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Abstract

We introduce the problem of finding a path for a mobile node traveling from a source
to a destination while communicating with at least one node from a set of stationary
nodes in such a way that minimizes the transmission energy used in communication.
We characterize this problem and introduce two algorithms. The first is a recursive
algorithm useful for problems with one communication node. We show the limitations
of this algorithm and how it can find suboptimal paths. The second algorithm, the
discretized graph algorithm, can be applied to problems with more communication
nodes. We find parameters that allow energy efficient paths to be found in suitable
time. We demonstrate the applicability of the minimum energy path planning problem
and how the discretized graph algorithm can be used in a more general context through
an example.
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Chapter 1

Introduction

We examine the problem of finding a path for a mobile node traveling from a source

to a destination while communicating with at least one node from a set of stationary

nodes in such a way that minimizes the transmission energy used in communication.

Energy efficiency is very important in wireless ad-hoc networks, where nodes have

limited battery life and communication costs are a major source of energy depletion. In

wireless communications, the power required to communicate with a node is a function

of the distance to that node. In many applications, it is desirable for a mobile node

to be connected to the network at all times. Such scenarios arise in military context

where the mobile node may be deployed in hostile territory and losing communication

with the network may mean the demise of that node.

One such application of this problem occurs if a soldier must travel to a destina-

tion through enemy territory. Other, more heavily armed, members of his unit are

entrenched throughout the terrain and all soldiers control devices that enable com-

munication between members of the unit. The mobile soldier must stay in constant

communication with members of his unit as he moves in hostile territory so that they

can exchange information and he is not isolated. Because of his communication device's

limited battery life, he must traverse a path that minimizes the total energy required

for communication in traveling to his destination.

Other applications of this problem arise in robotics and geographic information

15



systems (GIS) path planning.

In this thesis, we introduce, examine, and thoroughly understand the problem of

finding a minimum communication energy path. We develop an approach and inves-

tigate the tradeoff between minimizing energy and algorithm complexity. Finally, we

demonstrate how this tool can be used to solve a more general problem.

1.1 Related Work

The shortest path problem is a well-studied area with a variety of applications. Dijk-

stra's algorithm [4] computes the shortest path from any source to all other nodes in

a given graph with non-negative edge weights. In shortest path problems, the total

cost of a path is the sum of the given weights of the traversed edges. The minimum

energy path planning problem differs from a shortest path problem in that the total

cost is determined by the relationship of the current position on the path to a set of

fixed locations. However, we can adapt the problem into a shortest path problem as

we show in Chapter 4. The problem also differs from the shortest path problem in

that the minimum energy path planning problem has an infinite number of possible

paths from the source to the destination whereas in the shortest path problem, the

fixed edges between vertices constrain the problem to have a finite number of paths

assuming there are no cycles.

A related problem where possible paths are not discrete is the weighted region

problem (WRP) [8], where a shortest path through regions of associated weights is

determined. The WRP is motivated by the problem of navigating an autonomous

vehicle through various terrains such as grass, sand, and water. The vehicle must

find the best path through the terrain because different terrains have different costs

associated with traversing them. Researchers have discretized this problem in [6], [9]

by breaking the terrain into a grid where costs can be assigned to edges connecting

two adjoining squares in the grid. Dijkstra's algorithm can then be used to find the

minimum cost path.
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The minimum energy path planning problem is similar to the WRP except there

is no "region" where the cost is constant. Instead, the cost varies continuously as

a function of the position of the mobile node. However, we are inspired by the dis-

cretized graph approach in [6], [9] and we will describe in Chapter 4 how we adapt

such algorithms as part of the approach to solve this problem.

1.2 Organization

The rest of the thesis is organized as follows: In Chapter 2, we formally define the

problem, describe the assumptions we make, and discuss the problem's characteristics.

In Chapters 3 and 4, we introduce two different approaches to solving the problem.

First, we analyze the problem using a recursive algorithm, where we recursively divide

the problem space in half and calculate points in each step to make up a path. This

initial approach practically limits the problem to only one communication node but

allows us to gain some insight into the problem. We show results for different types

of one communication node problems and describe how the recursive approach finds

suboptimal paths for certain problems.

We introduce a more general approach in Chapter 4, a discretized graph algorithm,

where we divide the space into a grid, let the grid intersections be vertices, and connect

the neighboring vertices with edges to form a connected graph. Then, we calculate the

edge weights to be the energy costs of traveling between vertices and find an energy

efficient path by searching for the shortest path on the graph. This approach allows

for many communication nodes and the energy of the path found decreases as we

use a finer grid and increase the graph connectivity. We compare the path found by

the discretized graph approach to that of the recursive approach and show how the

discretized graph algorithm is able to find paths that the recursive approach cannot.

In Chapter 5, we investigate how grid granularity and graph connectivity for the

discretized graph algorithm affect the approximate path it finds. We determine the

parameters for which the discretized graph algorithm finds good approximate minimum

17



energy paths in reasonable running time.

Using the parameters we find in Chapter 5, we demonstrate in Chapter 6 how

the discretized graph algorithm can be used to solve an example problem where we

determine the minimum number of communication nodes to deploy in a square area in

order to minimize the communication energies of mobile nodes traveling from one side

of the field to the other.

Finally, we conclude in Chapter 7 by discussing the contributions of this thesis and

future work for the minimum energy path planning problem.
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Chapter 2

Problem Framework

In this chapter, we formally define the problem and describe assumptions we make.

We also characterize the nature of the problem and discuss its properties in depth.

2.1 Definition

Consider a set N of stationary communication nodes where ni E N represents a com-

munication node. The minimum energy path planning problem is the problem of

finding the minimum energy path for a mobile node m from a source s to a destination

d in two-dimensional space while communicating with at least one node ni E N at all

times.

The minimum power required for two nodes i and j to communicate with each

other at a given rate is d' where dij is the distance between node i and node j and

a depends on the multi-path environment (typically, 2 < a < 4). We only take into

consideration the transmission power required to stay connected to another node and

ignore all other energy such as the energy required to physically traverse a path and

the overhead necessary to transfer communication between different stationary nodes,

although these other sources of energy can be incorporated into the algorithm we

introduce in Chapter 4.

Hence, by "minimum energy," we mean the minimum communication energy re-
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quired and by "minimum energy path," we refer to the path that minimizes the total

communication energy required over the duration of the time that m travels from s

to d. The mobile node may communicate with many nodes throughout its path, but

at any given time, m communicates with one node, called n*. The optimal path P is

therefore one that minimizes,

E = dc. .(t)dt (2.1)

where don (t) is the Euclidean distance between m and n* at time t.

2.2 Assumptions

We assume m travels at a constant velocity v, the positions of ni are known a priori for

all i, and that each node is a point in two-dimensional space. The entire problem area

is open to travel and there are no obstacles or forbidden regions, although these can be

introduced by easily modifying the approach we introduce in Chapter 4. We assume

that a remains the same throughout the duration of m's travel from s to d. As m moves,

it switches communicating with one node ni to another node n7 because it becomes

more efficient to communicate with nr. We refer to this node that m communicates

with at a given time, n*, so n* = ni when m is communicating with ni and n* = nj

when nj becomes closer and m switches communication. The mobile node m also

adjusts its transmit power to the minimum power required to stay connected with n*

to conserve its energy. The mobile node m seamlessly transfers communicating with ni

to communicating with n as it moves and adjusts its transmission power accordingly.

Finally, there is no limit on rn's transmission range; in other words, there is always a

node ni that is within m's transmission range.

