
Finite Termination of Asynchronous Iterative Algorithms

Serap A. Savari1 ,2 Dimitri P. Bertsekas3

Abstract: We consider n-processor distributed systems where the ith processor executes asyn-

chronously the iteration xi = fi(x). It is natural to terminate the iteration of the ith processor

when some local condition, such as xi - fi(x): "small", holds. However, local termination con-

ditions of this type may not lead to global termination because of the asynchronous character

of the algorithm. In this paper, we propose several approaches to modify the original algorithm

and/or supplement it with an interprocessor communication protocol so that this difficulty does

not arise. Some of the resulting procedures can be recast as termination detection schemes for

arbitrary finite, distributed computations.

1. Introduction

Convergent asynchronous iterative algorithms are interesting because they offer a greater flex-

ibility of implementation and a faster convergence than their synchronous counterparts. Asyn-

chronous iterations have received a lot of attention (see [1] and [2]), but the issue of termination

has been virtually overlooked. There is an extensive literature on the termination detection of

asynchronous algorithms that are executed for a finite number of steps (see, for example, [1]

and [3-10]). However, in general, there is no bound on the number of iterations performed by

asynchronous iterative algorithms. This termination problem was first recognized and formu-

lated in [11] and [2, §9], and the solution proposed to this implementation difficulty is to modify

the asynchronous iterative algorithm so that it terminates in finite time and then to use one

of the many available protocols for termination detection. The modification to the underlying

algorithm suggested in [2] is guaranteed to terminate for many, but not all, classes of convergent

asynchronous iterations. In this paper, we will specify an alternate modification that will lead

to termination for a larger set of asynchronous iterative algorithms at the expense of increased

communication overhead. We are also going to consider an alternate approach to the issue of

1The authors are with the Laboratory for Information and Decision Systems and the Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2 Supported by an AT&T Bell Laboratories GRPW Fellowship.
3 Supported by NSF under Grant 9300494-DMI, and the ARO under Grant DAALO3-92-G-0309.



termination in which the finite termination of the algorithm and termination detection in finite

time are addressed jointly.

To be more precise, we will investigate the following problem. Let X1,...,Xn be given

sets, and let X rlil Xi be their Cartesian product. Any x E X can be represented as

x = (xl ,... ,X), where xi E Xi for each i. For i E {1,... ,n}, let fi : X -+ Xi be a given

function and define f: X -+ X by f(x) = (fl(x), f2(x),..., fn(x)) for every x E X. Ideally, we

would like to find some x* E X for which x* = f(x*); such an x* is called a fixed point of the

function f. Toward this end, we will consider distributed asynchronous versions of the iteration

X := f(x).

We assume that we are given a message-passing system with n processors, each having its

own local memory and communicating with the other processors over a reliable communication

network. By reliable communication, we mean that information sent over the network will

eventually be received without errors at its destination. Each processor can communicate

"directly" with a subset of the other processors called its neighbors. For each pair (i, j) of

neighboring processors, we assume that there is a communication capability by means of which

processors i and j can send information to each other; this capability may be established

through a direct communication link between the two processors or via a multi-hop path in the

communication network. For convenience, we assume that neighboring processors are connected

by a communication link. If fi(x) depends on xj and j 4 i, we require processors i and j to

be neighbors; in this situation, we say that processor i is a dependent neighbor of processor j

and that processor j is an essential neighbor of processor i. Furthermore, any processor j can

be reached from any other processor i through a sequence of neighbors; if this were not the

case, the iteration x := f(x) could be decomposed into two or more smaller and independent

iterations.

Let t be an integer "time" variable used to index the sequence of physical times at which

the events of interest of this system occur. Note that t may have little relation with "real

time." At time t, each processor i stores a vector xi(t) = (xl(t), ... ,x'(t)), where for all

j f4 i, xj(t) = xj(rji(t)) for some 0 < -rj(t) < t; this model captures the situation in which the

2



processors do not necessarily have access to the most recent value of the components of x. To

simplify notation, we also write

xi(t) = xi(t), i {, ,n}

and we view the vector x(t) defined by

x(t)= (xl(t),...,x (t))

as the "nominal" iterate of the algorithm at time t. Assume that the iteration is initialized

with a vector x(O). The ith processor updates xi(t) at a set of times T i, so that

xi(t + 1) fi(x(t)), t E T (1)

xi (t), t X Ti

We assume that the sets T i are infinite and that whenever processor i revises xi, it eventually

sends the new value to all of its dependent neighbors.

In general, a convergent asynchronous iterative algorithm does not necessarily produce a

fixed point in a finite number of steps. A practical implementation of an asynchronous iterative

algorithm must terminate after a finite number of iterations. For this reason, we usually have

to be satisfied with finding some x E X which is in the neighborhood of a fixed point of f. To

be more precise, there is a local termination set Si C X associated with each processor i, and

we would like to obtain a vector x belonging to the global termination set S = fnI Si after a

finite number of iterations at each processor.

For the procedures of section 2 (distributed termination), we will assume the following

regarding the asynchronous algorithm:

Assumption 1: In order to determine if a given x = (xl,..., xn) E Si, processor i needs only

xi and the set of xj for which j is an essential neighbor of i.

Assumption 2: For each execution of the algorithm such that the sets of times T i are infinite

and limtoo T-j(t) = oo for all i and j, there exists t such that xi(t) E Si for all t > t.

