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ABSTRACT

Segmented polyurethane elastomers containing additional ordered structures
within the hard or soft domains were developed to mimic the hierarchical structure and
superior properties observed in spider silk fibers. The silk's toughness is related to a fiber
morphology that includes P-pleated crystalline sheets within an amorphous matrix, as
well as an additional interphase with an orientation and mobility between that of the two
microphases. In the polyurethane mimics, bulky aromatic diisocyanates were
incorporated between aliphatic hexamethylene diisocyanate (HDI) hard segments and
poly(tetramethylene oxide) (PTMO) soft segments, to enhance the size and orientation of
the interphase. The mixture of diisocyanates reduces the crystallinity of the HDI hard
segments, allowing the polyurethane to form more well-organized domains observed by
AFM imaging. The more interconnected hard domains allow the elastomers to deform to
higher elongations and absorb more energy without a decrease of initial modulus.

Shearing of the hydrogen-bonded hard domains orients the hard blocks at a
preferred tilt angle of ±20° from the strain direction during tensile deformation. While
the average spacing of hard domains increases during deformation, the spacing of hard
domains aligned with the strain decreases, and the spacing of hard domains at the
preferred tilt angle remains constant. Strain-induced crystallization of the PTMO soft
segments was observed in all samples; however, hard segments with mixed diisocyanates
exhibited non-crystalline alignment of the hard domains.

Several polyurethane nanocomposite structures were also created using particles
that preferentially associate with hard or soft segments. HDI-PTMO
polyurethane/Laponite nanocomposites provided modest mechanical property
improvements (80% increase in modulus and 15% increase in toughness) without any
loss of extensibility. The Laponite discs exhibited an exfoliated structure, associating
with and reinforcing the hydrophilic polyurethane hard segments. HDI-PTMO
polyurethane/MQ siloxane resin nanocomposites also exhibited particle association with
the hard segments, providing a 60% increase in modulus with a small loss of toughness.
However, composites of isobutyl-POSS dispersed in polyurethanes with mixed hard
segments exhibited formation of POSS crystals associated with the soft segments at all
loadings, resulting in tensile failure at strains 80-100% lower than the pure polyurethane.

Thesis Supervisor: Paula T. Hammond
Title: Mark Hyman, Jr. Associate Professor of Chemical Engineering
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Chapter 1: Introduction

1.1 Project Goal and Outline

The superior mechanical properties of natural spider silk, specifically its

unmatched combination of strength and extensibility, has led to considerable research

efforts in the last twenty years to develop silk-inspired materials with similar

properties.[ 1, 2] Natural spider silk is a protein consisting of alternating hard,

hydrophilic blocks (-pleated alanine sheets) and soft hydrophobic blocks (amorphous

glycine-rich matrix) that microphase segregate into a network structure. A second level

of order has also been observed within the glycine-rich soft domain, and the silk's

superior toughness has been attributed to this "oriented amorphous" region.[3, 4] This

thesis focuses on the development of segmented polyurethane elastomers that mimic the

structure and properties of spider silk through the creation of an oriented amorphous

phase. The approach employed here explores two interpretations of the silk's oriented

amorphous phase: 1) an expanded interphase between the domains or 2) reinforcing units

within the soft domain. In the first part, the hard segments of a polyurethane are

modified to incorporate bulky, crystal-disrupting units at the junction between hard and

soft segments. In the second part, nanofillers are employed as reinforcing units within

the polyurethane, associating with either the hard or soft segments. A further attempt was

made to incorporate deformable groups within the soft segment matrix as a covalently

attached reinforcing unit. This thesis outlines the design, synthesis, and characterization

of segmented polyurethanes and polyurethane nanocomposites that mimic the

microstructure of spider silk.
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In Chapter 1, the motivation and background material are presented, which

underlies the polyurethane design strategies developed in Chapter 2. The first part of our

two-part approach examines the modification of the interphase in segmented

polyurethanes with mixed hard segments (Chapter 3), including analysis of the

deformation of their microstructures (Chapter 4). The second part examines the

reinforcement of the polyurethane with clay nanoparticles associated with the hard

segments (Chapter 5), siloxane nanoparticles associated with the soft segments (Chapter

6), and liquid crystalline mesogens covalently incorporated into the soft segments

(Chapter 7). Research conclusions and potential future directions are discussed in

Chapter 8.

1.2 Background

The goal of this project is to explore the effects of designed hierarchical structures

on the morphology and mechanical properties of segmented polyurethane elastomers, in

order to develop high performance materials that mimic the properties of spider silk. The

current understanding of the properties, microstructure and morphology of spider silk is

presented first, followed by an overview of thermoplastic polyurethane elastomers.

Afterward, background material is presented on the selected design features of the

polyurethanes, including interphase modification, polyurethane nanocomposites, and

liquid crystalline polyurethanes.

1.2.1 Spider Silk Structure and Properties

Spider silk is one of the toughest engineering materials known in nature, capable

of spanning large areas and bringing flying insects to a halt by dissipating kinetic energy

13



without fracturing. The mechanical properties of spider silk are compared with those of

several other engineering materials in Table 1. Although spider silk does not match the

stiffness (i.e. modulus) or strength of aramid fibers such as Kevlar®, its high elasticity

means that its toughness (i.e. energy to break) may be 1 0-100 times higher than brittle

engineering materials such as Kevlar® or steel. Furthermore, its low density (p - 1.5

g/cm3) means that per unit weight, spider silk is in fact-stronger than steel.

Table 1.1 Property comparison of silk to other engineering materials[2]

Material Modulus Tensile Strength Extensibility Energy to Break
(GPa) (GPa) (%) (MJ/m3)

Dragline Silk 10 1.1 27 160

Viscid Silk 0.003 0.5 270 150

Kevlar 49 130 3.6 2.7 25

fHigh-tensile Steel 200 1.5 0.8 6

Synthetic Rubber 0.001 0.05 850 100

The dragline and frame silks of the Nephila clavipes spider are both essentially

composed of two proteins, termed Spidroin 1 and Spidroin 2, both of which were first

characterized by Xu and Lewis.[9] Spidroin 1 is the dominant component in the stronger

dragline silk, and its amino acid composition is presented in Figure 1.2[2] This protein

may be considered a multiblock copolymer, since it contains several glycine(G)-rich

"soft" blocks and alanine-rich "hard" blocks within the same polymer chain. The

alanine-rich blocks crystallize to form -sheet crystals, typically 2 x 5 x 7 nm in size,

which are imbedded in a flexible glycine-rich matrix.[1] The polyalanine crystallites

serve as physical crosslinks reinforcing the flexible matrix, such that the protein forms a

thermoplastic elastomer. Spidroin 2 contains a less blocky arrangement of alanine

residues, interrupted by proline-rich sequences that form a less crystalline material.
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Figure 1.1 Amino acid sequence of spider dragline silk protein[21

The unique molecular architecture of spider silk is responsible for its superior

mechanical properties. Two important aspects of the silk's performance are its high

hysteresis, or ratio of the energy dissipated to the total energy of impact, and

supercontraction, in which the length of the silk fiber decreases as it is exposed to water,

accompanied by a decrease in the mechanical properties.[10] The primary function of

natural silk fibers is to bring flying insects to a halt without fracturing. The silk's high

hysteresis (65%) allows it to dissipate much of the impact energy as heat, preventing prey

from elastically escaping the web and preventing fiber fracture mechanisms. The

supercontraction phenomenon seems to indicate that the fiber is pre-stretched during the

spinning process, giving it an extra degree of orientation and thus a higher tensile
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strength. Experts believe that water causes supercontraction by the breakup of the

hydrogen bonds that preserve this extra orientation.[10]

The unique mechanical properties and supercontraction of spider silk have been

successfully modeled using an energy-minimization routine on a fixed lattice.[ 11 ] Figure

1.2 illustrates both the perceived silk morphology (on the left) and its lattice-based

mathematical representation (on the right). The model includes the amorphous chains, f3-

sheet crystals (15% by volume), entanglements and hydrogen bonds noted in spider silk,

clearly labeled on the figure. In addition, the triple lines exiting each crystal represent a

higher-modulus constrained amorphous layer immediately adjacent to the crystallites.[ 12]

The stress-strain response of this model is calculated using physical estimates for the

moduli of the crystals, amorphous chains, hydrogen bonds, and the high-modulus

amorphous layer. To mimic the extra orientation noted in the dry fibers, the lattice is

mathematically "pre-stretched" before the hydrogen bonds are inserted. The model of the

dry fibers predicts a tensile strength of 1 GPa and an elongation at break of 30%, and the

overall form of the stress-strain curve agrees well with experimental observation.[13]

When the hydrogen bonds are removed, the model also reproduces the weakened

mechanical properties of the wet supercontracted fiber.
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Figure 1.2 Modeling of spider silk properties on a lattice[ 11]

Experimental studies on the morphology of native spider-silk fibers have

expanded on the simple two-phase picture presented above. Studies using solid-state

nuclear magnetic resonance (NMR) spectroscopy and wide-angle X-ray scattering

(WAXS) have demonstrated a third phase which is intermediate of the highly oriented

polyalanine crystals and the unoriented amorphous region.[3, 4] Simmons et al. found

that the 2H spectrum of spider silk with deuterated alanine residues could not be fit using

a single Gaussian distribution.[3] Instead, the data were well fit by two Gaussian curves,

one curve with a very high degree of orientation, comprising -40% of the alanine

population, and another curve with a weaker orientation, comprising -60% of the alanine

population. The percentage of highly oriented alanine residues was also found to

decrease upon supercontraction with water.



Grubb and Jelinski demonstrated that the amorphous phase of spider silk was

divided between a fully isotropic fraction and a partially oriented fraction.[4] As in the

NMR experiment, the WAXS pattern could not be fit with a single distribution. Instead,

the pattern was again fit with two Gaussian curves: an amorphous halo and a separate

peak with an orientation between that of the crystalline and isotropic fractions. From

these WAXS pattern fits, it was determined that -60% of the amorphous phase is

completely isotropic, but -40% has some higher degree of order.

Combining the two sets of data, the composition of spider silk is estimated to be

the following: 15% highly oriented P-sheet crystals, 30% oriented amorphous region, and

55% isotropic amorphous region. Figure 1.3 shows a cartoon of these different types of

structures, with the first two oriented regions exaggerated in quantity.[3] The nature of

the "oriented amorphous" phase is still unclear in the literature; however, this extra

degree of motion during deformation may provide the mechanism for spider silk's

superior mechanical properties. The partial orientation is similar to that observed in the

interphase around crystallites in semicrystalline polymers, in the interphase around

particles or fibers in composite materials, and in liquid crystalline phases. These

similarities are the inspiration for the new material design in this research project, which

will be introduced in the following sections and developed more fully in Chapter 2.
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Figure 1.3 Proposed morphological model of spider silk[3

1.2.2 Segmented Polyurethane Elastomers

A thermoplastic elastomer is a block copolymer in which each chain contains

chemically immiscible blocks or segments that are thermodynamically driven to phase

separate.[ 14] However, the incompatible blocks are covalently linked within the polymer

backbone, so they microphase segregate into domains on the length scale of the blocks.

Segmented copolymers contain soft segments that are above their glass transition

temperature (Tg), creating a rubbery, amorphous block, as well as hard segments that are

below their Tg. The hard segments form crystalline or paracrystalline domains that
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behave as rigid reinforcements within the rubbery network.[8] The hard domains serve

as physical crosslinks within the rubber to prevent macroscopic flow behavior; however,

the domains can be melted or cleared at high temperatures, so that the polymer may be

melt processed as an ordinary thermoplastic.[14]

Segmented polyurethanes, the most industrially significant class of thermoplastic

elastomer, contain a multiblock structure similar to that found in spider silk protein.[8]

The diversity of potential chemical architectures and extensive literature base of

segmented polyurethanes make them attractive as a synthetic framework for materials

with hierarchical structures. Physically cross-linked segmented polyurethane were first

reported in 1958 by Schollenberger[15], which created an alternative to chemically cross-

linked polyurethanes and began a multitude of investigations into their mechanical and

microstructural behavior as a function of polyurethane composition. Bonart et al.

confirmed that physical crosslinking was provided by hydrogen bonded urethane hard

segments that aggregated to form crystalline or paracrystalline hard domains.[ 16] These

physical crosslinks are reversible above the hard domain melting temperature or in polar

solvents. Figure 1.4 presents a simplistic cartoon of the segmented polyurethane

architecture.

It is important to distinguish between a segmented copolymer and a triblock

copolymer, which also exhibits thermoplastic elastomeric behavior. A triblock

copolymer consists of only three blocks, each of which may contain 50-100 repeat units.

A segmented copolymer consists of many more blocks, which may have less than 5

repeat units in the hard block and less than 20 repeat units in the soft block.
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Consequently, the scale of microphase segregation in a segmented copolymer is very

different from that of a triblock copolymer.

Paracrystalline

Hard Domains

Crystalline -

Hard Domains

Flexible

Soft Segment

Individual

Hard Segments

Figure 1.4 Molecular architecture of segmented polyurethane elastomers

The method of polyurethane synthesis has considerable effect on the

microstructure, and thus the properties of polyurethane elastomers.[17] The one-step

method, in which soft segment macrodiol, diisocyanate and chain extender are

simultaneously added, is the most common industrial synthetic method. However, this

method lacks the control required to produce regular block sequences.[17] In the two-

step method, the soft segment macrodiol is first reacted with excess diisocyanates in a

slow addition step. The endcapped macrodiol is then reacted with a low molecular

weight diol (chain extender), and a stoichiometric quantity of diisocyanate to grow high

molecular weight polyurethane. The two-step method produces linear polyurethane

elastomers with fewer side reactions and a polydispersity close to 2, as expected for step

growth polymers.[18]



Polyurethane hard segments are composed of aromatic or aliphatic diisocyanates

with diol or diamine chain extenders. (With diamine chain extenders, the urea linkage is

formed instead of the urethane, creating polyurethaneureas.) The most common

industrially used diisocyanates 4,4'-methylene bisphenyl diisocyanate (MDI) and toluene

diisocyanate (TDI). The rigidity of these aromatic units generally creates polyurethanes

with high modulus and tensile strength.[ 17] However, aromatic diisocyanates are subject

to degradation by ultraviolet radiation. 1,6-hexamethylene diisocyanate (HDI) and other

aliphatic diisocyanates offer greater ultraviolet stability, but are less reactive than the

aromatic diisocyanates.[19] The aliphatic hard segments impart increased flexibility,

which can lead to a higher degree of phase segregation, as explained by kinetic

arguments.[20, 21]

The polyurethane soft segments are typically a polyester or polyether macrodiol

such as poly(ethylene adipate) or poly(tetramethylene glycol) with a glass transition

temperature well below the polyurethane's use temperature. Polyester soft segments

typically exhibit higher modulus, tensile strength and thermal stability, in part because of

the ability of the ester linkages to hydrogen bond with urethanes in the hard

segments.[19] Polyether soft segments have better flexibility and hydrolytic stability

than polyesters, and undergo less hydrogen bonding with hard segments.[22] Mechanical

properties of the polyurethanes are also dependent on the crystallinity or ordering of the

soft segments, which is dependent on the molecular weight that typically ranges from

400-6000 g/mol.[ 17] As the soft segment molecular weight decreases, the modulus and

tensile strength of the polyurethane generally increases.
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1.2.3 Interphases in Semicrystalline Polymers

Semicrystalline polymers have long been understood to consist of a mixture of

crystalline structures such as chain-folded lamellae or pleated sheets within a matrix of

amorphous chains.[23] In typical semicrystalline polymers, that is, those that do not

exhibit any block sequences limiting the size of the crystallizable regions, the crystalline

regions are long, capable of forming larger superstructures such as spherulites. In these

cases, the polymer morphology is well modeled as a two-component system, consisting

of crystalline and amorphous polymer chains. However, in all semicrystalline polymers,

there exists a small "interphase" between the crystalline structures and the amorphous

polymer chains in which the orientation and mobility of the chain segments are restricted

by the crystalline structure.[24] The dimensions of this interphase are fixed for a given

polymer system, typically several nanometers in thickness. For most semicrystalline

polymers the contribution of this interphase to the mechanical properties is negligible,

due to its low volume fraction within the bulk polymer. However, as the dimensions of

the crystalline regions within the polymer shrink to a few nanometers, such as in spider

silk or crystalline segmented copolymers, the interphase represents a larger volume

fraction of the polymer matrix, and strongly contributes to the mechanical behavior of the

polymer.

A variety of experimental and theoretical techniques have been used in the

literature to characterize the interphase of semicrystalline polymers.[ 12] Models fit to

wide-angle X-ray scattering (WAXS) data from polyethylene fibers[25], liquid crystalline

polyesters[26], Nylon-6[27] and spider silk[4] all required an additional ordering phase

beyond the two-component crystalline and amorphous phases to fully describe the data.
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Multiple-pulse nuclear magnetic resonance (NMR) spectroscopy has been used to

observe magnetization decay in polyethylene terephthalate fibers[28], and spider silk

protein[3]. In these cases the decay was fit to three domain species of different mobility,

generally termed mobile noncrystalline, constrained noncrystalline, and crystalline

domains. TEM has also been used to directly observe the interphase in poly(ethylene

terephthalate).[29] Theoretical models of the interphase have included Monte Carlo

simulations of polyethylene[30] and atomistic models of spider silk.[12] Small-angle X-

ray scattering (SAXS) has also been used to characterize the interfacial size between

blocks in block copolymers[3 1], blends[32], and many segmented copolymers such as

polyamides[33], polyesters and polyurethanes.[34, 35] Although the characterization of

the interfacial thickness in segmented copolymers is relatively common, designed

synthetic efforts to alter the nature of the interphase are relatively uncommon. Huy et al.

altered the composition between blocks within a styrene-butadiene-styrene triblock

copolymer, creating an asymmetric morphology in which the shorter polystyrene chains

were intermixed into the softer butadiene phase.[36] This led to an increase in the Tg of

the soft phase and more effective stress transfer at the interface, leading to higher

orientation of both phases during deformation.

