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Abstract

This thesis uses trace elements and radiogenic isotope tracers to define elemental
abundances in reservoirs of the Earth’s mantle, including EM2 (the Enriched Mantle 2), as
seen in the Samoan hotspot track, and DMM (the depleted upper mantle), which is sampled
at mid-ocean ridges. Together these components comprise up to ~50% of the total mantle
mass. Much of the mantle’s chemical heterogeneities are suspected to originate by either the
removal of mass from the mantle (in the case of DMM) or the addition of mass to the
mantle through subduction zones (in the case of EM2). We show that DMM represents
mantle that 1) has been previously depleted by 2-3% melt removal, 2) mass-balances well
with the continental crust, 3) has only 15% of the radiogenic heat production in primitive
upper mantle and 4) can generate present-day ocean crust by 6% aggregated fractional
melting. EM2 is classically interpreted as mantle material enriched in trace elements through
the ancient, subduction-zone recycling of terrigenous sediments; here we show this model is
unlikely and provide two other working hypotheses. The first is recycling of melt-
impregnated oceanic lithosphere; the second is recycling of a mantle wedge impregnated
with melt from a subducting oceanic plate.
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Chapter 1:

Introduction

The field of mantle geochemistry is fundamentally concerned with the processes and
history of Earth’s differentiation. How has Earth developed its inner and outer cores,
mantle, continental crust, oceanic crust, ocean and atmosphere? Can we track the growth and
evolution of these reservoirs through the 4.56 billion years of Earth history — and can we
project into the future? Though we are concerned with all these reservoirs, our field is self-
named ‘mantle’ geochemistry since the Earth’s mantle is the primary driver of
differentiation. It mediates convective transfer of materials from deep to shallow Earth,
resulting in the formation of crust, oceans and the atmosphere. It also returns bits of
shallow, differentiated materials back to the deep Earth in places where the mantle is down-
welling at subduction zones. The mantle essentially turns the Earth inside-out, trying to
purge it of unwanted, incompatible elements (such as hydrogen, carbon, potassium and
uranium) and retain in it the wanted, refractory elements (such as magnesium, iron and
chromium). It is fascinating to think our human bodies are made of carbon once contained
within the very deep, very hot inner Earth.

The Earth was born of materials condensed from our solar system about 4.56 billion
years ago (Patterson, 1956; Birck and Allegre, 1978); it almost certainly had some small
initial variations in chemical composition, but is thought to be, on average, similar in
elemental and isotopic abundances to the class of meteorites called CI carbonaceous
chondrites (Anders and Ebihara, 1982; Anders and Grevesse, 1989). From its mess of
agglomerated materials, Earth formed (very early in its history) a dense, Fe-Ni metallic core,
leaving the remaining lithophile materials to form the Bulk Silicate Earth (BSE); BSE is
about 84% the volume of the Earth, but only 68% the mass of the Earth because its density
is lower than that of the core. Knowing the approximate mass and composition of the core
from seismic surveys through the Earth allows for a fairly good estimate of the chemical
composition of the Bulk Silicate Earth (by subtracting the core from the CI composition;
Hart and Zindler, 1986; McDonough and Sun, 1995); this simple estimate is inaccurate for
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those elements, such as hydrogen, helium, sulfur and lead, that are strongly volatile and lost
to space before the formation of Earth’s atmosphere.

The BSE has further differentiated, or fractionated, into distinct chemical reservoirs —
some of which are obvious at the surface of the Earth (like the oceans and continental crust)
and some of which are held within the Earth’s mantle. The focus of this thesis is on the
compositional variations within the mantle, as determined from mantle melts erupted at both
mid-ocean ridges and hotspots (i.e. mantle plumes). Zindler and Hart (1986) noted that
there are 4 unique end-member mantle components based on *’Sr/*®Sr, '**Nd/'*‘Nd,
20°Pb/2Pb, "Pb/***Pb, and **Pb/**‘Pb radiogenic isotope compositions of a global
database of oceanic lavas. They described how most mid-ocean ridge basalts (MORBs) are
isotopically similar and represent an upper mantle previously depleted of melt (i.e. oceanic
and continental crust); this reservoir is termed the Depleted MORB Mantle (DMM). On the
other hand, ocean island basalts (OIBs), erupted by hotspot volcanism, are isotopically
heterogeneous in terms of most radiogenic isotope systems. Each hotspot chain is unique in
radiogenic isotope space and represents a unique mixture of the Zindler and Hart mantle
components. From parent isotope half-lives and parent-daughter ratios, it is inferred that
end-member mantle sources for OIBs and MORBs must have been chemically isolated for
billions of years in order to develop the observed differences in the abundance of daughter
isotopes. Because isotopes of heavy elements are so little fractionated in the melting
process, isotopic compositions of oceanic basalt are not only “clocks” for ancient reservoir
development, but also “fingerprints” of a melt’s solid source. The goal of mantle
geochemistry in general and this thesis specifically is to determine the origins, ages and
chemical compositions of these mantle components.

Although there have been many ideas regarding the origins of the classic mantle end-
members seen in OIB chains, one model has been relied upon most commonly and received
the most attention from a modeling point of view. We are in effect “outside looking in”, so
major differentiation processes occurring at the solid Earth’s uppermost layers, namely the
formation of continental and oceanic crust, are the most obvious explanations for the
creation of volumetrically significant heterogeneities in composition. Return of these
differentiated materials to the mantle through return flow at subduction zones creates mantle
heterogeneity. Geochemical models attempting to accurately quantify the compositions of
deeply-subducted materials need precise knowledge regarding: 1) hydrothermal alteration of
the oceanic crust, 2) partition coefficients for both the dehydration and melting of crust and

sediments, 3) the thermal structure of mantle wedges, 4) the compositions of subducting
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sediments, and 5) the lifespan of a subducted slab in the deep mantle. Although much
progress has been made in each of these topics, many parameters are not well defined
through space and time, making it difficult to formulate a completely accurate model for any
one of the OIB end-members.

In this thesis, I focus on describing the chemical character of 2 out of the 4 mantle
reservoirs that were identified and ‘fingerprinted’ by Zindler and Hart (1986). The first is
DMM; it is ubiquitously sampled along the global system of mid-ocean ridges and
represents the largest accessible reservoir on Earth (at least 30% the BSE). It is called
‘depleted’ because we know from its isotopic fingerprint that melts were removed from this
mantle a very long time ago (2 to 3 Ga), in a process we speculate to be much like the
oceanic and continental crust formation that occurs today. We use the following constraints
in deriving an average trace element composition of DMM: 1) trace element content of
clinopyroxenes from abyssal peridotites, 2) isotopic evolution from primitive upper mantle
(PUM) and 3) canonical trace element ratios in MORBs. The average trace element content
of DMM, as deduced here, generally shows a very smooth pattern with increasing trace
element compatibility, which to first order mass-balances with the continental crust. The
degree of depletion indicated in DMM represents 2-3% melt removal from the primitive
upper mantle; this means that DMM has only 15% the radiogenic heat production of PUM
(from K, U and Th). Present-day ocean crust (i.e. average MORB) can be modeled with 6%
aggregated fractional melting of the deduced DMM.

The second mantle reservoir studied in this thesis is nearly opposite in character from
the depleted upper mantle — it is called the Enriched Mantle 2 (EM2) and is sampled from
the inner Earth by the Samoan hotspot. EM2 has the highest *’Sr/**Sr of all oceanic lavas,
whereas the depleted upper mantle has the lowest. Although EM2 may not be a
volumetrically significant reservoir, its rare and unique composition is very significant
because it allows us to eventually understand the details of BSE differentiation (for example,
the growth rate of continental crust).

Chapters 2, 4 and 5 of this thesis address the geochemistry of the Samoan islands and
seamounts in great detail. In Chapter 2, we use trace element abundances and radiogenic
isotope tracers to establish the geochemical variability, character, and habits of the Samoan
lavas, including the ones that are more extreme in their EM2 signature than any other lavas
sampled on Earth. In Chapter 2, we establish that a model involving the recycling of only
marine sediments will not successfully explain the origin of EM2. Instead, an alternative

model is offered in which an oceanic lithosphere is impregnated with an upper mantle melt,
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recycled through a subduction zone and stored for 2.5 Ga in the mantle — to be sampled
today by the Samoan mantle plume.

In Chapter 4, we use volatile element abundances (water, carbon dioxide, fluorine, sulfur
and chlorine) from Samoan glasses to comment on the general properties of these elements
in igneous systems and the specific properties of water in the EM2 mantle reservoir. We
find that absolute water contents are high for Samoan lavas (0.63 — 1.50 wt%), but relative
enrichment of water compared to trace element enrichment is low. H,0/Ce (58 — 157) and
H,0O/La (120 — 350) correlate inversely with *’Sr/**Sr compositions (0.7045 — 0.7089).
This leads us to believe that, because of very fast diffusion of hydrogen in olivine, recycled
lithospheric material with high initial water content will lose water to the drier ambient
mantle during storage within the inner Earth. This concept implies that water may be one of
the few (if only) elements in the mantle that is close to chemical equilibrium over great
distances.

Chapter 5 presents oxygen isotope data for Samoan olivine phenocrysts as a means to
identify the presence of recycled material that was once at or near Earth’s; oxygen isotope
variations occur not because of production of a radiogenic oxygen isotope, but because
oxygen’s isotopes, ‘O and '*O, have slightly different chemical behavior during low
temperature reactions. Here we test two models for the generation of EM2. The first is
(once-again) the standard sediment-recycling model. The second expands upon the
metasomatic model of Chapter 2 by identifying a location for the metasomatism (the mantle
wedge), and more accurately defining what the metasomatising agent is (an eclogite melt).
Each model shows some major misfits to characteristics of end-member Samoan lavas,
although the metasomatic model requires less ‘special pleading’.

Chapter 6 investigates the correlation between geochemical and geophysical properties
of Samoa. Excess crustal flux along the Samoan volcanic lineament decreases nearly
monotonically approaching Vailulu’u Seamount, the easternmost and youngest volcano.
This trend shows excellent correspondence to increasing ***Pb/***Pb compositions of the
lavas with decreasing age along the hotspot track. We speculate this correlation could be
due to either a lithosphere thickening toward the east or decreasing potential temperature of
the mantle plume, and that the geochemical signatures observed in the lavas are partly a
function of how mantle materials with differing solidus temperatures are sampled from the
Earth.
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Chapter 2:

Recycled metasomatized lithosphere as the origin
of the Enriched Mantle 11 (EM2) Endmember:

Evidence from the Samoan Volcanic Chain®

Abstract

An in-depth Sr-Nd-Pb-He-Os isotope and trace element study of the EMII-defining
Samoan hotspot lavas leads to a new working hypothesis for the origin of this high
¥7Sr/**Sr mantle endmember. Systematics of the Samoan fingerprint include 1) increasing
95pb/***Pb with time — from 18.6 at the older, western volcanoes to 19.4 at the present day
hotspot center, Vailulu’u Seamount, 2) en-echelon arrays in ***Pb/***Pb — ***Pb/***Pb space
which correspond to the two topographic lineaments of the 375 km long volcanic chain —
this is much like the Kea and Loa Trends in Hawai’i, 3) the highest *’St/**Sr (0.7089) of all
oceanic basalts, 4) an asymptotic decrease in *He/*He from 24R, (Farley et al., 1992) to the
MORB value of 8R, with increasing *’Sr/**Sr, and 5) mixing among four components
which are best described as the “enriched mantle”, the depleted FOZO mantle, the (even
more depleted) MORB Mantle, and a mild HIMU (high ***U/***Pb) mantle component. A
theoretical, “pure” EMII lava composition has been calculated and indicates an extremely
smooth trace element pattern of this endmember mantle reservoir. The standard recycling
model (of ocean crust/sediment) fails as an explanation for producing Samoan EM2, due to
these smooth spidergrams for EM2 lavas, low '*’Os/'**Os ratios and high *He/*He (>8R,).
Instead, the origin of EM2 has been modeled with the ancient formation of metasomatised
oceanic lithosphere, followed by storage in the deep mantle and return to the surface in the
Samoan plume.

* Published in G° Volume 5, No. 4, April 2004.
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1. Introduction

Although intra-plate ocean island volcanism accounts for only a few percent of the total
volcanism on Earth, these volcanic piles may be the surface manifestations of the deepest
known samplings of the interior of the planet. The relative stationarity of mantle plumes
with respect to upper mantle plate flow (Molnar and Stock, 1987; Steinberger and
O’Connell, 1998; Wang and Wang, 2001; Koppers et al., 2001), and a growing catalogue
of seismic evidence and tomographic images showing velocity anomalies beneath hot spots
extending well into the mid-mantle and sometimes to the core-mantle boundary (Russell et
al., 1998; Shen et al., 1998; Zhao, 2001; Montelli et al., 2003), all support the idea that
mantle plumes sample the inner Earth at a much deeper level than do mid-ocean ridge
spreading centers. Ocean island chains may thus provide some of the best clues to the
chemical character of the lower mantle and the nature of convective interactions between the
deep and shallow mantle.

Unlike mid-ocean ridge basalts (MORBSs), which derive from a fairly uniform melt-
depleted upper mantle, ocean island basalts (OIBs) are isotopically heterogeneous in terms
of most radiogenic isotope systems (e.g. Zindler and Hart, 1986; Hart, 1988; Hofmann,
1997). Isotopic arrays from ocean island chains often extend from a “common” mantle,
termed FOZO (i.e. Focus Zone; Hart et al., 1992), and tend toward one of three
“endmember” mantle components: HIMU, the high time-integrated U/Pb mantle, EM1 or
EM?2, the Enriched Mantles 1 and 2 (Zindler and Hart, 1986). From parent isotope half-lives
and parent-daughter ratios, it is inferred that mantle sources for OIBs and MORBs must
have been chemically isolated for billions of years in order to develop the observed
differences in the abundance of daughter isotopes. Because isotopes of heavy elements are
so little fractionated in the melting process, isotopic compositions of oceanic basalt are not
only “clocks” for ancient reservoir development, but also “fingerprints” of a melt’s solid
source. We are left, through geochemical interrogation and theoretical ingenuity, to reverse
the processes by which mantle melts were generated and brought to Earth’s surface.
Ultimately, with some indication for source compositions, the origins and ages of
chemically distinct, isolated mantle reservoirs can be deduced.

Although there have been many ideas regarding the origins of the classic mantle end
members, one model has been relied upon most commonly and received the most attention

from a modeling point of view. We are in effect “outside looking in”, so major
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differentiation processes occurring at the solid Earth’s uppermost layers, namely the
formation of continental and oceanic crust, are the most obvious explanations for the
creation of volumetrically significant heterogeneities in composition. Many workers have
applied this perspective and contributed to what is here referred to as the Standard Model
for the origin of mantle components (Armstrong, 1968; Chase, 1981; Hofmann and White,
1982: Cohen and O’Nions, 1982; White, 1985; Zindler and Hart, 1986; Weaver, 1991; Hart
et al., 1992). In summary, oceanic crust is subducted at convergent margins, dehydrated
(increasing U/Pb, Th/Pb, and St/Rb ratios) and put into long term storage in the deep mantle
to evolve to HIMU. EM1 and EM2 are generated when trace-element-enriched pelagic (i.e.
deep-sea) and terrigenous (i.e. continental) sediment, respectively, accompany the subducted
and stored oceanic crust (Fig. 1). Geochemical models attempting to accurately quantify the
compositions of these deeply-subducted materials (Hart and Staudigel, 1989; Weaver, 1991;
Stracke et al., 2003) are greatly hindered by a lack of knowledge regarding: 1) hydrothermal
alteration of the oceanic crust, 2) partition coefficients for both the dehydration of crust and
sediments and the melting of sediments, 3) the thermal structure of mantle wedges, 4) the
variable compositions of sediments in space and time, and 5) the lifespan of a subducted
slab in the deep mantle. Although much progress has been made in each of these topics, the
constraints are not strong enough to provide the needed resolution in parent/daughter ratios.
Ironically, it may be exactly the lack of constraints that ultimately makes the Standard
Model nonviable. By all indications from today’s geodynamical systems, sediments and the
subduction zone processing of crust and sediments all display such variability that a specific
composition (which evolves to HIMU, EM1 or EM2) almost certainly would not be
produced twice, and there would be no discrete or recognizable “endmember”™ reservoirs.
On the other hand, and often the strongest criticism of the Standard Model (e.g.
Hawkesworth et al., 1984; Barling and Goldstein, 1990; Morgan, 2000), is that there may be
no such things as mantle endmembers. Each ocean island array could consist of its own
unique isotopic composition, which represents a unique subducted slab from a unique
recycling time.

In the present study, we specifically deal with the origin of the Enriched Mantle 1I
(EM2) endmember. Lavas from the Samoan Islands have long been recognized as holding
the most extreme signal of EM2 (Zindler and Hart, 1986; Wright and White, 1986; Farley
et al., 1992, Hauri and Hart, 1993). Here we use a new comprehensive geochemical study to
assess possible origins of the EM2 reservoir. This paper outlines why the recycling of

sediment/slab cannot be the origin of EM2, and offers an alternative model which will
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generally result in consistent trace element compositions, and hence isotopic signatures,
through time. We assume that mantle endmembers do, in fact, exist, and that one process,
acting to varying degrees at a variety of times, will produce a fairly homogeneous
endmember reservoir, which is available for mixing with other mantle components during
upwelling of mantle plumes.

The working model introduced here for the origin of EM2 involves metasomatism (i.e.
fluid/melt infiltration) of oceanic lithosphere, followed by subduction zone recycling and
long-term storage of this lithosphere. As a process for creating trace-element-enriched
mantle, metasomatism is not a new idea and has been invoked both for continental
lithosphere (Frey and Green, 1974; Brooks et al., 1976; Menzies and Murthy, 1980;
Menzies, 1983) and oceanic lithosphere (Zindler et al., 1979; Kay, 1979; Hawkesworth et
al., 1979, 1984; Richardson et al., 1982; Roden et al., 1984; Hart et al., 1986; Halliday et al.,
1992; Class and Goldstein, 1997; Niu et al., 1996; 1999; Niu and O’Hara, 2003). The
process we envision is much like the SYS model of Zindler et al. (1979), and the auto-
metasomatic model of Roden et al. (1984). We envision it operating on newly formed
lithosphere close to spreading centers, as illustrated by Niu et al. (1999) and Niu and
O’Hara (2003).

We show that a lithosphere impregnated 2.5 Ga with a small-degree upper mantle melt
can evolve to the present day isotopic composition of EM2. This model provides an EM
reservoir with much greater volume than that of oceanic crust and sediment. A more
voluminous “package” will have greater resistance to mixing within the convecting mantle
and therefore have greater possibility of staying an isolated body for the required 2.5 Ga
evolution time. Another benefit of this model is that the lithosphere will be isolated and
protected from subduction zone processing (such as elemental fractionations that occur
within the subducted oceanic crust and sediments during metamorphism and

devolatilization).

2. Geologic setting

The Samoan islands and seamounts are centered on 14°S latitude and stretch from 169-
173°W longitude (Fig. 2). They sit ~100 km north of the northern termination of the Tonga
Trench, on ~110 Ma oceanic crust of the Pacific Plate which is moving 25.8° WNW at 7
cm/yr (Sella et al., 2002). The Samoan volcanoes separate into two topographic ridges, both
sub-parallel to the direction of plate motion: the Savai’i — Upolu — Tutuila — Malumalu
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group define the southwestern (and generally older) lineament, and the Muli — Ofu/Olosega
— Ta’u — Vailulu'u group define the northeastern (and younger) lineament. We will
designate these the “Malu” and “Vai” Trends, respectively. The recently mapped leading-
edge seamount, Vailulu’u, rises from 5000 meter seafloor to a summit depth of 590m (Hart
et al., 2000). Recent volcanic activity at Vailulu’u has been documented with the following
observations: elevated water temperatures and particulate contents within the summit crater, a
halo of intense particulate matter surrounding the summit in the depth range of 600-800
meters, high Mn concentrations and *He/*He ratios (up to 9 R,) in the crater water, swarms
of seismicity, and dredged rock samples with U-series ages of 5-50 years (Hart et al.,
2000). The age-progression heading west from this present-day hot spot location
approximately follows the plate velocity of 7 cm/yr and includes the seamounts Lalla
Rookh, Combe, and Alexa, which is 1750 km west of Vailulu’u (Duncan, 1985; Natland
and Turner, 1985; McDougall, 1985; Hart et al., 2000; Hart et al., unpubl. data). Malulu
seamount and Rose Atoll to the east of Vailulu’u do not have Samoan isotopic signatures
(Hart et al., unpubl. data), and are most likely associated with the Cook-Austral lineament.

As if burning the candle at both ends, post-erosional volcanism has been extensive on
the westernmost island of Savai’i (with the most recent eruptive episode taking place from
1905-1911) as well as being documented on the islands of Upolu and Tutuila (but here, all
pre-historic, and much less extensive) (Kear and Wood, 1959; Keating, 1992). Although the
pervasive post-erosional veneer on Savaii has disrupted the age-progression model (Savai’i
should be ~5Ma based on the plate velocity model) and has lead to debates about the origin
of the Samoan volcanoes (e.g. Natland, 1980), we believe there is little doubt about the chain
originating from hot spot volcanism. The atypical volume of post-erosional volcanism on
Savai’i is possibly due to the complicated tectonic setting of the volcanic chain. Since
Savai’i is closest to the Tonga Trench, it is reasonable that bending stresses are facilitating
additional melt extraction from the upper mantle (e.g. Hawkins and Natland, 1975; Natland,
submitted 2003).

Tectonic reconstruction of the region (Brocher, 1985; Pelletier et al., 1998; Zellmer and
Taylor, 2001) show that the transform-fault bounding the northern Tonga Trench evolved
~6-8 million years ago from the fossil Vitiaz Trench in response to opening of the Lau
back-arc basin. Studies of the chemical characteristics of the northern Lau back-arc basin
seamounts and seismic profiling beneath the basin collectively suggest leakage of Samoan
plume material into the northern Lau Basin through a tear, or window, in the paleo-slab of

the Pacific Plate subducted at the Vitiaz Trench. Geochemical evidence includes high
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*He/*He lavas of some Lau Basin seamounts (Poreda and Craig, 1992; Turner and
Hawksworth, 1998), with trace element and isotopic compositions which are more
characteristic of OIBs than MORBs or IABs (Ewart et al, 1998; Danyushevsky et al, 1995;
Wendt et al., 1997). Seismic studies by Millen and Hamburger (1998) and Chen and
Brudzinski (2001) illustrate a remnant slab of the Vitiaz subduction that has detached from
the warped Pacific Plate, thereby providing an unobstructed path for melt/mantle migration
from the Samoan plume into the Lau Basin. By speculation, this suggests that the Samoan
plume beneath the Pacific Plate is much more widespread than the discrete lineament of
volcanoes would indicate. Also, the exact location of the Samoan volcanoes may not
necessarily be where the plume upwelling is “strongest”, but instead where the plume
fortuitously intersects a structural weakness imparted to the lithosphere by tectonic stresses
of the local area. The en-echelon nature of the volcanic edifices may provide witness to this

structural control (see Natland, submitted 2003, for a full discussion of this idea).

3. Samples and Analytical Details

3.1. Sample locations and descriptions

Rock samples utilized in this study have been collected from both land and sea. The
seamounts Vailulu’u, Muli, and Malumalu, along with submarine portions of Ta’u, were
dredged during the 1999 AVONZ2/3 cruise of the R/V Melville. Land-based sampling of
Savai’i and Upolu, conducted in 2001, was aimed at expanding the coverage of “old
shield” (namely, the Fagaloa Volcanic Series; Kear and Wood, 1959), and thereby
establishing a greater temporal coverage of the Samoan plume. On Upolu, we sampled the
southwestern exposure of the Fagaloa Volcanics; this is a topographic massif with well-
developed river valleys, referred to as A’ana by the local inhabitants. Our Upolu samples
primarily come from along or near the Matafa’a coastline and Fagalei Bay. Samples from
Savai’i were collected from the north-central shore, where exposures of Fagaloa Volcanics
were mapped over a 20 km” relative topographic high (Kear and Wood, 1959). This area is
bound to the east by the village of Vaipouli, contains the Muliolo and Eatelele Streams, and
is bound to the west by an escarpment that leads down to the village Paia.

Subaerial sampling of Ta’u, the youngest island of the chain, was conducted in 1999
and was principally concentrated along the coastline. The sampling was temporally diverse,

in that all five of the volcanic series mapped by Stice and McCoy (1968) are represented.
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Unlike the older and larger islands of Savai’i and Upolu, Ta’u Island manifests from only
one main shield volcano; this simplified structure is reflected in the isotopic homogeneity
observed for Ta’u, as will be discussed in following sections.

Phenocryst abundances in Samoan lavas range from 0% to 50% and include the
following minerals in decreasing modal abundance: olivine, clinopyroxene, plagioclase,
orthopyroxene, and Ti-augite. Phenocrysts are most common in samples from Vailulu’u
and least common in samples from Savai’i and Upolu. In thin section, some samples show
two populations of olivine in which a coarse-grained population (2-10 mm) shows
resorption boundaries and a smaller-grained population (1-2 mm) shows almost no
embayed crystal boundaries. However, for most samples, olivine major element
compositions (Jackson et al., unpubl.) show that phenocrystic olivines are in Mg-Fe
equilibrium with the coexisting liquids. Some samples (especially T14) have glomerocrysts
of olivine (+spinel). Plagioclase, clinopyroxene, and oxides are the most common matrix
minerals. Hand-samples can generally be classified as aphanitic basalt, olivine basalt, picrite
or (rarely) ankaramite. Alteration, in the form of iron-oxide, is most prevalent in the Savai’i
and Upolu samples. Sample 63-11 from Vailulu’u crater shows hydrothermally-precipitated

quartz rinds along some cracks and grain boundaries.

3.2. Analytical techniques

Techniques reported here are for samples described above. Additional subaerial samples
from Savai’i, Upolu, Tutuila and Ta’u have been collected by K.A. Farley and J.H. Natland
over the last two decades and analyzed by K.A. Farley for Sr-Nd-Pb-He isotopic
compositions. Additional subaerial samples from Savai’i and Upolu have been collected and
analysed for major and trace elements and Sr-Nd-Pb isotopes by M. Regelous. We include
these data in the present manuscript, as they are previously unpublished; any differences in
analytical techniques are reported in the corresponding data tables.

Sr, Nd, and Pb isotopic analyses were carried out with conventional ion exchange
procedures (references in Taras and Hart, 1987), using whole rock powders, prepared in an
agate shatterbox, and leached for 1 hour in warm 6.2 N HCl. The TIMS techniques are
described by Hauri and Hart (1993). Sr and Nd isotope data carry 26 precisions of +35
ppm and +40 ppm, and are reported relative to 0.71024 (NBS 987) and 0.511847 (La
Jolla), respectively. Some samples run for Sr and Nd by NEPTUNE multi-collector
ICP/MS at W.H.O.l. are of comparable precision to TIMS anaylses. The precision of
TIMS Pb data is taken to be 0.05% per mass unit after fractionation-correcting to the NBS
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981 values given by Todt et al. (1996). Pb isotopic compositions of some samples were also
determined on the P54 multi-collector ICP/MS in Lyon, with 20 precisions of all ratios of
~200 ppm. Additionally, the Upolu and Savai’i sample suite was analyzed on the
NEPTUNE multi-collector ICP/MS at W.H.O.I.; using a Tl internal standard, the 2¢
external reproducibility for these samples was +100 ppm or better for all ratios (see Hart et
al., 2002). Helium isotopic compositions (*He/*He R,, relative to atmospheric standard) of
olivine and/or fresh glass separates (~1-3 mm) were determined at W.H.O.1. by in vacuo
crushing, using methods described in Kurz et al. (1996). Analytical errors average +0.2 Ra
at 20, for helium concentrations ranging from ~10" to 10° cc/gram. Os isotopic
compositions on a select group of olivine-rich samples were determined by sparging of
Os0, into W.H.O.1.’s Finnigan Element Magnetic Sector ICP-MS, following a flux fusion
sample preparation (see Hassler et al., 2000 for a detailed Os analytical technique). Fusion
blank corrections resulted in 0.06-1.22% corrections to the '*7Os/'**Os ratios. Major
elements and some trace elements (Ni, Cr, Sc, V, Ga, Cu, Zn) in unleached whole rock
powders were measured by XRF, and all other trace elements by ICP/MS at Washington
State University (Hooper et al, 1993). Submarine glasses have been analyzed for major
elements by electron microprobe at Massachusetts Institute of Technology.

3.3. Sample preservation/quality

Despite sampling of lavas from older shield and submarine settings, the quality of
preservation is generally very good. The Th/U ratios of the sample suite fall entirely within
4.5 + 1.5 (with the exception of sample S15 at Th/U = 6.7) and show a slight (although
rough) positive correlation with Th concentrations. The Ba/Rb ratios have an average of 9.3
+ 1.8 at 10 (near the canonical value of ~12 for fresh ocean island basalts; Hofmann &
White, 1983) and are inversely correlated with Rb concentrations; significant exceptions to
this correlation are samples 79-4, S15, and S25, with Ba/Rb ratios of 17.2, 14.0, and 3.7,
respectively. We take these two proxies of alteration as indications that elements as or less
mobile than Rb and U are very nearly pristine for most samples. However, elevated Rb/Cs
ratios (176 + 70 at 10) in the subaerial Upolu and Ta’u samples are most likely explained
by chemical weathering and contrast strongly with the roughly canonical values (85-95;
Hofmann & White, 1983) represented by the remaining suite (97 + 30 at 10).
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4. Age Relationships and Age-Progression

Vailulu’u seamount, the most easterly volcano in the Samoan chain, is currently active
and belived to be the present day hotspot center (Hart et al., 2000). U-series data constrain
two samples from Vailulu’u’s summit region to be less than 50 years old; 7 other samples
from six dredge locations show excess ***Th/***U, evidence of ages less than a few hundred
thousand years (Sims and Hart, to be submitted). The oldest K-Ar age from Tau Island is
0.3 Ma (McDougall, 1985). The youngest volcanic series on Tau (Faleasao) is probably
younger than 37,000 years, based on '*C ages of coral inclusions in these volcanics (Hart,
unpublished). Additionally, there was an underwater eruption just west of Tau in 1866 (see
description in Keating, 1992), evidence that Tau is still in an active shield-building stage. As
yet, we have no age constraints on Muli seamount, though the samples dredged from there
appear “‘older” than those dredged from Vailulu’u or Tau. Samples from three dredges on
Malumalu show ***Th/**U excesses similar to those on Vailulu’u (Sims and Hart, to be
submitted), suggesting that Malumalu is not significantly older than Vailulu’u. K-Ar ages
for the Pago and Masefau shields on Tutuila range from 1.0-1.9 Ma (McDougall, 1985;
Natland and Turner, 1985), somewhat younger than the 2.3-2.7 Ma expected from plate
motion considerations.

New high-quality *“°Ar/*Ar step-release plateau ages are given in Table 1 for the
northern shield on Savai’i and the SW shield on Upolu, along with an earlier 40/39 total
fusion age for the Vanu River shield on Savai’i. Previous K-Ar ages on the eastern Upolu
shield range from 1.54-2.74 Ma (Natland and Turner, 1985); our western shield ages are
0.93 and 2.65 Ma. The older age agrees with the older ages of the eastern shield, though
both shields appear younger than the expected plate model age range of 3.9-4.5 Ma. The
0.93 Ma sample (U10) was collected from well within the interior of the eroded SW shield
massif, and appears to be reliable evidence for an extended (~2 Ma) period of shield
building on Upolu.

There are no published radiometric ages from Savai’i. Based on a plate velocity of 7
cm/year, the age expected for shield initiation on Savai’i is about 5.2 Ma; the two ages
reported in Table 1 for the northern (Manase) shield, 0.24 and 0.39 Ma, are far younger
than this expected plate age. Kear and Wood (1959) mapped this northern area as shield
largely on the basis of abundant surface streamflow. However, we found no obvious
evidence of unconformable erosional morphology in this area, and the geochemical evidence

discussed below strongly suggests that this map unit is akin to the post-erosional basalts on
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Savai’i and Upolu, and unlike the Upolu shield basalts. The young *°Ar/*Ar ages are
consistent with a re-assignment of this unit to post-erosional status. In the southern interior
of Savai’i, Kear and Wood (1959) mapped a small exposure of shield in a gorge on the
upper Vanu River. This area is virtually inaccessible, but a trachyte cobble was collected
from the lower Vanu River by one of us (KAF) in 1991, and the 40/39 total fusion age of
this trachyte is 2.05 Ma (Table 1). While still significantly younger than a plate-model age,
this trachyte age is nevertheless very important as it shows that not all of the volcanism on
this island can be related to proximity to the Tonga trench, as suggested by Natland (1980);
at 2 Ma, the corner of the Tonga trench was almost 400 km west of Savai’i (Bevis et al.,
1995). On the other hand, there can be little doubt that Savai’i has been massively re-
surfaced with post-erosional volcanism as proposed by Natland (1980). The early history of
this island will probably only be accessed by dredging on the deeper flanks, where slope
failure provides an exposed record.

All in all, the radiometric ages of shield lavas in Samoa are broadly consistent with a
simple age-progressive hotspot track, in that ages generally increase from east to west.
However, it is clear that shield ages are overall younger than those predicted by plate motion,
most likely because the oldest incipient shield lavas are not sampled at the surface of present
day volcanoes. While the earliest stages of shield building on Tutuila, Upolu and Savai’i are
thus far missing from the sampled record, it would be premature to use this as evidence

against a simple hotspot model for Samoa.

5. Magma Generation and Crystal Fractionation

In major element composition, the Samoan basalts and trachybasalts analyzed for this
study are clustered just above the alkali-tholeiite line (MacDonald and Katsura, 1964) at 44-
49 wt% SiO, (Fig. 3; Tables 2 and 5). Samples that fall into the tholeiitic field are, for the
most part, from Vailulu’u Seamount, and three of these are highly picritic. Post-erosional
lavas (on Savai’i, Upolu and Tutuila) overlap with the shield volcanics, but extend to much
greater silica-undersaturation (basanites and nephelinites down to 36 wt% SiO,; Hawkins
and Natland, 1975; Johnson, 1983; Hauri and Hart, 1997). Mg#’s (molar percent
Mg/Mg+Fe”*) range from 40 in the differentiated Muli samples to 85 in the Vailulu’u
picrites. The low MgO/high SiO, end of the suite is (vaguely) dominated by samples from
Vailulu’u, Malumalu, and Upolu; on the other hand, high MgO/low SiO, samples are
mainly from Savai’i, Tutuila, and Ta’u. Also plotted on some co-variation plots of Figure 3
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are trajectories of near-solidus primary melt compositions at varying pressures of melting in
the garnet stability field, using algorithms defined by Herzberg and Zhang (1996) through
experiments on KLB-1 peridotite. Recent experiments on another fertile peridotite (KR4003
starting material; Walter, 1998) show primary melt compositions with a general shift to
higher MgO at a given pressure (by ~5% in the 4-5 kbar pressure range). Most of the
Samoan lavas have undergone some amount of crystal fractionation, as indicated by the fact
that they have significantly lower Mg#'s than any estimated primary mantle melts.

The relationship between Mg#’s and CaO shown in Figure 4 provides information
regarding both magma generation and crystal fractionation. Plotted along with lava
compositions is the trajectory of primary mantle melt compositions (Herzberg and Zhang;
1996). To assess the extent of differentiation and the minerals involved, we have used the
pMELTS program (Ghiorso et al., 2002) to model anhydrous fractional crystallization (at a
best-fit pressure of 3-4 kbar) of some of the more primitive lavas (Ta’u samples T14 and
T48, Vailulu’u sample 63-3, and Malumalu sample 78-1). PMELTS trajectories calculated
with 1 wt% H,0, at a given pressure, are nearly identical to anhydrous runs at 1kbar lower
pressure (not shown). All starting compositions have olivine as the second liquidus phase
(after spinel), leading to a negative slope for the liquid path on Mg# against CaO (Fig. 4).
The kink to positive slopes on the liquid lines of descent marks the crystallization of
cpxtolivinetplagioclase. As CaO content of the starting magma decreases, clinopyroxene
(cpx) saturation occurs at lower Mg#’s. A suite of submarine Samoan glasses (Table 3) has
also been plotted on Figure 4 and shows that true liquids follow the lines of crystal
fractionation predicted by pMELTS.

Suites of lavas from each volcano cluster along fairly distinct Mg#-CaO fractionation
trends. By projecting the olivine fractionation trends for the different volcanoes back to the
primary mantle melt trajectory, we can interpret that the Samoan lavas were generated in the
pressure range of 2.5-6 GPa; the order of increasing pressure of melting would be
Vailulu'u < Ta’u/Malumalu < Tutuila/Upolu/Savai’i. The extrapolated primary magmas in
this model have an extensive range in MgO, from 11 wt% at lowest pressure to 22 wt% at 6
GPa. To get integrated pressures of melting as high as 6 GPa, melting would have to
initiate at depths exceeding 180 km and terminate at depths much deeper than the thickness
of the lithosphere (~100 km). Given estimates for potential temperatures of plumes
(~1550°C; Watson and McKenzie, 1991) and water-undersaturated solidi (Hirth and
Kohlstedt, 1996), the depth of initial melting is close to 180 km and therefore cannot be the
integrated depth of melting. The above approach is strictly valid only if the lavas from each
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volcano are derived from a constant source composition. We conclude that this CaO index
for pressure of melting is rather rickety, given the isotopic variations between volcanoes that
will be discussed further into the paper, and that the order of “increasing pressure of
melting” is clouded by the extent to which melts were generated from a depleted (low CaO)
material.

The Vailulu’u samples are not only high in CaO (also Ca/(Ca+Na) and CaO/Al,O, ) at
a given MgO value, but they are also low in Na,O, TiO,, and FeO. This suggests they have
the most promise in being interpreted as the shallowest, highest degree partial melts in the
whole sample suite (Kinzler and Grove, 1992; Herzberg and Zhang, 1996; Walter, 1998).
Melting beneath the other volcanoes may be initiated deeper in the mantle, possibly due to
(1) differences in source composition (required by isotopic variations), (2) higher potential
temperatures and mantle flow rates, or (3) mantle flow paths which affect melt-solid
segregation. The Vailulu’u suite is fit fairly well by a crystal fractionation trend at a
pressure of 3 kbar, and indicates cpx fractionation has likely occurred for most samples.

For Ta’u and Malumalu, olivine fractionation clearly dominates the spread in lava
compositions. A few samples with Mg#’s greater than ~73 have obviously accumulated
olivine (they are phenocryst-rich), but most samples lie along olivine fractionation lines or at
the intersection of the olivine control line and cpx saturation (Fig. 4). Three Ta’u samples
have compositions close to those of the Muli samples and have surely undergone cpx
fractionation; these samples also have the lowest concentrations of the cpx-compatible
elements vanadium and scandium in the whole suite (not shown). If parental magmas for all
the Ta’u and Muli samples were of nearly the same composition, liquid lines of descent
indicate that these low Mg# lavas have undergone about 15% more olivine fractionation than
samples T14 and T48, along with 25% cpx fractionation.

