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Abstract

This thesis introduces a new lab kit that is uniquely suited to teach power electronics: the
Power NerdKit. The Power NerdKit is a self-contained prototyping system, which is easily incorpo-
rated into other systems such as an electric go-kart. Central to the kit is the card-rack prototyping
area, where circuitry on PCB cards can be installed, interconnected, and tested. We present three
prototyping PCB cards for use with the kit. Each of the cards has a common interconnection inter-
face: up to five high current connections can be made via terminal lugs, and up to 26 low current
connections can be made via card-edge connector. The first card provides solderless breadboard for
constructing circuits and can connect with other cards through the standard interface. The second
card is similar to the first, but is designed for circuits that must be soldered together. The last card,
called the TriTotemII, implements three "totem-pole" circuits, which form the foundation of the
converter topologies taught in the class. Finally the cards feature a unique method to attach oddly
shaped devices using Unplated Through-hole Anchor Points. The lab exercises emphasize design. In
Lab 1, the student: learns why switching circuits are useful; learns a few necessary control circuits;
and builds a switching audio amplifier. In Lab 2, the student constructs a 1500W buck converter
that drives an electric go-kart at variable speeds; they also design and build a 12W boosting power
supply for a switching stereo amplifier of their construction. In Lab 3, the student designs and
builds a high-voltage flyback converter and an electric fluorescent lamp ballast. Lastly, in Lab 4, the
student explores how power electronics are used to drive induction and permanent magnet machines
using a teaching motor specifically designed for this course.

Thesis Supervisor: Steven B. Leeb
Title: Associate Professor

2-



Acknow led gements

Special thanks to those who made indispensable contributions to 6.131: Ariel Rodriguez

for testing and realizing the control circuits taught in Lab 1 and used throughout 6.131; Candace

Wilson for her excellent revisions of Lab 3; Eric Tung for his work on Lab 4; Rob Cox, Al-Thaddeus

Avestruz, and Warit Wichakool for their teaching assistance; the students of 6.188 (6.131's initial

course number); and to Professors James L. Kirtley and Steven B. Leeb for their guidance and

support. And my warmest gratitude to those who contributed with their love and support: Mom,

Dad, my sisters, and Issel; this would not have been possible without you.

This thesis was made possible by essential funding from The Cambridge-MIT Institute

(CMI), with additional funding from the U.S. Navy Office of Naval Research, and the Grainger

Foundation.

-3-



Contents

1 Introduction 9

2 The PowerNerd Kit 11

3 Three Prototyping PCBs 19

3.1 The Common Power and Data Interface ......................... 19

3.2 Unplated Through-hole Anchor Points .......................... 20

3.3 The Breadboard Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 The Perfboard Solder Card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 The TriTotem II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Lab 1: Linear versus Switching Power Converters 31

4.1 Voltage References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Linear Power Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Oscillators, Pulse Width Modulators, and Delay Circuits . . . . . . . . . . . . . . . . 35

4.4 Switching Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Lab 2: Switching Converters 42

5.1 Go-kart Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Buck Converter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Go-kart Output Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Portable Stereo Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

-4-



Stereo Supply Buck Converter . . . . . . . . . . . . .

Stereo Supply Boost Converter . . . . . . . . . . . .

Boost Start-up Circuit . . . . . . . . . . . . . . . . .

3: Isolated and Indirect Converters, Resonant

Flyback Converter . . . . . . . . . . . . . . . . . . .

Resonant Converter . . . . . . . . . . . . . . . . . .

5.5

5.6

5.7

6 Lab

6.1

6.2

7 Lab

7.1

7.2

8 Assessment and Conclusion

A Manufacturing Information for the PowerNerd Kit

A.1 Power NerdKit Part and Vendor Information . . . . . . . . . . . . . . . . . . . . .

A.2 Power NerdKit Card-Cage Drawings . . . . . . . . . . . . . . . . . . . . . . . . . .

A.3 Power NerdKit Power-Cage Drawings . . . . . . . . . . . . . . . . . . . . . . . . .

B Layout Cards

C Parametric Inductor Saturation Code

D AC Light Dimmer

4: DC to AC

Three Phase Permanent Magnet Machine . . . . . . . . . . . . . . . . . . . . . . .

Three Phase Induction Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

Converters

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

49

52

56

58

58

64

70

71

71

76

80

81

83

89

92

95

101

-5-



List of Figures

2.1 The Power-NerdKit inside its mahogany carrying case. . . . . . . . . . . . . . . . . . 12

2.2 Components of the Power NerdKit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The underside of the Power NerdKit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 The front face of the Power NerdKit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Left: Plastic cardguide used in the cardrack. Center: Handle. Right: Front panel

captive screw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Inside the power compartment: on the top right are two Mean-Well power supplies

that comprise the MPS; in the lower left and right are two 12V lead-acid batteries;

in between the batteries is the wall-transformer that serves as the CPS. Also shown

are the battery fuses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Power Compartment Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Power compartment interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Front Panel Sticker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Power and Data Interface on the 6.131 prototyping PCBs. . . . . . . . . . . . . . . . 19

3.2 Three interconnected prototyping cards. . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Close-up view of the data interconnections. . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Close-up view of the power interconnections. . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Unplated Through-hole Anchor Points on the TTII prototyping area. . . . . . . . . . 23

3.6 An inductor secured to a with wire-ties to a TTII through a set of UTAPs. . . . . . 23

3.7 The Breadboard Card. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 The Perfboard Solder Card. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

-6-



3.9 The canonical "Totem Pole" with high- and low-side NFETs; a floating gate drive is

3.10

3.11

3.12

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

used for the high-side FET. . . . . . . . . . . . . . . . . . . .

The TriTotem II Card. . . . . . . . . . . . . . . . . . . . . . .

TTII schematic. . . . . . . . . . . . . . . . . . . . . . . . . . .

The laminated design sheet for the TriTotem II Card and the

Voltage divider reference. . . . . . . . . . . . . . . . . . .

Zener diode reference. . . . . . . . . . . . . . . . . . . . .

Diode stack reference. . . . . . . . . . . . . . . . . . . . .

Voltage divider reference isolated with an op-amp buffer.

Op-amp buffer with MOSFET to boost output current.

The LoadBoy test suite. . . . . . . . . . . . . . . . . . . .

A relaxation oscillator using one gate of a 74HC14. . . . .

555 timer connected for astable operation. . . . . . . . . .

555 timer connected for astable operation using a diode to

Solder Card.

effect the duty ratio. .

4.10 Using an LM311 to create an adjustable duty ratio .. . . . . . . . . . . . . . . . . . .

4.11 Using five gates of a 74HC14 to create a "break before make" switching waveforms. .

4.12 Using an IR2125 for drive a low-side MOSFET. . . . . . . . . . . . . . . . . . . . . .

4.13 Using two IR2125s to drive a high- and low-side MOSFET pair. . . . . . . . . . . . .

4.14 Full schematic for the 6.131 audio amplifier. . . . . . . . . . . . . . . . . . . . . . . .

5.1 6.131 G o-kart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Pinout of the DIP connector containing the low power go-kart connections. . . . . .

5.3 Power dissipation in each FET of the Go-Kart buck as a function of duty ratio. . . .

5.4 Scematic of the go-kart power supply. . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5 The basic buck converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6 Suggested topology for the stereo power supply. . . . . . . . . . . . . . . . . . . . . .

5.7 Inductor design graph. Selected cores from T-72-26 to T-131-26. . . . . . . . . . . .

5.8 The basic boost converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

-7-

27

28

29

30

32

33

33

34

35

36

36

37

37

38

39

39

40

41

43

44

45

47

48

49

51

52



5.9 Inductor design graph. Selected cores from T-90-52 to T-175-52.

5.10 Boost stage start-up circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 The suggested flyback topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 A typical V-I characteristic of a fluorescent lamp. [11] . . . . . . . . . . . . . . . . . 65

6.3 Fluorescent lamp ballast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 The 6.131 Teaching Motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 The permanent magnet disk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 The encoder wheel pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.4 The encoder wheel for the permanent magnet machine. . . . . . . . . . . . . . . . . 73

7.5 Block diagram for the permanent magnet machine. . . . . . . . . . . . . . . . . . . . 73

7.6 The state machine used to control the PM machine. . . . . . . . . . . . . . . . . . . 74

7.7 A state machine to produce "six pulse" sinusoidal excitation. . . . . . . . . . . . . . 75

8.1 Design review grade sheet used to assess each student's design work in Lab 2. . . . . 79

B.1 The laminated design sheet for the TriTotem II Card. . . . . . . . . . . . . . . . . . 93

B.2 The laminated design sheet for the Solder Card. . . . . . . . . . . . . . . . . . . . . 94

D. 1 A digital, phase-controlled light dimmer. . . . . . . . . . . . . . . . . . . . . . . . . . 102

-8-

55



Chapter 1

Introduction

T HE purpose of electrical engineering laboratory classes at MIT is to teach students how to de-

sign and build circuits and systems. The MIT/EECS laboratory curriculum includes classes

that cover many topics in electrical engineering and computer science, in a hands-on fashion, includ-

ing analog circuits, digital circuits, microcontrollers, and bio-electrical systems. The topic of power

electronics, however, was unrepresented, in part because the traditional laboratory prototyping tools

are unsuitable to teach this subject. This thesis presents a new teaching system that is suitable for

use in a power electronics laboratory. This system enabled MIT/EECS to offer the "Power Elec-

tronics Laboratory", 6.131, as part of the undergraduate curriculum. The teaching tools and labs

described here are designed to be: 1) focused; so that the student spends most of his time on the

aspects of the class that provide the most learning 2) affordable; so that the lessons can be taught

with a reasonable budget and 3) maintainable; so that the class can be taught yearly.

Before 6.131, all EECS lab classes used the same basic teaching systems. To build their

circuits, students use solderless breadboard inside a suitcase-like lab kit. This prototyping method

has low year-to-year operating costs since the breadboard and components are reusable. The circuits

taught in 6.131 use higher voltages and/or currents than the circuits typically taught in other classes.

The teaching system presented in this thesis makes it possible to safely build high-current and/or

high-voltage circuits in the cost and time requirements of an undergraduate laboratory class.