Assumption 2 relates to the total asynchronism assumptions of [1, §6.1]. Chapter 6 of this

3



reference describes several algorithms for which Assumption 2 is satisfied.

For the procedures of section 3 (supervised termination), we make Assumption 1 and the

following assumption in place of Assumption 2:

Assumption 3: There exists t for which (xl(tl), x2 (t 2),., Xn (tn)) C S whenever t 1,..., tn t.

Assumption 3 is implied from Assumption 2 if there is some U C S such that U = rIHl Ui,

Ui C Xi for all i, and x(t) C U for all sufficiently large t. However, Assumption 3 holds for

certain iterative algorithms that do not satisfy Assumption 2 when the convergence of the

iteration is sensitive to the choice of the sets T i and the amount of communication delay

between the processors. Assumptions 1-3 are valid for many iterative asynchronous algorithms

and corresponding local termination sets Si (see, for example, [1], [2], [12], and [13]).

To demonstrate that the issue of finite termination is not trivial, we consider a "natural"

approach to the problem. We implement the following modification to the asynchronous algo-

rithm. Processor i performs the iteration xi = fi(xi(t)) at time t E T i if xi(t) does not belong

to the local termination set Si; if the component xi obtained is different from the stored com-

ponent xi(t), then processor i sends xi to its dependent neighbors and saves xi as x (t + 1). If a

message xj from processor j arrives at processor i, the message is stored as xj. For convenience,

suppose that the messages sent from any processor to any other processor are received in the

order in which they are transmitted; this assumption, called FIFO (for first in, first out), can

be enforced via an appropriate data link control scheme (see [1, §1.3.2]). Unfortunately, even

if we know that the original asynchronous iteration satisfies x(t) C S for all sufficiently large t,

we cannot always conclude that the modified procedure will terminate. This is illustrated by

the following example.

Example: Suppose that each xi is a real number, n = 2, and for i e (1, 2}, Si = {(X e2 .

I fi(x) - xi < e}, for some 0 < e < 1. Let the iteration f be defined by

_ xlx 2 _X 2
fi(x)-= xX, f2(x)- =

The original asynchronous iteration converges to x* = (0, O0) from any initial vector x(0).

Therefore, for all sufficiently large t, x(t) belongs to the global termination set. Let us

consider the behavior of the modified algorithm when x(0) = (2, 1.5e). Because the local

4



termination condition at processor 2 holds at time 0, processor 2 never iterates. Since

x(0) ' Si, processor 1 executes the non-convergent iteration x1 := 1.5xl infinitely often;

consequently, termination will not occur.

Hence, the local termination rules do not necessarily ensure the global termination of the

computation in the absence of further communication between the processors.

We will consider a variety of algorithms that comprehensively address the issue of termina-

tion. There are essentially three aspects to the problem of finite termination of a convergent

distributed asynchronous iterative algorithm with a vector that is a member of S. These are

1. finite termination of the algorithm,

2. termination detection in finite time, and

3. construction of x C S.

The procedures we will specify can be categorized into two broad approaches called distributed

termination and supervised termination. Protocols with distributed termination decompose the

three issues and algorithms using supervised termination address them jointly.

Another important difference between the two approaches relates to whether or not they

interfere with the execution of the original asynchronous algorithm. In the distributed approach,

the original iteration is modified so that the update xi := fi(x) is executed at processor i only

when xi f Si. Once there are no more updates to be done, a solution x E S is constructed by

a separate protocol.

By contrast, in the supervised approach, the algorithm is left intact. Instead, a supervisory

process is used that takes snapshots of the system, collects a potential solution vector x con-

sisting of a component xi from each processor i, checks whether x E S, and if so, terminates

the computation. The snapshots and the construction of the potential solution vector x are

transparent to the original algorithm.

The supervised approach can be implemented in a number of different ways. In Section 3,

we describe three possibilities (and several subvariations), which differ in the degree of central-

ization of the supervisory process. In the most centralized version, the test x E S is conducted

at a single special processor who collects the components xi from the other processors using

5



essentially a polling scheme. This special processor is distinct from the n processors executing

the iteration. In the other versions, the test x C S is distributed among all the processors,

who individually test the corresponding condition x C Si and "vote" on whether termination is

warranted. The results of the vote are collected by a special processor who acts to terminate

the computation if all votes are positive and to restart the testing process otherwise. In the

second processing scenario, the special processor does not participate in the iteration, while in

the last processing situation, the special processor is involved in the iteration. We conclude

Section 3 by using the supervised approach to derive protocols for the termination detection of

finite, distributed computations. These termination detection schemes rely upon snapshots of

the number of messages sent and received at each of the processors.

2. Distributed Termination

Distributed termination was introduced in [11] and also in [2] as a viable approach to the

termination problem for a special class of asynchronous iterations. The procedure considered in

[2] to modify the asynchronous iterative algorithm so that it terminates in finite time is identical

to the "natural" approach specified in the introduction, except that processor i broadcasts xi

to all of the other processors whenever xi xii(t). For the case considered in [2], x is an element

of a Euclidean space and for each i, the local termination sets Si are

Si = fx: 1I fi(x) - xi [I < E).