1.2.4 Polyurethane Nanocomposites

The properties of segmented polyurethane elastomers have been improved by the

reinforcing effects of nanoscale filler particles.[37] The improved properties include

tensile modulus and strength, elongation, thermal stability and barrier properties. The

enhancement of properties is a function of the high surface to volume ratio of well-

dispersed nanofillers, which promotes greater interaction between the nanofillers and
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polyurethane matrix, as well as changes in chain dynamics and crystallinity induced by

the particles.[38] The strength of the interfacial bond between the nanofillers and

polyurethane matrix may be modified through the use of surfactants, modification of the

nanofiller surface, or polarity of the polyurethane block.[39] By creating chemical

compatibility between the nanofillers and polyurethane block, the maximum level of

nanofillers dispersion is obtained, providing the most significant improvement in

polyurethane nanocomposite properties.

Polyurethane nanocomposites have been developed with several methods of

nanoparticle dispersion. A common method is the in situ polymerization of a soft

segment macrodiol in which the nanoscale filler particles have already been

dispersed.[40, 41] Nanocomposites have also been prepared by post-processing

polyurethanes with nanofillers, via melt compounding[38] or solution processing.[42]

The method of nanofillers dispersion has been shown to have little effect on the

mechanical properties as long as compatibility between the nanofillers and matrix is

maintained.[38]

1.2.5 Liquid Crystalline Polyurethanes

Studies of the orientation mechanisms of polyurethanes have shown that the

application of a stress induces orientation in both the hard and soft segments.[43] Upon

removal of that stress, the hard segments retain their orientation, while the soft segments

relax back to an isotropic state. The addition of a liquid crystalline (LC) mesogen within

the soft segment may prevent this total relaxation to an isotropic state, instead leaving a

partial orientation within the soft segment, similar to the orientation observed in spider

silk., The liquid crystalline phase of matter represents the partial ordering of molecules
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between a solid and liquid state.[44] LC materials have the flow behavior of an isotropic

liquid, but retain some directional and/or positional ordering, though less than that of a

true crystalline state. LC groups can be incorporated directly within a polymer backbone,

creating a main-chain liquid crystalline polymer, or as pendant groups to the polymer

backbone, creating a side-chain liquid crystalline polymer, as shown in Figure 1.5.[18]

Side-Chain Liquid Crystalline Polymer Main-Chain Liquid Crystalline Polymer

Figure 1.5 Cartoon representation of side-chain and main-chain liquid crystalline
polymers.

Several groups have investigated the synthesis and properties of liquid crystalline

(LC) polyurethanes that incorporate mesogenic units as diisocyanates or chain extenders

within the hard segment.[45-49] These novel segmented polyurethanes combine the

mechanical integrity and processability of thermoplastic polyurethane elastomers with the

electro-optical, mechano-optical and ferroelectric properties of liquid crystalline

materials. However, these polyurethanes do not contain any additional units that provide

reinforcement during deformation; the liquid crystalline hard segments remain the only

reinforcing structure. Previous research in our group studied the properties of

polyurethanes with a LC mesogen attached as a pendant group to a polysiloxane soft



segment backbone.[50] To the author's knowledge, this is the only known modification

of a polyurethane soft domain with liquid crystalline groups. This system was studied

using infrared dichroism, which allows one to investigate the orientation of functional

groups within a sample as it is placed under tension. With this technique, Nair et al.

observed different modes of motion in the hard segments and the LC mesogens.[5 1]

From this observed cooperation between hard segments and LC mesogens, it is apparent

that the hard segments of polyurethanes may play a key role in determining how the LC

mesogens respond to applied fields.

1.3 Conclusions

This chapter introduced the motivation for this thesis research and offered

background material relevant to the design and synthesis of segmented polyurethanes as

spider silk analogs. The mechanical behavior, protein architecture, and morphological

models of spider silk were discussed, with particular emphasis on the presence of an

oriented amorphous third phase within the silk fiber. Design considerations of

thermoplastic polyurethane elastomers were considered, including hard segment and soft

segment type and synthetic route. The critical role of the interphase in semicrystalline

polymers and block copolymers was discussed; as the crystal or microdomain size

decreases, the effect of the interphase becomes increasingly important. Progress in the

creation of polyurethane nanocomposites was presented, including a review of the

various methods of nanoparticle dispersion. Finally, the synthesis and properties of

liquid crystalline segmented polyurethanes was reviewed as a potential design framework

for the incorporation of rigid reinforcing units within the soft domain. This background
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material facilitates the design of polyurethanes with ordered structures at the interphase

and in the soft segment.
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Chapter 2: Materials Design

2.1 Introduction

As explained in Chapter 1, spider silk is a multiblock copolymer consisting of

flexible glycine-rich soft blocks alternating with crystalline alanine-rich hard blocks that

microphase segregate into a network structure. The superior properties of silk have been

partially attributed to an additional ordered phase within the soft matrix or at the

interphase between the hard and soft blocks. Through careful selection of the

polyurethane soft segments and hard segments, as well as orientable nanoparticles or

liquid crystalline units, it is possible to create synthetic structures with this third phase

and its enhanced mechanical properties. Synthetic segmented copolymers, such as

polyurethanes, polyamides or polyesters exhibit the multiblock structure observed in

spider silk protein. For this work, segmented polyurethanes were chosen as the synthetic

template to mimic the unique morphology of spider silk, primarily due to the ease and

variability of component selection and incorporation. In addition, the extensive literature

base covering synthetic issues and structure-property relationships[ 1-18] suggest that

segmented polyurethanes would make excellent candidate materials for spider silk

analogs. Through careful selection of the polyurethane soft segments and hard

segments, as well as orientable nanoparticles or liquid crystalline units, it is possible to

create synthetic structures with this third phase enhanced mechanical properties observed

in spider silk.
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2.2 Polyurethane Blocks

The thermoplastic polyurethane elastomers used in this study are synthesized

using a two-step solution polymerization illustrated in Figure 2.1. The two-step method

provides consistent control over average block lengths and maintains a well-defined

microstructure.[7]

Step 1: Endcapping of Macrodiol

+ 2.5 OCNNCO Dibutyltin Dilaurate
40 DMAc, 60 C, 3h

Poly(tetramethylene oxide) hexamethylene diisocyanate
(PTMO) macrodiol (HDI)

OCN HN -,--O NH NCO + OCN NCO

endcapped macromonomer excess diisocyanate

Step 2: Chain Extension

OCN HN O ~ e No NO + 3 OCN NCO + 4 HO-/-OHH I -(,',,O- 4JA V\/\,NCO 3OC
0 H excess diisocyanate butanediol

endcapped macromonomer chain extender

Dibutyltin Dilaurate

DMAc, 90 °C, 18h

soft segment hard segment

segmented polyurethane

Figure 2.1 Two-step solution polymerization of segmented polyurethanes

2.2.1 Soft Segments

The principal requirements for the choice of polyurethane soft segment include its

flexibility, incompatibility with the hard segment, and chemical functionality. The soft

segment glass transition temperature (Tg) must be far below room temperature. As rigid

liquid crystalline groups or nanofillers are incorporated into the soft segment, its Tg
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increases; therefore, the Tg of the pure soft segment must be low enough to remain

elastomeric after these other structures are added.[19, 20] The soft segment should also

be hydrophobic, to promote phase segregation with the polar, hydrogen bonding urethane

groups within the hard segment. Finally, the soft segment must be alcohol terminated to

react with the urethane chemistry. Poly(tetramethylene oxide) (PTMO) was chosen as

the soft segment material because it has a Tg of-84 °C, is relatively hydrophobic with

weak hydrogen bonding, is readily available as a macrodiol of various molecular weights,

and is well-studied in segmented polyurethanes.[8]

PTMO is the most common soft segment choice for industrial polyurethane

elastomers. It is made through the cationic ring-opening polymerization of

tetrahydrofuran, which produces oligomers with a most probable (Flory) distribution of

molecular weights.[21 ] Since some randomness has been observed in spider silk amino

acid sequences, [22] this polydispersity was acceptable to the material design. PTMO is

readily available with number-average molecular weights ranging from 250 to 2900

g/mol. In order to mimic the relatively long block sequences in spider silk, the two

longest chain lengths (Mn = 2000 and Mn - 2900) were chosen for polyurethanes with no

synthetic modifications to the soft segment. Shorter chain lengths (Mn = 650 and Mn =

1000) were chosen for soft segments in which liquid crystalline mesogens would be

copolymerized, in order to keep the molecular weight of the copolymerized oligomer

below 5000 g/mol. This design is explored further in Section 2.2.4.

2.2.2 Hard Segments

The hard segments selected for the basic polyurethanes synthesized in this work

consist of an aliphatic diisocyanate, 1,6-hexamethylene diisocyanate (HDI), chain-
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extended with an aliphatic diol, 1,4-butanediol (BDO), as indicated in Figure 2.1. HDI is

highly crystalline, capable of forming spherulitic crystalline structures at room

temperature in an order of minutes.[14] HDI-BDO hard segments also impart significant

flexibility to the hard domains, which promotes microphase segregation.[15] The

selection of an aliphatic diisocyanate such as HDI also prevents degradation from

exposure to ultraviolet radiation typical for aromatic diisocyanates.

Native spider silk exhibits a strong degree of ordering at the intersection of the

hard and soft domains. To mimic this behavior, an additional diisocyanate was selected

to be introduced at the intersection of the hard and soft segments, allowing it to self-

assemble in the interphase between the domains. This additional diisocyanate should be

bulkier than HDI and more miscible with the PTMO soft segment than HDI to promote

interphase growth. 4,4'-methylenebisphenyl diisocyanate (MDI) and toluene

diisocyanate (TDI) are two aromatic diisocyanates that fit these characteristics, and are

commonly used in industry. The aromatic diisocyanates should be preferentially located

at the junction between the soft segment and the HDI-BDO hard segments. This

positioning can be accomplished with the synthetic outline shown in Figure 2.2, in which

the aromatic diisocyanate is used to endcap the macrodiol, and the polyurethane is chain-

extended with HDI and BDO in the second step. This mixture of diisocyanates also has

potential for the partial disruption of HDI-BDO crystalline structures while creating a

hard segment that is more stable to UV radiation than pure MDI or TDI hard segments.
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Step 1: Endcapping Macrodiol with 4,4'-methylene-bis-phenylene diisocyanate (MDI)

\ 2 OCN /=H'~\-N ~ ~Stannous OctoateHO H + 2 OCN CH2 NCO
~HO ~/40 DMAc, 60 °C, 3h

Poly(tetramethylene oxide) 4,4'-methylene-bis-phenylene diisocyanate
(PTMO) macrodiol (MDI)

O O

OCN- CH 2 N N-JL 0 t \CH2 NCO

endcapped macromonomer

Step 2: Chain Extension with hexamethylene diisocyanate (HDI)