6. Isotopes and Trace Elements

6.1 The Global Context

Plotted on the three-dimensional axes of Figure 5 is the mantle tetrahedron of Hart et al.
(1992), with data from the ocean island chains which quintessentially define the coordinates
for each of the mantle components, EM1, EM2, and HIMU. Data arrays for individual
island chains, as well as groups of taxonomically similar island chains, quasi-linearly extend

from one of the three OIB endmember components toward FOZO, the common mantle;
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very notable is the serious lack of elongation of arrays along tie-lines between the three OIB
components. It is clear that EM?2 lavas in general, and Samoan lavas in particular, dominate
the range in oceanic *’Sr/**Sr values, but are much less variable in '*’Nd/'*“Nd than EMI.
The variation in ***Pb/***Pb found in EM2 basalts is small relative to the composite oceanic
suite.

Strontium, neodymium, lead, helium, and osmium isotope ratios for Samoan basalts are
given in Tables 4 through 6. Isotope plots (Figs. 6-9) show this new data along with data
reported in previous studies (Wright and White, 1986; Farley et al., 1992; Hauri and Hart,
1993). The wide range in *’Sr/**Sr values, 0.7044 — 0.7089, is correlated with the more
narrow range of 0.51293 — 0.51251 for '**Nd/'"**Nd (Fig. 6). Each island or seamount
tends to show a unique field of isotopic compositions that, as will be shown, evolve
systematically through space and time. Malumalu Seamount contributes the furthest afield
EM2 signature and now defines the most radiogenic *’Sr/**Sr value (0.7089) of all oceanic
lavas. At lower ¥’Sr/**Sr (0.7044), near estimates for Bulk Silicate Earth (BSE), the Samoan
array is split into two prongs — the *“serpent’s tongue”. Both prongs, one comprised of
lavas from Ta’u Island and the other, at higher '*’Nd/'**Nd, comprised of lavas from Upolu
and Tutuila, are significantly elevated (at €y, of +3 and +5, respectively) over the BSE value
of 0.512638 (Hamilton et al., 1983). The other notable EM2 hotspot, the Societies, overlaps
the lower prong of the “serpents tongue”, and is generally shifted to less-enriched Sr and
Nd values. The classic EM1 array (Pitcairn) lies well below the Samoa array.

The sample group on the high '“*Nd/'**Nd prong is also the lowest in ***Pb/***Pb and
*7Pb/***Pb of all the shield lavas (Fig. 7). All Samoan lavas lie to the right (high ***Pb/***Pb
side) of the terrestrial Pb Geochron and are in the mid-range of the elongate, worldwide
OIB cluster; they are situated entirely above the Northern Hemisphere Reference Line
(NHRL; Hart, 1984) in both *’Pb/***Pb and *"*Pb/***Pb (Figs. 7 and 8). The most
radiogenic “*°Pb/***Pb compositions (19.4) are found not in the highest *’Sr/**Sr samples,
but in samples from Vailulu’u Seamount (of moderate *’Sr/**Sr ~ 0.7055). On the other
hand, the highest *’Pb/*™Pb (15.65) and ***Pb/***Pb (39.8) correspond to the EM2-
defining Malumalu lavas, implying that EM2 is an old reservoir of high time-integrated
Th/U.

The Society array (not shown in Fig. 7) is much steeper, falling below the NHRL at low
20%pb/***Pb and crossing above it, to overlap the Malu trend data from Samoa. Interestingly,

the highest *’Sr/**Sr sample from Tahaa (Societies) lies very close to our extreme *'Sr/**Sr
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sample in *’Pb/?*Pb - *°°Pb/***Pb, but is far lower than it in ***Pb/***Pb. Note in Figure 8
that the Society array lies close to the NHRL, and is totally distinct from the Samoa field.

The *He/*He ratios of Samoan lavas range from 8 R, at high *’Sr/**Sr to a maximum of
26 R, at generally lower *'Sr/*°Sr (Fig. 9). New data support the existence a primitive
helium mantle (i.e. PHEM of Farley et al., 1992) but with depleted Sr and Nd isotopic
compositions (i.e. FOZO of Hart et al., 1992). With increasing *’Sr/**Sr, values of *He/*He
asymptotically approach ~8 R,, showing that the helium isotopic composition of EM2 is
approximately equivalent to that of MORB and much higher than the atmospheric values of
recycled crustal materials (see discussion by Farley et al., 1992). This low *He/*He value of
EM2 is either inherent to the EM2 source, or is a product of diffusive equilibrium with the
upper mantle over long timescales (see section 9).

The trace element character of the Samoan lavas display typical OIB features (Hofmann,
1988; Weaver, 1991), with trace element enrichments up to 100 times primitive upper mantle
(PUM), the highest normalized concentrations at the highly incompatible elements, and
negative anomalies at Cs, K and Pb (Fig. 10). The largest inter-volcano differences are at
Pb, Rb, Ba, and Th. Weaver (1991) employed the trace element ratios Rb/Nb, Ba/Nb, Ba/Th,
and Ba/La to distinguish between the EM1 and EM2 species. He used these trace elements
to argue for a recycled sedimentary component as the cause for the EM signature, and
ascribed the difference between EM1 and EM2 to a pelagic versus terrigenous sedimentary
provenance. Therefore, a comparison between the Samoan lavas (extreme EM2) and those
from Pitcairn (extreme EM1) should theoretically show the greatest differences in these
ratios. However, recent studies on Pitcairn lavas (Dostal et al., 1998; Eisele et al., 2002)
show nearly complete overlap with the Samoan lavas for Weaver’s classification ratios,
unlike the clear distinction between EM1 and EM2 previously reported for lavas with less
extreme endmember signatures (Fig. 11). This result makes the trace element differences
between EM1 and EM2 very difficult to resolve and discourages the description of EM1
and EM2 as having “pelagic” and “terrigenous” components, respectively. Furthermore,
the Plank and Langmuir (1998) study of the compositions of sediment being subducted at
today’s convergent margins shows that pelagic and terrigenous sediments are: (1) not
notably different in trace element ratios such as Ba/Th, and (2) not typically occurring alone
in subducted sedimentary sections, but are instead components of the whole, mixed
sedimentary package. Hence, generating mantle endmembers by recycling of only pelagic or

only terrigenous sediment seems physically unlikely.
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6.2 Shield vs. Post Erosional

As initially observed by Wright and White (1986), post-erosional (PE) lavas are
isotopically distinct from all shield lavas. There is a commonality among the PE lavas from
all along the chain (Savai’i, Upolu and Tutuila), in contrast to the observation that each
island displays a unique isotopic birthmark in its shield lavas. The PE lavas show restricted
¥7Sr/**Sr values that plot mid-range in the Samoan field, have the lowest ***Pb/***Pb values
and some of the lowest ***Pb/***Pb values of the whole sample suite (Figs. 6 and 8). The PE
field on the 2**Pb/***Pb versus **’Pb/***Pb plot (Fig. 7) is unusual, as it is elongate in an
almost inverse direction to the shield trend (Wright and White, 1986).

Overall, the new Savaiian lavas are all of the same chemical nature as the post-erosionals,
even though many are samples of the oldest-mapped flow series on the island (Fagaloa
Series; Kear and Wood, 1959). These Savai’i lavas, as well as most other PE lavas, are
clearly distinguishable from shield lavas by having the highest Nb/U and Ba/(La,Sm,Nb,Th)
ratios of the whole sample suite (Fig. 12). Given the earlier discussion of the young
radiometric ages for this “shield” series, we believe this sequence is in fact post-erosional,
and not shield. The alternative explanation, that all of Savai’i is young and not part of an
age-progressive Samoan hotspot track, is belied by the 2.05 my age for a trachyte cobble
from the Vanu River valley (see above). Either way, we cannot rule out the possibility that
PE lavas and shield lavas are geochemically the same on Savai’i, but nowhere else in
Samoa.

What accounts for the distinct trace element and isotopic differences between shield and
PE lavas? The commonality among Samoan PE lavas possibly derives from a similar
history of being brewed and aged in the crust and lithosphere, unlike shield lavas that may
have a shorter residence time in this shallow environment. Local Tongan sediments (from
DSDP Site 595/596, about 1000 km southeast of Samoa) have Pb isotopic compositions
(Plank and Langmuir, 1998) with the general characteristics of PE lavas (Figs. 7 and 8). Pb
isotopic compositions of marine sediments are highly variable over short distances and
other sediments could likely be found nearer to Samoa that provide closer fits to the Samoa
post-erosional Pb field (which lies near the lower end of the general marine sediment array;
Abouchami and Goldstein, 1995; O’ Nions et al., 1998; Plank and Langmuir, 1998; Jones et
al., 2000). In support of a sediment component in the PE lavas are values for 8'*O of olivine
(5.5-5.7%c; Eiler et al., 1997) which are elevated over upper mantle values and can be

interpreted to reflect the heavy values documented for marine sediments (also see discussion
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below). In other words, we cannot rule out the late-stage incorporation of modern marine
sediments in PE lavas based solely on isotopic compositions. Trace element ratios may
provide a stronger constraint on the presence or absence of a modern sediment component;
one would expect the PE lavas to inherit the high Pb/Ce, high REE/HFSE, low Sm/Yb, and
Ba-enriched ratios characteristic of both local and globally averaged marine sediments (see
Fig. 17; Plank and Langmuir, 1998). This is not the case for the PEs, which have, of all
suspected traits, only notably high Ba (Figs. 11 and 12).

6.3 Mixing Arrays

The spread of isotopic compositions in the Samoan lavas can be attributed to either (1)
processes that generate an infinite number of chemical (i.e. parent/daughter) heterogeneities
within the mantle that, upon long-term storage, evolve into an infinite number of isotopic
heterogeneities or (2) processes that produce a small number of unique chemical
compositions that, upon long-term storage, result in a limited number of “end-member”
isotopic compositions available for mixing. In order for the first option to produce sub-
linear arrays in 2-D and 3-D isotope space, there must be a single process which acts
systematically to varying degrees or at various times. Hence, talk of or modeling of the most
extreme values (i.e. endmember mantle components) is the same in either case.

The lavas from Malumalu undeniably establish the existence of a reservoir with high
7S1/**Sr (at least 0.7089), low '*’Nd/'**Nd (at most 0.5125), and *"°Pb/***Pb, **"Pb/***Pb,
and *"*Pb/*™Pb values near 19.3, 15.65 and 39.9, respectively. An unaltered sediment
reservoir can be immediately ruled out as the cause of the EM2 component in Samoan
shield lavas: although Global Subducting Sediment (GLOSS; Plank and Langmuir, 1998)
and local Tongan sediment (Site 595/596; Plank and Langmuir, 1998) each have convincing
¥7S1/**Sr and *""Pb/***Pb compositions (Figs. 6 and 7), they are severely inadequate (low) in
*%°Pb/**“Pb and ***Pb/***Pb to generate the isotopic signatures displayed by the shield lavas
(Fig. 8). Therefore, for recycled sediment to have evolved to the EM2 coordinate in Sr-Nd-
Pb isotope space, subduction zone alteration of ancient sedimentary packages needed to be
very specific: U/Pb and Th/Pb must increase, while Rb/Sr and Sm/Nd remain very much the
same. In the dehydration of subducted oceanic crust, this is shown to be the case for all
systems except Rb/Sr: Rb is about 5 times more mobile than Sr (Ayers, 1998), so the final
dehydrated product has significantly lowered Rb/Sr ratios. Experiments on the dehydration
and melting of sediments (Johnson and Plank, 1999) give rather inconclusive results for

relative trace element partitioning of these parent/daughter ratios, and suggest that
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partitioning can be extremely variable depending on the minerals present and the degree of
dehydration.

Although the Samoan lavas are isotopically extreme, the “pure” EM?2 signature may be
even more extreme. For example, clinopyroxene and glass separates from peridotite
xenoliths from Savai’i studied by Hauri et al. (1993) yield *’Sr/**Sr values up to 0.7128 and
have been interpreted to represent metasomatism of oceanic lithosphere by a small degree
carbonatitic melt (not diluted by mixing with depleted mantle) from the same source as that
which provides melts for Samoan volcanism. However, the Pb isotopes in these rare
xenoliths (*"*Pb/***Pb ~18.86; ***Pb/***Pb ~39.76) lie well outside the isotopic array set by
the Samoan lavas (Fig. 8); this suggests an origin for the enriched component in these
xenoliths from a smaller, unique reservoir, unrelated to extant Samoan lavas.

Clearly, though, EM2-rich samples are more rare than samples of a less-enriched nature.
On a plot of ***Pb/***Pb against *’Sr/**Sr (Fig. 13), the Samoan samples can be enclosed in
a triangle where the high *’Sr/*Sr apex is defined by EM2. At lower *’Sr/**Sr, there are two
components, one with higher **Pb/"**Pb than EM2 and one with lower **°Pb/***Pb, but
both assuredly depleted according to their high '**Nd/'**Nd values (Fig. 6). The low
“9°Pb/***Pb, low *’Sr/*Sr apex (note the Upolu data cluster) has a signature tending toward
DMM, but the strict use of the most depleted MORB/DMM isotopic values is not
necessarily the only option for describing this component. The sub-Samoan upper mantle
has been punctured by multiple mantle plumes in its 110 Myr lifespan, so may no longer be
strictly, or homogeneously, pure DMM (see the South Pacific Isotopic and Thermal
Anomaly; Staudigel et al., 1991). Also, we do not absolutely require the low **°Pb/***Pb
depleted component to reside in the upper mantle (i.e. it could be part of the plume),
although it’s most easily visualized as being there given current notions of mantle
dynamics. Regardless of these disclaimers, the use of anything but a generic DMM isotopic
composition is arbitrary, and ultimately only compromises the generality of our
observations and conclusions.

The high **Pb/***Pb, low *’Sr/**Sr component (obvious in the Ta’u and Vailulu’u
lavas; Fig. 13) is suggestive of mixing with a HIMU mantle component. This component
may also be present in the Samoan plume, but there is reason to believe HIMU material has
under-plated the Samoan lithosphere in the past. Calculated hotspot tracks show that 20-25
million years ago, the Cook-Austral plume was located beneath the lithosphere on which the
Samoan Islands presently sit (Norton, 2000). The Cook-Austral chain shows great variation

in isotopic compositions (Fig. 14), not all of which would fit the Samoan data in multi-
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isotope space. However, there is one volcano, Raivavae, which has the isotopic compositions
appropriate to be a significant component in the Vai Trend lavas (Fig. 14; data from
GEOROC database); we are not suggesting that Raivavae itself is contributing to the
Samoan lavas, but that isotopically similar material may be underplating the Samoan island
chain.

A fourth mixing component must be acknowledged when considering *He/*He values.
Figure 9 shows the inverse relationship between *’Sr/**Sr and *He/*He. The EM2
component can be classified as having a *He/*He signal which asymptotically approaches
the average DMM value of ~8 R, (Kurz et al, 1982) at high *’Sr/**Sr. HIMU has also been
shown to have low *He/*He values (Graham et al., 1993; Hanyu and Kaneoka, 1997; Hilton
et al., 2000) and likely explains why Vailulu’u (with the largest HIMU component) is in
parallel with Malumalu on Figure 9. Therefore, all three endmember components discussed
above have low *He/*He, thus requiring an additional reservoir to account for high *He/*He.
High *He/*He values are found in the center of the Samoan Sr-Pb data array, at Ta’u and
Tutuila, and generally decrease towards the outer fringes (Fig. 13). Farley et al. (1992)
named this component the primitive helium mantle (PHEM) but new data suggest this
reservoir has depleted *’Sr/*Sr and '’Nd/'**Nd (like FOZO of Hart et al., 1992), and not
bulk-earth-like values assigned to PHEM.

All four mantle components are in the Samoan plume from a magmatic standpoint. But
what material is coming from the deep mantle is another story. We can make a good case
for the depleted component coming from entrainment of the widely documented depleted
upper mantle and the radiogenic Pb component (HIMU-ish) coming from entrainment of
under-plated lithosphere from the HIMU Cook-Austral chain. This means the deep mantle
material within the Samoan plume is dominantly EM2 and PHEM/FOZO. The sequence of
mixing these components is difficult to ascertain, as the length scale of compositional
heterogeneity and differences in solidus temperatures (i.e. solid vs. melt mixing) are

unknown.

6.4 Spatial/Temporal Evolution

Samoan shield samples on the ***Pb/***Pb - ***Pb/***Pb plot form two en echelon trends
of positive slope (Fig. 8) which are most distinctly separated at high *°Pb/**‘Pb, and
converge at lower ***Pb/***Pb. The isotopic trends correspond to the two topographic ridges
of the Samoan islands (Fig. 2); for a given 2*°Pb/***Pb, the southern Malu Trend has higher
%Pb/***Pb than the northern Vai Trend. Within each of the two trends, isotopic enrichment
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increases with decreasing age along the volcanic ridge. This relationship, shown clearly in a
plot of distance versus **°Pb/***Pb (Fig. 15), has remarkable correlation and is striking in its
implication of a systematic evolution of plume material or mantle processes. Figure 15 also
shows how the Malu and Vai Trends form a continuum though time: even though each
ridge independently displays isotopic enrichment with distance/time, the younger Vai Trend
is generally higher in **°Pb/***Pb than the older Malu Trend (note that Malumalu may
overlap in age with Ta’u and Vailulu’u). Of the four mixing components, low **°Pb/***Pb
values are found only in the DMM reservoir (~18.0; Fig. 14). Therefore, the increase in
2°Pb/***Pb with younging of volcanoes is interpreted to be a waning of the DMM
component in the Samoan lavas, with a resulting increase in the abundance of EM2 and
HIMU components. The separation of the Vai and Malu Trends in Pb-isotopic space
indicates a higher HIMU/EM2 ratio in the Vai Trend.

Moving east along each of the two Trends, there are systematic increases in K/Na,
Rb/Sr, La/Sm, La/Yb, Ba/Sm, Th/Nb, Th/Zr, Nb/Y, Nd/Sm, Nb/Zr, and U/Nb (Fig. 16); in
other words, incompatible-element-enrichment increases with Pb isotopic enrichment,
distance, and decreasing age. Due to correlations between isotopes and trace elements like
those seen in Figure 16, variations in trace element ratios are easily attributed to differences
in composition between the low 2°°Pb/**Pb source and the high *°Pb/***Pb sources.
However, we are witness not to the source compositions, but to the products of “source
processing”’. Because the process of melt generation has maintained (or not overly
obscured) trace element correlations with isotopic compositions, we can infer some
characteristics of the sub-Samoan mantle.

Possible explanations for the systematic chemical evolution of the Samoan plume
include:

1. Horizontal zonation of plume material, implying a length-scale of heterogeneity on
the order of volcano spacing, as has been suggested for the Hawaiian Islands (see below).
In this case, trace element variations are truly source variations.

2. A lithologically-homogeneous mantle in which peridotite components of variable
composition occur in the same proportions beneath all Samoa, but exist on a length-scale
large enough to allow preservation of disequilibrium between the components. In this case,
variable potential temperature of the plume would result in preferential sampling of
components based on their respective solidus temperatures. Enriched materials would be
sampled at small degrees of melting and trace element enrichment is partly a function of

degree of melting.
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3. A vertically-stratified plume, changing composition and/or physical properties as
upwelling proceeds, and affecting the degree of entrainment of ambient upper mantle and
lithospheric assimilation.

In the Hawaiian Islands (an EM1 plume), isotopically distinct, topographic en echelons,
named the “Kea” and “Loa” Trends, have also been documented (Tatsumoto, 1978;
Staudigel et al, 1984; Abouchami et al., 2000). The Society Islands (another EM?2
archipelago) display similar sub-parallel trends in both geographic and Pb isotopic space
(using data compiled in the GEOROC database). However, nothing so temporally
systematic as that in Samoa has been previously reported. Chemical zonation of a mantle
plume (e.g. Kurz et al., 1995; Hauri et al., 1996; Lassiter et al., 1996; DePaolo et al., 2001)
may explain isotopic lineaments within island chains, but fails to address how this chemical
heterogeneity may translate into topographic features. On the other hand, creation of
topographic lineation as a consequence of either 1) the lithosphere’s structural response to
loading (e.g. Hieronymus and Bercovici, 1999; Hieronymus and Bercovici, 2000) or 2)
magma rising in “plumlets” instead of a continuous stream (Thinger, 1995) ignores the fact
of correlative chemical variations. Even so, some common dynamic feature clearly exists,
independent of mantle taxonomy, for the way in which plumes forge through the
mantle/crust, melt, and arrive at Earth’s surface.

7. Calculation of a “Pure” EM2 Lava

The following calculation is aimed at defogging the trace element pattern for lavas of the
enriched endmember, through “un-mixing” (subtracting) Ta’u lavas (average *'Sr/**Sr =
0.7046) from the most EM2-rich Malumalu lavas, under the assumption that the highest
87Sr/*Sr lavas are, instead of pure EM2 melts, still somewhat contaminated by melts from a
depleted/less enriched mantle. As a group, Ta’u lavas are closest to the PHEM mixing
component (Figs. 13 and 14). By this calculation, trace element differences between un-
enriched and enriched mantles are accentuated, and help to clarify the trace element
characteristics of the EM2 source.

We extrapolate to the end-member trace element pattern of an EM2 melt in effect by
subtracting the averaged trace element composition of Ta’u lavas from the Malumalu lavas
until the *’Sr/**Sr composition equals 0.7128; this value derives from an analysis of cpx

contained in a metasomatized peridotite xenolith from Savai’i (Hauri et al., 1993). Although
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these xenoliths are not an extension of the Samoan Pb isotope array (Figs. 7 and 8), for lack

of a better stopping point, they do place an upper limit on oceanic mantle Sr isotopic ratios.
Mixing between Ta’u and a “pure” EM2 component to make the most enriched

Samoan samples (Malumalu samples 78-1 and 78-3) is calculated with the following two

equations:

(31Sr/%68r) 5., = F[Sr]en2(¥78r/38r) gp 2 + (1= F)[S1 170 (¥ S /3087 ) 7,
F[Srlem: + (1= F)[Srlr. )

[Srlrss = F[Srlen2+ (1= F)[Srlra, 2

The concentration of Sr ([Sr]) in EM2 and the fraction of the EM2 melt, F, are solved
simultaneously so that the right hand of equation (1) equals the *’Sr/**Sr composition of the
two extreme Malumalu lavas (0.70889). With the value for F, concentrations of all trace
elements can be calculated for the EM2 melt by using the structure of equation (2) and are
reported in Table 7. Lava compositions used in this calculation have been corrected for
crystal fractionation by incremental addition of olivine (or subtraction in the case of 78-1,
78-3 and 74-1) until the melt compositions reaches a Mg# of 73 (olivine addition ranges
from 10-51%; olivine subtractions are 10%, 7% and 23%, respectively). Note from Figure 4
that Ta’u and Malumalu have very similar crystal fractionation trajectories with minimal cpx
loss. All Ta’u samples have been utilized except for T21 which is plagioclase-rich and T44
which is an ankaramite.

The resulting fraction of EM2 “melt” in the Malumalu “mixture” is 51%, and the
resulting '“*Nd/'**Nd ratio for the EM2 component equals 0.51235. Figure 17 shows the
trace element pattern for the calculated “pure” EM2 melt component; note enrichments at
Rb and Th that are almost 120 times PUM, negative anomalies at Cs and Ba, and an almost
non-existent Pb anomaly. The REE slope of the calculated EM2 melt is steeper than both
Malumalu and Vailulu’u, and the overall trace element pattern from U to the right is
remarkably smoother than either the Malumalu or Vailulu’u pattern, save for dips at Sr and
Ti. In general, the degree of enrichment in the EM2 melt is greatest for the highly
incompatible elements.

The calculated trace element pattern of the “pure” EM2 melt is compared to: 1) an
estimate of global subducting sediment (GLOSS; Plank and Langmuir, 1998) and 2) a local
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sediment from DSDP Hole 595/596 analyzed for the GLOSS compilation (Fig. 17).
Clearly, the sediment trace element patterns are very different from the calculated EM2
component. In particular, the sediment spidergrams are marked by large negative anomalies
of the high-field-strength elements (HFSE; Nb, Ta, Zr, and Hf), and large positive Pb and
Ba anomalies, whereas the calculated Samoan enriched component has no such features; in
fact, the Ba anomaly becomes more negative in the EM2 melt. Also, the heavy rare-earth-
element slope of the EM2 melt is significantly steeper than the sediment patterns: Sm/Yb for
the sediments is 2.1 whereas for the EM2 melt is 7.2. The only argument in favor of
sediment addition is the significantly decreased Pb anomaly in the EM2 melt. However, we
(1) do not believe this alone lends credence to the sediment theory, and (2) show in our non-
sediment model below how Pb in the EM2 source does not have a negative anomaly.
Ultimately, the calculated EM2 spidergram is inconsistent with standard models
invoking ancient sediment recycling to explain the enrichment of the EM2 mantle source.
As discussed below, it is unlikely that any chemical processing during subduction would so
effectively “smooth out” the typically jagged spidergram of oceanic sediment.
Alternatively, if the enriched plume material is argued to derive from addition of present-day
sediments, the trace element patterns of local sediments should be directly reflected in the
EM2 melt and they are not. Therefore, late-stage contamination of plume material with local
sediment is also an unsatisfactory explanation for the observed chemical characteristics of
the enriched Samoan basalts (and this point is strongly supported by the Pb isotope
evidence shown in Figs. 7 & 8). Production of the EM component by deep mantle
fractionations involving high-pressure phases such as Ca or Mg perovskite likewise will
lead to jagged, not smooth, spidergrams (Hirose et al., 2004). Segregation of carbonatitic
melts from mantle assemblages has been used to explain elevated trace element
concentrations in oceanic lavas (see Zindler and Hart, 1986), but this process also causes
irregular trace element patterns (e.g. Klemme et al., 1995; Sweeney et al., 1995; Hoernle et
al., 2002). Instead, the remarkably smooth EM2 melt spidergram gives the uncanny
impression of having originated from nothing but “unadulterated” melting processes

within the upper mantle.

8. Sediment Recycling?

Osmium and oxygen isotopes are thought to be “smoking guns” for sediment/slab
recycling (Eiler et al., 1997; Shirey and Walker, 1998; van Keken et al., 2002). Due to the
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incompatibility of Re (Righter and Hauri, 1998) and compatibility of Os (Hart and Ravizza,
1996) in mantle melting, elevated Re/Os ratios in crustal materials should evolve to
radiogenic osmium during long-term storage within the mantle. Altered upper MORB crust
and marine sediments are enriched in heavy oxygen (8'*0 of ~15-25%c; Savin and Epstein,
1970; Lawrence et al., 1979; Staudigel et al., 1995; Alt, 2003) by low-temperature
fractionation processes at the Earth’s surface. This is high above the 8'°O value of 5.2%o
for upper mantle olivine (Ito et al, 1987; Mattey et al., 1994; Eiler et al., 1997). Therefore,
the standard theory for the origin of EM2 involving recycling of mafic crust plus
terrigenous sediment would suppose Samoan lavas to have both elevated 8'*O and
"*70s/'**Os compositions.

Eiler et al. (1997) demonstrated that EM2 basalts from Samoa (Savai’i post-erosional)
and the Societies do have the highest 8'*0 of all OIB’s (8'*O of olivine up to 6.1%o),
explainable by the incorporation of ~5% terrigenous sediment addition to DMM. Using
values chosen by Eiler et al. (1997) for the concentrations of Sr, Nd, and Pb in DMM and
sediments, the sediment contribution to the trace element budget in the EM2 source will be
50%, 68% and 96%, respectively, for these elements. Clearly then, the trace element pattern
of EM2 lavas should reflect the trace element patterns of sediment, but they do not (see Fig.
17). Eiler et al. (1997) also mention the possibility that metasomatism can elevate §'*O
values in magmas, and the present work recommends this idea be further explored.

Osmium isotopic compositions are likewise not so ‘“smoking” of a sediment
component. Combining data presented here (Table 4) with those from Hauri and Hart
(1993), Samoan basalt samples with >80 ppt Os (ranging in *’Sr/**Sr from 0.7046 to
0.7089) reveal '*’0Os/'**Os ratios of 0.124 - 0.130 which do not correlate with any other
isotope system. Samples with <80 ppt Os (5 out of 21 in total) have elevated '*’Os/'**Os
ratios and are interpreted to be contaminated with seawater (see Shirey and Walker, 1998).
The small range in '*’Os/"**Os compositions of pristine samples spans values estimated for
the primitive upper mantle (0.129; Meisel et al., 1996) and DMM (~0.125; Standish et al.,
2002), and is much lower than the upper limit of 0.16 displayed in HIMU and EM1 lavas
(Hauri and Hart, 1993; Reisberg et al., 1993; Eisele et al., 2002).

The unradiogenic '*’Os/'*Os values for these Samoan lavas represent either (1) a
similarly unradiogenic mantle source, or (2) re-equilibration of more radiogenic Os
components with unradiogenic upper/lower mantle through special processes that are not
active beneath HIMU or EM1 hotspots. With regard to the former option, and to test the

standard model, low Os concentrations in sediments may prevent a sediment component
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from significantly elevating '*’Os/'**Os ratios in the EM2 source. In a simple case, if DMM
with "¥"Os/'**Os = 0.125 and [Os] = 3000 ppt is mixed with sediment having '*’Os/"*¥Os =
1.0 and [Os] = 30 ppt (Peucker-Ehrenbrink and Jahn, 2001), then 35% of sediment is
needed to change '*’Os/'*Os from 0.125 to 0.130. Here we are again left with an EM2
source whose trace element budget would be dominated by sediment, but do not observe
such trace element patterns in the EM2 lavas nor see the implied correlations with other
isotope systems. The second option, suggesting the Os budget derives from re-
equilibration, can be ruled out since olivine phenocrysts are in approximate equilibrium with
coexisting liquids (Jackson et al., unpubl.) and have high *He/*He ratios (i.e. are not
xenocrystic, but rather truly phenocrystic). We conclude that the mantle sources for
Samoan lavas all have inherently unradiogenic '*’Os/'**Os values and are not influenced by
a sediment/crustal component.

Although slab/sediment recycling has been a common theory for the origin of EM2 for
over two decades (see Introduction), there are major flaws in this train of thought. The
Standard Model for generating the EM2 reservoir involves the introduction into the deep
mantle of 1) oceanic crust which has been depleted of fluid-mobile elements, such as the
large-ion-lithophile elements (LILE; e.g. Cs, Rb, K and Pb), by dehydration and 2) a
relatively pristine (i.e. elementally unfractionated) continental crust component (i.e.
terrigenous sediments). Although not typically considered in the Standard Model, it seems
logical that trace elements of subducted sediments (pelagic and/or terrigenous) must be
fractionated by the same process by which the subducted ocean crust is fractionated
(dehydration) — especially since sediments are closer to the mantle wedge and likely to have
greater water contents than the altered ocean crust. Whereas there have been experimental
studies showing high trace element mobility during dehydration of subducted ocean crust
(especially for the isotopically important elements Rb and Pb; see Ayers [1998] and Stracke
et al. [2003] for overviews), very little similar work has been done on dehydration of
subducted sediments (i.e. Johnson and Plank, 1999). Actually, there is growing geochemical
evidence that not only a fluid component, but also partial melts of subducted sediments
contribute to arc magmas. The high recycling efficiencies (up to 40%) of elements which
are not particularly fluid mobile, such as Be, Th and Nd (see discussion by Johnson and
Plank, 1999), suggest sediment melting is a reality, even though many thermal models
predict subsolidus temperatures within the subducted sediment column (e.g. Peacock,
1996). Regardless of the mechanism of trace element fractionations in subducted sediments,

it is clear that fractionations will occur and will result in significant loss of incompatible
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elements, and a decrease in the mass of a possible future EM2 reservoir. Ultimately, it is
grossly inconsistent to use modern, surface sediment as an approximation of the trace
element and isotopic composition of a “sediment” component in the mantle — once
subducted, the sediment will never look the same, especially for parent/daughter ratios like
Rb/Sr and Th/Pb.

Additionally, since today’s surface, terrigeneous sediments represent what has been
extracted by convergent margin volcanism and/or continental crust formation, it is the
residue, or complement, to surface sediments which should be our concern for what material
is actually recycled deep into the mantle. For example, depletion of the fluid immobile
elements Na and Ta in arc volcanics (Pearce and Peate, 1995), and hence sediments (Plank
and Langmuir, 1998), will be matched by Nb-Ta enrichments in the material that is
ultimately introduced to the deep mantle. Experiments on partitioning between dehydration
fluids and eclogite mineral assemblages (garnet, clinopyroxene and rutile) suggest that
depletion of high field-strength elements (including Nb-Ta) in arc volcanics is due to their
high compatibility in residual rutile (Stalder et al., 1998) and is therefore not a sediment
signature. Enrichment of HFSE in the subducted slab will offset HFSE depletions in the
subducted sediment. This is why decreasing Nb anomalies with increasing *’Sr/*Sr ratios,
as documented for EM1 and EM?2 lavas by Eisele et al. (2002), are not supporting evidence
for sediment recycling.

We believe there is an alternative explanation for correlation between Nb anomalies and
isotopic compositions. Figure 18 shows Nb/Nb* (calculated as Nb,/N(ThyxLay),; Eisele et
al., 2002) plotted with 298ph/2%4Ph and La/Sm ratios of lavas from Samoa and Pitcairn. We
have used *"*Pb/***Pb as a measure of EM2 abundance instead of *’Sr/**Sr only because it
provides better correlations. Samoan lavas show inverse relationships between Nb/Nb* and
2%Pb/**Pb as well as La/Sm. Pitcairn lavas (from Eisele et al., 2003) show a negative
correlation between Nb/Nb* and La/Sm, which overlaps with the Samoan lavas, and a more
shallow slope than Samoa for Nb/Nb* against ***Pb/***Pb (the greatest isotopic variation in
the Pitcairn lavas is in '’Nd/'**Nd). Pitcairn and Samoa samples have almost an identical
range in both La/Sm and Nb/Nb*, even though the isotopic variability is greater in Samoa.
Also plotted in Figure 18 is a trajectory for variable degree of melting of a depleted mantle,
showing that small changes in F can produce large changes in both La/Sm and Nb/Nb*.
Therefore, variable Nb/Nb* (previously interpreted as only a source effect) can be produced
by recent variations in melt production, and is most likely what causes (1) scatter in the plots

of Figure 18 and (2) the same Nb/Nb* variation in Pitcairn as Samoa given less isotopic
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variation. The correlation of ***Pb/***Pb (and *’Sr/**Sr) with Nb/Nb* can be interpreted as
an ancient enrichment of mantle by a small degree (low Nb/Nb*) melt, as suggested by the
calculated EM2 melt and modeled below.

9. Metasomatic Origin of EM2

Given the many failures of the “sediment recycling” model for EM2, as enumerated
above, we propose here a new model that invokes metasomatic enrichment of ancient
oceanic lithosphere, followed by long-term storage in the deep mantle and recent return to
the surface as the Samoa plume. Conceptually, this model derives from the autometasomatic
process proposed by Zindler et al. (1979) and Roden et al. (1984). Numerous authors have
appealed to metasomatism of oceanic plates to generate chemical heterogeneities that can be
tapped prior to plate subduction (Hawkesworth et al., 1979, 1984; Halliday et al., 1992;
Class and Goldstein, 1997; Niu et al., 1996). Recycling of such metasomatized lithosphere,
after long-term storage in the mantle, has been advocated by Richardson et al. (1982) and
Niu and O’Hara (2003) as a source for enriched OIB.

If we start with the assumption that EM2 is a two-stage differentiate of bulk-earth, the
slope on the **°Pb/***Pb - *’Pb/***Pb plot (Fig. 7) yields an age of 2.5 Ga. This is an age
older than the commonly quoted average mantle differentiation age of 1.8 Byr (Hart, 1984).
At that time, the composition of the mantle would have been more similar to primitive upper
mantle than to the depleted mantle observed today (i.e. DMM). Assuming plate tectonics
was operating 2.5 billion years ago in much the same way as it is today, this more primitive
mantle material would have undergone depletion by melt extraction during upwelling under
spreading ridges, then “turned the corner” and solidified to become depleted lithospheric
mantle.

In the following calculations, we model the case in which small degree, deep melts not
extracted at the ridge crest percolate up through the asthenosphere and impregnate the
overlying lithosphere that had just undergone melt extraction on the ridge crest. This is
essentially a metasomatic process. This metasomatized lithosphere then is recycled and
stored in the mantle to become today’s EM2 reservoir (Fig. 19). The melt fraction, amount
of melt impregnation, and ratio of garnet to spinel peridotite melting are calculated so as to
match parent/daughter ratios of EM2 for the Rb-Sr, Sm-Nd, U-Pb, Th-Pb and Lu-Hf
systems, based on evolution from bulk earth 2.5 billion years ago. Bulk partition

coefficients used for melting a primitive mantle source (McDonough and Sun, 1995) are
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based on a compilation of D’s from Kelemen et al. (2003) for melting of garnet and spinel
peridotite, with the few exceptions listed in Figure 20. Bulk partition coefficients are
weighted 72% garnet peridotite to 28% spinel peridotite. The best match to parent/daughter
ratios is with a 1.1% impregnation of a depleted lithosphere by a 0.5% batch melt of a
primitive mantle. The lithosphere represents a mantle depleted by 2% melt extraction, as
calculated using the method of Workman and Hart (2003) and as reported in Table 8.
Figure 20 shows the resulting trace element pattern of the EM2 source (also see Table 8).
Rb/Sr has been fit to within <1%, Sm/Nd and LwHf have been fit to within 3%, and Th/U
has been fit to within 4%. The “unfortunate fits” are for U/Pb and Th/Pb, which are 53%
and 58% too high respectively in the calculated EM2 source. This is clearly more a Pb
problem than anything else. If the compatibility of Pb is lower by about a factor of two, as
suggested by experimental partitioning data (Hauri et al., 1994; Salters et al., 2002), the
U/Pb and Th/Pb ratios may be more precisely modeled. Because the mass fraction of melt
added to the FOZO lithosphere (1.1%) is twice the degree of melting (0.5%) required to
generate that impregnating melt, the mass of the mantle which melts must be twice as large
as the mass of the metasomatized lithosphere.

Does this source lead to the observed *He/*He values of 8 R, for EM2? Given the
general trace element enrichment in the impregnating melt, and making the standard
assumption of extreme incompatibility of He, it is likely that the calculated EM2 source
would have high He/U ratios and hence evolve to *He/*He values higher than 8 R,. There
are two possible solutions. One concerns the relative compatibility of He and U; if at high
pressure and low degree of melting He is more compatible than U (this has not been proven
nor disproven), then the impregnating melt will have low He/U and potentially evolve to
DMM:-like *He/*He values (by coincidence). The second option is that the EM2
“package” has had a residence time in the upper mantle long enough (~1-2 Ga) to result in
diffusive equilibrium of He (see model by Moreira and Kurz, 2001, for example); this
option has obvious implications for the primary home of recycled lithosphere.