Figure 2-1 shows rn at a given time along a sample path from s to d with multiple

communication nodes scattered throughout the problem space. At the time shown, m

communicates with n6 because it is the closest node.

20
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o ..- mn6

S n

Figure 2-1: Sample path from s to d with multiple communication nodes. At the time

shown, n* = n6 because n6 is the closest node to m.

2.3 Properties and Characterization

Any problem with an arbitrary number of nodes and its minimum energy path can be

scaled to fit in any area. The analysis in subsequent chapters is based on examining

problems of specific sizes, but the results are general and can be scaled to fit other

problems.

This minimum energy path planning problem is symmetric in that the minimum

energy path from s to d is equivalent to the minimum energy path from d to s. The

communication energy required at a given time depends only on the position of m, and

thus the total communication energy over a path depends on the aggregate positions of

the m, regardless of the direction that m moves in. Hence, s and d are interchangeable,

and any path that we refer to in this thesis is reversible.

To better understand the nature of the problem, we first examine a one node path

planning problem where INI = 1. Thus, the total energy of a path is defined by the

distance of m to a single communication node as m travels from source to destination.

In this case, n* does not changes as m moves, and the minimum energy path P is one

that minimizes Equation (2.1).

There are two factors that contribute to the communication energy spent over a

given path: total path length and proximity of the path to n*. We can reduce the
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energy of the path by: 1) minimizing the total path length, 2) moving m closer to n*.

These two objectives conflict. Moving closer to the communication node increases the

path length. On the other hand, decreasing the path length by traveling more directly

from the source to the destination does not bring m closer to the communication node.

Figure 2-2 shows a one node problem with three sample paths that illustrates these

two effects. On the one extreme, path A goes directly from s to d without regard to

n*. It minimizes the time spent traveling, but does not get close to the stationary node

to reduce its communication energy. At the other extreme is path C that goes directly

to n* en route to d, a path that is long but gets the closest to n*. The compromise is

path B, which curves towards n*, balancing the energy savings of traveling closer to

n* with the time spent traveling.

*

C

B

........................ Ad

Figure 2-2: Three sample paths from s to d with one communication node

If d = n*, these two objectives do not conflict, but it is possible to both get close

to n* and travel on a short path.

Claim 1 The most energy efficient path between an arbitrary point p and n* is a

straight path between p and n*.

Proof The straight p - n* path achieves both objectives that minimize total path

energy: it is the shortest path between p and n* and it travels as close to n* as possible

at all times. As shown in Figure 2-3, all other possible paths are longer and do not

22



come closer than the straight path to n* at a given time along the path. Thus, the

straight p - n* path is optimal and all other paths are suboptimal.

........................... *

p

Figure 2-3: The most energy efficient path between an arbitrary point p and n* is a
straight path

Consequently, we have the following corollary.

Corollary 1 Any path from s to d is suboptimal if n* is along the path and the path

is not made of two straight segments from s to n* and from n* to d.

Proof If n* is along the path from s to d, then the path can be broken into two

segments, s - n* and n* - d. According to Claim 1, the most energy efficient paths

between s and n* and n* and d are straight paths. If neither s - n* or n* - d segment

is a straight path, then part of the entire s - d path is suboptimal and the entire path

is suboptimal.

2.3.1 Problem Space

Because m always communicates with the closest communication node n*, we can

think of the problem as a decomposition of the problem space into regions where m

communicates with the node in the region it is located in. This partitioning is a

Voronoi diagram of the communication nodes N. A Voronoi diagram of N, Vor(N),

decomposes the space into INI regions, one for each ni E N, such that a point q lies in

23



the region corresponding to ni iff dqni < dn, for each nj E N and j # i [3]. Figure 2-4

shows the Voronoi diagram of N for a sample problem where NI = 6. The Voronoi

region containing any point p is V(p), and the associated region of each stationary

node ni is V(ni). Because m communicates with the closest node n* at a given time,

n* is the node associated with the Voronoi region that m is located in. Formally, if

V(m) = V(ni), then n* = ni and m communicates with ni.

If the problem only has one communication node, the Voronoi diagram is simply

the entire problem space since m communicates with the same node at all times.

V4

V, n4

V

nno

0Z V2 V6

n20

On3

1/3 n6

Figure 2-4: Voronoi diagram of N.
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Chapter 3

Recursive Approach

In this chapter we describe a recursive approach, an initial step to gain insight into

the minimum energy path planning problem. This approach finds a point along an

energy efficient path and uses this point to divide the problem space in half. The

algorithm recursively divides the problem space and finds points along a path based

on previously determined points. The resulting path is defined by the points joined by

straight segments.

The rest of this chapter describes the recursive algorithm in detail. In Section 3.3

we discuss weaknesses of this algorithm: how it can find suboptimal paths and how it

is difficult to find energy efficient paths when there are multiple communication nodes.

For the rest of this chapter, we analyze one node problems where |NI = 1 and a = 2.

Section 3.4 summarizes the key insights we gain by analyzing the problem using the

recursive approach.

3.1 Algorithm

Without loss of generality, the problem can be fitted onto a Cartesian plane with the

source at the origin and the destination on the x-axis such that s = (0, 0) and d =

(dx, 0). As shown in Figure 3-la, the algorithm first considers two straight segments,

from s to some point c = (ct, cy) on the perpendicular bisector of s - t, and from c to
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d. Equation (2.1) then becomes,

E(O) = , (n* - Vt Cos (0))2 + (n* - vt sin (0))2 dt +/ tm

t
(n* - vt cos(0))2 + (n* - vt sin(6))2 dt (3.1)Stf

Jtm

where to = 0, tm = ( tf = , and (n*, n*) represents the coordinates of the

stationary communication node n*. The angle 0, as shown in Figure 3-la is the angle

with respect to the s - d line at which the mobile node m must travel to reach c. The

times to, tm, and tf represent when m, traveling at a constant velocity v, is at s, c and

d, respectively.

We minimize Equation (3.1) with respect to 0 and find the corresponding c =

(, -& tan 0) that minimizes the energy cost associated with traveling in straight seg-

ments from s to c and from c to d.

Having determined c, we then divide the problem into two different one node prob-

lems with dIeft = c in the left subproblem and sight = c in the right subproblem.

Recursively applying Equation (3.1) to find points and joining them gives an approx-

imate minimum energy path from source to destination. Figure 3-1 shows how the

algorithm finds points at each recursion level up to a depth of three.

3.2 One Communication Node Problem

3.2.1 Equidistant Communication Node

We first use the recursive algorithm to analyze one communication node problems

where INI = l and n* is equidistant from s and d (i.e. n* =- %). Because n* lies on

the s - d perpendicular bisector, the path from s to c and from c to d is symmetric.

For the first step in the recursion, Equation (3.1) reduces to

E(0) = 2j(n*, - vtcos(0)) 2 + (n* - vt sin(0)) 2 dt (3.2)/ Y
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7*

S ~(a) d
00

n*

s
(c)

7*

s dS ~ (b)d

n*

S ~ (d)d

Figure 3-1: Recursive algorithm for the one communication node problem. (a) shows

how the algorithm finds c on the s - d perpendicular bisector. Two recursions are

shown in (b) and (c) where the black points represent points previously found and

gray points represent points found during that recursion. (d) shows the approximate

path after three levels of recursion.
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where tj = ( and c_ = L. Solving for d ) = 0, we find that E(9) is minimized

when,

tan-'(n ), --y < 2.1
0 =X n (3.3)

sin-( n > 2.1

Therefore,

n* < 2.1
C= n 2.1 (3.4)

> >2.1

The first solution represents the path that travels through n* from s to d while the

second solution represents the path that goes more directly from s to d as ' increases

(note that j sin- 1 ( ) is undefined for * < 2). Figure 3-2 shows the optimal position

of c during the first recursion as a function of n* 's distance from the s - d line. There is

a clear disconnect between the two solutions. For i < 2.1 the optimal point c found in
nX -

the first recursion is n* because the objective of traveling close to n* dominates energy

considerations. For ( > 2.1, the objective of minimizing path length dominates energy
nX

considerations and c tends towards s - d and away from n* as n* become far from s

and d.