For any subset I of the set of processors and any vector WC E I = {{Oi)ieI : Oi E Xi for all i C

I}, let f IO(x) be defined by

f fi(x), i V I

It is established in [2] that for the special case of the problem considered there, if the original

iteration x := f(x) satisfies an "independent convergence property" in which any asynchronous

version of the iteration x = f" 0 (x) converges for any choice of I and 0 C OI, then the modified

procedure specified above is guaranteed to terminate in finite time. Some families of functions

that satisfy the independent convergence property, such as the class of weighted supremum

6



norm contractions, are identified in [2]. In the approach of [2], termination is detected by using

a standard protocol. However, to guarantee that the ultimately obtained vector x belongs to

the global termination set S, the FIFO assumption on the link transmissions is needed.

Under Assumptions 1 and 2, we will propose a procedure to modify the underlying algorithm

so that it terminates in finite time and is compatible with the set of known termination detection

protocols (see, for example, [1] and [3-10].) To follow the terminology frequently used in the

literature on termination detection protocols, a processor is said to be idle if it satisfies its local

termination condition; otherwise it is called active. We presuppose that an idle processor cannot

transmit messages and that it remains idle until a message from another processor is received.

The algorithm has terminated by time t if all processors are idle at time t and there is no

message in transit along any communication link at time t. The modifications to the algorithm

specified below are similar to the ones considered in the introduction; to avoid the situations in

which the earlier modifications result in no termination, we assume that in addition to sending

messages containing the current value of xi, processor i is able to send a different kind of packet

called a request message and store an on-off request variable, R i , which is initially off. The

asynchronous algorithm is modified in the following way. When processor i updates xi via the

iteration xi = fi(xi), i sends the new value of xi to its dependent neighbors if xi / x i, sets x i

to the updated value of xi, and sets R i to off; if the current x i does not belong to Si, processor

i sends a request message to all processors j 4 i. If processor i receives a request message, it

sets R i to on, and if it receives xj from processor j, it stores the updated value as xj. Processor

i iterates at time t E T i if x i (t) is not a member of Si or if Ri is on at time t. Processor i is

idle when its current x i belongs to Si and its current R i is off; otherwise it is active. Hence, as

desired, idle processors do not iterate. If processor i is idle and receives xj from processor j, it

updates x; and remains idle if and only if the new x i belongs to Si. Termination has occurred

when all processors are idle and there are no messages or request messages in transit.

We have the following result.

Proposition 1: Under the preceding assumptions, the modified algorithm terminates. Further-

more, if the communication links that carry xi are FIFO and t is the time at which termination

occurs, then x(t) G S.

Proof: To arrive at a contradiction, suppose that the modified algorithm does not terminate.

7



Then there is a non-empty subset I of processors that iterate infinitely often. Hence, there is

some processor j E I for which xj is not a member of Sj infinitely often; if this were not the

case, there would be no request messages sent after some time and so all processors eventually

become idle and the modified algorithm terminates. Since xi does not belong to Sj infinitely of-

ten, processor j sends a request message to every other processor infinitely often. Consequently,

all of the processors iterate infinitely often. By our assumptions on the original asynchronous

algorithm, this implies that xi(t) E Si for all i and all t sufficiently large. This contradicts our

earlier conclusion that xi does not belong to Sj infinitely often. Hence, the modified algorithm

terminates at some time t*. If the communication channels that carry xi are FIFO, then at

time t*, the value of xi stored by all of the dependent neighbors of processor i will be equal

to x~(t*). Since the definition of termination indicates that xi(t*) E Si for all i, the modified

algorithm terminates with x(t*) E S. 0

It seems plausible that the modified algorithm will terminate under the weaker condition

that iterating processors send request messages only to their essential neighbors. The following

example demonstrates that this hypothesis can be false.

Example: Suppose that each xi is a scalar and n = 3. Let the iteration f be defined by

fI(x) = x1X2, f 2 (x) = 2 X3, 3 (X) = (1 -)X3,

where 0 < e < 1. This asynchronous algorithm will converge to x* = (0, 0, 0) from any

initial vector x(0). For i E {1,2,3), let Si = {x E 3 : I fi(x) - xi < e. Let

us consider the behavior of the modified algorithm when x(0) = (1, 2,1) and iterating

processors send request messages only to their essential neighbors. Processor 3 is initially

idle and it will not iterate unless it receives a request message from processor 2. Processor 2

also initially satisfies it local termination condition; it will iterate after it receives a request

message from processor 1. Note that if processor 2 receives a request message while

x3 = 1, X2 will not change upon the resulting iteration and hence will not send a request

message to processor 3. As a consequence, processor 3 always remains idle, and processor

2 iterates from time to time, but it never changes x2. What happens to processor 1?

Since x1 (0) = 1, processor 1 is initially active, and it executes the nonconvergent iteration

8



xl := 2x1 infinitely often. Hence, in order for an implementation of this algorithm to

terminate, it is necessary for processor 1 to send processor 3 a request message.

The approach of this section requires a broadcast mechanism for the request messages. In

[14], various broadcasting protocols such as flooding and the shortest path topology algorithm

are studied in detail. Unfortunately, each processor may initiate a large number of request

messages and therefore the broadcasts cause a potentially excessive communication overhead

for the computing system. We propose the following solution to this practical difficulty. The

implementation is similar to the one discussed so far. Now all requests are numbered. Each

processor i stores the highest request number ni it has received or generated, where the initial

ni are arbitrary integers. If processor i iterates and finds that the updated vector x i is not

a member of Si, it increments ni by one, numbers the request with the new ni, and sends

the request to its neighbors. If processor j receives a request numbered n, it discards the

request if n < ni; otherwise, it sets nj := n, sets Ri to on and relays the request (with the

number n unchanged) to its neighbors. The results of the proposition will still hold for the new

implementation. This is because the iteration of processor i infinitely many times implies that

n i and the request numbers of the neighbors of processor i will increase to infinity. In fact,

each processor must iterate infinitely often since any processor can be reached from processor i

through a sequence of neighbors; this is enough to establish that the proposition remains valid.

