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Abstract

In many lossy data compression systems, such as the one for HDTV, the data stream
generated by the source coder has a variable rate, while the channel on which the data is
to be transmitted operates in a fixed-rate manner. This necessitates the use of a buffer
and a buffer control scheme whereby parameters of the compression system are adjusted
based on the state of the buffer, to avoid overflow and at the same time to maintain
adequate performance in terms of average distortion. We study a simple model and
derive asymptotically optimal control scheme in the regime of large buffer size.

1 Introduction

Problems in rate-distortion theory are usually posed in terms of minimizing the average

distortion in quantizing the source given a constraint in the average rate of the encoded

bit stream. Very often, however, there are more stringent constraints on the behavior of

the output process from a source coder. For example, there is usually a fixed bandwidth

allocated for the broadcasting of compressed digital television signals, implying that the

encoded bit stream must be fed into a fixed-rate channel. In data networks, a variable-

rate output bit stream can usually be accommodated, but there are often rate-control

schemes which regulate the burstiness of the stream by enforcing a peak rate as well as

an average rate.

While it is theoretically possible to approach the rate-distortion limit using vector

quantization and a fixed-length encoding of the reproduction vectors, the block length

required of the vector quantizer is much too large to be useful in practice. With a

small block length, variable-length encoding of the reproduction vectors can attain a

significantly smaller distortion for a given average bit rate, by taking advantage of

the statistical variability of the source. However, this necessitates the use of a buffer

between the source coder and the channel in order to satisfy the constraints described

above.
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A general model is as follows. The input real-valued data are represented by the

stochastic process Y 1 ,Y 2 ,..., where Yt E Rk and k is the block length of the data to

be quantized. The statistics of {Yt} are assumed to be known and the block length k is

pre-specified. At each time t, a quantizer Q is chosen which maps the vector Yt into a

variable-length binary codeword Ct = Q(Yt) representing the reproduction vector into

which Yt is quantized. (Here, we are regarding Q as a composition of both the vector

quantization and the lossless encoding of the reproduction vector.) The codeword Ct

is then put into a buffer of size L. At each time instant t, a fixed number, Re, of bits

is taken out of the buffer and put into the channel. A buffer control scheme chooses

the quantizer Q for the next source vector, based on the number of bits St currently

in the buffer and the previous codewords C1, C2,..., Ct. (Assuming no transmission

errors, this information is also available to the decoder so it can always keep track of

the quantizer used at each time.) The problem is to find the buffer control scheme that

minimizes the average distortion while keeping the buffer from overflowing.

While the above formulation naturally encompasses the case when the channel has

a strictly fixed rate, it is also appropriate to model some situations where burstiness is

allowed. One such scheme is the leaky bucket [GB92], which, when given two parameters

R, and W, implements a rate-control scheme such that the average rate of bits entering

into the channel is Re and the maximum number of bits going into the channel per unit

time slot is W bits. One view of this scheme is to imagine that permits are generated

at a rate of Re at each time slot and are put into a bucket of size W. Excess permits

are discarded. In time slot t, At data bits enter a buffer (of size L) and the ones at the

bottom of the buffer can leave it and enter the channel as long as each bit can obtain a

permit from the bucket. Thus, no more than W bits can enter the channel in any one

time slot and the average rate is Re. It is not difficult to show that if Pt is the number

of permits in the bucket and St is the number of data bits waiting in the buffer at the

beginning of time slot t, then St, defined by:

St = St+ w if St > 0
Set= W-Pt if St = 0

is the state of a fictitious buffer of size L + W, with arrival process {At} and a constant

departure rate Re bits per unit time. Moreover, since there is a one-to-one correspon-

dence between the fictitious buffer state St and the buffer-bucket state pair (St, Pt), any

optimal control scheme for the fictitious buffer will translate into an optimal control

scheme for the original leaky bucket problem. Thus, our formulation is general enough
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to include this case.

The problem of buffer overflow for lossless variable-length encoding has a relatively

long history. It was first looked at by Jelinek [Jel66], who gave conditions on codeword

lengths that minimize the probability of overflow. This work was followed by Humblet

[Hum92] who presented an algorithm to actually compute the optimal code. Wyner

[Wyn74] gave an approximate formula for the average fraction of data that will be

lost due to overflow for any given variable-length lossless coding scheme. These results

are all on lossless coding, where there is no tradeoff between average distortion and

overflow probability and hence no opportunity for control. More recent and closer to the

problem considered here is the work of Farvardin and Modestino [FM86] and Harrison

and Modestino [HM90]. They presented specific buffer control schemes for variable-rate

lossy coding of memoryless sources and computed numerically and via simulation their

average distortion performance. No attempt was made to derive optimal schemes.