-OH

\C(1 \ C~tt>H20NCO x OCN -~NCO + (x+1)HO---OHOCN-\DCHfj-- -NA0+{ -.. a-r--/3HQNC 
~~~~~~~~H H ~hexamethylene diisocyanate butanediol

endcapped macromonomer (HDI) chain extender

Stannous Octoate
DMAc, 80 C, 18h

0 0 0 ~ ~~~~~~~~~~ 0

CH--'" HI..3 HC j H2 & H H x H 

soft segment copolymerized hard segment

Figure 2.2 Synthesis of polyurethanes with mixed diisocyanates in the hard
segments. The macrodiol is first endcapped with the aromatic diisocyanate, then

chain extended with an aliphatic diisocyanate and diol.

The literature on polyurethanes with a mixture of diisocyanates in the hard

segment is relatively limited.[8, 23] Prisacariu et al. used a mixture of MDI and 4,4'-

dibenzyl diisocyanate (DBDI) with both PTMO and poly(ethylene adipate) soft

segments.[23] They found that DBDI's ability to create a linear conformation allowed

for greater crystallinity within the hard segments and an improvement of mechanical

properties. While their approach did consider the effects of the different order of addition

of the various diisocyanates, they did not consider the effects of mixed diisocyanates in

terms of the interphase around crystalline hard domains.
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2.3 Reinforcing Units

2.3.1 Layered Silicate Clays

Polyurethane nanocomposites created from fillers such as nanotubes[24],

nanoclays[20, 25] and nanosilica[26, 27] have shown considerable improvements in

mechanical and barrier properties. The properties of these segmented polyurethane

nanocomposites are heavily dependent on the phase to which the nanofillers associate.

The interfacial bond between the filler particle and polyurethane matrix tends to restrict

motion of the polymer chains bonded to the particles.[20] Therefore, in most

polyurethane nanocomposites, it is desired to have nanofiller particles associate with the

hard segment., to avoid restricting the elastic motion of the flexible soft segment.

However, if the nanoparticle were on the length scale of other small reinforcing units

observed within the soft segment of spider silk, it could potentially reinforce the soft

segment during deformation, and provide the desired third phase of ordering in the

segmented polyurethane silk analog. This thesis investigates the incorporation of two

different classes of nanoparticles into segmented polyurethanes: hydrophilic disc-shaped

nanoclays with an affinity for the hard segments, and hydrophobic siloxane nanocages

with an affinity for the soft segments.

Thermoplastic polyurethane elastomers have been reinforced with natural and

synthetic clays, such as Montmorillonite and Laponite, respectively.[25, 28]

Montmorillonite is a natural smectic layered silicate with a high aspect ratio, high layer

spacing, and non-uniform platelet size.[29] Polyurethane/Montmorillonite

nanocomposites have exhibited significant improvements in mechanical properties;

however, the uniform platelet size, smaller layer spacing, and hydrophilic nature of
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synthetic Laponite make it an even more attractive candidate for association with HDI-

BDO hard segments in polyurethanes. Using a novel solvent-exchange method for

Laponite dispersion, collaborators have demonstrated the exfoliation of Laponite in other

segmented polyurethanes, providing improvements in initial modulus without a reduction

of tensile stress or ultimate elongation.[28] An illustration of the Laponite clay particles

is presented in Figure 2.3.

-1
+ + + +- - 1 nm

+~~~~~~~~ ++

A++ + + J+ +1
' l

25nm

Figure 2.3 Schematic illustration of undispersed Laponite discs.[29]

2.3.2 Siloxane Cages

Polyhedral oligomeric silsesquioxanes (POSS) are a class of siloxanes with the

general repealt structure SiO1 .5R.[30] They are capable of forming random, ladder or cage

structures and can be functionalized at the corners of the cages with non-reactive or

reactive groups, the latter enabling their grafting onto polymer matrices. The first

oligomeric organosilsesquioxanes were isolated by Scott in 1946,[31 ] but interest in them

increased drastically when a large scale process for POSS monomer synthesis was

developed by a group at Edwards Air Force Base in the late 1990s.[32] POSS monomers

are now available in a multitude of structures and functionalities from Hybrid Plastics

Company in Fountain Valley, CA. At 1-4 nm in diameter (depending on the functional

groups), POSS cages have an intermediate size between that of plasticizer molecules and
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most nanoparticles. For this reason, POSS has been tested as a nanoscale filler in many

polymer matrices, both covalently attached and non-covalently dispersed.[33-40] The

chemical structure of a generic POSS cage with seven non-reactive groups (R) and one

reactive group (Y) is illustrated in Figure 2.3. Fu et al. covalently tethered cyclohexyl-

POSS into the hard segments of a polyurethane with MDI and bisphenol A, and found

significant mechanical reinforcement of the polyurethane due to the formation of

nanoscale POSS crystals within the hard domain.[33, 34] However, there is no literature

currently available on the dispersion of POSS cages within a polyurethane soft segment.

While the dispersion of many nanoparticles within the soft matrix of a polyurethane may

lead to undesired restriction of the soft segment elasticity, it is believed that if the

nanofillers are small enough, they could provide the soft segment reinforcement desired

for the spider silk analogs. The dispersion of POSS cages and other POSS-like siloxane

resins into the polyurethane soft segment can be accomplished through either covalent

tethering to the soft segment backbone or non-covalent association with the soft segment

matrix. The non-covalent dispersion of POSS cages in PTMO soft segments is the

subject of Chapter 6; the covalent tethering of POSS cages was not attempted in this

thesis, but will be discussed in Chapter 8.
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Figure 2.4 Structure of polyhedral oligomeric silsesquioxane (POSS) cages[36]
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Figure 2.5 Cartoon representation of POSS reinforcement within polyurethane soft
segment matrix
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2.3.3 Liquidl Crystalline Soft Segments

As introduced in Section 1.2.5, the incorporation of a liquid crystalline mesogen

into a segmented polyurethane can create an orientable unit, capable of cooperative

motion with the hard segment during the deformation process. For this work, we propose

to incorporate a basic LC mesogen into the soft segment of a polyurethane. This LC

mesogen should have a degree of orientation intermediate between the polyurethane hard

segment and soft segment, just as spider silk contains sequences that are of intermediate

order between the alanine-rich crystals and the glycine-rich amorphous matrix. A

cartoon of the polyurethane design is drawn in Figure 2.6. Although previous studies in

our group have focused on side-chain LC polyurethanes, we choose to focus now on

main-chain LC polyurethanes, where the mesogens are allowed to be more load bearing.

This design decision is also made in light of the superior mechanical properties of other

main-chain LC polymers.[41]

There is a considerable variety of candidate mesogens and chemical architectures

for a main-chain liquid crystalline soft segment. For this initial investigation into the

feasibility of soft segment ordering, a simple mesogen with well-known chemistry is

desired. 4,4'-biphenyl is the simplest difunctional aromatic mesogen, has been well-

documented in the literature, and thus was selected for the initial studies into LC soft

segment synthesis.[42-45] In order to be successfully incorporated into a polyurethane,

the liquid crystalline soft segment must remain oligomeric. Therefore, shorter segments

of PTMO are required between the LC mesogens, while maintaining enough length to

ensure flexibility upon the addition of load-bearing mesogens. For this study,

intermediate PTMO weights (Mn = 650 and Mn = 1000) were selected. The overall
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molecular weight of the copolymer soft segment is controlled through the addition of

excess PTMO; this also creates primary alcohol functionalities at the soft segment

endgroups, enabling reaction with the polyurethane hard segment. The biphenyl

mesogen can be incorporated into the soft segment through an ester or ether linkage. The

advantage of the ether linkage is suppressed hydrogen bonding with the hard segment, to

maintain polyurethane microphase segregation, as explained in Section 1.3.2. The

advantage of the ester linkage is the ease of synthetic addition to the PTMO soft segment.

Both approaches to LC incorporation will be explored in Chapter 7.

Liquid Cry
Mesophase

Polyurethai
Hard Doma

Soft Segmei
Matrix

Figure 2.6 Cartoon representation of main-chain liquid crystalline (LC) mesogens
as reinforcing units within the polyurethane soft segment.

2.3 Conclusions

This chapter considers the design of segmented polyurethane materials that

contain an oriented amorphous component at the interphase between hard and soft
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domain or within the soft phase, in order to mimic the microstructure of spider silk. A

mixture of aromatic and aliphatic diisocyanates will be copolymerized within the

polyurethane hard segments to promote the growth of the oriented interphase between the

hard and soft domains. Laponite, a synthetic layered silicate clay, will be dispersed into

the segmented polyurethane, to provide reinforcement of the hard domains. POSS cages

and other siloxane resins will also be non-covalently dispersed into the polyurethane soft

segment to provide reinforcement of the soft matrix during deformation. Finally, liquid

crystalline mesogens will be covalently attached within the soft segment to create an

orientable soft segment structure, capable of forming a third phase that contributes to the

deformation process.
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Chapter 3: Segmented Polyurethanes with Mixed Hard

Segments

3.1 Introduction

Thermoplastic polyurethane elastomers are a technologically important class of

materials consisting of alternating hard and soft segments within the same polymer

backbone.[ 1] At use temperatures, the hard and soft segments microphase separate into a

variety of structures, depending on the composition of the two segments. The hard

segments arrange into hard domains that serve as physical crosslinks within the matrix of

soft segment chains; these hard domains can be crystalline, para-crystalline, or

amorphous, depending on the chemical structure of the hard segment.

As explained in Chapter 1, spider silk is a naturally occurring thermoplastic

elastomer, consisting of poly(alanine) hard segments that microphase segregate from

glycine-rich soft segments.[2] The ,-pleated poly(alanine) sheets form physical

crosslinks that anchor the silk's network structure. However, some research has

speculated that silk's superior mechanical properties are due to an oriented 'interphase'

between the poly(alanine) hard segments and the soft matrix.[3] The existence of this

interphase has been demonstrated experimentally for semicrystalline polymers such as

polyethylene terephthalate (PET)[4] and polyethylene (PE).[5],[6] The role of the

interphase becomes more important as the average size of the crystallites decreases, even

though the dimensions of the interphase remain constant, since a larger volume fraction

of the polymer is represented by the interphase material. The importance of the

interphase has also been demonstrated for amorphous block copolymers, such as
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between the PS and PB blocks in a PS-PB-PS triblock permitted a more effective stress

transfer between the two blocks.[7]

In order to mimic the superior properties of spider silk, we devised a synthetic

design strategy to expand the interphase of a segmented polyurethane elastomer. With

this strategy, two different diisocyanates were polymerized within the hard segment of

the polyurethane. A bulkier, aromatic diisocyanate (MDI or TDI) was preferentially

located at the junction between the hard and soft segment, while the aliphatic

diisocyanate (HDI) was preferentially located in the interior of the hard segment. This

aliphatic diisocyanate along with the aliphatic chain extender (1,4-butanediol, BDO)

tends to crystallize, similar to the polyalanine crystallites in spider silk, while the bulky

diisocyanates interrupt the crystallinity near the interphase. The HDI-BDO hard

segments also exhibit a strong microphase separation with poly(tetramethylene oxide)

(PTMO) soft segments.

In this manner, we have designed a segmented polyurethane with two different

diisocyanates in the hard segment, which will be referred to as "mixed hard segments"

throughout the remainder of this thesis. The mixed hard segments are designed to alter

the crystallization and microphase separation characteristics of the segmented

polyurethane and to create a more well-connected hard domain structure, which in turn

leads to improved mechanical performance.
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3.2 Experimental

3.2.1 Materials

Poly(tetramethylene oxide) (PTMO, Mn = 2900) was purchased from

Polysciences, and Terethane® 2000 (PTMO, Mn = 2000) was purchased from Sigma-

Aldrich. All other materials were purchased from Sigma-Aldrich. Both PTMO samples

were dried under vacuum for 4-5 days at 80 °C. 1,4-butanediol was dried over calcium

hydride (Call 2) overnight and then vacuum distilled. 1,6-diisocyanatohexane (HDI), 2,4-

tolylene diisocyanate (TDI), and 4,4'methylene-bis-phenylene diisocyanate (MDI) were

all vacuum distilled. N,N'-dimethylacetamide (DMAc) and stannous octoate were used

as received. All materials were transferred to a glove box after purification to control

water content and enable the development of high molecular weight polymer.

3.2.2 Polyurethane Synthesis

A series of polyurethanes with two different diisocyanates in the hard segment

was polymerized in a glove box with the two-step approach outlined in Figure 3.1. In the

first step, the PTMO soft segment was endcapped with two equivalents of TDI or MDI in

DMAc under a N2 atmosphere with a stannous octoate catalyst, and the solution was held

at 60 °C for 3 hours. (Only TDI is shown in Figure 3.1, for simplicity.) In the second

step, the endcapped macromonomer was polymerized to high molecular weight through

the stoichiometric addition of HDI and 1,4-butanediol at 90 °C for 12-18 hours. The

concentration of polyurethane in DMAc was kept below 10% to avoid gelation or early

precipitation of the polyurethane solution. Progress of the reaction was monitored via

FTIR by observing the free isocyanate peak at 2250 cm-l, and adding extra charges of
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1,4-butanediol until the isocyanate peak disappeared. Finally, the polyurethane was

precipitated into a ten-fold excess of methanol, collected via filtration, and dried under

vacuum at room temperature for >24 hours.

Figure 3.1 Synthesis of polyurethanes with mixed hard segments.
The macrodiol is first endcapped by the aromatic diisocyanate, and then

chain extended with HDI and butanediol in a second step.

3.2.3 Polyurethane Film Casting

Films of the synthesized polyurethanes were prepared for characterization by free

casting from solutions in DMAc. 280-300 mg of polyurethane was dissolved in DMAc

to a concentration of 5 wt%. The solution was refluxed at 100-120 °C for 1-2 hours,

cooled to room temperature, and transferred to custom-made Teflon® dishes 4 cm x 6 cm

x 4 cm deep. DMAc was allowed to evaporate in a fume hood at room temperature for 2-

3 days until the film appeared completely dry, after which the films were placed in a

vacuum oven at 60 °C and annealed for 1 hour. Final film thicknesses varied from 0.08
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Step 1: Endcapping Macrodiol with 2,4-tolylene diisocyanate (TDI)

CH Stannous Octoate
H + 2

~H ogO3:~ + 2OCN NCO DMAc, 60 °C, 3h

Poly(tetramethylene oxide) 2,4-tolylene diisocyanate
(PTMO) macrodiol (TDI)

OC N N O N c NCO

endcapped macromonomer

Step 2: Chain Extension with hexamethylene diisocyanate (HDI)

H3C",," , ~ CH3 O+ x OCN- NCO + Wl)HO -
OCN NO NCO

ON H O74gH NC hexamethylene diisocyanate butanediol
(HDI) chain extenderendcapped macromonomer (HDI) chain extender
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mm to 0.12 mm, depending on the total amount of the sample. Strips of polyurethane

film for tensile testing were cut from the cast film using a custom-built cutter consisting

of 2 straight razors held at a fixed width of 5.4 mm.

3.2.4 Instrumentation

3.2.4.1 Gel Permeation Chromatography

Molecular weights and molecular weight distributions of segmented

polyurethanes were determined relative to poly(ethylene oxide) standards by a Waters

Gel Permeation Chromatograph (GPC) equipped with a refractive index detector, two PL

Gel 5pm MIXED-C columns from Polymer Laboratories, and a DMAc eluent.

3.2.4.2 Differential Scanning Calorimetry

Thermal phase behavior was examined with a TA Instruments Q1000 Differential

Scanning Calorimeter (DSC), operated at a heating rate of 10°C/min under a 50 mL/min

nitrogen purge. Polyurethane films cast as described in Section 3.2.3 were subjected to

two heating and cooling cycles from -90 to 200 °C. Transitions were recorded from the

first heating and cooling scans, to observe phase behavior in the cast films, using a linear

extrapolation method for Tm and midpoint inflection method for Tg.

3.2.4.3 Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) was performed on a TA Instruments Q800

DMA equipped with a film/fiber clamp, operated at a frequency of 1 Hz and heating rate

of 3 C/min from -100 to 160 °C.
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3.2.4.4 Small-angle X-Ray Scattering (SAXS)

Small-angle X-ray scattering experiments were perfonnrmed on a Molecular

Metrology SAXS equipped with CuKa radiation and a two-dimensional, gas proportional

multi-wire Gabriel detector. Variations in beam intensity were corrected by normalizing

with a photodiode placed on the beam stop when subtracting background radiation.

3.2.4.5 Wide-Angle X-ray Diffraction

The semicrystalline character of polyurethane hard segments was investigated

using a Rigaku RU300 rotating anode X-ray generator with a 185 mm diffractometer and

a scintillation counter. Scattered CuKa radiation with wavelength of 1.54 A was

detected at a scan rate of 1°/min and a 0.05 ° sample interval.

3.2.4.6 Atomic Force Microscopy (AFM)

Atomic Force Microscope images were taken on a Dimension D3 100 with a

Nanoscope IIla controller. Polyurethane films for AFM imaging were free cast onto

glass slides from 1 wt% solutions in DMAc. Phase images of the sample surface were

collected in tapping mode using Veeco Nanoprobe tips (130 tm, 280-361 kHz).

3.2.4.7 Tensile Testing

The tensile properties of the segmented polyurethanes were determined using a

Zwick/Roell Z01 0 with a 500N load cell and convex jaw grips with aluminum and flat

polyurethane faces to minimize tearing at the grips. All polyurethane films were

prepared as described in Section 3.2.3, and cut into strips with a 5.4 mm width, a 40 cm

gauge length, and a film thickness of 0.08 mm to 0.12 mm.
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3.3 Polyurethane Characterization

The segmented polyurethanes examined in this study were designed to include

two different diisocyanates within the hard segment, with the bulkier aromatic

diisocyanate preferentially located at the interphase between hard and soft domains. To

examine the effect of this architecture on polymer morphology and properties, a series of

six principal samples were synthesized, using HDI, HDI and TDI, or HDI and MDI as

hard segments, and PTMO-2000 or PTMO-2900 as soft segments. The matrix of these

samples, including composition and molecular weights is summarized in Table 3.1. For

the remainder of this chapter, H will refer to polyurethanes with only HDI in the hard

segment, while HT will refer to a mixture of HDI and TDI, and HM will refer to a

mixture of HDI and MDI. The number in the sample name indicates the molecular

weight of the soft segment in that polyurethane. It should be noted that the hard segment

wt% varies greatly between the PTMO-2000 and PTMO-2900 series, since the

polyurethanes were designed to have the same number of diisocyanates in the hard

segments, specifically three HDI units toward the hard segment interior, and two HDI,

TDI or MDI units at the hard segment exterior. Two additional samples were synthesized

with HDI and MDI in the hard segment; however, their addition order was varied to

further examine the role of the prepolymer synthesis technique described in the previous

section. The characterization of these two samples, HM-29-T and HM-29-S, are included

in the following tables for comparison, but will be described separately in Section 3.3.4.
