imposed.

Axsater [Axs90Oa] extends Lee's model by focusing on the demand at a service center or

local site. He models the demand rate depending on the inventory situation: demand met

by on-hand order, transshipment, or backorders. Building on Axsater's work, Alfredsson

and Verrijdt [AV99] model a two-echelon system where the demand at the local sites can

be met by on-hand inventory, lateral shipment, direct delivery from the central warehouse,

and direct delivery from the plant. Their simulations indicate that the leadtime distribution

does not appear to affect the service performance. Using an approximate technique related

to Axsater's, Grahovac and Chakravarty allow a transshipment not only when there is a

stock-out, but at arbitrarily chosen levels of inventory levels. Recently, Axsater [Axs03]

develops an effective heuristic decision rule for transshipment for a multi-location problem

where each location employs a (R, Q) ordering policy and faces compound Poisson demand.

Almost all papers assume that the lateral transshipment leadtimes are instantaneous

but with additional cost. This is consistent with our assumptions. We assume that if a

warehouse is out of stock, its demand can be satisfied by on-hand units in other warehouses,

which is equivalent to an instantaneous transshipment from other warehouses with addi-

tional transportation cost. This instantaneous transshipment assumption was not realistic

for individual retailers as in the transshipment literature, but for retailers with good IT

infrastructure, this assumption is valid. Unlike these papers, we also assume that even if all

warehouses are out of stock, a lateral transshipment is allowed if another warehouse would

have an on-hand unit earlier. This is the main difference between our model and those in

the literature: our "transshipment policy" in effect allows the disaggregate model to act

exactly like the aggregate model on the system level.

Our methodology is related to one approach of control policy performance evaluation:

match every supply unit with a demand unit. That is, for an arbitrary supply unit, we

keeps track of how it enters the systems, traverses through the system, and exits the systems.

Svoronos and Zipkin [SZ88] first present this idea of matching supply units with demand

units. Axsater [Axs90Ob, Axs93b, Axs97] later develops this idea into an evaluation method.

Using this idea, Muharremoglu and Tsitsiklis [MT03] show the optimality of state dependent

basestock policies for multi-echelon systems with Markov modulated demand. They are able

to decompose the problem into single-unit single-customer problems.

Finally, there is a cluster of literature that considers inventory models for low-demand
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SKUs. Some examples are: Sherbrooke [She68], Simon [Sim71], Shanker [Sha81], Graves [Gra85],

and Svoronos and Zipkin [SZ88]. We also refer the reader to the section on (S - 1, S) policy

in § 2.1.1. One-for-one replenishment policies are consistently used for low-demand SKUs.

Here we also deploy this inventory policy.

4.2 2-Unit 2-Location (2U2L) Problem

We start with the simplest but non-trivial model: a 2-Unit 2-Location Problem for a single

item. Suppose the e-tailer decides to stock two units of inventory in two warehouses in the

system, A and B. We intend on find the allocation scenario that minimizes the expected

outbound transportation costs of shipping from warehouses to customers. We start with

the following assumptions.

A-1 Demand arrival to the system is Poisson with rate A.

A-2 The demand process is split into two independent processes, 1, and 2. With probability

al, a demand arrival is from region 1; with probability a 2 = - al, a demand arrival

is from region 2.

A-3 Region 1 is closer to A than B and region 2 is closer to B than A. As in Figure 4-1, cl

(c2) is the cost of shipping an order of region 1 (2) from the closest warehouse. We pay

as I X

c2 + d

Figure 4-1: 2-Unit 2-Location Problem

a penalty of d for a demand being served from the further warehouse. The costs C1 (C2)

can be seen as the expected values of a random order in region 1 (2) being served from

its closest warehouse. The penalty a can be seen as the expected premium of a random

order being served from a further warehouse.

A-4 The replenishment lead time for each warehouse is the same constant L.

A-5 Inventory policy is one-for-one replenishment: a replenishment is triggered as soon as

a demand arrives.

A-6 Demand is backlogged when there is no on-hand inventory in the system.
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We denote stocking scenario (i,j) as stocking i units of inventory at location A and j

units in B. Our allocation options are then limited to stocking one unit at each warehouse

or stocking two units at one of the warehouses, in symbols (1,1), (2,0), (0,2). In the context

of online retailing, the e-tailer can utilize all of its warehouse or fulfillment centers to serve

the customer demand. It also has the technological capability to manage and control the

inventory globally. Specifically, a demand is always served by an on-hand inventory unit

in the system if there is any; if there are no on-hand inventory units in the system, the

demand is served by and triggers replenishment at the warehouse that has the next arriving

replenishment. We then have the following assumptions on how the system operates for all

stocking scenarios.

A-6 If a customer arrives and its closest warehouse has on-hand inventory, then its closest

warehouse serves the demand and triggers a replenishment.

A-7 If a customer arrives and only one warehouse has on-hand units in the system (e.g.,

its closest warehouse does not have inventory on-hand and the other warehouse does

have inventory on hand), then the warehouse with the on-hand unit serves demand

and triggers a replenishment.

A-8 If a customer arrives and the system has no on-hand units, then the warehouse with the

next arriving unassigned replenishment is assigned to serve this demand and trigger a

replenishment.

Note that assumption A-8 is possible because we assume deterministic supply leadtimes, so

we know exactly when all future replenishments arrive. Also, assumption A-7 and A-8 are

analogous to an emergency transshipment.

To facilitate the discussion, we denote the following inventory notation:

IPk(t) inventory position of location k at time t

IP(t) inventory position of the system at t

ILk (t) inventory level (on-hand inventory) at location k at t

IL(t) inventory level of the system at t

I steady state net inventory of the system

where inventory position is on-hand and on-order inventory minus backorders, and net

inventory is on-hand minus backorders.

As a result of our assumptions, we see that the system inventory position is always 2,

IP(t) = 2, Vt. In addition, we can model the system as an M/G/oo queue with service
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time L, and the steady state system net inventory is a Poisson distribution:

Pr{I :j} e -AL (AL)j - 2
(j - 2)!' 

By assumption, every demand is matched with the next available unit and replenishment

is triggered as soon as a demand arrives. We see that the system inventory level and the

customer waiting times are the same as in the aggregate model where all inventory in the

system is aggregated into one warehouse. In other words, those costs at the system level,

e.g., inventory holding costs, ordering costs, and backorder costs, are independent of how the

inventory is allocated among the warehouses. On the other hand, outbound transportation

costs depend on the location at which demand are served. Therefore, we examine how

outbound transportation costs influence inventory allocations among the warehouses in the

disaggregate model.

Also by assumption, each stock scenario (i,j) has IPA(t) = i, IPB(t) = j, t. Given the

values of ( 1, a2, we would like to determine the scenario with minimum expected trans-

portation penalty cost per order. We denote C to be the expected outbound transportation

cost of an order given that it is served by its closest warehouse. Clearly, we have

C = aci + a2C2.

We denote C(i,j) as the expected transportation cost of an order of scenario (i,j). For

the remainder of the section, we derive the scenario costs C(i,j).

4.2.1 Scenario (2,0) and (0,2)

In scenario (2,0), we stock two units of inventory in warehouse A only. Since all demand is

served by A, we derive C(2, 0) by conditioning on the type of a random demand.

C(2, 0) = ail + a2 (2 + 6) = C + a26

Similarly, we have

C(O, 2) = al (cl + 6) + a2c2 = C + a 16 (4.1)

4.2.2 Scenario (1,1)

By assumption, the inventory position at each location is always 1, IPA(t) = IPB(t) = 1

for all t in scenario (1,1). The cost derivation is more complicated.
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We introduce additional notation to facilitate the discussion.

IHkj Pr{a demand is from region j and is served by location k}, j E {1, 2}, k c {A, B}

Pk Pr{a demand is served by location k}

q Pr{zero demand in L time periods}

By definition, we have

HA1 + IIB1 = al, IIA2 + IIB2 = 2

PA+PB = 1

Since we assume Poisson demand, we have

q = eAL

Therefore,

C(1,1) = IIAii +IIA2(C2 + ) +IIB1(C1 +6) +IIB2c2

= C + (HA2 + IB1) (4.2)

In the remainder of the section, we introduce a methodology to derive the probabilities of

IIA2 and IIB1

Observation. Given IPA(t) = IPB(t) = 1 for all t and one-for-one replenishment policy,

there is always exactly one unit of inventory associated with each warehouse that has not

yet been assigned to any demand. This unassigned unit can be either on-hand or on-order.

To see that, we consider two cases: if there is an on-hand unit at a warehouse, obviously

that unit is not assigned to any demand; if there is no on-hand units at a warehouse, then

the inventory position equals to on-order units minus the backorders, then there is one

unit of on-order replenishment that's not yet been assigned while the others are assigned

to backorders. Furthermore, the unassigned unit is the most recent on-order unit, which

resulted from the replenishment of the most recent demand served by the warehouse.

In scenario (1,1), only five relative positions of two unassigned units in A and B can

occur, as illustrated in Figure 4-2. Each box in Figure 4-2 represents one unit of unassigned

inventory, the units below the bars are on-hand units, and the units above are on order and

their proximity to the bar represents their time until reaching the warehouse. Light-color
units are at location A and the dark-color units are at location B. The three cases are:

i) both units are on hand;

ii) the unit in B is on order, and the unit in A is on hand;
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E *l

i) ii) iii) iv) v)

Figure 4-2: 2U2L, Positions of Unassigned Units

iii) both units are on order, and the unit destined for A will arrive before the unit in B

destined for B;

iv) the unit in A is on order, and the unit in B is on hand;

v) both units are on order, and the unit destined for B will arrive before the unit in A

destined for A.

We can visualize the process as a "race" between the two unassigned replenishment units.

We denote an epoch to be the time of a demand arrival. In addition, in a type-A epoch, a

demand is served by A and in a type B epoch a demand is served by B. We define a Markov

Chain with states that are defined on the demand epochs. State A defines a type-A epoch,

and state B defines a type-B epoch. The Markov Chain is as illustrated in Figure 4-3.