Figure 3-3 shows two examples of the path found when 2 < 2.1 where the c found

during the first recursion is the same as n*. According to Claim 1, the minimum energy

paths from s to n* and from n* to d are straight paths. Indeed, the recursive algorithm

finds such straight paths as shown in the figure.

Figure 3-4 shows two examples of the curved paths found for when - > 2.1. During

the first recursion in each of the examples, cy < n*. Furthermore, cY decreases as ny

increases.

We find that the minimum energy path found by this algorithm depends on how

far n* deviates from straight s - d line. As discussed in Section 2.3, the two elements

of a path that determine its total energy is the total length and proximity to the

communication node. If n* is close to s and d, as in Figure 3-3, then m can travel close
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c's position for the first recursion as function of n 's position

- - - - -

0 0.5 1 1.5 2 2.5 3 3.5 4

n /n

Figure 3-2: Position of c for the first recursion as function of position of n*.

to n* without drastically increasing its path length. Thus it is more energy efficient to

travel directly from s to d through n*. On the other hand, if n* is far from s and d,

as in Figure 3-4, m will spend significantly more time traveling if it travels close to n*.

In this case, a more direct path from s to d is more energy efficient.

3.2.2 Recursion Depth

If the approximate path found by this algorithm is a curve, increasing the recursion

depth allows the path to better approximate the curved path because the approximate

path is defined by more points. Thus, the path energy decreases if we increase the

recursion depth. However, the algorithm's runtime is 0(2 '), where r is the recursion

depth, and computing a path defined by many points may be very time consuming.

In this section we examine how the total energy of the path decreases as the recursion

depth increases, and determine the appropriate depth that yields a good approximate

energy efficient path in acceptable computation time.

Figure 3-5 shows how the energy of the path found by the recursive algorithm
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decreases as recursion depth increases in an example equidistant node problem where

n = 2.4. There is an initial 2% decrease in energy as the algorithm depth increases

from one to two. The decrease in energy as the depth further increases becomes

negligible and the advantage of defining the path by more points significantly diminishes

as the total energy of the path converges.

Figure 3-6 shows the total energy of the path found by the algorithm as a function of

recursion depth for various positions of the equidistant communication node. As before

in Figure 3-5, the total energy of the path initially decreases as the depth increases

from one to two but does not significantly decrease as recursion depth increases further.

Moreover, as the communication node's distance from s and d increases, the change in

energy over different recursion depths also decreases. Because n* is far from the mobile

node and m requires so much energy to communicate with n*, increasing the number

of points that defines the path does not significantly change the the total path energy.

Note that for 2 < 2.1, there is no effect of recursion depth because the path consists

of two straight segments and the algorithm finds the path on the first recursion.

For the equidistant node problem, it is therefore not worth the exponential com-

putation time to find paths defined by points found by the algorithm beyond a certain

depth because further refinements do not significantly reduce the total communication

energy. For the examples given in this chapter, we use a recursion depth of six to

obtain a clearly defined path in acceptable computation time.

3.2.3 General Communication Node

We now remove the constraint of the equidistant communication node and examine

paths found for problems where n* is unconfined with a = 2 as before. We use

Equation (3.1) to recursively find points along an energy efficient path, and show two

sample paths in Figure 3-7. As described in Sections 2.3 and 3.2.1, the paths this

algorithm finds depend on the total path length and the proximity to n*. Figure 3-7a

shows a path that tends toward n* when the communication node is close to s and

d in order to reduce the communication energy. If n* is farther, as in Figure 3-7b,

32



Total Path Energy as Function of Recursion Depth

4 5
Recursion Depth

Figure 3-5: Energy as function of recursion depth for s = (0, 0), d = (2, 0), and
n* = (1, 2.4). Energy is normalized by the energy of the path found by the recursive

algorithm of depth 1.
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Energy as Function of Recursion Depth and n
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Figure 3-6: Energy as function of recursion depth and position of n* for the problem
where s = (0, 0) and d = (2, 0). For each n* position, energy is normalized by the
energy of the path found by the recursive algorithm at depth 1.
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the resulting energy efficient path goes more directly from source to destination to

minimize the total distance traveled.

3.3 Shortcomings

We use the recursive algorithm as an initial analytic tool to gain understanding of the

problem. In this section, we discuss two main shortcomings of this algorithm, how it

is difficult to use this algorithm to solve problems with multiple communication nodes

and how this recursive approach finds suboptimal paths.

3.3.1 Multiple Communication Nodes

The recursive algorithm is not computationally efficient for problems with multiple

communication nodes. If |NI > 1, the algorithm must consider all nodes that m

communicates with when examining the energies of the straight segments during each

recursion. Figure 3-8 shows a problem with multiple nodes and the Voronoi regions

associated with each node. In the first recursive step shown, the algorithm must find

the optimal point c on the s - d perpendicular bisector. The figure shows one such

s - c - d path, made of the s - c segment and the c - d segment, and the Voronoi

regions it crosses through. The s - c - d path traverses through five different Voronoi

regions, V1, V2, V4, V5 and V6, and the total energy of the s - c - d path is the sum of

the energy used in communicating with each of the associated nodes, ni, n 2 , n4 , n5 , and

n6 , for a portion of the path. The energy of traveling from s to d through c that the

algorithm must minimize is thus,

E (0) = E (n*X - vt cos(O)) 2 + (n* - vt sin(6)) 2 dt (3.5)
V I V"

where ty. is the time spent in each Voronoi region V that m must travel through from s

to d. The number of Voronoi regions IVI in the energy calculations for a given s - c - d

path is O(INI). To find the optimal point c during each recursion, the algorithm must
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consider all possible s - c - d paths that cross through different sets of Voronoi regions.

There are O( 2 NI) s - c - d paths that travel through different sets of Voronoi regions

for the various potential c's so calculating the c that minimizes the energy of traveling

from s to d for each recursion can take O(INI2INI). Finding a path using the recursive

algorithm of depth r therefore takes O(IN12INI+r) time. Clearly, this approach can be

very time consuming if there are many communication nodes and is not practical for

solving multiple node problems.

n4

cjk n50

V2 V6

n20'

V

"n6 '
's d

Figure 3-8: Calculating c for the first recursion in a multiple node problem. Each

region Vi represents the Voronoi region associated with node ni. A sample s - c - d

path traverses through five different Voronoi regions.

3.3.2 Suboptimal Paths

The recursive algorithm may find paths that are clearly not optimal. At each recursion

level, it finds the local optimal solution by assuming the path from one point to another

is straight. For certain one communication node problems, the approximate path found

using the recursive approach is close to optimal. The recursive algorithm finds good

paths when the communication node is equidistant or far from s and d. However, in

other cases, the recursive approach finds paths that are clearly suboptimal.
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This is best illustrated by an example, seen in Figure 3-9. As we argue in Corollary

1, the path seen in the figure is clearly suboptimal because the path goes through n*

but is not made of straight paths s - n* and n* - d. The suboptimal path found by

the algorithm is both longer than the direct s - n* - d path and does not get closer to

the communication node at any point along the path than the direct s - n* - d path.