Although the above model leaves several questions unanswered, such as the scale-length
of the heterogeneities created by the metasomatism, and the resulting lithologies (mafic
veins or enriched peridotite), it is successful in producing the observed isotopic and trace
element characteristics of the Samoan mantle source. It does not require ad hoc chemical
manipulations in the subduction zone, as does the standard crust/sediment-recycling model.
In fact, as the enrichment zone is limited to the lower parts of the lithosphere, it will be

nearly invulnerable to subduction zone processing. It calls on a process for which there is
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abundant evidence, particularly in the sub-continental lithosphere (Frey and Green, 1974;
Menzies and Murthy, 1980; Menzies, 1983; Menzies and Hawkesworth, 1987). And insofar
as small-degree melts are ubiquitous in the upper oceanic asthenosphere, the process is
virtually guaranteed. We note also that the small-scale convection usually invoked for this
part of the mantle (i.e. Richter rolls) provides an efficient means of upward advection of
standing melt fractions, as well as the consequent decompression that will augment the melt

fractions and facilitate melt/solid segregation.

10. Conclusions

A large suite of recently collected basalts from the Samoa hotspot chain have been
analyzed for Sr, Nd, Pb, Os and He isotopes, and major and trace elements. Localities
include the sub-aerial islands of Savai’i, Upolu and Ta’u, and the submarine seamounts
Muli, Malumalu and Vailulu’u.

1. Samoan basalts are isotopically (Sr-Nd-Pb) the most extreme EM2 lavas in the
oceanic database (*’Sr/**Sr up to 0.7089). The Samoan isotopic arrays can be explained by
mixing among four mantle components: DMM, EM2, HIMU and PHEM/FOZO. The deep
plume material is most likely composed of EM2 and PHEM/FOZO, whereas the HIMU
and DMM components are entrained into the plume in the upper mantle.

2. Systematic temporal and spatial variations in lava chemistry occur while going from
west (older) to east (younger) along the chain: e.g., ’°Pb/***Pb, La/Sm, Rb/Sr, Th/Zr. This
indicates a waning of the DMM component and waxing of the EM2 and HIMU
components in Samoan volcanoes over the last few million years.

3. The standard recycling model (ocean crust plus terrigenous sediment) fails as an
explanation for producing Samoan EM?2, as witnessed by the smooth spidergrams for EM2
lavas with negative Ba anomalies, low '*’Os/'®*Os ratios, high *He/*He (>8Ra) and
mismatched Pb isotopic compositions.

4. The EM2 mantle source can be successfully modeled with the ancient (2.5 Ga)
formation of metasomatised oceanic lithosphere, followed by storage in the deep mantle and

return to the surface in the Samoan plume.
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Appendix 2-1

Samples analyzed by M. Regelous were crushed in a steel jaw crusher to 3-5 mm sized
chips, washed in deionised water, dried and handpicked in order to avoid chips which were
visibly altered, or which contained vesicles. A portion of these chips was set aside for
isotope analysis, the rest was powdered in an agate swing mill. Major element analyses
were carried out by X-ray fluoresence at the Universitdt Mainz, Germany, using a Phillips
PW 1404 instrument. Trace element concentrations were determined by ICPMS using a
Fisons Plasmaquad II instrument at the University of Queensland, Australia. Full details of
the procedure are given in Niu and Batiza (1997). The external precision on the
concentrations of most of the trace elements measured is < 3%. The long-term average
values for the BHVO-1 rock standard are reported in Table 5. Pb isotope measurements
were carried out at the Max Planck Institut fiir Chemie, Mainz, following the procedure
outlined by Abouchami et al. (2000). Between 50 and 100 mg of rock chips were washed in
deionised water in an ultrasonic bath, then ultrasonicated in 6M HCI for 15 minutes, before
being leached in hot 6M HCI for 1 hour. The HCI leachate was pipetted off, and the residue
was rinsed, soaked in deionised water for 15 minutes, rinsed again and dried. This leaching
procedure appears to remove much of the non-magmatic Pb that is contained in less-
resistant components (surface contamination or alteration products), as discussed by
Abouchami et al. (2000) and Eisele et al. (2003). The leached residues were dissolved in
HF-HNO3, treated repeatedly with HNO, and HCI until completely in solution, and Pb
separated on anion exchange resin using HBr-HNO, mixtures (Abouchami et al., 2000). All
reagents used were double-distilled, and total precedural blanks for the Pb chemistry were
below 50pg. The eluent from the Pb columns was twice evaporated to dryness with 15M
HNO,, and redissolved in 3M HNO,. Sr and Nd were separated from this fraction at the
University of Bristol, U.K., using methods adapted from Pin et al. (1994). The sample in
3M HNO, was loaded onto columns containing 0.15ml of TRU spec resin, positioned so as
to drip directly into a second column containing 0.1ml of Sr spec resin. After rinsing with
3M HNO,, the columns were separated, and Sr was eluted from the Sr spec column in H,O.
The light- and middle-rare earth elements were recovered from the TRU spec resin by
rinsing with 2.5M HCI. Nd was separated from this fraction using conventional HDEHP
columns and 0.3M HCI. Pb isotope analyses were carried out using a triple spike technique
to correct for instrumental mass fractionation. About 5% of the purified Pb fraction was
transferred to a second beaker and spiked with a ***Pb-***Pb-*"Pb triple spike. The spiked
and unspiked fractions were loaded onto separate Re filaments with silica gel-H,PO,.
Isotope compositions were measured using a Finnigan MAT-261 multicollector mass
spectrometer (M.P.1. Mainz) in static mode, and the data for spiked and unspiked fractions
were combined off-line to obtain the fractionation-corrected Pb isotope composition of the
sample (Galer, 1999). During this study, the NBS981 Pb standard gave **°Pb/***Pb,
7Pb/*Pb  and  ***Pb/*™Pb ratios of 16.9403+0.0022, 15.4974+0.0020 and
36.7246+0.0058 respectively (2s, n=19). Sr and Nd isotope measurements were carried
out on a Finnigan Triton multicollector mass spectrometer (University of Bristol) in static
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mode, and within-run exponential fractionation corrections applied using **Sr/**Sr=0.1194
and '“*Nd/'**Nd=0.7219. The NBS987 Sr and J&M Nd standards gave *’Sr/**Sr and
"“INd/'"**Nd ratios of 0.710247+0.000008 (2 sigma, n=15) and 0.511113+0.000004
(n=12) respectively, during the period of the sample measurements.
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Figure 2-1. Schematic diagram of the Standard Model for the origin of isotopically defined mantle
components. DMM (the Depleted MORB Mantle) is the melt-depleted upper mantle that supplies melts to
mid-ocean ridges; HIMU (high U/Pb mantle) is a reservoir derived from recycling and long-term storage
(billions of years) of oceanic crust; EM1 and EM2 are derived from recycling and long-term storage of
oceanic crust along with pelagic or terrigenous sediment, respectively. Major contributions to the model
have been from Armstrong (1968), Chase (1981), Hofmann and White (1982), Cohen and O’Nions (1982),
White (1985), Zindler and Hart (1986), Weaver (1991), and Hart et al. (1992).
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Figure 2-2. Bathymetric map of the Samoan volcanic chain made from merging inferred bathymetry from
Smith and Sandwell (1994) with ship-track data from both the AVON 2/3 cruise (see Hart et al., 2000) and
the GEODAS track-line database. Western Samoa is comprised of the two western islands, Savai’i and
Upolu; American Samoa is comprised on Tutuila, Ofu, Olosega, and Ta’u. In the southwest corner of the
map, where depths are down to 8000 m, is the northern termination of the Tonga Trench. Just off to the
west at about 14.5°S is a transform fault bounding the Lau Backarc Basin to the south.
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Figure 2-3. Major element compositions of Samoan basalts. Plots include data from Hauri and Hart (1997)
for Savai’i lavas. Alkali-tholeiite line is from MacDonald and Katsura (1964). Trajectories of compositions
for primary melts from fertile peridotites are plotted on some of the MgO diagrams, using the algorithms of
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Figure 2-4. CaO plotted with Mg#’s for Samoan lavas. Mg# is calculated as molar percentage of
Mg/(Mg+Fe*") where Fe?' is taken to be 85% of reported FeO. Compositions of primary melts from fertile
peridotite are plotted using algorithms from Herzberg and Zhang (1996) in the pressure range of 2-8 GPa;
tic marks are every 0.2 GPa. Crystal fractionation trends have been calculated using pMELTS at pressures
of 3 and 4 kbar for best fits to compositional trends starting with some of the most MgO-rich lavas. Mass of
olivine crystallized (expressed as a percent of the total initial mass) before clinopyroxene saturation is
noted at the high Mg# end of the liquid lines of descent. Primary melts can be interpreted to have integrated
depths of melting from 2.5-6 GPa, but CaO variations in the lavas more likely represent CaO contents of a
heterogeneous mantle source. Plot includes data from Hauri and Hart (1997) for Savai’i lavas.
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Figure 2-5. Mantle tetrahedron of Hart et al. (1992). Arrays from endmember defining island chains have
been plotted using the GEOROC database and data presented in this manuscript. Island chains plotted for
HIMU are in blue and include Tubuaii (X), Mangaia (+) and St. Helena (&). EM1 islands are in green and
include Pitcairn (¢) and Walvis Ridge (O). EM2 islands are in red and include Samoa (0), Societies (x),
and the Marquesas (&). Red bars along the axes mark the range of values for the Samoan Islands. EM2 has
been extended from its previous coordinate (Zindler and Hart, 1986) to values for 79r/2Sr, *Nd/M*Nd,
and 2%Pb/***Pb at 0.7090, 0.5125, and 19.3, respectively.

64



0.5130 T
© Vailulu'u
‘ Vai 'l'rcnd{ oTau
. u O Muli 2
0.5129 ® Malumalu ?
Malu 'I'rend{ @ Totia ;
W Upolu
05128 A Sava't
® Post-erosional
o
Z
3
- 05127 | —
&
s
0.5126
0.5125 :
EM2
0.5124 :
0.7030 0.7040 0.7050 0.7060 0.7070 0.7080 0.7090 0.7100

87/86 Sr

Figure 2-6. Sr and Nd isotopes for Samoan lavas. This as well as other isotope plots includes data from
Wright and White (1987), Farley et al. (1992), and Hauri and Hart (1993). The legend here applies to all
other isotope plots. The Vai Trend and Malu Trend correspond to topographic ridges of the volcanic chain
(see Fig. 2). Savai’i samples marked with triangles are all from the Fagaloa Volcanic series. Post-erosional
lavas include samples from Upolu and Savai’i. Fields for the Societies and Pitcairn were obtained from the
GEOROC database. Coordinates for Globally Subducting Sediment (GLOSS) and local Tongan sediment

are from Plank and Langmuir (1998).
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207/204 Pb

Figure 2-7. Plot of 2*Pb/**Pb with *”’Pb/***Pb of Samoan lavas. The Northern Hemisphere Reference Line
(NHRL) lies significantly below the EM2 coordinate. Here, the Vai and Malu topographic lineaments can
be distinguished as separate isotopic trends. Note how the post-erosional lavas are askew to the overall
array of shield lavas. GLOSS = Globally Subducting Sediment (Plank and Langmuir, 1998); PHEM =
Primtive Helium Mantle (Farley et al., 1992). Hauri et al. (1993) xenolith data derives from cpx and glass
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separates from Savaiian xenoliths. See Figure 6 for other references.
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Figure 2-8. Plot of 26pp/2%ph and 2®Pb/**Pb of Samoan lavas. Again, the Vai and Malu Trends are
separated into two isotopic arrays. Along each trend, the age of volcanoes increases in the direction of
lower 2°Pb/**Pb and *®Pb/***Pb. See Figure 6 for references.
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Figure 2-9. Plot of *’St/**Sr compositions of Samoan basalts with *He/*He (R,) of olivine phenocrysts and
submarine glasses obtained from the same basalts. Some Tutuila samples are from Farley et al. (1992).
EM2 is shown here to approach the DMM *He/*He value of ~8 R, at high *’Sr/*Sr.
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Figure 2-10. Trace element concentrations of Samoan lavas normalized to primitive upper mantle (PUM)
of McDonough and Sun (1995). Note the difference in scale for the Muli lavas. Low concentration patterns
are typically picrites (for example, the lowest three samples from Vailulu’u and lowest one from Ta’u). The
highest concentration sample from Ta’u is T21, with 50% plagioclase phenocrysts.
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Figure 2-11. Ba/Th vs. Rb/Nb for lavas from Samoa (this study; Regelous et al., unpubl.; Hauri and Hart,
1997) and Pitcairn (Eisele et al., 2003) showing that Weaver’s (1991) distinction between EM1 and EM2
trace element characteristics do not hold up to comparisons of lavas from endmember defining island
chains (see Fig. 5). Pitcairn and Samoa show complete overlap in Ba/Th and Rb/Nb, whereas Weaver
(1991) showed separate fields for EM1 and EM2 lavas. Plank and Langmuir (1998) report that terrigenous
and pelagic sediments have indistinguishable Ba/Th ratios, each with a range of 10-220, with exceptions
being rare hydrothermal clays and hemipelagic clays that are heavily-enriched in Ba. Therefore, the reason
for initially identifying EM1 and EM2 as having recycled “pelagic” and “terrigenous” sediment,
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respectively, proves unfounded with further data collection.

70




Ba/Sm

L
651 . .
L ]
® o
60 . oA A A °
L ]
55¢ . A‘; N
o o
o L]
50 L L]
« 4O bom o
451 o PN
40f 1o ¢ £
35 - g
30t O 4 ]
0. O Vai Trend
25+ UOO&“ ¢ Malu Trend
0%, d
@D o A Savai'i
20} ‘ e Post Eros.
a]
15 A ol a4 4 n i i
30 40 50 60 70 90 100 110
Nb/U

Figure 2-12. Plot of Nb/U vs. Ba/Sm used to highlight the trace element differences between shield and
post-erosional lavas in Samoa. The new Savai’i lavas, sampled from the oldest mapped volcanic series on
the island (Fagaloa Series; Kear and Wood, 1959), plot in the same field as post erosional lavas from all
along the Samoan chain. This leads to the conclusion that either post-erosional lavas and shield lavas are
the same on Savai’i, or post-erosional volcanism has been unusually extensive.
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Figure 2-13. Sr and Pb isotope plot showing two classes of volcanoes — those which are elongate on the
206pb/**Pb axis (Upolu, Tutuila Pago shield, Muli, and Ta’u) and those elongate on the *’Sr/**Sr axis.
Mixing components are identified as DMM, HIMU, EM2 and the high 3He/*He reservoir, PHEM/FOZO.

See Figure 6 for references.
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Figure 2-14. Plot showing Sr and Pb isotopic compositions for ocean islands of the Pacific Ocean. Data has
been compiled from this study and the GEOROC database. EM2 dominates the spread in composition for
the volcanoes Malumalu and Tutuila. Upolu volcano has a significant DMM component and Vailulu’u and
Ta’u have been contaminated by HIMU from the Cook-Austral under-plated Pacific lithosphere.
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Figure 2-15. Plot showing a systematic increase in “*Pb/***Pb with eastward younging of volcanoes.
Distance is measured from the zero-aged leading edge seamount, Vailulu’u. The “oldest” volcano (at a
distance of 370 km from Vailulu’u) is Savai’i, though no lavas have been shown to be as old as the
theoretical 5 Myr age of the island as suggested from age progression models. High ***Pb/***Pb values are
found in EM2 and HIMU; low **°Pb/**'Pb values are found in DMM. The increase in 2*°Pb/***Pb with time
is therefore a waning of the DMM component in Samoan lavas.
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Figure 2-16. Trace element ratios of Samoan lavas, with the more incompatible element in the numerator,
showing correlation with ***Pb/***Pb isotopic compositions. The Vai and Malu Trends have been separated
into two groups, each sorted by increasing ***Pb/***Pb, and plotted with trace element ratios.
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Figure 2-17. Spidergrams in a) show the average of Ta’u lavas, the average of the two most enriched
Malumalu lavas, and a calculated EM2 lavas based on extrapolation between Ta’u and Malumalu trace
element patterns shown here. All lavas have been corrected for olivine fractionation. In b), the calculated
EM2 lava is compared to trace element patterns for globally subducting sediment (GLOSS) and a local
Tongan sediment (both from Plank and Langmiur, 1998). Clearly, the trace element patterns between the

EM2 lava and sediment are a near-zero match.
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Figure 2-18. Nb/Nb* (calculated as Nby/N(ThyxLay), as in Eisele et al. [2002]) plotted with a) 2*Pb/***Pb
and b) La/Sm, of Samoan lavas and Pitcairn lavas (from Eisele et al., 2002). Pitcairn lavas have little source
variation, as seen by a narrow range in “*Pb/*Pb, but they have a range in Nb/Nb* and La/Sm that is
nearly identical to Samoa. This indicates that varying degrees of melting of the same source can provide a
wide range of trace element ratios otherwise interpreted to be source variations. The negative correlation in
Samoa shows that at small degrees of melting (i.e. high La/Sm and low Nb/Nb*), the enriched component
may be preferentially sampled from the mantle. The melting curve is for bacth melting of a mantle with the
following concentrations in ppm: Th = 0.032, Nb = 0.457, La = 0.32, Sm = 0.326. D values for these
elements are respectively 0.00038, 0.0043, 0.0045, 0.04. Tick marks are every 0.1% melting, increasing
toward low La/Sm.
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Figure 2-20. Calculated trace element pattern for the EM2 source. At a theoretical 2.5 Ga, a 0.5% batch
melt from a primitive upper mantle source has been calculated with a combination of garnet peridotite D
values (weighted 72%) and spinel peridotite D values (weighted 28%) from a compilation by Kelemen et
al. (2003). Exceptions to Kelemen’s D values are as follows: D* = 0.0001, and DV = 0.0016 for both
garnet and spinel field melting; for gamet melting, D™ = 0.00038, D* = 0.05, and D™ = 0.08; for spinel
melting, D™ = 0.0011. Mixing of 1.1% of this melt into a semi-depleted lithosphere results in the trace
element pattern shown.
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Tables

Table 2-1. 40/39 Argon Ages from Upolu and Savai'i, Western Samoa

PAr Weighted
Sample Steps Used/  Fraction  40/39 Total Plateau
Number Location Total Steps Used Fusion (my) (my)
Upolu, A'ana
ul10 Shield 517 3.1-98.8%  0.972+0.020 0.933+0.011
Upolu, A'ana
ui2 Shield 5/6 0-92.8% 2.68+0.03 2.65+0.02
Savai'i, Manase
S11 Shield 3/6 4.4-64.7%  0.900+£0.122  0.236+0.052
Savai'i, Manase
S23 Shield 5/6 0-91.3%  0.590+£0.024 0.386+0.014
Savai'i, Vanu
91SVK-7 River Shield - - 2.05+0.? -

e  Step-release heating from 600°-1400°C
¢ 2-sigma errors include measurement uncertainties, and uncertainty in J-value (flux gradient from FCT-

3 biotite monitor), but not uncertainty in monitor age.
*  91SVK-7 is a trachyte cobble from the lower Vanu River, analyzed by K. A. Farley
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Table 2-2. Sample information and chemical data for Samoan basalts

Volcano Vailulu'u Vailulu'u Vailulu'u Vailulu'u Vailulu'u Vailulu'u Vailulu'u
Sample 63-3 63-5 63-13 64-1 68-3 68-10 68-11
Latitude (°S) 14.218 14.218 14218 14.260 14.217 14.217 14.217
Longitude (°W) 169.059 169.059 169.059 169.056 169.064 169.064 169.064
Water Depth (m) 920 920 920 2630 780 780 780
Phenocrysts 10% Ol 5% Ol Aphyric 3% Ol 10% Ol Aphyric 60% Ol
Tr Cpx 2% Cpx
Major elements (wt%)
SiO, 48.29 48.07 47.16 47.71 47.84 48.18 45.61
AL O, 11.88 13.42 14.76 13.38 11.86 14.90 5.64
TiO, 2.52 2.67 3.01 2.80 2.55 3.00 1.24
FeO* 10.03 10.19 11.59 10.60 10.51 11.34 11.21
MnO 0.17 0.17 0.18 0.17 0.17 0.19 0.17
Ca0O 12.78 13.70 12.37 13.48 12.75 12.09 6.23
MgO 10.94 8.26 6.57 8.15 10.68 6.06 28.34
K,O 0.96 0.96 1.28 1.07 0.99 1.13 041
Na,O 2.13 2.24 2.72 2.31 2.36 2.76 1.00
P,0s 0.29 0.32 0.37 0.33 0.29 0.36 0.14
Mg# 69.58 62.96 54.31 61.72 68.07 52.85 84.13
Trace Elements  (ppm)
Ni 285 110 59 104 285 47 1067
Cr 879 498 110 455 822 66 2771
\Y 299 335 339 329 300 351 154
Ga 16 20 20 19 20 18 6
Cu 86 59 58 85 82 68 103
Zn 84 85 95 82 89 94 86
Cs 0.29 0.13 0.28 0.33 0.30 0.38 0.09
Rb 24.7 22.2 33.6 29.6 26.6 24.7 9.3
Ba 216 210 279 236 218 239 90
Th 3.92 3.72 5.15 4.06 4.04 4.67 1.75
U 0.85 0.82 1.07 0.87 0.87 0.98 0.54
Nb 3541 34.74 45.14 38.97 36.44 42.41 15.57
Ta 2.41 2.32 3.08 2.59 2.50 2.90 1.01
La 28.82 28.95 37.44 31.12 29.29 33.97 13.04
Ce 58.36 58.29 74.35 63.12 58.67 67.35 26.90
Pb 2.41 2.08 2.76 3.04 2.50 2.96 0.66
Pr 6.84 7.00 8.74 7.58 6.86 8.07 3.19
Nd 27.84 29.05 35.38 31.29 29 32.91 12.96
Sr 378 404 470 424 387 434 181
Zr 168 178 218 189 168 202 80
Hf 4.46 4.69 5.76 5.13 4.43 5.45 2.03
Sm 6.45 6.80 7.83 7.33 6.46 7.62 3.01
Eu 2.03 2.13 245 2.26 1.99 2.39 0.93
Gd 5.75 6.16 7.09 6.72 5.81 6.83 2.58
Tb 0.88 0.92 1.08 1.02 0.86 1.06 0.40
Dy 4.90 5.17 5.88 5.68 4.83 5.95 2.24
Ho 0.87 0.94 1.10 1.01 0.88 1.11 041
Y 22.08 24.09 27.50 26.43 22.46 27.93 10.47
Er 2.14 2.32 2.70 2.53 2.13 2.77 0.99
Tm 0.28 0.30 0.35 0.33 0.28 0.36 0.13
Yb 1.60 1.75 2.02 1.91 1.63 2.12 0.74
Lu 0.24 0.25 0.30 0.27 0.24 0.31 0.11
Sc 40.4 42.6 33.4 42.2 40.9 34.0 22.8

** Mg# = molar ratio of MgO/(MgO + 0.85*FeO)
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Table 2-2, page 2.

Volcano Vailulu'u Vailulu'u Vailulu'u Vailulu'u Vailulu'u Vailulu'u Vailulu'u
Sample 68-28 68-30 70-1 70-2 70-9 71-2 71-11
Latitude (°S) 14217 14.217 14.208 14.208 14.208 14.337 14.337
Longitude (°W) 169.064 169.064 169.032 169.032 169.032 169.980 169.980
Water Depth (m) 780 780 1130 1130 1130 4170 4170
Phenocrysts Tr Ol Aphyric Aphyric Tr Cpx Tr Ol 40% Ol 2% Ol
Tr cpx TrCpx 1% Cpx
Major elements wt%)
Si0, 4742 48.41 47.57 47.02 47.92 43.85 47.57
Al O 15.37 12.96 13.63 14.12 14.84 6.37 13.71
TiO, 3.62 2.66 291 3.01 2.92 1.44 2.75
FeO* 11.49 9.97 11.44 11.88 11.65 10.80 10.64
MnO 0.18 0.17 0.18 0.18 0.18 0.17 0.18
Ca0 12.30 14.11 13.05 12.80 11.93 8.07 12.72
MgO 5.01 8.21 7.56 7.02 6.47 27.44 8.60
K,O 1.25 0.96 0.98 1.11 1.05 0.59 1.15
Na,O 2.86 2.27 2.35 2.51 2.70 1.11 2.35
P,05 0.50 0.30 0.34 0.35 0.35 0.17 0.33
Mgt 47.77 63.33 58.09 55.34 53.80 84.20 62.90
Trace Elements  (ppm)
Ni 21 124 57 44 49 1080 135
Cr 50 542 98 72 60 2141 316
A% 394 314 338 357 345 177 324
Ga 24 21 21 20 21 9 19
Cu 26 79 82 58 62 138 91
Zn 99 82 92 92 94 77 92
Cs 0.38 0.19 0.31 0.32 0.31 0.19 0.34
Rb 33.1 22.1 25.0 25.8 25.2 16.9 304
Ba 292 209 203 245 233 128 247
Th 4.96 3.56 4.20 4.53 4.29 231 4.35
U 1.03 0.79 0.93 0.94 0.95 0.49 0.95
Nb 48.08 34.11 37.07 4281 41.41 20.66 40.53
Ta 3.25 2.31 2.50 2.90 2.76 1.38 2.75
La 41.67 27.34 31.03 34.38 32.79 17.10 3293
Ce 84.11 55.47 64.97 67.72 66.48 34.37 65.58
Pb 2.65 2.36 2.23 2.72 2.64 1.28 231
Pr 10.01 6.83 7.57 8.06 7.97 4.04 7.85
Nd 40.82 28.27 31.51 32.96 3241 16.52 31.64
Sr 521 392 420 453 430 224 434
Zr 222 175 198 199 199 98 186
Hf 5.92 4.72 5.36 5.42 5.24 2.55 5.17
Sm 9.26 6.73 7.50 7.66 7.51 3.68 7.25
Eu 2.81 2.13 2.30 2.38 2.37 1.14 2.25
Gd 8.06 6.06 6.78 6.76 6.77 3.17 6.36
Tb 1.23 0.93 1.02 1.05 1.04 0.48 0.99
Dy 6.64 5.27 5.67 5.79 5.78 2.72 5.44
Ho 1.20 0.94 1.01 1.06 1.07 0.49 0.98
Y 31.28 24.21 26.38 27.34 27.97 12.57 25.93
Er 2.96 2.28 2.48 2.56 2.71 1.15 2.39
Tm 0.38 0.30 0.33 0.34 0.36 0.16 0.32
Yb 2.24 1.68 1.87 1.95 2.07 0.87 1.83
Lu 0.32 0.25 0.27 0.29 0.31 0.13 0.27
Sc 32.8 45.1 41.9 38.6 35.1 29.8 39.2
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Table 2-2, page 3.

Volcano Vailulu'u Vailulu'u Vailulu'u Vailulu'u Vailulu'u Vailulu'u Ta'u
Sample 71-22 72-2 73-1 73-2 73-3 73-12 T10
Latitude (°S) 14.337 14.184 14.214 14214 14.214 14.214 14218
Longitude (°W) 169.980 169.894 169.059 169.059 169.059 169.059 169.509
Water Depth(m) 4170 3835 960 960 960 960 -
Phenocrysts 40% Ol Aphyric Tr Cpx 15% Ol 1% Ol 15% Ol Tr Ol
Tr Cpx
Major elements (wt%)
SiO, 4521 45.53 47.14 47.42 46.90 47.10 46.60
ALO; 8.13 14.10 13.97 11.29 14.12 12.07 12.41
TiO, 1.68 3.31 2.80 2.34 2.87 2.46 3.54
FeO* 10.77 12.13 11.26 10.66 11.49 10.25 12.35
MnO 0.17 0.19 0.18 0.17 0.18 0.18 0.19
CaO 9.99 11.88 12.93 13.18 12.58 12.80 10.98
MgO 21.79 8.56 7.52 11.43 7.71 11.70 10.13
K,O 0.67 1.40 1.37 0.95 1.23 1.15 0.92
Na,0 1.39 2.54 2.50 2.30 2.56 2.02 243
P,05 0.20 0.37 0.34 0.26 0.35 0.28 0.45
Mg# 80.93 59.68 58.34 69.23 58.46 70.53 63.24
Trace Elements  (ppm)
Ni 778 110 79 303 101 220 214
Cr 1687 227 202 840 241 768 579
A% 212 367 325 292 328 295 336
Ga 14 23 14 17 22 17 19
Cu 156 79 70 109 66 59 72
Zn 78 102 86 84 89 77 111
Cs 0.21 0.39 0.38 0.11 0.32 0.31 0.12
Rb 19.0 293 38.1 24.5 33.2 30.4 19.9
Ba 149 287 347 203 283 282 178
Th 2.62 4.95 6.08 3.90 4.83 4.85 2.77
U 0.56 1.11 1.15 0.83 1.00 0.87 0.73
Nb 24.69 47.47 46.68 3441 44.50 38.17 35.18
Ta 1.64 3.18 3.09 2.31 2.93 2.53 2.52
La 20.16 38.26 44.17 27.56 36.83 36.11 29.20
Ce 40.44 76.30 83.63 54.86 72.25 68.75 62.19
Pb 1.59 2.53 4.79 1.78 2.62 6.23 2.02
Pr 4.73 9.08 9.36 6.38 8.48 7.78 8.14
Nd 19.03 37.20 3597 26.50 33.93 30.18 34.70
Sr 267 492 473 360 467 398 437
Zr 117 221 212 159 204 177 223
Hf 311 5.89 5.77 4.21 5.33 4.89 5.97
Sm 4.36 8.35 7.77 6.15 7.58 6.70 8.35
Eu 1.38 2.60 2.36 1.92 2.36 2.07 2.55
Gd 3.92 7.32 6.77 5.51 6.67 5.95 7.92
Tb 0.60 1.11 1.05 0.84 1.03 0.90 1.14
Dy 3.34 6.03 5.64 4.59 5.57 4.96 6.14
Ho 0.59 1.10 1.04 0.86 1.02 0.90 1.11
Y 15.55 29.25 27.27 21.99 27.61 23.49 29.41
Er 1.42 2.66 2.50 2.02 2.50 2.19 2.78
Tm 0.19 0.35 0.33 0.28 0.33 0.28 0.37
Yb I.11 2.02 1.90 1.54 1.88 1.64 2.14
Lu 0.16 0.29 0.28 0.23 0.28 0.23 0.32
Sc 36.0 38.0 39.1 43.1 37.3 42.7 21.5
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Volcano Ta'u Ta'u Ta'u Ta'u Ta'u Ta'u Ta'u
Sample T14 T16 T19 T21 T22 T23 T25
Latitude (°S) 14.2163 14.2164 14.2192 14.2160 14.2160 14.2174 14.2163

Longitude (°W) 169.5079 169.5094 169.5037 169.4762 169.4726 169.4648 169.4652
Water Depth (m) - - - - - - -
Phenocrysts 2% Ol 8% Ol 2% Ol 50% Plag Aphyric Aphyric 25% Ol