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Table 3.1 Summary of polyurethane compositions and molecular weights
(GPC data taken in DMAc relative to PEO standards.)

Sample Soft Segment Hard Segment HS wt% Mw (kDa) Mw/Mn
H-20 PTMO-2000 HDI-BDO 37 233 2.13
H-29 PTMO-2900 HDI-BDO 29 79 2.11
HT-20 PTMO-2000 HDI-TDI-BDO 38 140 2.97
HT-29 PTMO-2900 HDI-TDI-BDO 34 41 2.21
HM-20 PTMO-2000 HDI-MDI-BDO 41 96 5.12
HM-29 PTMO-2900 HDI-MDI-BDO 32 75 3.50
HM-29-T* PTMO-2900 HDI-MDI-BDO 32 28 2.64
HM-29-S* PTMO-2900 HDI-MDI-BDO 32 25 2.62

* HM-29-S was synthesized by adding both diisocyanates in the same step,
while HM-29-T was synthesized using the usual 2-step addition.

3.3.1 Microphase Separation

The DSC traces for polyurethanes with PTMO-2000 and PTMO-2900 soft

segments are presented in Figure 3.2, and the relevant thermal properties of all samples

are summarized in Table 3.2. The segmented polyurethanes all exhibit two major

transitions in DSC-an endotherm at 5-20 °C, corresponding to the melting of crystallites

of PTMO, and an endotherm at 145-175 °C, corresponding to the melting of hard

domains. The glass transition of the soft segment is not observable in DSC due to

limitations on the temperature range of the instrument; however, the soft segment Tg,

which ranges from -60 to -67 °C, is observable in DMA and is included in Table 3.2. The

glass transition of the hard segment is not observable in DSC or DMA, and is likely

suppressed by the partial crystallinity of these hard segments or thermally masked by the

melting of the soft segments.
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Figure 3.2 DSC traces of polyurethanes with (A) PTMO-2000 soft segments and (B)
PTMO-2900 soft segments. The presence of mixed isocyanates in the HT-series and
HM-series depresses the hard segment melting point and enthalpy, relative to the H-

series.

From the data in Table 3.2, we observe that the melting temperatures and

enthalpies of melting were higher for hard domains containing only HDI than for hard

domains containing mixtures of HDI and TDI or MDI. In addition, the hard domains in
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the HT and HM polyurethanes did not re-crystallize as readily upon cooling as H

polyurethanes, probably due to kinetic limitations during cooling of the sample at 10

°C/min. The diminished reversibility and melting enthalpy in the HT and HM

polyurethanes indicates a disruption of hard domain crystallinity by the bulkier TDI and

MDI units. Comparing the soft segment transitions, PTMO-2900 soft segments all

exhibit higher Tm and AHm than PTMO-2000 soft segments, since the longer chain

segments are less constrained and can form larger crystallites, as predicted by Flory for

any semicrystalline polymer.[8] In addition, the soft segment melting points are elevated

by the presence of mixed hard segments in the HT and HM polyurethanes. This effect is

likely due to increased phase segregation between the hard and soft domains, which

reduces the interruption of soft segment crystallites by dissolved hard segments. This

increased phase segregation of mixed hard segments is also indicated by DMA results.

Table 3.2 Summary of DSC and DMA Results-Glass Transition (Tg,ss), Melting
Point (Tm,ss), and Heat of Melting (Hm,ss) of Soft Segments, Temperature of

Dissociation (Td,Hs) and Heat of Dissociation (Hd,HS) of Hard Segments (1 st heating
._____ ~ after film casting)

Sample Tgss (°C) Tmss (°C) Hmss (J/g SS) Td,HS (°C) HdHS (J/g HS)
H-20 -60 4 29 174 92
H-29 -63 10 41 173 76

HT-20 -69 6 19 144 26
HT-29 -67 14 48 161 72
HM-20 -65 11 19 155 39
HM-29 -66 14 42 163 34
HM-29-T -66 19 54 157 28
HM-29-S N/A 18 44 137 18
PTMO-2000 -84 25 105 -
PTMO-2900 -84 27 103 -
HDI-BDO HS - - - 175 105

The DMA storage modulus curves obtained from the six polyurethane samples

are overlaid in Figure 3.3. The first inflection of the storage modulus curve is taken as

the soft segment Tg, which ranges from -60 to -67 °C for all samples and is listed in Table

58



3.2. In PTMO-polyurethanes of similar composition, it has been observed that MDI and

TDI are more miscible with the soft segment, resulting in an elevation of the soft segment

Tg by 20 °C.[9] However, the HT and HM samples containing MDI and TDI at the

interphase do not exhibit this phase mixing, and are even more phase segregated than the

H polyurethanes with a pure HDI hard segment. The second inflection around 20 °C

corresponds to the melting of the soft segments; above this temperature, the modulus

remains higher for the samples based on PTMO-2000, presumably due to the higher hard

segment content and greater hard segment connectivity.
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Figure 3.3 DMA Elastic Modulus curves of polyurethanes with (A) PTMO-2000 soft
segments and (B) PTMO-2900 soft segments.

The tan(6) curves for all six samples are overlaid in Figure 3.4. The

polyurethanes based on PTMO-2000 all show a higher damping peak around -60 °C than

the samples based on PTMO-2900. As shown previously in the DSC results, the longer

soft segment lengths of PTMO-2900 form more crystallites which in turn damp the glass
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transition of the soft segment. This effect has been shown with other polyurethanes with

crystallizable soft segments. [10]
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Figure 3.4 DMA tan(6) curves of polyurethanes with (A) PTMO-2000 soft segments
and (B) PTMO-2900 soft segments.
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3.3.2 Polyurethane Morphology

Small-angle and wide-angle X-ray scattering (SAXS and WAXS) have long been

established as a good technique for the morphology characterization of segmented

polyurethanes.[ 11] WAXS provides information about the semicrystalline character of

polymers through Bragg's Law scattering between coordinated polymer segments. While

these semicrystalline peaks are not as sharp as those for pure crystalline materials, they

still provide considerable insight into the crystalline structure with a polyurethane phase.

In SAXS, the periodic spacing of the two polyurethane microphases leads to Bragg's

Law-type scattering at lower angles. The contrast mechanism for this scatter is the

electron density difference between the hard and soft phases. To simplify analysis in this

work, the scattering vector s for both SAXS and WAXS is defined using the following

relationship:

s = 2sin0/k

where 20 is the diffraction angle and X is the radiation wavelength. The crystalline

spacing and average interdomain spacing are thus given by the reciprocal of the

scattering vector at peak intensity in WAXS and SAXS, respectively.

The thermal analysis described in the Section 3.3.1 suggests a partial disruption of

hard segment crystallinity due to the presence of aromatic diisocyanates in the HT and

HM samples. This result was confirmed through the use of WAXS to examine the

correlation distances between semicrystalline hard segments. Figure 3.5 shows the

isotropic WAXS patterns from H-29, HT-29 and HM-29, along with a specially

synthesized pure HDI-BDO hard segment. The three crystalline peaks for HDI-BDO

labeled A, B, and C correspond to d-spacings of 4.4 A, 4.1 A, and 3.7 A, and are clearly
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reproduced in the pattern for H-29. However, peaks A and B are suppressed in both HT-

29 and HM-29, due to the interruption of HDI crystal structures by the aromatic TDI and

MDI units.
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Figure 3.5 WAXS patterns of polyurethanes with mixed hard segments show
suppression of the peaks from HDI-BDO crystallites.

The isotropic SAXS profiles for the synthesized polyurethanes are presented in

Figure 3.6, and broken into two panels based on the soft segment length. The average

interdomain spacings corresponding with each of the scattering peaks are tabulated in

Table 3.3. As expected, the polyurethanes with PTMO-2900 soft segments exhibit larger

interdomain spacings than those with PTMO-2000 soft segments. All polyurethanes
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were designed with hard segments of similar size, using a 5:4:1 ratio of diisocyanates to

chain extender to macrodiols. However, the polyurethanes containing two TDI units

exhibit a larger interdomain spacing than those with just HDI, and the polyurethanes with

two MDI units exhibit the largest interdomain spacing. The more flexible aliphatic HDI

unit has the ability to fold back on itself, so the contracted domain spacing likely

indicates a more compact hard domain structure.[ 12]

Table 3.3 Average interdomain spacings of segmented polyurethanes, obtained
from SAXS

Sample Average Interdomain
Spacing (nm)

H-20 14
H-29 16
HT-20 17
HT-29 20
HM-20 18
HM-29 25
HM-29-T 24
HM-29-S 21
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Figure 3.6 SAXS profiles of polyurethanes with (A) PTMO-2000 soft segments and
(B) PTMO-2900 soft segments.

Tapping-mode atomic force microscopy (AFM) has also been demonstrated to be

a good technique for observing the morphology of polyurethane films.[13],[14] The

phase image provides contrast based on the difference in moduli of the hard and soft

domains. Segmented polyurethane films typically form a layer of soft segment on the
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film surface; however, if the tapping force is elevated, it is possible to image the bulk

morphology underneath. By testing several different microphase-separated polymers,

McLean and Sauer demonstrated that the higher phase signal, or the brighter region of the

phase image, corresponds with the hard domains of segmented polyurethanes.[13] The

phase images of H-29, HT-29 and HM-29 films are shown together in Figure 3.7, while

the phase images of H-20 and HT-20 are shown in Figure 3.8. The resolution of the hard

domains is limited by the AFM tip size, which has a diameter of-10 nm. However, it is

possible to measure the interdomain spacings of each sample, which correspond well to

the spacings determined earlier by SAXS. In addition, AFM phase images also provide a

method to observe the connectivity of the hard domains, which is not observable by

SAXS. Comparing the images of H-29 to HT-29 in Figure 3.7, we observe that HT-29

forms larger, more continuous domains, 300-600 nm in length, while the H-29 films from

shorter domains, only 50-100 nm in length. This trend is duplicated in the PTMO-2000

based polyurethanes in Figure 3.8, with H-20 forming shorter domains than HT-20,

although the difference is less dramatic.
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(A)

(B) (C)
Figure 3.7 Tapping-mode AFM phase images of PTMO-2900 based polyurethane

films: (A) H-29, (B) HT-29, and (C) HM-29



(D) (E)
Figure 3.8 Tapping-mode AFM phase images of PTMO-2000 based polyurethane

films: (D) H-20 and (E) HT-20

The suppressed crystallinity of HT-29 and HM-29 observed by DSC and WAXS

is likely responsible for their better hard domain organization. When cooling below the

hard segment melting point or casting a film from solution, a competition exists between

the thermodynamic incompatibility of the two phases and the crystallization of the hard

segments. Register et al. studied the competition between these modes of microphase

segregation in semicrystalline diblock copolymers containing a highly crystalline

ethylene block and an amorphous methylbutylene or styrene-ethylene-butylene block.[15,

16] In these asymmetric diblocks, it is possible to confine the crystallization of ethylene

within spherical or cylindrical microdomains. However, as the interblock segregation

becomes too weak, the ethylene crystallization disrupts the microdomain structure and

alters the crystallization kinetics. In the H-series of polyurethanes studied here, the

microphase segregation appears to be driven by the fast crystallization of HDI-BDO hard

segments. The hard domains formed in this manner are already locked into a crystal



structure, limiting their ability to rearrange and form larger domains. In contrast, the

thermodynamic incompatibility of the phase in the HT- and HM-polyurethanes drives the

microphase segregation, allowing the hard segments to form larger, more continuous

domains befiore being locked in by a crystal structure.

3.3.3 Mechanical Behavior

The stress-strain behavior of the polyurethane films is plotted in Figure 3.9, with

plots (A) and (B) each comparing the different hard segment types for a fixed soft

segment length. Each curve represents the average of three tested samples, and the

averages and standard deviations of the mechanical properties are listed in Table 3.4. In

general, the H-series polyurethanes exhibit an initial modulus typical of segmented

polyurethanes, then begin to yield around 25% strain, after which they maintain a very

linear profile until breaking at 400-500% strain. In contrast, the polyurethanes with

mixed hard segments (HT and HM series) generally exhibit lower yield strengths, but

have higher initial moduli, higher ultimate tensile strengths and higher extensibility than

pure HDI polyurethanes. Polyurethane HM-20 had the poorest mechanical properties,

although this is explained by synthetic problems that led to the broad molecular weight

distribution observed in GPC. The broad distribution of polymer chain lengths is likely

accompanied by a broad distribution of hard segment sizes, which do not as readily form

a well-connected polyurethane network structure.
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Figure 3.9 Stress-Strain Behavior of polyurethanes with (A) PTMO-2000 soft
segments and (B) PTMO-2900 soft segments.

Samples HT-29 and HM-29 exhibit a small amount of strain hardening above

300% strain, while HT-20 exhibits pronounced strain hardening from 300% to 600%

strain. This strain hardening is also observed in polyurethanes with pure MDI and TDI

hard segments,[9] but the presence of strongly hydrogen-bonding HDI in the mixed hard
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segments increases the initial modulus relative to these other pure hard segments. The

combination of two diisocyanates appears to be a potential method for disrupting the

crystallinity of HDI hard domains while retaining its strong phase segregation and hard

domain integrity, leading to better tensile properties.

Table 3.4 Summary of mechanical roperties of polyurethane films
Sample Modulus Tensile Strength Extensibility Toughness

(MPa) (MPa) (%) (MPa)
H-20 50 2 21 2 456 26 64 8
H-29 29 5 19 +3 443 30 51 7
HT-20 57 12 41 2 612 19 107 8
HT-29 57 i 5 30 2 577 11 96 ± 7
HM-20 77 ± 7 17 1 421 29 45 ± 6
HM-29 66 4 37 2 652 37 121 12
HM-29-T 26 ± 2 12 1 506 13 33 ± 1
HM-29-S 47 9 13 2 481 41 36 7

Polyurethane samples were also deformed using a hysteresis loop, to compare the

energy dissipation by the various hard segment types. Films were deformed in tension to

100% strain, relaxed to zero stress, deformed to 300% strain, and relaxed again. The

percent hysteresis was calculated as the difference in area between the loading and

unloading curves for each cycle. The hysteresis values for all the synthesized

polyurethanes are presented in Table 3.5. The hysteresis at high extensions is similar for

all studied samples, with a large amount of plastic deformation due to the strain-induced

crystallization of PTMO soft segments. However, there is a distinct difference in the

hysteresis at 100% strain between the samples with mixed hard segments and HDI hard

segments. The polyurethanes containing MDI units undergo a more pronounced

hysteresis as the rigid diisocyanates deform in a less reversible manner, strongly aligning

with the direction of strain. These deformation mechanisms are examined in more detail

by X-ray scattering and optical microscopy in Chapter 4.
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Table 3.5 Hysteresis of polyurethane films stretched to 100% and 300% strain
under cyclic loading conditions

Sample Hysteresis at 100% Hysteresis at 300%
H-20 68% N/A
H-29 65% 84%
HT-20 65% 80%
HT-29 76% 86%
HM-20 77% 85%
HM-29 73% 83%
HM-29-T 76% 84%
HM-29-S 73% 81%

3.4 Effect of Isocyanate Addition Method

Two additional samples were synthesized in order to examine the role of the

prepolymer synthesis technique described in the previous section. Prisacariu et al.

synthesized segmented polyurethanes with a mixture of MDI and 4,4'-dibenzyl

diisocyanate (DBDI) and found that the properties improved when the isocyanates were

added together in a random fashion, rather than in a separate prepolymer stage.[ 17] HM-

29-T was synthesized in the two-step method by endcapping with MDI and then chain

extending with HDI and 1,4-butanediol. HM-29-S was synthesized by adding HDI and

MDI in a single step, and then chain extending with 1,4-butanediol. Both samples were

smaller in molecular weight than the rest of the series, but similar enough to each other to

enable comparison.

The DSC traces for these comparison samples are shown in Figure 3.10, and their

melting points and enthalpies are included in Table 3.2. Sample HM-29-S, which had a

mixture of HDI and MDI units added at once, exhibited a hard segment melting point 20

°C lower than HM-29-T, the sample made by the two-step prepolymer method. HM-29-S

also had a hard segment melting enthalpy 30% lower than HM-29-T. This decreased
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hard domain ordering is also reflected by the interdomain spacing observed in SAXS and

listed in Table 3.3. HM-29-S has a smaller interdomain spacing, indicating that as the

two diisocyanates are added in the same step, a broader distribution of hard segment sizes

occurs, creating a weaker periodic structure.
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Figure 3.10 DSC comparison of diisocyanate addition methods.
Diisocyanates added in one step form hard domains with a lower melting point and

melting enthalpy.

The reduction of hard domain ordering created by the simultaneous addition of

HDI and MDI results in improved polyurethane mechanical properties, as shown in

Figure 3.11 and listed in Table 3.4. HM-29-S has a slightly reduced elongation at break,

but a distinctly higher modulus and ultimate tensile strength. While these mechanical

properties are below the higher molecular weight polymers listed in Table 3.4, they still
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show that the addition of diisocyanates in one step results in an improved modulus and

tensile strength without a loss of extensibility.
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Figure 3.11 Tensile comparison of HM-29 polyurethanes synthesized using a one-
step or two-step isocyanate addition.

3.3.5 Annealing Effects on Microphase Separation

Polyurethanes containing HDI hard segments have been shown to be relatively

insensitive to annealing, since the hard segments quickly organize into hard domains and

microphase segregate during film casting. [18] A small study of annealing conditions was

performed on the HT and HM polyurethanes to confirm the lack of importance of

annealing on these particular samples. Several samples were annealed at 130 °C under
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vacuum for 1 hour and then slowly cooled to room temperature over several more hours.

The annealed films were then compared to unannealed films by DSC, SAXS, and

mechanical testing. A comparison of selected properties from these techniques is

presented in Table 3.6. The melting point and enthalpy of melting of the hard domains,

as well as the interdomain spacings are all relatively insensitive to the annealing,

indicating that the hard domains are well-formed upon initial casting, without a

subsequent annmealing step. In addition, the mechanical properties of the annealed and

unannealed samples are within error of each other, confirming that the structure and

properties both remain unchanged with annealing.

Table 3.6 Comparison of annealing conditions on selected polyurethane properties
Property HT-29, HT-29, HM-29, HM-29,

Unannealed Annealed Unannealed Annealed
130 °C 130 °C

Tn, HS (C) 161 162 163 163

Hm, HS (J/g HS) 72 51 34 43
Domain Spacing (nm) 20 20 25 23
Modulus (MPa) 57 5 61 66 4 65
Tensile Strength (MPa) 30 + 2 30 37 2 30
Extensibility (%) 577 11 624_ 652 37 655
Toughness (MPa) 96 7 108 121 12 102

3.4 Conclusions

A series of segmented polyurethanes were synthesized with mixed diisocyanates

within the hard segment. These "mixed hard segments" exhibited less crystallinity than

pure HDI-BDO hard segments, as shown by DSC. Though the hard segment crystallinity

is reduced, the polyurethanes with mixed hard segments have a similar degree of

microphase segregation between the hard and soft segments, as indicated by DMA and

SAXS. The suppressed crystallinity of the mixed hard segments allows the polyurethane
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to form more well-organized hard domains seen in AFM imaging. The mixed hard

segment domain formation is governed by the X-interaction between the hard and soft

phases, and grows more continuous without being trapped by hard segment crystallinity.

These more interconnected hard domains allow the polyurethane to deform to higher