The objective of this paper is to gain a better understanding of the structure of

optimal buffer control schemes. For a fixed source and buffer size L, the optimal control

scheme can be obtained numerically as a solution to an average-cost dynamic program-

ming problem. Such an approach, however, yields little insights to qualitative features

of optimal schemes. Moreover, sources like video are very complex and a complete sta-

tistical characterization is often impossible. To get more theoretical insights, we shall

rather consider the asymptotic problem when the buffer size L becomes large, and an-

alytically derive optimal buffer control schemes for that regime. As a first step in this

program, we will treat the case of memoryless sources. More complex sources will be

considered in future papers.

In the next section, we will give a more precise formulation of the problem. Section

3 contains our results. We will present a lower bound on the achievable performance

as well as a very simple control scheme that almost attains that lower bound. The

performance is also compared against what is achievable without any control. Section

4 contains the conclusions. In this extended abstract, the proofs will only be sketched.

Also, the following short-hand notations will be used to compare rates of convergence:

an = O(b.) if a, goes to zero at least as fast as b,; an = o(b,) if an goes to zero strictly

faster than b.; an = Q(b.) if a, goes to zero no faster than bn; a, = O(b.) if they go to

zero at the same rate.
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2 Formal Problem Statement

Let Y 1 ,Y 2,... be an i.i.d. sequence of source samples, where Yt E ~Rk has a density

py, which is assumed to be sufficiently smooth. . A quantizer Q : Rk {0,1}* is

a composition of two maps, Q = V o U where U: Wk _ Rk maps the data sample

to a reproduction vector, and V : Rhk -- {0,1}* assigns a binary codeword to the

reproduction vector. The lossless code V is assumed to be uniquely decodable and

satisfy the prefix-condition. Two important attributes of a quantizer are its mean-

square distortion and its rate:

D(Q) = E(IIY - U(Y)112), R(Q) = E(JQ(Y)I)

(Here, I [ denotes the length of the codeword.)

To characterize the optimal distortion that can be achieved for a given average rate,

define the operational distortion-rate curve as:

Do (R)= inf D(Q)
{Q:E(IQ(Y)I)<R)

This is the minimum distortion one can achieve using the same quantizer on each data

vector, with only an average rate constraint. It is not true in general that this curve is

convex. If it is not, then in fact one can do better by time-sharing between points on

this curve, i.e. we can use two quantizers, each for a fraction of the time, and achieve a

better average distortion than one single quantizer at the same average rate. Let us now

define the time-shared distortion-rate curve, DT(R), as the lower convex hull of Dop(R).

This curve will be a union of strictly convex sections, on which the optimum can be

attained by a single quantizer, and straight-line segments, on which time-sharing takes

place. Points on DT(R) represent the minimum distortion that can be achieved for a

given source block length and average rate, and without any buffer constraints. The

problem is how well we can do relative to this optimum when there is a finite buffer.

Let us now turn to the setting with a finite buffer and an adaptive choice of quan-

tizers. Since the data samples are i.i.d., it suffices to consider only memoryless buffer

control schemes where the choice of the quantizer for the next sample is only a function

of the buffer state and not of the previous quantized samples. Given a current buffer

state SL = s, let the quantizer selected for the next sample be QL. (The explicit de-

pendence on the buffer size L is shown to emphasize that a different control scheme

can be chosen for each L.) Let the net number of bits entering the buffer from the
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next sample be +XL = I L(Yt+1)[- Re. If this results in an underflow of the buffer,

i.e. XtL+ + Sf < 0, the deficit is simply padded with zeros and sent onto the channel.

(Assuming the decoder also keeps track of the buffer state, there is no problem in de-

coding here.) On the other hand, if the current sample results in an overflow of the

buffer, i.e. Xt+j + S L > L, then the part of the codeword that fits into the buffer is

sent, thus filling up the buffer. We assume that in decoding this incomplete codeword,

a fixed and large distortion of Do is committed, where Do = E(IIY - E(Y)112 ). In

other words, the decoder treats this as a garbled codeword and just decodes it to the

mean vector. In practice, one can do something more sophisticated, such as sending

the nearest codeword which will fit into the buffer [BCTK80]. But the specific overflow

handling scheme will have little bearing on our asymptotic analysis, so in this paper we

will concentrate on the simpler scheme.