The algorithm chooses the suboptimal path because during the first recursion it

finds the point c by only considering the straight path segments from s to c and from

c to d. In the example in Figure 3-9, the straight s - c segment is far from the actual

optimal path, which is from s to n* to some point on the bisector. Finding c during

the first recursion to be (1, 0.6) anchors that point to be part of the path. Hence, only

considering the straight segments to and from the bisector fixes the path to suboptimal

points which the algorithm must use in further calculations.

1 .4 r .. . ... . . .. .. . . . .. . . . .. .. .. . . .

1.2

0.8

0.6

0.4

0.2

0

- levels of recursion = 6, total energy =3.9831
o communication node

direct s-n*-d path

c of first recursion (1, 0.6) -

-. . .. .-. .-.-.- -. .-.-. -.-. - ---

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 3-9: Example of suboptimal path found by recursive algorithm. The points
represent the path find by the algorithm, where the solid line represents the straight
path from source to destination through the communication node.
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3.4 Insights

This initial recursive approach is an important step in solving the minimum energy

path planning problem as we have been able to use the recursive algorithm to gain key

insights.

By analyzing the equidistant node problem, we determined that the algorithm was

able to find energy efficient paths by running the algorithm to a recursion depth of

six. We concretely demonstrated the effect of the two opposing objectives of minimiz-

ing total path energy. If the communication node is close enough to the source and

destination, it is more energy efficient for the mobile node to travel directly to the

node en route to the destination. On the other hand, if the communication node is

far, minimizing the path length is more important and the minimum energy path goes

more directly from source to destination. We also illustrated how the algorithm finds

paths for problems where the communication node is not constrained to be equidistant

from s and d.

We have also understood the limitations of this algorithm. Specifically, we recog-

nized that a divide-and-conquer approach does not yield a global optimal solution to

this problem and that for the general problem consisting of multiple communication

nodes, using the algorithm to recursively divide the problem space makes it difficult to

find a path.

We now use these insights in a different approach where we avoid the shortcomings

of the recursive approach.
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Chapter 4

Discretized Graph Approach

In this chapter we describe a second approximation algorithm that is more general

than the recursive approach. As in Chapter 3, we analyze one node problems where

INI = 1 and a = 2 in this chapter. However, we also describe and demonstrate how

this algorithm can be used to solve multiple node problems where INI > 1.

We discretize the problem by finding a regular set of vertices in the problem space

and connecting these vertices to form edges. We limit the path from source to desti-

nation to be made up of these edges, whose costs are the communication energies used

to travel along the edges. The approximate minimum energy path is thus made up of

a combination of edges from source to destination with the least cost.

Similar to the approaches used in [6], [9], we lay a square grid on top of the problem

area. As illustrated in Figure 4-1, the grid points form a set of vertices V and edges

connect vertices to form the set E. Each vertex can be connected to its neighboring

vertices to form the graph G = (V, E). A graph where each vertex is connected to

c other vertices is a c-connected graph. Figure 4-1 shows a 4-connected graph where

each vertex is connected to 4 neighbors while Figure 4-2 shows an 8-connected graph

where each vertex has 8 neighbors.

The cost of each edge eij is El,, the energy required to travel from vertex i to vertex

j. This energy can be calculated as,
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Eiy = d (t)dt, (4.1)

where t, and tj are the times the mobile node m is at vertex i and vertex j, respectively,

and n* is the node the m communicates with as it travels from i to j. If m is at a

given vertex i, then it can travel to any of i's neighbors, j E neighbors(v), using

communication energy Eij. Because the problem is symmetric, the energy required to

travel from i to j is equal to the energy required to travel from j to i and Eij = Eji.

We find an approximate minimum energy path by performing a shortest path search

from source s to destination d on the undirected graph G. Increasing the grid granular-

ity and graph connectivity increases the accuracy to which the approximate path fits

the optimal path, but also increases the computation time required to find the path.

Chapter 5 analyzes these parameters' effects on the minimum energy path found using

the discretized graph approach.

In we described in the problem framework and assumptions defined in Chapter 2,

we only consider the communication energy required to maintain connectivity to the

network and assume that the entire problem area is open to travel. We can easily

extend this discretized algorithm to ease both of these restrictions, as we discuss in

Chapter 7.

We fit the grid onto the problem such that lower left vertex of the grid is located

at, d, n-), min(s., dy, ny)), Vn E N.

If s or d does not lie on a vertex, the algorithm finds the closest vertex ve, fixes

the segment s - v. or d - v, be part of the minimum energy path found, and chooses

the new s or d to be v, in order to perform the shortest path search. This method

introduces some error, but the added energy of fixing the path in such a way decreases

as we impose a finer grid granularity.
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4.1 Finding the Closest Node

If there are multiple communication nodes, m communicates with the closest node

n*. For each edge, we must find n* in Equation (4.1) in order to calculate its weight.

As discussed in Section 2.3, we can decompose the problem space into the Voronoi

diagram of N whereby m communicates with the node ni associated with V(m), the

Voronoi region that contains m. Figure 4-3 shows the Voronoi diagram of a multiple

node problem and a grid the algorithm imposes on the problem area.

For a given edge eij, it is easy to determine the correct n* in calculating Eij if both

i and j lie in the same Voronoi region because Voronoi regions are convex. However, if

eij crosses Voronoi regions, then we approximate the energy used in traversing the edge

by determining n* to be the node associated with the Voronoi region of the midpoint

of i - j. Because each Voronoi edge represents all points that are equidistant from the

two closest nodes in V(i) and V(j), all points along an edge eij that cross a Voronoi

edge are approximately equidistant from the two communication nodes. The error of

calculating such edge weights is small if the grid granularity is fine enough such that

the distance between communication nodes is much greater than the distance between

adjacent vertices in G.

on4Vr 4r
1 0

3 I n6

Figure 4-3: Calculating edge weights according to the Voronoi diagram of N.
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4.2 Grid Granularity

We formalize the notion of a grid granularity for the problem to represent the granu-

larity of vertices and edges with respect to the problem area. In problem granularity

g, grid size and the length of the straight s - d segment are related,

dsd
9 = -" (4.2)

gridsize

where gridsize is the length of a side of a square formed by the grid. We discuss

how g affects the minimum energy path in Chapter 5. In the subsequent sections, we

examine one communication node problems where dd = 2 and choose gridsize = 0.01

and gridsize = 0.001 for a problem granularity of g = 200 and g = 2000, respectively.

In Section 4.5, we consider a multiple communication node problem using dd = 1 and

gridsize = 0.01 for a g = 100.

4.3 Shortest Path Algorithm

Given a graph G = (V, E), we perform a shortest path search from s to d using an

implementation of Dijkstra's algorithm.

Shortest path algorithms have the optimality substructure property, such that the

shortest path between two vertices in G contains other shortest paths within it [2].

Formally, if P1k = < vI, v 2, ..., Vk > is the shortest path from vertex v, to vertex Vk, then

Pij =< Vivi, ... , v > is the shortest path from vi to vj, where 1 < i <j < k.

Our approach uses SPLIB's [5] implementation of Dijkstra's algorithm using a k-ary

heap that runs in O(E log V) time for k = 3 [1].