elongations and absorb more energy during tensile testing, without decreasing their initial

modulus. The method of diisocyanate incorporation was also examined, and the hard

domain crystallinity is further reduced by the addition of both diisocyanates

simultaneously, instead of in a separate prepolymer step. The polyurethane with

diisocyanates added in one step also exhibited improved mechanical properties, as

expected from the reduction of hard segment crystallinity.
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Chapter 4: Morphology of Segmented Polyurethanes with

Mixed Hard Segments under Deformation

4.1 Introduction

The mechanical behavior of segmented polyurethanes is strongly related to the

development of the microphase segregated polyurethane structure during deformation.

As observed in chapter 3, polyurethanes with mixed hard segments exhibit a different

mechanical response than pure HDI-BDO polyurethanes, which can be explained by an

examination of the differences in their respective morphology development. It is desired

to establish a correlation between the microstructure of polyurethanes with mixed hard

segments and their improved mechanical properties, by understanding how their

deformation mechanism differs from that of HDI-BDO polyurethanes.

Bonart et al. first examined the deformation of segmented polyurethanes using

small-angle and wide-angle X-ray scattering, establishing that the hard segments form

microphase segregated domains that function as physical crosslinks.[ 1 ],[2] As the

domains are deformed at strains below 300%, the soft segments exert a torque on the hard

domains, tilting them toward the strain direction. At higher strains, paracrystalline hard

segments such as MDI-ethylene diamine or MDI-hydrazine can break apart from the

domains and orient parallel to the strain direction, as the stress is transferred to strain-

induced crystallites of the PTMO soft segments. For crystalline MDI-BDO hard

segments, the hard domains behave more like inert fillers during deformation, and are
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less capable of reorganizing at high strains. Bonart's proposed model for the deformation

of a paracrystalline thermoplastic elastomer is reproduced in Figure 4.1.
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Figure 4.1 Model of deformation behavior of a polyurethane with paracrystalline
hard segments[l]

Desper et al. also examined the deformation of segmented polyurethanes using

SAXS, and discovered two dominant response mechanisms of the polyurethane network

to tensile deformation, depending on the shape and structural rigidity of the hard

domains, as depicted in Figure 4.2.[4] Hard domains with a high degree of structural
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integrity and a high aspect ratio (L/D >> 1) deform through a shearing mechanism, due to

a torque on the hard domains caused by the alignment of soft segment chains. This

shearing mechanism tilts the hard domains at a preferred angle, resulting in a four-point

scattering pattern, and induces a lower level of hysteresis, as the hard domains remain

connected longer. In contrast, hard domains with a smaller aspect ratio and less ordered

morphologies deform through a tensile mechanism, due to the separation of hard domains

as the soft segments align. This tensile mechanism orients the hard segments parallel to

the elongation, resulting in a two-point scattering pattern along the meridian, and induces

a higher level of hysteresis. Blundell et al. also examined the deformation of

thermoplastic polyurethanes using SAXS, and found deformation mechanisms similar to

the work of Desper and coworkers.[5] For the interconnected hard domain morphologies,

a four-point scattering pattern was observed due to structural reorganization. For the

polyurethanes with fewer aggregated hard segments, affine deformation was observed,

producing an elliptical scattering pattern on the meridian.
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Figure 4.2 Polyurethane deformation mechanisms based on hard segment rigidity
and aspect ratio[4

Fourier transform infrared (FT-IR) dichroism has also been successfully utilized

to study the relative orientation of polyurethane hard and soft segments during

deformation.[3] This technique is based on tracking the dichroic ratio, or the ratio of

polarized infrared absorption bands parallel and perpendicular to the strain direction. In

these studies, it was observed that the orientation of the soft segment increased

continuously during deformation. However, the orientation of the hard segments was

observed to depend on whether the hard segments were crystalline or paracrystalline.

The paracrystalline hard segments exhibited a positive dichroic ratio, aligning in the

strain direction, while the crystalline hard segments exhibited a negative dichroic ratio at

low strains. This negative orientation was interpreted as the rotation of rigid hard
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domains, not individual hard segments, in the strain direction, in agreement with the

scattering results of Bonart.

More recent studies of structural development in polyurethanes using

simultaneous SAXS and WAXS, FT-IR dichroism, and AFM have expanded on these

initial conclusions.[6],[7],[8] Lee et al. studied the deformation of polyurethanes with

MDI-BDO hard segments using both FT-IR dichroism and SAXS, specifically examining

the contribution of initial hard domain orientation on the mode of deformation.[7] Hard

domain lamellae oriented perpendicular to the strain direction produced an increase in the

average interdomain spacing under deformation, while lamellae aligned parallel to the

strain direction decreased their interdomain spacing, due to shear compression, as shown

in Figure 4.3. While the orientation of the soft segment increases linearly with strain, the

orientation of the hard segment decreases initially, due to the rotation of the lamellar hard

domain along, the deformation direction. At high strains, the hard domains were broken

up, and a fibril structure formed along the strain direction, in which the soft segments

showed appreciable relaxation. AFM has also shown promise as a method for visual

examination of morphology development, despite issues in reconciling the differences

between surface and bulk morphology.[8]
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Figure 4.3 Schematic model for the deformation of MDI-BDO hard domains at
intermediate and high strains based upon initial orientation[7]

4.2 Experimental

Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering were

employed to examine the morphology of the segmented polyurethane films under tensile

deformation. The synthesis of the segmented polyurethanes and the casting of thin films

has already been described in Chapter 3.
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4.2.1 Instrumentation

4.2.1.1 Synchrotron SAXS and WAXS

SAXS and WAXS data were simultaneous acquired for sample H-29 (HDI-BDO-

PTMO, 29% hard segment) at the X27C beamline at the National Synchrotron Light

Source (NSLS) at Brookhaven National Laboratory. The X-ray wavelength was 1.366 A,

which was monochromatized from the bending magnet using a double-multilayer

(silicon/tungsten) monochromator. The typical flux was 9 x 10 1 photons/sec. The beam

was collimated to a maximum spatial resolution of 100 nm using 3 pinholes. The relative

X-ray intensity was measured before (Io) and after (Ii) the sample using proportional

counters. The scattered X-rays were detected using a Fuji BAS 2500 Imaging Plate

System.

A home-built stretcher was used to elongate the -0.1 mm thick films at a rate of

100% of their initial length per minute, which corresponds with the strain rate used to

obtain the tensile data in Chapter 3. Scattering patterns were collected for 5 minutes at

each strain position. A background pattern was also collected for 5 minutes within each

sample environment. Each scattering pattern was then corrected using the formula:

Corrected Pattern = Sample Pattern - T*(Background Pattern) (4.1)

T was taken to be the ratio 11(sample)/I (background) where I1 was the measured beam

intensity after the position of the sample or the sample environment.
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4.2.1.2 Optical Microscopy

A Carl Zeiss 2MAT Axioscope polarizing microscope equipped with crossed

polarizers and a home-built static stretcher was used to visualize the anisotropy

developed during deformation of the polyurethane films. All images were taken in

transmission mode at 5x magnification.

4.2.2 Scattering Analysis

SAXS and WAXS data were reduced from 2-D (Intensity vs. 2 0,x) to 1-D radial

plots (Intensity vs. 20) or 1-D azimuthal plots (Intensity vs.X) by performing the

appropriate integrations, where 20 is the scattering angle and X is the azimuthal angle.

Radial plots were generated at specific X values (such as 0° for an equatorial plot or 90°

for a meridional plot), by integrating over X ± 10° for each value of 20. Azimuthal plots

were generated at specific 20 values (corresponding to scattering peak positions) by

integrating over 20 ± 0.5°, for each value of X.

4.2.2.1 WAXS Data Treatment

WAXS data are traditionally plotted as intensity versus scattering angle, 20.

However, since the WAXS data being compared were from two sources with different

wavelengths of radiation, the analysis was simplified by employing the use of a scattering

vector. In this work the scattering vector s was defined as:

s = 2sin(0)/X (4.2)

where Bragg's angle 0 is one-half the radial scattering angle and X is the wavelength of

the radiation, as previously specified. Bragg's Law thus specifies the crystalline d-

spacing as the reciprocal of the peak position s.
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4.2.2.2 SAXS Data Treatment

Similarly, SAXS data in this work were analyzed using the scattering vector s as

previously defined. Note that the scattering vector s as defined here differs from the

scattering vector q used in some SAXS literature:

q = 4nsin(0)/; = 2n*s (4.3)

In analogy with Bragg's law, the average interdomain spacing, or long period between

the hard and soft segments is thus given by the following relation:

L = /s = 2/q (4.4)

4.3 Results and Discussion

X-ray scattering is a powerful tool for analyzing the morphology development of

segmented polyurethanes as a function of strain. SAXS provides information about the

relative position of hard domains within the soft segment matrix, since the correlation

length between hard domains gives rise to a scattering maximum in the small-angle

region. Similarly, WAXS provides information about the relative position of crystalline

or ordered hard segment and soft segment chains, as they both give rise to different

crystalline reflections during deformation.

4.3.1 In-SituSAXS

To aid in the interpretation of 2-D SAXS results, Figure 4.3 shows the position of

hard domains that give rise to various scattering positions. Hard segments are depicted as

black rectangles, which organize in hard domains perpendicular to the long axis of the

hard segments. The scattering peaks that occur in the small-angle regime are caused by

the periodic spacing between the long axes of the hard domains, not the axes of the
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individual hard segments. Samples were stretched vertically, so hard domains oriented

perpendicular to the strain direction scatter along the meridian; conversely, hard domains

oriented parallel to the strain direction scatter along the equator. Hard domains that tilt at

a preferred angle produce a 4-point scattering pattern at their preferred angle. For

example, in the cartoon in Figure 4.4, the hard domains aligned 30° from the strain

direction produce scattering peaks at 30°, 150°, 210°, and 330°.

90° '11i ll 2-Point Patterngoo~~~~~~~adSemn

Hard Segment
Hard Domain

tier

..........

ftemn

I., i v

Figure 4.4 Cartoon relationship between hard domain orientations and their
corresponding scattering patterns

The 2-D small-angle X-ray scattering patterns of polyurethane H-29 (HDI-BDO-

PTMO, 29% hard segment) are shown as a function of time-averaged strain in Figure 4.5,

along with cartoons representing the observed orientation behavior of the hard domains.

As in Figure 4.4, the hard segments are depicted as black rectangles, and hard domains

are indicated by dotted lines; the soft segments are omitted for clarity. Azimuthal scans

at the average interdomain spacing are also shown in Figure 4.6 at various strain values.

The isotropic scattering pattern at 0%, which indicates a random orientation of hard
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domains, becomes increasingly anisotropic as a function of strain. Between 0% and

100%, scattering lobes appear at the equator, in a two-point pattern indicative of hard

domains aligning in the direction of strain. Between 100% and 500%, the scattering

lobes gradually sharpen into a six-point pattern, with the strongest peaks on the equator,

and secondary peaks shifted from the equator by ±20°. This preferred tilt angle is caused

by the torque exerted by the alignment of soft segment chains upon deformation.[ 1]

Failure of the polyurethane occurs before the hard segments are able to completely

rearrange in the strain direction, which would produce a sharp two-point pattern on the

meridian. Unlike the segmented polyurethanes with MDI-BDO hard segments reported

elsewhere[ 1], the HDI-BDO hard segments studied here are less able to break apart from

existing hard domains and realign in a new domain during deformation, due to a stronger

tendency for crystallization of the alkyl HDI hard segments and a greater degree of

hydrogen bonding between hard segments.

The interdomain spacing of polyurethane H-29 was also measured as a function of

strain in Figure 4.7, integrated over three directions of interest. When integrated over all

azimuthal () angles, the average interdomain spacing increased from 17 nm to 22 nm, as

most of the hard domains began to pull apart from each other during deformation.

However, the hard domains oriented along the strain direction or at the preferred tilt

angle both decreased their average spacing at high strain. The domains tilted at 20° from

the strain direction decreased their spacing slightly, from 16.4 nm to 15.4 nm. This is

consistent with the deformation of other hard domains that deform through a shearing

mechanism.[4] The domains aligned along the strain direction exhibited the greatest

decrease in average interdomain spacing, from 16.4 nm to 13 nm. This decrease is likely
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due to the shear compression of hard domains that allows them to be spaced more closely

at high strains, as illustrated in Figure 4.8.[7]
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Figure 4.5 Two-dimensional SAXS patterns of H-29 as a function of strain
Figure 4.5 Two-dimensional SAXS patterns of H-29 as a function of strain
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Figure 4.6 Azimuthal plots of H-29 at the average interdomain spacing (17 nm) as a
function of strain
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Figure 4.7 Average interdomain spacing of H-29 integrated in several directions as
a function of strain
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Figure 4.8 Tensile deformation leads to an increase in the isotropic interdomain
spacing, while the shearing of hard domains reduces the interdomain spacing along

the equator and at ±20° .

4.3.2 In-Situ WAXS

The structural development under tensile deformation of the semicrystalline

polyurethane H-29 was also examined by wide-angle X-ray, specifically observing the

relative positions of crystalline hard and soft segments. The 2-D scattering patterns are

shown as a function of strain in Figure 4.9, and these patterns are integrated in four

different directions to give 1-D scattering profiles in Figure 4.10. To help assign

scattering peaks to the hard segment or soft segment of this polyurethane, a special

polyurethane was polymerized from HDI and 1,4-butanediol without any soft segment.

This pure hard segment was also examined with WAXS, and its isotropic scattering
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pattern is included in Figure 4.10(i). Initially, only three isotropic peaks are observed in

H-29, which correspond with the three peaks identified in the HDI-BDO hard segment at

d.-spacings of 4.4 A, 4.1 A, and 3.7 A, and are labeled A, B, and C, respectively. As the

sample is deformed to 100% strain, two arcs appear along the equator at d-spacings of 4.4

A and 3.7 A. These two arcs resolve into clear spots by 500% strain, and correspond to

the (002) and (202) reflections of PTMO crystallites, as observed in other multi-block

copolymers with PTMO soft segments.[9],[10] The intensity of the PTMO reflections

increases during deformation, as the sample undergoes strain-induced crystallization of

the soft segment. Unfortunately, these two peaks partially overlap the crystalline or

paracrystalline reflections from the HDI-BDO hard segments; however, the orientation of

hard segments within hard domains can still be followed as a function of strain.

92



I Strain Direction

0% 33% 102%

205% 340% 510%

Figure 4.9 Two-dimensional WAXS patterns of H-29 as a function of strain

Azimuthal scans taken at each of the three HDI-BDO peak positions-A, B, and

C-are presented in Figure 4.11. Peak A (4.4 A) develops a preferred orientation of ±200

from the meridian, which suggests this reflection is related to the spacing of hard

segments within hard domains that also adopt a preferred tilt angle of ±200. The tilt angle

for the individual hard segments is ±200 from the meridian, while the tilt angle for the

hard domains is ±200 from the equator, due to the perpendicular orientation of hard

segments within hard domains. According to Figure 4.11, peak B (4.1 A) develops a

preferred orientation of ±300 from the meridian. The increase in scatter along the equator

that appears at high strain is caused by the strain-induced PTMO crystallites, though the

intensity is far below the values for peaks A and C. The preferred orientation of peak B



at ±30° does not appear to be correlated with the orientation of sheared hard domains at

±20° . Instead, peak B is likely related to the correlation of hard segments that have

broken free from the highly oriented hard domains and are now oriented along the strain

direction. The ±30° orientation thus is not caused by the tilting of hard segments, but by

the angular registration of hard segments as they separate from hard domains, as

illustrated in Figure 4.12. It is important to note that while the intensity of peak B at a

small azimuthal angle from the meridian does slightly increase at higher strains, there is

still considerable scatter at peak A, even at 500% strain. This indicates that unlike

polyurethanes with paracrystalline hard segments like MDI-BDO, the HDI-BDO hard

domains persist at very high strains, and do not rearrange before tensile failure.[ 1],[7]
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Figure 4.10 One-dimensional WAXS patterns of H-29 integrated along four
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(iv) 20° from the meridian
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Figure 4.12 Cartoon summary of the hard segment orientation behavior for H-29 at
high strain observed by 2-D WAXS.

4.3.3 In-Situ Polarized Optical Microcopy

The structural development of polyurethanes with mixed hard segments,

specifically the presence and orientation strain-induced crystallization, was also

examined using strain-controlled polarized optical microscopy. Figures 4.13, 4.14 and

4.1.5 show the anisotropy that develops during deformation of H-29, HT-29, and HM-29,

respectively. In polyurethane H-29, a small number of crystallites are observed at 0%

strain, but pronounced stress-whitening occurs around 100% strain due to strain-induced

crystallization. This picture agrees well with the in-situ WAXS results presented in the

previous section. The degree of crystallinity does not appreciably increase at strains

above 100%, though the crystallites exhibit a stronger orientation in the strain direction,

as evidenced by birefringence. Upon relaxation, the degree of crystallinity appears

similar to the sample at 100% strain.
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Figure 4.13 Optical micrographs of H-29 under crossed polarizers as a function of
strain

In polyurethane HT-29, there are no crystallites observed at 0% strain, because

the TDI units have interrupted the HDI-BDO hard segment crystallization, as explained

in Chapter 3. However, HT-29 immediately exhibits stress-whitening under strain, as

strain-induced crystallization occurs at lower strains than H-29. These crystallites exhibit

a slight orientation in the strain direction by 200% strain. Upon relaxation, the stress-

whitening increases even further, perhaps because the smaller crystallites combine to

create larger crystallites that interact more strongly with the polarized light.

---



'A
Strain Direction