Finally, we address the issue of constructing x E S. We note that if the communication

links do not necessarily satisfy the FIFO assumption, then for each i, there is no guarantee

that the values of xi stored by processor i and its dependent neighbors will be consistent

upon termination; as a consequence, it is possible that the algorithm will terminate with a

vector x which is not a member of the global termination set. Hence, we assume that the

communication links are FIFO. When termination is detected using, for example, one of the

standard termination detection protocols, we require a special processor called the coordinator

to send a termination message to each processor via a pre-determined spanning tree. Upon

receiving a termination message, each processor sends its parent a packet containing its value

and its identity number. These packets are propagated through the tree to the coordinator,

which can use the spanning tree to find out how many packets to expect.

Since all the communication links constituting the spanning tree are FIFO, we can use a

9



different procedure in which the coordinator does not need to know the number of processors.

In this procedure, each processor sends its parent all the packets it has received and then sends

its own packet as soon as it has sent the packets from its children in the tree. The remaining

practical issues are the selection of a coordinator and the construction of a spanning tree of

the processors, if they are not already provided. Choosing a coordinator is equivalent to the

problem of identifying the leader in an asynchronous network, which is discussed in [15]. The

algorithm in [1, §8.1, Example 1.3] can be easily generalized to find a procedure to produce a

spanning tree when the coordinator is known.

3. Supervised Termination

The approach of the last section has some important shortcomings. In general, we need the

FIFO assumption to guarantee that we will terminate with some vector x belonging to the

global termination set S; in many applications, this assumption is inconvenient. Recall that in

the modified version of the algorithm, processor i iterates at only those times t C T i for which

either xi(t) does not satisfy processor i's local termination condition or processor i's on-off

request variable is on. Hence, because there are fewer iterations, the modified version of the

asynchronous iterative algorithm seems likely to take longer than the original version to enter

S; moreover, we can not produce a vector x belonging to S until after the modified algorithm

terminates and termination is detected. Perhaps the most serious flaw in the approach is the

need for Assumption 2, which presupposes that any asynchronous execution of the algorithm is

guaranteed to enter the global termination set in finite time. There are convergent asynchronous

iterative algorithms called partially asynchronous iterative algorithms (see [2]) which are known

to converge under certain bounds on the amount of asynchronism in the computing system. It

is conceivable that for one of these algorithms, the original version of the algorithm enters the

global termination set while the modified version does not because processors iterate less often

in the modified version, and consequently send their values to their dependent neighbors less

frequently. By replacing Assumption 2 with Assumption 3, we avoid this problem. Furthermore,

the approach we will consider in this section does not suffer from any of the drawbacks listed

above.

The idea in the new approach is that processors execute the (original) algorithm until they

10



receive notification to terminate. From time to time, a snapshot will be taken of the system

in the form of a potential solution vector, and the resulting information will be processed by

a supervisor or a coordinator, which can subsequently determine if the system is ready to

terminate the computation. Unlike the well-known snapshot algorithm of [8] (see, for example,

[1]), we do not impose a FIFO assumption on communication between any two processors.

Instead, we require Assumption 3.

We will consider algorithms under the following three processing situations:

1. There is a supervisor which communicates directly with all of the processors and is able

to determine if a given vector x E X is in the global termination set.

2. There is a coordinator which communicates directly with all of the processors, but this

coordinator is unable to determine on its own whether some vector x is a member of S.

3. One of the processors involved in the iteration assumes the role of coordinator, but the

processor is not aware of the entire network topology.

Obviously, for a system with a large number of processors, these assumptions vary from least

viable to most practicable. We discuss protocols for all three scenarios because the guidelines we

develop for the second and third processing situations build on the ideas in the procedures for the

previous one. In every case, we assume that each processor involved in the computation carries

out its computations and its communications with its neighboring processors independently of

the termination protocol, until it receives an order to terminate. In particular, none of the

protocols we will subsequently discuss affect the execution of the underlying algorithm until

the processors obtain a termination directive.

We will conclude this section by converting some of the supervised termination procedures

into termination detection protocols for arbitrary finite, distributed computations.

3.1. First Processing Situation

We consider four protocols for the first processing situation. We first give a broad overview of

the way all of the procedures work, and then we describe the remaining operations specific to

each algorithm. In every procedure, each processor i participating in the iteration uses local

information to ascertain if the system is involved in a snapshot and also to determine the single

"-~ ~ ~ ~ ~ ~ ~~~~~~~~~~1



instance during a snapshot at which processor i sends its current value of xi, denoted xi, to the

supervisor. The supervisor collects these potential solution values and stores them in a potential

solution vector X = (x1,..., Xn). When the vector is complete, the supervisor verifies if x is a

member of the global termination set. If this is the case, the supervisor sends a termination

order to each processor and finishes with x as the solution to the problem. Otherwise, the

supervisor discards the potential solution vector and performs some other tasks to prepare

the system for the next snapshot. Note that the assumption of the existence of a t for which

(x1(tl), x2 (t2), .. , xn,(tn)) c S whenever ti,..., tn, > t implies that each protocol will eventually

terminate.