(1 - q) + qal

qa2 qcal

(1 - q) + qa2

Figure 4-3: 2U2L Markov Chain

To explain the transitions, we represent the Markov Chain in a different form as in

Figure 4-4. We describe the transition out of state A only, since the same logic applies

for those out of state B. Suppose the kth demand epoch occurs at time tk and is a type-A

epoch. Then, we start at state A at tk. The kth demand also triggers a replenishment at tk

for A. This replenishment unit would not arrive to A until tk + L. The solid-line transitions

represent the next demand arriving before tk + L, tk+l < tk + L. The dotted-transitions

represents the next demand arriving after t + L, tk+l > tk + L. The state of the system

at tk is of case iv) or v) in Figure 4-2 with the unit in A being L time units away; the

unassigned unit for B must be either on-hand or on-order within L time units of delivery.

If tk+l < tk + L (with probability 1 - q), by our policy, the k + 1st demand would be served

by B and the system transition to state B. If tk+l > t + L (with probability q), the state
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1-q

qa2 qel

1-q

Figure 4-4: 2U2L Markov Chain

of the system at tk + L would be of case i) in Figure 4-2. Then, with probability al, the

system transitions to state A and with probability a2, the system transitions to state B.

Let 7rA, 7rB be the steady state probabilities of the Markov Chain. We see that all

epochs are marked by either state. The value of 7rA represents the steady state probability

of an epoch being type A. This is equivalent to the steady probability of a demand being

served by location A. Therefore, we have

7a = PA, 7rb = PB.

This Markov Chain is the embedded chain of a Semi-Markov process. Each transition

duration represents a demand inter-arrival. This process is not Markov, since the duration

of a transition depends on the current as well as the next state. We then find the steady

state probabilities of the embedded Markov Chain to be

1 - qal 1- qa2
2-q A 2-q

Proposition 4.2.1. Let q = e- AL, then the probability of a demand being served at A in
1 - qa2 1 - qai

the 2-Unit 2-Location Problem is PA 2 and served at B is PB = 2 - When2-q 2-q
AL = O, PA = al, PB = a2, and as AL - o, lim PA =PB = . In addition, if a2 >

AL-oo 2 2
then

* PA is concave and PB is convex in AL,

1
* a1 < PA < - < PB <_ 2, VAL > 0.

2

1
If a2 < 2, then

* PA is convex and PB is concave in AL,

1
· a2 • PB K- < PA ai, VAL > 0.

2-
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1
Proof. We show the properties for PA for a2 > 2 only, since the same reasoning applies to

PB.

Let PA and PA be the first and second derivative of PA as a function of AL. We have

p, = q(2 + q)(2a2 - 1)
(q-2)3

Since < q < 1 VAL > 0, P < O or PA is concave in AL iff a2 > . We also have
-2

p, = q(2a2 - 1)
(q - 2)2

1 1
which is always nonnegative if 2 > . Since PA(AL = 0) = al, lim PA - and

2 AL-oo 2
1

PA > 0, VAL > l0, o < PA < 2, VAL > O. 

To find the probabilities of HA2, HIB1, we only need to examine the dotted-line transitions

in Figure 4-4, as these transitions include the events where demand is served from a further

warehouse. To derive IIA2, we examine the dotted transition from state B to state A where

the next demand occur within L time units. Since the next arriving demand has to be

served by A, the probability that the next arriving demand is from region 2 is a2. Then,

we have

1HA2 = B(1 - q)a2

iB1 = rA(1-q)al

As a result, from Equation 4.2 we have

i -qC(1, 1) = C + (1- 2qala2)6

Alternatively, we can derive the value of IHA2 by conditioning on the state of the system

at a demand arrival:

IA2 = Pr{I = 2}Pr{A211 = 2 + Pr{I < 2}Pr{A21I < 2),

where Pr{A21I = 2} is the probability of a demand from region 2 and it is served by A

given the system has two units on hand at time of its arrival. Clearly, Pr{A21I = 2} = 0

since each demand is always matched with its closest location when there are on-hand units.

To derive Pr{A21I < 2}, we condition on the next arriving unit being from A or B. Let QA

be the probability that the on-hand unit is A or the next arriving unit is A given I < 2.
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Then,

IIA2 = Pr{I < 2}QAa2.

Since Pr{I < 2} = 1 - q, we have QA = 7rB.

Proposition 4.2.2. Given that the system has less than two units on hand (I < 2), the

steady state probability that the on-hand unit is A or the next arriving unit is A is - qa.2-q

4.2.3 Comparison

Given the relative magnitude of demand process 1 and 2 (i.e., al, a 2), we want to find the
minimum cost scenario. We first start with a useful Lemma.

Lemma 4.2.1. Let f : 1 + 1 be a quadratic function in x e I 1 with coefficients a, b, c,

f = ax2 + bx + c. In addition, a > 0 and the discriminant b2 - 4ac > O, that is, f is convex
-b- b2 -4ac - + vb2 - 4ac

and has two real roots. Let the roots be s1 = and s2 =
2a 2a

1) If f satisfies the two following conditions:

i) either b > O, c < O orb<O, c < O

ii) a+b+c>O,

then f < O Vx E (0, s2 ) and f > O Vx E (s2, 1).

2) If f satisfies the two following conditions:

i) b<O, c> 0,

ii) a+ b+c < 0

then f > 0 Vx (0, s) and f < O Vx (, 1).

Proof. If a > 0, then f is convex in x and sl < s2.

1) If b > 0, c < 0 or b < 0, c < 0, then by Descartes' Sign Rule, f has exactly one positive

and negative root. The positive root s2 < 1 iff

vb2 -4ac < 2a+b
:: b2 -4ac < (2a+b)2 =4a2 +4ab + b2

=> 0 < 4a(a+b+c).

Since s < 0, s2 < 1, f < O for x (0, s2) and f > 0O for x E (s2, 1).
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2) If b < 0, c > 0, then by Descartes' Sign Rule, f has two positive roots. The roots s1 < 1

and 2 > 1 iff

vb2 -4ac > - (2a+ b) and vb2 -4ac> (2a+b)
b2 - 4ac > (2a + b)2

Therefore, sl < 1 and s2 > 1 iff 0 > 4a(a + b + c) = a + b + c < 0. Therefore, f > 0 for

x C (0, s) and f < 0 for x (sl, 1). ·

We first compare the two scenarios of (1,1) and (2,0) by examining their transportation

penalty costs. If scenario (1,1) has a larger expected penalty cost per order, then we prefer

scenario (2,0) and vice versa. Let the ratio r be the ratio of penalty costs,

C(1, 1) -C
C(2, 0) - C

-q(1 - 2qall 2)

2a2

2 - q 1 2q + 2qa2)
2-q a2

and we have the following property.

Theorem 4.2.1. Let q = e-AL and

2 + q - 2q2 -2 x/2 2 - 4q3 + 4q2 - q (4.3)
4q(1 - q)

If a 2 C (a, 1 - a), then we prefer scenario (1,1); if a2 < a, then we prefer scenario (2,0);

if a2 > 1 - a, then we prefer scenario (0,2).

Proof. Let the function f = r - 1 = 0. Then, f = 2 (1 - 2qa2 + 2q(a2)2) - a2. Note

that f is a quadratic function of a2, and the coefficients are: a = 2q, b = -1 - 20q, c = 0

where = 2 q. Since 0 < q < 1, > 0. Therefore, a > 0, b < 0, c > 0.

By inspection, the discriminant

b2 - 4ac = 1 + 402q2 + 40q(1 - 20).

1
Since 0 < 2, the discriminant is positive.

In addition, a + b + c = 0-1 < 0.
-b - b2 - 4ac

Let a =. Then, according to Lemma 4.2.1 Part 2), f > 0 for a2 G (0, a)
2a

and f < 0 for a2 E (a, 1). Therefore, for a2 E (a, 1) we prefer the scenario (1,1) over (2,0).

Since scenario (2,0) is symmetric to scenario (2,0), we draw the symmetric conclusion: for

a2 (0, 1 - a), we prefer the scenario (1,1) over (0,2). ·
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Let FR be the fill rate, or, the probability of a demand served by an on-hand inventory

unit. We can derive the fill rate from the aggregate model. Because of PASTA, the long

run probability of a demand served by an on-hand unit is the equivalent of the time average

of the system having on-hand units.

FR = Pr{I = 2} +Pr{I = 1}

= q(1 + AL).

We provide a few numerical examples in Table 4.3. For a given value of expected demand

AL Fill Rate Range of a2 to Choose (1,1)
0.2 0.98 (0.13,0.87)
0.4 0.94 (0.20,0.80)
0.5 0.91 (0.22,0.78)
0.75 0.83 (0.28,0.72)

1 0.73 (0.33,0.68)
1.5 0.56 (0.39,0.61)

Table 4.3: 2U2L Numerical Results

in leadtime, AL, we compute the fill rate for the system and the range of a2 for which we

prefer scenario (1,1). For a2 smaller than the range in the table, we prefer (2,0), and for

a2 larger we prefer (0,2). We only present the values of AL for which the fill rate is not

extremely poor.

Remark. We note that for balanced split of demand in region 1 and 2, we tend to prefer

scenario (1,1), and for extreme split of demand, we prefer scenario (2,0) or (0,2).

Remark. With higher fill rate, the range of demand splits to choose (1,1) becomes larger.

This is because with high fill rate, customers are more likely to see (1,1) when they arrive

to the system, and thus be served from the closest warehouse.

In this section, we have established the simplest model of 2U2L. The allocation result is

intuitively satisfying. In the next few sections, we will relax some of the assumptions and

build upon the 2U2L model.

4.3 2-Unit 2-Location with Different Leadtimes

Here we consider a natural extension of the 2U2L problem where the two locations have

different supply leadtimes. This is a more realistic assumption. Often, warehouses may be

located far or close to their supply injection point. We are interested in how the results in

the 2-Unit 2-Location problem may change by relaxing the equal leadtime assumption.

While we maintain all the assumptions in the 2U2L problem, we assume that LA, LB

are the supply leadtimes to location A, B. In addition, L = LA - LB > O. The expected
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transportation costs of scenario (2,0) and (0,2) stay the same as in the 2-Unit 2-Location

problem. We derive the cost of scenario (1,1) as in the following.