0% 50% 100% 150%

200% 300% 400% Relaxed

Figure 4.14 Optical micrographs of HT-29 under crossed polarizers as a function of
strain

Polyurethane HM-29 exhibits a behavior that is very different from both H-29 and

HT-29. There are no crystallites observed at 0% strain, but at strains of 20-25%, a large

amount of birefringence is observed, not due to strain-induced crystallization but due to

the orientation of the paracrystalline MDI groups within the hard segment. The sample

exhibits an array of solid colors as the strain is increased, due to the changing thickness

of the film through which the polarized light twists. However, the sample does not

exhibit localized color change from crystalline structures such as spherulites. Upon

relaxation, the polyurethane continues to show a strong orientation through birefringence,

but not the degree of residual crystallization observed in H-29 or HT-29.

Polarized optical microscopy was also used to study polyurethane samples with

similar hard segments to the observed samples, but with shorter soft segments (samples



H-20, HT-20, and HM-20 from Chapter 3). These polyurethane films exhibited the same

trends based on hard segment type, but for brevity the data are not pictured here.
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Figure 4.15 Optical micrographs of HM-29 under crossed polarizers as a function
of strain

4.4 Conclusions

The structural development of several segmented polyurethanes was analyzed

during tensile strain by a combination of SAXS, WAXS, and polarized optical

microscopy. A segmented polyurethane with HDI-BDO hard segments and a PTMO soft

segment (H-29) was deformed with simultaneously collecting synchrotron SAXS and

WAXS data. The polyurethane hard domains are initially isotropic at an average

interdomain spacing of 17 nm. As the sample is deformed, the hard domains orient along

the strain direction and at a preferred tilt angle of ±20' from the strain direction. While
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the average spacing of all hard domains increases from 17 to 22 nm during deformation,

the spacing of hard domains aligned with the strain decreases from 16 to 13 nm, and the

spacing of hard domains shearing at ±20° decreases slightly from 16 to 15 nm. The HDI-

BDO-PTMO polyurethane exhibits a large amount strain induced crystallization of

PTMO, evidenced by WAXS crystalline peaks aligned along the equator at high strain.

The crystalline HDI-BDO hard segments also align under strain in agreement with the

hard domain orientation observed by SAXS. Polyurethane films with mixed

diisocyanates in the hard segment were also compared to the HDI-BDO polyurethane

using polarized optical microscopy. The polyurethanes with mixed diisocyanates initially

exhibited less crystallinity, but had more overall orientation of chain segments at higher

strains, due to the ability of the less crystalline hard segments to align and reinforce the

polyurethane.
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Chapter 5: Polyurethane/Clay Nanocomposites

5.1 Introduction

The incorporation of nano-scale filler particles has shown promise for the

improvement of mechanical properties of segmented polyurethanes.[1 ],[2] The

mechanical property improvements observed in nanocomposite structures are directly

related to the nanoparticle surface to volume ratio, which in turn depends on the degree of

particle dispersion. For polymer-clay nanocomposites, four thermodynamically stable

structures are obtainable, as represented in Figure 5.1.[2] In Figure 5.1 l(a), the clay

platelets are miscible with the polymer but the clay spacing remains at its normal

interlayer spacing. As the attractions between the polymer and clay increase, the polymer

chains begin to disrupt the clay layers, creating an intercalated structure depicted in

Figure 5.1 (b). The clay still exhibits some periodicity in WAXD, but the spacing is

greater than that of the undispersed particles, independent of the clay loading.[ 1],[5] Two

types of exfoliated states, ordered and disordered, are depicted in Figure 5.1 (c) and (d).

In both exfoliated states, the clay sheets are fully separated, and the interparticle distance

depends only on the overall degree of clay loading; however, the ordered exfoliated state

can be detected by X-ray diffraction, while the disordered exfoliated state cannot. The

exfoliated state maximizes the surface-to-volume ratio of the clay particles and creates

the greatest potential improvement to mechanical properties. Most polyurethane

nanocomposites exhibit a mixture of the intercalated and exfoliated states of clay

dispersion.[6] TEM and WAXD are the primary tools for observing the nanocomposite

morphology.

103



(b) Intercalated

(c) Ordered Exfoliated (d) Disordered Exfoliated

Figure 5.1 Polymer-clay nanocomposite morphologies

Laponite, a synthetic layered silicate clay, has shown potential in the

reinforcement of polyurethanes with polar blocks, due to the hydrophilic nature of the

clay. Unlike previous attempts at dispersing clay nanoparticles, McKinley and co-

workers have discovered a novel solvent-exchange method to create exfoliated and/or

intercalated polyurethane nanocomposite structures. McKinley et al. have reported the

exfoliation of Laponite nanoparticles in Elasthane, a segmented thermoplastic
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polyurethane composed of PTMO soft segments and MDI-BDO hard segments (40

wt%).[3] The Elasthane/Laponite nanocomposites with 20 wt% clay loading exhibited a

23-fold increase in initial modulus and a 4-fold increase in toughness at 30%

deformation, without a decrease in extensibility or tensile strength. TEM and WAXD

confirmed that the Laponite is fully exfoliated in the polyurethane matrix. An increase in

the heat distortion temperature and the disruption of hard domain melting peaks were also

reported for the Laponite nanocomposites, suggesting the clays discs are preferentially

associated with the hard domains. A second study examined the dispersion of Laponite

into segmented polyurethanes with PEO or PEO-PPO-PEO soft segments and HDI-BDO

hard segments.[4] The Laponite nanoparticles dispersed in these new matrices exhibited

a mixture of intercalated and exfoliated structures by TEM and WAXD. However, the

nanocomposite experienced a degradation of mechanical properties, including a three-

fold reduction in tensile strength and a five-fold reduction of elongation. The reduction

of tensile properties was attributed to preferential interactions between the PEO-

containing soft segments and the Laponite platelets, which restricted the mobility of the

soft segments. To further test this hypothesis, it was desired to examine the structure and

properties of a segmented polyurethane that also includes HDI-BDO hard segments, but

instead has a more hydrophobic PTMO soft segment.

5.2 Experimental

5.2.1 Materials

Polyurethane H-20, which contains a HDI-BDO hard segment (37 wt%) and a

PTMO soft segment, was the segmented polyurethane elastomer chosen for this

105



reinforcement study. The morphological and mechanical properties of this polyurethane

were described in Chapters 3 and 4. Laponite RD, a discotic, smectic synthetic clay, was

obtained from Southern Clay Products. N,N-dimethylacetamide (DMAc) was ordered

from Sigma-Aldrich and used as received.

5.2.2 Solvent-Exchange Method and Film Casting

A novel approach was employed to disperse Laponite into the H-20 polyurethane

matrix. In this method, Laponite was well-dispersed in deionized water at a

concentration of 1 g / 1 OOmL by stirring at room temperature for one day. To that

mixture, 100-- 200 g of DMAc as added and stirred for one day. The water was then

removed from the Laponite/water/DMAc mixture via vacuum distillation at 75 °C. The

removal of water was monitored by measuring the mass loss; the distillation was stopped

when the loss of solution mass exceeded that of the added water. This step is critical due

to the strong affinity of water to Laponite.

H-20 polyurethane was then dissolved in the Laponite/DMAc dispersion, at a

concentration of 1.5 wt%, and the amount of Laponite/DMAc dispersion was adjusted to

produce a clay loading of 10 wt%. The mixtures were then cast into Teflon molds

described in Section 3.2.3. Thin films (80-100 tm thick) of the polyurethane

nanocomposites were obtained by slow evaporation of the DMAc in an oven at 60 °C,

controlled via a regulated N2 purge.
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5.2.3 Instrumentation

5.2.3.1 Differential Scanning Calorimetry

Thermal phase behavior was examined with a TA Instruments Q1000 Differential

Scanning Calorimeter (DSC), operated at a heating rate of 10°C/min under a 50 mL/min

nitrogen purge. Polyurethane films were subjected to two heating and cooling cycles

from -90 to 250 °C. Transitions were recorded from the first heating and cooling scans,

to observe phase behavior in the cast films, using a linear extrapolation method for Tm

and midpoint inflection method for Tg.

5.2.3.2 Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) was performed on a TA Instruments Q800

DMA equipped with a film/fiber clamp, operated at a frequency of 1 Hz and heating rate

of 3 °C/min from -100 to 170 °C.

5.2.3.3 Tensile Testing

The tensile properties of polyurethane nanocomposites were determined using a

Zwick/Roell ZO010 with a 500N load cell and convex jaw grips with aluminum and flat

polyurethane faces to minimize tearing at the grips. The sample was deformed at a

crosshead speed of 100% gauge length/minute. A minimum of three samples were

examined for statistical analysis.

5.2.3.4 Wide-Angle X-ray Diffraction

The clay dispersal mechanism in the polyurethane nanocomposites was

investigated using a Rigaku RU300 rotating anode X-ray generator with a 185 mm

107



diffractometer and a scintillation counter. Scattered CuKa radiation with wavelength of

1.54 A was detected at a scan rate of 5°/min and a 0.5° sample interval.

5.2.3.5 Transmission Electron Microscopy

TEM lamellas were prepared in a JEOL JEM93 10 Focused Ion Beam (FIB)

instrument. The polyurethane composite samples were first sputter coated with -200 nm

of gold then a localized -1 micron thick carbon protective film was deposited over the

area selected for lamella preparation. The samples were milled and polished in the FIB to

ultimately give 10 by 10 microns by -80 nm thick lamella. The lamellas were transferred

to TEM grids using a micromanipulation system. A micromanipulator position

controlled polished glass rod was used to pick up the lamellas (electrostatically) under an

observation microscope. The lamellas were then gently placed on TEM grids. Unstained

samples were observed with a JEOL 200CX electron microscope operating at 200 kV.

5.3 Mechanical Behavior

Composite thin films of H-20 polyurethane with 0% and 10% Laponite clay

loadings were obtained from the slow evaporation of solutions in DMAc. A

representative stress-strain curve for each sample is plotted in Figure 5.2, and the tensile

properties from all tested samples are summarized in Table 5.1. The uncertainty figure

represents the standard deviation for three films at each composition. Similar to the

results for the Elasthane nanocomposites, the H-20 nanocomposite with 10% Laponite

exhibits a distinct increase in tensile modulus, tensile strength, and toughness.

Furthermore, the ultimate elongations of the loaded and unloaded polyurethane films are

within error of each other. The improvement in mechanical properties of H-20 is not as
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dramatic as the 23-fold increase in modulus and 4-fold increase in toughness reported for

Elasthane at 20% Laponite loading; however, Elasthane with 10% Laponite loading

exhibited only a four-fold increase in modulus and 60% increase in toughness, which is

more consistent with the results for H-20. [3] It should also be noted that the mechanical

properties of the unloaded H-20 film, especially the tensile modulus, are better than those

reported for 11-20 in Chapter 3. This property difference is attributed to the change in

film casting procedure. The extremely slow evaporation under a N2 purge creates more

ordered polyurethane structures. However, within each set of experiments, the film

casting conditions were kept constant to enable property comparison.
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Table 5.1 Tensile properties of H-20 with and without 10 wt% Laponite loaded
Property H-20 H-20 w/ 10% Laponite

Elastic Modulus (MPa) 260 + 18 473 26
Ultimate Tensile Strength (MPa) 40 ± 5 48 2
Ultimate Elongation (%) 628 + 35 617 ± 26
Toughness (MPa) 149 + 21 170 13

The dynamic mechanical properties of the polyurethane nanocomposites were

also examined. Figure 5.3 shows the storage modulus, loss modulus and tan(6) curves

for both the loaded and unloaded H-20 polyurethane. The plateau modulus of the

nanocomposite is distinctly increased, accompanied by an increase in the heat distortion
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temperature from 162 °C to 167 °C. For this work, the heat distortion temperature is

defined as the temperature at which the storage modulus drops to 8 MPa. At lower

temperatures, the shape of the loss modulus and tan(6) curves remains similar for the

loaded and unloaded polyurethane. The absence of any effect on the soft segment glass

transition suggests that the Laponite particles are associated with the polyurethane hard

segments, as also observed in Elasthane/Laponite nanocomposites. This hypothesis will

be explored further in the following section.
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Figure 5.3 Dynamic mechanical behavior of H-20 segmented polyurethane with and
without 10% Laponite loaded
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5.4 Morphological Behavior

The mechanical property improvements observed in nanocomposites are directly

related to the nanoparticle morphology within the polymer matrix. As explained in

Section 5.1, the fully exfoliated state creates the highest surface to volume ratio of

dispersed nanoparticles. This increased interaction between the clay disks and the

polymer matrix produces the greatest improvement in mechanical properties. Therefore,

to fully understand the property improvement of the H-20/Laponite nanocomposite, the

interparticle arrangement should be examined by TEM and WAXD.

TEM images of the H-20/Laponite nanocomposite are shown in Figure 5.4. In

both images, the clear majority of the clay nanoparticles are exfoliated, showing no

periodic spacing with one another. However, a small fraction of nanoparticles in each

image are observed to be in small intercalated stacks of 3-4 clay discs with a periodic

spacing. The spacing of these discs is best examined by WAXD to confirm that the clay

stacks are no longer at their initial crystal spacing, and thus intercalated by polyurethane

chains.
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Figure 5.4 TEM images of 10 wt% Laponite/H-20 nanocomposites showing clay
exfoliation with some intercalated structure
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The WAXD spectra of the loaded and unloaded H-20 polyurethane are shown in

Figure 5.5. To enable peak identification, the diffraction patterns of undispersed

Laponite crystals and a pure HDI-BDO hard segment are also included for comparison.

Comparing the diffraction patterns of the Laponite crystals and the H-20/Laponite

nanocomposite, it is clear that the dispersed Laponite loses all its higher order crystal

reflections. In addition, the (001) Laponite reflection, which is directly related to the

inter-disc spacing in the crystal structure, shifts from 70 in the undispersed Laponite to 50

in the H-20/Laponite nanocomposite. This suggests the formation of at least some

intercalated structure, in which the polyurethane chains coordinate between the Laponite

discs, resulting in a less ordered structure that still exhibits slight periodicity.
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C

0
20 40 60
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Figure 5.5 WAXD patterns of H-20 polyurethane with and without 10 wt%
Laponite loaded. (Laponite and HDI-BDO are included for comparison.)
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In addition to the clay nanoparticle morphology, the nanocomposite mechanical

properties are related to the polyurethane phase association of the clay particles.[6] The

hydrophilic nature of Laponite clay particles suggests a preferential association with the

HDI-BDO hard segments, which are more polar than the PTMO soft segments. This

phase association was alluded to by the DMA results, and is explored more fully using

DSC. The DSC traces of the loaded and unloaded H-20 polyurethane are shown in

Figure 5.6; the top curve is the first heating and cooling cycle, while the lower curve is

the second heating and cooling cycle. The neat H-20 polyurethane and nanocomposite

have similar heating curves in the first cycle; however, their difference becomes apparent

during the first cooling. The neat H-20 polyurethane exhibits a sharp exotherm at 125 °C,

which indicates the formation of crystalline hard domains. This hard domain formation is

suppressed in the H-20/Laponite nanocomposite, because the Laponite disks are

associated with the hard segments in the phase mixed state, and prevent the hard

segments from crystallizing to form hard domains upon cooling. This phenomenon is

similar to the interruption of HDI-BDO crystallinity by the additional bulky TDI and

MDI units in polyurethanes with mixed hard segments observed in Chapter 3. The

interruption of hard domain formation is also reflected in the second heating of the

nanocomposite, which exhibits a smaller hard segment endotherm than the neat H-20

polyurethane. It should be noted that Laponite nanoparticles do not interfere with hard

domain formation during the initial film casting, since the hard the hard domain

endotherm is a similar size during the first heating. Rather, the association of the clay

disks with the hard segments only prevents the formation of hard domains during bulk

film cooling at the relatively fast rate of 10 °C/min.
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Figure 5.6 DSC traces of H-20 segmented polyurethane with and without 10 wt%
Laponite loaded, showing particle association with hard segments
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5.6 Conclusions

A HDI-BDO-PTMO polyurethane/Laponite nanocomposite was created using a

novel solvent exchange process, in order to enhance the mechanical properties of the

polyurethane matrix and examine the phase association of the nanoparticles. The

polyurethane nanocomposite exhibited an improvement in tensile modulus and strength,

without sacrificing the extensibility. TEM images and WAXD patterns confirmed

exfoliation of most nanoparticles, with the remainder in an intercalated structure. DSC

and DMA results both indicated association of Laponite particles with the hydrophilic

HDI-BDO hard segments. The improvement in mechanical properties is thus attributed

to the reinforcement of polyurethane hard domains by the Laponite clay discs, which in

turn improves the integrity of the polyurethane network structure without sacrificing the

mobility of the soft segment chains.
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Chapter 6: Polyurethane/Siloxane Nanocomposites

6.1 Introduction

As indicated in the previous chapter, the incorporation of nanoscale clay particles

is a promising technique for the improvement of mechanical properties of segmented

polyurethanes. The hydrophilic clay discs associate closely with the hard segments to

provide hard domain templates and reinforcement. Conversely, the dispersion of most

nanoparticles within the soft matrix of a polyurethane may lead to undesired restriction of

the soft segment elasticity.[ 1 ] However, if the nanofillers are small enough, closer to the

molecular scale, they may provide the soft segment reinforcement desired for the spider

silk analogs. Siloxane resins such as polyhedral oligomeric silsesquioxanes (POSS) exist

as small cages 1-4 nm in size, on a size scale intermediate between conventional

nanoparticles and simple molecules. These nanofillers may be incorporated either

covalently through a tethering linkage to the polymer backbone, or noncovalently through

hydrophobic interactions with the soft segment.[2] The covalent linkage of such cages is

beyond the scope of this thesis; however, the non-covalent incorporation of a series of

POSS cages and a POSS-like MQ siloxane resin into polyurethane soft segments is the

subject of this chapter.

Polyhedral oligomeric silsesquioxanes (POSS) are a class of siloxanes with the

general repeat structure SiOl.sR.[2] They are capable of forming random, ladder or cage

structures and can be functionalized at the corners of the cages with non-reactive or

reactive groups, the latter enabling their grafting onto polymer matrices. The first
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oligomeric organosilsesquioxanes were isolated by Scott in 1946,[3] but interest in them