The procedures are presented in the order of increasing complexity. The idea is that as

the protocols become more intricate, the supervisor is expected to test fewer potential solution

vectors before terminating with a solution. This suggests that the more complicated protocols

have a larger termination delay; however, in the case of a large system, the validation of a

potential solution vector may require considerable computational resources and the penalty

of an increase in termination delay may be more than offset by the need for fewer potential

solution vector verifications.

For the first protocol, each processor i maintains a binary flag bi, initially set to zero, which

indicates if the processor may initiate a snapshot. Whenever bi = 0 and processor i satisfies

its local termination condition, i changes bi to one. Furthermore, processor i immediately

sends the supervisor its current value xi = xi. We assume that if the supervisor processes a

potential solution vector and decides that termination is inappropriate, it subsequently sends

each processor a special message called a repeat signal. Upon receiving a repeat signal, processor

i resets bi to zero.

The second protocol is very similar to the first one. The only difference is that the second

protocol introduces a delay between the time bi is changed from zero to one and the time

that processor i sends the supervisor its value xi = xi. We now assume that each processor i

sends the supervisor an initiation message upon changing bi from zero to one. Furthermore,

the supervisor maintains an initiation buffer, initially empty, that contains at most n initiation

messages. When the supervisor has received an initiation message from each processor, i.e., its

initiation buffer is full, it empties the buffer and sends a special message called a query message

12



to each processor. Upon receiving a query message, processor i sends the supervisor a message

containing xi = xi as soon as xi C Si and discards the query message. We suspect that the

second protocol often requires fewer potential solution vector validations than the first protocol

because the transmission of initiation and query messages introduces a delay that acts like a

synchronizer, so that the vector x seen by the supervisor is closer to being consistent with the

vectors x i stored by the processors during some interval of time.

The last two procedures are very similar and employ slightly different features from the

second protocol. The third and fourth protocols are differentiated from the second by the rules

specifying when processor i should change bi from one to zero and when the supervisor should

send each processor a query message. The repeat signals employed by the first two procedures

are not needed for the third and fourth protocols. Instead, in addition to sending messages

containing its value and initiation messages, each processor can also send the supervisor special

cancellation messages notifying that its termination condition is no longer satisfied. More

specifically, whenever processor i has bi = 1 and x i
' Si, it sends a cancellation message to the

supervisor and sets bi = 0. Rather than keeping an initiation buffer, the supervisor maintains

a binary flag W, which indicates if it is waiting for the reply to a query, and for each i, it keeps

a counter ci, which records the difference between the number of initiation and cancellation

messages it has received from processor i. Initially, W is set to zero, and bi = ci = 0 for all

i. When the supervisor receives an initiation message from processor i, it increments ci by

one. When a cancellation message from processor i arrives at the supervisor, the supervisor

decrements ci by one. Note that ci is not necessarily a binary variable unless the links that carry

initiation and cancellation messages are FIFO; however, the assumption that there is some t for

which xi(t) E Si for all t > t and all i implies that there is some t* such that for all i, ci = 1 at

all times greater than t*. For the third (fourth) protocol, whenever W = 0 and ci > 1 (ci = 1)

for all i, the supervisor sends a query to each processor and sets W = 1. The supervisor

changes W back to zero whenever it processes a potential solution vector and decides not to

terminate. Intuitively, the third and fourth procedures require fewer potential solution vector

verifications than the second because query messages are sent when it's more likely that all of

the processors simultaneously satisfy their local termination condition. The fourth procedure

results in a larger termination delay than the third procedure, but will probably involve few

13



potential solution tests before time t*.

3.2. Second Processing Situation

The second processing situation differs from the first one in a few ways. The supervisor of the

first scenario is replaced by a coordinator which can communicate directly with each processor,

but is unable to determine on its own if a given vector x E X satisfies the global termination

condition. Therefore, to compensate for this impediment, we presuppose that the processors in

the second processing situation are more powerful than their counterparts in the first scenario.

In addition to the computation, storage, and interprocessor communication capability needed

to execute the underlying algorithm, the processors also have the means to take and test a

snapshot of the system. Each processor i has the responsibility to determine if the potential

solution vector associated with a snapshot satisfies i's local termination condition and provide

the coordinator with this information. The role of the coordinator is to collect the results of a

snapshot from the processors, determine and inform the processors if termination is appropriate

or inappropriate, and store the solution vector. Except for the first protocol we will consider,

the coordinator also has the function of gathering additional information from the processors

for the purpose of requesting snapshots. In the first protocol, a processor initiates a snapshot

solely on the basis of local information.

Each of the protocols discussed for the first processing situation can be modified to work for

the second computing scenario. The adaptations of the second, third and fourth protocols of

the last subsection maintain the flags bi introduced earlier; the modification of the first protocol

does not. For the procedures which store bi, processor i continues to use the sames rules and

mechanisms as before to update bi and to notify the coordinator about the changes in the flag.

The coordinator uses the same expedients introduced in the last subsection to decide when to

send each processor a query message. In the first processing situation, a query message to a

processor was a request for the processor to transmit its value as soon as it satisfies its local

termination condition; now, a query message to a processor is a request for the processor to

initiate a snapshot if it is not currently engaged in one.