Tr Cpx Tr Ol, Cpx
Major elements wt%)
Si0, 46.25 46.71 47.14 48.61 46.51 47.49 45.23
AL O4 10.84 11.27 12.12 17.66 14.47 13.44 8.37
TiO, 324 3.38 3.52 3.31 4.40 3.85 242
FeO* 12.48 11.63 12.07 11.34 12.15 12.39 12.80
MnO 0.19 0.18 0.18 0.19 0.18 0.18 0.19
CaO 10.33 10.91 11.43 8.65 10.51 11.84 8.41
MgO 13.26 12.42 9.73 3.18 7.20 6.77 19.87
K>0 0.82 0.86 0.86 2.07 1.15 0.92 0.66
Na,O 2.23 223 2.55 4.07 293 2.71 1.78
P,0s 0.37 0.39 0.39 0.93 0.52 0.42 0.28
Mgi# 69.02 69.13 62.83 37.03 55.41 53.40 76.50
Trace Elements  (ppm)
Ni 396 360 194 9 83 79 723
Cr 943 729 542 S 185 112 1406
\Y% 333 340 345 182 369 373 254
Ga 20 20 20 27 22 22 13
Cu 116 32 110 101 70 105 69
Zn 126 102 127 150 124 123 111
Cs 0.12 0.09 0.09 0.58 0.19 0.05 0.16
Rb 18.0 19.8 18.8 49.1 263 16.4 159
Ba 164 177 164 406 248 190 126
Th 3.51 2.89 3.24 8.26 4.58 3.80 2.59
U 0.64 0.73 0.73 1.79 1.00 0.71 0.57
Nb 33.26 36.62 33.16 78.63 47.97 38.73 24.03
Ta 2.27 2.60 2.30 5.09 3.29 2.64 1.66
La 26.79 29.68 27.08 66.60 37.70 31.06 19.90
Ce 55.65 63.08 56.61 136.19 . 79.07 65.26 41.81
Pb 5.95 1.82 1.47 3.89 2.25 1.46 1.40
Pr 6.80 8.24 7.06 16.23 9.62 7.98 5.20
Nd 29.62 35.06 31.01 67.87 41.52 35.00 22.45
Sr 377 442 407 754 575 472 294
Zr 205 225 220 460 287 241 154
Hf 5.34 5.83 552 10.79 7.40 6.14 3.92
Sm 7.37 8.15 8.07 15.59 10.04 8.68 5.61
Eu 241 2.47 2.53 4.69 3.13 2.75 1.78
Gd 7.20 7.64 7.70 13.74 9.38 8.25 522
Tb 1.08 1.08 1.15 1.96 1.37 1.21 0.79
Dy 5.61 5.77 6.41 10.77 7.46 6.82 4.27
Ho 1.00 1.03 1.17 1.94 1.34 1.21 0.79
Y 25.74 27.91 28.94 50.43 34.20 30.48 20.21
Er 239 2.55 2.72 4.58 3.27 2.94 1.85
Tm 0.31 0.33 0.36 0.60 0.42 0.38 0.24
Yb 1.78 1.97 2.04 3.43 2.38 2.10 1.37
Lu 0.25 0.29 0.30 0.51 035 0.30 0.19
Sc 32.4 24.2 35.7 17.0 32.7 34.9 26.8
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Volcano Ta'u Ta'u Ta'u Ta'u Ta'u Ta'u Ta'u
Sample T27 T30 T32 T33 T38 T44 T45
Latitude (°S) 14.2161 14.2161 14.2163 14.2163 14.2161 14.2564 14.2556
Longitude (°W) 169.4774 169.4774 169.4390 169.4421 169.4774 169.4312 169.4319
Water Depth (i) - - - - - - -
Phenocrysts 3% Ol 3% Ol Aphyric 10% Ol Aphyric 15% Ol 3% Ol
Tr cpx 1% Cpx 2% Cpx 10% Cpx
Major elements wt%)
SiO, 48.12 46.41 48.02 47.32 45.34 46.84 47.93
Al,O5 14.17 11.80 13.50 10.61 13.93 10.63 12.81
TiO, 3.86 3.57 3.68 3.09 4.64 2.90 3.80
FeO* 11.42 12.07 12.10 11.61 14.00 11.92 11.30
MnO 0.17 0.18 0.18 0.17 0.20 0.18 0.17
CaO 11.54 10.86 11.71 11.54 11.97 10.11 11.67
MgO 6.36 11.52 6.67 12.40 6.11 14.15 8.36
K50 1.06 0.83 0.93 0.75 0.93 0.79 0.87
Na,O 2.85 2.36 2.78 2.19 2.51 2.15 2.67
P,05 0.46 0.41 0.42 0.33 0.39 0.33 0.43
Mg# 53.87 66.68 53.62 69.15 47.79 71.34 60.81
Trace Elements  (ppm)
Ni 95 298 86 288 63 439 162
Cr 290 682 100 988 59 764 549
\Y 334 313 356 308 489 283 353
Ga 25 19 22 18 24 17 25
Cu 131 102 133 61 120 92 99
Zn 122 121 121 103 121 115 113
Cs 0.09 0.17 0.10 0.11 0.08 0.09 0.14
Rb 214 19.0 19.0 15.7 16.7 17.1 18.4
Ba 208 166 180 140 203 140 170
Th 3.86 3.44 3.66 2.83 3.64 3.05 3.38
U 0.79 0.82 0.88 0.58 0.72 0.63 0.82
Nb 39.56 37.63 37.74 28.68 39.88 28.37 35.66
Ta 2.68 2.55 2.56 1.98 2.76 1.91 2.43
La 3243 30.50 31.24 23.65 30.45 23.94 28.63
Ce 67.26 62.61 64.88 50.60 63.59 50.56 60.31
Pb 1.86 1.43 2.32 1.94 1.45 1.90 1.36
Pr 8.24 7.45 7.94 6.38 7.78 6.32 7.44
Nd 35.65 32.06 34.68 27.80 33.84 27.82 32.80
Sr 492 431 469 366 471 356 458
Zr 251 233 236 190 224 199 239
Hf 6.22 5.66 6.11 4.96 5.98 5.08 6.07
Sm 8.85 7.85 8.69 7.09 8.43 7.07 8.49
Eu 2.82 2.50 2.77 2.25 2.69 2.24 2.74
Gd 8.54 7.39 8.30 6.69 8.06 6.70 821
Tb 1.29 1.11 1.24 1.02 1.19 1.03 1.23
Dy 7.01 6.03 6.78 5.62 6.48 5.66 6.87
Ho 1.28 1.07 1.21 1.01 1.18 1.01 1.24
Y 32.55 27.50 31.25 26.16 29.69 25.28 31.49
Er 3.10 2.62 2.93 2.39 2.78 2.40 2.88
Tm 0.40 0.33 0.38 0.31 0.36 0.31 0.38
Yb 2.28 1.91 2.13 1.74 2.05 1.72 2.16
Lu 0.32 0.28 0.31 0.25 0.29 0.25 0.31
Sc 31.5 32.5 34.6 36.9 40.0 324 36.5
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Volcano Ta'u Ta'u Ta'u Ta'u Ta'u Ta'u Ta'u
Sample T46 T47 T48 T51 T55 74-1 74-4
Latitude (°S) 14.2312 14.2131 14.2176 14.2179 14.2650 14.363 14.363
Longitude (°W) 169.4200 169.4361 169.4202 169.4846 169.4968 169.386 169.386
Water Depth () - - - - - 2544 2544
Phenocrysts 3% Ol 2% Ol 1% Ol 2% Ol 3% Ol 25% Ol Aphyric
2% Cpx 1% Cpx 2% Cpx
Major elements (wit%)
SiO; 46.56 48.31 46.13 46.95 48.25 44.09 45.52
ALO, 12.19 11.51 11.75 12.26 12.56 6.67 15.33
TiO, 3.51 3.33 3.33 3.55 3.71 1.89 5.76
FeO* 12.46 11.34 12.52 12.02 11.70 12.79 13.92
MnO 0.19 0.17 0.18 0.18 0.18 0.19 0.19
Ca0 10.78 12.68 10.17 11.42 12.15 6.98 9.48
MgO 10.38 9.33 12.19 9.82 7.85 25.45 483
K,O 0.85 0.71 0.87 0.87 0.73 0.48 1.17
Na,O 2.66 226 2.44 2.53 2.48 1.25 3.31
P,0s 0.43 0.36 041 0.40 0.38 0.22 0.51
Mgt 63.60 63.31 67.13 63.14 58.46 80.67 42.12
Trace Elements  (ppm)
Ni 230 171 351 194 112 1019 36
Cr 515 654 687 540 331 1655 32
\Y% 323 346 308 341 355 187 472
Ga 20 21 22 22 22 13 24
Cu 115 106 85 110 104 69 145
Zn 130 112 120 126 124 103 142
Cs 0.20 0.16 0.05 0.10 0.10 0.13 0.15
Rb 19.2 14.7 17.8 17.5 12.0 10.5 223
Ba 176 160 171 177 147 87 237
Th 3.69 3.00 3.55 343 2.65 1.51 3.98
U 0.84 0.62 0.74 0.67 0.60 0.42 1.11
Nb 36.94 30.76 35.58 34.21 29.72 18.94 45.78
Ta 2.54 2.14 243 234 2.04 1.32 3.38
La 30.96 25.08 29.49 27.81 23.86 15.66 37.13
Ce 63.70 53.29 60.93 58.49 51.28 33.14 77.39
Pb 1.66 1.28 1.58 2.05 1.95 1.06 14.60
Pr 7.76 6.62 7.39 7.28 6.52 4.30 9.44
Nd 33.77 29.37 32.39 31.76 29.68 18.16 40.30
Sr 451 396 434 427 427 217 660
Zr 239 199 237 223 214 113 259
Hf 6.18 5.28 5.94 5.72 5.60 3.01 6.79
Sm 8.50 7.47 8.05 8.02 7.95 421 9.55
Eu 2.72 2.40 2.57 2.56 2.64 1.28 3.20
Gd 8.17 7.29 7.53 7.72 7.89 3.92 8.68
Tb 1.24 1.09 1.14 1.16 1.20 0.56 1.29
Dy 6.76 6.09 6.28 6.36 6.64 3.04 7.11
Ho 1.21 1.09 1.14 1.17 1.21 0.55 1.27
Y 31.09 27.53 28.85 2891 30.30 14.91 32.34
Er 2.90 2.61 2.74 2.74 2.88 1.40 3.00
Tm 0.37 0.34 0.35 0.36 0.38 0.18 0.40
Yb 2.13 1.91 2.00 1.97 2.10 1.08 2.27
Lu 0.30 0.28 0.29 0.29 0.30 0.16 0.32
Sc 34.0 41.1 31.5 35.8 38.5 18.3 22.5
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Volcano Ta'u Muli Muli Muli Malumalu Malumalu Malumalu
Sample 75-10 79-4 79-7 80-23 76-1 76-8 76-9
Latitude (°S) 14.181 13.916 13916 14.129 14.569 14.569 14.569
Longitude (°W) 169.304 169.993 169.993 170.062 169.718 169.718 169.718
Water Depth (m) 2675 3484 3484 2368 2785 2785 2785
Phenocrysts Aphyric 1% Plag Tr Cpx Aphyric Aphyric 2% Ol 10% Ol
Tr Ol, Cpx 3% Cpx
Major elements wt%)
Si0, 47.10 47.23 45.88 48.27 47.62 47.04 4591
Al 04 16.29 17.06 15.99 17.23 14.30 13.69 9.77
TiO, 4.02 3.13 3.58 336 3.54 3.88 2.74
FeO* 12.56 11.55 12.78 11.05 11.41 11.93 12.20
MnO 0.20 0.22 0.22 0.20 0.16 0.18 0.17
Ca0 9.11 8.39 8.93 8.70 12.34 11.86 10.19
MgO 5.16 3.27 438 421 5.81 6.27 15.84
K,O 1.46 2.09 2.37 1.94 1.69 1.92 1.00
Na,O 3.47 4.70 4.46 4.17 275 2.75 1.88
P,0s 0.63 2.37 1.40 0.87 0.38 0.49 0.32
Mg# 46.28 37.25 41.82 44.41 51.64 52.43 73.14
Trace Elements  (ppm)
Ni 5 4 0 0 46 65 458
Cr 15 1 6 7 94 137 889
\Y% 282 144 168 205 370 356 276
Ga 26 23 27 28 23 22 19
Cu 21 10 6 13 138 72 56
Zn 140 188 191 163 109 121 107
Cs 0.39 0.54 0.68 0.37 0.64 0.51 0.24
Rb 27.6 38.6 54.8 384 36.6 443 16.9
Ba 264 662 447 409 351 355 187
Th 4.94 6.48 6.82 7.18 6.43 6.41 3.21
U 1.10 1.21 1.74 1.55 1.18 1.30 0.76
Nb 51.26 92.26 77.19 71.72 49.78 56.67 33.01
Ta 3.59 5.95 5.28 5.24 3.64 393 2.20
La 43.08 107.50 64.09 58.62 51.07 48.43 30.37
Ce 90.50 238.81 137.70 122.09 97.08 95.90 62.55
Pb 3.26 3.80 5.06 4.52 432 4.24 2.50
Pr 11.08 29.95 17.21 14.81 11.13 11.17 7.94
Nd 47.98 132.41 77.37 65.12 45.11 46.27 3242
Sr 617 1901 1010 967 512 544 356
Zr 327 371 492 419 209 276 180
Hf 8.31 9.45 11.73 10.18 6.01 7.23 4.79
Sm 11.62 28.68 18.84 15.63 10.20 10.52 7.19
Eu 3.75 8.77 5.94 4.94 2.98 3.19 2.05
Gd 10.74 23.57 17.17 14.04 9.17 9.49 6.56
Tb 1.60 322 2.46 2.04 1.33 1.38 0.91
Dy 8.83 16.70 12.86 10.92 7.08 7.42 4.81
Ho 1.59 2.85 2.19 1.88 1.25 1.28 0.85
Y 40.24 73.39 56.38 48.07 32.32 32.16 2337
Er 3.81 6.52 497 4.39 297 297 2.06
Tm 0.50 0.81 0.61 0.56 0.38 0.38 0.27
Yb 2.80 4.39 3.34 3.07 2.09 2.05 1.54
Lu 0.40 0.62 0.47 0.45 0.31 0.29 022
Sc 20.5 10.4 14.1 15.7 32.8 31.0 24.0
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Volcano Malumalu ~ Malumalu Malumalu Malumalu Malumalu Malumalu Upolu
Sample 76-13 77-1 77-9 78-1 78-3 78-8 U10
Latitude (°S) 14.569 14.701 14.701 14.623 14.623 14.623 13.9283
Longitude (°W) 169.718 169.767 169.767 169.726 169.726 169.726 171.9813
Water Depth (m) 2785 3605 3605 2264 2264 2264 -
Phenocrysts Aphyric 3% Ol 3% Ol 25% Ol 30% Ol 2% Ol Aphyric
2% Cpx 5% Cpx 5% Cpx Tr Cpx
Major elements (wt%)
SiO, 46.35 46.55 46.83 45.54 45.44 47.33 45.46
AlLO, 13.55 13.22 13.80 8.94 9.49 14.19 13.21
TiO, 3.86 3.55 3.58 1.96 2.06 3.29 3.91
FeO* 12.78 12.17 11.08 11.89 11.91 11.45 13.09
MnO 0.20 0.17 0.17 0.17 0.17 0.17 0.19
CaO 11.80 11.90 11.34 8.23 8.41 11.47 11.27
MgO 6.42 7.62 8.45 19.68 18.81 6.93 8.97
K,O 1.94 1.70 1.81 1.41 1.47 2.05 1.52
Na,O 2.61 2.70 2.59 1.92 1.96 2.74 2.05
P,O5 0.49 0.42 0.36 0.27 0.28 0.40 0.34
Mgit 51.30 56.77 61.53 77.63 76.81 55.93 58.97
Trace Elemenis  (ppm)
Ni 71 116 154 616 578 97 142
Cr 130 252 391 1289 1175 106 433
\Y 384 356 370 194 213 342 346
Ga 26 24 21 14 16 21 21
Cu 95 97 62 49 53 79 51
Zn 125 109 108 102 101 104 106
Cs 0.50 0.51 0.55 0.39 0.36 0.60 0.35
Rb 42.8 46.8 47.5 41.8 40.0 514 42.8
Ba 341 341 336 255 261 372 341
Th 5.33 5.14 6.59 6.03 5.24 6.26 2.16
U 1.29 1.22 1.24 1.05 1.08 1.36 0.56
Nb 57.53 55.47 53.44 39.02 4145 58.97 30.02
Ta 3.84 3.70 3.64 2.63 2.71 3.84 222
La 48.57 46.34 46.05 39.44 41.66 51.99 23.29
Ce 96.33 90.88 89.34 73.02 77.38 98.76 48.32
Pb 5.18 4.14 4.18 4.19 3.77 4.58 3.11
Pr 11.80 11.05 10.13 7.93 8.85 11.52 5.93
Nd 47.24 43.33 41.30 31.00 32.86 4415 26.24
Sr 554 530 477 333 361 529 475
Zr 281 250 232 183 193 256 155
Hf 7.11 6.38 6.23 4.71 4.80 6.42 441
Sm 10.18 9.15 9.27 6.53 6.56 9.09 6.77
Eu 2.87 2.59 2.72 1.89 1.75 2.51 225
Gd 9.10 8.09 8.16 5.81 5.67 7.96 6.60
Tb 1.26 1.12 1.22 0.82 0.77 1.11 1.03
Dy 6.57 5.96 6.52 4.40 4.00 5.84 5.59
Ho 1.15 1.04 1.15 0.77 0.70 1.04 1.00
Y 33.12 29.97 29.31 19.57 20.49 3047 25.19
Er 2.82 2.55 2.72 1.76 1.73 253 2.38
Tm 0.37 0.34 0.34 0.23 0.23 0.34 0.30
Yb 2.13 1.92 1.92 1.24 1.32 1.97 1.70
Lu 0.31 0.29 0.28 0.19 0.19 0.29 0.24
Sc 25.0 27.4 31.2 25.2 21.9 28.5 28.0
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Volcano Upolu Upolu Upolu Upolu Upolu Upolu Upolu
Sample U12 U14 U16 U19 U21 U22 U24
Latitude (°S) 13.9456 13.9383 13.9355 13.9392 13.8926 13.8922 13.9314

Longitude (°W) 171.9766 171.9805 171.9991 171.9938 171.9640 171.9630 171.9661
Water Depth (im) - - -

3% Plag,

Phenocrysts Tr Ol,Plag 2% Plag 0Ol 8% Plag 2% Cpx 4% Cpx 5% Plag
Tr Cpx Tr Cpx 2% Cpx TrOLPlag  2%O0l Tr Ol, Cpx
Major elements wt%,)
SiO, 48.08 47.51 47.65 47.36 48.24 47.24 49.01
Al,O4 14.32 14.53 14.49 15.63 13.88 14.32 15.85
TiO; 4.04 4.34 4.03 3.83 3.79 4.00 3.92
FeO* 12.91 13.41 12.20 11.94 12.04 12.84 11.71
MnO 0.19 0.20 0.18 0.17 0.17 0.18 0.18
Ca0O 10.14 9.94 10.47 11.17 10.64 9.95 9.56
MgO 5.95 5.13 6.30 5.72 7.15 6.98 4.61
K,0 0.96 1.22 1.16 0.99 1.00 1.19 1.35
Na,O 2.90 3.12 2.99 2.74 2.59 2.77 3.19
P,Os 0.51 0.60 0.54 0.46 0.49 0.54 0.63
Mg 49.15 44.5] 51.99 50.12 55.46 53.27 4522
Trace Elements  (ppm)
Ni 72 43 95 73 122 131 43
Cr 137 59 191 162 246 211 64
\Y% 360 361 353 338 354 368 341
Ga 24 24 24 22 23 22 22
Cu 31 38 75 61 48 92 35
Zn 122 130 112 105 116 125 117
Cs 0.09 0.13 0.15 0.10 0.40 0.23 0.15
Rb 18.0 26.8 26.7 219 24.8 27.7 321
Ba 223 255 247 218 220 260 290
Th 2.64 3.40 293 2.59 2.74 3.14 3.79
U 0.70 0.90 0.79 0.69 0.77 0.79 0.99
Nb 34.81 4528 42.59 36.23 35.77 42.88 47.60
Ta 2.47 321 3.02 2.59 2.54 3.02 3.26
La 30.14 37.48 33.30 29.03 35.27 37.73 40.81
Ce 63.91 80.50 71.31 61.80 70.00 73.99 83.91
Pb 3.32 3.70 3.54 6.98 3.14 3.79 3.93
Pr 8.24 10.11 8.98 7.73 9.26 9.78 10.37
Nd 37.45 44.40 40.23 34.51 41.25 43.19 45.3]
Sr 447 535 505 530 479 488 597
Zr 263 313 302 247 253 271 303
Hf 6.85 7.91 7.42 6.35 6.49 6.92 7.51
Sm 9.59 10.93 10.03 8.65 10.12 10.50 10.90
Eu 321 3.60 3.28 2.86 3.50 3.55 3.60
Gd 9.35 10.47 945 8.27 9.96 10.12 10.35
Tb 1.46 1.59 1.42 1.25 1.48 1.51 1.56
Dy 8.06 8.51 7.76 6.87 7.99 8.34 8.44
Ho 1.47 1.56 1.38 1.25 1.45 1.50 1.53
Y 37.16 39.30 35.14 31.35 37.88 38.35 39.08
Er 3.53 3.68 3.29 2.99 343 3.54 3.70
Tm 0.46 0.49 0.43 0.38 0.44 0.47 0.47
Yb 2.62 2.68 2.36 2.12 2.46 2.59 2.65
Lu 0.37 0.39 0.34 0.31 0.35 0.38 0.38
Sc 31.1 26.8 29.4 29.4 30.1 28.5 23.9

89



Table 2-2, page 10.

Volcano Savai'i Savai'i Savai'i Savai'i Savai't Savai'i Savai'i
Sample S11 S12 S15 S16 S18 S23 S25
Latitude (°S) 13.4840 13.4614 13.4561 13.4767 13.4751 13.4469 13.4469

Longitude (°W) 172.3787 172.3654 172.3939 172.3950 172.3929 172.3900 172.3864
Water Depth (m) - - - - - - -
Phenocrysts 3% Ol 2% Ol 2% Ol Aphyric Aphyric 2% Ol 1% Ol

2% Cpx Tr Cpx
Major elements (Wit%)
SiO, 45.95 46.30 45.45 47.16 47.95 45.46 45.57
ALO; 13.27 12.84 12.80 16.43 14.92 11.80 12.00
TiO, 3.31 2.96 3.49 3.35 2.70 3.09 3.16
FeO* 12.08 11.91 13.06 11.78 10.66 11.60 11.79
MnO 0.17 0.17 0.18 0.17 0.17 0.17 0.17
CaO 10.54 9.91 7.81 8.45 10.87 9.81 10.07
MgO 9.86 11.86 13.94 6.62 8.23 13.54 13.09
K,O 1.39 1.35 1.42 1.75 1.28 1.55 0.49
Na,O 291 224 141 3.78 2.87 2.54 3.21
P,Os 0.53 0.46 0.44 0.52 0.36 0.44 0.46
Mgt 63.12 67.62 69.12 54.10 61.82 71.00 69.96
Trace Elements  (ppm)
Ni 193 286 451 86 137 406 383
Cr 415 502 612 77 298 555 568
\Y 294 271 243 258 271 250 258
Ga 20 18 23 25 22 19 17
Cu 39 44 55 22 57 51 50
Zn 109 106 112 111 85 99 101
Cs 0.31 0.34 0.33 0.54 0.31 0.49 0.52
Rb 34.7 30.4 34.8 53.1 344 45.8 116.3
Ba 379 363 489 404 308 430 435
Th 387 3.53 3.41 443 2.67 3.35 3.46
U 0.78 0.71 0.51 0.91 0.57 0.74 0.72
Nb 4421 40.01 40.20 46.64 34.71 4143 42.42
Ta 2.99 2.87 2.89 3.28 2.46 2.85 2.97
La 40.18 3441 33.75 42.60 29.28 33.20 34.48
Ce 78.56 67.10 66.36 78.71 52.74 66.01 68.38
Pb 4.30 4.06 4.05 5.11 3.44 4.29 3.92
Pr 9.02 7.76 7.76 9.03 6.43 7.75 8.08
Nd 3722 32.31 33.13 37.01 27.41 32.74 34.15
Sr 581 532 420 680 429 544 564
Zr 213 194 185 251 167 186 189
Hf 5.34 497 4.90 6.14 427 4.70 491
Sm 8.58 7.46 7.84 8.49 6.46 7.72 8.02
Eu 2.81 2.43 2.54 2.84 2.21 247 2.60
Gd 8.14 7.09 7.32 8.22 6.74 7.14 7.42
Tb 1.19 1.05 1.06 1.23 1.04 1.05 1.08
Dy 6.37 5.74 5.56 6.76 6.03 5.45 5.73
Ho 1.11 1.01 0.96 1.24 1.17 0.94 0.98
Y 28.79 25.35 24.13 35.14 36.39 24.49 24.90
Er 2.59 2.39 222 2.96 297 220 2.26
Tm 0.33 0.30 0.28 0.39 0.38 0.27 0.29
Yb 1.82 1.68 1.54 2.19 2.09 1.50 1.60
Lu 0.26 0.24 022 0.32 0.33 0.21 0.22
Sc 24.9 23.8 25.2 19.0 29.1 24.4 24.7
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Table 2-5. Sample information and chemical data for Samoan basalts collected by M. Regelous*

Volcano Upolu Upolu Upolu Upolu Upolu Upolu Upolu
Sample UIlF UI13F UI4F U38F U39F U40F U4l F
Volcanic Series Fagaloa Fagaloa Fagaloa Fagaloa Fagaloa Fagaloa Fagaloa
Lat. (°S) 13.8537 13.8533 13.9422 13.8453 13.8512 13.8597 13.8648

Long. (°W) 171.6886 171.6582 171.5848 171.7093 171.7033 171.6523 171.6436

Major elements (wt%)

SiO, 48.06 45.65 4578 48.28 47.33 47.53 46.01
ALO; 15.20 13.98 15.79 15.32 13.86 14.00 13.87
TiO; 424 2.92 3.65 428 5.09 3.88 2.96
FeO* 12.01 12.82 12.84 12.05 12.25 12.50 12.67
MnO 0.16 0.18 0.19 0.17 0.16 0.17 0.18
Ca0 9.73 10.27 9.82 9.37 10.47 10.26 10.77
MgO 5.38 10.24 6.72 527 5.80 7.45 10.00
K,O 1.37 0.91 0.56 1.41 1.44 0.97 0.94
Na,0 3.22 2.59 4.00 322 2.92 2.75 2.16
P,0s 0.63 0.44 0.65 0.63 0.68 0.48 0.45
Mgt 48.44 62.63 5231 47.85 49.82 55.54 62.35
Trace Elements (ppm)
Ni 72 249 72 73 79 140 248
Cr 105 389 75 98 73 220 411
\Y 312 272 293 311 341 316 280
Ga 25 20 23 25 25 22 21
Cu 71 92 38 69 120 101 98
Zn 144 123 134 150 154 130 124
Cs 0.20 0.40 0.54 0.32 0.47 0.14 0.23
Rb 32.3 23.8 38.2 33.0 38.2 21.2 23.8
Ba 311 259 341 292 305 203 272
Th 3.79 3.17 5.27 3.77 5.08 2.64 3.27
U 1.07 0.76 1.12 1.07 1.26 0.73 0.79
Nb 52.18 40.16 52.88 51.82 58.00 35.35 40.33
Ta 3.26 2.48 3.07 3.19 3.60 2.23 2.50
La 45.10 31.13 4932 41.43 48.93 27.74 32.16
Ce 96.38 66.54 102.63 93.74 105.67 65.00 67.97
Pb 2.82 2.40 3.72 2.98 3.48 1.70 227
Pr 13.21 8.21 12.34 12.49 13.99 9.03 8.43
Nd 53.08 31.72 46.48 50.08 55.92 38.14 32.80
Sr 683 521 699 664 631 494 543
Zr 324 179 243 322 335 264 183
Hf 7.79 435 5.71 7.71 8.13 6.46 4.51
Sm 11.24 6.62 9.25 10.61 11.76 8.76 6.82
Eu 3.60 2.11 2.89 3.36 3.66 2.79 2.18
Gd 10.52 6.11 8.19 957 10.63 8.18 6.33
Tb 1.46 0.87 1.14 1.34 1.46 1.17 0.89
Dy 8.11 4.82 6.25 737 7.97 6.56 4.95
Ho 1.49 0.88 1.13 133 1.42 1.21 0.90
Y 39.25 21.40 27.44 31.82 34.83 28.89 21.98
Er 3.69 2.17 2.75 3.21 3.44 2.94 223
Tm 0.47 0.29 0.36 0.42 0.44 0.39 0.29
Yb 2.69 1.69 2.10 2.42 253 225 1.71
Lu 0.38 0.24 0.30 0.34 0.35 0.32 0.24
Sc 22.2 22.7 19.0 21.9 25.3 25.9 24.0
86gr/f7sr 0.705361 0.705391 0.705644 0.705180 0.704904 0.705439
Nd/M NG 0.512874 0.512783 0.512773 0.512907 0.512777
206p,204py, 18.944 18.914 18.961 18.940 19.143 18.905 18.918
297pp2%ph 15.580 15.582 15.603 15.576 15.606 15.568 15.584
208pp,2%py, 38.835 38.996 39.130 38.827 39.273 38.798 39.009

*See Appendix | for analytical techniques.
** Mg# = molar ratio of MgO/(MgO + 0.85*FeQ)
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Volcano Upolu Savai'i Savai'i Savai'i Savai'i Savai'i Savai'i PE
Sample U43F S36F S44F S45F S46 F S47F SI10M
Volcanic
Series Fagaloa Fagaloa Fagaloa Fagaloa Fagaloa Fagaloa Mulifanua
Lat. (°S) 13.8895 13.2642 13.2662 13.2662 13.2642 13.2637 13.3058
Long. (°W) 171.5614 172.3815 172.3677 172.3674 172.3813 172.3841 172.6411
Major elements (wt%,)
Si0, 46.66 4593 47.24 11.94 13.93 14.70 12.70
ALO; 13.69 11.92 14.48 3.04 2.72 3.11 3.37
TiO, 5.16 3.12 257 11.34 11.29 11.86 11.25
FeO* 14.15 11.59 11.86 0.16 0.16 0.16 0.15
MnO 0.18 0.16 0.16 9.70 10.35 9.18 9.26
Ca0 9.76 10.05 10.19 13.24 9.34 10.16 11.01
MgO 5.46 13.21 9.62 1.61 0.94 1.08 2.10
K,O 1.07 0.48 0.96 2.69 2.73 2.62 3.28
Na,0 3.35 3.10 2.64 0.44 0.29 0.31 0.56
P,0s 0.50 0.44 0.27 71.01 63.44 64.24 67.25
Mgt 44.72 70.51 62.98 11.94 13.93 14.70 12.70
Trace Elements (ppm)
Ni 35 386 214 385 174 202 281
Cr 4 603 339 600 423 526 440
% 389 238 252 233 251 265 224
Ga 25 19 21 19 20 22 21
Cu 84 76 73 77 81 54 63
Zn 160 120 121 115 110 122 132
Cs 0.28 0.40 0.14 0.43 0.14 0.13 0.62
Rb 25.0 55.9 232 48.0 25.1 16.8 55.2
Ba 213 431 235 437 224 323 543
Th 2.80 3.36 2.18 3.48 241 223 4.93
u 0.82 0.70 0.43 0.81 0.57 0.73 1.19
Nb 40.56 42.85 29.16 4436 28.81 36.51 67.26
Ta 2.59 2.65 1.80 2.70 1.76 2.58 415
La 30.24 31.95 41.87 31.95 22.82 20.37 41.90
Ce 72.09 69.29 4758 69.49 4931 44.97 87.77
Pb 3.15 279 2.01 2.87 2.07 2.06 422
Pr 991 8.76 8.94 8.80 6.36 5.94 10.91
Nd 42.30 34.84 36.05 34.74 25.53 2421 41.94
Sr 552 585 436 821 419 394 679
Zr 301 188 161 191 156 189 267
Hf 7.55 471 4.00 4.69 3.90 4.74 6.35
Sm 9.98 7.32 7.55 7.29 5.70 5.50 8.42
Eu 3.23 2.35 2.67 233 1.92 1.83 2.62
Gd 9.57 6.67 9.17 6.60 5.62 5.38 7.48
Tb 1.37 0.92 1.32 0.92 0.83 0.81 1.03
Dy 7.65 4.99 7.93 4.93 474 4.64 547
Ho 1.38 0.87 1.59 0.86 0.87 0.86 0.95
Y 33.23 20.89 46.87 20.84 21.40 21.05 23.34
Er 3.36 2.06 4.10 2.07 220 2.19 224
Tm 0.44 0.27 0.54 0.26 0.29 0.30 0.28
Yb 2.50 1.49 3.09 1.49 1.71 1.72 1.59
Lu 0.35 0.21 0.49 0.21 0.25 0.25 0.22
Sc 26.0 222 24.4 21.4 25.2 21.5 18.7
RN VALN 0.705179 0.705823 0.706670 0.705856 0.706338 0.706528
"Nd/ N 0.512883 0.512702 0.512698 0.512678 0.512725 0.512682
200pp209pp 18.848 18.801 18.804 18.866 18.821 18.803
207pp2%ph 15.564 15.609 15.612 15.613 15.604 15615
208pp,20py, 38.783 39.012 39.024 39.159 39.022 39.019
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Volcano Savai'i PE Savai'i PE Savai'i PE Savai't PE Savai'i PE Savai'i PE Savai'i PE
Sample S15Ma S$26S S 28 Pb S31P S32M S33P S34A
Volcanic
Series Mulifanua Salani Puapua Puapua Mulifanua Puapua Aopo
Lat. (°S) 13.3094 13.4327 13.4611 13.4753 13.3799 13.3099 13.318
Long (°W) 172.7021 172.314 172.3728 172.513 172.6655 172.7404 172.5523
Major elements (wt%)
Si0, 44.62 4551 48.64 48.76 4539 48.05 45.89
ALO; 12.40 12.64 14.20 14.18 11.84 14.25 12.38
TiO, 3.30 3.24 3.01 2.96 3.83 273 3.13
FeO* 11.46 11.80 10.58 10.48 12.11 10.91 11.23
MnO 0.16 0.15 0.14 0.14 0.15 0.15 0.16
Ca0 10.48 9.07 8.07 8.05 9.07 8.57 951
MgO 11.92 12.04 8.98 9.08 12.75 9.76 12.31
K,O 191 1.80 2.09 2.06 1.88 1.68 1.78
Na,O 3.04 3.25 3.73 3.72 2.62 3.28 3.15
P,0s 0.71 0.52 0.56 0.56 0.36 0.61 0.47
Mgt 68.57 68.14 64.03 64.50 68.82 65.24 69.68
Trace Elements (ppm)
Ni 275 329 233 361 236 340
Cr 500 405 315 520 350 535
\% 244 238 196 268 201 240
Ga 21 22 23 22 22 20
Cu 69 59 55 75 50 60
Zn 128 139 133 134 129 118
Cs 0.58 0.52 0.75 0.65 0.48 0.50
Rb 51.0 46.1 61.4 55.2 44.9 493
Ba 500 388 451 399 503 401
Th 6.34 3.39 5.33 2.82 4.75 3.94
U 1.43 0.89 1.39 0.73 111 0.87
Nb 70.27 54.93 55.33 50.96 55.28 50.26
Ta 427 3.42 3.55 3.63 3.43 3.28
La 54.90 32.20 36.37 24.26 39.62 36.60
Ce 112.66 71.92 75.05 54.51 81.56 77.21
Pb 5.24 3.06 421 2.32 3.94 3.08
Pr 13.50 9.34 9.26 7.17 9.82 9.48
Nd 50.24 37.53 35.63 29.73 37.02 36.57
Sr 748 670 610 491 606 556
Zr 272 251 284 250 253 225
Hf 6.39 6.00 6.64 6.40 5.93 5.57
Sm 9.59 8.09 7.55 6.66 7.50 7.58
Eu 2.92 2.57 243 2.15 237 2.30
Gd 8.11 7.31 7.00 6.18 6.83 6.88
Tb 1.11 1.02 0.99 0.86 0.98 0.95
Dy 5.78 5.35 5.31 4.60 5.46 5.15
Ho 0.99 0.91 0.91 0.79 0.98 0.90
Y 2441 21.99 22.24 19.21 24.02 21.52
Er 2.39 2.10 2.14 1.87 2.39 2.11
Tm 0.30 0.26 0.28 0.24 0.31 0.27
Yb 1.67 1.43 1.54 1.31 1.84 1.53
Lu 0.24 0.20 0.22 0.18 0.26 0.22
Sc 21.3 18.4 15.8 20.4 17.2 20.3
St St 0.706435 0.705597 0.705784 0.705765 0.705267 0.705451 0.706409
8N4/ Nd 0.512747 0.512751 0.512795 0.512776
2%ph/2%ph 18.888 18.793 18.776 18.777 18.842 18.682 18.796
PO Pb 15.623 15.580 15.602 15.598 15.589 15.603 15.607
2%pp2pp 39.163 38.866 38.938 38.921 39.017 38.856 39.051
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Volcano Savai'i PE Savai'i PE Savai'i PE Savai'i PE Savai'i PE Savai'i PE Upolu PE
Sample S35P S39A S42A S43 P $508S $52M U10S
Volcanic
Series Puapua Aopo Aopo Puapua Salani Mulifanua Salani
Lat. (°S) 13.2957 13.2703 13.2673 13.32 13.3596 13.42 13.8368
Long.(°W) 172.4654 172.3123 172.3106 172.2362 172.2673 172.2024 171.7362
Major elements (wt%)
SiO, 48.30 47.33 46.05 4472 45.94 4583 48.41
ALO; 13.32 12.47 11.76 11.45 12.59 11.98 15.15
TiO, 2.94 2.70 2.83 3.67 327 3.04 423
FeO* 11.29 11.71 11.98 12.42 12.37 11.45 11.88
MnO 0.15 0.16 0.16 0.16 0.17 0.15 0.16
Ca0 9.44 9.45 9.28 9.13 9.79 9.24 9.64
MgO 10.16 12.04 13.75 14.06 11.95 13.33 5.21
K,0 1.23 0.96 1.19 1.56 1.32 1.59 1.40
Na,O 2.84 2.88 2.66 2.45 232 2.86 3.26
P,0s 0.33 0.31 0.35 0.39 0.27 0.52 0.65
Mg# 65.38 68.32 70.64 70.37 66.94 70.93 47.92
Trace Elements (ppm)
Ni 255 340 412 302 402 62
Cr 456 570 594 552 491 86
\% 236 231 231 266 223 309
Ga 21 20 19 21 20 25
Cu 55 72 66 83 65 78
Zn 114 121 124 123 126 146
Cs 0.15 0.30 0.36 0.51 0.66 0.31
Rb 29.5 24.8 31.0 38.6 44.0 33.7
Ba 277 245 288 314 438 298
Th 2.44 244 291 1.88 435 3.87
§] 0.55 0.57 0.70 0.46 1.06 1.08
Nb 38.69 31.82 36.65 47.12 51.33 52.29
Ta 2.73 2.12 2.40 3.45 3.13 3.27
La 21.29 22.02 26.43 19.08 37.49 42.54
Ce 47.10 47.50 56.59 44.93 78.41 97.06
Pb 3.18 1.98 2.38 1.72 3.78 3.03
Pr 6.10 6.08 7.15 6.04 9.67 12.72
Nd 25.00 24.42 28.34 25.09 37.30 51.10
Sr 402 398 437 409 794 676
Zr 187 159 175 211 225 326
Hf 4.95 4.16 4.47 5.53 5.39 7.96
Sm 5.76 5.60 6.13 5.62 7.70 10.63
Eu 1.90 1.81 1.92 1.85 2.44 3.33
Gd 5.70 5.57 5.84 5.38 6.94 9.68
Tb 0.84 0.83 0.85 0.77 0.97 1.37
Dy 475 474 4.73 429 5.20 7.50
Ho 0.86 0.87 0.85 0.77 0.90 1.35
Y 20.55 20.92 20.49 18.63 21.87 32.62
Er 2.12 2.16 2.09 1.90 2.15 332
Tm 0.28 0.28 0.27 0.25 0.27 0.44
Yb 1.60 1.61 1.54 143 1.53 2.50
Lu 0.23 023 0.22 0.20 0.21 0.35
Sc 21.5 22.1 20.8 22.5 19.0 21.6
8SrSr 0.705564 0.705793 0.706018 0.706907 0.705686 0.705363
3Nd/Nd 0.512705 0.512712 0.512711 0.512736 0.512870
206py,204py, 18.853 18.803 18.792 18.901 18.746 18.940
207pp2%4pp, 15.602 15.607 15.607 15.611 15.602 15.577
208pp, 204pp, 39.071 39.039 39.044 39.150 38.916 38.826
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Volcano Upolu PE Upolu PE Upolu PE Upolu PE Upolu PE Upolu PE Upolu PE
Sample U158 Ul16S u17sa U17S(2) U21S Uu23p U24 L
Volcanic
Series Salani Salani Salani Salani Salani Puapua Lefaga
Lat. (°S) 13.9983 14.0306 14.0357 Same Flow 13.9541 14.0221 13.9668
Long. (°W) 171.4222 171.4325 171.4619 Few meters 171.7674 171.731 171.9434
Major elements (wt%)
SiO, 44.68 47.20 45.13 45.29 41.85 44.11
AL O; 12.02 12.21 11.67 12.26 11.79 12.63
TiO, 4.53 3.99 3.96 345 4.52 3.62
FeO* 12.55 12.32 12.33 12.61 13.48 12.32
MnO 0.16 0.15 0.16 0.17 0.17 0.17
Ca0 9.96 8.99 9.87 10.45 1091 10.83
MgO 11.63 10.57 11.94 11.51 11.14 11.04
K,O 1.66 1.54 1.51 1.19 1.85 1.40
Na,O 2.21 2.67 2.88 2.52 3.56 3.15
P,0s 0.59 0.36 0.56 0.55 0.72 0.72
Mgt 66.02 64.28 67.00 65.68 63.42 65.27
Trace Elements (ppm)
Ni 315 327 284 248 240
Cr 427 430 44] 325 419
\Y 275 257 245 288 270
Ga 22 20 21 21 21
Cu 21 81 67 66 69
Zn 151 134 131 145 128
Cs 0.19 0.47 0.43 0.63 0.19
Rb 43.7 56.8 319 533 384
Ba 533 466 403 677 486
Th 441 3.73 4.54 6.73 7.17
U 1.06 0.87 1.03 1.43 0.93
Nb 50.54 4598 45.85 72.56 54.02
Ta 3.09 2.85 2.80 4.09 3.03
La 41.63 36.96 42.94 63.55 65.36
Ce 88.37 79.28 89.24 129.64 130.00
Pb 2.26 2.99 3.68 4.95 4.48
Pr 11.01 9.96 11.00 15.49 14.99
Nd 43.34 39.79 42.36 57.75 53.99
Sr 643 613 623 892 823
Zr 219 203 225 264 231
Hf 5.49 5.24 5.70 6.36 5.40
Sm 9.01 8.54 8.54 11.03 10.00
Eu 2.76 2.61 2.60 3.37 3.00
Gd 8.27 7.84 7.52 9.40 8.39
Tb 1.13 1.09 1.04 1.28 1.16
Dy 6.06 5.89 5.69 6.70 6.23
Ho 1.04 1.02 0.99 1.15 1.09
Y 24.89 24.32 23.80 27.84 27.05
Er 241 2.38 2.35 2.64 2.63
Tm 0.30 0.30 0.30 0.32 0.33
Yb 1.67 1.66 1.67 1.78 1.94
Lu 0.23 0.23 0.23 0.24 0.27
Sc 21.3 21.2 214 21.5 223
RIS AN 0.706088 0.705813 0.705750 0.705393 0.705536 0.705670
'"UNd/*Nd 0.512711 0.512713 0.512662 0.512671 0.512666
%pp/2%ph 18.785 18.711 18.577
“pb/**Ph 15.623 15.607 15.611
20%pp/2%pp 39.004 38.871 38.775
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Volcano Upolu PE Upolu PE Upolu PE Upolu PE Upolu PE Upolu PE Upolu PE
Sample U26L U28L U30L U32M U33M U3SMd)  U3BMQ)
Volcanic
Series Lefaga Lefaga Lefaga Mulifanua Mulifanua Mulifanua Mulifanua
Lat. (°S) 13.9728 13.9677 13.9804 13.7917 13.8265 13.8359 Same Flow
Long.(°W)  171.9399 171.9416 171.9329 171.9007 171.9974 171.9469 Few meters
Major elements (wt%)
Si0, 41.64 42.25 42.10 44.65 4837 41.58
ALO; 11.95 11.58 11.74 12.14 13.63 11.14
TiO, 5.82 5.63 5.67 431 3.34 6.58
FeO* 14.39 13.92 14.02 13.14 11.30 14.55
MnO 0.18 0.16 0.17 0.16 0.14 0.17
Ca0 10.26 9.90 10.03 9.67 9.01 9.97
MgO 11.67 11.44 1145 12.35 8.12 11.77
K0 1.20 1.65 1.54 127 1.92 1.39
Na,O 2.29 2.87 2.69 1.99 3.50 2.42
P,Os 0.61 0.59 0.58 0.34 0.68 0.42
Mgt 62.99 63.29 63.14 66.35 60.11 62.92
Trace Elements (ppm)
Ni 299 301 357 171 328
Cr 376 375 489 204 460
A% 322 320 292 189 379
Ga 22 22 20 23 20
Cu 67 69 68 29 87
Zn 145 145 129 142 140
Cs 0.54 0.54 0.29 0.51 0.41
Rb 37.8 50.2 323 479 40.4
Ba 509 499 425 576 429
Th 5.00 4.90 226 4.86 3.81
U 1.07 1.08 0.47 1.14 0.84
Nb 61.34 60.31 35.56 49.91 " 48.46
Ta 3.73 3.66 2.40 2.84 3.08
La 47.75 47.09 24.93 44.65 36.18
Ce 100.15 98.79 52.55 91.89 77.47
Pb 3.51 3.37 1.94 4.03 2.74
Pr 12.26 12.15 7.00 11.32 9.72
Nd 46.86 46.38 28.67 44.05 37.78
Sr 704 689 641 766 524
Zr 260 256 186 235 226
Hf 6.51 6.33 4.99 5.72 6.02
Sm 9.58 9.39 6.48 9.30 7.92
Eu 2.95 2.88 2.08 2.98 2.46
Gd 8.50 8.32 6.25 8.54 7.21
Tb 1.18 1.15 0.89 1.19 1.01
Dy 6.19 6.08 4.83 6.27 5.56
Ho 1.08 1.06 0.87 1.07 0.99
Y 25.96 25.48 21.69 26.33 23.61
Er 2.49 2.44 2.09 2.46 2.35
Tm 0.31 0.30 0.27 0.30 0.30
Yb 1.73 1.68 1.53 1.64 1.74
Lu 0.24 0.23 0.21 0.22 0.23
Sc 22.8 226 23.8 16.1 27.4
86SrA7Sr 0.705620 0.705594 0.705379 0.706113 0.705664 0.705631 0.705607
"NA/MNd 0512728 0.512684 0.512881 0.512734 0.512690 0.512668 0.512656
26pp,203pp, 18.696 18.681
207pp20py 15.610 15.606
28pp20py 38.878 38.883
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Volcano Upolu PE BHVO-1 Standard
Sample u37p

Volcanic

Series Puapua

Lat. (°S) 14.0068

Long. (°W)  171.7292

Long-term average, U. Queensland

Major elements (wt%)

Si0, 41.75
AlLO; 11.84
TiO, 4.45
FeO* 13.34
MnO 0.18
Ca0 10.92
MgO 11.06
K,0 1.86
Na,O 3.92
P,Os 0.69
Mg 63.49
Trace Elements (ppm)
Ni 241
Cr 312
\% 290
Ga 21
Cu 67
Zn 142
Cs 0.63
Rb 53.6
Ba 678
Th 6.58
U 1.39
Nb 71.19
Ta 4.04
La 61.31
Ce 125.23
Pb 95.09
Pr 15.00
Nd 55.86
Sr 861
Zr 256
Hf 6.20
Sm 10.69
Eu 3.27
Gd 9.10
Tb 1.25
Dy 6.59
Ho 1.13
Y 27.60
Er 2.63
Tm 0.32
Yb 1.79
Lu 0.24
Sc 22.2

Ti 49

Ni 60
Cr 52

VvV 51

Ga 71

Cu 65
Zn 66
Cs 133
Rb 85
Ba 137
Th 232
U 238
Nb 93
Ta 181
La 139
Ce 140
Pb 208
Pr 141

Nd 146
Sr 86

Zr 90
Hf 178
Sm 149
Eu 151
Gd 160
Tb 159
Dy 161
Ho 165
Y 89
Er 167
Tm 169
Yb 172
Lul75
Sc 45

16376

116
295
286
212
137
106

0.0967
9.27

132

1.19
0.433

18.4
1.15
15.1
37.7
1.97
5.45
24.1
394

165
437
595
2.04
5.97

0.886
S.11
0.953
229
242
0.324
1.90
0.268
29.9

1.02

2.57
237
1.39
1.18
0.94
1.81
1.21
0.83
0.75
1.09
1.09
0.86
1.31
0.74
0.65
3.87
0.55
0.52
0.52
0.94
1.28
0.79
0.98
0.68
0.97
0.85
0.84
0.76
1.32
1.28
1.05
1.36
1.68

3rA7Sr 0.705492
"INd/"Nd  0.512618
206Pb/204pb
207Pb/204pb
ZORPb/ZOAPb
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Table 2-7. Calculated trace element composition of a "pure” EM?2 mellt.