4.3.1 Scenario (1,1)

Recall in the 2U2L problem, the expected transportation cost of scenario (1,1) is C(1, 1) =

C+ (IIA2 + lIB1)6. We need to derive the II's under the different leadtime assumption. Let

-eLA -,LB -qA = , qB = e , q -= e

We construct a similar Markov Chain with more states: we define state A as before but

break down state B into states B and AB. Figure 4-5 illustrates the three states: A, B, AB.

Again, we examine the relative positions of the two unassigned units in location A and B

. ........1 ................................................
LA j ...... . .......... _. . ...... ... E _........ l... ." _' _ _ EL B

A B AB

Figure 4-5: 2-Unit 2-Location with Different Leadtimes

at a demand epoch. Each box in the figure represents an unassigned inventory unit, with

the darker box from location B and the lighter one from location A.

State A represents a type-A epoch where a demand has just been served by and thus

triggers a replenishment at A. Therefore, the unassigned unit in A has LA time periods

to reach A, and the unassigned unit in B is either on hand or on order but will reach

B before the unit on order at A reaches A.

State B represents a type-B epoch where a demand has just been served by and thus

triggers a replenishment at B. In addition, the unit in A is either on hand or on order

but has T < LB time units to reach the warehouse. The unit at B, of course, will

reach B in LB time units.

State AB represents a time where exactly L time periods ago, a demand (not necessarily

the last demand) has just been served by and thus triggers a replenishment at A.

Therefore, the unit in A has LB time periods to reach A. The unit at B, of course,

will reach B in T < LB time periods. Note that state AB does not necessarily represent

a demand epoch.

Figure 4-6 is the embedded Markov Chain for the process. To be consistent with the
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1 - qB

qB~a2

1-

qAal

-q

Figure 4-6: 2-Unit 2-Location with Different Leadtimes - Markov Chain

2U2L problem, we again denote the transitions by solid or dotted lines. The solid-line tran-

sitions reach the system state with two units on hand, whereas the dotted-line transitions

do not. The transitions out of state B is the same as in the 2U2L problem. The transitions

out of state A require more discussion. Let a type-A epoch occur at t. We first consider

the solid-line transitions: the next demand arrives after t + LA. Then, with probability al

the system transitions to A and with a2 to B. Next, we consider the dotted-line transitions.

If the next demand arrives before t + L (with probability 1 - q), then the system stays at

state A until t + L, at which it transitions to state AB. Otherwise (with probability q), if

the next demand arrives within (t + L, t + LA), the system transitions to state B.

Notice that by construction, the process is a Semi-Markov process. In particular, let's

examine the transitions out of A. Let Uij be the interval between transition from state i

to j. Then, UAA is distributed as a conditional Poisson inter-arrival given the interval is

greater than LA; UA_B is distributed as a conditional Poisson inter-arrival given the interval

is greater than L; UAAB is a constant of L. Clearly, the Ui-j's are only dependent on the

current and next state.

Suppose the system transitions to state AB at time t. By definition, at time t, the unit

at A has LB time periods to reach its warehouse, and the unit at B has LB or less to reach

B. The system transitions out of AB at the next demand arrival after t. Since state AB

does not necessarily mark a demand epoch, because we have Poisson arrival, from t to the
next arrival after t is still exponentially distributed with rate A. Furthermore, if the next

demand arrives before t + LB, the system transitions to B; otherwise, with probability a1,

the system transitions to state A and with a2 to state B.

Observation. Note that not all demand epochs are marked by a transition into a state: there

may be many demand arrivals during the transition from state A to state AB.
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We derive the time averages of being in a state to find the II's. We denote

pj time average probability of being in state j

7rj steady state probability of state j of the Markov Chain

Pj expected time in state j before a transition

Pij transition probability from state i to j

We derive the followings based on the Semi-Markov balance equations pj =- j/j or
> i 7ri/1

Pi _1 p..P- = . Pij.

P -- AAl + PBA(1 - qBo2) + PABAqBal
11A /1 APA A

PBA = -q(1 - qBal) + pBAqBa2 + PABA(1 - qBOl)
PA

PABA = -(1 - q)
PLA

PBA(1 - qBO12) = PA (1-qBal). (4.4)
PA

In addition,

PA +PB +PAB = 1 (4.5)

We derive the expected time in state A, /'A, by conditioning on whether the next state is

AB or not. If the next state is AB, then P/A = L. If the next state is not, which indicates

that the next demand arrival takes place more than L time periods from the start of state

A, PA = E[XL] where

XL the conditional time until next arrival given it arrives after L time periods.

Therefore, we have

1A = (1-q)L + qE[XL]

= (1-q)L+q L+X

(4.6)1
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With Equations (4.4), (4.5), (4.6), we can solve for PA,PB,PAB:

(AL + q)(1 - qBa2)
2 -2- qB + AL(1 - qBa2)'

1 - qBCal

PB 2 -qB +AL(1 - qBa2)

(1 -q)(1 - qBa2)
PAB 2 - qB + AL(1 - qBa2)'

Using PASTA, we then can derive the IIA2, HB1 by conditioning on the state of the

system at the time of a demand arrival.

IIA2 = PB(1 -qB)a2

The derivation of IB1 requires more discussion. First, if a demand arrives when the system

is in state AB, then with probability (1 - qB) the demand has to be served by location B.

Next, consider a demand arrives and the system is in state A. Note that the duration of

being in state A is at least L time periods. Also, any demand arriving during the first L

time periods would have to be served by B, since the unit in A is on order and the unit in

B is "ahead". By renewal theory, the time average of the system in the first L time periods
L

is PA-, which is the probability of a demand arriving then. If a demand arriving after
PA

the first L time periods in A, then with probability (1 - qB) the demand would have to be

served by B. Therefore, we have

IIB1 PA-aCi +pA(PA1 - qB)cl + PAB(1 - qB)al
PA PA

PA
= AL (AL + q(1 -qB)) Cl + PAB(1 -qB)al/L + q

Let the penalty cost function be g(1, 1) = C(1) -, then

g(1,1) = IA2 + IIB1
aca2 + ba2 + c

2 - qB + AL(1 - qBa2)

where

a = 2qB(1 - qB + AL), b = 2qB(qB - 1) - L(1 + qB), c = 1 - qB + AL.

Following the same reasoning in the derivation of HIA2, IIB1, we derive the probabilities
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of an order being served from location A or B, PA, PB.

PA pB(1 - qBa2)+ PABqBal+ PA qBal
IA

= PB(1 - qBa2) + PABqBal + A qAal

1 - qBa2

2 - qB + AL(1 - qBa2)

PB = PBqBa2 +PAB(1 - qBal) + A (AL + q - qAal)

(1 - qBal) + AL(1 - qB2)
2 - qB + AL(1 - qBa2)

Proposition 4.3.1. Let q = e-XL,qB = e- XLB, then the probability of a demand served by

location A in the 2- Unit 2-Location problem with different leadtimes is PA =1 -

2 - qB + AL(1 - qBa2)

and served at B is PB = (1 qBal) AL(1 - qBa2) In addition,
2 - qB + AL(1 - qBa2)

* PA is nonincreasing in AL, for AL > 0;

* PB is nondecreasing in AL, for AL > 0;

* If AL > qB, then PB > PA for all a2 E [0, 1];

* If AL < qB, then PB PA for 2 E [, 2] and PB > PA for c2 [ 2,1], where
-2 = qB - AL02 =

qB(2 - AL)'

Proof. Given the numerator of PA is nonnegative and the denominator of PA is increasing

in AL > 0, then PA is nonincreasing in AL. Since PB = 1 - PA, then PB is nondecreasing

in AL.

Let 072 be the value of a2 at which PA = PB. Since the denominator of PA and PB is

strictly positive, we can find 0 2 by equating 1 - qBa2 = (1 - qBal) + AL(1 - qBa2). Then

2 - qB - AL

qB(2 - AL)'

For 0T2 to be within the range of [0, 1], we examine the following three cases: i) AL < qB,

ii) qB < AL < 2, iii) AL > 2.

If AL < qB, then AL < 2 and 2 > 0. In addition, 2 < 1 for AL > 0.

If qB < AL < 2, then 2 < 0.

If AL > 2, then AL > qB and 072 > 0. However, for 2 < 1 only if AL < qB < 0.
qB -1

Therefore, PA and PB only intersects when AL < qB. Since PA is nonincreasing and PB

is nondecreasing, we have PB < PA for a2 [0, a2] and PB > PA for a2 [2, 1].
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If AL > qB, then

(1 - qBl) + qB(l - qBa2)
PB >

2 - qB + AL(1 - qBa2)
(1- qB) + qB(1 - qB 02)
2 - qB + AL( - qBe2)> - -q=PA

2 - qB + AL(1 - qBo2)

for a2 E [0, 1]. U

Observation. Note that the value of PA is smaller than the value of PA in scenario (1,1)

in the 2U2L problem with the same leadtime of LB. Moreover, a demand is always more

likely to be served by B when the difference between leadtimes is large (i.e. AL > qB). If

the difference between leadtimes is small, a demand is more likely to be served by A when

a2 is small and more likely to be served by B when a2 is large.

4.3.2 Fill Rates

In the 2U2L problem, we compute the fill rate from the aggregate model. However, in the

2-Unit 2-Location problem with different leadtimes, the warehouses are no longer identical.

The fill rate may depend on how the demand is split in the two regions, and, therefore,

cannot be derived from the aggregate model. We derive the fill rates from additional analysis
in this section.

The fill rate for scenario (2,0) is simply derived as

FR(2, 0) qA(1 + ALA),

and similarly, we have

FR(O, 2)= qB(1 + ALB).

The fill rate of scenario (1,1) is more complicated. We devote the rest of the section on the

derivation.

We assume L < LB in the derivation, while we can derive the case of L > LB similarly.

