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Abstract

This research deals with the estimation of dynamically evolving ellipsoids from noisy observa-
tions (e.g. lower-dimensional projections). By appropriately choosing the representations for
ellipsoids, their dynamics, and their projections, it is possible to reconstruct such a dynamically
evolving ellipsoid using the well-developed results and methods of recursive estimation theory.
Specifically, this work concentrates on a medical imaging application of ellipsoid estimation
where the precise ellipsoid dynamics and projection geometries are unknown.

The medical application considered in this paper is a method to obtain a dynamic estimate
of left-ventricular ejection fraction from a gated set of planar myocardial perfusion images
from three views. Ejection fraction, defined as the ratio of the fully contracted left-ventricular
volume to the fully expanded left-ventricular volume, is known as an effective gauge of cardiac
function. Thus, myocardial perfusion images may be used to estimate ejection fraction as well
as to locate infarcts. This may lead to a more cost-effective diagnostic procedure which limits
the patient's exposure to radiation.

To formulate this estimate of ejection fraction, geometric reconstruction and recursive es-
timation techniques are employed. The left ventricle is modeled as a dynamically evolving
three-dimensional ellipsoid. The left-ventricular outline observed in the myocardial perfusion
images is then modeled as a dynamic, two-dimensional ellipse, obtained as the projection of
the former three-dimensional ellipsoid. This data is processed in two ways. In the first, the
three views are processed together as a three-dimensional dynamic ellipsoid reconstruction
problem. An alternative method is to process each view individually as a two-dimensional dy-
namic ellipse estimation problem and calculate a three-dimensional ejection fraction based on
the effective two-dimensional ejection fractions of each view. Both methods are investigated.

The approximating ellipsoids are reconstructed using a Rauch-Tung-Striebel smoothing fil-
ter which combines the observed temporal set of projection images with an evolution model
to produce the best estimate of the ellipsoid at any point in time given all the data. This
method produces an ejection fraction estimate which is more robust to noise. Further, numer-
ical studies of the sensitivity of this approach to unknown dynamics and projection geometry
are presented, providing a rational basis for specifying system parameters and data require-
ments. This investigation includes estimation of ejection fraction from both simulated and real
data.
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1 INTRODUCTION

This research deals with an application in medical imaging of estimation of dynamically evolv-

ing ellipsoids from noisy observations (often obtained as lower-dimensional projections). Much

work in geometric reconstruction [1-5] has focused on reconstructing objects such as ellipsoids

from noisy lower-dimensional projections. While past work in this area has focused on static

objects or dynamically evolving objects with known dynamics and projection geometry, the

work presented in this paper deals with the reconstruction of a dynamically evolving ellipsoid

from noisy observations when the dynamics of the object and the observation geometry may

be imprecisely known. This is the case in many practical applications such as medical imaging.

In particular, this work concentrates on a method to obtain the ejection fraction of the

left ventricle of the heart from a gated set of planar radionuclide (99mTc) myocardial per-

fusion images [6-8]. The ejection fraction of the left ventricle has long been known as an

effective gauge of cardiac function [9]. Gated myocardial perfusion imaging is a radionuclide

technique that may be used to produce a sequential set of images of the heart in motion. The

model-based approach described in this paper employs geometric reconstruction and recur-

sive estimation techniques to track left-ventricular shape throughout the cardiac cycle, thus

allowing the generation of a dynamically-based ejection fraction estimate.

The ejection fraction (EF) is a measure of the pumping capability of the heart and has

great prognostic value to cardiologists. The ejection fraction is defined as:

end systolic volume
end diastolic volume

where end systole and end diastole are the fully contracted and fully expanded cardiac phases,

respectively. A reduced ejection fraction is indicative of impaired cardiac function.

In this work, the ejection fraction estimate is based on data obtained from a temporal set of
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myocardial perfusion images [6-8] from three views which are obtained by injecting the patient

with a radionuclide marked substance (99mTc in this case) and imaging with a gamma camera.

The gamma camera produces images by counting the photons emitted from the radioactive

tracer. Since small doses must be used for safety reasons, the images are produced via ECG-

gating. The resulting ECG-gated myocardial perfusion images are not snapshots of the heart

in motion, but rather, the sum of a particular cardiac phase over many cardiac cycles. The

data-acquisition modality coupled with beat-to-beat variability, combine to give poor visual

quality images. The resulting temporal set of images are taken at 16 equally spaced points in

the cardiac cycle. Typically, the data set consists of images from three views: anterior (ANT),

lateral (LAT), and left anterior oblique (LAO). Anterior is a frontal view; lateral is a side view

underneath the left arm; and left anterior oblique is a frontal view skewed down and to the

left side. Figure 1 shows a sample myocardial perfusion image from the ANT view.

A gated set of myocardial perfusion images are used here to estimate ejection fraction, a

purpose for which they are not traditionally used. Myocardial perfusion images, while of poor

visual quality, contain a large amount of physiological information reflecting the tie between the

chosen radionuclide and the biochemistry of the region under study. As a result, these images

are traditionally used to locate infarcts, areas in the heart muscle that are being deprived

of nutrients because of an occlusion in the vessels of the heart. In the myocardial perfusion

images, such infarcts appear as dark regions due to the lack of radionuclide reaching the region.

In addition to this traditional role, it is possible to distinguish the outline of the left-ventricular

chamber from myocardial perfusion images and thus, also obtain structural information. It is

this projection-like outline of the left-ventricular chamber that is used in this work to track

left-ventricular volume and estimate ejection fraction.

Geometric reconstruction and recursive estimation techniques are used here to formulate
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Figure 1: A sample myocardial perfusion image. The horseshoe shaped object in the center is
the left-ventricular wall and the bright object in the lower left is the liver.

an ejection fraction estimate based on myocardial perfusion images. One commonly used ap-

proximation to the true shape of the left ventricle is a three-dimensional ellipsoid [10-12]. The

projections (or shadows) of this left-ventricular ellipsoidal model are then two-dimensional

ellipsoids, which model the left-ventricular outline in the observed myocardial perfusion im-

ages. In this work, by projections, we mean the shadow projection of this ellipsoidal shape,

rather than line integral projections. As previously mentioned, much work in geometric recon-

struction has focused on reconstructing objects such as ellipsoids from noisy lower-dimensional

projections. Combining these geometric reconstruction techniques with statistical recursive

estimation procedures, such as Rauch-Tung-Striebel smoothing1 [13], it is possible to formu-

late an estimation procedure that combines the observed temporal set of projection images

1 Rauch-Tung-Striebel smoothing is an efficient algorithm to find the optimal estimate at any point in time
given all the data over an interval.
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with an evolution model to produce the best estimate of the ellipsoid at any point given all

the data. We examine two ways of processing the projection data. In the first, the three

projection views are processed together as a single three-dimensional ellipsoid reconstruction

problem. An alternative, simpler method, which still utilizes the data from all three views, is

to process each view individually as a two-dimensional dynamic ellipse estimation problem and

then to calculate a three-dimensional ejection fraction based on the effective two-dimensional

ejection fractions obtained from each view. Both techniques are investigated in order to assess

robustness to inevitable errors in the knowledge of the three image or projection planes.