Chapter 2, presents a new laboratory kit specifically design for 6.131. The kit is a portable,

self-contained, aluminum card-rack with integrated power supplies, batteries, charger, forced-air

cooling, and a small, solderless prototyping area. It has handles and captive screws that allow the

kit to be easily removed and installed into other systems. In this way, projects can be developed on

a controlled bench-top environment, tested, and then literally dropped into an external system.

-9-



Chapter 3, presents a set of printed circuit boards (PCBs) used in 6.131. Two of the

PCBs are general purpose prototyping cards: one card consists of a solderless breadboard and screw

terminal blocks; the other card has printed copper traces in a standard connection pattern. The

third card, called the Tri-Totem II (TTII), is a fundamental building block of the circuits taught

in 6.131. It provides a set of three totem poles and independent MOSFET drivers; it is possible to

construct a wide range of power converters with this topology.

Chapters 4, 5, 6, 7, present the four lab exercises for the class. Chapter 4 presents Lab 1,

where the student learns the control circuits that will be used throughout the course. Chapters 5

and 6 present Labs 2 and 3 respectively, where the student builds several different power converters

-starting with the canonical cell buck and boost converters in Lab 2, and advanced topologies

in Lab 3, such as the flyback, resonant, and phase-controlled converters. Chapter 7 presents Lab

4, where the student builds motor drive for a permanent magnet machine and a 3-phase induction

machine.

Chapter 8, presents the design review and checkoff methods used to assess student progress,

as well as student feedback from the initial course offering.

- 10 -



Chapter 2

The PowerNerd Kit

T HE power circuits taught in 6.131 have to process higher currents and/or voltages than what

is typically built in a teaching lab at MIT. For instance, in Lab 2, students build a circuit

that drives an electric go-kart. This requires a circuit capable of delivering 30A surge currents. For

applications such as the go-kart, many of the circuits have to be soldered together for them to work

safely and reliably. The typical breadboard prototyping system would be inadequate for this class.

Typically in laboratory classes, each student is issued a "NerdKit", which is a suitcase-like

prototyping kit. The most basic NerdKits provide sufficient space to build circuitry on solderless

breadboard and also provide fixed voltage power supplies. Modern versions of the NerdKit have

some basic test equipment built-in; the NerdKit used in 6.115, for example, has a signal generator,

two push-buttons, a speaker, several throw switches, and a logic monitor, among its extra "bells-

and-whistles". While portable, like a suitcase, the NerdKits are not self-contained: they need to be

plugged into the wall outlet when used. The traditional NerdKit also does not support solder-based

prototypes and can not be used to construct high power circuits.

The 6.131 laboratory kit needs to be portable and self-contained if students are to use it

for exercises like constructing a go-kart drive. The kit must also provide safety while maintaining

convenient access for testing, revealing a design challenge: to enhance safety, the circuit must be

isolated from the student (preferably by encasing it in an electrically safe box) - but to enhance

usability, exposed prototyping areas are preferred. The kit must also be inexpensive to manufacture

and easily maintained so as not to strain academic budgets.

In the final prototyping system, printed circuit boards (PCBs) are used in a cardrack enclo-

sure. This custom cardrack is the center piece of the new lab kit designed for 6.131 - the "Power

- 11 -



NerdKit".

Figure 2.1: The Power-NerdKit inside its mahogany carrying case.

The Power NerdKit is shown in Figure 2.1 and Figure 2.2. In Figure 2.2, the kit has been

removed from its carrying case and its main components are labeled. The main prototyping space of

the lab kit is the cardrack. In here, cards are enclosed by aluminum on three sides, which protects

the student. The bottom of the cardrack, shown in Figure 2.3, is vented and has a fan to cool

the circuits in the rack. The front panel of the kit has a small, solderless prototyping area as well

as electrical connections to the power compartment. The kit also has handles and captive thumb

screws on its front face that allow the kit to be easily removed and installed into other systems.

These features are illustrated in Figure 2.4.

The Power NerdKit chassis is constructed from two custom sheet metal parts: the power-

cage and the card-cage. The manufacturing drawings for the power- and card-cage are included in

Appendix A.2 and A.3, respectively. The power-cage is secured to the card-cage with eight nuts

and bolts. Two washers on each bolt separate the cages; this provides a gap for the wires from the

fan to go inside the power compartment, and to give clearance for the cardguides. Fourteen pairs

of plastic cardguides line the inside of the card-cage producing the cardrack prototyping area. Two

handles bridge and support the cardrack, and four captive thumb screws are snapped into its front

face of the card-cage. Figure 2.5 shows a cardguide, captive screw, and handle used in the Power

- 12 -



Figure 2.2: Components of the Power NerdKit

NerdKit.

The power compartment contains a dual +12V/-12V off-line supply, a +5V off-line supply,

two 12V 4Ah lead-acid batteries, and a charger for the batteries. The inside of the power compart-

ment is show in Figure 2.6 and the electrical connections are shown in Figure 2.7. The Main Power

Supply (MPS) consists of a Mean-Well dual +12V/1A, -12V/1A supply and a Mean-Well single

+5V/5A supply. These supplies have no minimum load requirement and have excellent short circuit

protection. The Charging Power Supply (CPS) is a 30VDC, Class 2, line transformer plugged into

a extension cord. The other end of the extension cord is stripped and connects to the supply switch

(SW,11 ,,). The supply switch is a on-off-on SPDT, switch. It can turn either the MPS on, the CPS

on, or both off. The AC line connects to the power compartment circuitry through a IEC connector

on the front panel. It then passes through a fuse, and then to SWs,,,,. The fuse is accessible on the

front panel. Earth ground is connected to the Power NerdKit chassis and to a front panel banana

plug. The output of the MPS (+5V, +12V, -12V and COM) are accessible via the banana plugs

on the front panel. The batteries are connected in series, with the two ends and the center nodes

provided on the front panel banana plugs. SWFAN is an on-off-on SPDT switch that connects the

fans to either, +12VMps, -1 2 VBatt, or turns them off.

Figure 2.8 shows the details of the interface to the power compartment. On the top right

- 13 -



Figure 2.3: The underside of the Power NerdKit.

is the IEC connector to power the AC portions of the kit. The chassis is earth grounded only when

the kit is plugged into the wall. The chassis is also connected to the green banana plug on the lower

right. Figure 2.9 shows the front panel sticker explaining how to operate the kit. To charge the

batteries in the kit, you flip the left switch down. To power the internal supplies you flip the left

switch up. To run the fans from the internal supplies you flip the right switch up (the left switch

must also be up). To run the fans from the batteries you flip the right switch down. For both

switches, the middle position is off.

In the pilot production run, 163 kits were constructed for about $400 each, including as-

sembly labor. The complete parts list and vendor information is included in Appendix A.
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Figure 2.4: The front face of the Power NerdKit.

Figure 2.5: Left: Plastic cardguide used in the cardrack. Center: Handle. Right: Front panel captive
screw.

- 15
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Battery
Fuses

Figure 2.6: Inside the power compartment: on the top right are two Mean-Well power supplies
that comprise the MPS; in the lower left and right are two 12V lead-acid batteries; in between the

batteries is the wall-transformer that serves as the CPS. Also shown are the battery fuses.
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Figure 2.8: Power compartment interface.
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Chapter 3

Three Prototyping PCBs

T HREE PCBs have been designed to complete the 6.131 prototyping system. These cards,

described in this Chapter, are: the Breadboard Card (BC), the Perfboard Solder Card (PSC),

and the TriTotem II (TTII). Each of these cards feature the Common Power and Data Interface

(CPDI), which provides a convenient mechanism for interconnecting multiple cards. The PSC and

TTII also feature Unplated Through-hole Anchor Points (UTAPs), which provide a novel way to

attach oddly shaped devices to the cards.

3.1 The Common Power and Data Interface

The CPDI provides a versatile and convenient method to distribute data and power across

multiple cards. Each of the three 6.131 prototyping PCBs feature the CPDI, shown in Figure 3.1.

The CPDI provides five power holes on the top-left side, and a card-edge connector with 26 contacts

for low power signals on the top-right side.

2 26

dd ss

Figure 3.1: Power and Data Interface on the 6.131 prototyping PCBs.

Figure 3.2 shows how the CPDI is used to interconnect multiple cards. The three-tap card-

edge cables, shown in Figure 3.3, are constructed by Digikey from 26-pin card-edge connectors from
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CW Industries (Digikey: CCE26T-ND) and flat ribbon cable from 3M (Digikey: MC26M-X-ND;

where X is the number of feet per roll and equals: {5, 10, 25, 50, 100, 300}).

Figure 3.2: Three interconnected prototyping cards.

Figure 3.4 shows a close-up view of the power interconnections. Forked (Digikey: 920022-16-

ND) or circular (Digikey: 920010-03-ND) terminal lugs are crimped to the ends of wire and secured

to the power holes with a #10 nuts and bolts.

3.2 Unplated Through-hole Anchor Points

Often, oddly shaped devices must be used. For instance, in Lab 3 of 6.131, the students

mount a fluorescent lamp onto a card, and then build an electronic ballast to drive the lamp.

Inductors are another common component that can be challenging to secure to the cards. UTAPs

are an innovative solution to this problem that do not require special connectors for each different

device.

- 20 -



Figure 3.3: Close-up view of the data interconnections.

To create the anchor points, 0.1" dia. unplated through-holes were added between the

horizontal traces. Figure 3.5 shows this arrangement on the prototyping area of the TTII card.

The use of unplated through-holes preserves the solderless breadboard style of connection pattern.

Figure 3.6 shows a typical example of how UTAPs are used. In this example, an inductor is secured

to a TTII card with a pair of wire-ties through a set of UTAPs.

3.3 The Breadboard Card

The Breadboard Card (BC) is used to interface low power circuits to circuits on other cards.

The BC is shown in Figure 3.7. The CPDI on the BC has been modified to provide room for a block

of screw terminals: the five power terminals have been moved up and to the left, and a clearance

notch for the card-edge connector has been added. The addition of the notch allowed us to increase

the vertical dimension of the card. As a result, this board is the maximum vertical size that fits

in the Power NerdKit. The two rows of screw terminal blocks give access to the signals on the

card-edge connector and to each of the five power holes. Hook-up wire can be used to connect the

CPDI to traces on the breadboard.
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Figure 3.4: Close-up view of the power interconnections.