First, we present a more detailed Markov Chain than in Figure 4-6, as illustrated in Figure 4-

7. Same as in the Figure 4-6 Markov Chain, we define each state on a demand epoch.

Specifically, we split each type-A or type-B epoch into two types: one with an on-hand

unit and one without. Figure 4-8 is an illustration. State A is split into A' and A", B into

B' and B". The states A' and B' are special cases of A and B where the unit ahead has

not yet reached the warehouse. For instance, the state A' is defined on a type-A demand

epoch where the unit in B is on order. The states A" and B" are defined such that the unit
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-qB

i - qB

qAa2 qB2 

1 - q _ _ _-_

Figure 4-7: 2-Unit 2-Location with Different Leadtimes - Fill Rate of Scenario (1,1)

ahead is on hand. By definition, the transitions out of state A' and A" are the same as the

....... . 2...............................................
LA ......... ............ l .........l......

EII LB

A' A" B' B" AB

Figure 4-8: 2-Unit 2-Location Different Leadtime - Fill Rate

transitions out of state A, and the transitions out of state B' and B" are the same as the

transitions out of state B. Therefore, here we omit the discussion on the transitions.

We derive the time average of being in a state. By definition, PA' + PA" = PA and

PB' + PB" = PB. Deriving from the balance equations, we have

PA PA
PB' = (1 -B) q PB" = L + PB

PA' = (1 - qB)(AL + q)PB PA" = qBl (PA + PB(AL + q))

Furthermore, we denote the conditional probability vj as

vj prob. of a demand served by an on-hand unit,

given the system is in state j at the time of its arrival

We then can write the fill rate of scenario (1,1) as:

FR(1, 1) = PBIVB" + +PB'VB' + PAVA" + PA'VA' + PABVAB.
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Clearly, VB" = 1, since one unit is always on hand during state B". The others require more

discussion.

First, we derive VB/. Suppose the system transitions to state B' at time t as illustrated

in Figure 4-9. Let each black dot on the time line represent a demand arrival. At t, the

...........................................

..... . ........... ..m .......... l .... ... L A

. -- LBgLB

I I

t+ T-LA t t+r S
t + r - LB

XB X

Figure 4-9: System Reaches State B' at Time t

unit in A has < LB time periods to reach A and the unit in B has LB time periods to

reach B. Then, VB' is the probability of the next demand arriving after t + T, such as at

time s. Let

X the time until the next arrival,

and X is exponentially distributed with rate A. Note that the demand associated with the

unit in A at t must have arrived at t +- - - LA. That is, the system is at state A' or A" at

t + T - LA. Then, regardless of whether the system transitions to state AB, the demand

arriving at t must be the first demand arriving after t + - - LB. Let

XB a conditional inter-arrival given it's less than LB,

then at t +- - LB, the time until the next arrival at t is distributed as XB given we have

T < LB. We can represent the time during (t + T - LB, t) as XB. We have

VB' - Pr{X > } = Pr{X > LB -XB}
fLB Ae- AXB d00

B=O 1 - LB - e- xdx dXJXLB=qBXB
ALBqB (4.7)
1 - qB

Next, we derive VA,. Suppose that the system transitions to A' at t. We examine

two types of demand arrivals during A': 1) the first demand arrival after t, and 2) the

other demand arrivals. Note that type 2 demand arrival, or having more than one demand

arrivals in A', can only occur during the transition from state A' to state AB. Given a
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demand arriving to state A', the probability that it is of type 1 demand is

1/A 1

HA' AL + q'

since IA', = A . Because we assume L < LB, the type 2 demand would never be served by

an on-hand unit: the replenishment associated with its previous demand would never reach

B during A'. Therefore, we focus on the type 1 demand.

Suppose that the system transitions to state A' at time t as illustrated in Figure 4-10.

At time t, the unit in A has LA time units to reach A and the unit in B has r < LB to

,,, .... ..... .. ...............

.............. ...................... L A

* ILA

t+ - LB t t+T s

XB X

Figure 4-10: System Reaches State A' at Time t

reach B. Then, the probability of a type 1 demand arrival being served by an on-hand unit

is the probability of the next arrival (after t) arriving after t + T, such as at time s. The
demand arrival, whose replenishment is the unit in B at t, must have arrived at t + T - LB.

In addition, there is no demand arrival during (t + T - LB, t): otherwise, the system could

have reached state A' earlier. Then, XB represents the time between (t + -T - LB, t). We

can then derive the probability of a type 1 demand being served by an on-hand unit as:

(VA' type 1 demand) = Pr{X > = Pr{X > LB - XB}
ALBqB
1 - qB

As a result, we derive the following:

VA' = Pr{type 1 demand} (VA', I type 1 demand)

+ Pr{type 2 demand} (VA, type 2 demand)
1 ALBqB + ( 1 1 (0)

AL + q 1 - qB AL - q

1 ALBqB (4.8)
AL + q 1 - qB
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We can derive VA/ using the same logic:

VA" Pr{type 1 demand} (VA/ I type 1 demand)

+ Pr{type 2 demand} (VA,, I type 2 demand)

AL (1)+ (- AL+ )(

AL + q

Finally, we proceed to derive VAB. Suppose that the system transitions to state AB at

time t as in Figure 4-11. This implies that the system reaches state A' or A" at t - L and

.... ............ ....................... .....

....... ......... ................. L

I

.t *I I *E

t-L t t-LB t t +r s
Z X

Figure 4-11: System Reaches State AB at Time t

there must be at least one demand arrival during (t - L, t). Also, because we assume that

L < LB, the unit at B is always on order at t. At time t, the unit in A has LB time periods

to reach A and the one in B has r < LB time periods to reach B.

Since the unit in B reaches B at t + T, then its associated demand must have arrived at

t + - - LB and it is the last demand before t. Let Z be the time between (t + r - LB, t),

that is, let Z = LB - T. To derive the distribution of T, we must derive the distribution of

Z. First, let

N(t) the number of Poisson arrivals during t time periods.

Then, we derive the pdf of Z as:

f(Z = z) = Pr{N(t-L, t-z) > O, N(t-z, t-z +) = 1,

N(t -z + 6, t) = I N(t - L, t) > 1}
1 A6 e- \Z

1-q

Ae-AZ
Therefore, we have fz(z) - -q and Z is the conditional inter-arrival given it's less than1-q
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L. Consequently, we derive VAB as:

VAB = Pr{X > T} = Pr{X > LB- Z}

JL AeAJL / BC A Xe-AX dxdz
=0 1- q -=LB-z

- e- LBdz
1- q z=
ALqB

1 -q

We derive the fill rate of scenario (1,1) given L < LB as:

- 2-q

=qB I1+

2 - qB
B + AL(1 - qBa2)

(1 ALB + AL - qBa2)
2 - qB

(AL) (ALB))
1-qBs2

(4.11)

Note that f is increasing in a 2 for a2 E (0, 1).

Observation. The fill rate for the 2U2L problem is a special case of FR(1, 1) with L = 0,

qB(1 + ALB), which is consistent with our analysis.

4.3.3 Comparison

We first compare the scenarios (1,1) and (2,0).

Proposition 4.3.2. Let L = LA - LB > 0 and qB = e-LB.

Oa2 E (0,Yl), prefer (1,1) if a 2 E (1, 1), where

We prefer scenario (2,0) if

2 + qB-2q2 + AL(2 + qB)- 2 -q4q(1 + AL- qB) + (2 - q)(1 + AL)2
Y1 =

4qB(1 - qB + AL)
(4.12)

Proof. Let f = g(1,1) - g(2, 0), and

f = 9(1,1)-2
aa2 + ba2 + c

2 - qB + AL(1 - qBa2)

where

a = 2qB(1 - qB + AL), b = qB(-1 + 2qB--AL)-2-2AL, c = 1 - qB + AL.

Since the denominator 2 - qB + AL(1 - qBa2) > 0, finding the roots of f is equivalent
to finding the roots of the nominator. Since 0 < qB < 1, a > 0 and c > 0. Also, since
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qB( 2 qB - 1)- 2 < 0, b < 0.

The discriminant is

b2 - 4ac = 1 (2 - qB) (4q2(1 + AL - q) + (2 - qB)(1 + AL)2 )
2 - qB + AL( - qBa2)

Clearly, the discriminant is nonnegative. Since 2 - qB > 0 and 1 + AL > 0, the discriminant

is strictly positive.

In addition,
a + + = -qB+ AL(1- qBa2) < 

AL(qB- 1)- 1

Therefore, according to Lemma 4.2.1 Part 2), f > 0 for a2 e (O, yi) and f < 0 for

-b- b2 - 4ac
a2 C (y/1, 1), where 'l = 2a

Observation. Comparing with the solution in the 2U2L problem, we see that the two solu-

tions are the same when L = 0.

Proposition 4.3.3. Let L = LA - LB > 0 and qB = e- ALB. We prefer scenario (1,1) if

a2 E (0, Y2), prefer (0,2) if a:2 e (Y2, 1), where

3qB -2q -2 + V2 q (2-qB) + 4q(1 (13)
4qB(1 - qB)

Further more, 72 is the equivalent of the indifference point between scenario (1,1) and (0,2)

in the 2U2L problem with the same leadtime LB.

aa2 + ba2 + c
Proof. Let f = g(1, 1) - g(0, 2), and f= 2 + AL(1 -q where

a = 2qB(1 - qB), b = 2 + qB(2qB - 3), c = -1.

Since the denominator 2 - qB + AL(1 - qBa2) > 0, thus, finding the roots of f is equivalent

to finding the roots of the nominator which we denote as f.

Next we consider the 2U2L problem with the same leadtime of LB at both locations.

Let h = g(1, 1) - g(0, 2), and h is quadratic in a2, where the coefficients are

2qB(1 - qB) 2 + 2q - 3qB -1
a = 2-qB 'B 2 - q' 2 - qB 2 - qB

Since the denominator 2 - q > 0, thus, finding the roots of h is equivalent to finding roots

of h whose coefficients are defined as

a = 2qB(1 - qB), b = 2 + 2q - 3qB, c = -1.
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We see that f = h. Therefore, in both problems, we prefer scenario (1,1) for at2 (0, 72),

prefer (0,2) for a2 E (2, 1), where 'Y2 is defined as above. ·

Corollary 4.3.1. We prefer (2,0) for a2 E (, y2), prefer (1,1) for a2 E (2, y1), prefer(O,2)

for a2 C (1, 1), where 71, 2 are defined in Equation (4.12), (4.13).