Many techniques exist for estimating ejection fraction including angiography [10], echocar-

diography [14], magnetic resonance imaging [15], and radionuclide ventriculography [10,16].

The "gold standard" (GS) estimate of ejection fraction used here is based on multiple-gated

blood pool (MUGA) images. The ultimate objective of this work will be to show a high degree

of correlation between our ejection fraction estimates based on myocardial perfusion images

and standard estimates based on MUGA. Several important points should be noted in compar-

ing ejection fraction estimates based on myocardial perfusion images to those based on MUGA.

First, an ejection fraction estimate based on myocardial perfusion images provides a safer and

more cost-effective alternative to the MUGA based estimates. This is because the typical

diagnostic procedure includes both the myocardial perfusion imaging to obtain physiological

information about possible cardiac infarcts and the MUGA imaging to estimate ejection frac-

tion. Thus, by estimating ejection fraction from myocardial perfusion images alone, the need

for MUGA imaging could be eliminated and the patient's exposure to radiation minimized.

Second, the smoothing techniques used in this work combine all the frames of data (in contrast

to current techniques) to give an ejection fraction estimate, which is more robust to variations

due to noise. Third, in a formulation based on geometric reconstruction and statistical meth-
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ods, the modeling assumptions are explicitly stated. Thus, it is possible to investigate the

sensitivity of the estimate with respect to these assumptions. Indeed, we do precisely that in

Section 3.

In addition, note that the dynamically-based smoothing techniques presented in this work

are also directly applicable to ejection fraction estimates from other types of data. Again, our

dynamically-based smoothing techniques combine several frames of data to give an ejection

fraction estimate which is more robust to variations due to noise than those methods using

only single frames of data. For example, a similar smoothing filter-based reconstruction could

be applied to MUGA images or even angiographic data, also yielding more accurate ejection

fraction estimates from those modalities.

The organization of this paper is as follows. In Section 2, the necessary background from

geometric reconstruction and statistical recursive estimation is discussed together with their

application to the estimation of ejection fraction from myocardial perfusion images. Section 3

presents numerical experiments examining our methods and results as applied to simulated

data. Finally, in Section 4, ejection fraction estimates from real myocardial perfusion images

are presented.

2 PROBLEM FORMULATION

As previously mentioned, we model the left ventricle and its projections as dynamically evolving

ellipsoids. Thus, the myocardial perfusion images are viewed as noisy two-dimensional pro-

jections of a dynamically evolving three-dimensional ellipsoid. Using the approach described

in [3] it is possible to reconstruct an n-dimensional dynamic ellipsoid from noisy observations,

e.g. lower-dimensional projections. This section summarizes the mathematical formulation in-
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volving reconstruction of an n-dimensional dynamically evolving ellipsoid and discusses the

issues arising in its application to the processing of myocardial perfusion images to estimate

ejection fraction.

2.1 Mathematical Background

Consider the general problem of reconstructing a dynamically evolving n-dimensional ellipsoid

from a series of noisy (perhaps lower-dimensional projection) observations. This problem

may be greatly simplified by choosing appropriate representations for the ellipsoids and their

dynamics. Several such representations (including the one used in this work) are discussed in

detail in [3]. It is possible to represent the points included in an n-dimensional, origin centered,

non-degenerate ellipsoid in the following way:

{zz TXlz < 1, z E Rn} (2)

where the symmetric, positive definite, n x n matrix X that represents the ellipsoid is easily

determined. For example, a two-dimensional ellipsoid (an ellipse) centered at the origin with

semi-axis lengths, a and b, and an angle of rotation 0 is represented by the matrix:

T /

cos sin (a2 0 cos sin q

-sin q cos ) 0 b2 -sin cosq )
The projections of an ellipsoid are themselves ellipsoids of lower dimension. The symmetric

matrix representation of the ellipsoid (2) yields a linear relationship between the matrix X that

represents the ellipsoid and the matrix Yi that represents the ellipsoid in a given projection.

In particular, this relationship is given by:

Yi= CT X Ci (3)
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where the matrix Ci captures the geometry of the projection. Specifically, the rows of the

matrix Ci span the space of the projection. Note that the case where Ci is the identity

corresponds to observations of the ellipsoid itself.

Representing an ellipsoid by its associated matrix X, it is possible to capture a broad range

of ellipsoid dynamics through the following evolution equation:

X(k + 1) = A(k)TX(k)A(k) (4)

where changes such as magnification, rotation, and eccentricity change may be included in a

simple way in A(k). For example, in the two-dimensional case, one convenient choice for the

matrix that captures the dynamics is given by (see [51):

c(k) 0 a(k) O cos O(k) sin O(k)
A(k) = vll0 l (5)

0 c() 1/a() -sin(k) cos(k)

where the first term represents uniform scaling by the factor c(k) > 0, the second term repre-

sents an area preserving stretching along the coordinate axes by a(k) > 0, and the last term

represents rotation by an angle 0(k). This general form is easily extended to express similar

dynamics for ellipsoids of higher dimensions.

Now if we have noisy observations of the evolving matrix X(k) of the form (3), these may

be captured by the observation equation:

Yi(k) = CT X(k) Ci + Vi(k) (6)

where the symmetric matrix Vi(k) represents the effects of observation noise. Note that this

model assumes that our observations are actually ellipsoids, with the uncertainty appearing in

the exact shape of the ellipsoid. To simplify the ellipsoid reconstruction problem, we assume



that the independent elements of Vi(k) have a Gaussian distribution2 .