3.4 The Perfboard Solder Card

The PSC provides another method for the student to prototype circuits. While the BC is

suitable for low-power circuitry, the PSC is suitable for high-power circuitry. The PSC is shown in

Figure 3.8, its connection pattern is similar to the BC. The left-side of the prototyping area has

UTAPs, and the top portion of the card has the standard 6.131 CPDI.

3.5 The TriTotem 1I

The final card, the Tri-Totem II, is the fundamental teaching tool used in 6.131. Many of

the circuits in power electronics can be implemented with a circuit called a "Totem-Pole", shown in
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Figure 3.5: Unplated Through-hole Anchor Points on the TTII prototyping area.

Figure 3.6: An inductor secured to a with wire-ties to a TTII through a set of UTAPs.

Figure 3.9. With one of these, versatile, and powerful circuits, students can make a buck-converter,

boost-converter, buck/boost-converter, flyback or forward converter; with two, an H-Bridge; with

three, a three-phase motor drive. The TTII is used in 6.131 to teach all of these applications.

The TTII provides a pre-laid set of three-totem poles with independent MOSFET drivers.

The TTII can accommodate heatsinks (Digikey: HS225-ND) rated for 10 0C on each of the sixw

MOSFETS. The power traces on the TTII are qualified to carry 15 Amps without reinforcement

wires and up to 35 Amps with reinforcement wires. The TTII is also functional for applications

that use up to 400V. Ample ground plane and tight layout controls parasitics which allows for fast

switching. In Lab 2, for instance, students build power converts that switch at 250 kHz, and faster
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switching frequencies are possible with care.

The TTII is shown in Figure 3.10, and its full schematic is shown in Figure 3.11. As a

prototyping aid, students are provided with laminated printouts that show the top and bottom

layers of the TTII and PSC. The students use dry erase markers on these laminated sheets to plan

their circuitry before they proceed to build it. During the term, 6.131 students are required to show

the staff their layout plan before they can receive the parts needed to build their circuit. Small

versions of these sheets are shown in Figure 3.12. Appendix B includes the full-sized versions of

each.
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Figure 3.10: The TriTotem II Card.
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Chapter 4

Lab 1: Linear versus Switching Power

Converters

T HIS chapter presents the first laboratory taught in 6.131 [3]. This lab motivates the need for

switching power electronics, and teaches fundamental building blocks the students will use

in the exercises that follow [8]. The only prerequisite to 6.131 is a course in circuit fundamentals.

Therefore, this first lab starts with analysis of a few voltage converters using resistors and diodes.

By building and testing these voltage references, the student discovers that, as more current is drawn

from the output the reference voltage drops and the circuit is no longer a good reference. It is shown

that these methods of generating one voltage from another work only at low current, and therefore,

low power. To convert energy from one form to another at power levels high enough to do useful

work requires other circuitry taught in 6.131.

Next, students are challenged to build a linear regulator. This circuit, as before, creates

one voltage from another. The student analyzes what happens as various amounts of currents are

drawn from the regulator. They find that the linear regulator is much stiffer than the references

they built previously. But they also discover a new problem - their circuit gets hot; as they draw

power from the regulator more power is wasted. By building a linear regulator, they learn that in

addition to the problem of conversion - how to change one form of energy to another - there is

also the question of efficiency. In 6.131, students learn to design circuits that can efficiently convert

power from one form to another.

Next, they are introduced to several oscillator circuits that can produce square and triangle

waveforms that can be used to create pulse width modulated (PWM) switching signals. They are

shown a method to create "break before make" switch patterns, where two series switches are both
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always off, before one turns on (to avoid short circuits). They are also introduced to the IR2125

high-side MOSFET driver, which is a IC used extensively in the rest of the labs to switch MOSFETs.

Once comfortable with the control circuits and MOSFET drivers, the student begins to

experiment with switching power converters. Through experimentation, they learn about load av-

eraging, i.e. loads provide a degree of low-pass filtering that causes the output voltage to respond

to the average drive, not necessarily the instantaneous waveform. For instance, turning a light on

for 50% of a switch cycle is roughly equivalent to applying 50% of full voltage for the whole cycle,

so long as the switch cycle repeats often enough. They notice that the switching circuits run cool

to the touch, indicating that power is efficiently applied to the load. Finally, the student constructs

a switching audio amplifier on breadboard in preparation for when they build a high power version

in Lab 2 on a TTII card.

4.1 Voltage References

In this exercise, the student builds and investigates three reference voltage circuits. Each

of these circuits takes an input voltage, Vin, and produces a lower output voltage, V0 ut. The three

circuits - a voltage divider, zener reference, and a diode stack reference (shown in Figures 4.1, 4.2,

and 4.3 respectively) - are potential voltage regulators.

IR1

++Vi, _0+

R2 Vout

Figure 4.1: Voltage divider reference.

Assuming that Vin = 12V and Vout = 6V, the student develops a Thevenin equivalent

circuit for each reference circuit, and discusses what happens to the output voltage as different load

resistors are connected to the output port. For the Zener reference, the student chooses a suitable
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R11
Vi, +

W D, Vout

3 -

Figure 4.2: Zener diode reference.

R,

Vi, {+ D,

yD2 Vout

D 
3

Figure 4.3: Diode stack reference.

diode from a table of Zener diode specifications, and for the diode stack reference, they are told to

use an appropriate number of 1N4148 diodes. They are also asked to discuss the efficiency of each

circuit, that is, as power is delivered to the load, what happens to the overall power consumed by

the circuit. The student learns that the output voltage generated in each of these circuits drops

substantially as current is drawn by the load. They also learn that they are not particularly efficient,

as each of these circuits has a resistive element that drops the input voltage to the desired output

level.

These circuits begin to teach key lessons in 6.131, and they also familiarize the student with

6.131's emphasis on design and analysis, rather than copying circuits from building instructions.

That is not to say, however, the students must design everything from scratch. They are given the

tools to get going, but key design decisions are left up to them. For more complicated projects, such

as a switching power converter, the students' designs are reviewed by the staff, and any errors in

the design are corrected during this review so that the student can proceed to build their circuit

successfully.
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4.2 Linear Power Amplifiers

In this exercise the student constructs two types of linear regulators. In the previous exercise,

they found that the voltage reference circuits worked well for low output current. They start this

next exercise by isolating a divider reference from a load resistor with an op-amp buffer, as shown in

Figure 4.4. This circuit teaches the student a common way to isolate one circuit from another. They

see that in this circuit, V0 ut holds at the desired level, for any RL, so long as the output current

rating of the op-amp is not exceeded. Using a LM358 as the op-amp, the student determines what

the minimum value RL can have such that V0 ut remains at the desired output voltage. Since the

LM358 has a maximum output current of 20mA, the lowest RL is 300 Q (for Vut = 6V).

The student then builds the circuit shown in Figure 4.5, using a 40N10 MOSFET, and

implements the voltage divider with a 20 kQ potentiometer. They then connect a 20 Q load resistor

and learn that with the addition of the output FET, this circuit can provide several amps to the

load and still maintain the desired output voltage.

R,

Figure 4.4: Voltage divider reference isolated with an op-amp buffer.

The student tests the linear power supply shown in Figure 4.5 on loads provided by the

LoadBoy test suite, shown in Figure 4.6. LoadBoy provides: two 12V taillights, two 6W speakers,

and two DC motors coupled together so that one drives the other (a motor/generator pair). The DC

motors also have tachometers that output a voltage proportional to the angular velocity of the shaft.

While testing their circuit, the student learns how the different loads operate. For instance, they

learn that the brightness of the light bulbs depends on the voltage applied to them, and similarly,

that the angular velocity of the motors varies in proportion to the output voltage.

They also measure the efficiency of the linear regulator for various output voltages. By
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Vdd

R,

R2

iRL

Figure 4.5: Op-amp buffer with MOSFET to boost output current.

plotting efficiency versus output voltage they learn that for the linear regulator, efficiency is directly

proportional to output voltage. The poor efficiency of a linear regulator if further shown by the heat

the MOSFET generates.

4.3 Oscillators, Pulse Width Modulators, and Delay Circuits

The efficiency of the linear regulator is poor because the MOSFET operates in a regime

where it has both a voltage across it and a current through it. Operated as a switch, however,

one of these quantities is close to zero, and the MOSFET wastes significantly less power. In this

next exercise the student builds three circuits that will be used to control MOSFETs as switches:

oscillators, pulse width modulators (PWM), and delay circuits. The oscillators produce a periodic

waveform that indicates the start and stop of a switching cycle. A PWM circuit uses an oscillator to

adjust the portion of the cycle where the switch is turned on. The delay circuits allow two switches

to be controlled in a "break before make" pattern, to avoid short circuits.

The three oscillators shown in Figures 4.7, 4.8, 4.9, work in similar ways. The capacitor

voltage charges up to a high voltage threshold, which causes the output to change and then the

capacitor discharges to a low voltage threshold. When that threshold is reached, the output changes

and the cycle repeats. If the circuit in Figure 4.7 is implemented with a 74HC14, then the high

threshold, Vth, and the low threshold, Vtl, are equal to 2/3 and 1/3 of the supply voltage, respectively,
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Figure 4.6: The LoadBoy test suite.

just as in a 555 timer. The circuit in Figure 4.8 has a different charging and discharging pathway,

allowing for different duty cycles. Adding the diode in Figure 4.9 is another way to produce different

duty cycles. The Schmitt trigger oscillator can also produce different duty cycles for the output with

additional resistors and diodes.

RA

cc

Figure 4.7: A relaxation oscillator using one gate of a 74HC14.

An advantage of these oscillators is that for properly sized resistors and capacitors, the

capacitor voltage approximates a triangle wave. By comparing this triangle wave to an adjustable

DC level, it is possible to create and PWM waveform with an adjustable pulse width as shown in

Figure 4.10.

A PWM waveform and its inverse can be used to control the two switches in a totem pole.

Typically, one MOSFET is driven with the PWM signal, and the second MOSFET is driven with
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VCc VCc Vcc

RA

GND VCC _RB

TRIG DISC

-- OUT THRES

c- 
RESET CON

LM555 C1

Figure 4.8: 555 timer connected for astable operation.