Average Average EM2
Ta'u Malumalu Melt
TSt oST 0.7046 0.70889 0.7128
Cs 0.11 0.41 0.70
Rb 15.17 4473 73.47
Ba 146.96 281.99 413.29
Th 2.78 6.17 9.46
U 0.62 1.16 1.69
Nb 29.71 43.96 57.83
Ta 2.06 2.92 3.76
K 0.73 1.57 2.39
La 24.16 4431 63.90
Ce 50.61 82.17 112.85
Pb 2.09 435 6.56
Pr 6.27 9.16 11.98
Nd 27.24 34.89 4233
Sr 367.00 379.09 390.83
Zr 187.15 205.43 223.20
Hf 4.82 5.20 5.57
Sm 6.74 7.15 7.56
Eu 2.15 1.99 1.84
Ti 2.99 2.20 1.42
Gd 6.41 6.28 6.15
Tb 0.95 0.87 0.79
Dy 5.21 4.59 4.00
Ho 0.94 0.80 0.67
Y 24.00 21.89 19.84
Er 226 1.91 1.57
Tm 0.29 0.25 0.21
Yb 1.67 1.40 1.13
Lu 0.24 0.21 0.17
Sc 25.76 25.77 25.79

**All reported as ppm except K and Ti in wt%.
**All samples in averages are olivine corrected to Mg# 73.
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Chapter 3:

Major and Trace Element Composition of the

Depleted MORB Mantle (DMM)’

Abstract

We derive an estimate for the chemical composition of the depleted MORB mantle
(DMM), the source reservoir to mid-ocean ridge basalts (MORBs), which represents at
least 30% the mass of the whole silicate Earth. A database for the chemical and physical
properties of abyssal peridotites has become robust and complete enough to truly access a
reference DMM. Using trace element depletion trends from the abyssal peridotites, it is
possible to construct a large part of DMM ’s trace element pattern. Splicing this information
with isotopic constraints (Sr-Nd-Pb-Hf) and canonical ratios (Ce/Pb, Nb/Ta, Nb/U, Ba/Rb,
H,0/Ce, CO,/Nb and CI/K), we can extend abundance estimates to all the incompatible
elements including volatile content. The resulting trace element pattern for average DMM
constrains parental MORB to be generated by 6% aggregated fractional melting —
consistent with recent models for hydrous melting of the mantle (Asimow et al., 2004). We
show that DMM is roughly balanced by the continental crust and better balanced upon
inclusion of ocean island basalt source and oceanic crust components. Compared to the
primitive mantle, DMM has been depleted by 2-3% melt extraction and has only 15% the
radiogenic heat production.

" Published in EPSL Volume 231, Feb. 2005

107



1. Introduction

The trace element composition of the depleted upper mantle (DMM) is a fundamental
parameter in modeling the generation of mid-ocean ridge basalts (MORBs), calculating the
crust-mantle mass balance, and establishing the chemical and thermal evolution of the Earth.
To date, all attempts to establish an average composition for the upper mantle, whether by
parent/daughter derivations from isotopic systems (Allegre et al., 1983; Galer and O’ Nions;
1985; Albarede and Brouxel, 1987; Shimizu, 1998; Elliot et al., 1999; Salters and Stracke,
2004) or by MORB trace element inversions (Salters and Stracke, 2004; McKenzie and
O’Nions, 1991, Hofmann, 1988, Sun and McDonough, 1989), have centered on MORB
liquids and include major assumptions about melt generation, melt transport and
differentiation processes that have affected these upper mantle melts. Unfortunately, it is just
these processes that we are trying to understand, rather than assume a priori.

The most compelling evidence for upper mantle depletion comes from the heavy-
element isotopic composition of MORBs. Although MORBs and their residues, abyssal
peridotites, have some degree of heterogeneity in radiogenic isotope ratios (Sr-Nd-Pb-Hf),
they are focused within a small range of values relative to ocean island basalts and are, with
very few exceptions, depleted from bulk earth values in *’Sr/**Sr, '“’Nd/"**Nd and
"SHf/'""Hf, thus requiring a long-term history of low Rb/Sr, Hf/Lu and Nd/Sm (i.e.
incompatible element depletion). Direct evidence for upper mantle depletion came with the
classic trace element studies of Johnson et al. (1990) and Johnson and Dick (1992) on
abyssal peridotites, but most of the observed depletion in these peridotites is due to melt
extraction during the latest spreading events, so that the composition of the general ambient
upper mantle has been severely overprinted by this latest melting episode.

Ultimately, we know that this mantle, which has been estimated to comprise 30-70% by
mass of the bulk silicate earth, has been depleted over time in the highly incompatible
(lithophile) elements (Allegre et al., 1983; Hofmann, 1988, refs. therein). Most models
ascribe the depletion of the upper mantle to the extraction of the enriched continental crust, a
process that has removed up to 90% of the most incompatible elements, and 80-85% of the
heat-producing elements (e.g. Hofmann, 1988). Some part of the depletion may also be
created by the preservation of recycled oceanic crust that is currently sequestered in
unknown regions of the mantle. It is possible the lower mantle (below 670 km) has also
been depleted by such processes, but this question is highly controversial at present.

108



In place of assuming a set of bulk partition coefficients or a degree of melt extraction,
we use in this paper the following constraints in deriving an average trace element
composition of DMM: 1) trace element content of clinopyroxenes from abyssal peridotites,
2) isotopic evolution from primitive upper mantle (PUM) and 3) canonical trace element
ratios in MORBs. Abyssal peridotite data from the literature, the backbone of this study, are
treated in a way reminiscent of studies such as Loubet et al. (1975), Hart and Zindler (1986)
and McDonough and Sun (1995). Abyssal peridotites, unlike basalts, are not modified by
secondary processes such as fractional crystallization, magma mixing and crustal
assimilation (Dick et al., 1984), but may be subject to melt impregnation (Dick, 1989) and
melt/rock reaction (Kelemen et al, 1992). We show that melt impregnation can be
recognized and therefore filtered from the abyssal peridotite dataset and suggest that
melt/rock reaction in the dataset we have used has had more effect on major element
chemistry than trace element chemistry. Overall, it seems that, for the moderately
incompatible elements, abyssal peridotites more accurately record the trend of upper mantle
depletion than do MORBs.

The average trace element content of DMM, as deduced here, generally shows a very
smooth pattern with increasing trace element compatibility, which to first order mass-
balances with the continental crust. The degree of depletion indicated in DMM represents 2-
3% melt removal from the primitive upper mantle (PUM) of McDonough and Sun (1995);
this means that DMM has only 15% the radiogenic heat production of PUM (from K, U
and Th). Present-day ocean crust (ie. MORBs) can be modeled with 6% aggregated
fractional melting of the deduced DMM.

2. Trace Element Composition of DMM

2.1 Abyssal Peridotites

Abyssal peridotites have been shown to be residues of fractional or near-fractional
melting that produces MORB (e.g. Johnson et al., 1990). Although bulk trace element
compositions of these peridotites are heavily modified by alteration on the seafloor, many
workers have analyzed the trace element compositions (Sr, Zr, Ti, Ce, Nd, Sm, Eu, Gd, Dy,
Er, Yb, and Y) of relict, unaltered clinopyroxene grains as a means of chemical
characterization (Johnson et al., 1990; Johnson and Dick, 1992; Dick and Natland, 1996;
Hellebrand et al., 2002; Salters and Dick, 2002; Tartarotti et al., 2002). Using such
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clinopyroxene compositions, bulk compositions (Cyyoeroc) Of the peridotites can be
calculated for each trace element with the following equation:

— bulk
CWholeRr)ck =C cp.r[ 2 J (1 )

where the bulk partition coefficient (D) is determined from modal abundances (X ;pera) Of
olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and spinel (sp), and mineral/melt
partition coefficients (D,,;...) as follows:

D,,=x,D,+x, D +x D +x D, 2)

ol =0l opx™ opx epxepx spsp
This method of calculating bulk peridotite compositions is a substitute for a more
accurate method, which would be to sum the concentrations of trace elements in minerals
according to their modal proportions. Converting to whole rock compositions from
clinopyroxene alone is done simply due to the fact that almost no trace element data exists
for other minerals in the peridotite samples.

We have compiled a data set from the literature that includes abyssal peridotites having
both cpx trace element analyses and modal abundances (data sources are Johnson et al.,
1990; Johnson and Dick, 1992; Dick et al., 1984; Dick and Natland, 1996; Hellebrand et al.,
2002; Salters and Dick, 2002; Tartarotti et al., 2002). All samples containing more than 1%
modal plagioclase are excluded on the basis that most plagioclase in abyssal peridotites has
been interpreted as a secondary phase representative of melt impregnation (Dick, 1989;
Tartarotti et al., 2002); as a result, only 5 out of almost 90 samples included have any
reported modal plagioclase at all. Anomalously high Ce and Sr values have also been
excluded for some samples. For Sr, some anomalous values are suspected seawater
alteration; such Sr anomalies are not accompanied by Eu anomalies and therefore are not
suspected to be plagioclase reaction products. For both Sr and Ce, the most incompatible
elements of the sample suite and therefore the most depleted in abyssal peridotites, elevated
concentrations are probably due to small amounts of melt impregnation (see discussion
below).

The final trace element data set for the abyssal peridotites, corrected to whole rock

compositions using mineral/melt partition coefficients from Kelemen et al. (2003),
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published modal abundances and the above equations, is shown in Figure 1 and the Supp.
Data Table 1. It is important to note that the geographical distribution of the sample suite is
highly focused on the Southern Ocean; 90% of the samples originate from the American-
Antarctic, Southwest Indian and Central Indian Mid-Ocean Ridges, with the remaining 10%
obtained from the Mid-Atlantic Ridge and East Pacific Rise. The question of whether or not
this geographical bias manifests as a chemical bias will not be answered until larger datasets
from other localities are established.

The purpose of compiling bulk rock information is to derive the inter-relationships
between different trace elements (i.e. to what degree the various incompatible trace elements
are depleted relative to each other over the entire history of mantle depletion). A formulation
of the trace element “system” begins by interpreting the trace element compositions of
peridotites using the equation for a residue of fractional melting (see Zou, 1998, for review
of melting models). Calculations show that modal fractional melting used to interpret
residues of melting is a fine approximation for any number of more complicated melting
models (see Appendix 1). The ratio of the concentration of a given element in a solid, C, to
its original concentration, C,, after some fraction of melting, F, is as follows:

C (1)
—<=(1-F)" 3
c (1-F) 3)

g

where D is the bulk solid/melt partition coefficient for modal melting.
The relationship between the concentrations of two elements in the residue, [A] and [B],

can be linearized upon equating two equations solved for F:

CA
()

where the slope, R, on the linear In([A]) versus In([B]) array is a function of the bulk

In(C!)=RIn(C?)+1 Q)]

partition coefficients for elements A and B:

o= Da=D)

" D,(1-D,) ©)

Given that we have information for 12 different elements (see fig. 1), there are 132 of

the In([A]) vs. In([B]) relationships to consider in the overall reduction of this dataset;
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Figure 2 shows a sampling of these linear arrays, with the more incompatible of a given
element pair plotted on the x-axis. The peridotites show an extremely wide range in degree
of depletion and form well-correlated depletion trends for upper mantle melting.
Correlations are best for those element pairs having similar bulk D values (see the Sm-Nd,
Sm-Eu and Dy-Er panels in fig. 2), and fall off slightly for elements with increasingly
dissimilar bulk D’s (see Zr-Ti and Sm-Yb). Some of the scatter in correlations may have
been produced by melt impregnation. For instance, impregnation of low degree melts into
highly depleted residues would cause points to fall off the depletion trends toward the more
incompatible element, as shown in Figure 2. Melt impregnation trajectories for relationships
among the HREE (e.g. Dy-Er) very closely overlap their well-correlated arrays (not shown
for clarity), thereby indicating that melt impregnation has none to very little effect on the
slopes or positions of these depletion trends.

The In([A]) vs. In([B]) depletion trends have been fit by a York (1996) two-error
regression (fig. 2), assuming a blanket error of 10% for all points. The regressions have
also been forced through the primitive upper mantle (PUM) coordinate of McDonough and
Sun (1995); most regressions intersect the PUM coordinate without forcing, but this
treatment becomes appropriate for some regressions with poor correlations (for example,
see the Ce-Nd panel in fig. 2) and we find it necessary for obtaining robust output from the
regression scheme.

The upper mantle is certainly not a unique composition (isotopic or otherwise), but
rather a range of compositions reflecting variable amounts of depletion and/or re-
enrichment. A given peridotite’s bulk trace element composition represents the culmination
of melt depletion and enrichment over the entire history of that peridotite. Also, integrated
within the trace element trends (fig. 2) is the net transfer of material out of the mantle by
oceanic and continental crust generation as well as crustal recycling, in so far as the recycled
material is well-mixed within the upper mantle. In this sense, some of the more complicated
processes affecting upper mantle composition are incorporated into the abyssal peridotite
trends, but are not required to explain the trace element data.

Knowing that much of the depletion observed in abyssal peridotites is caused by the
most recent melting event, we need to define where today’s average, unmelted upper mantle
lies on the depletion trends. For this we need another constraint, the most obvious being the
isotopic evolution of DMM: calculating the present-day Sm/Nd ratio from '“*Nd/'**Nd

signatures in MORBs defines a unique position on the abyssal peridotite depletion trends.
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2.2 Isotope Constraints

Although there has been much written on the homogeneity of MORBs relative to OIBs
(Zindler and Hart,1986; Hart, 1988; Hofmann, 1997), it is clear from the global database
(fig. 3) that the MORB mantle is not one sole isotopic composition and by inference not
one sole trace element composition. The variation in MORB *'Sr/*Sr, '*Nd/'**Nd, and
29°Pb/***Pb compared to all oceanic basalts is 18%, 35% and 47%, respectively. To address
this issue of compositional heterogeneity in the upper mantle we derive three different trace
element compositions for the MORB source by calculating present-day parent/daughter
ratios from isotopic signatures and relating those ratios to the abyssal peridotite depletion
trends. A study by Su and Langmuir (2003), who have filtered global MORB data for
proximity to subduction zones and known plumes/hot spots (fig. 3; Table 1), provides an
average MORB isotopic composition (Sr-Nd-Pb) as well as a standard deviation of the
isotope data. We use the Su and Langmuir (2003) data analysis to define the following: 1)
the average DMM composition, 2) an E-DMM based on isotopes that are 26 enriched over
the average, and 3) a D-DMM based on isotopes that are 26 depleted from the average. The
7SHf/"""Hf value of DMM is selected by averaging MORB values from Nowell et al.
(1998), Chauvel and Blichert-Toft (2001) and Andres et al. (2002); '"*Hf/'""Hf values for
E-DMM and D-DMM are based on correlations with '“*Nd/'**Nd (e.g. Chauvel and
Blichert-Toft, 2001).

To derive present-day parent/daughter ratios, a depletion model must be assumed. It is
common to use a two-stage evolution model with a single, instantaneous depletion event at a
time (t) equal to the average age of the continental crust. An example from the Rb-Sr
system, where T is the age of the Earth and parent/daughter ratios are for present-day is the

following:

8r YSr Y Rb Y Rb
[—%S ] = [_%S J + [—865 ] (e” —e”) + [_%S (e’l’ - l) (6)
r DMM r 0 r BSE r DMM

However, because mantle depletion is largely the result of continental crust extraction, it
is important to consider continental growth through time and the fact that it is not a single
depletion event as modeled in the above equation. Although there is debate about continuous
growth (Hurley and Rand, 1969) or constant volume with crustal recycling (Armstrong,
1968; Armstrong, 1981; Fyfe, 1978), somewhere in between (such as episodic growth) is
probably the reality (McColloch and Bennett, 1994; Taylor and McLennan, 1995; Condie,
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2000). Models suggesting continuous growth generally agree that the real increase in
continental mass was at about 3 Ga (Taylor and McLennan, 1995). Models in favor of
constant crustal volume suggest rapid (or at least effective) recycling of crust greater than 3
billion years old (e.g. Armstrong, 1981; Bowring and Housh, 1995). For our purpose, it is
really preservation that is of issue; even though there are isotopic arguments for a 4.0 Ga
depleted mantle of similar size and degree of depletion as the modern depleted mantle (e.g.
Bowring and Housh, 1995; Vervoort et al., 1996), it is more important here that the
abundance of that old crust is low compared to crust younger than 3.0 Ga. Isotopically, the
recycling of old crust would make depletion appear to be younger on average and smear out
(or even negate) the signal of ancient depletion.

Here we have improved on the classical methods by using a continuous transport, melt
depletion model starting at 3 Ga. The equation for the Sr isotopic composition of DMM at
time, t, as derived by Allegre (1969) and Hart and Brooks (1970) is:

[er] [Rvgr] A(RbI*Sr) [1—e 1)
— + [

Y *oSr A+k

(N

where A is the decay constant for *Rb and k is the difference in transport coefficients
between Rb and Sr and essentially relates to the difference between bulk partitioning of the
two elements. The initial conditions are values for bulk silicate Earth at the time when
depletion begins (3.0 Ga). The parameter, k, is solved for by knowing the isotopic
composition of bulk Earth at 3 Ga and DMM at time zero (i.e. present-day), as shown in
Table 1. The parent/daughter variation through time is then:

(87Rb/86sr)’ :(87Rb/86Sr)oe—(/l+k)! (8)

Figure 4 shows how this model, as used for the Rb/Sr system, gives a factor of ~2 lower
estimate for the present-day Rb/Sr ratio of DMM, compared to the usual two-stage model.
Decreasing the age of depletion requires lower Rb/Sr ratios for the same present-day
*7Sr/**Sr ratio. In the same way that the Sr isotopes are used to constrain the Rb/Sr ratio of
DMM, similar constraints result in determinations for Sm/Nd, Lu/Hf, and U/Pb (Table 1).
The choice of depletion model does not greatly affect the Sm-Nd system, but is important
for the whole suite of parent/daughter ratios.
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Most important to the abyssal peridotite inversion is the present-day Sm/Nd ratio for
DMM, since this identifies the present-day position of DMM on the mantle depletion
arrays. Figure 5 shows how the Sm/Nd ratio of 0.411 in average DMM has a unique
intersection with the Sm-Nd abyssal peridotite regression line, defining unique Sm and Nd
concentrations of 0.239 ppm and 0.581 ppm, respectively. Given the absolute
concentrations of Sm and Nd, we can derive the absolute concentrations of all the other trace
elements that have been analyzed in abyssal peridotites (REE, Sr, Zr, Ti, Y; Table 2).
Ultimately, estimates for every element concentration are obtained based on relationships
with every other element. Standard deviations of various estimates for a given element are on
the order of 1-2% for REE’s and Ti and 5-6% for Sr, Zr and Ce, indicating that the
depletion trends are internally very consistent; note that these standard deviations do not
testify to the accuracy of the model. With other parent/daughter ratios, other pieces of the
trace element pattern for DMM are estimated: Rb derives directly from the Sr; Hf derives
from extrapolation to Lu from the REE’s; Pb derives from the Ce/Pb canonical ratio (see
below) and U follows (Table 2). The same procedure is applied with the E-DMM and D-
DMM isotopic compositions.

It is possible to derive Th concentrations from Th/U ratios inferred from ***Pb/***Pb
and *"Pb/*™*Pb isotopic evolution. However, it has been widely recognized that inferred
Th/U ratios are generally much higher than observed Th/U ratios in MORBs; this has been
termed the ‘kappa conundrum’ (Galer and O’Nions, 1985; Elliot et al., 1999; Tatsumoto,
1996). Since Th and U are both highly incompatible during mantle melting, with Th being
slightly more incompatible, the Th/U ratios of MORBSs should provide an upper limit to the

232

source Th/U. Due to the extremely long half-life of ~*“Th (14 Byr), we interpret the kappa
conundrum to be a problem where the Th-Pb system has not “caught-up” with the U-Pb
system. For a more accurate representation of present-day upper mantle, we use Th/U ratios
measured by careful U-Series studies on MORBs (Lundstrom et al., 1999; Sims et al.,
2002; Sims et al., 2003) over the range in isotopic composition used to define our D-DMM

through to E-DMM (Table 1).

2.3 Canonical Ratios and Volatile Contents

There are a few trace element ratios in MORBs (as well as many OIBs) that remain
constant over variable degree of melting and variable isotopic composition. These ratios
(Ce/Pb, Nb/Ta, Nb/U, and Ba/Rb) are termed “canonical” and their constancy is interpreted
to be due to bulk partition coefficients being very nearly the same for the element pairs
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during upper mantle melting, preventing significant fractionation (Hofmann and White,
1983; Hofrann et al., 1986; Jochum et al., 1997; Sims and DePaolo, 1997; Pfiander et al.,
2002; Weyer et al., 2002). Hence, ratios in the melts are presumed to be identical to ratios of
these elements in the source.

We employ these canonical ratios in order to complete the trace element pattern of
DMM. It is clear though, from Figure 6, that some canonical ratios are better behaved than
others; Nb/Ta, Nb/U and Ba/Rb all hover about their published values of 15.5,47 and 11.3
respectively (Hofmann and White, 1983; Hofmann et al., 1986; Jochum et al., 1997;
Pfander et al., 2002; Weyer et al., 2002), whereas Ce/Pb ratios display much more scatter
with a significant distribution of data higher than either published canonical values of 25
and 20 (Hofmann et al., 1986; Sims and DePaolo, 1997). As a mid-value of the MORB
data, we use a Ce/Pb ratio of 30; if, in studies to come, it is determined that Ce/Pb should be
lower, we recommend changing only the Pb concentration in DMM, as the U-Nb-Ta-La-Ce
segment of the trace element patterns derived is consistent with MORB trace element
characteristics (see section 3.2). This would imply that the derived U/Pb ratios from Pb
isotopic inversions are not accurate — i.e. that U and Pb cycling in the upper mantle is more
complicated than is assumed to be here. All other canonical ratios used are as previously
published.

There is also a suite of canonical ratios involving the volatile elements H, C and Cl that
are useful for estimating the budget of these elements in the upper mantle. Volatile elements
play an important role in melt generation and transport, so the following estimates are
crucial input parameters for modeling such processes. The compatibility of water has been
shown to be similar to that of Ce, and MORBs have on average an H,0/Ce ratio of ~200
(Michael, 1995). Using Ce = 0.550 ppm (Table 2), H,O is calculated to be 110 ppm in
DMM. Using a lower limit of 150 and upper limit of 250 for H,0/Ce (Michael, 1995)
along with our lower and upper estimates for Ce (Table 2), respectively, the range of water
content in DMM is 70-160 ppm.

In a recent study on volatile undersaturated basaltic melt inclusions from the Siqueiros
transform fault, Saal et al. (2002) have established two new working canonical ratios: CO-
,/Nb at 239 + 46 and CIVK at 0.0075 £ 0.0025. Using our Nb min/max estimates from
Table 2 and our K estimate from Table 3 (see section 3.1 below), average DMM has a CO,
content of 36 = 12 ppm and a Cl content of 0.38 £ 0.25 ppm. These estimates are about 2

times lower than those reported by Saal et al. (2002) due to their use of different trace
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element abundances in DMM, but within error of recent estimates by Salters and Stracke
(2004).

2.4 Final product

Combining the mantle depletion trends from the abyssal peridotites, parent/daughter
ratios from the isotopic evolution of DMM, and a handful of canonical ratios, trace element
patterns (*“spidergrams”) of average DMM, E-DMM (enriched from the average) and D-
DMM (depleted from the average) have been derived (fig. 7a; Table 1 for isotope values;
Table 2 for trace element compositions). Overall, the spidergrams are very smooth except
for a dip in Sr along with an expected Pb anomaly (see Hofmann, 1988). The greatest
difference between the three compositions is in the highly incompatible elements; for
example, Rb and Ba vary by a factor of ~5, but Sm varies by only 30%.

Because it is difficult to assign errors to the estimated compositions, we have provided
minimum and maximum estimates for trace element concentrations in the average DMM by
using starting ages for the continuous depletion model at 2.5 and 3.5 Ga, respectively (see
the grey lines on Figure 7b; Table 2). By changing the initial assumption of depletion age,
we are effectively saying DMM is more or less depleted and all elements together move up
or down the depletion arrays in proportion to their compatibilities during melting. Each of
these patterns is internally consistent, and therefore not a true range for each element but
rather a coherent solution for the assumptions made. It is not advisable to “mix and match”
values from different patterns, since the elements behave as a system, not independently, and
should be regarded as such. However, the Ba/Th ratios for the 2.5 and 3.5 Ga patterns are,
respectively, too high and too low to generate realistic MORB compositions (see section
3.2) and support the idea that 3.0 Ga is an appropriate assumption for initiation of mantle
depletion. As an aside, using a classical 1.8 Ga instantaneous depletion model results in a
spidergram (not shown) very similar to that of the 3.5 Ga pattern but with Rb and Ba close
to values for the 3.0 Ga (preferred) pattern.

The Salters and Stracke (2004) spidergram (fig. 7b) for average DMM, based on
depleted MORB elemental ratios and isotopic evolution, is generally less depleted than the
average DMM of this study. In particular, they show significantly higher estimates for the
whole left side of the spidergram (Rb to Ce), as well as higher Zr, Hf and Y, than predicted
even for our maximum estimate; this is most likely due to their use of an instantaneous
(two-stage) depletion model for isotopic evolution instead of the gradual depletion model

described in this paper.
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Please note that in the following sections, only average DMM is discussed.

3. Physical and Chemical Properties of DMM

3.1 Modal abundances & major elements

Abyssal peridotites from all over the world show depletion trends not only in trace
element content, but also in major element content in the form of modal abundances and
mineral compositions (Dick et al., 1984; Dick and Natland, 1996; Hellebrand et al., 2002;
Michael and Bonatti, 1985; Niu et al., 1997; Baker and Beckett, 1999). In general, these
observations are supported by experimental and theoretical studies of peridotite melting
(Kinzler and Grove, 1992a; Walter et al., 1995; Gaetani and Grove, 1998; Hirschmann et al.,
1998). With increasing degree of melt depletion, olivine increases in modal proportion while
orthopyroxene, clinopyroxene and spinel decrease. Al, Ca, Na, K and Ti are more
incompatible during melting than Mg, Cr and Ni, so have the highest mineral and whole
rock concentrations in the least depleted peridotites (e.g. Baker and Beckett, 1999).

Since we have established the systematics of incompatible trace elements in abyssal
peridotites (see above), we use their relationship to modes to estimate the proportion of
minerals in today’s average DMM, then challenge the results with considerations of melt
extraction and a comparison to the primitive mantle. Using the same data set as employed
earlier (Suppl. Data Table 1), we have plotted bulk trace element concentrations against
modal abundances in individual abyssal peridotites (see examples in fig. 8); note that these
are not completely independent parameters since modes in part determine bulk trace element
contents. By extrapolating the trends like those in Figure 8 to the DMM trace element
concentrations (Table 2), we find DMM to be composed of 57% ol, 28% opx, 13% cpx and
2% sp (Table 3); orthopyroxene does not correlate with any trace elements and has been
solved for by summation to 100%. These modes are very close to those found by
extrapolating the modal abundance correlations for the South-West Indian Ridge abyssal
peridotites (Dick, 1989) for which, without spinel, yields 60% ol, 30% opx and 10% cpx.

Constructing the bulk depleted mantle composition from mineral modes requires fairly
precise knowledge of oxide abundances in the mantle minerals. Baker and Beckett (1999)
have reduced mineral data for abyssal peridotites and provided algorithms for estimating
major element compositions of minerals according to the modal abundance of olivine.

Using the Baker and Beckett (1999) mineral compositions at 57% olivine and combining
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the minerals in the given proportions, results in a bulk DMM having an Al,O, content
nearly that of the primitive upper mantle (PUM; McDonough and Sun, 1995), along with a
very low Ca/Al ratio compared to PUM. Since Al is depleted during melt extraction and Al
is more enriched than Ca in mantle melts (see Table 3), it is reasonable to expect the
depleted mantle to have lower Ca and Al concentrations and a equal or higher Ca/Al ratio
than that of PUM. This seems to be a problem only with Al abundance and is interpreted to
be due to extrapolating mineral compositions beyond the limit of data used by Baker and
Beckett (1999). For this reason, we find it more appropriate to use mineral compositions at
60% olivine, the lowermost (i.e. fertile) limit of their regressed data. In doing so, we
calculate the major element composition of DMM as reported in Table 3.

Compared to PUM, estimated DMM has, as expected, lower SiO,, TiO,, Al,O,, CaO,
Na,0, and K,O with higher MgO and Cr,0O, (Table 3). The TiO, content of 0.13 wt% is
very close to the 0.12 wt% calculated from the trace element derivation (Table 2). The
CaO/Al, O, ratio is equal to that of PUM (0.80), and would increase to 0.86 by lowering the
spinel abundance by only 0.5%. As previously mentioned, much of the trace element
depletion in the upper mantle can be attributed to the continental crust. The question now is:
can the newly estimated major element depletion also be attributed to the continental crust?
The continental crust budget (see mass-balance section below and bulk continental crust of
Rudnick and Fountain, 1997) does largely account for the low TiO, and K,O, the most
incompatible of the major elements, and partially accounts for the Na,O. However, owing to
the small mass of continental crust, major elements with less contrast between the crust and
mantle cannot be balanced solely by the continents. As a possible solution, Table 3 shows a
rudimentary mass balance of the DMM major elements in which 3% of primary MORB is
subtracted from PUM (note that this is not a melting model). The major elements calculated
in this way show striking similarity to the estimated DMM composition, implying that there
is a isolated reservoir of oceanic crust somewhere within in the silicate Earth, as also
suggested by Hauri and Hart (1997). A second estimate for Na,O based on mass balance
with both the continental crust and a MORB reservoir is also provided in Table 3 and is
most likely more accurate than the original sum of mineral compositions.

To convert mineral modes into practical information for those who study abyssal
peridotites, we have calculated the trace element composition of the constituent minerals in
unmelted, average DMM by using Eqns. (1) and (2) with mineral/melt partition coefficients
compiled by Kelemen et al. (2003). This effectively distributes the DMM trace element
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budget among the minerals according to their relative affinity for incompatible elements.
The resulting mineral compositions are reported as Suppl. Data Table 2

As a cautionary note, the reported modes and mineral compositions will only apply to
the very shallow mantle, owing to variable mineral compositions and phases with pressure
and temperature, but the average bulk composition of unmelted, upper mantle should be

similar at any depth in this reservoir.

3.2 MORB generation

Here we present the average DMM trace element composition, so should be able to
produce an average parental N-MORB. To model MORB generation, we first calculate bulk
partition coefficients (D) from Eqn. (5) applied to the abyssal peridotite depletion trends.
Because the slopes of the depletion trends (fig. 2) only supply information about ratios of
D values, we initially have to assume a D for one element and then calculate the remainder in
relation to that one. We have chosen a bulk Dy, of 0.031, according to a compilation from
Kelemen et al. (2003) for upper mantle melting, since the bulk compatibility of Nd is almost
identical in both the spinel and garnet facies.

The set of partition coefficients resulting from the inversion of all abyssal peridotite
depletion trends is reported in Table 2. Figure 9 shows the calculated D values compared to
both garnet and spinel facies bulk D’s from Kelemen et al. (2003); clearly the slope of the
calculated D values very closely matches that of spinel facies melting and is far off the slope
of garnet facies melting. Note that choosing a different Dy, will change the absolute
position but not the slope of the D values shown in Figure 9 (meaning the ratios of D’s will
not change). The above observation does not exclude a contribution of trace elements from
small degree melts in the garnet facies, especially for elements with low D values; this may
be why Sr and Ce are a little lower than the spinel facies prediction. For elements with
higher bulk D’s in the garnet facies, the majority of depletion will happen in the spinel
facies, thus is reflected in the depletion arrays. If depletion for the middle to heavy REE’s
was significant in garnet melting, the trace element pattern across the REE would be steeper,
even if the last D values to act on the peridotites were those of spinel melting. This is a
straightforward effect of fractional melting on residues.

As an average MORB trace element pattern to be fit by our modeling, we use the
parental (fractionation-corrected) N-MORB reported by Su and Langmuir (2003). A point
generally agreed upon, and hence applied here, is that MORBs are aggregated fractional or

near-fractional melts over a range of pressures, as initially confirmed by Sobolev and
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Shimizu (1993). The highly incompatible elements are enriched ~16-fold over DMM, thus
requiring 6% aggregated fractional melting of DMM. Figure 10 shows the excellent fit to
N-MORB using the D values derived here and reported in Table 2.

The 6% degree of melting to generate MORB is on the low side of previous estimates
ranging from 6-20% (Langmuir et al., 1992; Kinzler and Grove, 1992b). A higher F could
be obtained if a greater fractionation correction is applied to the already-corrected parental
N-MORB of Su and Langmuir (2003) since F is mainly limited by the concentration of
highly incompatible elements (i.e. Rb, Ba, U, Th, Nb, Ta) in the modeled MORB; however,
this requires generally higher D’s to maintain the proper slope for M- to HREE. To get to F
= 10%, at least another 30% fractionation is necessary and this seems unlikely. This low
value for F, as compared to previous models, may be due to the fact that older estimates are
based on anhydrous melting. Water content in the upper mantle is increasingly recognized
as a very important aspect of mantle viscosity and convection (Hirth and Kohlstedt, 1996) as
well and mantle melting (Hirth and Kohlstedt, 1996; Asimow and Langmuir, 2003; Asimow
et al.,, 2004; Parman and Grove, 2004). To test the validity of 6% mean F, we apply our
estimated concentration of H,O to the recent model by Asimow et al. (2004) for hydrous
mantle melting (the pHMELTS model).

A pHMELTS model run, using 110 ppm water, the major element compositions in
Table 3, a potential temperature of 1360°C, a 2-D passive triangle melting regime and near-
fractional melting, results in 7.0% mean melting to produce MORB and a crustal thickness
of 6.3 km (P. Asimow, pers. comm., 2004). This confirms that the mean degree of melting
(as defined by Plank et al., 1995) for hydrous models is generally on the low side of
previous estimates from anhydrous models.

For average DMM, the derived D values (Table 2) translate into 2-3% melt depletion
from primitive mantle using either non-modal or modal fractional melting models. Because
average DMM is only 2-3% melt depleted, but average MORB is generated by 6% melting,
one or all of the following is implied: 1) the degree of melting was lower in the past, 2) the
mantle is a cannibal, recycling some crust and lithosphere back into itself, 3) depleted mantle
has exchanged with the less depleted mantle, or 4) MORB generation is not the process that
depletes the mantle.
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4. Crust-Mantle Mass Balance

Classic works based on continental crust and the depleted mantle being sole
complementaries calculate that from 30% to 70% of the mantle is depleted according to
isotope and parent/daughter constraints [Allegre et al., 1983, refs. therein]. In the following
paragraphs, we provide three different scenarios for the balance of chemical reservoirs in the
silicate earth, with each scenario progressively involving additional reservoirs. We believe
that using the entire trace element suite to assess the extent to which the silicate earth does
or does not mass-balance is a robust way to calculate relative proportions of reservoirs. The
mass of the continental crust is fixed to be 0.6% the mass of the silicate Earth. For each
scenario, the best estimates of reservoir masses along with uncertainty in the estimates are
derived from a Monte Carlo simulation with 10° trials in which element concentrations for
each reservoir are considered as normal random variables with means given as PUM
normalized concentrations and 16 equal to 10%; in each trial, the relative reservoir masses
are determined by a linear least-squares fit to the input parameters. Uncertainties are quoted
as 20.