Table 4.4 shows some numerical examples. For each value of expected demand during

Fill Rate of Scenario Range of a2 to Choose
ALA ALB (2,0) (1,1) (0,2) (1,1)
0.2 0.1 0.982 (0.988, 0.995) 0.995 (0.13, 0.92)
0.4 0.2 0.938 (0.959, 0.978) 0.982 (0.20, 0.87)
0.5 0.25 0.910 (0.940, 0.965) 0.973 (0.22, 0.85)
0.8 0.4 0.809 (0.876, 0.914) 0.938 (0.28, 0.80)
1 0.5 0.736 (0.830, 0.872) 0.910 (0.32, 0.77)

1.5 0.75 0.558 (0.710, 0.754) 0.827 (0.37, 0.72)

Table 4.4: 2-Unit 2-Location with Different Leadtimes Numerical Results

location A's leadtime, ALA, and expected demand during location B's leadtime, ALB, we

present the fill rates for the three scenarios. In particular, the fill rate range for scenario

(1,1) is for any value of a 2 E [0, 1]. We also present the range of a2 for which we prefer

scenario (1,1). If a2 is smaller than that range, we prefer scenario (2,0) and if larger, we

prefer scenario (0,2).

4.4 2-Unit 2-Location with Compound Poisson Demand

To model more demand variability in the 2-Unit 2-Location problem, we examine the 2-

Unit 2-Location problem with Compound Poisson demand. We assume that demand arrive

according to a Poisson process with rate A. We assume at the ith arrival, there are Yi units

in the order from either demand region 1 or 2, where Y is a discrete distribution with

Pr{Yi > 1} = 1. We assume the Y's are i.i.d. In addition, we execute the system with the

following policy:

* If Yi = 1, then we following the same execution policy as in the Poisson demand

model.

* If Yi > 2, the first two orders are matched with the two unassigned units in the system,

and we order emergency orders for the remaining units in the order from the closest

location (still with L unit leadtime).

We denote

p = Pr{Yi = 1).
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The main purpose of this model is to examine the impact on the 2U2L model where there

is more demand variability. For the sake of comparison, we only examine the cost of single

orders, that is, orders for which Y = 1. We do this to simplify the presentation. We note

that, by assumption, the cost to serve the multi orders is a constant that is independent of

how the demand is split between the regions - this cost is just the cost of shipping one unit

from each warehouse, plus the cost of the emergency shipment (if needed) for the remainder

of the order. Therefore, the costs expressed below are expected transportation cost of a

random single-item order.

We still have the same cost of C = alcl +a2c2, C(2, 0) = C+a26, and C(O, 2) = C+oal1 .

The (1,1) scenario is quiet different from the 2U2L problem. To derive a similar Markov

Chain, we need to add a state 0 as in Figure 4-12. We define a type-0 demand epoch where

a demand arrival orders more than one unit. In particular, two units in the order are served

by the two units in the system, and we trigger a replenishment at each warehouse at a

type-0 demand epoch. That is, both replenishment units have exactly L time periods to

reach their warehouses at the type-0 demand epoch. We define state 0 on a type-0 demand

epoch. State A and B are as defined in the 2U2L problem. The steady state probabilities

(1- q)p

qae2P

1-

qaip

-p

1-p

Figure 4-12: 2-Unit 2-Location Compound Poisson Markov Chain

of the Markov Chain are

OB 2 + Op(l - q) PC + a2P( - q)B--P + p(l -q) ' P +p(l -q) '

and again we can derive the II's as from the dotted-line transition. The probability of a

demand from region 2 and served by A is HIA2 = lrb(1 - q)pa2, and the probability of a

demand from region 1 and served by B is HB1 = 7a(1 - q)pl.
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Since the cost C(1, 1) is the expected cost of an order given it is a single order, we

utilizes the conditional probabilities of the H's, HA2/, B1/P-

C(1,1) = C+ A2 + B1

C(1,1)-C t aa2+bca2 +c
Let g(1, 1) = , then g(1, 1) 1 ) where

a= 2p(1 - q)(l -p(l -q)), b = 2p(l - q)(p(1 -q) -1), c = p(1 - q)

Proposition 4.4.1. Let q = e- L and = - 4a where
2a

a = 2p(l - q)(1 -p(l - q)), b =2p 2(1 - q)2 -3p(l- q) -1, c=p( - q)

If a2 (a. 1 - a), then we prefer scenario (1,1); if a2 < a, then we prefer scenario (2,0);

if a2 > 1 -- a, then we prefer scenario (0,2).

We omit the proof here since it is very close to the proof in the 2U2L problem. Note

that we do not need the full distribution of Yi, but just the probability of a demand being

a single order, p. We provide a few numerical examples in Table 4.5 for p = 0.25, p = 0.5,

and p = 0.75. For each value of expected demand in leadtime, AL, we show the range of

Range of a2 to Choose (1,1)
AL p = 0.25 p = 0.5 p = 0.75
0.2 (0.04, 0.96) (0.07,0.93) (0.10, 0.90)
0.5 (0.08, 0.92) (0.13,0.87) (0.18, 0.82)

0.75 (0.10, 0.90) (0.17,0.83) (0.22, 0.78)
1 (0.11, 0.89) (0.19,0.81) (0.26, 0.74)

1.5 (0.13, 0.87) (0.22,0.78) (0.30, 0.70)

Table 4.5: 2U2L with Compound Poisson Demand Numerical Results

a2 for which we prefer scenario (1,1). For values of a2 smaller than the range, we prefer

scenario (2,0), and larger than the range, we prefer scenario (0,2).

4.5 2-Unit 3-Location (2U3L) Problem

We extend the 2U2L problem to consider three locations. Suppose there are three ware-

houses in the system: location A is close to the West Coast, C close to the East Coast, ,

and B in the center, as illustrated in Figure 4-13. We assume w: > 1, and w5 is the penalty

premium of shipping a region 1 demand from warehouse C or a region 3 demand from ware-

house A. By assumption, for example, we prefer to ship a region 1 demand from warehouse
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B than C. Suppose we stock two units of inventory in the system for an item, how should we

best allocate the units so that the expected transportation cost is minimized? Consistent

cl + w6 C3 + W0

Figure 4-13: 2-Unit 3-Location Problem

with our previous definition, we define scenario (i,j, k) to be IPA = i, IPB = j, IPc = k.

Again, given the demand split (al, a, 2, 3), we want to compare the minimum cost scenario.

We are mainly interested in given a 2, whether we should stock two units at location B,

(0,2,0), to stock only one unit at B, (1,1,0) or (0,1,1), or to stock zero unit at B, (1,0,1),

(2,0,0), (0,0,2).

Clearly, we have

C = alC1 + a2c2 + a 3c3

4.5.1 Scenario (0,2,0)

We stock two units of inventory in warehouse B only, and we have

C(0, 2, 0) = al(cl + 6) + Ca2c2 + 03(c3 + 6) = C + (a1 + a3)6

Let g(i,j,k) = C(i,j,k) - and let
a quadratic function of a2. Then g(0, 2, 0)

The same reasoning applies to scenario
Oa3

1 - a2

C(2,0,0) = C +

= C +

c(0,0,2) = C +

aijk, bijk, Cijk be the coefficients of g(i, j, k) as
= 1 - a 2 and a20 0, b020 = -1, C020 = 1.

(2,0,0) and (0,0,2). Let , 1 - a2 1 a -1 c =

(a 2 + a3)6

(a2 + (1 - )(1 - 2))6

(a2 +- waO1)6

= c + (2 + a(1 - 02))6

We have a200 = 0, b200 = 1-w(1 - ), 200 = w(1 - K) and ao2 = 0, boo2 = 1 -wn, C002 = WK.
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4.5.2 Scenario (1,0,1)

We stock one unit each at location A and C. In addition to the assumptions in the 2U2L

Problem, we assume that for a demand from region 2, it is equally likely to be served by

location A and C if both have on-hand inventory.

C(1,0, 1) = C + (IIB1 + B3 + (A3 + IC1)) 

= C + (a2 + w(A 3 + HC1)) 6

We pay a premium of d for serving a region 2 demand since there is no inventory stocked

at warehouse B. We pay a premium of wS for serving a region 1 and region 3 demand from

a further warehouse.

Similar to Scenario (1,1) in the 2-Unit 2-Location problem, we find the probabilities of

IA3, HC1 by examining the Markov Chain in Figure 4-14. The steady state probabilities

1 -q

q (a 3 + a2) q (ai + 2a2)

1 -q

Figure 4-14: 2-Unit 3-Location Markov Chain, Scenario (1,0,1)

are
1 - q (al + a2)

7rC = 2-q , 7rA 2-q
1 - q (ac3 + a2)

2- q

We then have the probability of a demand from region 3 and served by A HA3 = rc(1 -q)a3,

and the probability of a demand from region 1 and served by C HIc = rA(1 - q)al.

Moreover, the probability of a demand from region 2 and served by a further warehouse is

a 2. We then have

C(1,0,1)=C + (a2 + -J(1-a2) (1-2q + 2qi'a2- a2)) ,

2-q
is a quadratic function in a2, and

a1ol = wOq - 2 n), ol = 1 -wO + q -( - 4')) , clol = w(1 - 2qK'). (4.14)-- ,e012-
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1
Since 0 < n < 1,n' < 4-, a10l > 0, VAL > 0. Therefore, g(1,0,1) is convex in 2. For

= ie., (10,1) is linear in andal ~~= aieK 4' 9 (1, 0, 1) is linear in a2 and

a1io = 0, b1o = 1- (1 -q),
2

1o1 = 1 (-q)l if a1 = a 3. (4.15)

4.5.3 Scenario (1,1,0)

We consider the scenario where we stock one unit in location A and B. We can write the

cost as

C(1, 1, 0) = C + (A2 + iB1 + WIIA3 + iB3) 6

To derive the H's, we construct the Markov Chain in Figure 4-15. Since we assume w > 1,

to demand stream 3, location B is the closer warehouse with inventory. The steady state

1 -q

q (a3 + a2) qai

1 -q

Figure 4-15: 2-Unit 3-Location Markov Chain, Scenario (1,1,0)

probabilities are
1 - q(a2 + a3)

2-q
The II's are derived as

IIA2 = 7TB(1 - q)a2

IB1 = 7rA(1 - q)al

IIA3 = B(1 - q)a3

HB3 = rA(1 - q)a3 + qa3

The cost is then

C(1, 1,0) = C+ (qa3 + O ((1 - q(a2 + a 3)) (al + a3) + (1 - qal)(wa3 +- a2))) 6
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where 0 2 q. Also, g(1, 1, 0) is a quadratic function in a2 where2-q

allo = Oq (2 -wn)),

bilo = 0(w-1)(2q' - (1-)) - 02q2 2 ' (4.16)

1 - q
Clo = 2 (1 + (1 - q)(1 - ))

For al = 3, we have

w 2q 2 + 2wq - wq 2 -3q-w 1 w
alio = q(1--), b11o = 2(2-q) , c1 = +-(1-q), if a1 = a 3. (4.17)

The cost of scenario (0,1,1) is symmetric to (1,1,0), and we obtain C(0, 1, 1) by substituting

a1 with a 3 and a 3 with al.