Given the buffer size L and a specific buffer control scheme, the buffer state process

{SL} forms a finite-state Markov chain. Assuming 'that the chain is ergodic, let its

steady state distribution be lrL. Since a large distortion is committed whenever the

buffer becomes full, the tradeoff between the steady-state probability the buffer is full,

pf(L) 7rL(L), and the steady state average distortion in normal operation when

the buffer is not full, Dq(L) E ~7rL(S)D(QJ), is of interest. For reasonable control

schemes, one would expect that pf(L) -, 0 and Dq(L) -* D(Rc) as the buffer size L

becomes large, where DT(RC) is the minimum distortion achievable with an average

rate constraint of Rc. The key question that will be addressed is the optimal tradeoff

between these two rates of convergence, and which control scheme can achieve this

optimal tradeoff. Another way of viewing the problem is to consider the total distortion

as the sum of the average distortion in normal operation and the large distortion when

the buffer is full, ie. Dq(L) +pf(L)Do, and the control objective is to make both terms

small.

3 Results

The key tool used to estimate the steady-state probability of a full buffer is Wald's

identity [Wal44], which yields information on hitting probabilities and hitting times of

random walks.

Lemma 3.1 (Wald's Identity ) Let {Wn} be a negative-drift random walk starting

at the origin, and let A(r) = log E(e'Wr ) be its log moment generating function, which
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is assumed to be finite for all r. Let a > 0 and b < 0 be two given barriers, and let N

be the first n > 1 such Wn > a or Wn < b. Then

E(et'WN) = 1

where r* is the unique positive root of A(r) = 0. Furthermore, the expected hitting time

is given by:

E(N)E(W 1) = E(WN)

The tradeoff between the average distortion in normal operation and the fullness

probability depends on whether the channel rate Rc lies in the time-shared regions of

the distortion-rate curve or in the regions achievable by single quantizer. In the time-

shared regions of the distortion-rate curve, one can achieve essentially optimal distortion

with negligibly small probability of filling the buffer.

Proposition 3.2 If (Rc, DT(Rc)) lies on a straight-line time-shared segment of the

distortion-rate curve, then there is a control scheme such that the average distortion

Dq(L) approaches DT(Rc) exponentially fast in L, and a fullness probability pf(L) de-

caying exponentially to zero with L.

Sketch of Proof. Let (R 1 ,D 1) and (R 2, D2 ) (R 1 < R < R2) be the two ends of

the straight line segment containing (Rc, DT(Rc)), and let Q1 and Q2 be the quantizers

achieving these points respectively. Our scheme is as follows. For each L, use quantizer

Q2 when the buffer is less than half full and use Q1 otherwise. Note that the selected

quantizers are independent of the buffer size.

To compute p (L), we view the times at which the buffer becomes full as the epochs

of a renewal process and apply renewal theory to obtain pi(L) = --L-, where T is the

duration between successive times when the buffer becomes full. Denote the upper and

lower halves of the buffer by A1 and A 2 respectively. To compute E(T), we condition

and decompose the evolution of the buffer state process with respect to events of barrier

hitting, where the barriers are the top of the buffer, the center of the buffer, and the

bottom of the buffer. Since in between these events, the process is simply a random

walk, we can express E(T) in terms of the expected barrier hitting times and hitting

probabilities, which can in turn be estimated via Wald's identity. One finds that
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E(T) -= 0( -1
P(hitting the top before returning to center, starting from center)

= :(exp(-r*(Qi)L)) (by Wald's Identity)

where r*(Q1) is the unique positive zero of the log moment generating function of the

random variable jQ1(Y)f - R,.

We next compute the average distortion Dq(L) for L large. This is given by:

Dq(L) = 7rL(Al)DT(Ql) + trL(A2)DT(Q 2)

Since the buffer state process is bounded, the expected drift over its steady-state

distribution is zero. Hence we can write the balance equation:

7rL(Al)(Rl - Re) + 7rL(A 2)(R 2 - R,) + effects due to top and bottom of buffer = 0

Since the fraction of time spent at the top and bottom of the buffer is exponentially

small as L becomes large, it can be argued that the third term is also exponentially

small, and

Dq(L) 2RC DT(Q) + R- DT(Q2) + exponentially small term
R2 - R1 R 2 - R1

- DT(R,) + exponentially small term

Hence, if R, is in the time-shared region, then both the average distortion in normal

operation and the fullness probability approach their respective optimal values expo-

nentially fast. Thus, there is really not much need to worry about the tradeoff between

these two quantities. The reason for this nice situation is that one can use two fixed

quantizers (for all buffer sizes) which, while achieving near-optimal average distortion

during normal operation, also leads to very small probability of filling the buffer because

of the large negative net drift of the quantizer used in the upper half of the buffer.