Scenario 1 is our own mass-balance involving only DMM and the continental crust,
meaning in what proportion do DMM and the continental crust have to be added in order to
sum back to primitive mantle? Our calculations indicate that 33+3% the mass of the silicate
Earth has to be DMM, with the remainder being primitive mantle, to best balance the bulk
continental crust composition as estimated by Rudnick and Fountain (1997). For this
particular ‘reconstituted’ mantle, all elements sum to within 15% of the primitive mantle
except Rb and Pb which are in excess by 28% and 21%, respectively. This scenario is no
doubt overly simplistic. For one, there is no real evidence for the existence of a primitive
mantle reservoir (see review by van Keken et al., 2002). However, there is evidence for a
lower mantle that is less depleted than DMM, but depleted nonetheless; this reservoir is
implied from many OIB isotopic arrays and termed FOZO by Hart et al. (1992). If a
depleted lower mantle were accounted for here, the DMM reservoir would be significantly
smaller than 33% in order to allow for the moderate depletion of the lower mantle.

Scenario 2 is the mass-balance of DMM, continental crust, and recycled oceanic crust.
The idea of a recycled MORB component in the mantle is corroborated by the observation
that the major element composition of DMM cannot be balanced by continental crust alone
(see Table 3). At 43+6% DMM and 2.0+0.6% parental N-MORB of Su and Langmuir

(2003), this scenario provides a better fit for most elements than does the first scenario; all
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elements here are fit to within 8% except Rb and Pb with 20% and 15% excesses and Nb
with a 17% deficit. The abundance of MORB cannot be increased greatly without having
elevated M- to HREE that cannot be compensated by adding more DMM. However, we
have not considered subduction zone alteration of oceanic crust, which almost certainly
affects this mass balance.

Scenario 3 is the mass-balance of DMM, continental crust, recycled oceanic crust and
an OIB source component (from Workman et al., 2004). To show upper limits on the sizes
of enriched mantle components, the mass balance calculation has been made assuming 0%
primitive mantle. The resulting balance is 74+5% DMM, 4.7+1.0% MORB and 21+5%
OIB source; all elements are fit to within 15% except Rb and Nb with 23% excess and 21%
deficit, respectively.

In each scenario 2 and 3, the fraction of MORB in the mass-balance is less than the
mass of oceanic crust generated throughout Earth history (6-7% of the mantle mass,
assuming constant rates for 4.55 Ga). As such, it is suggestive of the mantle being partially
cannibalistic with respect to subducted oceanic crust. However, these mass balances do not
include a depleted lithosphere, and could therefore be misrepresentative if oceanic crust and

lithosphere are shown to be absolutely mechanically and thermally coupled.

5. Conclusions

Through abyssal peridotite trends, the isotopic composition of N-MORB and a few
canonical ratios, we have constructed a major and trace element reference model for average,
unmelted, depleted MORB mantle (DMM). From this DMM, parental MORB is generated
by about 6% aggregated fractional melting as constrained primarily from the enrichment
factor for the highly incompatible elements in parental MORB. Melting occurs mainly in
the spinel facies mantle, but is most likely initiated within the uppermost garnet facies, as
suggested by pHMELTS model runs. The water content inferred by the derived trace
element composition is between 70 and 160 ppm, and is an integral ingredient in modeling
mantle melting (Asimow et al., 2004) and mantle viscosity (Hirth and Kohlstedt, 1996;
2004). We have provided trace element compositions for minerals in the uppermost mantle
which can be better estimated in the future with increasingly accurate information on
mineral/mineral partitioning of trace elements and compositional variations of minerals with

temperature and pressure.
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The radiogenic heat production of DMM (from U, Th, and K) is only 15% that of the
bulk silicate Earth at 2.43 x 10° Watts/m®, using a density of 3.20 g/cm’ and radiogenic
heat production values from Durrance (1986). It takes ~33% of the mantle mass to be
composed of DMM, the remaining being primitive mantle, to balance the continental crust
alone, and ~43% if including an oceanic crust component. If there is no primitive mantle, the
maximum masses of the oceanic crust and OIB reservoirs are 5% and 21%, respectively, if
these enriched reservoirs are balanced purely by DMM.

Overall, the composition constructed here is a robust estimate for average upper mantle

and can be used as an input parameter for a variety of models concerning mantle processes.
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Appendix 3-1.

Calculations for other melting models show that the fractional melting model used here
to interpret residues of melting is a fine approximation for any number of more complicated
(and maybe more realistic) melting models. Figure A1 plots melt depletion trends for Sm
and Nd in residues of melting, starting with PUM of McDonough and Sun [14], and using
equations for modal fractional, non-modal fractional, dynamic and non-modal dynamic
melting as derived or summarized in Zou [23]. Residual porosity is chosen to be 0.5% for
dynamic melting. Mineral/melt partition coefficients have been borrowed from Kelemen et
al. [22] and the empirical coefficients of melting are from Niu [79] as follows: olivine = -
0.17, orthopyroxene = 0.65, clinopyroxene = 0.47, spinel = 0.05. Bulk D values for Sm and
Nd are taken from Table 2 in main text.

By definition, the two modal melting models are linear in Figure Al, with dynamic
melting resulting in slightly less depletion for a given degree of melting (both curves end at
25% melting). Non-modal melting results in much greater depletion for a given degree of
melting than modal melting and in slightly curved trajectories of melt depletion, but not
severely enough to make a linear approximation (i.e. modal melting) invalid. For the upper
few decades of melt depletion, the melting models are all nearly identical (fig. A1). Even at
the point where they are clearly distinguishable from each other, the models all are contained
within the scatter of the abyssal peridotite data (not shown on fig. Al for clarity, but see
figs. 2 and 5 above). Using modal fractional melting as an approximation for any of the
other melting models will primarily lead to different D values than may be truly “Bulk
D’s”, but will not change the ultimate estimate of DMM. For example, if the real melting
style beneath ridges is non-modal dynamic melting, a linear fit by modal fractional melting
will lead to estimates of ‘effective’ partition coefficients, meaning the ‘non-modal’ part of
melting will be incorporated into the D outputs. Because we solve for relative partition
coefficients (and do not assume them a priori), it is almost inconsequential which model is
used given the resolution of the peridotite dataset. However, the estimate for the degree of
melt depletion in DMM could be over-estimated if assuming an initial absolute D that is too
high.
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Figure Al.

Melting models showing depletion trends for Sm and Nd in residues of melt extraction. See text for details.
Curves for modal melting models (fractional and dynamic) both end at 25% melt extraction. Non-modal
fractional and dynamic curves are fall off the plot at 21% and 22% melting, respectively. Although not
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shown, the scatter in the abyssal peridotite data brackets all the melting model curves.
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Figures

PUM Normalized Concentrations

Figure 3-1. Calculated whole rock trace element compositions of abyssal peridotites. Data can be found in
Suppl. Data Table 1; data sources as quoted in the text.
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In(Sr)

In(Eu)

Figure 3-2. Co-variation diagrams for trace elements in abyssal peridotites, plotted as In([A]) against
In([B]) in accordance with Eq. 4; the more incompatible element is on the x-axis for each plot. Star symbol
is Primitive Upper Mantle (PUM; also Bulk Silicate Earth, BSE) of McDonough and Sun (1995). Solid line
is the best-fit regression, forced through the PUM coordinate and with assigned errors of 10% for each
point. The curved lines with crosses (in the middle three panels) are trajectories for impregnation of a 1%
melt of DMM (see Fig. 7; D values from Kelemen et al., 2004) into a depleted mantle of composition
indicated by the points of origin on the regression lines; ticks are in increments of 0.1% up to a total of 1%
melt impregnation.
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Figure 3-3. Two panels showing the Sr-Nd-Pb isotopic compositions of global MORB data obtained from
the PETDB database (http://petdb.ldeo.columbia.edu/petdb/) MAR = Mid-Atlantic Ridge; JDF = Juan de
Fuca Ridge; EPR = East Pacific Rise; Indian = Indian Ocean ridge systems; BSE = Bulk Silicate Earth;
FOZO = Focus Zone (Hart et al,, 1992); N-MORB and All-MORB are, respectively, the average
composition for normal MORBs and unfiltered (all) MORBs according to Su and Langmuir (2003). The
variation in N-MORB *’Sr/*Sr, '*Nd/'*Nd, and **Pb/’**Pb compared to all of oceanic basalts is 18%,

35% and 47%, respectively.
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Figure 3-4. Plot showing examples of instantaneous depletion and continuous depletion models for the
isotopic evolution of Sr in DMM. Note that the derived Rb/Sr ratio of today’s upper mantle varies by a
factor of about two between the models - the Rb/Sr ratio is defined by the slope of the evolution curves. Nd
isotopic evolution by continuous depletion is not shown since it is essentially linear through time. See
Table 1 for isotope evolution parameters and Eqs. 7 and 8 for continuous depletion model.
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Figure 3-5. Plot of In([Sm]) versus In([Nd]) of abyssal peridotites showing the upper half of the mantle
depletion array (see fig. 2 for full scale). Star symbol marks the PUM coordinate (i.e. BSE) of McDonough
and Sun (1995). Crosses on the mantle depletion line mark percent melt extraction for fractional melting
using bulk D values as reported in Table 2. Line of constant Sm/Nd of 0.411 is derived from the Nd
isotopic evolution of DMM; the intersection of this line with the mantle depletion line marks today’s
average composition of DMM. From Sm and Nd concentrations, concentrations of all other elements
reported for abyssal peridotites (see fig. 1) can be derived from the system of mantle depletion arrays like
those shown in fig. 2.
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Figure 3-6. Four panels showing co-variation plots for elements in MORBs having canonical ratios. Data
acquired from the PETDB database (http://petdb.ldeo.columbia.edu/petdb/) and reported as ppm. Literature
values for canonical ratios (see text for references) are plotted for all panels except Ce-Pb, for which
bounding and median values are shown.
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Figure 3-7. Panel a) shows trace element patterns for average Depleted MORB Mantle (DMM), E-DMM
and D-DMM (E- and D- are, respectively, enriched and depleted over the average DMM, as based on a
isotopic compositions reported in Table 1). Trace element compositions have been derived from abyssal
peridotite depletion trends (see fig. 2), isotopic evolution based on the average N-MORB Sr-Nd-Pb-Hf
isotopic compositions with a gradual depletion model starting at 3Ga (Table 1; Fig. 3), and canonical ratios
(fig. 6). In panel b) the upper and lower grey lines result from using gradual depletion models starting at 3.5
Ga and 2.5 Ga, respectively, for the average DMM isotopic composition. The Salters and Stracke (2004)
trace element pattern for average DMM is shown for comparison.
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Figure 3-8. Modal abundances of a)
clinopyroxene and b) olivine plotted
with calculated (in the same way as
for Figures 1 and 2) bulk trace
element compositions of individual
peridotites. Determination of the
modal composition of DMM results
from extrapolating the two-error
regressions here to our best estimate
for DMM’s trace  element
concentrations (from Table 2).
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Figure 3-9. Bulk partition coefficients (D’s) as obtained from abyssal peridotite trends (fig. 2, Table 2)
plotted against both spinel and garnet facies bulk D values from Kelemen et al. (2003). Regression-based D
values are calculated with Eqn. 5 and assuming Dyg = 0.031. It is clear that the slope of the D values
obtained reflect melting more in the spinel facies than the garnet facies, as the gamnet facies is much
steeper. Another choice for Dyg will change the absolute concentrations, but not the slope, of the points
plotted here.
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Figure 3-10. Plot showing the spectacular fit of parental N-MORB (from Su and Langmuir (2003) by 6%
aggregated fractional melting of DMM (from this study) using Bulk D values in Table 2. The Rb, Ba, Th,
U, and Pb for the parental MORB are taken from the N-MORB average of Hofmann (1988) and adjusted
according to fractionation corrections provided by Su and Langmuir (2003).
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Table 3-3. Modal abundances and major element composition of DMM.

Modal Abundances in DMM (%):
Olivine Opx Cpx Spinel
57 28 13 2
PUM
Mineral compositions: Primary  minus
Bulk N- 3% N-
Olivine Opx Cpx Spinel DMM PUM® MORB® MORB
SiO, 40.70 5336  50.61 4471 4490 49.51 44 .87
AlLO; 6.46 7.87 57.54 3.98 4.44 16.75 4.07
FeO* 10.16 6.27 2.94 12.56 8.18 8.03 8.05 8.05
MnO 0.14 0.12 0.09 0.16 0.13 0.13 0.14 0.13
MgO 48.59 30.55 16.19 19.27 38.73 37.71 9.74 38.68
Ca0O 0.05 2.18 19.52 3.17 3.54 12.50 3.27
Na,0 0.13
0.05 0.89 (0.28)° 0.36 2.18 0.30
Cr,05 0.76 1.20 10.23 0.57 0.38 0.07 0.39
TiO, 0.16 0.63 0.13 0.20 0.90 0.18
NiO 0.36 0.09 0.06 0.24 0.24 0.25 - -
K,O 0.006 ¢ 0.029 0.065 0.028
P,05 0.019°¢ 0.021 0.095 0.019
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Mg# ' 89.5 89.7 90.8 73.2 89.4 89.3 70.6 89.5
Cr#t 10.7
Ca0O/A1,04 0.34 2.48 0.80 0.80 0.75 0.80

* Total Fe as FeO.

* Primitive Upper Mantle (PUM) from McDonough and Sun (1995).

® Primary N-MORB from averaged glass compositions in Presnall and Hoover (1987).

¢ Value in parentheses is Na,O estimated from the mass balance with continental crust (see text).

¢ Calculated by inverting parental N-MORB at 0.1 wt% K,O for 6% melting and assuming Dy = 0.0013.
¢ Calculated by extracting 3% primary N-MORB (shown here) from PUM.

Mg # = molar ratio of Mg/(Mg+Fe*"); Mg # of N-MORB uses 90% total FeO as Fe’".

& Cr # = molar ratio of Cr/(Cr+Al).
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Supplementary Data Table 3-2. Mineral compositions in average DMM.

Mineral Modes

ol opx cpx sp sum
0.57 0.28 0.13 0.02 1
Mineral Trace element compositions (ppm)

ol opx cpx sp sum *

Rb - 0.005 0.371 - 0.050
Ba - 0.062 4.197 - 0.563
Th - 0.0001 0.061 - 0.008
U - 0.0002 0.024 - 0.003
K - 0.541 389.6 - 50.800
Nb 0.058 0.167 0.443 0.575 0.149
Ta 0.004 0.011 0.029 0.037 0.010
La 0.0002 0.026 1414 0.016 0.192
Ce 0.0005 0.137 3.930 0.027 0.550
Pb 0.00002 0.005 0.129 0.001 0.018
Pr 0.0002 0.034 0.744 0.003 0.107
Nd 0.002 0.194 4.044 0.013 0.581
Sr 0.004 1.312 56.11 - 7.664
Zr 0.657 6.574 20.28 11.50 5.082
Hf 0.013 0.131 0.836 0.228 0.157
Sm 0.004 0.109 1.585 0.003 0.239
Eu 0.002 0.056 0.611 0.001 0.096
Ti 101.8 1018 2715 1018 716.3
Gd 0.007 0.239 2.209 0.004 0.358
Tb 0.003 0.051 0.415 0.001 0.070
Dy 0.026 0.396 2916 0.010 0.505
Ho 0.010 0.096 0.633 0.003 0.115
Y 0.751 3.266 15.25 0.147 3.328
Er 0.036 0.363 1.735 0.012 0.348
Yb 0.086 0.376 1.615 0.017 0.365
Lu 0.016 0.065 0.235 0.003 0.058
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Chapter 4:

Volatile and Trace Elements in Basaltic Glasses
from Samoa: Implications for Water Distribution

in the Mantle

Abstract

We report volatile (H,0, CO,, F, S, Cl) and trace element data for submarine alkalic
basalt glasses from the three youngest Samoan volcanoes, Ta’u, Malumalu and Vailulu’u.
Most samples are visibly sulfide saturated, so have likely lost some S during fractionation.
CUK ratios (0.04 — 0.15) extend to higher values than pristine MORBS, but are suspected to
be partly due to source differences since CI/K roughly varies as a function of *'Sr/**Sr.
There are no resolvable differences in the relative enrichment of F among sources, and
compatibility of F during mantle melting is established to be nearly identical to Nd. Shallow
degassing has affected CO, in all samples, and H,O only in the most shallowly erupted
samples from Vailulu’u. Absolute water contents are high for Samoa (0.63 — 1.50 wt%), but
relative enrichment of water compared to trace element enrichment is low. H,0/Ce (58 —
157) and H,0/La (120 — 350) correlate inversely with *’Sr/*Sr compositions (0.7045 —
0.7089). This leads us to believe that, because of very fast diffusion of hydrogen in olivine,
recycled lithospheric material with high initial water content will lose water to the drier
ambient mantle during storage within the inner Earth. The net result is the counter-intuitive
appearance of greater dehydration with greater mantle enrichment.
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1. Introduction

Volatile elements such as hydrogen, carbon, fluorine, sulfur and chlorine track not only
the melt phase in magmatic systems, but also the gas and fluid phases. Because of their
ability to decouple from lithophile elements, especially at or near the Earth’s surface, these
elements provide a possible fingerprint of processes that are not actively recorded by the
standard suite of incompatible trace elements (e.g. Sr, Rb, U, Th, and the rare earth
elements). They have been used extensively to study volatile-driven arc magmatism, but have
not been as widely applied to ocean island volcanism. It is now well established that the
distribution of water in the mantle (primarily in nominally anhydrous minerals) strongly
determines the locations and extents of mantle melting (Asimow and Langmuir, 2003) along
with mantle rheology (Hirth and Kohlstedt, 1996; 2003), so it is important to understand the
abundance of water in all mantle materials.

Lavas from the Samoan islands and seamounts have unique geochemical characteristics
compared to other ocean island basalts (OIBs) as well as mid-ocean ridge basalts
(MORBSs), including extreme *’Sr/**Sr (up to 0.7089), low '**Nd/"**Nd (down to 0.5125),
and highly trace element enriched lavas (Wright and White, 1986; Farley et al., 1992;
Workman et al., 2004). These characteristics define the Enriched Mantle 2 reservoir (EM2;
Zindler and Hart, 1986). EM2 has classically been interpreted as oceanic crust and
terrigeneous sediment that had been recycled back to the mantle through subduction zones
(e.g. Weaver, 1991). Upon closer inspection, the standard recycling model of ocean
crust/sediment fails as an explanation for producing EM2, due to smooth trace element
patterns, low '*’Os/'**Os ratios, incorrect Pb isotope compositions, and high *He/*He (>8R-
») in Samoan lavas (Workman et al., 2004). Instead, the origin of EM2 has been modeled
with the ancient formation of metasomatised oceanic lithosphere, followed by storage in the
deep mantle and return to the surface in the Samoan plume. Although Samoa is strongly
EM2 in character, other mantle reservoirs, such as HIMU (high >**U/***Pb mantle; Zindler
and Hart, 1986) and PHEM (Primitive Helium Mantle; Farley et al., 1992), are thought to
contribute to the Samoan lavas, and hence in one location there is extreme compositional
heterogeneity.

Here we report a study of volatile element concentrations in Samoan lavas in order to
assess their relative enrichment compared to other trace element and isotope signatures, and

to use them as potential clues to the origin of compositional variations in the mantle. We
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find that water enrichment (identified by H,O/Ce and H,O/La ratios) in EM2 lavas has an
inverse relationship to lithophile element enrichment (e.g. high Rb/Sr and *’Sr/*Sr ratios).
The model for the formation of EM2 (Workman et al., 2004) would not result in
fractionation of water from the lithophile elements. However, the fast diffusion of water
through mantle minerals (Mackwell and Kohlstedt, 1990) provides a very effective means of
losing water from EM2 to a water-poor ambient mantle during the long-term (~2.5 Ga)
storage of EM2 — to the point of there being very similar bulk water contents (<100 ppm) in
EM?2 and the Depleted MORB Mantle (DMM). This finding leads credence to the idea that
enriched mantle plumes are indeed “hot-spots” (Morgan, 1971; Sleep, 1990; Campbell and
Griffiths, 1990) and not “wet-spots” (Schilling, et al., 1980; Green and Falloon, 1998).

2. Background

2.1. Geological and Geochemical Setting

The Samoan islands and seamounts are centered on 14°S latitude, stretch from 169-
177.5°W longitude (fig. 1), and rest on the outer rim of the geophysical “superplume” of
the South Pacific (Su et al., 1994). Seismic tomography images from beneath Samoa show
a slow velocity anomaly extending into the lowermost mantle (Montelli et al., 2003),
supporting a deep origin for upwelling mantle material feeding the Samoa hotspot. The
tectonic setting of Samoa is complicated by having the northern termination of the Tonga
Trench only 100 km to the south of the island chain. Hart et al. (2004a) have given a
synthesis of the regional tectonic history and how plume-trench interaction has influenced
the distribution of Samoan volcanism, specifically the en-echelon topographic ridges seen in
Figure 1. Hart et al. (2004a) also established, from K-Ar dating and isotope geochemistry
of seamounts extending to the west of Savai’i, that the Samoan plume has been active for at
least 25 million years, producing a 1700 km long volcanic chain.

The easternmost, leading-edge Samoan volcano is the seamount, Vailulu’u (fig. 1); it
rises from a 5000 m deep seafloor to a summit depth of 590 m and rests 45 km east of its
nearest neighbor, Ta’u Island (Hart et al., 2000). Vailulu’u has been shown to be both
volcanically and hydrothermally very active (Hart et al., 2000; Hart et al., 2003; Staudigel et
al., 2004; Konter et al., 2004). The power output from Vailulu’u’s summit crater is
estimated to be 610-760 MW, the equivalent of 20-100 Mid-Ocean Ridge black smokers;
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Mn export is estimated at 240-300 kg/day, or the equivalent of about 10 black smokers
(Staudigel et al., 2004; Hart et al., 2003). The presence of *He anomalies in the water
column show that at least this volatile element is actively degassing from upwelling magmas
beneath Vailulu’u (Staudigel et al., 2004). We suspect that the hydrothermal circulation of
seawater and degassing of magmas observed at Vailulu’u is representative of all the Samoan
volcanoes at this stage of growth.

One goal of this study is to understand volatile enrichments/depletions as a function of
mantle source composition. Each of these Samoan volcanoes has a distinct and well-
characterized geochemical signature, discussed in detail by Workman et al. (2004). In
summary, Malumalu displays the most extreme EM2 signature yet documented from ocean
island basalts, with *’Sr/**Sr up to 0.7089 and extreme trace element enrichment. Ta’u
shows some of the least enriched lavas from Samoa, with Sr-Nd-Pb isotopic values that are
close to the mantle component PHEM (Primitive Helium Mantle of Farley et al. [1992];
87S1/**Sr = 0.7045); for Ta’u this corresponds to *He/*He up to 18 R, and a lesser degree
of trace element enrichment. Vailulu’u lavas are of intermediate enrichment and are thought
to contain a small component of HIMU mantle, giving Vailulu’u the highest **’Pb/**‘Pb
(19.4) in Samoa.

2.2. Samples and Volcano ages

Glass samples from the three youngest Samoan volcanoes, Vailulu’u, Malumalu, and
Ta’u, have been taken from glassy rims of pillow basalts dredged during the 1999
AVON2/3 cruise aboard the R/V Melville. In this paper, we report data on samples obtained
from 11 dredges ranging from 780 to 4170 meters deep — 6 from Vailulu’u, 2 from Ta’u
and 3 from Malumalu (see Table 1). All Ta’u and Malumalu dredges are from a similar
depth of 2300 — 3600 meters, whereas the shallowest and deepest dredges are from
Vailulu’u.

All samples have some vesicles, most with less than 10% by volume and none over
about 30%, indicating that these samples have experienced volatile exsolution during
eruption. All dredges except 72 (Vailulu’u) and 75 (Ta’u) have sulfides present in nearly
every sample (see Table 1); these occur as 10-50 pm spheres and are visible under reflected
light in the glass chips that were analyzed. Micro-phenocryts of olivine, spinel, and
clinopyroxene are common within the glasses. In a few of the olivine phenocrysts, melt

inclusions have been fortuitously exposed, so these were analyzed for their volatile contents
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to compare with volatile abundances in the matrix glass, but they have not been properly
studied for major elements and mineral-melt equilibration.

U-series data have been collected for samples from each Vailulu’u and Malumalu
dredge (Sims and Hart, 2004), including the following samples studied here: 63-13, 70-01,
71-02, 71-09, 72-02, 73-01, 73-03, 73-12, 76-01, 78-01. All show ***Th/***U excesses and
are interpreted to be less than 300 thousand years old. The *°Th/>**U excesses shown from
Malumalu are similar to those on Vailulu’u, suggesting that Malumalu is not significantly
older than Vailulu’u. Two samples from Vailulu'u (63-13 and 70-09) show *'°Pb
disequilibria are interpreted to be less than 100 years old (Hart et al., 2000).

The oldest K-Ar age from Tau Island is 0.3 Ma (McDougall, 1985). The youngest
volcanic series on Tau (Faleasao) is probably younger than 37,000 years, based on '*C ages
of coral inclusions in these volcanics (Hart, unpublished). Additionally, there was an

underwater eruption just west of Tau in 1866 (see description in Keating, 1992).

3. Analytical Techniques

Multiple glass chips from the quenched rims of dredged pillow basalts were hand-
picked and mounted with epoxy for ion microprobe analyses. Volatile abundances (H,O,
CO,, F, S and Cl) were determined by triplicate analyses on the Cameca IMS 6f ion
microprobe at the Department of Terrestrial Magmatism with a 5-10 nA Cs™ primary beam.
See Hauri et al. (2002) for a full description of the mircobeam method. Trace elements were
determined on the same area of glass using the same instrument, but with an O™ primary
beam. Analytical uncertainties are £10% for H,O and 5% for all other elements. All
calibrations were made against mafic glass standards.

For Sr isotope analyses, glass chips were hand-picked and leached for 1 hour in 6N
HCI. Sr was separated by a standard cation exchange procedure described in Taras and Hart
(1987). Isotopic analyses were carried out on the NEPTUNE multi-collector ICP/MS at
W.H.O.L; *’Sr/**Sr values are corrected to 0.71024 for NBS 987 and carry a 20 precision
equal to £25 ppm (Hart et al., 2004b).

4. Results

Volatile and other trace element concentrations for Samoan glasses are listed in Table 1.

Major element abundances of the glasses were analyzed by electron microprobe at MIT and
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have been previously published (Workman et al, 2004). Sr, Nd and Pb isotope
measurements have been made on a few whole rock samples (for which we now report glass
data) and are also published in Workman et al. (2004). New *’Sr/**Sr measurements on
glass samples are reported in Table 1, and range from 0.70452 to 0.70841, within the
previously established range for whole rock analyses of Samoan lavas (Workman et al.,
2004). The *’Sr/*Sr compositions of glass and whole rock pairs for individual samples
have been found to be within analytical error (Jackson et al., unpubl.), so using *'Sr/**Sr

values from “mixed material ”’ is inconsequential to our data analysis.

4.1. Trace elements and fractionation correction

All the glasses presented here are evolved beyond clinopyroxene saturation, as identified
by: 1) low Mg#’s (molar percent of Mg/[Mg+Fe*?]), ranging from 39 to 61; 2) positive
correlations between Mg# and CaO; 3) presence of clinopyroxene phenocrysts in whole
rock samples; and 4) liquid lines of descent predicted by the pMELTS model (see fig. 2).
They are all alkali basalts, with SiO, from 45.5 to 48.9 wt% and total alkalis (K,0+Na,O)
from 3.2 to 6.1 wt%. The glasses are generally further along on fractionation trends than
their whole rocks (fig. 2) due to the exclusion of phenocrysts in the glasses. Mg#’s of
aphyric whole rocks are equal to or slightly higher than their glasses, but some glasses
come from picritic samples with Mg#’s up to 81-84.

Trace element patterns of the glasses closely parallel whole rock trace element patterns
(from Workman et al., 2004) of each volcano. La/Sm and Sm/Yb for glass and whole rock
pairs are usually within analytical error, showing that the fractionation of olivine and
clinopyroxene has had little effect on incompatible element ratios. Hence, using the data in
this way (as elemental ratios) would be the most reliable in assessing primary melt
characteristics.

La/Sm values of the glasses range from 3.3 to 7.5 and correlate positively with *’Sr/**Sr,
a proxy for source enrichment (i.e. Ta’u has the lowest and Malumalu has the highest
La/Sm; not shown). Sm/Yb, on the other hand, does not correlate with enrichment, and the
three volcanoes overlap in values from 2.9 — 5.6. For comparison, N-MORB La/Sm and
Sm/YD ratios are each ~1.0 (Hofmann, 1988). The steepness of Samoan rare-earth element
slopes is a strong indication of melting within the stability field of garnet lherzolite (Hauri et
al., 1994; Salters et al., 2002), as to be expected with melting beneath an old tectonic plate
where the bottom of the lithosphere (e.g. Li et al., 2004) is near the garnet to spinel
transition (Kogiso et al., 1998; Robinson and Wood, 1998; Klemme and O’Neill, 2000).
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In order to estimate the compositions of primitive Samoan magmas, we have corrected
the raw glass data for crystal fractionation by using the pMELTS trends (Ghiorso et al.,
2002) to calculate the remaining liquid mass as a function of Mg#. The degree of
fractionation ranges from 17% to 66%, with the majority of lavas falling within the range of
30 — 46% fractionated. Figure 2 shows that Malumalu and Ta’u lavas lie along very similar
fractionation lines. Vailulu’u lavas are on a separate trend at higher CaO, with shallow
dredges (63, 68, 70 and 73) being more fractionated on average than deep dredges (70 and
71).

The same fractionation corrections have been applied to the volatile contents, assuming
that crystal fractionation happened at vapor under-saturated conditions. Figure 3 shows the
fractionation-corrected abundances of volatile elements and a select group of trace elements,
listed in the order of increasing compatibility during mantle melting. Concentrations are
normalized to primitive upper mantle (PUM); most values for PUM are taken from
McDonough and Sun (1995) except for CO, and H,O, which are calculated assuming that
PUM has a CO,/Nb ratio of 239 (Saal et al., 2002) and an H,O/Ce ratio of 200 (the value
for FOZO observed by Dixon et al., 2002). This plot allows for a brief overview of the
relative enrichments of volatile elements compared to the trace elements, suspending (for the
moment) any interpretation about loss of volatiles by degassing. For all volcanoes, the
negative anomalies for CO,, H,0, and S indicate that these volatiles are less enriched in the
lavas than lithophile elements of similar compatibility; the opposite is true for the positive
anomaly at Cl for most of the Vailulu'u lavas. F is the only volatile element that is
consistently “conformable” with the lithophile elements in all samples. In the following
sections, we attempt to discern which of these signals are primary and how they can be used

to understand the composition and evolution of the mantle.

4.2. Water and carbon dioxide in glasses

The Samoan lavas show a large range in raw H,O (0.63 — 1.50 wt%) and CO, (6 — 233
ppm) contents (fig. 4a; Table 1). Such water contents are highly elevated over MORBs (fig.
4b), but are very similar to Hawaii’s submarine lavas from Loihi Seamount (Dixon and
Clague, 2001) and the North Arch lava field (Dixon et al., 1997), and to melt inclusion data
from the Austral Islands (Lassiter et al., 2002). Water in OIB lavas is generally lower than
in arc lavas (up to ~ 6 wt%) but in the same range as back-arc basin lavas (e.g. Newman et

al., 2000, for the Marianas system).
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The presence of vesicles (1-30 vol%; Table 1) in every sample indicates that these lavas
were all vapor saturated during eruption onto the seafloor. Some vapor loss can be
accounted for by correcting for vesicle gases (i.e. the manifestation of closed system
degassing). As a test for the severity of water loss, vesicle abundances were determined in 3
of the most vesicle-rich samples, 73-01, 73-03, and 78-03, by point-counting standard-sized
thin sections. By volume, these contain 31%, 20% and 24% vesicles, respectively. Adding
equilibrium vapor compositions back into the glasses, following the procedure described in
Dixon et al. (2002), results in increases in bulk water content on the order of 0.03 to 0.05
wt%; yet these samples still have the lowest water abundances. Because this level of
correction is within error of the analyses, we chose not to make vesicle corrections for all
samples in the Samoan suite. It is likely that the volume of vesicles present in the glasses at
eruption does not represent the total amount of degassing experienced by these lavas; in
other words, we think it is likely that these lavas have lost gas via open-system degassing
with bubble loss, prior to their final eruption and emplacement on the seafloor.

H,0-CO, solubility models (Stolper and Holloway, 1988; Dixon et al., 1995; Dixon,
1997) show that CO, is much more insoluble than H,O in basaltic magmas. As a result,
with Samoan water contents, vapor compositions during open-system degassing are almost
entirely CO, until pressures drop below ~100 bars (ocean depth of 1000 meters) (Newman
and Lowenstern, 2002). In Figure 4a, the arrow at the end of the degassing trend marks the
sharp change from CO,-dominated to H,O-dominated vapor compositions; above this point,
open-system degassing results in nearly negligible water loss.

In Figure 4c, calculated equilibrium saturation pressures (using the Dixon [1997] model
for H,0-CO, saturation in alkali basalts) are plotted with collection depth. Lavas that lie
very close to the 1:1 line erupted close to their dredge depth. Lavas below the 1:1 line are
interpreted to have erupted more shallowly and flowed down slope; lavas above the line
experienced incomplete degassing (i.e. rapid quenching). Note that some scatter is because
dredges are along flanks of the volcanoes and hence may traverse 100°s of meter of depth
contours (see fig.1); the quoted dredge depth is the average for each dredge and may not
represent every sample accurately.

As indicated by carbon dioxide concentrations and pressures of equilibration, both the
most and the least degassed samples are from Vailulu’u: the deep dredges (71 and 72 from
4200 m and 3800 m deep, respectively) show water contents up to 1.50 wt%, and the
shallowest dredges (63, 68, 70, and 73 at or near 1000 m) have water contents down to 0.63

wt%. The low water in the shallow dredges is the result of degassing a water-rich vapor (fig.
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4a). Ta’u and Malumalu lavas all have high enough pressures of equilibration (fig. 4c) to
preclude loss of significant water by open system degassing.

In summary, degassing has affected CO, in all samples, and H,O only in the most
shallowly-erupted samples from Vailulu’u. Additional support for minimal water loss is that
fact that the most melt inclusions have water contents that are identical (within error) to their
host matrix glasses, but with equal or higher CO, (Tables 1 and 2; the one exception is a
melt inclusion from sample 71-03, which has lower CO, and H,O than its matrix glass).
One melt inclusion from sample 72-12 shows the highest pressure of vapor saturation at
818 bars, indicating a minimum crystal fractionation depth of 1.6 km within the oceanic
crust (3840 meters dredge depth plus 1600 meters igneous crust at a rock density of 2800
kg/m?).

4.3. Water and carbon dioxide in primary magmas

After fractionation-correction (see section 4.1), we estimate primary magmas to have
H,O in the range of 0.4 — 1.1 wt%. Shallowly erupted Vailulu’u lavas are once again at the
lower limit of this range, representing the greatest losses of water by both open- and closed-
system degassing.

Original CO, concentrations in the primary magmas can be estimated using the
observation that CO,/Nb ratios are roughly constant in volatile under-saturated MORB melt
inclusions from the Siquieros Transform (Saal et al., 2002) — it is still highly uncertain
whether or not this ratio applies to OIBs. Using fractionation-corrected Nb concentrations
and CO,/Nb equal to 239 (Saal et al., 2002), 95% of the data suggest primary CO, contents
in the narrow range of 0.8 to 1.2 wt%.

We have used the H,0-CO, degassing program by Newman and Lowenstern (2002) to
estimate the maximum water loss from deep, open-system degassing, and find that a
primary magma with 47 wt% SiO, and initial volatile content of 1.2 wt% H,O and 1.0 wt%
CO, will still have 1.15 wt% H,O after CO, has degassed to ~10 ppm. This difference is
within the analytical error for water and evidence that the observed water contents for all
lavas except those from the shallow Vailulu'u dredges (63, 68, 70 and 73) are robust
estimates of original abundances of water.

At the pMELTS-modeled fractionation pressures of 3-4 kbar, the data indicate that CO,
is the only strongly oversaturated volatile component, as it is very insoluble in basaltic
magmas (Stolper and Holloway, 1988; Dixon et al., 1995; Dixon, 1997). Carbonitite
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metasomatism has been documented in Samoan xenoliths (Hauri et al., 1993), and is further
evidence for deep CO, degassing.

4.4. Fluorine

Raw F contents range from 800 to 1890 ppm and are well correlated with incompatible
trace elements including P, Na, K and Ti (fig. 5; Table 1). Fractionation-corrected values for
F are 480 to 880 ppm and closely overlap primitive Hawaiian melt inclusions that have 300
to 1000 ppm F (Hauri, 2002). These values are similar to other plume related lavas, but are
significantly higher than in MORBs (e.g. Schilling et al., 1980; fig. 5).

There are no resolvable differences in the relative enrichment of F between the different
volcanoes or the different dredges; instead there is a constant F/Nd ratio of 21.7+2.6
(20)across the whole sample suite, indicating F compatibility equal to that of Nd. Figure 5
shows that Samoa glasses, together with normal MORBs (PETBD database:
http://beta.www.petdb.org/), very depleted MORBs (from the Siquieros Transform; Saal et
al., 2002; Saal et al., unpubl.) and Primitive Upper Mantle (McDonough and Sun, 1995), all
fall along a F/Nd line of 21. Siquieros samples alone (Saal et al., 2002) show a mean F/Nd
of 19.4+2.6 (10), whereas all MORBs show F/Nd = 20.1£5.8 (15). Continental crust is
also estimated to have a F/Nd ratio within this range (at 20.7; Wanke et al., 1984). To our

knowledge, the only basalts that fall dramatically off this line are melt inclusions from the
Austral Islands showing F/Nd ratios that are generally 60-70 (Lassiter et al., 2002). Elevated
F may be a characteristic of the HIMU mantle end-member that is represented by lavas
from the Austral island chain (Hauri and Hart, 1993). However, Vailulu’u glasses, which are
thought to contain a small HIMU component (Workman et al., 2004), show no systematic

elevation of F.

4.5. Sulfur

Sulfur in the Samoan glasses ranges from 781 — 2651 ppm, consistent with other
oceanic basalts (Wallace and Carmichael, 1992). As discussed above, most glasses are
saturated with a sulfide phase, so have likely lost some S by sulfide fractionation. Figure 6
shows the rough positive correlation between S/Dy and Mg# of the whole suite of Samoan
glasses (note that S and Dy have been suggested to have similar compatibilities during
mantle melting [Saal et al., 2002], so S/Dy should not change as a function of melting or

olivine/clinopyroxene crystallization, but will decrease if sulfides are fractionated from a
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melt). However, for a given Mg#, there is a very wide range of S/Dy, suggesting that
fractionation of sulfides may not be the only factor in controlling relative S depletions.

At the FeO contents of Samoan glasses (10.5 — 14.2 wt%), S concentrations are higher
than they are in sulfide-saturated MORBs, possibly because Samoan lavas have higher
oxygen fugacities (see Dixon, 1997; Dixon and Clague, 2001). Sulfide saturation is a
complicated function of fO,, temperature, pressure and melt composition (e.g. Wallace and
Carmichael, 1992), making further analysis of S beyond the scope of this paper.