4.5.4 Comparison

Let g = ming(i,j, k). For a given value of a2, the minimum cost scenario is the scenario
Vijk

(i, j, k) s.t. g(i, j, k) = g. We devote the rest of the section on the special case of ao1 = a3.

Special case of al = a3

In the special case of al = a3, we have the symmetry of a1 and a3. Therefore, the cost of

scenario (i, j, k) is equivalent to (k, j, i).

Proposition 4.5.1. If al = a3, then we always prefer scenario (1,0,1) over (2,0,0) or

(0,0,2): g(2, 0, 0) = g(0, 0, 2) > g(1, 0, 1) for 0 < a2 1.

Proof. Since a2 < 1, by definition,

9(2,0,0) = (1- )a2+
2 2

> ( -(1 -(1- q))2 + (1 - q) = g(2, 0, O) + q(a2 - 1) = (1, 0, 1). 2 2 2

Therefore, to find the minimum cost scenario, we only consider scenarios (1,0,1), (1,1,0),

and (0,2,0). In the remainder of the section, we derive the values of a2 such that we are

indifferent to any two scenarios among (1,0,1), (1,1,0), and (0,2,0).

Proposition 4.5.2. Given 1 < w < 2, if a1 = a3, we prefer scenario (1,0,1) over (0,2,0)

for a2 E (0, -y) and prefer scenario (0,2,0) over (1,0,1) for a2 C (71, 1), where

1 - 1 - (4.18)
2 -- (1 - q)'

121



Proof. Let function f = g(1, 0, 1) - g(0, 2,0), and f is a linear function in a2 given al = a3.
c10 - C02 0 1 - q)

Let yi be such that f(y1) = 0. Then, y1 - 1 C2 - (1 q) Since w <2 and
biol - b 20 2 - 2(1 - q)

1
0 < q < 1, then 0 < (1 - q) < 1. Then, Y1 < 2 < 1. Also, f is an increasing function of
a2 since blol - bo2o > 0. Therefore, f 0 for 0 < a2 < yl and f > 0 for 1 > 2 1. 

For w = 1.4, we have the numerical results in Table 4.6. For each value of expected

Range of a2 to Choose (1,0,1) Over (0,2,0)
AL Fill Rate al = a 3 l = 3a 3 a = 0
0.2 0.98 (0, 0.47) (0, 0.46) (0, 0.45)
0.4 0.94 (0, 0.43) (0, 0.43) (0, 0.41)
0.5 0.91 (0, 0.42) (0, 0.41) (0, 0.39)

0.75 0.83 (0, 0.39) (0, 0.38) (0, 0.36)
1 0.73 (0, 0.36) (0, 0.35) (0, 0.33)

1.5 0.56 (0, 0.31) (0, 0.31) (0, 0.29)

Table 4.6: 2-Unit 3-Location Numerical Results, Scenario (1,0,1) and (0,2,0)

demand in leadtime, AL, we show the fill rate; we also present the range of a2 for which we

prefer scenario (1,0,1) over scenario (0,2,0) for three cases: i) the special case of al = o3 as

in our previous discussion, ii) al = 3a3, and iii) O1 = 0, a3 = 1.

We compare scenario (1,1,0) and (0,2,0).

Proposition 4.5.3. Given 1 < w < 2, if a1 = a3, we prefer scenario (1,1,0) over (0,2,0)

for a2 (0, 2) and prefer scenario (0,2,0) over (1,1,0) for 2 C ('y2, 1). The value 2 is

defined as 2 = + 2 4a where
2a

a 0q(1- 4),
4

4 - 5q + 2q2 + w(2q - 1 - q2)
2(2- q)

1 i -+ (
c = 2

Proof. Let function f = g(, 1,0) - g(0, 2, 0), and f is a quadratic function of a2 with
coefficients defined above. Since w < 2, a > 0. In addition, c < 0. Since w < 2,

2q2 - 5q + 4- - w(1-q) 2 > 2-q 1
2(2 - q) - 2(2 - q) 2

Finally, a + b + c = > 0, -y2 < 1. Therefore, by Lemma 4.2.1 Part 1) f < 0 for a2 (0, Y2)

and f > 0 for a2 E (Y2, 1). P
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Range of a2 to Choose (1,1,0) Over (0,2,0)
AL Fill Rate al a3 a = 3a3 al = 1
0.2 0.98 (0, 0.76) (0, 0.84) (0, 0.87)
0.4 0.94 (0, 0.65) (0, 0.75) (0, 0.80)
0.5 0.91 (0, 0.60) (0, 0.71) (0, 0.78)
0.75 0.83 (0, 0.52) (0, 0.65) (0, 0.72)

1 0.73 (0, 0.45) (0, 0.59) (0, 0.68)
1.5 0.56 (0, 0.36) (0, 0.52) (0, 0.61)

Table 4.7: 2-Unit 3-Location Numerical Results, Scenario (1,1,0) and (0,2,0)

For each value of expected demand in leadtime, AL, we show the fill rate; we also

present the range of a2 for which we prefer scenario (1,1,0) over scenario (0,2,0) for three

cases: i) the special case of a = a 3 as in our previous discussion, ii) cal = 3a3, and iii)

al = O, a3 = 1.

Proposition 4.5.4. Given < w < 2, if al = a 3, we prefer scenario (1,0,1) over (1,1,0)

for 2 E (0, y3) and prefer scenario (1,1,0) over (1,0,1) for c2 E (y3, 1), where =
-b- b2 -4ac and

and
2a

a=Oq(1-), b 2q2 -q-4+w(1-q) = 1 (_ q))
4 2(2 - q) 2

Proof. Let function f = g(, 1,0) - g(1,0,1), and f is a quadratic function of a2 with
coefficients defined above. Clearly, a > 0, since w < 2. By the same reason, c > 0. In

addition,

< 2q 2 -q - 4 + 2(1 - q) -(2 - q) 1
b <- < 0.

2(2- q) 2(2- q) 2

Since we have

4ac= q(1 - q)(4- w)(2 +w(1 -q)) < q(4-w)(2+w) < 8'
4(2 - q) - 8 -

then

b2 - 4ac > (q + 1 )2 - > 0

1Furthermore, a + b + c - < 0.2-q-
Therefore, f satisfies the conditions in Lemma 4.2.1 Part 2). Let y3 =

Then, f > 0 for a2 E (0, y3) and f < 0 for a 2 E (3, 1).

-b - V/b2 -4ac
2a

U
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Table 4.8 has a few numerical examples. For each value of expected demand in leadtime,

Range of a2 to Choose (1,0,1) Over (1,1,0)
AL Fill Rate al = a3 a = 3a3 al = 1
0.2 0.98 (0, 0.32) (0, 0.17) (0, 0)

0.4 0.94 (0, 0.32) (0, 0.15) (0, 0)

0.5 0.91 (0, 0.31) (0, 0.14) (0, 0)
0.75 0.83 (0, 0.30) (0, 0)

1 0.73 (0, 0.29) (0, 0.09) (0, 0)

1.5 0.56 (0, 0.27) (0, 0.05) (0, 0)

Table 4.8: 2-Unit 3-Location Numerical Results, Scenario (1,0,1) and (1,1,0)

AL, we show the fill rate; we also present the range of a2 for which we prefer scenario

(1,0,1) over scenario (1,1,0) for three cases: i) the special case of al = a 3 as in our previous

discussion, ii) al = 3a 3, and iii) ~al = 0, O3 = 1.

Theorem 4.5.1. Given 1 < w < 2 and al = a3, we prefer scenario (1,0,1) if a2 

(0,'y),(1,1,0) or (0,1,1) if a 2 E (3,72), (0,2,0) if Ca2 (y2,1), where the y's are defined
previously.

Proof. Given c2, we need to find a scenario (i, j, k) whose penalty g(i, j, k) is the minimum

among scenario (1,0,1), (1,1,0), and (0,2,0). The function g(0, 2,0) is a linear function in

a 2 with negative slop. The function g(1, 0, 1) is also linear in a2 but with positive slop. In

addition, the two function intersect at a2 = 71 < 1.

The function g(1, 1, 0) is convex in a2 given 1 < w < 2, and it intersects with g(0, 2, 0) at

a 2 = 7y2 < 1 and with g(1, 0, 1) at a2 = y3 < 1. We claim that g(1, 1, 0) is a non-increasing

function in the interval (0, 1) and given a2 = 71, g(1, 1,0) < g(0, 2, 0) = g(1, 0, 1). Therefore,

for a2 (Y3, 2), g(, 1,0) < min(g(0,2,0), g(1,0,1)). Then, we prefer scenario (1,0,1) if

a 2 (0,%y3),(1,1,0) or (0,1,1) if a2 E (3,y72), (0,2,0) if a2 (2,1).