By casting the geometrically intuitive formulas (4) and (6) in standard state space form,

it is possible to invoke the well-developed methods of recursive estimation theory and still

preserve the geometric interpretation of the original problem formulation. To this end, note

that the set of n x n symmetric matrices forms a n(-n+l)-dimensional vector space. Thus, there

exists an equivalent vector representation for the linear ellipsoid dynamics (4) and observation

equation (6) given by:

x(k + 1) = A(k)(k) (7)

y(k) = C X(k)+v(k) (8)

where the matrices A and C are matrix representations of the linear operators on X(k) defined

in (4) and (6) with respect to given orthonormal bases on the sets of symmetric matrices

of corresponding dimension. Thus, there is a one-to-one correspondence between X(k) and

x(k) (similarly between Y(k) and y(k)) and our intuition about the ellipsoid evolution and

measurement equations is preserved. In [3], specific orthonormal bases and thus forms for the

matrices A and C are discussed. More exactly, the matrix C is obtained by stacking the matrix

representations of each of the linear operators Ci. Further, it follows from (6) that the term

v(k) is a Gaussian vector with zero mean and variance R = rI. The important feature of

the formulation in (7) and (8) is that the problem is now stated in the standard state space

framework (i.e. tracking a dynamically evolving state vector from noisy measurements), which

is directly amenable to the extensive set of techniques from recursive estimation. In particular,

2 This model is not strictly proper, since it implies that Yi(k) will not always be a positive definite matrix,
which it must be to represent an ellipsoid. However, we choose to employ this commonly-used assumption
because of the simplification it provides in the ellipsoid reconstruction problem. Other more complicated models
are, of course, possible.
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the Rauch-Tung-Striebel (RTS) smoothing algorithm [13] may be used to obtain i(klT), the

best estimate of the ellipsoid x(k) at time k given data over the entire time interval [0, T].

2.2 Application to Processing of Myocardial Images

The RTS smoothing algorithm will be used throughout this work to reconstruct ellipsoids that

approximate both the left ventricle and its projections. The left-ventricular ejection fraction

will then be calculated from the temporal volume changes of these reconstructed ellipsoids

using (1). Recall that the formulation of (6) assumes that it is ellipsoids (albeit perturbed

ones) and not images that are our observations. Thus, in our work with myocardial image

data a preprocessing step which extracts ellipses from the raw images will be assumed. There

exist many such methods to extract ellipses from planar data [17-19]. In a practical setting,

the statistics of v(k) in (8) would be provided by this preprocessing step. Since this is not

the focus of this paper, we assume that such a preprocessing step which extracts ellipses and

provides the statistics of the measurement noise is available.

Before proceeding, note that the transformation from the ellipsoid shape, as specified by the

symmetric matrix X(k) (or equivalently by x(k)), to the ejection fraction is a nonlinear one.

In particular, the volume of the ellipsoid is proportional to the square root of the determinant

of X(k). This nonlinearity is then combined with the further nonlinearity in the definition

(1) to obtain the ejection fraction. In addition, note that this transformation between ellipses

and ejection fraction is not one-to-one since many combinations of different maximum and

minimum ellipses will yield the same ejection fraction.

There are a number of ways that we can imagine using the formulation in Section 2.1 to

combine the information in the different projection views. We will only consider the following

two here, though others can be imagined. The first, and perhaps most straightforward, ap-
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proach is to process the three projection views together in a single three-dimensional ellipsoid

reconstruction problem, i.e. our observations are taken to be two-dimensional projections of

an underlying three-dimensional ellipsoid. An ejection fraction estimate is then based on the

resulting reconstructed three-dimensional dynamic ellipsoid according to (1). Of course, this

type of processing inherently requires that a projection geometry be specified.

An alternative, simpler method, which we also consider, is to process each lower-dimensional

view individually as an independent two-dimensional ellipse estimation problem, thus obtaining

three, two-dimensional dynamic ellipse estimates. In this case, our observations are taken as

the two-dimensional ellipses themselves. For each of these three dynamic ellipse estimates, a

corresponding apparent planar "ejection fraction" can be found. The overall ejection fraction

may then be obtained by combining these two-dimensional ejection fractions calculated from

each view under certain simplifying assumptions. In particular, this combination may be

accomplished using the following easily derived formula relating the ejection fraction of a 3-D

ellipsoid to the apparent ejection fractions of its projections onto mutually orthogonal planes

aligned with the ellipsoid axes:

EF = 1 - /(1 - EFviewl)(1 - EFvie 2)(1 - EFview3 ) (9)

where EF is the overall ejection fraction of the 3D ellipsoid and EFview i is the apparent ejection

fraction of the ellipses in projection i. Note that this formulation also inherently assumes a

projection geometry, i.e. projections onto orthogonal planes aligned with the semi-axes of the

ellipsoid.

Regardless of which way we choose to use the results of Section 2.1 to combine the data,

there are two significant obstacles to be addressed to obtain reliable dynamic shape recon-

structions and ejection fraction estimates from the real data. First, the underlying ellipsoid
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dynamics, as captured by A(k), are unknown to us (though we clearly have significant prior

knowledge in this regard). Second, the projection geometry, as captured explicitly in C or

implicitly in equation (9), is variable and, further, imperfectly known. Past work in geomet-

ric reconstruction [3] concentrated on reconstruction of dynamically evolving ellipsoids from

lower-dimensional projections with known dynamics and projection geometries. Next we dis-

cuss methods to overcome our lack of knowledge about the dynamics and projection geometry.

These methods are combined to yield our overall approach. The methods proposed in this

section and their sensitivity are examined through numerical simulations in Section 3.

Imperfectly Known Dynamics

The dynamics of the ellipsoid which approximates the left ventricle are unknown. The true

left-ventricular dynamics vary from person to person and from cycle to cycle. Thus, some

way of identifying or approximating these dynamics is needed. The approach used in this

work employs a model identification scheme based on hypothesis testing to determine a coarse

approximation to the true ellipsoid dynamics. The RTS smoothing filter reconstruction is then

based on the dynamics chosen by the model identification scheme. Note that because the

model identification yields only a coarse approximation to the true dynamics, model mismatch

will still remain in the smoothing filter reconstruction, and we discuss how to account for this

effect later in this section.