Vcc VCc Vcc

RA

GND VCC - D, PUB

TRIG DISC

-OUT THRES

c~ 
RESET CON

LM555 C1

Figure 4.9: 555 timer connected for astable operation using a diode to effect the duty ratio.

an inverted version of the signal. The intention is that both MOSFETs are never on at the same

time. It takes time, however, for the MOSFETs to switch state. Therefore, it is necessary to create

"dead-time", where both switches are off, at the edges of the PWM signal. The operation of one

such delay circuit is illustrated in Figure 4.11.

This circuit takes an input switching command and creates two output signals, one for

each switch. The rising and falling time delays, tdr and tdf respectively, are set by the resistor and

capacitor in each circuit. The circuit on the left charges the capacitor through the resistor on a

rising edge of v2 , while the circuit on the right is sensitive to a falling edge. A similar result can

be obtained with diodes facing the same direction, however, this method uses seven gates. The

configuration shown only uses five gates (out of six on a single 74HC14), this leaves one gate free
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Vi+LM311 
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R1

Figure 4.10: Using an LM311 to create an adjustable duty ratio.

to be used as an oscillator like the one in Figure 4.7. Using only two ICs, a 74HC14, and a LM311,

one can create a full control circuit for a totem pole with an adjustable duty cycle.

4.4 Switching Power Amplifier

In this exercise, the student constructs the switching supply shown in Figure 4.12. By

powering various loads on LoadBoy with different duty ratios, the student discovers that the loads

filter the switching waveform and respond to the average voltage of the signal. Thus, the tail-light

driven with a 50% duty ratio appears to be at reduced brightness even though full voltage is applied

to the light for part of the cycle.

Next the student adds a high-side MOSFET and creates the complete totem pole shown in

Figure 4.13, and tests it with a load resistor. Once the drivers and delays circuits work, the student

adds an oscillator and LM311 to create a PWM signal. The PWM generator is set to produce a

nominal duty ratio of 50%. The student capacitively couples an audio signal on to the duty ratio

command voltage, modulating the output duty ratio according to the audio signal. When the load

resistor is replaced with a speaker on LoadBoy, and the student can enjoy music on this switching

audio amplifier. The completed circuit is show in Figure 4.14.
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Figure 4.11: Using five gates of a 74HC14 to create a "break before make" switching waveforms.

VCC VDD

MUR120 RL
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VC VB RG
IN HO

ERR CS CB
COM Vs

IR2125

Figure 4.12: Using an IR2125 for drive a low-side MOSFET.
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Figure 4.13: Using two IR2125s to drive a high- and low-side MOSFET pair.
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Figure 4.14: Full schematic for the 6.131 audio amplifier.



Chapter 5

Lab 2: Switching Converters

T HE exercises in the second lab concentrate on design switching power converters [4]. Specif-

ically, the student is walked through a design and construction of a buck converter drive for

the 6.131 electric go-kart. While they are working on this, they also design a 12W, portable power

supply for a switching stereo amplifier. Upon completion of a "design review", discussed in Chapter

8, they are cleared to build their power supply on a second TTII PCB, as well as a two channel

version of their audio amplifier from Lab 1 on a third TTII PCB.

The go-kart is the highest power system presented in the class. The go-kart drive must

supply 500W continuously, and up to a 1500W surge during acceleration. At these power levels,

poor designs fail dramatically. The student must show their working go-kart supply on the bench,

to a staff member, before the staff helps them run the go-kart. This level of staff involvement is

necessary to ensure safety and a good learning experience. The go-kart exercise is a key opportunity

for the staff to work one-on-one with students, developing their design and assembly skills.

For the stereo supply, the student is given more freedom to design. The lab exercise provides

a topology and a few specifications to work from; however, the choice of components and control

circuits is up to them. The specifications have been cleverly designed to lead the student to some

illuminating trade-offs that can be discussed during the design review. The design process is not

handed out, but must be discovered, together with the teaching staff.

42 -



5.1 Go-kart Power Supply

This section describes the design of a buck converter that can drive the 6.131 go-karts at

variable speeds. The design process shown here is presented in lecture as a "warm-up" exercise

so that students can understand how to arrive at the design and so that they can apply a similar

method when designing the power supplies for their stereo.

The 6.131 go-kart is shown in Figure 5.1. The battery compartment under the seat contains

three lead-acid batteries providing 36V to operate the go-kart. The go-kart includes a 1.5 HP DC

motor connected to the rear wheel with a chain drive link. The motor has a tachometer and cooling

fan. The steering wheel has two switches, a push-button, and a throw switch, as well as a slide

potentiometer. The electrical terminals for all of the go-kart components convene in the tool-box

mounted on the back of the go-kart; this is where a Power NerdKit can be inserted. The battery and

motor connections penetrate the tool-box through four banana plugs, which are connected inside to

wires with ring lugs. The low-power components, like the switches and slide pots, enter the tool-box

through DB-25 connector. Inside the box, these connections are accessible via DIP connector with

the pin-out shown in Figure 5.2.

Figure 5.1: 6.131 Go-kart.

The power consumption and motor currents for a variety of operating modes are shown in

Table 5.1. The cruising condition occurs once the go-kart has fully accelerated and maintains its

top speed for that drive voltage; this is the case where the minimum current is drawn from the

supply for a given drive voltage. Similarly, the stalled case occurs when the go-kart is driven, but

not moving; this is the case where the maximum current is drawn from the supply.
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Rslide 1L- RE2 NC 1
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24 pin DIP

Figure 5.2: Pinout of the DIP connector containing the low power go-kart connections.

Drive Quarter Half Full
Voltage (9V) (18V) (36V)
Cruise 13.5W A 1.5A 54W A 3A 216W A 6A
Stalled 81W A 9A 324W L 18A 1300W A 36A

Table 5.1: Operating modes of the Go-Kart buck.

This table shows that the worse-case current, from a stalled go-kart with full drive voltage, is

36A. Our circuitry must be able to handle this current continuously, for safety reasons. As mentioned

before, the TTII can handle this current if reinforced traces are used.

The FETs typically used in 6.131 are 40N10s which, when running hot (150 'C), have an

ON resistance of 80 mQ. The course staff stocks a heatsink with a thermal resistance of 10 C/W.

The junction thermal resistance adds an additional 50 C/W, giving a total thermal resistance of

15'C/W. With a generous 100'C rise above ambient temperature, the FET can dissipate up to

6.67W on average. In the high-side FET, the power dissipated is

(PH) D - I' -RDS,ON (5.1.1)
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and in the low-side FET, the conduction power loss is

(PL) (1 - D) L I RDS,ON

Considering the worse case, a stalled motor appears as a load of 1 Q. Therefore

IL = DVI

Go-Kart Buck 40N1 0 power dissipation vs. duty ratio

<Ph>
<P> --

--- -.---.. .. -- -- -- -- .............

- -

.... ... ... ... ... .. ... ... .... .. ... ... ... ... ... ... .. ... ... ... ... ... ... .. .. ... .. -

~.. ...... ---............... ----------. ........... .. .... ..........

0.2 0.4 0.6 0.8
Duty Ratio

Figure 5.3: Power dissipation in each FET of the Go-Kart buck as a function of duty ratio.

Figure 5.3 graphs the power dissipated in the high- and low-side FETs as a function of

the duty ratio D. This graph shows that the low-side FET is the first to reach 6.5W at D=0.3,

corresponding to an current of 11A. This is too low to quickly bring the go-kart up to cruising

speed, and thus a MOSFET with a lower RDS,ON is needed. The IRF1407 has an RDS,ON of 16 mQ

when hot. Using this MOSFET, then the high side will dissipate 6.5W at D=0.86. This corresponds

to a more aggressive 31V drive voltage which will quickly accelerate the go-kart to cruising speed.
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A complete schematic of the power supply is shown if Figure 5.4. The student is free to

choose any method they wish to generate the 30kHz switching frequency, and any method to create

500ns to 1ps of shoot-through delay. The speed of the go-kart is controlled with the potentiometer

on the steering wheel, Rsfide. The student sets the values of RA and RB such that the maximum duty

ratio is 0.8. This prevents the MOSFETs from overheating, as well as, ensuring that the high-side

bootstrap capacitor, CB, is refreshed every switching cycle.

5.2 Buck Converter Analysis

This section presents an analysis of a buck converter and develops the design equations

necessary to build the go-kart and stereo buck converters. More in depth analysis of this converter

can be found in [2] and [7].

The high-side MOSFET in the buck converter of Figure 5.5 is switched ON with duty ratio

D. When the high-side FET is ON the low-side is OFF, and vice versa. Assuming that the converter

is in periodic steady state (PSS), then the average inductor voltage, (vL), is zero. Therefore

(Vx) = V0

The average voltage across the low-side FET is also

(VX) DVi

thus, solving for D yields

V D (5.2.1)
Vi
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Figure 5.4: Scematic of the go-kart power supply.
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Figure 5.5: The basic buck converter.

The magnitude of the inductor ripple current is

(Vi - Vo)DT _ V,(1 - D)T (5.2.2)
liL L L

In order to remain in CCM, iL must not reach zero. Or, in other words, the average inductor

current must always be greater than half of the inductor ripple current:

(iL) > 2IJ (5.2.3)
2

substituting for the magnitude of the inductor ripple current gives

V,(1 - D)T
(iL) > 2L (5.2.4)

and then substituting D = 0Vi

Vo(1 - )T
L > 2L Vi (5.2.5)

5.3 Go-kart Output Filter

A large iron-powder core is used for the output filter of this converter, due to the large DC

currents involved. Iron-powder is an ideal material for this application as it softly saturates, that

is, its permeability declines gradually with increasing flux density. Therefore, a core that provides
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good filtering at cruising currents can be used, and during intense accelerations it will still provide

adequate filtering - despite the heavy amounts of current. The inductor constructed uses 90 turns

of 18 gauge wire on T-400-52 core from Micrometals. This inductor provides about 800pH at 5.5A,

and 160pH at 36A. A 20pF paper film capacitor was used, which has good frequency response up to

30kHz. This filter has a nominal breakpoint at 1.1 kHz. At 36A the breakpoint is at 3.6kHz, which

still provides adequate filtering of 30kHz.