Here we proceed to show that g(1, 1,0) is non-increasing in the interval (0,1). The
b

minimum of g(1, 1,0) is achieved at a2 = -
2a'

b 3q - 2q2 + W(1 - q)2 3q - 2q2 + (1 - q)2 q(1 - q) + 1
2a (4 - w)(1 - q)q - (4 - w)(1 - q)q (4 - w)(1 - q)q

> 4 ( + -1+ > (1 + 4) > 14-L q(1-q) - 3

Since g(1, 1,0) is convex, it is non-increasing in a < -- =. g(1, 1,0) non-increasing in

Ol <c 1 .a < 1.
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We also need to show that at a2 =, il, g(1, 1,0) < g(0,2,0) = g(1,0, 1). At a2 = 71,

g(1, 1, 0) - g(O,2 0)= q(2 - (1 - q))(4 - 2q - (l - q))
' (q - 2)(4 - w(1 - q2))

The nominator is positive given 1 < aw < 2. The denominator is negative since q - 2 < 0

and 4 - w(1 _ q2)> 0. Therefore, g(, 1, 0) > g(0,2,0). U

We summarize the numerical examples in Table 4.9 and 4.10. In Table 4.9, we focus on

examples where al - a3 and in Table 4.10, we focus on examples where al = 3a 3. For each

value of expected demand in leadtime, AL, we show the fill rate as well as the range of a2

for which we prefer scenario (1,0,1), (1,1,0) or (0,2,0).

Range of a2 to Choose
AL Fill Rate (1,0,1) (1,1,0) (0,2,0)
0.2 0.98 (0, 0.32) (0.32, 0.76) (0.76, 1)
0.4 0.94 (0, 0.32) (0.32, 0.65) (0.65, 1)
0.5 0.91 (0, 0.31) (0.31, 0.60) (0.60, 1)
0.75 0.83 (0, 0.30) (0.30, 0.52) (0.52, 1)

1 0.73 (0, 0.29) (0.29, 0.45) (0.45, 1)
1.5 0.56 (0, 0.27) (0.27, 0.36) (0.36, 1)

Table 4.9: 2-Unit 3-Location Numerical Results, al = a3

Range of a2 to Choose
AL Fill Rate (2,0,0) (1,0,1) (1,1,0) (0,2,0)
0.2 0.98 (0, 0.17) (0.17, 0.84) (0.84, 1)
0.4 0.94 (0, 0.15) (0.15, 0.75) (0.75, 1)
0.5 0.91 (0, 0.13) (0.13, 0.71) (0.71, 1)

0.75 0.83 (0, 0.15) (0.15, 0.65) (0.65, 1)
1 0.73 (0, 0.20) (0.20, 0.59) (0.59, 1)

1.5 0.56 (0, 0.27) (0.27, 0.52) (0.52, 1)

Table 4.10: 2-Unit 3-Location Numerical Results, al = 3a3

4.6 Summary

In this chapter, we examine inventory planning for low-demand SKUs. We investigate a

few simple cases where given the amount of system inventory, we find the stocking alloca-

tion with the minimum expected outbound transportation costs. Here we summarize our

findings.
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In the 2-Unit 2-Location problem, we have demand region 1 and 2 where 1 is closer to

warehouse A and 2 is closer to warehouse B. We find that

* a balanced split of demand in region 1 and 2 results in a minimum cost of balanced

stocking allocation, namely (1,1). We give the specific range of demand splits such

that either scenario (2,0), (1,1), or (0,2) has the minimum cost, for a given expected

demand in leadtime AL.

* with higher fill rate (i.e., small AL), the range of demand splits for which scenario

(1,1) has the minimum cost increases.

* in scenario (1,1), the probability of a demand served from warehouse A, PA, is within

the range of [min(al, ), max(al, -)], and the probability of a demand served from

warehouse B, PB, is within the range of [in(a2, 2max(2, )] That is, a demand
2is always more likely to be served by a warehouse that's close to a larger demand

is always more likely to be served by a warehouse that's close to a larger demand

region.

In the 2-Unit 2-Location problem with different leadtimes, we add an assumption of

LA = L + LB, L O. While other observations are consistent with the 2U2L problem, we

find that

* the range of a 2 for which scenario (1,1) is the minimum-cost scenario is larger than

the range in the 2U2L problem with a leadtime of LA but smaller than the range in

the 2U2L problem with a leadtime of LB.

* if the difference of expected demand in leadtime between A and B is large enough

(i.e., AL > qB), then a demand is always more likely to be served by location B. If the

difference is small, then a demand is more likely to be served by A when ca2 is small

and by B when Ca2 is large.

In the 2-Unit 2-Location problem with Compound Poisson demand, we find that

· the larger the demand variance (i.e., smaller value of p), the larger the range of a2 for

which scenario (1,1) is the minimum-cost scenario.

In the 2-Unit 3-Location problem, we have two locations (A, C), one on each coasts,

and location B in the middle of US. We find that

* for a reasonable demand fill rate (e.g., 0.9), we suppose the shipping premium across

the coasts is 40% more than the premium from the middle of the country to either

coast. If the demand region closest to B has more than 40% of the total demand,

then we prefer stocking the two units of inventory in B, regardless of the demand split

among region 1 and 3.
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Overall, our results are intuitively satisfying. We are also able to provide specific guide-

lines for choosing the best inventory allocation for these simple cases. An important as-

sumption in the model is on constant leadtimes. We believe the methodology can also be

extended for stochastic leadtimes but with an assumption on no order crossing.

For problems with large units of system inventory and/or large number of locations,

the state space explodes in our current methodology. However, we believe that the 2U2L

methodology can be used as an approximation to a Multi-Unit 2-Location problem. In

the approximation, we still have states A and B associated with the two locations, but

we approximate the transition probabilities. Then, this approximation of the Multi-Unit

2-Location problem can be used as a basis for a general Multi-Unit Multi-Location problem.

That is, any Multi-Unit Multi-Location problem may be decomposed into a Multi-Unit 2-

Location problem. We can then extend the current methodology to analyze a more general

problem.
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Chapter 5

Conclusion

In this dissertation, we present three problems motivated by the customer fulfillment process

in online retailing. These three problems underscore the variety of issues that are particu-

larly important in managing an efficient supply chain in online retailing. In particular, we

show how analytical tools can assist in this complex decision making process, tactical or

operational.

In Chapter 2, we solve a multi-item two-stage serial inventory model with stochastic

demand and space constraints. We are able to show with real data the large scale of the

system as well as the effect of delay in demand fulfillment on inventory planning. In Chapter

3, we generate near-optimal heuristics to reduce the number of shipments in shipping from

warehouses to customers. We show that there is a significant cost saving by exploiting

the order-to-delivery window. The problem again illustrates the challenge due to the large

scale of the system. In Chapter 4, we present a methodology and solve a few simple

models of inventory allocation for low-demand SKUs. The results are intuitively satisfying.

We also present specific guidelines to allocate inventory in the system based on outbound

transportation costs. By allocating inventory efficiently, e-tailers are able to have high

customer service level and low costs.

The three problems in this dissertation covers a few of the important issues in online

retailing. Here are some additional considerations.

Combining marketing-operations In the second problem, we minimize the total num-

ber of shipments shipping from warehouses to customers. That is, the e-tailer prefers

customers ordering items that are available in a single warehouse, in particular, in

the warehouse that's closest to the customer. E-tailers often suggest a group of sale

items or items that may be of interest to their customers. However, this marketing

function is often separate from the operations function. That is, e-tailers often do not

consider the availability of inventory in warehouses when making marketing decisions.

By combining the marketing and operations function - by suggesting the group of
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items that available at the closest warehouse to the customer, e-tailers may be able

to reduce costs.

Impact of multi-item orders All problems in this dissertation demonstrate that some

customer orders have multiple items create a substantial challenge to online e-tailers.

First, the items in a customer order need to be synchronized in terms of location and

timing. Second, e-tailers also need to consider the demand correlation of items when

making inventory stocking decisions. Having an effective inventory planning process

that balances the trade-off of costs and service level is crucial. For instance, a relevant

question is given the warehouses are limited in storage space, what subset of SKUs

should be stock in what warehouses?
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Appendix A

Appendix

A.1 Single-Staged Exact (R,T) Model for Poisson Demand

Following the literature [e.g., HW63], we write the exact expected total cost per unit time

for Poisson demand as:

C(R,T) = P(11T) (A.1)

+ h R-d(l )) + h (x - R)p(xt)dt (A.2)
x=R

b00 b
+T (x- R)p(xl + T)- (x- R)p(xll) (A.3)

x=R x=R

oo

where p(xTr) is the PMF of demand during time T, and P(xIT) = Z p(klT) is the right-hand
k=x

CDF of demand during time r.

The first cost term (A.1) is the fixed ordering cost. We charge a per review period iff

there is nonzero demand during the review period. The second term (A.2) is the holding

cost term. The expected holding cost per period is

/+T l+T
h j E[I(t)]dt = h E[IL(t)] + E[B(t)]dt.

The expected holding cost per time period is the expected holding cost per period multiple

by 1/T. The third term (A.3) is the backorder cost term. The expected number of back-

orders incurred in a review period is the expected number of backorders incurred between

time 1 and I + T:

E[B(I + T)] - E[B()].
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A.2 Exact Two-Stage Serial Model

Here we derive an exact two-stage model to serve as a benchmark for the approximate

two-stage model in § 2.2.2. In the exact model, we relax assumptions A-4, A-7, A-8, and

A-9. Essentially, we build the exact two-stage model based on the exact single-stage (R, T)

model but with the nested policy assumption A-6.

Echelon-2 by itself is a single stage. Therefore, the development of the echelon-2 setup

cost and holding cost is the same as in the exact single-stage model with order-up-to level

R 2 and review period T2. We only derive the echelon-1 setup, holding, and backorder cost

below.

Recall that a cycle is the time between successive echelon-2 replenishment.

A.2.1 Echelon-1 Holding Cost

We derive the holding cost based on the following equation:

h n-1 +(J-+l)Tl

nT l+(j+)T E[IL(t)] + E[B(t)] dt.
j- Jl+jT1

I+(j+l)Tl
The value j E[IL(t)] + E[B(t)] dt is the expected on-hand inventory during the

Jl+jT1
(j + 1)St stage 1 replenishment in a cycle, and we devote the rest of the section on it's

derivation.

In stage 1, we order up to R1 if stage 2 has sufficient stock to satisfy the replenishment.