Hypothesis testing is used to perform the coarse model identification by determining which

of several hypothesized models best accounts for the observed ellipsoid behavior given all of

the measurements. Such a scheme is particularly amenable for estimating the dynamics of

the ellipsoid that approximates the left ventricle because we may use our prior knowledge

of heart behavior to define a small set of reasonable hypotheses. In particular, although
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the precise dynamics of the left ventricle are unknown, it is reasonable to assume that the

underlying left-ventricular dynamics correspond to a uniform shrinking phase followed by a

uniform expansion phase, the only uncertainty being in the rate. Thus, each hypothesized

model may be formulated to incorporate this prior knowledge of left-ventricular behavior with

an associated hypothesized rate parameter and associated ejection fraction. Since it is ejection

fraction that is of interest to us and each model has associated with it a corresponding (unique)

ejection fraction, in what follows we will often refer to these different models by these associated

ejection fractions with the understanding that it is actually the underlying dynamic model to

which we refer.

Model identification is a stochastic estimation technique which determines which of several

hypothesized models is most likely given the data. That is, the model identifier chooses model

i from m hypothesized models at time k if model i maximizes the quantity:

pi(k) = Pr(model i is correctlYk) (10)

where Yk is the set of measurements up to and including the measurement at time k. Applying

Bayes' rule, (10) is rewritten in the following recursive form:

pi(k) - p(y(k)IYkl,model i is correct) pi(k - 1) (11)

E-p(y(k)lYkl,model j is correct) pj(k - 1)
j=l

The quantity p(y(k)JYk_l,model i is correct) is obtained as a byproduct of the Kalman filter

based on model i and is given by

p(y(k)lYkl,model i is correct) = N(vi(k); O, Vi(k)) (12)

where vi(k) are the Kalman filter residuals at time k under hypothesis i and N(vi(k); 0, Vi(k))

is a a Gaussian distribution with mean of zero and variance Vi(k) evaluated at vi(k). Both

vi(k) and Vi(k) are obtained directly from the Kalman filter. By substituting (12) in (11), it is
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possible to calculate pi(k). Thus, the model identification scheme consists of a bank of Kalman

filters, one based on each of the hypothesized models, and a comparison step to determine which

hypothesized model maximizes pi(T), where T is the time interval over which we have data.

In Section 3.1 we present some numerical experiments demonstrating the performance of such

an approach.

At best, the model identification phase yields only a coarse approximation to the underlying

cardiac dynamics. Thus, the smoothing filter, which is based on the output of the model

identifier, will produce ellipsoid, and hence ejection fraction, estimates which are undoubtedly

corrupted by this residual dynamic model mismatch. In particular, suppose the smoothing filter

equations are implemented based on the dynamic matrices A(k), which are an approximation

to the true (unknown) dynamics of the system. One approach to compensating for this error

introduced by dynamic model mismatch is through the addition of a process noise term to

the modeled dynamics in (7) on which we will base our filter; that is, the error introduced by

dynamic model mismatch is modeled as a process noise with a variance of Q = qI. In general,

the smoothed state estimate at any time is a weighted average of the measured and predicted

states. In the smoothing filter, the variance of such a process noise term may be interpreted as

a measure of the trust in the dynamic model, and thus the predicted state versus the measured

data. If q is very high, the estimate will be based on the measurements alone. If q is low,

the estimate will be based on the predicted state (and thus the dynamic model and initial

condition) alone. Hence, the value of q may be used to compensate for the effect of dynamic

model mismatch by reducing the dependence on the model in the estimate.
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Imperfectly Known Projection Geometry

Beyond imperfect knowledge of the ellipsoid dynamics, the relationship between the ellipsoid

and our projection observations of it, i.e. the projection geometry, are imperfectly known. In

particular, the positioning of the gamma camera used to produce the myocardial perfusion

images is not exact or precisely measured. While the camera is positioned to obtain roughly

the ANT, LAT and LAO views, the exact position varies from patient to patient. One can

imagine developing a further hypothesis testing procedure to estimate the projection geometry.

However for this work, we will simply assume orientations for the three projection planes then

examine the sensitivity of our reconstructions to this assumption.

We expect that the effect of errors in this assumed projection geometry on the resulting

ejection fraction estimate to be minimal for the following reasons. First, the left ventricle is

a minimally eccentric ellipsoid; its shape tends towards a sphere. The projections of such a

minimally eccentric ellipsoid are roughly equivalent on all planes. Thus, the assumed projection

geometry introduces minimal error in the ejection fraction estimate. Second, the dynamics of

the left ventricle include only a slight rotation. For the simple case where the dynamics consist

of only isotropic contraction without rotation, it is easy to show that the assumed projection

geometry does not introduce any error into the ejection fraction estimate. Even for more

complicated dynamics, which include isotropic contraction and a gross rotation, the effect of

the assumed projection geometry on the ejection fraction estimate is minimal. We demonstrate

this through a sensitivity analysis in Section 3.

Three-Dimensional Processing

Let us begin by discussing our three-dimensional approach to processing of the data that was

mentioned earlier in this section. In this method the three views are processed together as a
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Figure 2: Projection plane orientation.

single three-dimensional model identification/reconstruction problem. That is, the model iden-

tifier and smoothing-filter-based reconstruction are used to reconstruct the three-dimensional

ellipsoid that best approximates the left ventricle based on the set of noisy two-dimensional pro-

jections in the three views. The outcome of the model identifier is used to provide a dynamic

model for the smoothing-filter-based reconstruction. Based on the volume of the estimated

three-dimensional ellipsoids which are the output of the smoothing filter, an estimate of the

ejection fraction is calculated according to (1). Since the true projection geometry is unknown,

we use an assumed projection geometry that approximates the standard ANT, LAT, and LAO

views. In particular, we assume our three projections are onto the xz-plane, the yz-plane, and

a plane which is tilted at an angle ) = 450 from the xy-plane about an axis, Pi that forms an

angle P = 450 with the y-axis, as shown in Figure 2. This third plane is completely specified
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by its normal, p,.
pby its normal,(- cos csin,- sin sin, cos ) (13)

This assumed (or modeled) projection geometry are captured in (6) by the set of matrices:

Cmi ( ) (14)
0 1 0

Cm2 = ( ) (15)
0 0 1

-sin 4 cos 4 0
Cm3 = (16)

cos ,I cos ® sin 4 cos ® sin ®)

Equivalently, the assumed projection geometry may be represented by Cm, obtained by stacking

the matrix representations of the linear operators Cmi as discussed in Section 2.1. Thus, this

assumed geometry provides us with a reasonable choice for the matrix Cm which can be used

in our reconstructions.