Furthermore, for each protocol, we assume that each processor i can store a binary flag qi,

which is zero when processor i can initiate a snapshot of the system, and a potential solution

14



vector xi consisting of its own potential solution value xi and the potential solution values of

its essential neighbors; there is no need for the coordinator to store a potential solution vector

before the algorithm has terminated. Initially, for each processor i, qi = 0, xi = xi(O), and

the rest of the potential solution vector is empty. For the first protocol, processor i initiates

a snapshot when qi = 0 and x i E Si. For the other three protocols, processor i initiates a

snapshot whenever it receives a query message from the coordinator while qi = 0. For all of

the procedures, the execution of a snapshot is identical, except for some minor variations. If

processor i initiates a snapshot, it sets qi = 1, saves xi = xii as its own potential solution value

as soon as x i E Si and sends a special message called a test message containing the new value

of xi to each of its dependent neighbors. If processor i receives a test message containing xj

while qi = 0, it sets qi = 1, discards the current value of xi, stores Yj in its potential solution

vector, saves xi = xi as soon as xi E Si and sends a test message containing the new value of

xi to each of its dependent neighbors. If processor i receives a test message containing Yj while

qi = 1, it stores Yj in its potential solution vector. For the last three protocols, if processor i

is not an initiator of the current snapshot, a query message subsequently reaches the processor

and is ignored if qi = 1 upon arrival. When xi is complete, processor i checks if xi satisfies

the local termination condition, empties the potential solution vector except for xi, and sends

the coordinator a special message called a token; if the local termination condition is satisfied,

processor i transmits a white token to the coordinator and otherwise sends a black token. The

coordinator maintains a token buffer containing at most n tokens; initially, the token buffer

is empty. When the coordinator's token buffer is full, the coordinator checks if all the tokens

are white. If they are, the coordinator sends a termination order to each processor and awaits

the solution value from each processor; otherwise, it empties the buffer, transmits a repeat

signal to each processor, and for the third and fourth protocols, sets W back to zero. When a

processor obtains a termination order, it terminates with its potential solution value as its final

value and sends a copy of xi to the coordinator. When processor i receives a repeat signal, it

sets qi to zero and, as we indicated earlier, for the second protocol it also sets bi to zero. We

note that the value of xi stored in the potential solution vectors of processor i and its essential

neighbors are consistent. Furthermore, we recall that by Assumption 3, there is some t for

which (xl(tl),... ,xn(t)) E S for all tl,..., tn > ti. Hence, the protocol terminates in finite

15



time with a vector x belonging to the global termination set.

We suspect that again there is an increase of synchronism going from the first protocol to

the fourth one because the delays introduced by the query generation in the more complex

procedures are likely to result in a decrease in the difference between the time processor i sets

qi to one and the time i sends test messages to its dependent neighbors. Consequently, as the

procedures become increasingly complicated, they probably have fewer snapshots and a larger

termination delay.

3.3. Third Processing Situation

For the third processing situation, one of the processors participating in the iteration, say

processor j, undertakes the role of coordinator. We presuppose that information passes between

the coordinator and every other processor by means of a spanning tree rooted at processor j; a

synopsis of our approach to selecting a coordinator and constructing a spanning tree is provided

at the end of Section 2. Furthermore, the processors are more powerful than their analogues in

the second processing situation. In particular, they are now required to store and send their

parents or children in the spanning tree the type of packets that their counterparts in the second

processing scenario transmit to or receive from the coordinator, respectively. For the protocols

we consider, we assume that each non-leaf processor maintains a token buffer, which is initially

empty, and whose size is given by the number of children it has in the spanning tree.

We adapt the first two protocols specified for the second processing situation to the third

computing scenario. For both protocols, we assume that each processor i maintains the flag

qi and the potential solution vector xi and uses the rules itemized in the last subsection to

initialize these expedients, change qi from zero to one, and update xi. The snapshots differ in

two ways from their parallels for the second processing situation. First, only the coordinator

is able to initiate a snapshot. The other change is an adjustment in the way the coordinator

obtains the results of a snapshot from and sends messages to the processors. Upon storing

a complete potential solution vector, each processor checks if that vector satisfies the local

termination condition; if it does, the processor becomes white and otherwise it turns black.

Each leaf processor that has tested its potential solution vector sends its parent a token of its

color. Except for the coordinator, each non-leaf processor that has tested its potential solution

16



vector and has a full token buffer sends its parent a white token if it is white and the token

buffer contains no black tokens, and it sends a black token otherwise. Upon sending a token,

processor i empties its potential solution vector except for xi, discards the tokens in its token

buffer, and loses its color. Since the coordinator is the only processor to ever initiate a snapshot,

processor i 74 j can view the snapshot to be over, and hence, reset qi to zero, upon sending

its parent a token. When the coordinator has tested its potential solution vector and has a

complete token buffer, it broadcasts a termination order if it is white and possesses no black

tokens; otherwise, it empties its potential solution vector. As before, we assume that there will

eventually be a snapshot of the system belonging to the global termination set, and hence, both

of the protocols terminate in finite time. Once the processors receive the termination directive,

the procedure specified at the end of the section on distributed termination is used to construct

the solution vector. We give the remaining details specific to each protocol below.

For the first pro cedure, the coordinator employs only local information in deci

or not to initiate a snapshot; a snapshot is initiated when qj = 0 and xi E Sj. The coordinator

changes qj back to zero every time it processes a snapshot and determines that termination is

inappropriate.