We choose this implementation of a shortest path algorithm because it is a popular

and widely-known version. However, the majority of the computation time of the

overall algorithm is in calculating the weights of E and thus implementing the fastest

shortest path search is not a priority. In practice, the implementation we use performs

very well for the graphs in this problem: finding the shortest path of 48,010,000 edges
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between 6,005,000 nodes takes less than four minutes. 1

4.4 Graph Connectivity

The number of edges at any vertex determines the degree of freedom m has in path

selection. Increasing the connectivity of G increases the number of possible paths from

s to d, but also increases the time needed to compute all the edge weights of E.

In the subsequent sections we discuss how the minimum energy path found using

this approach differs as graph connectivity c increases. We first discuss how the algo-

rithm performs when each vertex is connected to four and eight neighbors. We then

generalize the graph we construct to provide more directional freedom for the path by

allowing a vertex to be connected to more neighbors in its immediate neighborhood. If

the algorithm only considers four or eight neighbors for each vertex, G has connectivity

c = 4 and c = 8, respectively, and the angles of the edges are evenly spaced. For c > 8,

the edges angles at each vertex are no longer evenly distributed, and increasing con-

nectivity does not allow uniform directional movement for m, as we discuss in depth

in Section 4.4.3.

4.4.1 4-Connectivity

We first consider a graph G where each vertex is connected to its four immediate

neighbors, as shown in Figure 4-1. With c = 4, each edge is at an angle T = 27rj/c

where the angle r = 0 is in the direction of the positive x axis and j = 0, ... , c - 1.

For a 4-connected graph, the angles of the edges connected to a vertex are regularly

spaced as shown in Figure 4-4.

We apply Dijkstra's algorithm to G to find the minimum energy path. Figure 4-

5 shows the two different paths found for the problem where s = (0, 0), d = (2, 0),

and n* = (1, 1),. Figure 4-5a shows the path found for g = 200 while Figure 4-

'We ran our simulations on a Dell OptiPlex GX270 workstation with a Pentium 4, 3.2GHz processor
and 1GB of RAM running Windows XP.
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T = r/2

T = 7T0

7 = 37r/2

Figure 4-4: A vertex and its neighbors in a 4-connected graph

5b shows the path that has a lower energy for a higher granularity g = 2000. The

path found for g = 2000 initially consists of a series of 90-degree turns towards n*

before staying straight towards d. The path found using problem granularity g = 200

only tends toward n* slightly in two 90-degree turns. The energy costs of both paths

are essentially the same since neither path strays far from the straight s - d path.

Although the energies of the two paths are very close, Figure 4-5 demonstrates that

increasing the granularity can change the minimum energy path found. We examine

the effect that problem granularity has on the path found and the associated energy

in Chapter 5. The paths shown in Figure 4-5 found using the discretized 4-connected

graph algorithm are suboptimal because they have higher total energy than the path

found for the same problem using the recursive algorithm which was a direct s - n* - d

path, shown in Figure 3-3b. A 4-connected graph does not naturally allow the direct

s - n* - d path of energy 1.8856 shown in Figure 3-3b because such a path moves at

T = 7r/4 and T = 77r/4 and a 4-connected graph constrains the path to vertical or

horizontal movement. Although a 4-connected graph can approximate T = r/4 and

- = 77r/4, the additional distance of the approximation introduces and error known as

"digitization bias" that we explain in depth in Section 4.4.2.
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4.4.2 8-Connectivity

To allow for diagonal movement between vertices, we consider an 8-connected graph

for the discretized graph approach. Similar to the 4-connected graph, we connect each

vertex to its eight immediate neighbors. The angles of the resulting edges are uniformly

distributed. For c = 8, each edge is at an angle r = 27rj/c where j = 1, ... , c - 1, as

shown in Figure 4-6. Whereas a 4-connected graph restricts the path to 90-degree turns,

using an 8-connected graph allows the path to travel in eight directions in multiples of

45-degree angles.

-r= 37r/4 I = 7r/2 T = 7r/4

r 57r/4 T = 37r/2 -r= 77r/4

Figure 4-6: A vertex and its neighbors in an 8-connected graph

We again examine the problem where s = (0, 0), d = (2, 0), and n* = (1, 1). The

paths previously found using the recursive algorithm and the discretized 4-connected

graph algorithm are shown in Figures 3-3b and 4-5, respectively. The optimal direct

s -n* - d path has movement in angles T = ?r/4 or -r = 77r/4. Whereas this movement is

not feasible for a 4-connected graph, it is feasible within an 8-connected graph, as Figure

4-7 demonstrates. While the recursive and discretized 8-connected grid algorithms

both find s - n* - d to be the minimum energy path for n* = (1, 1), the discretized

4-connected grid algorithm finds a path of higher energy because it is restricted to

move in angles of 90-degrees multiples.

For the problem where n* = (1, 0.3), the recursive approach finds a more energy
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4-7: Path found using
0), and n* = (1, 1).
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efficient path than the path found by the discretized 8-connected grid algorithm, as seen

in Figure 3-3a for the recursive algorithm and Figure 4-8 for the discretized algorithm.

The path shown in Figure 4-8 is clearly suboptimal because it does not travel from

s to n* and from n* to d in straight segments. As Corollary 1 argues, any path that

goes through n* but is not made of two straight segments is suboptimal. Similar to

the case with the 4-connected graph, the direct s - n* - d path travels at angles that

the 8-connected grid does not naturally allow.

2

1.8-
- c = 8, gridsize = 0.001, total energy = 0.81066
o communication node

1 .6 --.-.-.-.-.

1 .4 -. . . .. . .- ----. .. ..-.-.- -.-- -.- -.-- -.-.-.-.- .- .-

1 .2 --- -- - - -.

0.4 .............. ............................

0
0 0.5 1 1.5 2

Figure 4-8: Suboptimal path found by the discretized 8-connected graph algorithm
where s = (0, 0), d = (2, 0) and n* = (1, 0.3).

On initial examination, coarse grid granularity may be the cause of the discretized

graph approach finding suboptimal paths, and that using grids of finer granularity

would allow the algorithm to yield paths of lower energy that can approximate paths

of unnatural angles.

However, upon closer inspection, the discretization of the problem using a grid and

discrete angles introduces a "digitization bias" [7] that cannot be fixed by increasing
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Consider Figure 4-9 where a diagonal straight path from A to B,

shown as a solid path, is approximated by edges from a 4-connected graph, shown as

dashed paths. Although the approximate path in Figure 4-9b has finer granularity

than the approximate path in Figure 4-9a, the two paths have the same length. Figure

4-10 shows that this is also true for paths made of edges from 8-connected graphs.

Regardless of granularity, each of the finite number of paths have the same length.

The difference between the length of the approximate path and the true path is called

metrication error.

B

A

(a)

Figure 4-9: Approximating a straight line using edges fro

solid path from A to B is approximated by edges from a 4-

by the dashed path. (a) has coarser granularity than (b).

B

A

(b)

m a 4-connected graph. The
connected graph represented

B

A

(a)

B

A

(b)

Figure 4-10: Approximating a straight line using edges from an 8-connected graph.

The solid path from A to B is approximated by edges from an 8-connected graph

represented by the dashed path. (a) has coarser granularity than (b).