Otherwise, we exhaust the stage 2 inventory. Therefore, the stage 1 inventory position is

always less or equal to R1. We define

Vk shortfall of echelon-2 inventory from R1 at the kth review in a cycle

Given we order up to R2 at time t = 0, the inventory level at the kth stage-1 review

time is IL 2(12 + (k - 1)Tl). The shortfall at the kth review time is

vk = max {0,R1 -IL 2(12 + (k - 1)T)}

= max {0, R - (R 2 -D(12 + (k-)T))}. (A.4)

That is, we start the kth stage-1 review with inventory position of R1 -vk = min{R1, R2 -

D(12 + (k- )Tl)}.

To derive the expected on-hand inventory in a stage-1 replenishment, we first derive the

expected net inventory. The net inventory at the beginning of the kth stage-1 replenishment
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cycle is

R1- Vk -D(1),

since a replenishment review took place 11 time periods ago. The net inventory at the end

of the kth replenishment is

R1 - Vk - D(ll + T1).

Then, the expected net inventory per unit time of the kth stage-1 replenishment cycle is:

I (E[R 1 - vk - D(11)] + E[R 1 - Vk - D(ll + T1]))

R1 - vk - dll - dT1/2,

where Vk is the expected value of shortfall. The we write vk as

Vk E[D(1 2 + (k 1)TI - (R2 -R1)] +

= x - (R2 -R) p(xl 2+ (k-1)Ti).
R2-R1

The expected on-hand inventory is the sum of expected net inventory and backorders.

We define

Ik expected on-hand inventory

during the kth stage-i replenishment cycle

Then, we have

Ik = (RlVk -dll -dT 1/2) T1 +
11+T1

J/1
E [D(t) + vk - R1 ]+ dt,

where E [D(t) + v(k) - R1]+ is the expected number of backorders at time t. We can expand

E [D(t) + v(k)- Ri]+ as:

= E[max{D(t) - R1, D(t) - R2 + D(12 + (k- 1)T1 )}]

= E[D(t) - R1] + P(D(12 + (k - 1)T1) < t 2 - R1)

-+ E[D(t) + D(12 + (k - 1)T1) - R2]+ P(D(12 + (k - 1)T1 ) > R2 - R1)
R2-R1

y=O
+ (k- )T1))

1)T1 + t))
R2 -R1

E p(yll2 + (k-
y=o

)Tl))
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Notice that if vk is zero for all k, then the cost term I is the same as in the exact single-stage

model. The long-run average holding cost of stage 1 is

hi n

-E Ik. (A.6)
k=l

A.2.2 Backorder Cost

We first derive the expected number of backorders in a cycle or echelon-2 cycle. Denote

B number of backorders in a cycle.

bE[B]
Then, the backorder cost per time unit is []. To calculate the number of backorders in

T2
a stage-1 cycle, we suppose that a review takes place at time t. The next review then take

place at time t + T1. The number of backorder during (t + 11, t + 11 + T) is the difference

between the number of backorder during (t, t + 11) and during (t, t + 11 + T1).

By assumption, we have n stage-1 inventory reviews in a cycle. However, we may have

less than n stage-1 replenishments in a cycle. For instance, if at the kth (k < n) review,

stage-2 has insufficient stock to raise the stage-1 inventory position to R1, then stage-2 has

insufficient stock in the remaining stage-1 reviews. In this example, we have at most k stage-

I cycles in a cycle. We derive B by conditioning on the number of stage-1 replenishments

in a cycle. We let

n

E[B] = E[Bkl,
k=l

where Bk is the number of backorders in a stage-1 cycle where there are k stage-1 replenish-

ment cycles. In other words, stage-2 has sufficient stocks at the (k - )st stage-1 review and

insufficient stock at the kth stage-1 review to raise the inventory position to R1. Essentially,

the first (k - 1) replenishments are normal replenishments and the last is exhaustive.

We denote

D(tl,t 2 ) random demand during [tl,t 2].

Also, denote qk(1 < k < n) as the probability of a cycle having k stage-1 replenishments

(the first k - 1 replenishment are normal and the kth replenishment is exhaustive):

J Pr{D(O, 12) > R2 - R1 }, k = 1
qk - Pr{D(O, 12 + (k - 1)TI) > R2 - R > D(O, 12 + (k- 2)T)), 1 < k < n
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We also denote qn' as the probability of a cycle having n stage-1 normal replenishments:

qn = Pr{R 2 - R1 > D(O, 12 + (n - 1)T1 )}.

We can also represent B as:

n k n

E[B] = ZE E[Bjk]+EE[Bjni]
k= j= j=l

where Bjk is the number of backorders in the jth stage-i replenishment where there are

k - 1 normal replenishments in a cycle; Bj,, is the number of backorders in the jth stage-1

replenishment where there are n normal replenishments in a cycle.

To compute the value of Bk, we start with a few examples for n > 2. First, we examine

B 1. Suppose there is only one replenishment in the cycle. That is, at the first stage-i review,

stage-1 exhausts the stage-2 inventory. We assume that we order up to R 2 at t = 0. Let

random variable X = D(O, 12), Y = D(12, 12 + 11), and Z = D(12, 12 + 11+ T2). By definition,

X and Y are independent, and X and Z are independent. We derive the expectation of B 1

as:

E[B1] = qlE[Blql]

- qi (E[D(0,12 + + T2) -R2ql] + - E[D(0,12 + I1)- R2 [ql]+ )

- (x + z-R2)p(x,z)- (x + y-R 2)p(x,y)
x>R2-R 1 x>R2-R 1
x+z>R 2 x+Y>R 2

E E (x + z- R2)P(x1l2)p(zIll + T2)
x=R2-R 1 Z=R2 -x

- 5 E (x + y- R2)p(xl2)p(yll) (A.7)
x=R2-Ri y=R2-x

Next, we derive B2 where there are two replenishments in a cycle. We derive the

backorders in each stage-i replenishments separately. Let X = D(0, 12), Y = D(12, 12 + T1 ),

Z = D(12+T1, 12+11 +T1), W + V = Y where W = D(12, 12 +11) and V = D(12+11, 12+-T1).
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Assume that T 11.

E[B1 2 ] = q2 (E[D(12, 12 + 11 + Ti) - R q2]+ - E[D(12,12 + 11) - Rllq2] + )

E (y + z-Rl)p(x,y,z)-
x<R2-R1
x+y>R2-R1
y+z>R1

R2-R1-1

x=0 y=R2 -R1-x z=R1-y
R2-R1-1 0oo

x=O w=Rl v-R 2 -R 1-x-w

E (w - R)p(x, w, v)
x<R2-R 1x+w+v>R2 -R1
w>R 1

+ z - R)p(xl1 2)p(y T1)p(zjll)

(w - R)p(x12)p(w1Il)p(vITl - 11)

To derive B22 , we denote U = D(12 + T1,1 2 + 11 + T2).

E[B2 2] = q2 (E[D(O, 12 + 11 + T2) - R2 1q2]+ - E[D(O, 12 + 11 + Ti) - R2lq2]+)

= (x + y + u- R2)p(x,y,U) -
x<R2-R 1x+y>R2-R1
x+y+u>R2
R2-R1-1 ( oo y

X=0 y=R 2 -R 1-x u=R2-x-y

R2-R-1

-z0
X=O

(x + y 

(x+ y +z -R 2)p(x,y,z)
x<R2-R1
x+y>R2-R1
xz+y+z>R 2

u- R2)p(x{12)p(yTl)p(ulT 2 - T1 + 11)

z - R2)p(x112)p(yjT1)p(zlll )
y=Rz-R-z z=R2-yy=R2-Rl-x z=R2-x-y

To generalize the computation of expected backorders during the jth replenishment

where there are (k - 1) replenishments in a cycle E[Bjk], I < <k n, we denote

f(tl, t2 , t3 , t4, r)

where qk = Pr{D(O, t4) > R2 - R1 > D(O, t3 )}. Then, by definition,

E [Bjk] =
if j < k, 1 < k < n

f(2,2, T3, 73 + T1, R 2) - f(0, Tl + 11, 3,T3 + T1, R2)

ifj = k, 1<k <n

where r1 = 12 + (j - 1)T1 , 3 = 12 + (k - 2)T1 , T2 = 12 +- 1 + T2. Similarly, to generalize the

computation of E[Bjn,], we define

g(tl, t2, t3) = Pr{R 2 - R1 > D(O, t3)}E [D(tl, t2) - RIR2- R1 > D(O, t3)]+ .
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Then, by definition,

E[Bjn,] = g(71,71 + 11 + T1, r3) - g(71, 71 + 11, 3),

where T1 := 12 + (j - 1)T1 and 3 = 12 + (k - 1)T1 . Depending on the relative value of

tl, t2 , t3, t4 , we can compute the functions f,g as in the examples of E[B1], E[B1 2 ], E[B2 2].

Since each function of f, g involves multiple discrete conditional distributions, the com-

putations of f, g functions are complicated. In our computation of benchmarking the ap-

proximate model, we assume that in the exact model

E[Bjk] = qkE[Bjklqk] qkE[Bjk].

We then can replace the function f(t 1 , t2 , t3 , t4 , r) by

f(s1,S 2,S 3, S4,r) = qkE[D(1,S2) - r]+.

As an example, here is the expected value of backorders where there is one replenishment

in a cycle in the computation:

E[B1 ] R 2 )p(x + z112 + 11 + T 2 )

- R2)p( + 112 + 1)

p(xl12) E (x+z-
X=R2-R1 x+z=R 2

- p(xll2) (x + -y
x=R2-R1 x+y=R2

Comparing with Equation (A.7), we see that we overestimate the backorders slightly in the

computation . In summary, we use the following expected backorders per time unit in the

computation:

b (qlf(12 + 11, 12 + 11 + T2, R2)
T2

n
+ E qk((k -1)f(ll,ll + T1, R) + f(12 + 11 + (k-- )Tl,12 + 11 + T2, R2))

k=2

- qnnf(ll, 11 + T, R1)
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A.2.3 Echelon-1 Setup Cost

It costs al for every stage-1 replenishment. Following the ideas in the backorder cost

derivation, we derive he long-run average echelon-1 setup cost as

T2 (=l )(A.8)
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