For the second protocol, aside from keeping the flag qi and a token buffer, processor i also

maintains a binary flag bi and an initiation buffer, initially empty, which is the same size as its

token buffer. If i 74 j, bi is zero when processor i is able to send its parent an initiation message;

bj is set to zero when there is no snapshot in progress. When xi C Si, a leaf processor i sends

its parent an initiation message and sets bi = 1. When x i C Si and its initiation buffer is full,

a non-leaf processor i =7 j sends its parent an initiation message, sets bi = 1, and empties the

initiation buffer. When xi E Sj and its initiation buffer is full, the coordinator sets qj = bj = 1,

initiates a snapshot, and empties its initiation buffer. When the coordinator has tested its

potential solution vector and has a complete token buffer, it broadcasts a termination order if

it is white and holds no black tokens; otherwise, it sets bj = 0, empties its potential solution

vector, and sends its children a repeat signal. Upon receiving a repeat signal, processor i sets

bi = 0 and propagates the signal to its children, if it has any. Using the same reasoning we

applied to the first two computing scenarios, we again surmise that the additional complexity

of the second protocol relative to the first results in a decrease in the number of snapshots and

17



an increase in the termination delay.

3.4. Application to a Termination Detection Scheme

For a finite, distributed computation, each processor is in either an active state or an idle

state at any time. An active processor can send primary messages, i.e., messages pertaining to

the underlying computation, to its dependent neighbors, and it may become idle at any time.

An idle processor cannot send primary messages and it may remain idle or turn active upon

receiving a primary message. The computation has terminated if all processors are idle and there

are no primary messages in transit. We assume that the computation eventually terminates

and we consider the problem of detecting termination. This is a well-known problem, which

has been studied in many sources, e.g., [1] and [3-10].

A simple way to gather information about the number of undelivered primary messages in

the system is to have each of the processors from time to time send the supervisor a secondary

message, i.e., a report on the number of primary messages it has recently sent and received.

The supervisor can then detect termination when the counts of the received and sent messages

are equal, and in addition, all processors are idle. Termination detection protocols based on

message counting were first considered in [9] and [10]. We present and establish the validity of a

class of termination detection schemes that use snapshots to account for the primary messages

that have passed through the system. A snapshot is a time interval during which every processor

participating in the computation sends the supervisor exactly one secondary message and which

ends when the supervisor has received and processed each of these secondary messages. Our

schemes and presentation are similar to those in [9, pp. 95-97]. In particular, the supervisor in

our protocols plays the same role as the central process in [9]. The procedures in §3.1 - §3.3

provide specific (and new) implementations of these termination detection schemes.

In every scheme, each processor i participating in the computation updates Si, the number of

primary messages it has sent, and Ri, the number of primary messages it has received, between

consecutive snapshots. Initially, Si = -i = 0, and the appropriate variable is incremented

when a primary message is sent or received. Each processor uses local information to find out

if the system is involved in a snapshot and to select the single moment during a snapshot at

which it sends the supervisor a secondary message consisting of its current counts and resets

18



Si and lZi to zero. For example, since all processors must be idle in order for termination to

occur, we require that a processor be idle at the instant it sends the supervisor a secondary

message. The supervisor maintains S and 1Z, which estimate the cumulative number of primary

messages that have been sent and received in the system, respectively. Initially, S = 7 = 0,

and when a set of message counts from processor i arrives at the supervisor, S and R are

increased by Si and 7Ri, respectively. At the end of a snapshot, the supervisor decides that

the computation has terminated if S is equal to X, and if R7i is equal to zero for all processors

i. Otherwise, the supervisor performs some other tasks to prepare the system for the next

snapshot, which will take place within a finite time. We will establish that for this class of

schemes, the supervisor will detect termination within a finite time after it occurs and that it

will never incorrectly conclude that the computation has terminated. Then we will provide the

final details characterizing the individual protocols.

We have the following result.

Proposition 2: If the underlying computation terminates at time t*, then within a finite

time after t*, the supervisor's record of the cumulative number of primary messages sent will

be equal to its record of the cumulative number of primary messages received, and there will

subsequently be a snapshot during which all processors will report that they have not received

any new primary messages.

Proof: For all i, as processor i sends or receives a primary message, it simultaneously tallies

the message in Si or Ri, respectively, and transmits these message counts at the next instant it

sends the supervisor a secondary message. The time between the transmission and reception of

a secondary message, and the time between the transmission of successive secondary messages

from the same processor are assumed to be finite. By the end of the second snapshot to be

completed after t*, the supervisor knows of every primary message that was sent and subse-

quently received during the computation, and hence, S and R must be equal. Furthermore,

since the computation has terminated by the end of the first snapshot that finishes after t*,

in the following snapshot, each processor will be idle and report that it has received no new

messages. D]

We next establish that the supervisor never incorrectly decides that the computation has

terminated.

19



Proposition 3: If at the end of a snapshot, the supervisor finds that Ri = 0 for all processors

i and that S = R, then it can conclude that the underlying computation has terminated.

Proof: For this snapshot, let ti denote the instant at which processor i sends the supervisor a

secondary message. We will show that for all j, processor j will never receive a primary message

after tj. Since processor j is idle at time tj, this will prove the proposition. A primary message

is called a bad message if it arrives at its destination, say processor j, after time tj. We will

demonstrate that there cannot be any bad messages in the system. To arrive at a contradiction,

suppose there are bad messages in the system and let m be the bad message with the earliest

time of reception, say tr. Assume that m was sent at time ts by processor i to processor j.