We show through an example how the digitization bias can cause the algorithm

to find suboptimal paths. Consider the problem of finding the most energy efficient

path from source to destination using the discretized 8-connected graph algorithm as
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shown in Figure 4-11, where d = n*. The path shown in Figure 4-11a is the optimal

path, a path that cannot be composed of edges from an 8-connected graph because of

the graph's discrete directional freedom. Figures 4-11b and 4-11c show two possible

paths, I and II, made from edges of an 8-connected graph that are being considered

by the algorithm as minimum energy paths. These two paths have the same length

regardless of granularity. Path I better visually approximates the optimal path, but

the discretization bias causes the algorithm to choose Path II as the approximate path

because it actually has lower total energy, a phenomenon we now describe.

d =n*

S

(a)

d =n* d=n*

X XX XX XX XX>X><DXXiXX

X R XX X X XXXXXXXXXXX

s S II

(b) (c)

Figure 4-11: Digitization bias forces the discretized graph algorithm to find suboptimal

paths. (a) shows the optimal path from s to d. (b) and (c) show two sample paths

that approximate the optimal path.

Recall the two conflicting objectives to reducing path energy: decrease the path

length and move closer to n*. The optimal path is the shortest and gets closest to n*

at any given time. However, because the optimal path s - n* path does not lie at a

natural angle for an 8-connected graph, the algorithm must choose among longer paths

such as Path I and Path II. Both paths have the same length, but Path II moves

closer to n* earlier, as Figure 4-12 shows for m moving at constant velocity. At the

time shown in the figure, m is closer to n* if it travels along Path II than if it travels
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on Path I.

The discretized algorithm therefore chooses Path II over Path I because Path II

has lower total energy than Path I even though Path I better approximates the optimal

path visually. Thus, the digitization bias forces the algorithm to choose a poor path

to approximate the optimal path. Because the metrication error is constant regardless

of granularity, this problem cannot be solved by increasing granularity.

I
4 XXXX IXXXXXs/

= n*

(a) at t = 2 + V2. dn. = 9.487

12

4

s

~XXXXXXXXXX

XX 1/XXX X X
m II

d = n*

(b) at t = 2 + ,/2. dmn- = 9.472

Figure 4-12: Comparison of two paths' proximity to n*. At time t = 2 + N/2, m moving

at constant velocity v = 1 is closer to n* if it travels along Path II than if it travels

along Path I.
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4.4.3 c-Connectivity

To counter the effect of digitization bias and to find a better approximate path, we

allow more angular variations along the path. To provide more degrees of freedom for

movement at each vertex, we expand the neighbors of a vertex to more than its eight

immediate neighbors. We connect each vertex to l levels of nodes in its neighborhood,

where the vertices in different levels form concentric squares around the vertex in

question. In the 8-connected graph discussed in Section 4.4.2, a vertex's 8 neighbors

are all neighbors of the vertex at level l = 1. Figure 4-13a shows how a vertex is

connected to two levels of neighbors, its 8 neighbors at l = 1 and 16 neighbors at l = 2

while Figure 4-13b shows the vertex connected to all nodes at l = 1, 2, 3.

Each level l consists of 81 vertices. When we refer to a graph that is level I-

connected, we mean that each vertex is connected to all vertices at levels < l. Thus a

level 1-connected graph has connectivity,

c =Z 8k = 4l(l + 1) (4.3)
k=1

However, not all nodes at a level add new angles to the directional freedom at a

vertex. For example, connecting to neighbors at T = j7r/4 for j = 1, ..., 8 in all levels

l > 1 does not add new angles. The dashed edges in Figure 4-13 are the edges in level

2 and level 3 that add new angles to a vertex's freedom of movement. For a given level

l, the number of edges that add to the degree of freedom is (see Appendix A),

edges= 4 even(4.4)
8(1 - 1), l odd

Therefore, for a level i-connected graph where 1 > 1 is odd, the total number of

unique angles for a vertex is,

8 + E(4(2k) + 8(2k)) = 312 + 5 (4.5)
k=1
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and for a level i-connected graph where I > 1 is even, the total number of unique

angles for a vertex is,

8 + E(4(2k) + 8(2k)) - 81 = 312 - 21 + 8
k=1

(4.6)

Even though the number of angles increases with 1, the angles of the edges they form

are not uniform, as is the case for 4- and 8-connected graphs. Figure 4-13b shows the

edges that connect a vertex to its third level of neighbors. The edges are more densely

concentrated in eight wedge-shaped regions, as shown in Figure 4-14. Connecting a

vertex to many levels of neighbors does not uniformly distribute the edges' angles,

but only increases the density of edges within the eight wedges. Hence, arbitrarily

increasing graph connectivity does not necessarily allow the algorithm to find paths of

decreasing energy. We investigate graph connectivity and the diminishing returns of

increasing I in Chapter 5.

* 4

5.. 4

S. .~ 4

* 4

. 9 4

S. 4

S... . 4

0 9

(a) two levels of neighbors

Figure 4-13: Level i-connected graphs.
l = 2 and (b) l = 3 that contribute new

I 0 0

S

0

S S
(b) three levels of neighbors

The dashed lines represent edges in the (a)
angles to the vertex's degrees of freedom.

We analyze the one communication node problem we examined in Figures 3-3a

and 4-15 where n* = (1, 0.3) using the discretized c-connected grid algorithm. We use

problem granularity g = 200 and vary graph connectivity. Figure 4-15 shows the path
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Figure 4-14: Level i-connected graphs do not uniformly distribute the edges' angles

for 1 > 1. The edges are distributed more densely in the eight wedge-shaped shaded

regions shown for this example where 1 = 3.

found as the connectivity of the graph increases. Figure 4-15a shows the path found for

only one level of connectivity, the same as the path found using the 8-connected graph

algorithm seen in Figure 4-7. As 1 increases and vertices have more neighbors, the path

found resembles the direct s - n* - d path more and the total energy decreases. Figure

4-15d and Figure 4-15e show the same path because vertices in a level 4-connected

graph have enough degrees of freedom to find the optimal path so that increasing the

connectivity of the graph does not find a more energy efficient path for this problem.

We discuss in detail how graph connectivity affects the path found in Chapter 5.

In Section 3.3.2, we discussed how the recursive algorithm finds the local optimal

solution at each recursion level which collectively do not yield a good approximation to

the global optimal solution. This discretized algorithm yields a better approximation

of the optimal path (assuming adequate angular freedom) because the shortest path

search is global. For example, we apply the discretized graph algorithm to the problem

we introduced in Section 3.3.2 and shown in Figure 3-9. We compare the solutions

of the two algorithms. The discretized graph algorithm finds a path of lower energy,

shown in Figure 4-16.
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(c) 1 = 3
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(d) 1 = 4

0.6
- c = 120, gridsize = 0.01, total energy =0.75916

0 communication node

0 .4 - -. . -. -. --. . - - . ..-

0.3

0 .2 -. .- . --

0.1 ... %

0.1
0 0.5 1 2.

(e) I = 5

Figure 4-15: Paths found for the problem where n* = (1, 0.3). As the connectivity of
the graph increases from level I = 1 to 1 = 5, the algorithm find paths of decreasing
energy.
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1.4

1.2

0.8

0.6

0.4

0.2

01
C

- recursive algorithm, depth = 6, energy = 3.9831
0 communication node

- .- - - direct s-n*-d path
0 discretized 120-connected graph algorithm, energy = 3.9757
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Figure 4-16: Comparison of direct s - n* - d path and paths found by recursive
and discretized graph algorithms. For the problem where s = (0, 0), d = (2, 0), and
n* = (0.2, 1.2), the discretized 120-connected graph algorithm using g = 100 finds a
more energy efficient path than the path found by the recursive algorithm.
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4.5 Multiple Communication Nodes

The discretized graph algorithm is more general than the recursive algorithm because

it easily allows for multiple communication nodes in the problem. As discussed in

Section 4.1, we calculate each edge weight with respect to the communication node

associated with the Voronoi region the edge lies in. The minimum energy path may

not be unique, as the two paths in the example in Figure 4-17 shows. In the case of

multiple optimal paths with the same energy, the algorithm returns one of the paths,

where the chosen path depends on the implementation of the shortest path algorithm.

n

Figure 4-17: Two minimum energy paths with the same energy.