Two-Dimensional Processing

Our alternative method of combining the three views of data to estimate the ejection fraction is

to process each view individually as a two-dimensional problem. That is, we use a model identi-

fier to individually estimate the dynamics of the ellipses observed in each view. The outcome of

the model identifier is then used to provide a dynamic model for the smoothing-filter-based re-

construction of the ellipse trajectory in that view. Based on the smoothed ellipses, the apparent

two-dimensional "ejection fraction" for each view is calculated. Note for such two-dimensional

processing, the goal is to estimate two-dimensional ellipsoids from noisy observations of the

ellipsoids themselves, in contrast to the three-dimensional case where the projections were

used as the observations in directly reconstructing the three-dimensional ellipsoid. Thus, for
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two-dimensional processing, the matrix C in (8) which relates the ellipsoid to the measure-

ments, is given by the identity. The two-dimensional ejection fraction obtained from each view

measures only the contraction of the ellipsoid in the plane of the projection and neglects all

contraction perpendicular to the plane of the projection. Thus, each two-dimensional ejec-

tion fraction actually underestimates the underlying three-dimensional ejection fraction. From

the two-dimensional ejection fractions of each view, it is possible to approximate the three-

dimensional ejection fraction using the formula given in (9), which implicitly assumes that the

true projection geometry corresponds to projections onto three orthogonal planes.

3 SIMULATIONS

In this section, we present simulation results which illustrate the methods outlined in Section 2.

First, simulated data are used to evaluate the performance of the model identification scheme.

Next, simulations are used to investigate the effect of the dynamic model mismatch intro-

duced by the coarse approximation provided by the model identifier and investigate methods

to minimize the error introduced by this dynamic model mismatch. Finally, an angle sensitiv-

ity analysis is presented to show that the assumed projection geometries should introduce a

minimal error into the ejection fraction estimates.

3.1 Model Identification

Let us turn now to the evaluation of the model identification scheme as a method to deter-

mine which of several models is the best approximation to the true ellipsoid dynamics. For

this evaluation, the model identifier will be based on two hypothesized models only. Two ex-

periments were conducted. Experiment #1 is designed to investigate the performance of the
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model identifier when one of the hypothesized models exactly matches the true dynamics and

the separation between the two models is varied. Experiment #2 is designed to characterize

the performance of the model identifier when the true ellipsoid dynamics varies between the

two hypothesized models.

For both Experiment #1 and #2 the following simulation setup is assumed. A computer

simulated, three-dimensional ellipsoid and its projection measurements are generated as de-

scribed by (7) and (8). The initial ellipsoid has semi-axis lengths of 8, 7.2, and 8; these ellipsoid

axes are aligned with the x-, y-, z-axes, respectively. The true dynamics are expressed by ma-

trices At(k) which are of the form given in (17):

ct t Z(Ot) for 1 < k mod 16 +1 < 8
n,(k) = 4 (17)

1/ct Z(-Ot) for 9 < k mod 16 + 1 < 16

Here ZR() describes rotation about the z-axis and is a generalization of the last term in (5); ct

and Ot are the true rates of contraction and rotation, respectively. These true dynamics generate

a shrinking/rotating and expanding/rotating ellipsoid. Since the myocardial perfusion data

consists of 16 frames per cycle, the simulated ellipsoid cycle was chosen to be 16. The ejection

fraction that corresponds to the true model (17) will be denoted EFt. The measurements, as

described by (3), are taken to be noisy projections onto three orthogonal planes which are

aligned with the ellipsoid axes. This projection geometry corresponds to projections on the

xy-, yz-, and xz-planes, respectively and is captured by the matrices C1, C 2, C3 which are

given as in (14)-(16) with (}= = 0 = 0. Equivalently, these linear operators may be represented

by the matrix C, which is obtained by stacking the matrix representations of C 1, C2 and C3

as described in Section 2.1. The model identifier is initialized with the linear least squares

estimate of the ellipse at time k = 0 based on data at k = 0. We would like to set the initial
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error covariance, Po, to be high to indicate that our confidence in this initial estimate is low.

Therefore, our initialization is given by:

(1lo) = (C T C)-1C T y(l) (18)

P 0 =5R (19)

where R = rI is the measurement noise variance.

The model identifier is based on two hypothesized dynamical models with associated dy-

namic matrices Al and A2. These hypothesized dynamics have corresponding contraction

rates of cl and c2 and rotation rates of 01 and 02, respectively. The matrices Al and A 2 are

of the same form as (17) with true contraction and rotation rates replaced by the correspond-

ing modeled contraction and rotation rates. The ejection fractions corresponding to the two

hypothesized models, Al and A 2, will be denoted as EF1 and EF 2. Experiments #1 and #2

differ in which of the values ct, c1 , C2, Ot, 01, and 02 are held fixed and which are varied.

Both sets of experiments will be carried out for several levels of measurement noise variance.

This noise variance will be held constant throughout the experiment interval. We will categorize

each noise level by the initial signal-to-noise ratio (ISNR) defined as:

ISNR = / I[_(1)1[2 (20)
ISNR n(n + 1)r/2

where x(1) is the vector representation of the ellipsoid at time k = 1, n is the dimension of

x, and r is the variance of the measurement noise. The initial signal-to-noise ratios (ISNR)

for each of the four measurement noise levels under consideration are listed in Table 1. These

measurement noise levels range from almost no noise at ISNR #1 to a level of noise comparable

in magnitude to that of the ellipsoid itself at ISNR #4 (i.e. so that the values of the noise are

on the same order as the values in z(1) itself). The noise levels are chosen to cover the range

of the noise expected from a typical ellipse extraction routine.
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ISNR #1 22.36
ISNR #2 12.57
ISNR #3 7.07
ISNR #4 3.98

Table 1: Initial signal-to-noise ratio for several measurement noise levels.

Experiment #1

The objective of Experiment set #1 is to investigate how sensitive the model identifier is to

the separation of the hypothesized ejection fractions when one of the hypothesized dynamic

models exactly matches the dynamics used to create the set of ellipses. Even though such a

scenario does not exist in the real world, this exercise is useful since it illustrates the sensitivity

performance of the model identification scheme. In Experiment set #1, the true dynamics and

ejection fraction always equals that associated with hypothesized Model #1 (i.e. ct = cl, EFt =

EF 1) and c2 is allowed to vary. For Experiment set #1, neither the true nor modeled dynamics

include rotation (i.e. t = 01 = = 0 ). The hypothesized models have associated ejection

fractions that yield an EF separation which is given by EF, =EF 1-EF 2 =EFt-EF 2. The

performance of the model identifier is evaluated at the four signal-to-noise levels of Table 1 as

this separation between the two hypothesized models is decreased. To control the complexity of

this experiment, the projection geometry was assumed known to the model identifier. Figure 3

shows the number of realizations out of 100 that correctly identify Model #1 as a function of the

separation between the two hypothesized ejection fractions and the measurement noise level.