5.4 Portable Stereo Power Supply

After working through the variable speed go-kart drive, the student then designs and builds

a power supply suitable for a 12W stereo. This supply takes an input voltage of 4-6V and raises it to

15V with a boost converter. That voltage then powers a buck converter with an adjustable output

voltage. The buck converter powers the rails of the stereo, thereby controlling the output voltage

of the buck converter controls the volume of the music. The suggested topology for this supply is

shown in Figure 5.6. Using this topology allows the supply to be built on one TTII card.

HA

-1 LA

HB

CT

LD

+

LB CD Vout
J~L0 0-

Figure 5.6: Suggested topology for the stereo power supply.

5.5 Stereo Supply Buck Converter

The stereo consists of two switching audio amplifiers from Lab 1 on a TTII PCB. Then the

amplifier is powered by a buck converter that meets the following specifications:
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The output ripple regulation required for the given frequency band is necessary for adequate sound

quality. Starting with the CCM requirement, (5.2.5) can be rewritten to yield an expression of the

minimum L for a given (iL). Thus,

Vo(1 - -)TL > V
2 (iL)

substituting with the values specified

12V - (1 - 12V) -ps
L2> 15V

2 12V
1207

or

L > 4.8pH

Considering the output voltage ripple specification, the output impedance of the buck con-

verter is modeled as a parallel inductor and capacitor with effective series resistance. Thus:

s 2LCRc + s(L + RLRcC) + RLZ' = ) (5.5.2)
s L + s(RcC + RLC) + 1
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Specification Value Unit
Input Voltage: 12 V
Switching Frequency: 250 kHz
Output Power: 12 W
Min. Efficiency: 0.7
Min. load for CCM: 0.12 W

Vout 12V
RL 12 Q

Output Filter
Max Breakpoint: 200 kHz
Output Ripple: 1.2 V

IioutI = 1A
tout min freq: 500 Hz
tout max freq: 10 kHz

(5.5.1)



For RC = RL = 0.01 Q, setting 1 = 250Hz results in Z = 1 at approximately 300Hz.

Therefore, IA of output ripple current results in 1V of output ripple voltage, which is better perfor-

mance than specified. Using the largest capacitor stocked, 2000 pF, sets L = 200 PH.

The core for L and be selected using the graph shown Figure 5.7. Using specifications for

various Micrometals cores, this graph parameterizes the inductance and saturation current in terms

of an integer number of turns. The saturation current is defined to be the current such that the

effective permeability of the material is at 80% of its nominal value. The Octave code to produce

this and other charts for other cores is included in Appendix C.

At maximum

200 PH inductor that

of 24 AWG wire.

loading, L carries IA. From Figure 5.7 that a T72-26 or larger can

can carry at least IA. The reference design uses a T90-26 core with

Starting at 20 turns to max single layer turns at 28 awg

--. -.-.-.-.

-

-Il

-AL

-U

- -

. .. ... .... ...... ...

T-72-26 -

T-90-26 -x---
ST-94-26 ---

T-106-26 ....
T-1 31-26 -- "-

---.-.. .........

0 5e-05 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004
Nominal Inductance [H]

0.00045

Figure 5.7: Inductor design graph. Selected cores from T-72-26 to T-131-26.
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5.6 Stereo Supply Boost Converter

The lab exercise specifies the following set of requirements for the boost converter:

Specification Value Unit
Input Voltage: 4-6 V
Output Voltage: 15 V

Vin = 6V
Switching Frequency: 250 kHz
Output Power: 17 W
Min. Efficiency: 0.7
Min. load for CCM: 0.25 W
Output Ripple: 1.2 V

full output
power

Max. Capacitor Impedance: 0.1 Q
A 10 kHz

L

+VQ C c R

-1T

V0

Figure 5.8: The basic boost converter.

A basic boost topology is shown in figure 5.8. The MOSFET is switched with a duty ratio

D. Assuming PSS, then

(5.6.1)(vQ) = Vi

as (vQ) = Vo(1 - D), then the conversion ratio is

V0

V
1

(1 -D)
(5.6.2)

and solving for the duty ratio yields

1--D = 1 -V
V0
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The magnitude of the inductor ripple current is

ViDT
iL -=2L

and as before, for the buck converter, to remain in CCM

(iL)> iL2

thus substituting, the CCM condition on the size of L is

L> ViDT
2 (iL)

(5.6.4)

(5.6.5)

(5.6.6)

The output voltage ripple is due to the capacitor discharging through the load while the

MOSFET is on. While the switch is on, the output voltage discharges through the load with an

RC time-constant. Assuming a long time-constant relative to the switching frequency, then the

magnitude of the output voltage ripple is

VQDT
VO0 = RC (5.6.7)RC

The average inductor current is

Pin 24W
(iL)V 6V 4A (5.6.8)

assuming worse-case efficiency.

Substituting the desired conversion ratio into (5.6.3), yields the duty ratio
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D 16V
15V

or

D = 0.60

Using (5.6.6), the minimum L to sustain CCM is

L> 6V - 0.6 -4ps
2. 0.25W

6V

or

L > 170pH

Using a parametric core graph as before, shown in Figure 5.9 cores larger than T90-52 will

provide adequate inductance for 4A of average current, for inductances between 200 puH and 400

pH. The reference design uses a 42 turns on a T106-52 core.

Solving for the capacitance C yields

1 1
sC 27rC - 10kHz

C =160MF

(5.6.11)

(5.6.12)
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(5.6.9)

(5.6.10)

or



A typical choice for C, therefore, is 220 pF, as this is the closest capacitor to 160 AF stocked.

Finally, (5.6.13), is used to check that this value of C satisfies the output ripple voltage specification,

15V -0.6 - 4ps
(15V)2- 220pF

IV0 l = 12mV

(5.6.13)

(5.6.14)

which is within specifications.

Starting at 20 turns
12-

11

10

9

8

7

6

5

4

3

2-
2e-05 4e-05 6e-05 8e-05 0.0001 0.00012

Nominal Inductance [HI
0.00014 0.00016 0.00018

Figure 5.9: Inductor design graph. Selected cores from T-90-52 to T-175-52.
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5.7 Boost Start-up Circuit

The topology shown in Figure 5.6 can be successfully tested on the bench. However, in

order for the boost MOSFET drivers to function, they must be powered by at least 12V. This

circuit presents students with a very real problem in power electronics - start up sequencing. To

test the supply, the student can power the IR2125s with a separate lab supply. As the final step in

construction the lab exercise suggests the boost priming circuit shown in Figure 5.10.

Lu HA

Q1 LA+

Vi +C1- C2- C3 VDD

I I -

R3 U13 U14 U15 0 D1

U16 C4

Boost IN

Q2 R6 U1 2  U1 1  RI

R2

Buck ERR

Figure 5.10: Boost stage start-up circuit.

RI: 39k Ci: 2.2y Di: MUR120
R2: 12k C2: 2 2 0p D2: 1N4148
R3: 100 C3: 2.2p
R4: 12k C4: 200p Q1: 40N10
R5: 15k Ul: 74HC14 Q2: 2N2222
R6: 100 Li: 4 7 y Q3: 2N4401

Table 5.2: Suggested values for the boost startup circuit.
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The circuit is implemented with one 74HC14, and two 2N2222 transistors. Q, and LA both

operate from a 60% duty ratio square wave oscillating at 250 kHz that is generated by U 16 , R 4 , R 5 ,

C4 , and D1 . When the output voltage is too low to operate LA, Q, is activated and operates the

converter. The output voltage is measured and scaled by the voltage divider created by R1 and R 2.

U 11 disables the buck converter and U12 activates Qi by turning Q2 off. Once Q, raises the boost

voltage high enough (after about 10 cycles), the LA driver begins to operate. During this period,

Q1 and LA operate in tandem. After one or two cycles of tandem operation, the boost converter is

self-sustaining. The high output voltage turns on the buck converter, and Q2 disables Q1. The node

labeled "Boost IN" connects the IN of the IR2125 that drives LA. The node labeled "Buck ERR"

connects to the ERR shutdown pins of the IR2125s that drive the buck FETs.
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Chapter 6

Lab 3: Isolated and Indirect Converters,

Resonant Converters

I N this lab, the student designs and builds a high-voltage flyback converter and an electric ballastfor a fluorescent lamp [5], [12], [13]. These exercises teach common ways to create a high voltage

from a low voltage. A flyback converter also teaches an indirect converter with transformer isolation.

Appendix D presents portions of Ken Schrock's final project for 6.131 [9], where he builds a light

dimmer that may be added to Lab 3 in future offerings of 6.131.

6.1 Flyback Converter

In this exercise, the student is asked to build a flyback converter with the following specifi-

cations, according to the topology shown in Figure 6.1.

Specification Value Unit
Input Voltage: 24 V
Output Voltage: 200 V
Switching Frequency: 100 kHz
Duty ratio: 0.8
Output Power: 2 W
Min. load CCM: 2 W
Core: P30/19 3C90-A1000

The design of this converter follows. The conversion ratio for the flyback is
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NI: N 2

0

= Imag 
Lmag

HA Lleak

LA

[
D }

C1 Iload RI
0

Figure 6.1: The suggested flyback topology.