Figure 4-18 shows the path found from s to d given five randomly placed commu-

nication nodes using a level 4-connected graph. The path shown in the figure goes

through one communication node en route to d from s but the communication energy

required in directly traveling to any of the other nodes is too high. Hence, the path

curves towards the communication node at (0.93, 1.57) in order to get close to that

node but curves quickly toward d to decrease the path length.
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Figure 4-18: The path found for a problem of finding a minimum energy path from

s = (0, 1) to d = (1, 1) with five randomly placed communication nodes using problem

granularity g = 100 and an 80-connected graph.
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Chapter 5

Discretized Graph Algorithm

Parameters

In this chapter, we investigate how the parameters for the discretized graph algorithm

affect the approximate minimum energy path the algorithm finds. We vary the problem

granularity g and graph connectivity c and determine good values of g and c for the

algorithm that balance having adequate running time with finding energy efficient

paths.

In Section 4.4.1, we showed how the discretized 4-connected graph algorithm using

different problem granularities can find different paths (see Figure 4-5). In this chapter,

we examine the specific one communication node problem where s = (0, 0), d = (2, 0)

and n* = (1, 3).

First, we explore how problem granularity affects the path. Because dd = 2, we

vary the gridsize and use problem granularities as seen in Table 5.1.

As Figure 5-1 shows, two paths found by the algorithm using an 8-connected graph

(I = 1) and different problem granularities have the same shape and similar energy

costs despite their large difference in problem granularity.

Figure 5-2 shows how the path energy decreases as problem granularity g increases

for six different levels of graph connectivity; for each, the path energy decreases less

than 1% as g increases. For all levels of connectivity, we find that a problem granularity
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gridsize g
0.2 10
0.1 20

0.05 40
0.025 80

0.0125 160
0.00625 320

0.003125 640

Table 5.1: Problem granularities used to examine how parameters for the discretized
graph algorithm affect path energy

of g = 80 suffices and that using grids of finer granularity does not allow the algorithm

to find paths of lower energy. Overall, problem granularity does not significantly affect

the path found: paths of different granularities have the same trajectory, but are

defined by more points as problem granularity increases. Beyond the initial slight

decrease in energy as g increases from 10 to 20, defining the path by more points does

not significantly affect the energy of the path found.

We now investigate how graph connectivity affects the path. Section 4.4 detailed

how we connect each vertex in the graph to c-neighbors and Figure 4-15 shows how

increasing graph connectivity can alter the path and decrease the energy. However, as

we discussed in Section 4.4.3, increasing the connectivity beyond a certain level does

not uniformly increase the distribution of the edges' angles and may have diminishing

returns in terms of lowering energy.

We study how graph connectivity affects the approximate path by examining the

problem where s = (0, 0), d = (2, 0) and n* = (1, 3), as before. We apply graphs of

various connectivity to the problem for the granularities listed in Table 5.1. In contrast

to varying granularity, increasing the connectivity can change the shape of the path the

algorithm finds, as Figure 5-3 shows for g = 80. The path found using an 8-connected

graph, shown in Figure 5-3a, is made up of straight segments; as graph connectivity

increases in Figures 5-3b-f, the path better approximates a curve.

Figure 5-4 shows how the path energy decreases as graph connectivity increases for

the seven problem granularities in Table 5.1. For all values of g, path energy decreases
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Figure 5-1: Paths found by discretized graph algorithm using different problem gran-
ularities and an 8-connected graph.
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Figure 5-2: Energy of paths found by the discretized graph algorithm decreases as
problem granularity g increases. For each figure of level i-connectivity, energies are
normalized by the path energy found using g = 10.
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Figure 5-3: Paths found by discretized graph algorithm using different levels of graph
connectivity and problem granularity g = 80.
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approximately 3% as the level of connectivity increases. There is an initial energy

decrease of less than 2.5% as I increases from one to two (and c increases from 8 to

24), but further increases in connectivity do not significantly reduce the energy.

For all problem granularities, but specifically for g = 80 that we previously found to

be adequate, a level 4-, or an 80-connected graph suffices to find an good approximate

minimum energy path and connecting a vertex to more than 80 neighbors does not

significantly alter the resulting path. Overall, graph connectivity affects the trajectory

of the path found by the discretized graph algorithm, and using a more connected

graph reduces path energy.

The effect of connectivity on path energy is slightly greater than the effect of prob-

lem granularity on path energy, as comparison of Figure 5-2 and Figure 5-4 shows.

Increasing granularity decreases energy by about 1% whereas increasing connectivity

decreases energy by approximately 3%. Therefore, to decrease path energy, it is more

important to increase c than to increase g. Figure 5-5 shows how path energy decreases

as a function of both problem granularity and graph connectivity.

We find that using a problem granularity of g = 80 and level 4-, 80-connected

graph allows the discretized graph algorithm to find good approximate minimum energy

paths.
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Figure 5-4: Path energies found by discretized graph algorithm using different levels 1
of graph connectivity. For each figure of granularity g, the energies are normalized by
the path energy found using I = 1 connectivity
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Energy as Function of Graph Connectivity and Problem Granularity
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Figure 5-5: Path energy as function of level 1 connectivity and problem granularity g.
Energies are normalized by the energy of the path found using g = 10 and 1 = 1.
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Chapter 6

Sample Problem

We introduced the discretized graph algorithm in Chapter 4 and determined the pa-

rameters that find good approximate minimum energy paths in Chapter 5. In this

chapter, we use the discretized graph algorithm and the previously determined values

of problem granularity g and graph connectivity c to solve a sample problem.

We consider the problem of determining an adequate number of communication

nodes to deploy in the field that minimizes the energy of all paths from one side of

the field to the other. This problem can occur if we want to facilitate mobile nodes

traveling across enemy territory while minimizing their communication energies. If we

deploy communication nodes in enemy territory by scattering them from the air, we

know the general area that they fall into, but we cannot predict the exact locations of

the nodes.

For a given s - d pair, deploying the communication nodes in a collinear configura-

tion along the s - d line will result in the path of least energy from s to d. Because we

cannot control the exact locations of the communication nodes and want the flexibility

to facilitate energy efficient paths from different sources to different destinations, we

hope to deploy enough nodes such that the average s - d path will be energy efficient.

Since communications nodes are expensive, we want to deploy the least number of

nodes while minimizing the energies of all paths from one side of the field to the other.

Using the discretized graph algorithm, we investigate this problem by scaling the
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enemy territory to a 1 x 1 square and fitting the square onto a Cartesian plane with

the lower left corner at (0, 0). A mobile node m must cross from one side of the square

to another while minimizing its communication energy, as defined in Equation (2.1),

where a' = 2 .

We randomly choose ten sets of communication nodes of ten nodes each, where

the node positions are uniformly distributed over the 1 x 1 square. For each set, we

randomly choose ten s-d pairs such that s = (0, sy) and d = (1, d.), where sy and dy are

uniformly distributed between 0 and 1. In Chapter 5, we found that using a problem

granularity g = 80 and connectivity c = 80 as parameters to the discretized graph

algorithm allows us to find good approximate minimum energy paths. For this problem

min(dsd) = 1 and max(dsd) = v/2, so we choose gridsize = .01 for min(g) = 100 and

max(g) = 141. We construct a level 4-, or 80-connected graphs to analyze our problem.