In the single-quantizer achievable region, on the other hand, there is a more stringent

tradeoff involved. Since the distortion-rate curve is strictly convex at R = RC, it is clear

that the rates of the quantizers have to be close to R, in order that their average

distortion in normal operation can get close to the optimal distortion DT(R,). The
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closer the average distortion is to the optimal, therefore, the smaller the negative drifts

have to be, and the larger the chance of having a full buffer. And there lies the tradeoff.

We make two assumptions on the class of quantizers Q that are used in the buffer

control schemes we shall be dealing with:

1) There exist e > 0 such that P(IQ(Y)l > Re) > e for all quantizers Q E Q.

2) There exists a uniform bound M on the codeword lengths for all Q E Q.1

The following result gives a lower bound on the tradeoff between the average dis-

tortion Dq(L) and the fullness probability p (L).

Proposition 3.3 Assume that as the buffer size becomes large, the sequence of buffer

control scheme satisfies: limL,, 0 max, ILL, I = O, where L,S -= E(IQL(Y)I) - Rc is the

net drift of the quantizer. Then the rates of convergence of the steady-state normal

distortion Dq(L) and of the fullness probability pf(L) are constrained as follows: if

pf(L) = o(1/L 2 ), then Dq(L) - DT(Rc) = Q(1/L2).

In essence, the result says that no buffer control scheme can make both pf(L) and

Dq(L) converging at a rate faster than 1/L 2 . If we take the total average distortion as

Dq(L) + Dopf (L), then the results implies that a lower bound on the convergence rate

of the total distortion to the optimal distortion DT(R,) is 1/L 2 .

Sketch of Proof. Here, we consider only buffer control schemes which have drifts

symmetrically about the center of the buffer, i.e. "1L,j+s = -L,- for = 0,1,..., .

The proof for non-symmetrical schemes use similar ideas but require a more elaborate

argument, and will not be sketched here.

The key idea is to write an appropriate balance equation for the drifts. Because the

drifts are always pointed towards the buffer center, one can argue that the center is

the most probable state, so that 7rL(L) = Q(l). If we define a new Markov chain by

grouping the entire lower half of the buffer into one state s* and look at the steady-state

balance equation for the new chain, we get:

0 = amount of drift from buffer top + amount of drift from the interior of top half

+ amount of drift from s*

1This assumption is stronger than necessary, and, with more technical work, can probably be
replaced by a condition on the uniform boundedness on certain moments of IQ(Y)I.
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The first term is due to the effect of reflection at the buffer top, and is proportional

to the fullness probability, pf(L); the second term is lower bounded by E,WL(/.L,.IL >

s > L). Since s* contains the center state, the third term is lower bounded by a term

proportional to 7rL(L). Hence, if p (L) = o(-L), then --E, L(jPL,s I > L) = Q( L). By the

symmetry of the control scheme, we get

EX(I/1L},JI ) = Q1( L) (3.1)

On the other hand, by a second-order Taylor series approximation of the distortion-

rate function around R = R,, the average normal distortion Dq(L) is roughly given by

DT (R) + D )2 EL (L, ). (The first-order term disappears due to the symmetry in

the control scheme.) Since E,,L(2L,,) > (EL,(I1iL,,I))2, the desired lower bound follows

from Eq. (3.1). LO

We now give a very simple buffer control scheme which can achieve a near-optimal

convergence rate for the normal distortion and at the same time having the fullness

probability decay at a very fast rate. We first need the following lemma.

Lemma 3.4 Let (Ro,, DT(R,)) be a point in the interior of a single-quantizer achievable

region of the distortion-rate curve. For every R in some neighborhood of Ro, assume

that the optimal quantizer is unique and let QR be the optimal quantizer. Then

dr*(QR) 2

dR Vatr(IQRo(Y)I)

where, for R # Ro, r*(QR) is the unique nonzero root of the log moment generating

function of the random variable IQR(Y)I - R,.