4.6. Chorine

Raw Cl contents of the Samoan glasses fall within the range of 451-1815 ppm (Table
1); fractionation-corrected values are 269-1412 ppm, similar to other plume related magmas
(e.g. Dixon and Clague, 2001; Simons et al., 2002), but much greater than estimated
parental MORBs (<100; Michael and Cornell, 1998). Glasses from Vailulu’u and dredge
76 from Malumalu have the highest Cl, while Ta’u glasses fill the lower half of the whole
range. Cl saturation in basaltic melts is greater than 2 wt% at these water contents (Webster
et al., 1999), so we expect that there was no Cl degassing at any point in the evolution of the
magmas. Curiously, of all the volatile and trace elements, Cl is best correlated with S across
the whole Samoan suite (fig. 7). There is no reason to expect these two elements to have
either similar compatibilities or similar behavior in magmatic systems.

ClI concentrations are roughly correlated with other incompatible elements for certain
groups of dredges. Figure 8 shows one example of this with the relationship between CI
and K (the element most often used in assessing relative Cl enrichments; see below). The
lowest CI/K ratios (~0.04) are found primarily in glasses from Ta’u and Malumalu (dredge
78), and the highest ratios are from a collection of Vailulu’u dredges that define a C/K line
of approximately 0.12. Two dredges, 73 and 76, fall “across-trend” in between these two
groups of CI/K. It is important to note that this layout is not unique to Cl and K
concentration space, and instead looks very similar for Cl with almost all trace elements.

There is much precedent for interpreting high Cl concentrations in oceanic basalts as
being the product of seawater assimilation (Michael and Cornell, 1998; Kent et al., 1999;
Lassiter et al., 2002; Simons et al., 2002; Stroncik and Haase, 2004) due to very high
concentrations of Cl in seawater and especially in brines (Kent et al., 1999). A study by
Michael and Cornell (1998) found that CI/K ratios in MORBs that are unaffected by
seawater contamination range from 0.01 — 0.07, with depleted MORBs at the low end and
enriched MORBs at the high end of this range. Samoan glasses overlap with the MORB
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range and extend to higher CI/K (up to 0.15; fig. 8). The question is: how much of this
Samoan signal is primary and how much is caused by assimilation? We address this
question in the paragraphs below.

By omitting samples that fall along brine assimilation trends, Stroncik and Haase (2004)
recently found CI/K ratios in OIBs to be a function of source signatures, as recognized by
their correlation with Sr and Pb isotopic values. Enriched mantle (EM1 and EM2) lavas
have low CI/K ratios (down to 0.02) and HIMU lavas have CI/K ratios up to 0.08 (Stroncik
and Haase, 2004). Also, plume-influenced glasses from the Easter Seamount Chain, having
CI concentrations interpreted as primary based on good correlations between Cl and La,
show CI/K ratios from 0.05 up to 0.12 (Simons et al., 2002), similar to our Samoan glasses.

The relationship between CI/K and *’Sr/**Sr for Samoa is displayed in Figure 8. The
most extreme EM2 lavas (Malumalu, dredge 78) at high *’Sr/**Sr have some of the lowest
CI/K. With decreasing *’Sr/*Sr, CI/K ratios increase up to a maximum value of 0.15 in the
Vailulu’u lavas (that have a small HIMU component; see background section above) and
then drop to MORB-type values in Ta’u. This result is in general agreement with Stroncik
and Haase (2004), despite our absolute CI/K and *’Sr/*Sr ranging to significantly higher
values.

The minimum CV/K ratio from each volcano is ~0.04 and could be taken as the primary
composition for all of Samoan magmas before Cl contamination. However, enumerated
below are reasons to believe that the Cl signal in Samoa is largely primary, with scatter
caused by minimal assimilation:

1. There are correlations between high Cl and other trace elements that are not enriched
in brines (for example, Cl and Nb show a similar relationship as do Cl and K in fig. 7). A
15% brine derived from seawater contains about 10 wt% CI (Kent et al., 1999), and it would
take only 1% of this brine to elevate a magma’s CI content from 500 to 1500 ppm (almost
the full range in Samoa). With the same amount of brine, there would be a negligible effect
on most other trace elements (including K), yet we observe increased trace element
concentrations with increased Cl. Also, Kent et al. (1999) claim that assimilated material is
high in B as well as C], but B is not elevated in high C] Samoan glasses; in fact the highest
B concentrations occur is glasses from dredge 78, which have some of the lowest ClI and
lowest CI/K ratios.

2. Michael and Cornell (1998) clearly demonstrate that high levels of assimilation occur
in lavas that are highly evolved. The opposite is observed for the Samoan glasses: the least
evolved Vailulu’u samples (see fig. 2) show the highest Cl and CI/K ratios (fig. 8).
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3. The few melt inclusions we have analyzed (Table 2) have Cl contents usually within
error of their host matrix glasses. However, this evidence alone may not prove the Cl is
primary, since it is possible that Cl in the inclusions was assimilated at the depth of crystal
fractionation.

4. There is a correlation between CI/K and *'Sr/**Sr (fig. 8), which in general mimics the
observation of Stroncik and Haase (2004) that EM sources and depleted mantle have low
CI/K while HIMU has higher CI/K. However, Vailulu’u is in no way end-member HIMU,
but instead is EM?2 with a small component of HIMU.

5. Figure 7 indicates that high Cl magmas also have high S, and no known assimilant
contains Cl and S in the required 1:1 ratio. Either high Cl is a primary feature of the lavas,
or the correlation between Cl and S is coincidental.

A study on chlorine isotopes (e.g. Magenheim et al., 1995) might provide compelling
evidence against an assimilation origin for the high Cl, and ultimately may be the only way
to define the proportion of igneous- to seawater-derived Cl.

5. Source Variations In Water Enrichment

Since CO, is severely degassed, S is subject to sulfide fractionation, Cl is sensitive to
seawater contamination, and F abundances do not vary relative to trace element abundances,
we focus our attention here on the source variations of water.

During mantle melting, the compatibility of water is similar to Ce and La, as determined
both observationally (e.g. Michael, 1995; Danyushevsky et al., 2000) and experimentally
(Hauri et al., in revision). As such, ratios of H,O/Ce and/or H,O/La have been used as direct
indicators of source compositions and the extent to which water is enriched or depleted. For
example, low H,O/Ce ratios in Loihi magmas (Dixon and Clague, 2001) and plume-
influenced MORBs (Dixon et al., 2002) have been used to argue for the presence of
recycled oceanic crust and sediment that had been efficiently dehydrated during subduction.

The relationship between H,O/La and *’Sr/**Sr in Samoan basalts (fig. 9) extends the
observation by Dixon et al. (2002) that enriched mantle sources have relative depletion of
water (note that H,O/La is used rather than H,O/Ce since H,O and La are most similar in
compatibility during melting of garnet lherzolite [Hauri et al., in revision]). The Samoan
glasses have a wide range in ¥'Sr/**Sr (0.7045 — 0.7089) that is inversely correlated with
H,0O/La (ranging from 120 to 316). The highest H,O/La ratios in Samoa overlap with the
low H,O/La end of the plume-influenced Discovery lavas from the S. Atlantic (Dixon et al.,
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2002). Otherwise, all Samoa glasses have much lower H,O/La ratios than do average
MORBES or average Loihi lavas (Dixon and Clague, 2001; Dixon et al., 2002). Ultimately, it
seems that the greater the “enrichment” of the mantle (in terms of heavy isotopes and trace
elements), the greater the apparent dehydration.

We do not believe that this relationship is an artifact of secondary processes in Samoan
glasses. There is no coincidental correlation between *’Sr/**Sr and dredge depth (i.e.
possible degassing). In the above section on water and carbon dioxide, we have shown that
degassing has not resulted in significant water loss for any of the samples plotted in Figure
9. As supporting evidence, water contents in melt inclusions are equal to or less than the
water contents in the glasses at equal or higher CO, (Tables 1 and 2). The slightly higher
water in some glasses may reflect a greater degree of fractionation of these melts — this is
not confirmed since we lack major element compositions for the melt inclusions. For the
sake of argument, if the water content in samples from dredge 78 was the same as the
highest water in Samoa, then the H,0/La ratio would be ~200 (instead of 120) — still well
below values for MORB, Loihi and Discovery. Finally, if water has been assimilated from
seawater or brine, then the H,O/La ratios plotted in Figure 9 would be maximum values, and
the signal we observe would be a dampened one; however, H,O/La does not correlate with

any potential “assimilation” proxies such as CI/K.

6. Origin Of EM2’s “Dehydration”

The origin of the EM2 mantle end-member is classically explained as the recycling of
oceanic crust plus terrigeneous sediment through subduction zones (e.g. Weaver, 1991).
However, our recent work on extreme EM2 lavas from Samoa (found at Malumalu, in
particular) argues against simple mixing of a sedimentary component into depleted mantle
based on trace element and isotopic trends in the Samoan lavas (see Workman et al. [2004]
for detail). Instead, the origin of EM2 is explained as ancient (2.5 Ga), recycled,
metasomatized lower oceanic lithosphere; a small degree, upper mantle melt (like those
imagined to be formed at depth beneath mid-ocean ridges or island arcs) impregnated a
depleted lithosphere, then the material was subducted and stored in the mantle (Workman et
al., 2004). This is simply one scenario that works to explain the observations in Samoa that
the EM2 source has a trace element pattern more reflective of upper mantle magmatic

fractionation processes than sedimentary compositions, but does not completely rule out a
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subduction-related origin for EM2 (in other words, we do not necessarily know where the
metasomatism has taken place).

The above model for the formation of EM2 cannot account for the low H,O/La ratios
observed in the Samoan glasses since (non-arc) mantle melting cannot produce large
fractionations of water from La owing to their similar compatibilities. In addition, since the
model EM2 reservoir is created in the lower oceanic lithosphere, it will be isolated from the
subduction zone dehydration processes affecting the crust/sediment package in the upper
part of the subducted slab. However, the aging of EM2 can account for our observations.
This is how: very fast diffusion of hydrogen in olivine (Mackwell and Kohlstedt, 1990) will
cause recycled material with high initial water content to lose water to the drier ambient
mantle during storage within the deep Earth.

Mackwell and Kohlstedt (1990) provide an Arrhenius equation for the temperature
dependence of hydrogen diffusion in olivine; this leads to a diffusion coefficient of 8.9x10°
® m*/s at 1500°C, for the fast [100] direction. Using a constant temperature of 1500°C, in
2.5 Ga (the estimated age of EM2), a 26 km thick slab can be fully equilibrated with the
ambient mantle using the approximation that equilibrated distance, x = +(diffusion
coefficient X time). At an assumed upwelling rate of 1 cm/yr, water abundance can be fully
equilibrated over 4 km with the surrounding mantle during convective transport through the
upper mantle (660 km) alone. Since much of the mantle is at temperatures higher than
1500°C, these are conservative estimates; the effects of enhanced diffusion through grain
boundaries will also serve to aid equilibration. It is unknown whether or not similar
diffusion rates for hydrogen apply to other major mantle minerals. If helium can be used as
an analogue for H, at 1500°C, He diffusion in clinopyroxene and garnet is equal or faster
than that in olivine (Trull et al., 1991; Dunai and Roselieb, 1996). In contrast to water, most
other elements will have much smaller equilibration distances; for example, rare-earth-
element diffusion rates at the same temperature results in the full equilibration of less than
10 meters in 4 billion years (Hofmann and Hart, 1978; Van Orman et al., 2001). As a
result, the enhanced solid-state mobility of hydrogen in the mantle can potentially shift the
H,O/La ratio in the absence of any melting or mantle-fluid interactions.

Figure 10 is a conceptual diagram for the diffusive equilibration of water during the
recycling and storage of EM2. Workman et al. (2004) give an estimate for the trace element
composition of EM2: La = 0.895, Ce = 1.923, and if H,0/Ce was initially like the common
mantle, FOZO (i.e. 200; Dixon et al., 2002), then the starting H,O content of EM2 would be
385 ppm. The Depleted MORB Mantle (DMM) is estimated to contain 0.19 ppm La and
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0.55 ppm Ce (Workman and Hart, 2005). At an H,O/Ce ratio of 150 (Dixon et al., 2002),
H,O in DMM = 82.5 ppm, less than 25% that of EM2. Assuming all reservoirs here are
peridotite lithologies, when “wet” EM2 is introduced to “dry” depleted mantle, water will
diffuse out of EM2 and into the “infinite sink” of ambient depleted mantle until their water
activites are equal (at DMM = 82.5 ppm). When EM?2 equilibrates with the depleted mantle
and the two components have the same water content, the resulting H,O/Ce is 43 and
H,0/La is 92 in the EM2 component; these values are nearly identical to the values seen in
the high *'Sr/**Sr glasses from Malumalu (see fig. 9 for H,0/La). Less-enriched sources,
lying initially between EM2 and DMM along a H,O/La = 500 line, will lose water when
recycled to the mantle until they reach the 82.5 ppm water line. Thus, in aged sources,
H,0/La increases as the degree of enrichment decreases. This analysis shows that the
observed differences in H,O/La ratios in these mantle sources are not the result of different
water contents, but instead are due to differences in REE enrichment at similar water
contents.

The above discussion is focused on dehydration of enriched reservoirs, but the same
thinking will apply to re-hydration of dry mantle reservoirs. If subducted material becomes
extensively dehydrated (e.g. as called upon by Dixon et al. [2002]), storage within the
mantle will result in a re-Aydration of the slab until the slab and mantle are in chemical
equilibrium in terms of water content. This is a nearly unavoidable consequence of
recycling, unless slab temperatures stay very cold (much less than 1500°C) or recycling

times are very rapid (< 50 million years).

7. Discussion

Volatile and trace element abundances for nearly 100 submarine basaltic glasses from
the three youngest Samoan volcanoes have been presented here. We have found that water
abundance relative to trace element abundance correlates inversely with source enrichment.
This leads us to believe that, because of very fast diffusion of hydrogen in olivine
(Mackwell and Kohlstedt, 1990), recycled material with high initial water content will lose
water to the drier ambient mantle during storage within the Earth. However, this is a
somewhat incomplete picture since 1) the greatest budget of water in an upper mantle
peridotite is not contained in olivine, but in clinopyroxene and orthopyroxene (Hirth and
Kohlstedt, 1996; Hauri et al., in revision) and 2) other lithologies (especially pyroxenites,
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with little olivine) may be present in the mantle as subducted oceanic crust (e.g. Hirschmann
and Stolper, 1996).

The water content of EM2 is estimated to be close to that of the upper mantle (~100
ppm), and differences in the H,0/La ratio of Samoan mantle components are due to local
diffusive homogenization of their water contents during long-term storage in the mantle.
Therefore, the differences in water concentrations between Samoan lavas and MORBs are
more a difference in degree of melting than source composition. La, H,O and Ce are
enriched in Samoan lavas about 60-fold over their estimated EM2 source concentrations,
requiring a degree of melting on the order of 1% (with D¢, ... = 0.01 and aggregated
fractional melting). This contrasts with an estimated degree of melting at 6-7% to generate
MORSB liquids from the upper mantle (Workman and Hart, 2005).

If the diffusion rates of hydrogen in other mantle minerals are similar to olivine, water
may be one of the only elements whose abundance is nearly constant over great distances in
the mantle, assuming similar source lithologies. This “diffusive dehydration” model has
important implications for the interpretation of mantle H,O/La and H,O/Ce ratios. Whether
or not subducted materials have higher or lower H,O/La than the upper mantle, slabs and
mantle wedge material stored in the deep Earth for significant periods of time will
experience temperature-dependent diffusive mobility of hydrogen and will likely lose
hydrogen to the ambient mantle.

The direction of diffusive hydrogen transport will depend not on the H,O/La ratio but
on the bulk H,O contents of juxtaposed mantle sources. Indeed, subducted oceanic crust
and sediment could enter the deep mantle with a low H,0O/La ratio but a bulk H,O content
that is still higher than the surrounding mantle, and thereby lose even more water via
“diffusive dehydration”. Alternatively, if dehydration and melting are extremely efficient in
subduction zones, then recycled material may enter the deep mantle extremely dry, and
become re-hydrated via diffusive exchange with the surrounding mantle. Either way, an
evaluation of the absolute abundance of water in mantle sources requires more than simply
knowing the ratio of H,O to REE in derivative lavas. Robust estimates of lithophile element
concentrations, from accurate inversion of complete major element, trace element and
isotopic data, must be the starting point for investigating the variability of water in the mantle

in any tectonic setting.
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Figure 4-1. Location map for Samoan glasses. Thick lines with adjacent numbers mark individual dredges;
note that some dredges traverse more contours than others. Depth contours are plotted using AVON 2/3
shipboard bathymetry data. Inset shows greater Samoan region, including the northernmost extent of the
Tonga Trench.
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Figure 4-2. CaO plotted with Mg# for Samoan whole rocks (Workman et al., 2004) and glasses (this
study). Crystal fractionation trends plotted here have been calculated using pMELTS predicted liquid lines
of decent (Ghiorso et al., 2002), starting with some of the most primitive whole rock compositions. Best fits
to the observed glass compositional trends are from pMELTS anhydrous runs at pressures of 3-4 kbar.
Runs with 1wt% water are nearly identical to those plotted here, but with 1 kbar higher pressure.
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Figure 4-3. Fractionation-
corrected trace and volatile
element concentrations, listed
in the order of increasing
compatibility during mantle

melting. Values are
normalized to  Primitive
Upper Mantle (PUM) of

McDonough and Sun (1995),
except for water (at 335 ppm
assuming H,0O/Ce = 200) and
carbon dioxide (at 157 ppm
assuming CO,/Nb = 239
[Saal et al., 2002]).
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Figure 4-4. Panel a) shows
water and carbon dioxide
contents of Samoan glasses
plotted with equilibrium
vapor saturation curves and
degassing trends of Dixon
(1997); because open-
system degassing trends
are nearly vertical on this
diagram, we expect that
water loss has been
negligible for all glasses
except those at pressures
less than 100 bars. Panel b)
compares H,O and CO,
contents of Samoan glasses
from this study to magmas
in other settings. Panel c)
plots  average  dredge
depths  for  individual
dredges with calculated
saturation pressures
(Dixon, 1997) for each
sample; most lavas lie near
the 1:1 line, so 1) are
saturated with an H,0-CO,
vapor and 2) did not flow
downhill from shallower
extrusion depths. Each
dredge traverses multiple
depth contours (up to 800
meters; see fig. 1), so there
is some ambiguity about
the exact collection depth.
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Figure 4-5. Plot of Nd and F concentrations in Samoan glasses from this study, normal MORBs (from the
PETBD online database: http://beta.www.petdb.org/), very depleted MORBs (Saal et al., 2002; Saal et al,,
unpubl.) and Primitive Upper Mantle (McDonough and Sun, 1995). Collectively these oceanic lavas define
a constant F/Nd ratio of 21, showing that F has a compatibility equal to Nd during upper mantle melting.
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Figure 4-6. Plot of S/Dy with Mg# of the Samoan glasses. Mg# = molar percent Mg/(Mg+0.85F¢). S has
been suggested to have similar compatibility to Dy, so S/Dy ratios of melts should be similar to that of their
source as long there has been no sulfide fractionation or SO, degassing. Since sulfides were observed in all
dredges except those marked with **, and there is a rough positive correlation between S/Dy (as well any
S/REE ratio) and Mg#, we interpret these lavas to have lost some of their initial sulfur content by sulfide
fractionation.
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Figure 4-7. Fractionation-corrected S and Cl concentrations in Samoan basaltic glasses. Note from Figure
2 that the glasses with highest S and CI are from the least evolved glasses of the Samoan suite. Although
most glasses are saturated with sulfides, the correlation between Cl and S suggests that S loss by
fractionation of a Fe-S liquid may be minimal.
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Figure 4-8. Two-panel diagram to show the systematics of Cl in Samoan glasses. Top panel shows
fractionation-corrected concentrations of K and Cl; Vailulu'u lavas define a high CI/K sub-suite, while
Ta’u and dredge 78 from Malumalu define a low CI/K array. The lower panel shows that CUK ratios vary
with the ¥’Sr/**Sr source proxy.
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Figure 4-9. Plot of H,0/La against *’Sr/*Sr in Samoan submarine glasses from this study along with
plume-influenced glasses from the Discovery anomaly in the S. Atlantic (Dixon et al., 2002), average Loihi
glasses (Dixon and Clague, 2001), and average normal MORB based on an H,O/Ce ratio of 150 (Dixon et
al., 2002). Note that the shallowly dredged, degassed Vailulu’u samples (from dredges 63, 68, 70 and 73)
are not included on this plot (see fig. 4). The negative slope here indicates that increasingly enriched mantle
has decreasing relative enrichment of water in its source. This water depletion in EM2 is interpreted to be
the result of diffusive loss of water during storage of EM2 in a dry ambient mantle. The amount of water
lost from EM2 is estimated to be ~75% its original (i.e. “pre-recycled”) abundance.
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Figure 4-10. This plot is a conceptual diagram for the diffusive equilibration of water during the recycling
and storage of EM2. At its formation, EM2 had “normal” enrichment of water, with H,O/Ce of 200 and
H,0/La of 430 at 385 ppm H,O. During storage of this material with high H,O in an ambient mantle with
lower H,O, water is diffusively lost from EM2 — but La is not due to their contrasting rates of diffusion.
When EM2 has equilibrated with the upper mantle (82.5 ppm, heavy dashed line), this otherwise enriched
reservoir has an H,O/La ratio of 92. Less enriched sources (that lay in-between EM2 and DMM), will
likewise lose water while stored in a drier mantle, but, as a result of lower REE abundance, will equilibrate
to higher H,O/La. This leads to the negative relationship between H,0/La and *’Sr/**Sr seen in Figure 9.
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Chapter 5:

Assessment of recycled, slab-derived material in
enriched lavas from Samoa: evidence from oxygen

isotopes

Abstract

Oxygen isotope compositions of olivine phenocrysts from Samoan lavas, ranging from
8"* O of 5.1-5.6%o, reconfirm that lavas from Enriched Mantle 2 (EM2) plumes display
higher primary 8'*O values than any other mid-ocean ridge or hotspot setting. We find that
8'%0 correlates well with ¥'Sr/**Sr, ***Pb/***Pb and incompatible element ratios such as
La/Sm. There is no correlation between 8'*0 and Mg#’s of whole-rocks or olivines, so we
interpret the &'°0O values to represent primary melt compositions. Clinopyroxene
phenocrysts were also analyzed from a few samples and show a similar range in 8'°O as the
olivines; unlike a typical equilibrium fractionation of ~0.4%c for 8'*Oc,, — 8'*Og,, most
clinopyroxenes are lower in 8'*O than their coexisting olivines. We test two models for the
origin of EM2’s enrichment in '*O, incompatible trace elements and Sr-Nd-Pb radiogenic
isotopes; both are based almost entirely on comparisons of trace element patterns between a
calculated source for the most EM2-rich lavas and our two model outputs. The first model
is inspired by the classic interpretation that EM?2 represents mantle that has been enriched
by recycled marine sediments. The second model is one in which a subduction-zone-
delineated mantle wedge is metasomatized by a melt from oceanic crust that has been
subducted to eclogite facies pressure-temperature conditions. Each model has significant
discrepancies with trace element patterns observed for Samoa, but the metasomatic model
overall shows a better fit.
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1. Introduction

Oxygen isotopes have become a commonly used proxy for the identification of ancient,
recycled crustal components in arcs and mantle plumes and/or as a means to identify recent
crustal contamination of mantle-derived igneous rocks (Eiler, 2001). The use of oxygen
isotopes as a crustal tracer is made possible by the fact that only materials at or near the
Earth’s surface show great variability in 8'*0O as a result of low temperature equilibrium
fractionation effects. However, 8'*O variations in mantle-derived lavas and their phenocrysts
are often small and care must be taken not to interpret secondary processes as mantle source
signals.

The range in 8'*0 of olivines from MORBs and upper mantle peridotites is small (5.1 £
0.2%c; Mattey, 1994; Chazot et al., 1997; Eiler et al., 1997; Eiler, 2001) and overlaps with
values obtained from lunar rocks (Clayton et al., 1971; Clayton et al., 1972, Wiechert et al.,
2000). Deviations from these ‘primary’ mantle values have been found in ocean island
basalts (OIBs) and attributed to the addition of sediment/upper-crustal material (in the case
of high 8'®0) or lower oceanic crust (in the case of low 8'*0), either as a present-day
assimilant or as a component in the mantle plume (see the review by Eiler, 2001). Most
detailed studies of 8'*0 compositions in OIBs have focused on locations where 8'*0 is
either very similar to MORB (Pitcairn, Hawaii) or is lower than MORB (Hawaii, Iceland,
Canaries) (Eiler, 2001). Here we expand on the observation by Eiler et al. (1997) that the
EM2 mantle component (Enriched Mantle 2), found most extremely in the Samoan hotspot
track and more weakly in the Society Islands, is the only one to consistently show §'*O
values that are elevated over MORBs. The Samoan islands and seamounts are now very well
characterized in terms of major and trace elements, water content and Sr-Nd-Pb-Hf-Os-He
isotopic composition, so there is abundant context in which to put the new oxygen isotope
data that is presented in this paper.

Eiler et al. (1997) interpreted the high 8'*O in Samoa as the occurrence of recycled
marine sediment in the Samoan plume. Such an explanation for the origin of enrichment in
EM?2 followed previous suggestions for EM2’s origin, but was subsequently refuted by
Workman et al. (2004) based on a large suite of trace element and isotopic data. Instead,
Workman et al. (2004) called upon metasomatism of the lithospheric mantle (by an upper
mantle melt) to explain the formation of EM2; however, their model cannot directly account

for elevated 8'*O compositions.
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Here we present new 8'*0 analyses of olivine and clinopyroxene phenocrysts from
Samoan lavas and test two models for the generation of EM2. The first is the standard
sediment-recycling model. The second expands upon the metasomatic model of Workman
et al. (2004) by identifying a location for the metasomatism (the mantle wedge), and more
accurately defining what the metasomatising agent is (an eclogite melt). Each model shows
some major misfits to characteristics of end-member Samoan lavas, although the
metasomatic model requires less ‘special pleading’.

2. Samples and Methods

The samples analyzed in this study have already been well characterized in terms of
major and trace element abundances and isotopic (Sr-Nd-Pb-He-Os) compositions
(Workman et al., 2004). Samples selected here are a subset of a much larger collection
discussed by Workman et al. (2004) and are used as the result of their containing olivine
phenocrysts plentiful enough for separation. Samples with names beginning with a letter (T,
U or S) are subaerial samples from the Samoan Islands, and those beginning with numbers
are dredged from Vailulu’u and Malumalu Seamounts as well as submarine portions of
Ta’u Island.

Whole rock samples were crushed and sieved to obtain a 300-660 um size fraction. The
sieved fraction was then rinsed in acetone and deionized water. Olivine and clinopyroxene
phenocrysts were hand-picked under binocular microscope either dry or from a water bath.
The only mineral grains picked for 8'*O analyses were those with the fewest visible melt
inclusions, mineral inclusions or surface discolorations.

Oxygen isotope compositions (8'°0 = 1000*("*0/*°Oy,ppi/ * O/ *Ogyow) — 1), Where
SMOW = standard mean ocean water at an '*0/'°O ratio of 0.0020052) were determined
by laser fluorination (LF) at the Caltech laboratory based on methods described by Valley et
al. (1995) and Eiler et al. (2000a). Over 3 days of LF analyses, 16 runs of the GMT-2
garnet show a 16 reproducibility of 0.07%c about a mean of 5.83%o — within error of the
accepted, long-term average of 5.80%o (see Valley, 1995; Eiler et al., 2000a).

Sample runs contain 1-2 mg of multiple mineral grains, and each sample is ideally run
in triplicate, although some samples presented here only have 1 or 2 analyses. During LF
analyses, some (not all) sample runs showed a high value of the contaminant mass 47 (i.e.
~100 times normal). This unknown contaminant was also enriched in mass 48, resulting in
highly elevated 8'°O values (generally 10-20%c, but up to 37%c) that were all discarded.
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This was a problem that was never encountered on a standard run. Consequently, sample
splits were heat-treated at 1000° C for 1 and 10 minutes in air, thereby greatly improving the
frequency of good runs. Although the heat treatment causes visible oxidation of olivine
grains, there is no systematic difference in 8'*O between sample splits that were and were
not pre-treated; in other words, heat-treated sample splits are both higher and lower than, but
within 206 error of, their non-treated splits with successful LF runs (see Table 1).

The range in 3'*0 shown by replicate analyses of olivine from a given sample is slightly
greater than the quoted reproducibility of the standard. For example, samples 71-2 (n=4)
and 78-3 (n=3) both show variations on the order of 0.2%o. Although this is only barely
beyond the limit of 26 reproducibility of the standard, it may be suggestive of minor sample
heterogeneity, as shown strongly in a SIMS study of single olivine phenocrysts from
Iceland (Gurenko and Chaussidon, 2000) as well as multiple olivine analyses from a single
lava flow (also from Iceland; Eiler et al., 2000b).

3. Results

Olivine phenocrysts from 20 Samoan shield lavas have 8'*O compositions of 5.11-
5.55%o¢ (Table 1). The lower end of the Samoan range overlaps with olivines in MORBs and
upper mantle peridotites (5.1 + 0.2%o) that are either measured directly (Mattey, 1994; Eiler
et al., 1997) or inferred from melt compositions (Eiler et al., 2000c). No lavas from any
other mantle components, including another enriched mantle, EM1 (found at Pitcairn Island;
Eiler et al., 1995), have 8'°0 extending to such high values (see Eiler et al., 1997; Eiler,
2001); exceptions are from lavas that have undergone extensive crystal fractionation (e.g.
Muehlenbachs and Byerly, 1982; Geist et al, 1998; Harris et al, 2000) or recent
assimilation of altered crustal components (Garcia et al., 1998).

Clinopyroxene (cpx) phenocrysts have been analyzed for 8'°O from 5 samples and
show a nearly equivalent range in 8'*0 (4.97-5.53%0) as the olivines. Figure 1 shows that
for individual samples, the 8'*0O compositions of cpx’s are similar to or lower than their
coexisting olivines. This feature is directly opposite of measured and theoretical equilibrium
3'"*O partitioning between cpx and olivine, in which cpx is generally 0.4%c higher than
olivine (Chiba et al., 1989; Mattey et al., 1994; Chazot et al., 1997; Macpherson et al., 1998;
Harris et al., 2000). From this perspective, if we only had cpx data, the 8'*O values found in
Samoa would not be an '*O-enriched anomaly in the global database of oceanic basalts, as

the implied 8'*O of equilibrium melts would be fully below the upper limit of MORB melts
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(basaltic melts are assumed to be 0.5%o heavier than olivines and hence 0.1%o heavier than
cpx; Anderson et al., 1971; Kyser et al., 1981; Eiler, 2001). Although precise knowledge of
equilibrium &8'*O fractionations as a function of mineral and melt major element
compositions, temperature and volatile content are lacking, it is possible that olivine and cpx
are seemingly out of equilibrium because they record 8'°O at different stages in the
evolution of the melts. Because olivine is the first mineral to become saturated in Samoan
magmas (along with spinel), we henceforth use olivine as a proxy for 8'*0O compositions of
primary liquids.

Increasing 8'°0 values of olivine strongly correlate with increasing incompatible
element ratios and heavy isotope compositions (figs. 2-4). Figure 2 shows the relationship
between 8'*O and La/Sm, but there are similarly good correlations with other element ratios
such as K/Na, K/Ti and Rb/Sr, suggesting that high 8'*0 derives from sources that are
enriched in the highly incompatible elements. The highest 8'*O occurs in Malumalu lavas
(samples 78-1 and 78-3), which also have the highest La/Sm (6.4), ***Pb/***Pb (39.86) and
¥8r/**Sr (0.7089). These Malumalu lavas define the most extreme EM2 basalts in the
current global database and therefore equilibrium olivine from end-member EM2 is
established to have 8'*0 equal to 5.5%.. Sources with the lowest *’Sr/*Sr, marked primarily
by lavas from Ta’u and Upolu, are almost entirely separate from Malumalu by having lower
oxygen and Sr isotopic compositions along with lower La/Sm (figs. 2-4). Vailulu’u olivines
show the greatest range in 8'*O of any volcano (~0.4%o), but all other source proxies are
nearly identical for the 6 Vailulu’u samples. On the other hand, Malumalu shows the
greatest range in *’Sr/**Sr (0.7067-0.7089) of these volcanoes, but has 8'*O values that vary
by only 0.22%o (fig. 4).

The differences in source characteristics between eastern and western Samoa are
highlighted in Figure 3. Western Samoan, comprised of the islands Savai’i and Upolu,
overlaps the eastern shield lavas in 8'*O but is distinctly lower in ***Pb/***Pb. Workman et
al. (2004) claim that, of all the Samoan volcanoes, Savai’i and Upolu have the least abundant
EM?2 component and instead are strongly influenced by depleted mantle (for Upolu) and
another, yet unidentified, source with low ***Pb/***Pb and ***Pb/***Pb but high **’Pb/***Pb
(for Savai’i). The one Savaiian sample presented here is from the oldest volcanic series
exposed on the island and yields a 8'*0O composition (5.38%c) that is mid-range of the
whole Samoan suite. Olivine in two young, post-erosional lavas from Savai’i, analyzed by
Eiler et al. (1996), have 8'*O values (5.48%o. and 5.67%o0) extending higher than the end-

member EM2 value (5.5%o), but it is unclear if this represents a source signal or is a product
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of shallow assimilation of older, altered Savaiian shield. Since all lavas from Savai’i have
similar Sr-Nd-Pb isotopic signatures (Workman et al., 2004), we suggest that the lower
8'*0 value for Savai’i is primary and the elevated 'O in post-erosional samples is from
secondary processes. No further attempt is made to explain the characteristics of post-
erosional lavas, as the primary focus of this work is to determine the origin of high §'*O in

the EM2 mantle component.

4. Process Control

The inference of small variations of 8'*O in mantle sources based on small variations of
8'"*0O in mantle-derived lavas must be validated with an assessment of melt generation and
fractionation processes. Eiler (2001) shows that joint olivine and plagioclase fractionation,
as appropriate for MORBS, results in a nearly negligible net change of 8'*O (<0.1%o, over a
large range of MgO) since light olivine is ‘buffered’ by heavy plagioclase. However, the
Samoan lavas from this study have liquid lines of descent that are saturated with olivine +
clinopyroxene (Workman et al., 2004), minerals that are both lighter than equilibrium melts
(see discussion above). A simple calculation, assuming an olivine-melt 8'*O fractionation of
0.5%e¢, indicates that 40% olivine fractionation (an upper limit for magmas presented here)
will increase a melt’s 8'*0 composition by 0.2%o. Greater increases in a melt’s 8'*O can
only occur if minerals with greater mineral-melt 8'*O differences are fractionated. Spinel
and chromite are two such minerals (Eiler, 2001) that are present in Samoan lavas, but at a
possible fractionated mass of ~2% and mineral-melt 8'*O fractionation of 2%o, melt 8'*O
will increase by less than 0.1%o. Fractionation of titanomagnetite has been shown to cause
increases in 8'*O of silicic Galapagos lavas (Muehlenbachs and Byerly, 1982), but there is
no evidence this phase has played a role in Samoan fractionation trends.

An assessment of crystal fractionation effects on melt 'O values would benefit from
more detailed modeling of an AFC-type process (Assimilation-Fractional-Crystallization;
DePaolo, 1981) suggested to occur in some OIB lavas. However, an AFC process to create
high 8'*0 may be more important in the formation of EM2 mantle than in the present-day
generation of Samoan melts; there is no reason to think that EM2 hotspot chains are unique
in the way they generate or process melts, and no other OIB’s show elevated 8'*O values.

Olivines with higher 8"*0 tend to come from whole rocks with lower SiO, and CaO
than do the lower 8'°0 olivines (fig. 5). This negative correlation is slightly deceptive
because picritic samples (with low SiO, and CaO) are generally from Vailulu’u and
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Malumalu (with high 8'®0). This observed relationship is not the result of crystal
fractionation or accumulation since 3'*O does not correlate with Mg#’s (molar fraction of
Mg/[Mg+Fe*]) of whole rocks or of olivines (Jackson et al., unpubl.). Whole rock
samples with the lowest Mg#’s are from Upolu, and are the only obvious candidates for
showing possible effects of olivine fractionation on 8'°O, as other lavas have Mg#’s too
high to have fractionated enough olivine to significantly change a melt’s §'*O. It is, of
course, possible that a melt has experienced crystal fractionation and then accumulated
‘foreign’ olivine.

The above factors may play in role in causing scatter in plots such as those in Figures 2
through 4, but do not negate the fact that 'O values are enriched in olivines from EM2
end-member lavas. Fractionations of 8'°O upon the generation of melt from a peridotite
lithology will likewise not lead to the observed variation in Samoa’s 8'*O values; Eiler
(2001) shows that, in theory, the 'O composition of a melt is a function of Na,O content,
but the Samoan lavas are within a relatively narrow range of Na,O (~1-3 wt%) where there
is very little leverage on 8'*O (0.1%o). Also, there is no correlation between 8'*O and Na,O,
even if lavas are fractionation-corrected to Mg# 73 by incremental addition or subtraction of

equilibrium olivine.

5. Source Control

The correlations of 8'*O (olivine) with trace element and Sr-Pb isotopic enrichment in
whole rocks (figs. 2-4) robustly indicate that '*O-enrichment exists in the EM2 source.
Eiler et al. (1997) made the same observation with analyses from Savai’i (the post-erosional
samples discussed above) and the Society Islands, another EM2 hotspot chain (although not
as extreme in EM2 as Samoan lavas). Their interpretation was that EM2 represents a
mixture of depleted mantle and 2-6% marine sediment having 8'*O = 15%¢ and *'Sr/*Sr =
0.710. They also suggest that extensive metasomatism could potentially elevate a source’s
8'*0, as evidenced by high 8O found in olivines (5.3-5.5%0) and pyroxenes (5.7-5.8%o)
from metasomatised Savaiian xenoliths. In an earlier study, Hauri et al. (1993) showed that
cpx separates from these xenoliths have *’Sr/**Sr up to 0.7128, higher than any values seen
in the Samoan lavas; however, the genetic relationship of the xenoliths to the lavas is unclear
since Pb isotopic compositions of cpx in the xenoliths do not lay on an extension of trends
formed by the lavas (see Workman et al., 2004).
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With new light from data presented here and in Workman et al. (2004), it has become
clear that the composition of end-member EM2 lavas is much lower in 8'*0 and higher in
$7Sr/**Sr than reported by Eiler et al. (1997). To model the new 8'*0 — ¥’Sr/**Sr trend,
sediment having 8'*0 of 15-25%c must have *’Sr/**Sr of 0.720 to 0.732 if mixing with
primitive mantle and a more narrow range of 0.715 to 0.720 if mixing with depleted mantle;
the mass of sediment added would be 2-4%, with less sediment needed as the 8'*0 of the
sediment increases (see fig. 4). Although the data is roughly fit in these two dimensions, a
sediment origin for EM?2 is not guaranteed by this calculation alone — there are many more
parameters to be checked in order to assess the plausibility of this scenario. Accordingly, in
the section below (5.1), we compare a sediment plus mantle mixture to the whole trace
element pattern of end-member Samoan lavas.