Vo ut  N 2  D

Vi, N 1 1-D

substituting and solving for the transformer winding ratio yields

200V .2 N2-_- -2.08
24V .8 N,

Using an averaged circuit model, and assuming 100% efficiency

(Imag) = (Iin) + (IloNd) 2

by KCL. Using P=VI to solve (Iin) and (Iload)

(Imag) = Po+ P 0ut N 2

Vin Vout N 1

59 -

Rc =

I+ nVi

(6.1.1)

(6.1.2)

(6-1-3)

(6.1.4)



and substituting the specified values

2W 2W
(Imag) = + 2 - 2.08

Ia 24V 200V

(Imag) =lO0mA

To ensure CCM operation,

Lmag > VinDT
2(Imag)

and substituting the specified values

0.8 - 24V - 10ps
Lmag > 2 - 1OOmA

Lmag > 960pH

The "instructor solution" for this problem uses Lmag 1800PH. As specified, the core used

is a P30/19-3C90-A1000 from Ferroxcube, which has an A1  1000. Thus the number of turns on

the primary and secondary transformer windings are

Lmag [nH
NA 1 (6.1.10)
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(6.1.5)

(6.1.6)

(6.1.7)

results in

(6.1.8)

(6.1.9)



substituting

18. 105 nH

1000 r2

indicates that

N, = 42 turns

then using (6.1.2) to solve for N2

N2 = 87 turns

In CCM, the magnitude of the inductor ripple current is

Ai VinDTAi =
Lmag

substituting values yields

or

24V - 0.8.- 10ps
1800pH

Ai = 100mA

The peak magnetizing current is

Ipeak = (Imag) + Ai2V
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(6.1.12)

(6.1.13)

(6.1.14)

(6.1.15)

(6.1.16)

(6.1.17)



substituting the values found in (6.1.6) and (6.1.16)

Ipeak = 150mA (6.1.18)

The resistor and capacitor, R, and Cc, form a clamp that absorbs the energy stored in the

transformer leakage inductance. After winding a test transformer, the leakage inductance measured

was 8.8 pH. While the clamp is active, the current in the leakage inductance ramps down from Ipeak

to zero. The expression for the leakage current during this time is

ilk = Vlk t + Ipeak (6.1.19)
Lik

where Ipeak is the peak value of the magnetizing current just before the FET turns off, and Vik is

the voltage applied to the leakage inductance while the FET is off. While the clamp is active, the

voltage across the leakage inductance is

N1
Vlk = (Vin + VoN) - (Vin + V,) (6.1.20)

N2

canceling Vin simplifies this to

Vlk = (VN -- Vc) (6.1.21)
N2
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where V, is the voltage on the clamp capacitor. Note that vlk must be negative to discharge the

leakage current. In other words

Vc > Vo i
N 2

(6.1.22)

Rewriting (6.1.19) at t = At, the time when ilk = 0, results in

(6.1.23)At = IpeakLIk
Vlk

and the average clamp current then is given by integrating (6.1.19) over the switch period and

dividing by T

m = At peak
(iclampi - T (6.1.24)

Substituting (6.1.21) and (6.1.23) into (6.1.24) results in

LkIpeak

1 (v N
2 

-VC)
(iciamp) 

N2

2 T
(6.1.25)

For example, choosing Vc = 131V results in a 35V clamping potential across the leakage inductance.

Substituting values from the table of specifications, (6.1.26) becomes

1 8.8pH - (l50mA) 2

(camp) 2 10ps - (96V - 131V)
(6.1.26)

which yields

(iciamp) = 280pA (6.1.27)
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Since the potential across the clamp is 131V, the power delivered to the clamp is

Pciamp (iciamp)Vciamp

and substituting in the appropriate values yields

Pciamp 280JpA - 131V

or

Pciamp 36.7mW

To find a suitable value for the clamp resistance, the power dissipated in the resistor is

V2clamp camp
Rciamp

PcIamp is given by 6.1.30 and Veiamp = 131V, so

(131V)
2

R 36.7mW

which yields

Rciamp= 467kQ

6.2 Resonant Converter

Next the students design and analyze a resonant converter that can strike and continuously

operate a fluorescent lamp. They use their go-kart circuit to drive this resonant lamp ballast. A
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fluorescent lamp produces light when an electrical arc excites mercury gas within a nearly evacuated

glass tube. Ultraviolet light is emitted from the excited gas which, in turn, is absorbed by a white

phosphor coating on the inside of the tube. When bombarded with UV, the phosphor fluoresces

and illuminates. An unlit lamp presents a high impedance load and about 300V is needed to arc

through the tube to ionize the trace gas inside. Once that voltage is applied and the lamp strikes the

electrical characteristics of the lamp change. First, its impedance drops to relatively low levels, but

secondly the incremental impedance is negative. This occurs because as more current flows through

the mercury gas, more gas is ionized, which generates more charge carriers - thus increasing its

conductivity. To maintain a higher current you must lower the voltage and vice versa, as seen in a

typical VI-characteristic for a fluorescent lamp, shown if Figure 6.2. A lit lamp has an incremental

impedance of approximately -100Q.

Currentm~

Figure 6.2: A typical V-I characteristic of a fluorescent lamp. [11]

Due to the negative impedance of a lit lamp, care must be taken when designing a ballast, as

the operating point of the lamp may not be stable. Assume, for instance, that a lamp is functioning

at some operating point along its VI curve. Now if the voltage is fixed but the current is perturbed

slightly, perhaps it increases due to temperature fluctuation, then the number of charge carriers

increases which causes the current to increase, and so on.

Therefore to illuminate the lamp the ballast must generate an initial high voltage to strike

the lamp, and then maintain a stable operating point. A typical fluorescent lamp ballast that can
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fulfill these requirements is shown in Figure 6.3. The unlit lamp looks like an open-circuit and

therefore the LC tank can have high Q. If operated near resonance, the tank produces a high voltage

that strikes the lamp. Once struck, the lamp impedance drops, damping the tank. If the combined

impedance of the LC tank plus lit lamp is positive, then the driving circuit sees regular resistive

load and operates normally.

Cb L

Drive )- - - - -II

F4T5
C Fluorescent

Lamp

Figure 6.3: Fluorescent lamp ballast.

The student designs two ballasts: one with a powder-iron core, and the other with a ferrite

core. The drive voltage is a 40V square wave at 35 kHz. The impedance of the lamp ballast is

Vout RcCs + 1

Vi( LCs2 + (Rc + RL)Cs + 1

where Rc and RL are the effective series resistance of the capacitor and inductor, respectively. The

student is also instructed to design using a 22nF 400V capacitor. They investigate two candidate

cores, a P30/19-3C90-A1000 ferrite core and T106-52 iron-powder core. For each design they are to

estimate the magnitude of the resonant peak to ascertain which core is the best, lowest loss choice.

The resonant frequency of the LC tank, assuming lightly damped operation, is

f = (6.2.2)
2 7rv _/LU

rearranging (6.2.2) to solve for L results in

L = (6.2.3)
(27rf) 2C
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substituting the specified values

1

(27r -35kHz) 2 -22nF

L = 0.94 mH

For the P30/19-3C90-A1000, A, = 1000. Thus the number of turns needed is,

substituting the appropriate values

940-10
3 nH

1000 turns 2

N = 31 turns

(6.2.7)

(6.2.8)

(6.2.9)

Next, to estimate the current in L, it is assumed that the output voltage amplitude is 400V and

that the lamp has not yet struck. Therefore, the inductor current is

V
1

CS
(6.2.10)
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(6.2.4)

(6.2.5)

N= LnH) (6.2.6)

results in



which these values

I = 400 -27r - 35kHz - 22nF

results in

I = 1.91A

peak-to-peak current. The RMS inductor current then in

Irms = 1.35A

The peak flux density for this core with an effective area Ae = 1.37 cm 2,

Bk -Vrms 108

4.44AeNf

with the appropriate values

yields

Bpk4-- V-1

4.44 - 1.37 cm 2 -31 turns -35 kHz

Bpk = 4333 gauss

The core loss associated with an AC flux of this magnitude to be Pv = 700 k for this

core. The volume of the core is Ve = 6190mm 3 , therefore the power dissipated in the core is

6190 mm 3 _ 10-6 . 700 k = 4.33 W. To estimate RL,
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P
RL 12

Irms

substituting the values for the power loss and RMS current

4.33 W
RL =(1.35 A) 2

gives

RL = 2.37 Q

Using (6.2.1), and assuming Rc = 2 Q, then the magnitude of the resonant peak is 33.

Repeating these steps for the T106-51 core yields the following results:

Result Value Unit

AL 95 t

Ae 0.659 cm'
Ve 4.28 cm
N 100 turns
Bpk 2777 gauss
Pv 5500 3

P 23.5 W
RL 12.7 Q

These values correspond to an LC tank with a resonant magnitude of 12.

Based on these results, the student sees that the ferrite core results in a less damped resonant

circuit. They build and test their lamp ballast with each core. With the T106-52, the lamps do not

strike - the core losses too great; with the P30/19-3C90-A1000 core the lamp strikes and operates

reliably.
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Chapter 7

Lab 4: DC to AC

IN this lab, the student learns about two types of electric machines, the induction machine and

the permanent magnet machine, and how to drive them [6]. A special teaching motor, shown in

Figure 7.1, for use in 6.131 [10]. This machine can be configured as either an induction or permanent

magnet machine.

Figure 7.1: The 6.131 Teaching Motor.

A rotor disk for the machine is shown in Figure 7.2. Rare earth magnets are attached in an

alternating pattern around the disk. The reverse side of the disk is clad in copper; this side faces the

stator when the machine is operated as an induction machine. To function as a permanent magnet

machine, it is necessary for the power electronics to know the position of the shaft. An encoder

wheel, with the pattern shown in Figure 7.3, is used to signal the power electronics appropriately.

This pattern is sensed by a sensor board, shown in Figure 7.4, designed by Warit Wichakool.
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Figure 7.2: The permanent magnet disk.

7.1 Three Phase Permanent Magnet Machine

A block diagram of the operation of the permanent magnet machine is shown in Figure 7.5.

The position of the rotor is feed back to a state machine that keeps track of which MOSFETs to

turn on and off. The state machine is shown in Figure 7.6. The encoder wheel has two tracks: a

count track, and a reset track. The count track increments the 74LS163, and thus the state of the

machine. The reset signal is positioned at every sixth count signal. The six states are decoded by a

74LS138 multiplexor. The group of NAND gates produce a six pulse excitation pattern. Note that

the high side signals are gated with three AND gates so that a PWM signal can be used to control

the speed on the induction machine.

7.2 Three Phase Induction Machine

For the induction machine they build a state machine that activates the six MOSFETs to

produce a "six pulse" sinusoid approximation. This circuit is shown in Figure 7.7.

The state machine is similar to the state machine for the permanent magnet motor, however,
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Figure 7.3: The encoder wheel pattern.

this state machine is free running. An external oscillator signals a state change by incrementing the

74LS163 counter, and the sixth line of the multiplexor is used to reset the counter.
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Figure 7.4: The encoder wheel for the permanent magnet machine.

Shaft
Adjustable PWM State 3 Phase

Generator Machine Bridge -/+ Motor D
(30kHz) 6 3

Position ,0
Sensor

Figure 7.5: Block diagram for the permanent magnet machine.
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Figure 7.6: The state machine used to control the PM machine.
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Figure 7.7: A state machine to produce "six pulse" sinusoidal excitation.
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Chapter 8

Assessment and Conclusion

T o a large degree, the material in this class is self-assessing: if the exercise is designed cor-

rectly and properly built, then it works; otherwise, it does not. As 6.131 is design oriented,

laboratory checkoffs and demonstrations are used in the course to assess the student's mastery of

the material. This assessment begins during a scheduled design review, where the student sits with

a staff member and walks through their design analysis. It ends with a laboratory demonstration at

a live checkoff with a staff member.