There are two cases to consider.

1. Suppose t, > ti. Then processor i must have received a bad message prior to ts < tr. This

contradicts the assumption that m is the bad message with the earliest time of reception.

2. Suppose ts < ti. Let Te represent the earliest of the times tk. Then either m is in transit

at time Te, or ts E [Te, ti]. We will show that either scenario is impossible.

First, we need to introduce some additional notation. For any time t, let Sk(t) and Zk(t)

represent the cumulative number of primary messages that have been sent and received,

respectively, by processor k by time t, let A(k,l)(t) symbolize the number of primary

messages from processor k to processor I that are in transit at time t. Clearly,

ZSk(t) = E R(t)+ ZA(kl)(t). (2)
k 1 (k,l)

Since R7k = 0, processor k did not receive any primary messages in the interval [Te, tk].

Hence,

1R = C ~Rl(ti) = ,R (fe)- (3)
l I

We also have that

S = s (tk)
k

> y~ Sk (Te), by monotonicity of Sk (.)
k

20



= Z 7'(Te) + E A(k,')(e), by (2). (4)
(k,l)

Since S = 7, it follows from (3) and (4) that there are no primary messages in transit at

time T7 and that for all k, processor k did not send any messages in the interval [Te, tk] .

To conclude this section, we will explain how to convert the protocols in §3.1 to termination

detection protocols. Aside from the alterations in the snapshot described above, there are two

additional modifications needed. The first is that we need to replace the condition "processor

i satisfies (doesn't satisfy) its local termination condition" with "processor i is idle (active)."

The other change is that instead of sending the supervisor a message containing xi, processor

i transmits a secondary message consisting of its current message counts. As in §3.1, the more

complicated protocols are likely to generate larger termination delays in exchange for fewer

snapshots. The protocols in §3.3 can also be recast into this framework. We omit the details.

4. Conclusions

The problem of obtaining iteratively a vector satisfying a global termination condition using

local criteria at the processors of an asynchronous distributed system is surprisingly delicate.

We gave two general approaches and several algorithms that use additional interprocessor com-

munications to ensure that a vector with the desired property is constructed at one of the

processors. An analytical comparison of these algorithms in terms of communication efficiency

and termination delay appears to be difficult. For many common architectures such as star

networks and broadcast rings, the implementation of these procedures is very simple. In the

distributed approach, the termination protocol affects the communication delays of the itera-

tive algorithm, possibly also affecting its convergence properties. Generally, for the supervised

approach, it would seem that the communication requirements increase as the termination pro-

tocol becomes more distributed. However, the computation requirements, including memory,

to check the various termination conditions increase as the termination protocol becomes more

centralized. The supervised approach can also be used to create protocols for the termination

detection of arbitrary finite, distributed computations.

21



References

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical

Methods, Prentice-Hall, New Jersey 1989.

[2] D. P. Bertsekas and J. N. Tsitsiklis, "Some aspects of parallel and distributed algorithms

- a survey," Automatica Vol. 27, No. 1, 3-21, 1991.

[3] E. W. Dijkstra and C. S. Scholten, "Termination detection for diffusing computations,"

Inform. Process. Lett. Vol. 11, 1-4, 1980.

[4] N. Francez, "Distributed termination," ACM Trans. Programming Languages Syst. Vol. 2,

No. 1, 42-55, Jan. 1980.

[5] N. Francez and M. Rodeh, "Achieving distributed termination without freezing," IEEE

Trans. Software Eng. Vol. SE-8, 287-292, May 1982.

[6] E. W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren, "Derivation of a termination

algorithm for distributed computations," Inform. Process. Lett. Vol. 16, 217-219, 1983.

[7] R. W. Topor, "Termination detection for distributed computations," Inform. Process. Lett.

Vol. 18, 33-36, 1984.

[8] K. M. Chandy and L. Lamport, "Distributed snapshots: determining global states of

distributed systems," ACM Trans. Comput. Syst. Vol. 3, 63-75, 1985.

[9] D. Kumar, "A class of termination detection algorithms for distributed computations,"

Proc. Fifth Conf. Foundations Software Technol. & Theoret. Comput. Sci., New Delhi, In-

dia, Dec. 16-18, 1985; Lecture Notes in Computer Science, 206 Berlin, Germany: Springer-

Verlag, 73-100.

[10] D. Kumar, "Development of a class of distributed termination detection algorithms," IEEE

Trans. Knowledge and Data Eng. Vol. 4, No. 2, Apr. 1992.

[11] D. P. Bertsekas and J. N. Tsitsiklis, "Convergence rate and termination of asynchronous it-

erative algorithms," Proc. 1989 Intern. Conference on Supercomputing, 461-470, Irakleion,

Crete, 1989.

22



[12] D. Chazan and W. L. Miranker, "Chaotic relaxation," Lin. Algebra and Appl. Vol. 2,

199-222, 1969.

[13] G. M. Baudet, "Asynchronous iterative methods for multiprocessors," J. ACM Vol. 15,

226-244, 1978.

[14] D. P. Bertsekas and R. G. Gallager, Data Networks, Prentice-Hall, New Jersey 1987.

[15] R. G. Gallager, P. A. Humblet, and P. M. Spira, "A distributed algorithm for minimum-

weight spanning trees," ACM Trans. Programming Languages Syst. Vol. 5, No. 1, 66-77,

Jan. 1983.

23