These results indicate that for high signal-to-noise ratio the model identifier always chooses

the correct model regardless of the separation between the two hypothesized ejection fractions.

For lower signal-to-noise ratios (i.e. ISNR #2, ISNR #3, ISNR #4), the performance of the

model identifier deteriorates as the separation of the two models decreases. For this specialized
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Figure 3: Model identification experiment #1 results.

case, these results indicate that 75% correct identification can be obtained over an extremely

wide range of separations even for low signal-to-noise ratio.

Experiment #2

The objective of Experiment set #2 is to evaluate the performance of the model identification

scheme when the true ellipsoid dynamics include contraction, expansion and rotation, but the

hypothesized models are simpler, including only contraction and expansion at a rate that dif-

fers from the true contraction/expansion. To study this case, the dynamics and thus, ejection

fractions of the two hypothesized models are fixed and the true dynamics vary so that the

true ejection fraction varies between those of the two hypothesized models. Again, this study

includes an investigation of the effect of measurement noise on the model identification ap-

proach. The two hypothesized dynamic models are captured by dynamic matrices Al and A2

which are of the form (17) with hypothesized contraction rates of cl = .9572 and c2 = 0.9907

which correspond to ejection fractions of EF1=0.65 and EF2=0.20. These modeled dynamics
which correspond to ejection fractions of EF 1-0.65 and EF2-0.20. These modeled dynamics
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do not include rotation (i.e. 01 = 02 = 0). The true ellipsoid dynamics are also of the form

given in (17) with values of ct in the range from 0.9605 to 0.9892, which correspond to values

of EFt from 0.62 down to 0.23. The true dynamics include a rotation at each step of Ot = r/54

about the x-axis, which implies a total rotation over the eight time steps of approximately 7r/6.

This experiment was repeated 100 times for each value of ct. Figure 4 shows the percent of

realizations that picked model #1 given all the data for each value of ejection fraction of the

true ellipsoid dynamics. For the high signal-to-nose ratio case (ISNR #1), the model identifier

performs as follows: if EFt > 0.47, then model #1 is chosen; if EFt < 0.4, then model #2 is

chosen; if 0.4 <EFt < 0.47, then the outcome is uncertain. For lower signal-to-noise ratios,

(ISNR #2, ISNR #3, ISNR #4), the results indicate that the performance of the model identi-

fier deteriorates and the transition region widens. However, outside of these relatively narrow

transition regions, the model identifier performs as expected, by choosing the hypothesized

model which more closely approximates the true ellipsoid dynamics and, in particular, more

closely matches the true ejection fraction. These results show that even though the true ellip-

soid dynamics, which include contraction, expansion and rotation, are more complicated than

the hypothesized dynamics, which only include contraction and expansion, the model identifier

still picks the model whose dynamics more closely matches the true ellipsoid dynamics. Thus,

the model identifier based on simple hypothesized models will adequately capture dynamics

reflecting our quantity of interest, i.e. the ejection fraction.

3.2 Dynamic Model Mismatch

Next, we investigate the effects of dynamic model mismatch. The objectives of this study

are to evaluate the error introduced by dynamic model mismatch and to investigate methods

to minimize the error. As in the evaluation of the model identifier, a computer simulated
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Figure 4: Model identification experiment #2 results.

three-dimensional ellipsoid and its noisy measurements are generated as described in (7), (8),

and Table 1. The initial ellipsoid, true projection geometry, smoothing filter initialization are

exactly as described in Section 3.1. The true dynamics include periodic contraction for the first

half cycle and expansion for the second half cycle without rotation. Specifically, these dynamics

are of the form (17) with ct = .9615 and Ot = 0. The true dynamics yield an ejection fraction

EFt = 0.60. A smoothing filter based on the Rauch-Tung-Striebel smoothing algorithm is

implemented to reconstruct the three-dimensional ellipsoid from the noisy two-dimensional

projections. This smoothing filter is based on the periodic dynamic model given by matrices

A,(k) of the form (17) with modeled contraction and rotation rates cm and am. In reality,

a method such as model identification might have been used to choose these matrices Am(k).

For the experiment, these model dynamics consist of simple periodic contraction for the first

half cycle and expansion for the second half cycle chosen to yield a corresponding intrinsic

ejection fraction of EF, = 0.70, which corresponds to cm = .9515. The modeled dynamics
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Effect of Dynamic Model Mismatch on Ejection Fraction Estimates
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Figure 5: Ejection fraction error using an assumed dynamic model.

include no rotation (0, = 0).

The ellipsoids are reconstructed from noisy measurements using a Rauch-Tung-Striebel

smoothing filter based on the dynamic model described by Am. From the reconstructed el-

lipsoids, an estimated ejection fraction value is calculated. As discussed in Section 2.2, it is

possible to "tune" the filter by adjusting the value of q, the process noise variance. The results

of this simulation are given in Figure 5, which shows the variation of the percent error in the

ejection fraction estimate with q. This percent ejection fraction error is defined as

PTrue EF - Estimated EF Percent EF Error = Due EF (21)
True EF

Note that the percent ejection fraction error is flat for a wide range of q even at high levels of

measurement noise. In particular, at the highest noise level it is possible to reduce the percent

ejection fraction error by a factor of two by appropriate choice of q. These results illustrate

that q may be effectively used to minimize the error introduced by dynamic model mismatch.

That is, q may be used to vary the amount of smoothing introduced by the filter, though we

do not in fact bother to do this in our use of real data to follow.
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3.3 Projection Geometry-A Sensitivity Analysis

Finally, we investigate the sensitivity of the three-dimensional and two-dimensional data pro-

cessing approaches (described in Section 2.2) as the true projection geometry is varied. Each of

these data processing approaches is based on an assumed projection geometry, also described

in Section 2.2. In this section, we investigate the error in the ejection fraction estimate in-

troduced by the assumed projection geometries underlying both the three-dimensional and

two-dimensional processing of the projection data, over a wide range of true projection geome-

tries.