The design review is a 60 minute mandatory discussion with a staff member. The goal of

the review is two-fold: first, to correct any mistakes before the student begins to build, and second

to assign a grade based on the merit of their design. The first purpose is crucial as hours and hours

can be wasted building a poorly designed system; help at a judicious point in the process minimizes

frustration and aides in learning. The staff members are instructed to make sure that each student

leaves the review with a good design so that they are not penalized for it later. Once the student

understands the material, they are given the parts they need to build the lab.

At the review, the student is shown a grading sheet such as the Lab 2 sheet shown in Figure

8.1. The student is expected to come prepared with a thorough understanding of the lab, and with

full schematics: including a layout diagram for each circuit using the laminated cards in Appendix

B. The student is expected to follow a design process similar to that presented in Chapters 5 and 6.

During the Lab 2 design review, for instance, the student explains how they designed two inductors

and two capacitors to meet specifications. In the Lab 3 review, the student presents their design for

the flyback transformer and clamp. Each topic of the review is judged as excellent, good, acceptable,

and needs improvement. In general, receiving mostly "goods" and a few "excellents" is enough to

earn all the points for a design review. The acceptable column is for students who made a good
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attempt at the topic, but ultimately had a serious flaw that would prevent operation. Notice that

we mean "acceptable" in the sense that their understanding of the material is "acceptable" but not

necessarily their design. The "needs improvement" category is for the student who comes to the

review unprepared.

The course staff is available, throughout the entire process, during open office hours. The

available hours are posted weekly, and scheduled so that staff help is available every day, even if

only for one hour. More hours are scheduled preceding design reviews and laboratory checkoffs.

The second component of the laboratory grade, which is the result of a 15 minute demon-

stration with a staff member. At the checkoff, the student demonstrates to the staff member the

circuitry they built for the exercises. After the circuit is visually checked and operated, points are

assigned based on the completeness and functionality of the circuitry.

The final two grades come from a comprehensive quiz, given after all the labs have been

completed, and from the final project. The final project is on a topic of the student's choosing.

The student and the staff work together through a series of interviews to establish the scope for

the project and to establish reasonable outcomes. The final projects are assessed by the staff based

on the metrics and goals developed during the final project interviews. A typical final project,

provided by Ken Schrock, is included as Appendix D. For his project, Ken constructed a digital

phase-controller to modulate the brightness of incandescent lamps. As a further step, he used a

series of band-pass filters to flash a bank of lamps along with music.

The first offering of the class was a success, based on the student reviews of the course, as

summarized by Eta Kappa Nu below, [1]

"Four design projects constituted the heart of this class, with everything else designed

to supplement them. Each lab required a design review, where students could go over

proposed designs with the course staff before beginning to implement their ideas. Most

found the labs well laid-out and appreciated the emphasis on design and debugging. The

labs were very helpful in demonstrating the theory presented in lecture, and were essential

to understanding the material. The equipment and support was great, but the design

projects were extremely time consuming."
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"Fun, practical lab experience"

"Good equipment"

Hands-on learning is critically valuable in an engineering education. This thesis presents

the tools and exercises that solve some of the problems that arise when teaching power electronics

through hands-on experiences. The labs and equipment presented here have been designed to bring

instructors and students together in learning, in an exciting, fostering, and safe environment.
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STUDENT:STAFF MEMBER:

6.188 CHECK-LIST for LAB 2 DESIGN REVIEW:
EXCELLENT! GOOD

DESIGN
CRITERIA
(Below)

Stereo Buck Inductor
Selection
Stereo Buck Capacitor
Selection
Stereo Boost Inductor
Selection
Stereo Boost Capacitor
Selection
Topological layout on
totem card for boost
and buck converter
(laminate sheet)
Understanding and
presentation of control
circuitry for buck/boost
and for the boost
"bootstrap" circuit.
Other issues as
appropriate that arise
during review
(comment:)

Grade plan:

Knowledgable,
thoughtfully
designed,
selected, and or
explained

1.5 oints each)

Clear effort
with possible
errors but
leading to a
rich, thoughtful
discussion
during review.

(1 point each)

ACCEPTABLE

Some effort,
significant
errors,
conversant in
course topics,
left the DR
after staff
discussions
with a plan for
building.
(0.5 points each)

PLEASE IMPROVE
BEFORE NEXT DR
Unprepared; insufficient
knowledge of the lab
material to be confident of
successful design after DR

(0 points each)

Place a check mark in the appropriate place for each design criterion.
Sum all points.
Saturate total score at 7.5 points (full credit). That is, it is possible to "score" more than 7.5 points.
Only 7.5 points will be awarded for "full credit".

TOTAL SCORE (MAX of 7.5):

Figure 8.1: Design review grade sheet used to assess each student's design work in Lab 2.
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Appendix A

Manufacturing Information for the

PowerNerd Kit
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A.1 Power NerdKit Part and Vendor Information

Part Number Vendor Description Quantity
J&J Card Cage 1
J&J Power Cage 1

92060A220 McMaster-Carr Captive Screws 4
15145A61 McMaster-Carr Alum. Pull Handle, 6" center, #8-32 2
90273A146 McMaster-Carr #6-32x3/8" screw, IEC screw (pack of 100) 2
90675A007 McMaster-Carr #6-32 nut w/tooth washer, IEC nut 2
90403A194 McMaster-Carr #8-32x1/2 screw for fastening power cage 14
90675A009 McMaster-Carr #8-32 nut w/lock ring, powercage and fan 12
90126A011 McMaster-Carr Power Cage washers #10-32 3/64 16
90403A201 McMaster-Carr Fan Screws #8-32 x 1 3/8 4
104432 Jameco PS connector 2
104715 Jameco PS connector 2
103915EC Jameco fuse 2A fast GMA 1
174140 Jameco 12VDC Fan 1
148689 Jameco MeanWell dual supply +12, -12 1
212353 Jameco MeanWell single supply +5 1
199523 Jameco 30VDC line transformer 1
208346 Jameco Y-type power cord 1
78318 Jameco PS crimp lugs 6
102832 Jameco Fuse Holder 1
H781-ND Digikey Mscrew Alum 4-40 3/8 16
1808K-ND Digikey Standoff Hex Alum .625 8
WM18232-ND Digikey Battery spade connectors 16AWG 4
2221K-ND Digikey Standoff Hex Alum 2" 8-32 6
0701RBY Electronix Binding Post, Blue 2
0701RB Electronix Binding Post, Black 2
0701RY Electronix Binding Post, Yellow 2
0701RR Electronix Binding Post, Red 1
0701RG Electronix Binding Post, Green 1
44F7570 Newark Battery 2
81N1649 Newark Cardguides 28
98F1819 Newark Double Stick tape 1
03F1911 Newark 16 AWG wire, Red 1
03F1913 Newark 16 AWG wire, Yellow 1
03F1914 Newark 16 AWG wire, Green 1
03F1917 Newark 16 AWG wire, White 1
03F1918 Newark 16 AWG wire, Black 1
03F1919 Newark 16 AWG wire, Blue 1
95F7500 Newark 1/8 heatshrink tubing 1
PB-400 All Electronics Breadboard 3
STS-42 All Electronics SPDT on-off-on switch 1
STS-8 All Electronics DPDT on-off-on switch 1
SPH-386 All Electronics IEC 1
FHP-28 All Electronics ATC fuse holder 2
FSA-3 All Electronics 3A ATC fuse 1
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Vendor Contact Person Phone Number Specialty
J & J fabricators John Matthews 781-899-2373 Lab Kit Fabrication
Proxy Shawn D. Foy 978-687-3138 Box Build and Circuit Fabrication
McMaster-Carr mcmaster.com Parts
Jameco jameco.com Parts
Digi-Key digikey.com Parts
All Electronics allelectronics.com Parts
Electronix electronix.com Parts
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Appendix B

Layout Cards
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Appendix C

Parametric Inductor Saturation Code

1 H = 20 % Mag. Force for 20% mu derating -26 material
2 H52 = 25 % Mag. Force for 20% mu derating -52 material
3 % from Micrometals databook
4

5 corel = ["-Q1;T-20-26;"; "-A2;T-26-26;"; "-@3;T-30-26;";\
6 "-04;T-37-26;"; "-L5;T-38-26;"];
7 core2 = ["-(1;T-44-26;"; "-A2;T-50-26;"; "-A3;T-50-26B;"];
8 e ore 3 = [" -@1; T-51-26C; "; "-UQ2; T-60 -26;"; "-A3; T-68 -26;"; "-(04;T-80 -26;"];
9 core4 = ["-@1l;E-49-26;" ;"-L@2;E-75-26;"; "-U3;E-100-26;"];

10 core5 ["-01;T-225-26;" ;"-@2;T-250-26;";\
11 "-(3;T-300-26;"; "-54;T-400-26;"];
12 c or e6 = ["-(51; E-220 -26;" ;" -U2; E-305 -26;"; "-LQ3; E-450 -26;"];
13 core7 = ["-@R1;T-72-26;"; "-UR2;T-90-26;"; "-La3;T-94-26;";\
14 "-@4;T-106-26;"; "-©5;T-131 -26;"];
15 core8 = ["-01;T-150-26;"; "-@2;T-157-26;"];
16 core9 = ["-@1;T-80-52;"; "-@2;T-106-52;"];
17 core10 = ["-(41;T-90-52;"; "-(52;T-106-52;"; "-@Q3;T-131-52;";\
18 "-U4;T-157-52;"; "-@a5;T-175-52;"];
19

20 Iml = [1.15, 1.47, 1.84, 2.31, 2.18];
21 lm2 = [2.68 , 3.19, 3.19];
22 1m3 = [2.79, 3.74, 4.23, 5.14];
23 lm4 = [2.86, 4.20, 5.08];
24 lm5 = [14.6, 15, 19.8, 25];
25 1m6 = [13.2, 18.5, 22.9];
26 lm7 = [4.01, 5.78, 5.97, 6.49, 7.72];
27 lm8 = [9.38, 10.1];
28 1m9 [3.74, 6.49];
29 lm1O [5.78, 6.49, 7.72, 10.1, 11.2];
30