increased drastically when a large scale process for POSS monomer synthesis was

developed by a group at Edwards Air Force Base in the late 1990s.[4] POSS monomers

are now available in a multitude of structures and functionalities from Hybrid Plastics

Company in Fountain Valley, CA. POSS has been tested as a nanoscale filler in many

polymer matrices, both covalently attached and non-covalently dispersed.[5-13] Fu et al.

covalently tethered cyclohexyl-POSS into the hard segments of a polyurethane with MDI

and bisphenol A, and found significant mechanical reinforcement of the polyurethane due

to the formation of nanoscale POSS crystals within the hard domain.[5, 6] However,

there is no literature currently available on the dispersion of POSS cages within a

polyurethane soft segment.

Hydrop

Hard Di

Hydrophobic

POSS cages

Hydrophobic

PTMO Matrix

Figure 6.1 Segmented polyurethane/POSS nanocomposite structure
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6.2 Experimental

6.2.1 Materials

Polyurethanes H-20, H-29, and HT-20 were the segmented polyurethane

elastomers chosen for this reinforcement study. The morphological and mechanical

properties of this polyurethane were described in Chapters 3 and 4, but a summary of the

composition and molecular weights is reproduced in Table 6.1. MQ-resin was obtained

from Dow Coming and used as received. Octa-isobutyl-POSS and isooctyl-POSS (cage

mixture) were ordered from Hybrid Plastics and used as received. N,N-

dimethylacetamide (DMAc) and tetrahydrofuran (THF) were ordered from Sigma-

Aldrich and used as received.

Table 6.1 Compositions and molecular weights of selected polyurethanes
used for siloxane resin dispersion study

Sample Soft Segment Hard Segment HS wt% Mw (kDa) Mw/Mn
H-20 PTMO-2000 HDI-BDO 37 233 2.13
H-29 PTMO-2900 HDI-BDO 29 79 2.11
HT-20 PTMO-2000 HDI-TDI-BDO 38 140 2.97

6.2.2 Siloxane Resin Dispersion

Polyurethane mixtures with MQ-resin were obtained by solution processing in

DMAc. The polyurethane was dissolved in DMAc at a concentration of 5 wt% and

refluxed at 120 °C for 1 hour. The specified portion of resin was separately dissolved in

DMAc at room temperature. The resin solution was then added to the polyurethane

solution and mixed on a roll mixer overnight.

Polyurethane mixtures with POSS were obtained by solution processing in a

DMAc/THF mixture, since the POSS had limited solubility in DMAc alone. The

DMAc/THF ratio was 1:1 for the isooctyl-POSS mixtures and 1:4 for the isobutyl-POSS
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mixtures. The polyurethane was dissolved in DMAc at a concentration of 10-20 wt%,

and refluxed at 120 °C for 1 hour, after which it was cooled, and THF was added. The

POSS was first dissolved in THF at room temperature, after which the DMAc was added.

The resin solution was then added to the polyurethane solution and mixed on a roll mixer

overnight.

Solutions of the polyurethane/resin mixtures were free cast into custom-made

Teflong) dishes 4 cm x 6 cm x 4 cm deep. The solvent mixture was allowed to evaporate

in a fume hood at room temperature for 2-3 days until the film appeared completely dry,

after which the films were placed in a vacuum oven at 60 °C and dried for 1 hour. Final

film thicknesses varied from 0.08 mm to 0.12 mm, depending on the total amount of

sample. Strips of polyurethane film for tensile testing were cut from the cast film using a

custom-built cutter consisting of 2 straight razors held at a fixed width of 5.4 mm.

6.2.3 Instrumentation

6.2.3.1 Differential Scanning Calorimetry

Thermal phase behavior was examined with a TA Instruments Q1000 Differential

Scanning Calorimeter (DSC), operated at a heating rate of 1 0°C/min under a 50 mL/min

nitrogen purge. Polyurethane films were subjected to two heating and cooling cycles

from -90 to 250 °C. Transitions were recorded using a linear extrapolation method for

Tm and midpoint inflection method for Tg from the first heating and cooling scans to

observe phase behavior in the cast films.

121



6.2.3.2 Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) was performed on a TA Instruments Q800

DMA equipped with a film/fiber clamp, operated at a frequency of 1 Hz and heating rate

of 3 °C/min from -100 to 170 °C.

6.2.3.3 Tensile Testing

The tensile properties of polyurethane nanocomposites were determined using a

Zwick/Roell Z010 with a 500N load cell and convex jaw grips with aluminum and flat

polyurethane faces to minimize tearing at the grips. The sample was deformed at a

crosshead speed of 100% gauge length/minute. A minimum of three samples was

examined for statistical analysis.

6.3 Results and Discussion

6.3.1 Mechanical Characterization

The mechanical properties of three different sets of polyurethane siloxane

composites were measured. The first set consisted of H-20 with various loadings of MQ-

resin; the second set consisted of HT-20 with 3 wt % loadings of MQ-resin and isooctyl-

POSS; the third set consisted of HT-20 with various loadings of isobutyl-POSS. Within

each set, an unloaded polyurethane film was cast from the same solvent mixture in a

parallel process, to enable mechanical property comparison. The property modification

of each set will be discussed separately.

Transparent thin films of H-20 with MQ-resin loadings of 1 wt%, 3 wt%, 5 wt%,

and 0 wt% were obtained by solution casting from DMAc. A representative stress-strain
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curve for each sample is plotted in Figure 6.2, and the average tensile properties from all

tested samples are summarized in Table 6.2. The uncertainty figure represents the

standard deviation for three films at each composition. At all MQ-resin loadings, the

modulus increased by about 60%; however, the tensile strength, elongation and toughness

of the 1% and 5% loaded polyurethanes all decreased. While the properties of the 3%

loaded sample were more similar to the unloaded polyurethane, the variation between

repeated samples was much higher, such that within error, the tensile properties may have

also slightly deteriorated for the 3% loading. In any case, the mechanical property

variations with MQ-resin loaded into an HDI-PTMO polyurethane were not dramatic.
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Figure 6.2 Comparison of the stress-strain behavior of H-20 various with various
loadings of MQ-resin
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Table 6.2 Tensile properties of H-20 with various loadings of Q-resin
Sample Modulus Tensile Extensibility Toughness

(MPa) Strength (MPa) (%) (MPa)
Pure H-20 film 50 2 21 2 456 26 64 8

+ MQ-Resin (1%) 84 ± 8 15 1 304 ± 19 33 4
+ MQ-Resin (3%) 78 ± 2 20 t 4 460 ± 107 62 21
+ MQ-Resin (5%) 81 ± 1 19 3 422 ± 78 54 16

Transparent thin films of HT-20 with 3 wt % loadings MQ-resin and isooctyl-

POSS were obtained by solution casting from a 1:1 DMAc/THF mixture. A switch was

made from the HDI-polyurethane (H-20) to the HDI-TDI polyurethane (HT-20) for the

creation of POSS composites because of better solubility of the polyurethane in the

DMAc/THF mixture, as well as improved properties of the native polyurethane. A

representative stress-strain curve for each sample is plotted in Figure 6.3, and the average

tensile properties from all tested samples are summarized in Table 6.3. The mechanical

properties of the various HT-20 composites are all within uncertainty of the pure HT-20

polyurethane processed in the same manner. At high strains, the HT-20/isoctyl-POSS

composite exhibited a slight sawtooth pattern in all tested samples; this is most likely due

to slippage at the grip, as the POSS resin tends to diffuse toward the free surface and act

as a lubricant.
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Figure 6.3 Comparison of the stress-strain behavior of HT-20 with 3% loadings of
MQ-resin and isooctyl-POSS

Table 6.3 Tensile properties of HT-20 with 3% loadings of MQ-resin
POSS

and isooctyl-

125

Sample Modulus Tensile Extensibility Toughness
_________ ~(MPa) Strength (MPa) (%) (MPa)
HT-20 46 + 6 35 5 498 + 73 55 6

(from DMAc)
HT-20 44 5 33 4 509 26 51 1

(from DMAc/THF)
+ 3% MQ-Resin 41 ± 5 36 ± 5 559 ± 30 50 5

(from DMAc/THF)
+ 3% i-octyl-POSS 48 1 36 ± 5 565 ± 71 53 ± 1
(from DMAc/THF)



Transparent thin films of HT-20 with various loadings of isobutyl-POSS were

also obtained by solution casting from a 1:4 DMAc/THF mixture. The higher

concentration of THF was necessary to preserve the solubility of the isobutyl-POSS,

which has a stronger tendency to crystallize. A representative stress-strain curve for each

sample is plotted in Figure 6.4, and the average tensile properties from all tested samples

are summarized in Table 6.4. The initial shape of stress strain curve for all the prepared

composites remained the same, including moduli that were within uncertainty of each

other. However, the composite samples all broke at an elongation around 430%,

resulting in a 25% reduction in toughness when compared to the pure polyurethane,

which extended to around 510%. The presence of the isobutyl-POSS does not seem to

show a reinforcing effect; instead, the presence of undispersed, crystalline POSS may

contribute to the premature failure of the polyurethane elastomer.
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Figure 6.4 Comparison of the stress-strain behavior of HT-20 with various loadings
of isobutyl-POSS, cast from THF/DMAc (80%/20%)

Table 6.4 Tensile properties of HT-20 with various loadings of isobutyl-POSS, cast
from THF/DMAc (80%/20%)

Sample Modulus Tensile Extensibility Toughness
(MPa) Strength (MPa) (%) (MPa)

HT-20 67 ± 2 36 ± 7 514 39 86 17
0.5% i-butyl-POSS 68 + 4 29 + 4 422 ± 78 65 10
1% i-butyl-POSS 65 ± 10 31 4 476 ± 26 66 ± 4
3% i-butyl-POSS 65 ± 9 27 1 433 + 4 60 3
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6.3.2 Siloxane Phase Association

The design of the siloxane/polyurethane composites called for association of the

resin with the soft segment of the polyurethane to provide mechanical reinforcement.

While the reinforcing effect of these resins is minimal, if existing at all, an understanding

of the polyurethane phase association of the various resins is still desired. Differential

scanning calorimetry (DSC) is a good technique for observing the association of the

resins, since the hard and soft phases each exhibit unique transitions in DSC, and the

modification of a phase transition partially indicates resin association with that phase.

The first heating and cooling of H-29 loaded with 1 wt% and 3 wt% MQ-resin is

presented in Figure 6.5. In the cooling curve, the recrystallization of HDI-BDO hard

segments at 130 °C is partially suppressed by the presence of the MQ-resin. In contrast,

the recrystallization of PTMO at -20 °C is unaltered by the MQ-resin. This suggests that

the MQ-resin is more closely associated with the hard segments at equilibrium, and thus

only reinforces the hard domain. However, the resin association with the hard domains is

not as dramatic as that for the Laponite particles reported in Chapter 5. This is likely due

to both the higher loading (10 wt%) of Laponite, as well as the stronger hydrophilic

character of the Laponite surface.

128



A A
I ./

0.5

o 0.0
-

0

-0.5

-1 .i._
-100 -50 0 50 100 150 200

Temperature (C)

Figure 6.5 DSC traces of H-29 segmented polyurethane with various loadings of
MQ-resin, indicating depression of hard segment crystallization

Samples of HT-20 loaded with 3 wt% MQ resin and isooctyl-POSS were also

analyzed by DSC. However, the heating and cooling curves (not pictured) for the

composites were identical to the pure polyurethane, indicating no preferential association

with either phase. In Chapter 3, it was demonstrated that HT-20 is even more phase

segregated than H-20; however, the presence of TDI units may lower the hydrophilic

character of the HDI hard segments, such that a weaker phase preference exists for the

MQ-resin. The weak phase association also corresponds with the mechanical property

effect, which is minimal between HT-20 and the resins.
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The samples of HT-20 loaded with isobutyl-POSS all failed at lower strains than

the pure HT-20 polyurethane, which was blamed in part on the formation of POSS

crystals within the matrix that contributed to early failure. To observe the formation of

isobutyl-POSS crystals within the PTMO soft segment, a separate series of isobutyl-

POSS mixtures was prepared with pure PTMO-2900. Isobutyl-POSS was added to

solutions of PTMO-2900 in THF at concentrations of 1 wt%, 5 wt%, and 10 wt% relative

to PTMO. Oligomeric films were cast from each of the solutions and analyzed via DSC.

All samples showed a melting point for the isobutyl-POSS around 58 °C, as indicated in

Table 6.5. The ratio of melting enthalpies can be used to estimate the percent

crystallinity of isobutyl-POSS within the PTMO by assuming the pure isobutyl-POSS is

completely crystalline, using the following relation:

AHm- (mixture) (6.1
XZ Z (6.1)

AHm (POSS) * 

where Xc represents the percent crystallinity and c is the measured concentration of POSS

in PTMO. As the POSS loading decreases, the solubility in POSS increases; however,

even at a relatively low loading of 1 wt% there is still a considerable fraction of POSS

left as small crystallites within the PTMO matrix. This large fraction of untethered POSS

crystals may contribute to the early failure of crystalline POSS composites.

Table 6.5 Melting temperature and enthalpy of isobutyl-POSS dispersed in PTMO-
2900 at various loadings.

(The percent crystallinity is estimated from the melting enthalpies.)
Isobutyl-POSS Melting Point Melting Enthalpy % Crystallinity of

Loading in PTMO-900 (°C) (J/g) POSS
1 wt% 57.6 0.11 63%
5 wt% 57.8 0.75 86%
10 wt% 57.9 1.61 92%

Pure isobutyl-POSS 58.1 17.41 100% (assumed)
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6.4 Conclusions

A series of polyurethane/siloxane resin composites were created by solution

processing in DMAc and DMAc/THF mixtures. Composites of an HDI-polyurethane

with MQ-resin indicated association of the resin with the hard segments, producing a

60% increase in modulus with a small loss of toughness. Composites of HDI-TDI

polyurethanes exhibited no strong phase association with either the MQ-resin or isooctyl-

POSS via DSC, and no substantial change in properties. However, composites of HDI-

TDI polyurethanes with isobutyl-POSS exhibited formation of POSS crystals at all

loadings, which resulted in tensile failure at strains 80-100% lower than the pure

polyurethane. The non-covalent dispersion of POSS and MQ-resin into segmented

polyurethanes attempted here does not appear to be a viable technique for substantial

property improvement, perhaps due to ineffective dispersion of cages on the molecular

scale and weak interactions with the polyurethane matrix. The covalent attachment of

POSS cages within the soft segment, may provide both a more effective dispersion as

well as stronger bonding with the polyurethane during deformation.[ 13]
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Chapter 7: Liquid Crystalline Polyurethane Soft Segments

7.1 Introduction

Previous research in our group on segmented polyurethanes with side chain liquid

crystalline (LC) soft segments has shown that the LC mesogens align cooperatively with

the hard segments during deformation.[ 1, 2] While in a side-chain LC polymer the

mesogens are not load bearing, the incorporation of a main-chain LC mesogen into a

segmented polyurethane creates an orientable unit capable of soft segment reinforcement.

This LC mesogen should have a degree of orientation intermediate between the

polyurethane hard segment and soft segment, just as spider silk contains sequences that

are of intermediate order between the alanine-rich crystals and the glycine-rich

amorphous matrix.[3] A cartoon of the liquid crystalline polyurethane design is drawn in

Figure 7.1.

Liquid Cry
Mesophase

Polyurethan
Hard Doma

Soft Segmei
Matrix

Figure 7.1 Cartoon representation of main-chain liquid crystalline (LC) mesogens
as reinforcing units within the polyurethane soft segment.
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The superior mechanical properties of main-chain LC polymers is well

documented.[4, 5] However, these rod-like polymers do not fit the requirements for a

flexible polyurethane soft segment; instead, longer spacers are required between the LC

mesogens to provide soft segment flexibility. For this initial investigation, intermediate

PTMO molecular weights (Mn = 650 and Mn = 1000) will be copolymerized with a

simple LC mesogen, 4,4'-biphenyl. The use of this difunctional aromatic mesogen has

been well-documented in the literature.[6-10] In order to be successfully incorporated

into a polyurethane, the liquid crystalline soft segment must remain oligomeric. The

overall molecular weight of the copolymer soft segment is controlled through the addition

of excess PTMO; this also creates primary alcohol functionalities at the soft segment

endgroups, enabling reaction with the polyurethane hard segment. The biphenyl

mesogen can be incorporated into the soft segment through an ester or ether linkage. The

advantage of the ether linkage is suppressed hydrogen bonding with the hard segment, to

maintain polyurethane microphase segregation, as explained in Section 1.3.2. The

advantage of the ester linkage is the ease of synthetic addition to the PTMO soft segment.

Both approaches to biphenyl incorporation within PTMO are explored in this chapter.

7.2 Experimental

The synthesis of the biphenyl-PTMO soft segments, using both the ether and ester

linkages, are described separately here, as well as their incorporation into a segmented

polyurethane. Afterward, the techniques used for soft segment and polyurethane

characterization are described.
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7i.2.1 Materials

Poly(tetramethylene oxide) (PTMO, Mn = 650 and Mn = 1000), was purchased

from Polysciences, and Terethane® 250 (PTMO, M = 250) was purchased from Sigma-

Aldrich. All other materials were purchased from Sigma-Aldrich. PTMO samples were

dried under vacuum for 3 days at 60 °C. N,N-dimethylacetamide (DMAc),

dichloromethane (CH2C12), triethylamine (TEA) and pyridine were dried over calcium

hydride (CaH2 ) and distilled under N2. 4,4'-biphenol was sublimed under vacuum at 200

°C. 1,4-butanediol and 1,6-diisocyanatohexane (HDI) were vacuum distilled. Biphenyl-

4,4'-dicarboxylic acid (DBA), methanesulfonyl chloride, benzyltriethylammonium

chloride, and stannous octoate were used as received.

7.2.2 Biphenyl-PTMO Copolyether Synthesis

A copolyether of biphenol and PTMO was synthesized using the two-step method

outlined in Figure 7.2, which is adapted from the method of Hong et al.[6] In the first

step, methanesulfonyl chloride was slowly added to an alcohol-terminated PTMO

oligomer in CH2C12, at 0 °C under N 2, with TEA to neutralize the HC1 byproduct. After

addition, the solution was allowed to warm to room temperature and react for 12-18

hours. The reaction mixture was then added to ice-cold dilute HC1, and the organic layer

was separated and washed with HC1 and water, respectively. Finally, the mesylate-

terminated PTMO product was recovered by evaporation of the solvent.

In the second step, the PTMO-mesylate was reacted with 4,4'-biphenol in a base-

catalyzed condensation reaction to form a polyether of alternating PTMO and biphenyl

units. This reaction was conducted in DMAc under N2, with a potassium carbonate

(K 2CO 3) catalyst, and was held at 120 °C under refluxing DMAc for 24 hours. Finally,

135



the product was precipitated into a ten-fold excess of methanol, collected via filtration,

and dried under vacuum at 60-80 °C for at least one week.

Figure 7.2 Synthesis of biphenyl-PTMO co-polyether oligomer for use as
liquid crystalline polyurethane soft segment.

7.2.3 Biphenyl-PTMO Copolyester Synthesis

A copolyester of biphenol and PTMO was synthesized using the two-step method

outlined in Figure 7.3, which is adapted from the method of Burdett.[ 11] In the first step,

15g of biphenyl-4,4'-dicarboxylic acid (DBA) and 0.066g of benzyltriethylammonium

chloride catalyst was dissolved in 75 mL CH2C12 and refluxed under N2 at 85 °C. 9 mL

sulfonyl chloride was then added to the solution and refluxed overnight. While still hot,

the solution was pressure filtered through a Size C ceramic filter. Crystals of biphenyl

diacid chloride (Melting Pt = 186 - 189 °C) were filtered, washed with ethanol, and dried

under vacuum overnight.
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In the second step, 330 mg biphenyl diacid chloride was dissolved in toluene at a

concentration of 2 wt%, which was limited by solubility. 1.4 mL pyridine was added to

the solution, and a stoichiometric equivalent of PTMO was slowly dripped into the

solution over 30 minutes. As the reaction proceeded, pyridinium salts fell out of solution;

the mixture was stirred under N2 overnight at room temperature. The mixture was then

filtered to remove precipitated salts, and rotovapped to pull off most of the toluene. The

concentrated oligomer solution was then precipitated into cold diethyl ether, filtered,