The experimental procedure used for this sensitivity analysis is as follows. We gener-

ate computer simulated, dynamically evolving ellipsoids. Observations of these ellipsoids are

taken as noise-less projections at a range of true projection geometries. For each of these

true projection geometries, the observations are processed using both the three-dimensional

and two-dimensional methods. The ejection fraction estimate is formulated for both methods

and compared to the true ejection fraction. Note that noise-less observations and static re-

construction are used so that the uncertainty introduced by imperfectly known dynamics is

eliminated.

The computer simulated, dynamically evolving ellipsoid has the following characteristics.

The parameters for this ellipsoid are chosen so that our experiment is a worst case sensitivity

analysis in the physiological sense. That is, a real left ventricle is expected to be much less

eccentric than the ellipsoids being considered here; and real left-ventricular dynamics are ex-

pected to display only a slight rotation instead of the gross rotation used here. Denote the fully

expanded and fully contracted simulated ellipsoids by their vector representations X(kmax) and

z(kmin), respectively. The semi-axis lengths and long axis orientations of x(kmax) and z(kmin)
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Semi-Axis Lengths Long Axis Orientation

X(kmax) 10, 7, 7 (-0.5,-0.5, 0.7071)
zx(kmi,) 7.37, 5.16, 5.16 (-0.5,0.5, 0.7071)

Table 2: Axis lengths and orientations for x(kmax) and z(kmn).

z z

Figure 6: The ellipsoids used for the angle sensitivity analysis. The shadows are shown to
emphasize the orientation of the ellipsoid.

are given in Table 2. Thus, the dynamics that relate x(kmax) and x(krin) consist of an isotropic

scaling by 0.7368 and a rotation of 900 about the z-axis. These dynamics yield an ejection

fraction of 0.60. Both z(kmax) and Z(kmin) are shown in Figure 6.

For this sensitivity analysis, we consider the following range of true projection geometries,

which are used to generate the data (the projections of the ellipsoid). These true projection

geometries consist of three projection planes. The first two are given by the (orthogonal) zz-

and yz-planes and the third plane is specified by (13) with 4~ = 450 and 0° < O < 900. Note

that each of these true projection geometries may be represented by a set of matrices of the

same form as (14) - (16) with (I = 450 and 0° < ® < 90 ° as described above which we denote

as {Ctl, Ct2, Ct3 }. This situation captures our prior belief that in a real acquisition two of

the projections are relatively fixed and orthogonal (the LAT and ANT projections) while the

third (LAO) contains the greatest amount of variability. For each of these true projection



27

geometries, we evaluate the percent ejection fraction error introduced by both the two- and

three-dimensional processing approaches.

For the three-dimensional processing approach, the three views are processed together as

a single reconstruction problem. Recall that the observations of the ellipsoids are noise-less

projections onto the planes that define the true projection geometry. For this reconstruction,

we assume a projection geometry which consists of three projection planes as described in

Section 2.2. Recall that this assumed projection geometry is described by the set of matrices

CmC, 2,Cm2,C3} (as in (14) - (16) with 4~ = 0 = 450) or equivalently C, (as described

in Section 2.1). Because the observations are noise-less, a static reconstruction method is

used which gives x(k) = (CTCm)-lCTy(k) where y(k) are the observations of the ellipsoid.

From the reconstructed ellipsoids i(kl) and J(k2), the estimated ejection fraction is calculated

using (1).

For the two-dimensional processing approach, each view is processed individually. That

is, the areas of the projections of z(kmx) and x(kinin) in each view are used to calculate the

two-dimensional ejection fraction of that view. Again, because the projections are noiseless,

we do not need to smooth the data. Then, the three, two-dimensional ejection fractions are

combined using (9) to obtain a three-dimensional ejection fraction estimate.

The results from this angle sensitivity analysis are presented in Figure 7. For the three-

dimensional processing, the results show that for a wide range of true projection geometries

the error in the ejection fraction estimate is small, less than 10%. While not as impressive

as the three-dimensional results, the two-dimensional results show that the ejection fraction

errors are less than 12% for a wide range of true projection geometries. Recall, however, that

this sensitivity analysis is a worst case study. In general, the two-dimensional processing will

be less affected by variations than is indicated in Figure 7.
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Figure 7: Worst case angle sensitivity analysis results.

4 APPLICATION TO REAL DATA

In the previous sections, the proposed methods to overcome imprecisely known dynamics and

projection geometry were outlined and tested on simulated data. In this section, the same

methods will be applied to ellipses extracted from real myocardial perfusion data to calculate

the ejection fraction of the left ventricle for 14 individuals.

Note once again that these approaches require as their inputs ellipses that have been ex-

tracted from the myocardial perfusion images via a preprocessing step. Since the focus of

this work is the estimation of dynamically evolving ellipsoids, we assume that such an ellipse

extraction phase which also provides statistical characterization of the measurement noise (i.e.

R, the variance of the measurement noise) is available. For this work, a very simple ellipse

extraction routine is used (see [20] for details) and the measurement noise variance is assumed

to be R = rI where r is chosen empirically. Further, even for this simple ellipse extraction

method, the results are promising.
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In addition, the outputs of the model identifier and smoothing filter are affected by the

variance of the process noise, Q, assumed to be qI. It would also be logical to use a value of

q that is in the range that minimizes the effect of residual dynamic model mismatch for the

given r, as was illustrated in Section 3. Again, since we do not have an estimate of r, we have

used a value of q that was chosen empirically 3. Specific values for the parameters r, q used for

each case are given in the respective section discussing that case.

Recall that there exist many techniques to estimate ejection fraction using other imaging

techniques. In this section, the ejection fraction calculated from myocardial perfusion images

using our methods is compared to a "gold standard" (GS) ejection fraction obtained using a

technique known as multiple-gated blood pool (or MUGA). Thus, the ejection fraction estimate

based on myocardial perfusion images is evaluated by calculating the sample correlation 4 ,

p,(x, y), with the GS value.

4.1 Two-Dimensional Processing

In two-dimensional processing of the data, each view is processed individually. That is, a model

identification scheme is applied to each view to determine which of three hypothesized models

best approximates the true ellipse dynamics. Next, the model chosen by a simple vote of the

outputs of the model identifier for the three views is used in a Rauch-Tung-Striebel smoothing

filter to reconstruct the underlying ellipses. From the reconstructed ellipses, an effective two-

dimensional ejection fraction for each view is found. Then, using the formula given in (9), an

estimate of the three-dimensional ejection fraction is calculated.