For each set of communication nodes, we randomly choose one of the ten nodes to

place first in the square. We then find the minimum energy path for each of the ten

s - d pairs. We keep previously added nodes and introduce more communication nodes

from the set into the square to analyze how the paths change. Figure 6-1 shows how

the path from a randomly chosen s to a randomly chosen d changes as communication

nodes are randomly placed in the field. As nodes are added, the path changes and the

energy decreases because the additional nodes allow for more energy efficient paths.

Figure 6-2 shows how the average energy of the s - d paths found by the discretized

graph algorithm decreases as communication nodes are deployed onto the field, where

each data point represents the average energy of 100 paths, ten paths for each of the ten

sets of communication nodes. Initially when there are few nodes to communicate with,

the introduction of new nodes facilitates significant decreases in path energies. When

there are few nodes in the field, adding new nodes changes the path and decreases the

path energy for many of the s - d pairs. For example, the addition of the second node

reduces the average energy by 34%. If there are many deployed communication nodes,

introducing new nodes changes the minimum energy paths for fewer s - d pairs since

a mobile node is more likely to communicate with existing nodes than newly added
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nodes. Hence, adding communication nodes to an existing deployment of many nodes

has a less significant effect on the average energy. Indeed, as seen in Figure 6-2, the

addition of the fifth node to the set of four existing communication nodes decreases

average energy by an additional 5% in comparison to the average path energy where

there is only one communication node.

Therefore, it may not be worth the cost of deploying nodes in order to achieve

slight energy savings. Depending on the objectives of the deployment and the tradeoff

between the cost of each communication node and the energy constraints of the mobile

nodes, we can determine the adequate number of communication nodes for energy

efficient travel between two sides of the field.
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Figure 6-1: Energy of paths decrease as communication nodes are added to the problem.
Minimum energy paths from s = (0, 0.37) to d = (1, 0.34) as communication nodes are
randomly placed in the field.
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Average Energy vs. Number of Communication Nodes
1
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Figure 6-2: Average energy of minimum energy path decreases as the number of com-

munication nodes increases. Each data point represents the average energy of 100
paths, ten random s - d pairs for each of ten sets of randomly placed communication
nodes. Path energies are normalized by the average energy of paths when there is one

communication node.
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Chapter 7

Conclusions

7.1 Contributions

In this thesis, we introduced the minimum energy path planning problem for ad hoc

networks. In this problem, we find a path that requires the least communication energy

for a mobile node from one point to another throughout which it stays connected to a

set of communication nodes.

We discussed the problem's properties and analyzed the two factors involved in min-

imizing energy: traveling a short path and moving close to the communication nodes

it communicates with. We demonstrated how these two objectives affect the minimum

energy paths found using a recursive approach for problems with one equidistant com-

munication node. If the communication node is close to the source and the destination,

the mobile node travels straight to the communication node in the optimal path. On

the other hand, if the communication node is far from the source and the destination,

the mobile node travels more directly from the source to the destination and does not

travel as close to the communication node.

Although we used the recursive algorithm to gain key insights to the minimum

energy path planning problem where there is one communication node, we showed the

limitations of the algorithm in finding good approximate paths and in finding paths

for problems with multiple communication nodes.
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We presented a discretized graph algorithm that finds approximate minimum energy

paths for problems of one or multiple communication nodes. We determined good

values for the algorithm's parameters, problem granularity and graph connectivity, that

allow the algorithm to find good approximate paths while having an acceptable running

time. We found that using a level 4-, 80-connected graph and problem granularity of

g = 80 is adequate for the algorithm to find good approximate paths.

Finally, we demonstrated the applicability of the discretized graph algorithm by

using it to solve a sample problem. In this problem, we determined an adequate

number of communication nodes to randomly deploy over a field to facilitate energy

efficient travel across the field.

7.2 Future Work

In this thesis, we focused on problems where a = 2 in the communication power.

However, a can be greater than two, and future work can investigate how different

values of a affect the path found.

In our problem framework, we did not factor in the energy used to physically travel

from source to destination in finding the minimum energy path. Realistically, this

energy should be taken into consideration and can influence the path taken. We can

extend the discretized graph algorithm to include this energy by adding an additional

cost to each edge in the graph that is proportional to the length of the edge. This

additional energy would place more emphasis on the total path length factor influencing

the total path energy because the added energy is a function of only path length and

not proximity to communication nodes. In a similar fashion, we can incorporate the

Weighted Region Problem by taking into account different energy required to travel in

different types of terrain. Future work can investigate how the minimum energy path

changes if we consider the movement energy.

The discretized graph algorithm can also be extended to facilitate other constraints

in the problem. For example, if a mobile node only has a certain amount of time to

78



travel to the destination, we can alter the shortest path search to constrain the total

path length.

Another constraint may arise if there are physical obstacles in the terrain that a

mobile node cannot travel through, such as mountains, buildings, or bodies of water.

Revisiting the example of the soldier traveling through hostile territory, he may wish to

avoid certain areas of the region because there are more enemy combatants concentrated

in those areas. In such situations, the algorithm can be altered by removing the edges

corresponding to the forbidden regions from the graph.
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Appendix A

Directional Freedom in c-Connected

Graphs

In the discretized c-connected graph algorithm, each level l consists of 81 neighbors for

a given vertex. However, not all vertices in a level add new angles to the directional

freedom at a vertex.

Connecting to neighbors at r = j7r/4 for j = 1, ..., 8 in any level 1 > 1 does not add

new angles. For neighbors at "even" levels, where 1 is even and I > 1, only half of the

vertices contribute new angles. Figure A-1 illustrates how for every other vertex in an

even level (shown as white vertices), there is a vertex at a lower level with the same

angle. Therefore, out of 81 neighbors in an even level 1, there are 4l vertices that add

new angles of direction freedom.

Vertices at "odd" levels contribute more angular freedom, as the black vertices in

Figure A-1 show for l = 3. All vertices except those at T = j7r/4 for j = 1, ..., 8 add

new angles. Therefore, there are 8(1-1) neighbors in an odd level 1 that add directional

freedom.
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Figure A-1: Number of vertices in a given level that add new angles of directional
freedom. Black vertices add new angles of freedom while white vertices do not.
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Appendix B

Implementation Details

We implemented the recursive algorithm using Matlab 7. We implemented the dis-

cretized graph algorithm in Matlab 7 and used the GNU C compiler to compile the

shortest path algorithm code from SPLIB. The discretized graph algorithm is as follows:

DISCRETIZED-GRAPH-ALGORITHM(s, d, N, gridsize, 1)

Yrnax = max(sY, dy, n.), Vn E N

Ymin = min(s., dy, n.), Vn E N

Xmax = max(sX, dX, nx), Vn E N

Xmin = min(sx, dX, nx),Vn E N

rows = (Ymax - ymin)/ gridsize

cols = (Xmax - xmin)/gridsize

V +- rows x cols

foreach i E V

eij <- edges to neighbors j in levels < 1

T <- Vor(N)

foreach eij E E

n*+- n in VoronoiRegion(T, midpoint(i, j))

Eij =ENERGY(i, j, n*)

G = (V, E)

minimum energy path <- DIJKSTRA(S, d, G)
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