washed with ether, and dried under vacuum overnight.

Figure 7.3 Synthesis of biphenyl-PTMO co-polyester oligomer for use as
liquid crystalline polyurethane soft segment.

7.2.4 Segmented Polyurethane Synthesis

The biphenyl-PTMO copolyether and copolyester were converted to a segmented

polyurethane, using the same two-step approach outlined in Figure 7.4. In the first step,

the LC soft segment was endcapped with excess HDI, in DMAc under a N2 atmosphere

with a stannous octoate catalyst, and the solution was held at 60 °C for 3 hours. In the
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second step, the endcapped macromonomer was polymerized to high molecular weight

through the stoichiometric addition of 1,4-butanediol at 60 °C for 12-18 hours. Progress

of the reaction was monitored via FTIR by observing the free isocyanate peak at 2250

cm l, and adding extra charges of 1,4-butanediol until the isocyanate peak disappeared.

Finally, the polyurethane was precipitated into a ten-fold excess of methanol, collected

via filtration, and dried under vacuum at room temperature for >24 hours.

Figure 7.4 Synthesis of segmented polyurethane with biphenyl-PTMO
copolymer soft segment.

7.2.5 Instrumentation

7.2.5.1 Gel Permeation Chromatography

Molecular weights and molecular weight distributions of copolyethers were

determined relative to polystyrene standards by a Waters Gel Permeation Chromatograph
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(GPC) equipped with a UV-absorption detector, a refractive index detector, two PL Gel

5pm MIXED-C columns from Polymer Laboratories, and a THF eluent. Molecular

weights and molecular weight distributions of copolyesters and segmented polyurethanes

were determined relative to poly(ethylene oxide) standards by a Waters Gel Permeation

Chromatograph (GPC) equipped with a refractive index detector, two PL Gel 5 gm

MIXED-C columns from Polymer Laboratories, and a DMAc eluent.

7.2.5.2 Differential Scanning Calorimetry

Thermal phase behavior of copolyethers was examined with a Perkin-Elmer

Differential Scanning Calorimeter (DSC 7 AMB), operating at a heating rate of 20°C/min

from -30°C to 200°C under nitrogen atmosphere. Thermal phase behavior of

copolyesters and polyurethanes was examined with a TA Instruments Q 1000 Differential

Scanning Calorimeter (DSC), operated at a heating rate of 1 0°C/min under a 50 mL/min

nitrogen purge. As-precipitated polyurethane samples were subjected to two heating and

cooling cycles from -90 to 200 °C. Transitions were recorded from the second heating

and cooling scans, using a linear extrapolation method for Tm and midpoint inflection

method for Tg.

7.2.5.3 Small-angle X-Ray Scattering (SAXS)

Small-angle X-ray scattering experiments were performed on a Molecular

Metrology SAXS equipped with CuKact radiation and a two-dimensional, gas proportional

multi-wire Gabriel detector. Variations in beam intensity were corrected by normalizing

with a photodiode placed on the beam stop when subtracting background radiation.
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7.3 Results and Discussion

The analysis of polyurethanes made from biphenyl-PTMO copolymers using the

ether and ester linkages is discussed in separate sections, followed by commentary on the

synthesis and properties of liquid crystalline polyurethane soft segments in general.

7.3.1 Biphenyl-PTMO Copolyether Soft Segments

Copolymers of biphenol and PTMO were synthesized using PTMO blocks with

Mn=250 and Mn=650 (referred to as BP-PTMO-250 and BP-PTMO-650), which

translates to 3.5 and 9 repeat units of PTMO between each biphenyl unit, respectively.

GPC results indicated Mn=950 for BP-PTMO-250 and Mn=5200 for BP-PTMO-650,

relative to polystyrene standards. DSC results (not pictured) indicated a single

endotherm at 102 °C for BP-PTMO-250 shows, and two closely spaced endotherms at 45

°C and 65 C for BP-PTMO-650. The larger spacing between biphenyl units lowered the

clearing point and generally increased the overall copolymer mobility. The BP-PTMO-

650 copolymer also exhibited nematic LC behavior between 60 and 75 °C in hot-stage

optical microscopy.

Both copolymers were used as soft segments in polyurethanes with HDI-BDO

hard segments. Although BP-PTMO-650 demonstrated more promising properties as a

soft segment, the polyurethane from BP-PTMO-650 did not polymerize to high molecular

weight, due to problems purifying the BP-PTMO product and regulating the

stoichiometry during polyurethane synthesis. However, the polyurethane made with BP-

PTMO-250 soft segments exhibited strong phase segregation, as demonstrated in Figure

7.5. This figure compares the DSC traces from three different materials: a polyurethane

with a pure PTMO-2900 soft segment (PU-PTMO), a biphenyl-PTMO-250 copolyether
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(BP-PTMO), and a HDI-polyurethane containing the copolymer as its soft segment (PU-

BP-PTMO). The endotherm at 155 C in the PU-PTMO and PU-BP-PTMO traces

associated with the breakup of the polyurethane hard domains does not shift appreciably

when the biphenyl units are incorporated into the soft segment, indicating strong phase

segregation between the hard domains and the biphenyl-containing soft segment. The

endotherm at 102 °C in the PU-BP-PTMO and BP-PTMO traces is associated with the

breakup of the biphenyl units in the soft segment. This endotherm also does not shift

appreciably when the macrodiol (BP-PTMO) is converted to a polyurethane (PU-BP-

PTMO), which further indicates strong phase segregation between the hard domains and

the biphenyl units.
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Figure 7.5 DSC Comparison of a biphenyl-PTMO-250 polyether soft segment to a
HDI-polyurethane made with the BP-PTMO soft segment (PU-BP-PTMO) and a

HDI-polyurethane made with a pure PTMO-2900 soft segment.

7.3.2 Biphenyl-PTMO Copolyester Soft Segments

Copolymers of biphenyldicarboxylic acid and PTMO were synthesized using

PTMO blocks with Mn=650 and M,=1000 (referred to as BP-PTMO-650 and BP-PTMO-

1000), which translates to 9 and 14 repeat units of PTMO between each biphenyl unit,

respectively. The buildup of molecular weight is shown through the GPC results in Table

7.1. The buildup indicates the incorporation of one biphenyl until on average into BP-

PTMO-650, and three biphenyl units into BP-PTMO-1000. These GPC results also

agreed with endgroup analysis by NMR. The molecular weights of segmented
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polyurethanes made from both these biphenyl-PTMO polyesters were low, and the

polyurethanes consequently did not form elastomeric films for mechanical

characterization. However, samples of the pure PTMO, BP-PTMO and polyurethanes

were analyzed by DSC for both the PTMO-650 and PTMO-1000 series, and are

presented in Figures 7.6 and 7.7, respectively. In both series, the presence of the

biphenyl unit depresses the melting point and crystallization point of PTMO. The glass

transition of both the PTMO and BP-PTMO is not observable by DSC; however, the

glass transitions of PU-BP-PTMO-650 and PU-BP-PTMO-1000 are -60 °C and -65 C,

respectively. This pronounced elevation of Tg,ss is due to the incorporation of the

biphenyl mesogen, which partially restricts the chain mobility. In chapter 3, the elevation

of Tg,ss was taken as an indication of phase mixing between the hard and soft segments;

however, that analysis is only valid with pure PTMO soft segments, as indicated by a

comparison of biphenyl-PTMO polyurethanes with pure PTMO polyurethanes.

Table 7.1 Molecular weight buildup of biphenyl-PTMO polyesters and
polyurethanes, and hard segment composition of polyurethanes.

(GPC data taken in DMAc relative to PEO standards)
Sample PU HS% Mn (Da) Mw (Da) M/Mn

PTMO-650 490 610 1.24
BP-PTMO-650 1,060 2,020 1.90

PU-BP-PTMO-650 31 5,380 10,320 1.92
BP-PTMO-1000 1,472 2,905 1.97

PU-BP-PTMO- 1000 24 8,754 24,330 2.78
PU-PTMO-2900 29 26,570 52,930 1.99
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Figure 7.6 DSC Comparison of (A) PTMO-650 macrodiol, (B) Biphenyl-PTMO-650
polyester soft segment, and (C) HDI-polyurethane made with the BP-PTMO soft

segment.

144

I ' I I I * I * I I

........ PTMO-650
" - .... BP-PTMO-650

PU-BP-PTMO-650

l%

, ,

. _~~~~~~~~--------==-=-

-. 1,
..

,,
v :.:-~. ~ ~ .:', ," * I * ! - .' ......................................... ...................

: :

t ' , .
i/ . ,

. . , 



1.5 , * , , ;. , * , , *
I'.

,: ........ PTMO-1000
i ....BP-PTMO-1000

1.0 - PU-BP-PTMO-10004.5~~~~~~~~~~~~~, , (
I

II

O.5

0

I, 

-0.5 I

-1.0 . .
-100 -50 0 50 100 150 200

Temperature (C)

Figure 7.7 DSC Comparison of (A) PTMO-1000 macrodiol, (B) Biphenyl-PTMO-
1000 polyester soft segment, and (C) HDI-polyurethane made with the biphenyl-

PTMO soft segment.

Figures 7.8 and 7.9 compare the DSC and DMA traces from PU-BP-PTMO-1 000

with those from an HDI-BDO polyurethane with a pure PTMO hard segment, PU-

PTMO-2900 (named H-29 in previous chapters). The primary differences between these

two samples are the length of the soft segment and its ability to crystallize. From the

DMA results, the Tg of the soft segment is elevated 15 'C by the presence of the biphenyl

unit. The melting point and enthalpy of the PTMO soft segment crystallites are reduced

by the shorter segments of PTMO that are capable of crystallization. The DSC hard

segment transitions of both polyurethanes are similar, indicating a strong microphase
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separated structure in both samples. However, the DMA indicates mechanical failure of

the BP-PTMO polyurethane 20 °C lower than the PTMO polyurethane, most likely due to

the lower overall molecular weight and mechanical integrity of the polyurethane.
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Figure 7.8 DSC Comparison of (A) Polyurethane made with the biphenyl-PTMO
soft segment to (B) polyurethane with pure PTMO-2900 soft segment.

Due to the synthetic challenges in creating high molecular weight polyurethanes

with liquid crystalline soft segments, it remains unclear whether the incorporation of

main-chain LC mesogens into the soft segment can provide mechanical reinforcement

during deformation. The primary obstacles are proper purification of the BP-PTMO

polyester or polyether, and characterization of their molecular weight and end-group
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funmctionality before their subsequent use in polyurethane synthesis. Since polyurethane

synthesis is sensitive to water, it is critical that the BP-PTMO be purified and properly

dried before reaction with diisocyanates to eliminate side reactions. Polyurethane

chemistry is also sensitive to the stoichiometry of the reaction mixture, so it is critical to

have a correct characterization of the BP-PTMO molecular weight to ensure proper

charges of diisocyanates and chain extender during polyurethane synthesis.
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Figure 7.9 DMA Comparison of (A) Polyurethane made with the biphenyl-PTMO
soft segment to (B) polyurethane with pure PTMO-2900 soft segment.

7.4 Conclusions

A series of oligomeric polyesters and polyethers were synthesized from a

biphenyl mesogen and PTMO of various molecular weights, and incorporated as the soft
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segment of a segmented polyurethane. The copolyesters with biphenyl units spaced

between 9 and 14 PTMO repeat units exhibited glass transitions of-60 °C and -65 °C,

respectively, which are low enough to maintain flexibility as a soft segment macrodiol.

The biphenyl units spaced between four PTMO repeat units exhibited a crystalline

transition at 100 °C, and the copolymer is unsuitable as a polyurethane soft segment.

Segmented polyurethanes made from the biphenyl-PTMO copolymers and HDI-BDO

hard segments were strongly microphase segregated, though limited by low overall

molecular weight. Due to synthetic limitations in the development of high molecular

weight polyurethanes, the question of whether the soft segment may be reinforced by the

incorporation of liquid crystalline mesogens remains unanswered.
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Chapter 8: Conclusions and Future Directions

8.1 Summary

This thesis explores the design, synthesis, and characterization of segmented

polyurethane elastomers and composites with hierarchical microstructures similar to the

multiple levels of order found in spider silk. Three such systems were investigated:

polyurethanes with mixed isocyanates in the hard segment, polyurethane nanocomposites

with clay and siloxane particles, and polyurethanes with liquid crystalline soft segments.

A series of segmented polyurethanes containing two different diisocyanates in the

hard segment was synthesized, with the bulkier diisocyanates preferentially located at the

interphase between the hard and soft domains. The mixed diisocyanates disrupted the

crystallinity of the HDI-BDO hard segments while retaining a strong degree of phase

segregation between the hard and soft microphases. The disruption of crystallinity within

the mixed hard segments allowed the hard domains formed during film casting to become

more interconnected, as observed through AFM imaging. In turn, this interconnected

hard domain structure provided improved elongation and tensile strength, thereby

increasing the toughness without a reduction of the initial modulus. The method of

diisocyanate incorporation was also examined, and the hard domain crystallinity is

further reduced by the addition of both diisocyanates simultaneously, instead of in a

separate prepolymer step. The polyurethane with diisocyanates added in one step also

exhibited improved mechanical properties, as expected from the reduction of hard

segment crystallinity.
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The deformation of segmented polyurethanes with pure and mixed hard segments

was also investigated using in-situ SAXS, WAXS, and optical microscopy. A

polyurethane film with pure HDI-BDO hard segments and a PTMO-2900 soft segment

exhibited an initial interdomain spacing of 17 nm. As the sample was deformed under

tension, the hard domains adopted a preferred tilt angle of +20° from the strain direction,

due to shearing of the hard domains. The average interdomain spacing increased to 23

nm during deformation, while the spacing of hard domains aligned in the strain direction

decreased to 13 nm, and the spacing of hard domains aligned at the preferred tilt angle

remained constant. The HDI-BDO-PTMO polyurethane also exhibited a large amount of

strain induced crystallization of PTMO, evidenced by WAXS crystalline peaks aligned

along the equator at high strain. Polyurethane films with mixed diisocyanates in the hard

segment were also compared to the HDI-BDO polyurethane using polarized optical

microscopy. The polyurethanes with mixed diisocyanates initially exhibited less

crystallinity, but had more overall orientation of chain segments at higher strains, due to

the ability of the less crystalline hard segments to align and reinforce the polyurethane.

Several polyurethane nanocomposite structures were created using nanoparticles

that preferentially associate with the hard or soft segments. An HDI-PTMO

polyurethane/Laponite nanocomposite exhibited a modest improvement in tensile

modulus and strength, without sacrificing the extensibility. The Laponite discs exhibited

an exfoliated structure, associating with and reinforcing the hydrophilic polyurethane

hard segments. Composites of the HDI-PTMO polyurethane with MQ-resin also

indicated association of the resin with the hard segments, producing a 60% increase in

modulus with a small loss of toughness. Composites of an HDI-TDI polyurethane
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exhibited no strong phase association with either the MQ-resin or isooctyl-POSS, and no

substantial change in mechanical properties. However, composites of HDI-TDI

polyurethanes with isobutyl-POSS exhibited formation of POSS crystals at all loadings,

which resulted in tensile failure at strains 80-100% lower than the pure polyurethane.

A series of oligomeric polyesters and polyethers were synthesized from a

biphenyl mesogen and PTMO of various molecular weights, and incorporated as the soft

segment of a segmented polyurethane. The copolyesters with biphenyl units spaced

between 9 and 14 PTMO repeat units exhibited glass transitions of-60 °C and -65 °C,

respectively, which are low enough to maintain flexibility as a soft segment macrodiol.

Segmented polyurethanes made from the biphenyl-PTMO copolymers and HDI-BDO

hard segments were strongly microphase segregated, though limited by low overall

molecular weight due to difficulties in purifying the biphenyl soft segments. The low

molecular weight of the polyurethanes precluded sufficient mechanical characterization

to establish the effectiveness of the biphenyl units at reinforcing the polyurethane.

8.2 Future Directions

8.2.1 Polyurethanes with Mixed Hard Segments

This thesis established the ability of mixed diisocyanates to disrupt the

crystallinity of a polyurethane hard segment. The literature on such systems is relatively

limited[ 1], and this work represents the first research to note the improvement of hard

domain connectivity and ordering as a result of the reduction of crystallinity in mixed

hard segments. More work is needed to develop this hypothesis, including systematic

variation of film casting and annealing conditions to monitor the growth of the
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microphase separated structure. The kinetics of HDI hard domain formation has already

been studied with time-resolved synchrotron X-ray scattering[2]; however, the expansion

of these kinetic studies to the mixed hard segment polyurethanes would capture the

competing roles of XN interactions and crystallization on hard domain formation.

The deformation of polyurethanes with mixed hard segments was only partially

characterized in this thesis. Specifically, synchrotron SAXS and WAXS were only

collected during the deformation of pure HDI-BDO polyurethanes, due to limitations on

beam-time. The SAXS and WAXS behavior of mixed hard segment polyurethanes under

deformation will further examine the enhanced hard segment alignment and suppression

of strain-induced crystallization observed via optical microscopy. While the library of

mixed hard segment systems could also be broadened through the incorporation of

several more diisocyanates, the improvement in mechanical properties was observed to

be modest at best. Therefore, the mixed hard segment systems probably do not warrant

sufficient investigation beyond the fundamental mechanisms of microphase separation

and deformation noted above.

8.2.2 Polyurethane Nanocomposites

The investigation into polyurethane nanocomposites confirmed a correlation

between property improvement and the phase association of the dispersed nanoparticle.

For both the Laponite and siloxane particles, modest property improvements were

reported for particles that associated with the HDI-polyurethane hard segments in

Chapters 5 and 6. In addition, siloxane particles associated with the soft segments led to

the deterioration of mechanical properties, due to the constraints on the flexible soft

segment matrix. These conclusions appear to be in conflict with the original design of

153



nanoparticles that associate with the soft segment, in order to mimic the hierarchical

structure of spider silk. However, the limitation of these nanocomposite systems is most

likely related to incomplete dispersion of the particles, which was unable to be

characterized. Large clumps of nanoparticles would tie together many soft segment

chains, destroying the elastomeric nature of the polyurethane nanocomposite.

For future work in this area, we propose to covalently link individual POSS cages

to a polyurethane soft segment, as shown in Figure 8.1. While POSS cages have been

covalently attached within a polyurethane hard segment, it has not been attempted within

a soft segment.[3] The covalent attachment and subsequent purification of a PTMO-

POSS soft segment would ensure molecular-level dispersion of the POSS cages, which

should provide non-covalent secondary interactions between POSS cages, without overly

constraining the flexibility of the PTMO matrix.

Polyurethane
Hard Domain

Tethered
POSS cage

PTMO
Soft Segment

Figure 8.1 Cartoon representation of covalently linked-POSS cages within a
polyurethane soft segment
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Finally, the incorporation of Laponite particles into an HDI-PTMO polyurethane

produced modest improvements in mechanical properties, but not as dramatic as those for

Elasthane.[4] However, the loading of Laponite was not optimized for the HDI-PTMO

polyurethane, so a systematic study at various loading levels could produce a more

substantial property improvement. In addition, the strong phase segregation observed in

polyurethanes with mixed hard segments suggests that Laponite may be a suitable

nanoparticle for reinforcing those systems as well.
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