3An alternative to these empirically chosen values for the parameters r,q, which control smoothing, is dis-
cussed in [21].

4Here sample correlation coefficient is given as p,(z,y) = c°Ov(Z,') where cov,(z,y) refers to the sample

covariance of z and y and a,,= and ao,, are the sample standard deviations of z and y, respectively [22].
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The model identification scheme is implemented in the following way. For each of the three

views, the input to the model identifier consists of the set of 16 ellipses extracted from the

raw data for that view. The observations are of the ellipses themselves; therefore, the matrix

C that specifies the projection geometry in (8) given by the identity. Three hypothesized

models are used which yield hypothesized ejection fractions EF 1=0.60, EF 2= 0.40 and EF3 =

0.20, respectively. The specific dynamics used for each of these hypothesized models are of

the form of (17), where the parameters c, are chosen so that the time (i.e. frame) of maximal

contraction matches the the corresponding time determined by eye from the data (i.e. so end

systole of the model matches end systole of the heart data). Once again, the model identifier

is initialized as in (18) and (19). The measurement noise variance r is chosen empirically to be

100. The value of q is set to zero to accentuate the difference between the three models. The

dynamic model used for the smoothing phase is then chosen by a simple vote of the individual

decisions of the model identifier for the three views.

Next, the Rauch-Tung-Striebel smoothing filter for each view is implemented based on the

dynamic model chosen by the model identifier phase. For the smoothing filter, the empirically

chosen values of r/q is 2. Again, the initialization of the smoothing filter is as given in (18) and

(19). The three-dimensional ejection fraction estimate for each individual is obtained from the

effective two-dimensional ejection fraction estimates using (9). Each two-dimensional ejection

fraction is obtained using (1) (with volumes replaced by areas).

Figure 8 compares the two-dimensional based estimated ejection fraction values to the GS

ejection fraction values for each of 14 patients. The two-dimensional based ejection fraction

estimates are quite good. In Figure 8, the solid line is the best fit line to the 14 data points

and the dashed line is the unit slope line. For the sample size of 14 and the data presented

in Figure 8, the sample correlation coefficient is calculated to be p,=0.9135. In addition, the
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Figure 8: Comparison of GS and 2D-based estimated ejection fraction for 14 patients.

95% confidence region [23] is given as 0.7431< p <0.9727.

4.2 Three-Dimensional Processing

In this section, model identification and smoothing-filter reconstruction are applied to directly

combine the set of two-dimensional observations as projections of a single three-dimensional

ellipsoid that approximates the left ventricle. Based on the reconstructed dynamically evolving,

three-dimensional ellipsoid that approximates the left ventricle, an estimate of the ejection

fraction is calculated. For this processing, an assumed projection geometry is used in which

ANT and LAT views correspond to projections onto orthogonal planes and the LAO view

corresponds to a projection onto a plane that is tilted by 7r/4 from the plane that is orthogonal

to both the ANT and LAT planes, as discussed in Section 2.2 and shown in Figure 2. The
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normal to this modelled LAO plane is given as in (13) with 0 = · = 45 ° .

The model identifier processes the combined data set from all three views for each in-

dividual to determine which of the hypothesized models should be used to model the true

dynamics in the smoothing-filter-based reconstruction stage. The hypothesized models and

filter initializations are analogous to those described in Section 4.1. The values of r and q

are chosen to be 100 and zero, respectively. The Rauch-Tung-Striebel smoothing filter, which

is implemented based on the dynamic model chosen by the model identifier, uses r/q = 2.

The three-dimensional ejection fraction estimate for each individual is then obtained from the

change volume of these ellipsoids using (1).

Figure 9 compares the GS ejection fraction values and the ejection fraction estimates based

on the three-dimensional dynamic approach. For the sample size of 14 and the data presented

in Figure 9. Again, this processing provides reasonable ejection fraction estimates. The sample

correlation coefficient is calculated to be p,=0.85 2 7 with a 95% confidence interval of 0.5883<

p <0.9524. These results indicate that the three-dimensional processing did not perform as well

as the two-dimensional processing, which seems counter-intuitive. One explanation is that in

the three-dimensional processing the interaction between the imperfectly known dynamics and

the imperfectly known projection geometry may result in this greater error. In contrast, for the

two-dimensional processing, the dynamics and projection geometry are handled independently.

Further study with a larger sample size will be needed to fully understand this phenomenon.

5 CONCLUSIONS

This paper has outlined a model-based, statistical approach to obtain a dynamic estimate of

left-ventricular ejection fraction from a gated set of planar myocardial perfusion images. This
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Figure 9: Comparison of GS and 3D-based estimated ejection fraction for 14 patients.

method was proposed as a safer, more cost-effective, and more robust alternative to currently

used techniques. Because the modeling assumptions are explicitly stated and quantitatively

used, it is possible to investigate the sensitivity of the ejection fraction error with respect to

these assumptions. Simulations were used to demonstrate that the error due to imperfectly

known dynamics and projection geometry could be minimized by appropriate choices of the

smoothing filter parameters. In addition, these methods were shown to give accurate estimates

of ejection fraction for levels of measurement noise that are comparable to those expected in

real data.

These methods were then used to estimate ejection fraction from real myocardial perfusion

images. Although a relatively small sample size was used, the smoothing-filter-based ejection

fraction estimates showed a high degree of correlation with the GS ejection fraction estimates.
fraction estimates showed a high degree of correlation with the GS ejection fraction estimates.
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Finally, note that while our goal here is the calculation of ejection fraction, one can imagine

directly using the dynamic shape estimates provided by our methods for diagnostic purposes.

Future work may include the following further studies and improvements to the methods

described in this paper. A larger sample size would be useful in obtaining tighter confidence

bounds on the estimated correlation coefficient. As previously mentioned, our dynamically-

based smoothing techniques may be directly applied to other imaging modalities to obtain

ejection fraction estimates. Further studies might evaluate these methods as applied to images

obtained from other modalities such as MUGA. In addition, more hypothesized models may

be included in the model identification phase so that the assumed ejection fraction used in the

smoothing-filter-based reconstruction is closer to the true ejection fraction. Another investi-

gation might consider the use of a model identification approach (similar to the one we used

to determine the ellipsoid dynamics) to determine the projection geometry. Finally, a circular

smoothing algorithm might be considered which incorporates the additional constraint that

the ellipsoid estimate at initial and final points of the cardiac cycle should be the same; thus,

capturing a true periodicity assumption on the cardiac dynamics.
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