Proposition 3.5 Given any K > 2, there exists a buffer control scheme such that

pf(L) = O(F) and Dq(L) - DT(Rc) = ®(ln L ).

Sketch of Proof. Consider the following buffer control scheme. For each buffer size

L, use two quantizers QL and QL which achieve points on the distortion-rate curve at

rates R - ClnL and R, + Ch1L respectively, with QL used in the top half of the buffer

(AI)and QL used in the bottom half (A 2). Note that in contrast to the scheme for the

case when R, is in the time-shared region, the quantizers are dependent on the buffer

size L, with their rates approaching R, as L becomes large. Using Wald's identity and
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renewal theory as in the proof of Prop. (3.2), one can show that the fullness probability

is given by:

pf(L) = O(exp(- r*(QL)L))

where r*(QL) is the unique positive zero of the log moment generating function of the

random variable IQL()l - R. By Lemma (3.4), we have the approximation

2 ClnL
rk1 ) Var(IQRe(Y)I) L

By choosing C = K Var(IQR,(Y)I), we get pf(L) = O(L-K).

When we approximate the average distortion of QL and QL via the Taylor series

expansion of the distortion-rate function around R = Re, the first-order term disappears

due to the symmetry of the scheme, and we have the approximation Dq(L) = DT(Rc) +

Q(lL2 L), thus giving us the claimed rate of convergence. O

The above result shows that we can almost achieve the lower bound of 1/L 2 on

the rate of convergence of the total distortion while keeping the fullness probability

decaying at arbitrarily fast (polynomial) rate. Moreover, the buffer control scheme is

exceedingly simple, using two quantizers only. We now compare this performance with

the lower bound for the case when there is no buffer control.

Proposition 3.6 Suppose we are only allowed to use one quantizer for a given buffer

size. Then if the fullness probability p (L) decays faster than 1/L, the average distortion

Dq(L) converges to the optimal distortion no faster that 1/L. Hence, for any single-

quantizer scheme, the rate of convergence of the total distortion is lower bounded by

1/L.

Hence, by using two quantizers with opposing drifts, the rate of convergence is

squared. Intuitively, the gain is because with one quantizer of negative drift, the buffer

is empty a significant fraction of time, thus wasting the allocated channel rate. In the

two quantizer case, this is avoided by keeping the buffer half-full most of the time. The

quantizer for the lower half of the buffer actually operates at a rate greater than the

channel rate, thus decreasing the average distortion.

4 Conclusions

We have considered the problem of buffer control of variable-rate quantization system

for a fixed-rate channel. Asymptotically optimal control schemes , in the regime of
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large buffer sizes, have been derived for memoryless sources. Such optimal schemes

have a simple form: they consist only of switching between two quantizers, one to be

used when the buffer is more than half full and the other when the buffer is less than

half full. An improvement over the best achievable without any buffer control is also

demonstrated.

References

[BCTK80] Toby Berger, M.U. Chang, and S.Y. Tung-Kleinberg. Quantization-

permutation codes and buffer-adapted huffman codes. In Proceedings of

the 18th Allerton Conference on Communications, Control and Computing,

Monticello, IL, pages 433-436, 1980.

[FM86] N. Farvardin and J.W. Modestino. Adaptive buffer-instrumented entropy-

coded quantizer performance for memoryless sources. IEEE Transactions

on Information Theory, 32(1):9-22, January 1986.

[GB92] Robert Gallager and Dimitri Bertsekas. Data Networks. Prentice Hall,

second edition, 1992.

[HM90] D. Harrison and J.W. Modestino. Analysis and further results on adaptive

entropy-coded quantization. IEEE Transactions on Information Theory,

36(5):1069-1088, September 1990.

[Ifum92] Pierre Humblet. Generalization of huffman coding to minimize the probabil-

ity of buffer overflow. IEEE Transactions on Information Theory, 27(2):230-

232, March 1992.

[Jel66] Frederic Jelinek. Buffer overflow in variable length coding of fixed rate

sources. IEEE Transactions on Information Theory, 14(4):490-501, May

1966.

[Wal44] A. Wald. On cumulative sums of random variables. Annals on Mathematics

and Statistics, 15:283-296, 1944.

[Wyn74] Aaron Wyner. On the probability of buffer overflow under an arbitrary

bounded input-output distribution. SIAM Journal on Applied Mathematics,

27:544-569, December 1974.

11