31 All [18.5, 57, 33.5, 28.5, 49];
32 A12 [37, 33, 43.5];
33 A13 [83, 50, 43.5, 46];
34 A14 [38, 64, 92];

5 A15 = [98, 242, 80, 131];
36 A16 = [286, 287, 550];
37 A17 = [90, 70, 60, 93, 116];
38 A18 = [96, 100];
39 A19 = [42, 95];
40 A110 = [64, 95, 108, 99, 105];
41
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maxturnsl = [11 ,
maxturns2 = [43,
maxturns3 = [36,
maxturns4 = [109,
%maxturns5 = [305
maxturns5 = [100,

%Real maxturns
%maxturns6 = /178
%Pretty maxturns
maxturns6 = [1780

%maxturns7 [54,
maxturns7 = [54,
maxturns8 = [180,
maxturns9 = [103,
maxturns0= [40,

15, 25, 37, 31];

59, 59];
67, 74, 103];
239, 350];

, 270, 422, 494];
100, 100, 100];

0, 3523, 5511];

, 2500, 1000];

115, 117,
60, 60, 60,

204];
118];
40, 40, 40

118,
60];

, 40];

hold off
figure
for i 1:length(Iml)

N linspace (1 , maxturnsl ( i) maxturnsl ( i ));
% see pg. 10
I = (H * lml(i))./(0.4*pi*N);
% see pg. 2
L = (Al1(i) * N.^2) * (10^(-9));
plot (L, I , corel (i ,:))
hold on

end
title ( 'Starting.-at.-1 -turn-to-max-single -layer -turns.-at -28.awg')
xlabel( '-Nominal-Inductance...[H] ')
ylabel( '.I..-[A] ..of..%80..permeability ')

gset
gset
gset
gset

terminal postscript
output "core.ps"
output "/dev/null"
terminal x1l

hold off
figure
for i = 1:length(lm2)

N = linspace (20, maxturns2(i) , maxturns2( i )-20);
% see pg. 10
I =(H * 1m2(i))./(0.4*pi*N);

see pg. 2
L = (A12(i) * N.^2) * (10^(-9));
plot (L, I , core2(i ,:))
hold on

end
title ( 'Starting-at 20-turns.-to-max-_single.-layer -turns.-at.-28-aw
xlabel( '-Nominal.Inductance_[H] ')
ylabel ( '.I.. [A] ..of..%80..permeability')
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78

79
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81

82

83

84

85

86

87

88

89

90
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96 gset output " COre2 . pS"
97 gset terminal postscript
98 gset output "/dev/null"
99 gset terminal x1l

100
101 hold off
102 figure
103 for i 1:length(lm3)
104 N linspace (20, maxturns3 ( i) maxturns3( i) -20);
105 % see pg. 10
106 I = (H * lm3(i))./(0.4*pi*N);
107 % see pg. 2
108 L = (A13(i) * N.^2) * (10^(-9));
109 plot (L, I , core3(i ,:))
110 hold on
in end
112 title( 'Starting..at..20.turns.-to -max-sin gle..layer..turns .at..28 -awg')
113 xlabel('..Nominal.Inductance - [H] ')
114 ylabel ( '...I -[A] -of -%80-permeability')
115

116 gset output "core3.ps"
117 gset terminal postscript
118 gset output "/dev/null"
119 gset terminal x1l
120

121 hold off
122 figure
123 %for i 1: length (lm4)
124 for i 1:1
125 N linspace (20, maxturns4(i) , maxturns4( i) -20);
126 % see pg. 10
127 I = (H * m4(i))./(0.4*pi*N);
128 % see pg. 2
129 L = (A14(i) * N.^2) * (10^(-9));
130 plot(L,I, core4(i ,:))
131 hold on
132 end
133 title ( 'Starting -at.20.turns-to.max-single -layer -turns..at.28.awg')
134 xlabel( '..Nominal.Inductance _[H] ')
135 ylabel ( '..I- [A] .of..%80-permeability ')
136

137 gset output "core4 . ps"
138 gset terminal postscript
139 gset output "/dev/null"
140 gset terminal x1
141

142 hold off
143 figure
144 for i i:length(lm5)
145 N linspace (20, maxturns5 ( i) maxturns5 ( i) -20);
146 % see pg. 10
147 I = (H * m5(i))./(0.4*pi*N);
148 % see pg. 2
149 L = (A15(i) * N.^2) * (10^(-9));
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150 plot (L, I, core5(i ,:))

151 hold on
152 end
153 title( 'Starting-at.20..turns -to..max-single .layer..turns -at _28..awg')
154 xlabel ( '-Nominal.Inductance _[H] ')
155 ylabel ( 'AI -[A] .. of..%80..permeability ')
156

157 gset output " core5 . ps"
158 gset terminal postscript
159 gset output "/dev/null"
160 gset terminal x1l
161

162 hold off
163 figure
164 for i =:length(lm6)
165 N linspace (20, maxturns6( i), maxturns6( i )-20);
166 % see pg. 10
167 I = (H * 1m6(i))./(0.4*pi*N);
168 see pg. 2
169 L = (A16(i) * N.^2) * (10^(-9));
170 plot(L,I, core6(i,:))
171 hold on
172 end
173 title ( 'Starting -at.-20-turns..to..max-single..layer -turns...at..28 -awg')
174 xlabel( '-Nominal.Anductance _[H] ')
175 ylabel( '-I- [A] -of..%80..permeability ')
176

177 gset output "core6 . ps"
178 gset terminal postscript
179 gset output "/dev/null"
180 gset terminal x1l
181

182 hold o f f
183 figure
184 for i =1:length(lm7)
185 N linspace (20, maxturns7( i), maxturns7( i )-20);
186 % see pg. 10
187 I = (H * 1m7(i))./(0.4*pi*N);
188 % see pg. 2
189 L = (A17(i) * N.^2) * (10^(-9));
190 plot (L, I , core7( i,:))
191 hold on
192 end
193 title( 'Starting..at -20.turns.to.max-single.-layer -turns.-at..28.awg')
194 xlabel( '..Nominal..Inductance _[H] ')
195 ylabel( '-I..-[A]...of _%80.-.permeability'
196

197 gset output " core7 . ps"
198 gset terminal postscript
199 gset output "/dev/null"
200 gset terminal x1l
201

202 hold off
203 figure
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204 for i = 1:length(lm8)
205 N= linspace(20, maxturns8(i), maxturns8(i)-20);
206 % see pg. 10
207 I = (H * m8(i))./(0.4*pi*N);
208 % see pg. 2
209 L = (A18(i) * N.^2) * (10 (-9));
210 plot(L,I,core8(i,:))
211 hold on
212 end
213 title( 'Starting -at20-turns -to.max-single.-layer -turns -at..28.awg')
214 xlabel( '-Nominal Inductance.... [H] ')
215 ylabel( '...I-[A] -of _%80- permeability')
216

217 gset output "core8.ps"
218 gset terminal postscript
219 gset output "/dev/null"
220 gset terminal x1l
221

222 hold off
223 figure
224 for i 1:length(lm9)
225 N linspace (20, maxturns9 ( i) maxturns9 (i) -20);
226 % see pg. 10

227 I = (H52 * m9(i))./(0.4*pi*N);
228 % see pg. 2
229 L = (A19(i) * N.^2) * (10^(-9));
230 plot(L,I,core9(i,:))
231 hold on
232 end
233 title ( 'Starting-at-20-turns-to-max-single.-layer.-turns -at -28.awg')
234 xlabel( '-Nominal Inductance -[H] ')
235 ylabel ( '-I -[A] -of -%80..permeability ')
236

237 gset output " core9 . ps"
238 gset terminal postscript
239 gset output "/dev/null"
240 gset terminal x1l
241

242 hold off
243 figure
244 for i = 1:length(lm10)
245 N linspace (20, maxturnsl0( i), maxturns0( i )-20);
246 % see pg. 10
247 I = (H52 * lmlO(i))./(0.4*pi*N);
248 % see pg. 2

249 L = (Al10(i) * N.^2) * (10 (-9));
250 plot (L, I , corel0 (i,:))
251 hold on
252 end
253 title ('Starting -at-20-.turns ')
254 xlabel ( '-Nominal Inductance -[H] ')
255 ylabel ( '-.I..[A] -of..%80- permeability ')
256

257 gset output "corelO.ps"
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258 gset terminal postscript
259 gset output "/dev/null"
260 gset terminal x1l
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Appendix D

AC Light Dimmer

This appendix presents a portion of Ken Schrock's final 6.131 project. Ken built the AC light

dimmer shown in Figure D.1. This circuit, like most AC dimmers, uses phase-control to modulate the power

delivered to a load. Phase-control is similar to PWM, in that only a portion of the full AC waveform is

delivered to the load.

This circuit uses a TRIAC in series with the light bulb. A TRIAC is turned on with a pulse of

current at its gate. It stays ON so long as the voltage across it is non-zero. This circuit detects a zero-

crossing in the utility, and then pulses the gate after some time delay. The TRIAC will turn ON, and stay

ON until the next zero-crossing, thereby modulating the power delivered to the load. Changing the delay

after the zero-crossing will change how much of the AC waveform "gets through" to the bulb: longer delays

will result in less power.

This circuit uses a LM311 as a zero-crossing detector. An attenuated version of the utility is

capacitively coupled on to a 2.5 V reference, and then compared with another 2.5 V reference. This creates

a square-wave with rising and falling edges at the zero-crossings. This square-wave is passed into a one-shot,

the 74LS122, which creates an adjustable delay before signaling the TRIAC to turn ON. A rising-edge on

the output of the 74LS122 triggers another one-shot, the 74LS123, to fire. This one-shot has a programed

pulse-width that injects current into the gate of the TRIAC, turning it ON.

Interestingly enough, although this circuit is functionally a half-wave phase controller, since the

74LS122 is only sensitive to the rising edge, the unstable performance of the LM311 during the zero-crossings

produces many rising and falling edges on the output. Thus, in practice, it often functions as a full-wave

phase controlled dimmer.
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Figure D.1: A digital, phase-controlled light dimmer.
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