Marine sediments are not the only material characterized by heavy oxygen. Altered
upper oceanic crust (AOC) has been found to have 8180 values up to ~15-20%o (Staudigel
et al., 1981, Staudigel et al., 1995; Alt, 2003). When AOC is subducted at convergent
margins, elements that are enriched in the ocean crust by low temperature alteration on the
seafloor (Rb, Ba, U, K, Pb; Hart and Staudigel , 1989; Staudigel et al., 1996; Bach et al.,
2003; Kelley et al., 2003) are also lost from the crust by dehydration and metamorphism, as
seen in compositions of eclogites, the high temperature/pressure assemblage of oceanic
crust (e.g. Becker et al., 2000). On the contrary, there is evidence from metabasalts and
eclogites (Matthews et al., 1984; Neal et al., 1990; Nadeau et al., 1993; Putlitz et al., 2000)
that deeply subducted materials do not lose the high 6180 compositions they acquired from
seafloor alteration. Although bulk addition of subducted AOC (i.e. eclogite) would never
result in enrichments of the highly-incompatible and light-rare-earth elements, it is possible
that a melt derived from such material could have the required trace element enrichments as
well as high 8180. Below we test a second model for the generation of EM2: metasomatism
of the mantle wedge by an eclogite melt derived from a subducting slab. This model
expands on the one put forth by Workman et al. (2004) by providing a location (the mantle
wedge) and an agent (an eclogite melt) for their proposed mantle metasomatism; however, it
is very different in the regard that this is potentially a much more complicated process,
involving a greater variety of minerals as well as a greater numbers of ‘steps’ in the
processing of materials.

There are a couple of fairly convincing arguments against a fluid being the enriching
component in EM2 mantle: 1) Samoan lavas have slight negative anomalies in the fluid-

mobile elements — for example, even though the absolute abundances of U and K are high,
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U/Nb and K/La (ratios of ‘neighboring’ elements in the order of compatibility) are less
than in the primitive mantle; and 2) end-member Malumalu lavas have low relative Cl
enrichment (see Chapter 4), whereas fluids in subduction zone systems are documented to
have high Cl abundances (Kent et al, 2002; Scambelluri et al., 2004).

In summary, the following constraints for EM2, based on isotope and trace elements,
must be satisfied in any plausible model for its origin: 1) high time-integrated Rb/Sr and
Nd/Sm; 2) elevated 8180; 3) lack of significant anomalies across the high-field-strength
elements; 4) slight depletions in the fluid-mobile elements.

5.1. Test for a sediment source of enrichment

Present-day assimilation of local marine sediments with high 8'*O cannot explain the
origin of the Samoan lavas because Pb isotopic compositions of the sediments are too low
in *”°Pb/***Pb and ***Pb/***Pb to be the enriched component of the end-member Malumalu
lavas (see Plank and Langmuir, 1998; Workman et al., 2004). Therefore, we must approach
the problem as one of recycling ancient marine sediments back to the mantle at convergent
margins, as melting and dehydration processes in the subduction zone have the potential to
alter trace element compositions, hence parent/daughter ratios and, consequently over time,
radiogenic isotopic compositions. However, difficulties in this problem arise since we have
collectively little knowledge about past sediment compositions (that are, in part, a function of
the redox state of the oceans), melting and dehydration processes in the subduction zone,
and partitioning of trace elements between sediment/fluid and sediment/melt. There is some
experimental evidence to suggest that subducted sediments will still look basically like
unsubducted sediments (in term of the general sense of anomalies in their trace element
patterns), even after dehydration and partial melting, due to sediment/fluid and sediment/melt
partition coefficients being close to 1 and often higher (Johnson and Plank, 1999); this does
not mean that trace element ratios will not change, but rather that generally enriched or
depleted elements will stay generally enriched or depleted, respectively.

There is seemingly no foolproof way of ‘selecting’ a marine sediment composition to
test as an enriching component in EM2, given the many unknowns listed above. Trace
elements in sediments that are not thought to fractionate from each other during subduction
zone alteration (i.e. Th/La; Plank, 2005) have the potential to fractionate during small-degree
mantle melting to make the Samoan lavas. On the other hand, elements that may have similar
compatibilities during mantle melting (i.e. Th/U, Ba/Th, K/U, Ce/Pb, St/Nd) are likely to
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fractionate from each other during dehydration of sediments in subduction zones because of
slightly differing fluid mobilities (Johnson and Plank, 1999).

We have chosen to use La/Th and Nb/Th ratios in order to identify a ‘test’ sediment
because these elements are thought to be immobile in sediment-derived fluids and therefore
their ratios will not be fractionated by dehydration processes (Johnson and Plank, 1999;
Plank, 2005). These ratios show a good correlation with each other for the Samoan lavas
(fig. 6) and decent correlations with *’Sr/**Sr compositions, so must be largely reflective of
source variations. We also use Ba/Th as another ‘filter’ for choosing a sediment; Ba is
more fluid-mobile than the other elements used (Johnson and Plank, 1999), but the
enormous range of Ba/Th in marine sediments (Plank and Langmuir, 1998) compensates
for this possible fractionation in the subduction zone. Using compositions of individual
marine sediments from the GLOSS study by Plank and Langmuir (1998), we have found 7
sediments (most of clay-dominated lithology) that lay on an extension of the Samoan trace
element trends in La/Th-Nb/Th-Ba/Th space (fig. 6). The average of these 7 selected
sediments is reported in Table 2. These 7 out of the 43 sediment compositions reported by
Plank and Langmuir (1998) are most distinct from GLOSS by having negative Ba and Sr
anomalies.

Figure 7 shows a comparison between trace element patterns of a calculated Malumalu
(i.e. EM2) source with mixtures of the selected sediment and depleted or primitive mantle.
See Table 2 for details of calculating the Malumalu source composition. Each mixture
contains 2% by mass of the sediment and will satisfy the observed 8'*O of Malumalu if the
sediment has a 8'*0O composition of 25%o. To the right of La, the Malumalu source falls
between the two sediment-mantle mixtures, except for Pb. To the left of La, the Malumalu
source falls below either mixture, except for Nb and Ta, which fall above. Sediment melting
is thought to be common beneath arc volcanoes (Elliot et al., 1997; Hoogewerff et al., 1997;
Plank and Langmuir, 1998; Johnson and Plank, 1999) and, if it occurred before mixing with
the mantle, could potentially account for the excess abundance of Rb, Ba, Th, U and K, but
will not be able to explain the low Nb and Ta (Johnson and Plank, 1999), unless a minor
phase such as rutile (with high Nb and Ta compatibility; e.g. Rudnick et al., 2000) is present
in the sediment during melting. Because of experimental challenges (e.g. Johnson and
Plank, 1999), there is very little accurate information about Pb mobility during dehydration
and melting. The great enrichment of Pb in the continental crust (42 ppm and 84 times the
abundance in primitive upper mantle; Rudnick and Fountain, 1995) must be due to greatly

enhanced mobility of Pb at some stage in its generation — whatever that process is could be
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the same to mobilize Pb from sediments and decrease the high positive anomaly in the
sediment-mantle mixtures of Figure 7.

In summary, if sediment recycling to the mantle is the reason for trace element and
hence isotopic enrichment in EM2, very specific changes must be made to the sediment
before it is mixed and stored with the mantle. While these changes appear unlikely at
present, future advancements in the understanding of subduction zone processes may either

rule-out or rule-in a ‘sediment scenario’.

5.2. Test for an eclogite melt source of enrichment

The trace element composition of eclogite, to be used in the calculation discussed below,
is based on eclogite samples with MORB protoliths reported by Becker et al. (2000), and is
listed in Table 2. As mentioned above, the addition of bulk eclogite to either primitive or
depleted mantle will not result in the required LILE and LREE enrichment in the EM2
reservoir, since these elements are not preferentially enriched over MREE or HREE in
eclogites (fig. 8). Even 2 to 3 billion years ago, oceanic crust was most likely not
preferentially enriched in these elements, as there is evidence that a depleted upper mantle
already existed at that time (Machado et al., 1986; Bowring and Housh, 1995; Vervoort et
al., 1996).

Here we test a model in which the mantle wedge (the mantle in-between a subducted
slab and the volcanic arc) is metasomatized by a melt from subducted oceanic crust. Recent
thermal models for the mantle wedge and subducted slab (van Keken et al., 2002; Kelemen
et al., 2003a) suggest that temperatures at the slab-wedge interface may exceed the water-
saturated solidus of basaltic compositions beneath the volcanic front, and certainly will at
more deeply subducted locations. Melting experiments on garnet pyroxenite show a very
narrow temperature range between the solidus and liquidus (Kogiso et al., 2003), meaning
melt productivity (as a function of temperature; dF/dT), will be much greater than in
peridotite melting.

The upper panel in Figure 8 shows the trace element pattern of our ‘test’ eclogite. A
30% melt of this eclogite (using partition coefficients in Table 2) is mixed with 1) primitive
mantle and 2) depleted mantle. Adding 5% of the melt to each melt-mantle mixture results in
trace element patterns that show a fairly decent match to our calculated Malumalu source,
especially given the potential errors in the chosen compositions and partition coefficients; to
match the 8'*0 of Malumalu, the eclogite melt must have a 8'*0O composition of 15%o. The

two mixtures bound the Malumalu source for most elements, with the only major misfit
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being at U. Since U is a fluid-mobile element, it is possible that eclogites subducted to
greater depths will lose additional U by further dehydration reactions.

This scenario has promise in explaining the origin of enrichment in EM2. The caveat if
this: the eclogite melt produced from the slab must not be extracted from the mantle wedge,
but instead get ‘stuck’ in it. This may be possible if the melting takes place at subducted
depths greater than occur beneath the volcanic arc and the enriched wedge is effectively

‘swept away’ into greater depths of the mantle.

6. Discussion

Each proposed option for elevated 8'*O in enriched mantle lavas from Samoa requires
some form of ‘special pleading’. No single scenario can successfully explain the complete
array of observation in the lavas, although many fewer discrepancies exist with the model
involving metasomatism of the mantle wedge by eclogite melts. Likewise, no single scenario
can be confidently ruled out as a possibility due to our limited knowledge base about
ancient and present-day subduction zone processing of slabs, as well as compositions of
ancient sediments and altered oceanic crust.

If ancient metasomatism by an eclogite melt is a plausible origin for the trace element
enrichment in EM2, the reality must be a mixture of sediment and eclogite melts as the
enriching component, since the solidus temperatures for these two materials can be very
similar (Nichols et al., 1994; Johnson and Plank, 1999; Poli and Schmidt, 2000). This is
nearly unavoidable, given the close proximity of sediment overlaying the igneous crust, and
the observation that metabasalts and metapelites are often severely intermingled (for
example, see Hansteen and Troll, 2003). The exchange of 1% eclogite melt for 0.5% bulk
sediment slightly improves the fit of Rb and the Pr-Nd-Sr sedment of the trace element
pattern, but makes the negative anomaly in Pb turn positive.

It is possible that some of the second-order variations in the trace element pattern for the
Samoan lavas are due to recent alterations to the EM2 source beneath Samoa. For example,
recent carbonatite metasomatism has been documented in xenoliths from Savai’i (Hauri et
al,, 1993). If such a metasomatising material was extracted from the EM2 (Malumalu)
source before Malumalu lavas were generated, then the trace element patterns of Malumalu
lavas falsely represent their ancient composition. We will need to take great care in
understanding the sequence of events in the history of a given source and its derivative melts

from the time of their formation until the day of our sampling.

212



Acknowledgements

We thank Erik Hauri for inspiring us to think of the mantle wedge as a possible place to
generate EM2. We would also like to acknowledge Nami Kitchen for her talent and time
spent with the LF analyses presented here. Nobu Shimizu has been a wonderful sounding
board and resource for this work.

213



References

Alt, J.C., Stable isotope composition of upper oceanic crust formed at a fast spreading ridge,
ODP Site 801, Geochem. Geophys. Geosyst., 4 (5), doi:10.1029/ 2002GC000400,
2003.

Anderson, A.T., R.N. Clayton and T.K. Mayeda, Oxygen isotope thermometry of mafic
igneous rocks, J. Geology, 79, 714-729, 1971.

Bach, W, B. Peucker-Ehrenbrink, S.R. Hart and J.S. Blusztajn, Geochemistry of
hydrothermally altered oceanic crust: DSDP/ODP Hole 504B — Implications for
seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle,
Geochem. Geophys. Geosyst., 4 (3), doi:10.1029/2002GC000419, 2003.

Becker, H., K.P. Jochum and R.W. Carlson, Trace element fractionation during dehydration
of eclogites from high-pressure terranes and the implications for element fluxes in
subduction zones, Chemical Geology, 163, 65-99, 2000.

Bowring, S.A. and T. Housh, The Earth’s Early Evolution, Science, 269, 1535-1540, 1995.

Chazot, G., D. Lowry, M. Menzies and D. Mattey, Oxygen isotopic composition of
hydrous and anhydrous peridotites, Geochimica et Cosmochimica Acta, 61, 161-1609,
1997.

Chiba, H., T. Chacko, R.N. Clayton and J.R. Goldsmith, Oxygen isotope fractionations
involving diopside, forsterite, magnetite and calcite; application to geothermometry,
Geochimica et Cosmochimica Acta, 53,2985-2995, 1989.

Clayton, R.N., N. Onuma and T.K Mayeda, Oxygen isotope fractionation in Apollo 12
rocks and soils, Proc. 2"* Lunar Sci. Conf., 1417-1420, 1971.

Clayton, R.N., J.M. Hurd and T.K. Mayeda, Oxygen isotope abundances in Apollo 14 and
15 rocks and minerals, Lunar Sci. Inst. Contrib., 88, 141-143, 1972.

DePaolo, D.J., Trace element and isotopic effects of combined wallrock assimilation and
fractional crystallization. Earth Planet. Sci. Lett., 53, 189-202, 1981.

Eiler, .M., K.A. Farley, J.W. Valley, E.M. Stolper, E.H. Hauri and H. Craig, Oxygen
isotope evidence against bulk recycled sediment in the mantle sources of Pitcairn island
lavas, Nature, 377, 138-141, 1995.

Eiler, John M., K.A. Farley, ]. W. Valley, E.H. Hauri, H. Craig, S.R. Hart and E.M. Stolper,
Oxygen isotope variations in ocean island basalt phenocrysts, Geochimica et
Cosmochimica Acta, 61, 2281-229, 1997.

214



Eiler, J. M., A.J. Crawford, T.R. Elliott, K.A. Farley, J.W. Valley, and E.M. Stolper, Oxygen
isotope geochemistry of oceanic-arc lavas, Journal of Petrology, 41, 229-256, 2000a.

Eiler, J.M., K. Gronvold, and N. Kitchen, Oxygen isotope evidence for the origin of
chemical variations in lavas from theistareykir volcano in iceland's northern volcanic
zone, Earth and Planetary Science Letters, 184, 269-286, 2000b.

Eiler, John M., P. Schiano, N. Kitchen and E. M. Stolper, Oxygen-isotope evidence for
recycled crust in the sources of mid-ocean-ridge basalts, Nature, 403, 530-534, 2000c.

Eiler, J.M., Oxygen isotope variations of basaltic lavas and upper mantle rocks, in: Stable
Isotope Geochemistry, Reviews in Mineralogy and Geochemistry, 43, eds. J.W. Valley
and D.R. Cole, 319-364, 2001.

Elliot, T., T. Plank, A. Zindler, W. White and B. Bourdon, Element transport from slab to
volcanic front at the Mariana Arc, J. Geophys. Res., 102, 14,991-15,019, 1997.

Garcia, M.O., E. Ito, J.M. Eiler and A.J. Pietruszka, Crustal comtamination of Kilauea
Volcano magmas revealed by oxygen isotope analyses of glass and olivine from Puu
Oo eruption lavas, J. Petrology, 39, 803-817, 1998.

Geist, D., T. Naumann and P. Larson, Evolution of the Galapagos Magmas: Mantle and
crustal fractionation without assimilation, J. Petrology, 39, 953-971, 1998.

Gurenko, A.A. and M. Chaussidon, Oxygen isotope variations in primitive tholeiites of
iceland; evidence from a SIMS study of glass inclusions, olivine phenocrysts and pillow
rim glasses, Earth and Planetary Science Letters, 205, 63-79, 2002.

Hansteen, T.H. and V.R. Troll, Oxygen isotope composition of xenoliths from the oceanic
crust and volcanic edifice beneath Gran Canaria (Canary Islands); consequences for
crustal contamination of ascending magmas, Chemical Geology, 193, 181-193, 2003.

Harris, C., H.S. Smith and A.P. le Roux, Oxygen isotope composition of phenocrysts from
Tristan da Cunha and Gough Island lavas: variation with fractional crystallization and
evidence for assimilation, Contrib. Mineral, Petrol., 138, 164-175, 2000.

Hart, S. R., and H. Staudigel, Isotopic characterization and identification of recycled
components, 15-28. In: Crust/Mantle Recycling at Convergence Zones, eds. S. R. Hart
and L. Gulen, NATO ASI Series, Vol. 258, Series C, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1989.

Hauri, E. H., N. Shimizu, J.J. Dieu, and S.R. Hart, Evidence for hotspot-related carbonatite
metasomatism in the oceanic upper mantle, Nature, 365, 221-227, 1993.

Hofmann, A.W., Chemical differentiation of the Earth: the relationship between mantle,
continental crust, and oceanic crust, Earth and Planet. Sci. Letters, 90, 297-314, 1988.

215



Hoogewerff, J.A., M.J. van-Bergen, P.Z. Vroon, J. Hertogen, R. Wordel,, A. Sneyers, A.
Nasution, J.C. Varekamp, H.L.E. Moens and D. Mouchel, U-series, Sr-Nd-Pbisotope
and trace element systematics across an active island arc-continent collision zone:
Implications for element transfer at the slab-wedge interface, Geochimica et
Cosmochimica Acta, 61, 1057-1072, 1997.

Johnson, M.C., and T. Plank, Dehydration and Melting Experiments Constrain the Fate of
Subducted Sediments, Geochemistry, Geophysics, Geosystems, 1, 1999GC000014,
1999.

Kelemen, P.B., J. Rilling, E.M. Parmentier, L. Mehl and B.R. Hacker, Thermal structure
due to solid-state flow in the mantle wedge beneath arcs, in: Inside the Subduction
Factory, ed. J. Eiler, AGU Monogr. 138, 293-311, 2003a.

Kelemen, P.B., G.M. Yogodzinski and D.W. Scholl, Along-strike variation in lavas of the
Aleutian island arc: Implications for the genesis of high Mg# andesite and the
continental crust, In: Inside the Subduction Factory, Ed. J. Eiler, AGU Monograph 138,
2003b.

Kelley, K.A., T. Plank, J. Ludden and H. Staudigel, Composition of altered oceanic crust at
ODP Sites 801 and 1149, Geochem. Geophys. Geosyst., 4 (6),
doi: 10.1029/2002GC000435, 2003.

Kent, A.J.R., D.W. Peate, S. Newman, E.M. Stolper and J.A. Pearce, Chlorine in submarine
glasses from the Lau Basin: seawater contamination and constraints on the composition
of slab-derived fluids, Earth and Planet. Sci. Letters, 202, 361-377, 2002.

Kogiso, T., M.M. Hirschmann and D.J. Frost, High-pressure partial melting of garnet
pyroxenite: possible mafic lithologies in the sources of ocean island basalts, Earth and
Planet. Sci. Letters, 216, 603-617, 2003.

Kyser, T.K., J.R. O’Neil and I.S.E. Carmichael, Oxygen isotope thermometry of basic lavas
and mantle nodules, Contrib. Mineral, Petrol., 77,11-23, 1981.

Machado, N., C. Brooks and S. R. Hart, Determination of initial *’Sr/**Sr and '“*Nd/'**Nd
in primary minerals from mafic and ultramafic rocks: Experimental procedure and
implications for the isotopic characteristics of the Archaean mantle under the Abitibi
greenstone belt (Canada). Geochim. Cosmochim. Acta, 50, 2335-2348, 1986.

Mattey, D., D. Lowry and C. Macpherson, Oxygen isotope composition of mantle
peridotite, Earth and Planet. Sci. Letters, 128,231-241, 1994.

Matthews, A. and M. Schliestedt, Evolution of the blueschist and greenschist facies rock of

Sifnos, Cyclades Greece: a stable isotope study of subduction-related metamorphism,

216



Contrib. Min. Petrol., 88, 150-163, 1984.

Macpherson, C.G., J.A. Gamble and D. Mattey, Oxygen isotope geochemistry of lavas
from an oceanic to continental arc transition, Kermadec-Hikurangi margin, SW Pacific,
Earth and Planet. Sci. Letters, 160, 609-621, 1998.

McDonough, W.F., and S.-s. Sun, The composition of the Earth, Chemical Geology, 120,
223-253,1995.

Muehlenbachs, K. and G. Byerly, '*O-enrichment of silicic magmas caused by crystal
fractionation at the Galapagos Spreading Center, Contrib. Mineral, Petrol., 79, 76-79,
1982.

Nadeau, S., P. Philppot and F. Pineau, Fluid inclusion and mineral isotopic compositions
(H-C-0) in eclogitic rocks as tracers of local fluid migration during high-pressure
metamorphism, Earth and Planet. Sci. Letters, 114,431-448, 1993.

Neal, C.R., L.A. Taylor, J.P. Davidson, P. Holden, A.N. Halliday, P.H. Nixon, J.B. Paces,
R.N. Clayton and T.K. Mayeda, Eclogites with oceanic crustal and mantle signature
from the Bellsbank kimberlite, South Africa, part 2: Sr, Nd, and O isotope geochemistry,
Earth and Planet. Sci. Letters, 99, 362-379, 1990.

Nichols, G.T., P.J. Wyllie and C.R. Stern, Subduction zone melting of pelagic sediments
constrained by melting experiments, Nature, 371, 785-788, 1994,

Plank, T., Constraints from Thorium/Lanthanum on sediment recycling at sunduction zones
and the evolution of the continents, J. Petrology, in press, 2005.

Plank, T. and C.H. Langmuir, The chemical compositions of subducting sediments and
its consequences for the crust and mantle, Chem. Geol., 145, 325-394, 1998.

Poli, S. and M.W. Schmidt, Petrology of subducted slabs, Annu. Rev. Earth and Planet.
Sci., 30, 207-235, 2002.

Putlitz, B., A. Matthews and J.W. Valley, Oxygen and hydrogen isotope study of high-
pressure metagabbros and metabasalts (Cyclades, Greece): implications for the
subduction of oceanic crust, Contrib. Mineral, Perrol., 138, 114-126, 2000.

Rudnick, R.L., M. Barth, I. Horn, W.F. McDonough, Rutile-bearing Refractory Eclogites:
Missing Link Between Continents and Depleted Mantle, Science, 287, 278-281, 2000.

Rudnick, R.L. and D.M. Fountain, Nature and composition of the continental crust: a lower
crustal perspective, Rev. Geophysics 33, 267-309, 1995.

Scambelluri, M., J. Fiebig, N. Malaspina, O. Miintener and T. Pettke, Serpentinite
Subduction: Implications for fluid processes and trace-element recycling, International
Geology Rev., 46, 595-613, 2004.

217



Staudigel, H., Davies, G., Hart, S. R., Marchant, K. M. and Smith, B. M., Large Scale
Isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust at DSDP/ODP Sites
417/418, Earth Planetary Science Letters, 130, 169-185, 1995.

Staudigel, H., K. Muehlenbachs, S. H. Richardson and S. R. Hart, Agents of low
temperature ocean crust alteration, Contrib. Mineral Petrol., 77, 150-157, 1981.

Staudigel, H., T. Plank, B. White and H.-U. Schminke, Geochemical fluxes during seafloor
alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418, in: Subduction:
Top to Bottom, Geophys. Monogr. Ser., 96, ed. G.E. Bebout, pp. 19-38, 1996.

Valley, J.W, N. Kitchen, M.J. Kohn, C.R. Niendorf and M.J. Spicuzza, UWG-2, a garnet
standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser
heating, Geochim. et Cosmochim. Acta, 59, 5223-5231, 1995.

van Keken, P.F., B. Kiefer and S.M. Peacock, High-resolution models of subduction zones:
Implications for mineral dehydration reactions and the transport of water into the deep
mantle, Geochem. Geophys. Geosyst., 3, doi:10.1029/2001GC000256, 2002.

Vervoort, J.D., P.J. Patchett, G.E. Gehrels, A.P. Nutman, Constraints on early Earth
differentiation from hafnium and neodymium isotopes, Nature, 379, 624-627, 1996.

Wiechert, U.H., A.N. Halliday, D.C. Lee, G.A. Snyder, L.A. Taylor and D. Rumble,
Oxygen- and tungsten-isotopic constraints on the early development of the moon,
Meteoritics Planetary Sci., 35, A169, 2000.

Workman, R.K., S.R. Hart, M. Jackson, M. Regelous, K. Farley, J. Blusztajn, M. Kurz,
and H. Staudigel, Recycled Metasomatized Lithosphere as the Origin of the Enriched
Mantle 11 (EM2) End-member: Evidence from the Samoan Volcanic Chain,
Geochem. Geophys. Geosyst., 5, Q04008, doi:10.1029/2003GC000623, 2004.

Workman, R.K. and S.R. Hart, Major and Trace Element Composition of the Depleted
MORB Mantle (DMM), Earth and Planet. Sci. Letters, 231, 53-72, 2005.

218



Figures

5.7
5.6 s

s 781
5.4 + CQ‘F s

53 ¥

5.2+

5'%0 Clinopyroxene

5.1+

5.0 + O?* 73-2

4.9 t t +— t + + t

4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7

520 Olivine

Figure 5-1. Oxygen isotope compositions of coexisting olivine and clinopyroxene from 5 Samoan lavas.
ACpx-Ol = 8" Ocpx - 8" Ooiivine. Equilibrium ACpx-Ol fractionation is typically reported to be 0.4%o (Chiba
et al., 1989; Chazot et al.,, 1997; Macpherson et al., 1998; Harris et al., 2000), but the Samoan samples
show near zero or negative values. The disequilibrium may be due to olivine and cpx recording magmatic
8'*0 compositions at different stages in the magmas’ evolution. Since olivine is the first phase on the
liquidus of Samoan melts, we interpret olivine to be the more reliable recorder of primary magmas. Error
bars are plotted as 16 analytical error (0.07%o).
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Figure 5-2. Correlation between La/Sm (ppm/ppm) and 8'°0 in Samoan lavas. La/Sm ratios can vary as a
function of degree of melting, but this is not suspected to control the correlation seen here since La/Sm also
correlates well with *’Sr/*Sr. There are similarly good correlations between 8'*O and other element ratios
such as K/Na, K/Ti and Rb/Sr, indicating general enrichment of incompatible elements in sources with
elevated 8'*0. Error bars are plotted as 16 standard error (0.05%) for a sample run in duplicate.
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Figure 5-3. Relationship between oxygen and lead isotopes in Samoan lavas. Although the fields for
Western Samoa (Savai’i and Upolu) and Eastern Samoa (Vailulu’u, Ta’u and Malumalu) overlap in 5'"%0
values, they are distinct and entirely separate in “**Pb/***Pb. The source characteristics for Western Samoa
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origin for the extreme mantle enrichment displayed by Malumalu lavas (the two samples with the highest
87S1/*%Sr in Samoa, 78-1 and 78-3, are identified for reference). Note that there is no Pb isotopic data for the
highest 8'*0O sample from Vailulu'u. Error bars are plotted as 16 standard error (0.05%o) for a sample run in
duplicate.
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correlation for enriched mantle lavas has previously been interpreted to represent recycling of sediments
from subduction zones back to the mantle (Eiler et al., 1997). Two mixing calculations are shown for
reference: Primitive Upper Mantle (PUM) contains 19.9 ppm Sr (McDonough and Sun, 1995), and is
mixed with a hypothetical sediment having 170 ppm Sr, *’Sr/**Sr of 0.720 and 'O of 15%o; Depleted
MORB Mantle (DMM) contains 8 ppm Sr (Workman and Hart, 2005) and is mixed with the same sediment
except with heavier 8'%0 (25%o). Tick marks are in increments of 1% sediment addition. Error bars are
plotted as 1o standard error (0.05%o) for a sample run in duplicate.
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melt in equilibrium with Fogy mantle olivine. Lavas above this line are picrites that have accumulated
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Figure 5-6. Plot of Nb/Th with La/Th ratios of whole rock Samoan basalts (Workman et al., 2004)
compared to marine sediments from Plank and Langmuir (1998) used to identify sediment that would be a
plausible component of EM2. These ratios were selected because they involve fluid-immobile elements
(see Johnson and Plank, 1999; Plank, 2005), so will not be greatly altered by subduction-zone dehydration
processes. Since Th is the denominator of each ratio, mixing lines will be linear on this diagram. For
reference, DMM has Nb/Th = 18.8 and La/Th = 24.3 (Workman and Hart, 2005). PUM is Primitive Upper
Mantle from McDonough and Sun (1995). GLOSS is an average of modern sediments being subducted in
trenches today (Plank and Langmuir, 1998). ‘All Seds’ are individual sediments used to construct GLOSS.
‘Select Sediments’ are sediments chosen by us to be a plausible mixing component in EM2 based on their
position on this plot as well as on a plot of La/Th-Ba/Th. ‘Fluid’ is a model for slab fluid from Eiler et al.
(2000a), and ‘Residue’ is the residual composition after 7% of the ‘Fluid’ is removed from GLOSS,
indicating insignificant compositional changes to sediment by dehydration (at least for the elements here).
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25%o to match the 8'°0 composition of EM2.
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Trace element concentrations are normalized to Primitive Upper Mantle (PUM; McDonough and Sun,
1995). Top panel shows 1) the Depleted MORB Mantle (DMM; Workman and Hart, 2005); 2) an average
of eclogites with MORB protoliths (Becker et al., 2000; weighted heavily to their sample W1); and 3) a
30% modal, aggregated fractional melt of the eclogite. Bottom panel shows 1) the source for Malumalu
lavas assuming that the lavas represent 2.5% aggregated fractional melting; and 2) mixtures of DMM and
PUM each with 5% of the eclogitic melt shown in the top panel. The eclogite melt is required to have §'*0
of 15%o to match the 8'0 composition of EM2. Trace element compositions, partition coefficients and
additional details can be found in Table 2. Because the mantle-melt mixtures show the same general pattern
as the calculated Malumalu source (with the only exception being U), and the Malumalu source generally
falls in-between the two mantle-melt mixtures (except for the Pr-Nd-Sr segment), we conclude that this
scenario is a viable one for the formation of EM2.
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Chapter 6:

Gravity-based calculation of crustal flux from the
Samoan hotspot and its correlation with Pb-

isotopes: a brief overview

Abstract

A Mantle Bouguer Anomaly (MBA) map has been calculated for Samoa from free air
gravity and shipboard bathymetry, and then interpreted solely in terms of crustal thickness
variations. We find that the western Samoan volcanoes have the greatest amount of excess
igneous crust, and that integrated crustal flux decreases nearly monotonically approaching
to Vailulu’u Seamount, the easternmost and youngest volcano. This trend shows excellent
correspondence to increasing “°*Pb/**“Pb compositions of the lavas with decreasing age
along the hotspot track. We speculate this correlation could be due to either a lithosphere
thickening toward the east or decreasing potential temperature of the mantle plume.
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1. Introduction

This chapter has been inspired by an age-old question about lavas that are sampled from
ocean islands and mid-ocean ridges: are their compositions a product of their source, or a
product of the way they are sampled and processed from a multi-component mantle? In
other words, is there true spatial heterogeneity in the mantle or are the compositions of
surface samples a function of how they are sampled from a ‘homogeneously
heterogeneous’ mantle? The likely story is that both play an important role in magma
compositions, but it is unclear how significant each factor could be. The issue of ‘source vs.
process’ is difficult to address with geochemistry alone, as many of the needed physical
constraints, such as lithospheric thickness, magma flux, thermal anomalies, and deep mantle
structure are largely provided by geophysical observations.

With an extensive geochemical investigation of the Samoan Islands and Seamounts, we
have documented systematic changes in lava composition with distance along the hotspot
track; this is shown most strongly in the monotonically increasing ***Pb/***Pb compositions
with distance from Savai’i toward Vailulu’u Seamount, the present-day hotspot center (see
Chapter 2). The goal of this study is to determine whether or not geophysical parameters,
specifically crustal flux, will also vary systematically along the volcanic chain.

Using a protocol similar to that of Van Ark and Lin (2004), we have calculated a mantle
bouger anomaly map for the Samoan region and interpreted it as variations in total crustal
thickness. Integrating excess crustal thickness (total crust minus 6 km of background ocean
crust) in cross-sections along the Samoan lineament, we show that crustal flux is
systematically decreasing with approach to Vailulu’u. Therefore, increasing **°Pb/***Pb
compositions occur as crustal flux wanes. We have not yet developed a detailed model to
explain how the geochemical and geophysical properties are linked, but speculate that it may
be due to decreasing potential temperature of the Samoan mantle plume or increasing

lithospheric thickness over the last 5 million years.

2. Calculations

The calculations described below have been applied to a map region from 168°E to
195°E and 4°S to 16°S within the southern Pacific Ocean (Figure 1). Although we only

interpret the results from a small sub-area of this large region, it is as easy to calculate a
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large region as it is a small region and we envision the regional scale maps to be used more
fully in the future. For example, Hart et al. (2004) have shown that seamounts with a
Samoan signature extend back as far as ~175°E, making the oldest known Samoan
volcanism ~23 million years old. It would be interesting to compare excess crust and
geochemistry in this older section of the Samoan, as we do here for the youngest expression
of the Samoan plume.

We employ two kinds of data for this study: free air gravity (FAA) and measured
bathymetry. The free air gravity map of Sandwell and Smith (1997) is publicly available at
hip:/topex.ucsd.edw/WWW_html/mar_grav.htiml and was obtained from satellite altimetry

measurements taken during the Geosat and ERS1 missions. It has 1-minute by 1-minute
resolution and determines the maximum resolution of our calculations since some of the
bathymetry data is of higher resolution. The FAA map of our study region is shown in
Figure 2. Bathymetry data is taken from two sources: 1) real bathymetry points from the
Smith and Sandwell (1997) predicted bathymetry map (also available publicly at:
htp:/topex.ucsd.ed/ WWW_ html/mar_topo.html) and 2) SeaBeam bathymetry in the

region of the Samoan Islands and Seamounts obtained during the 1999 AVON 2 and 3
cruises of the R/V Melville (Hart et al., 2000). The coverage of real bathymetry is shown in
Figure 3, with masking of grid nodes that have no data within a 1-minute radius. We have
not considered the effect of sediment coverage in our calculations because sediment
thicknesses are less than 1000 meters for the entire study region and less than 200 meters
for the sub-region involved in our interpretations (fig. 4) (Divins, 2001).

The mantle Bouguer anomaly (MBA) map shown in Figure 5 is calculated, using the
Parker (1972) algorithm, by subtracting the attraction of seafloor topography (fig. 3) and a
reference model of 6 km thick ocean crust from the free air anomaly (fig. 2). We assume
density values of 1.03, 2.7 and 3.3 g/cm® for seawater, the oceanic crust and the upper
mantle, respectively (e.g., Kuo and Forsyth, 1988; Lin et al., 1990). The MBA map and all
others to follow have been trimmed by 0.5° on each side in order to edit out the ‘edge-
effect” of our calculations. Negative values on the MBA map represent regions of excess
low-density material (i.e., oceanic crust greater than 6 km); the opposite is true for positive
anomalies.

A map of depth to the Moho (base of the oceanic crust), shown in Figure 6, is calculated
through a downward continuation of the MBA anomalies to a depth of 11 km (estimated
combined depth of 5 km ocean depth plus 6 km reference oceanic crust thickness), as
described in greater detail by Van Ark and Lin (2004). This assumes that the entire MBA

233



signal is due to excesses or deficits in crustal thickness; if there are any mantle thermal
effects contributing to the MBA signal, we will have over-estimated depth to the Moho at
those locations. The Moho is offset by a constant +3 km in order to force the ‘background’
Moho depth to be near 11 km, which is the depth of the Moho if the oceanic crust is 6 km
thick at locations away from islands or seamounts — for example at 190°E and 12.5°S. Total
crustal thickness, shown in Figure 7, is calculated by subtracting the seafloor topography
from the calculated Moho depth. Excess crustal thickness is the remaining crust after
removing a 6 km thick layer we assume to be ‘original’ oceanic crust produced at a

spreading ridge (fig. 8).

3. Results

Figure 9 show a close-up of excess crustal thickness for the part of the Samoan volcanic
chain that is the subject of Chapters 2, 4 and 5; the boundaries of this map are defined by
the red box in Figure 1, and coordinates are expressed in kilometers. Although the islands
are not plotted here (so as not to obscure the thickness variations), the outlines of islands are
clear from the contours of excess crustal thickness (i.e., compare to Figure 1). The
calculated maximum excess crust for this area is ~25 km; it occurs beneath Savai’i and is
displayed in the cross-section of Savai’i in Figure 9. Moving southeast from Savaii, it is
clear from Figure 9 alone that crustal thicknesses are waning. The last volcano of the
Samoan chain, Vailulu’u, is shown in cross-section in Figure 9 and has a miximum crustal
thickness of ~7 km.

To estimate the crustal flux (i.e., erupted volume flux) from the Samoan plume through
time, we have integrated excess crustal thicknesses for 200 km-long cross-sections at every
1 km along the Samoan lineament. Crustal flux along the chain is shown in Figure 10 and is
reported as km® of crust for a 200 km by 1 km map area. Using a Pacific plate speed of 7
cm/yr (Sella et al., 2002), the unit of crustal flux reported in Figure 10 translates to the
number of km® of crust erupted from the Samoan plume in a period of 14,300 years. From
Savai’i to Vailulu’u, the calculated crustal flux decreases (almost monotonically except for
over the Tutuila-Malumalu ridge) by ~75%. The bottom panel of Figure 10 shows the
strong inverse correlation of *°°Pb/**Pb to crustal flux. Low *°Pb/**Pb indicates a
contribution from trace-element-depleted mantle components to the lavas (i.e., FOZO and
DMM) and high **Pb/***Pb indicates a contribution of trace-element-enriched mantle
components to the lavas (i.e., EM2 and HIMU) (see Chapter 2, Figure 16 for correlations
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between trace element enrichment and Pb isotopes). Hence, periods of high crustal flux are
accompanied by sampling of more depleted mantle components and periods of low crustal
flux are accompanied by samples of more enriched mantle components. However, it may be
slightly misleading to interpret the crustal thickness variations as if they directly represent
temporal changes in magma production from the Samoan plume since recent eruptions have
been documented for both Savaii and Vailulu’u (see Chapter 2). Not all the crustal volume
from Savail was produced 5 million years ago (its apparent age from plate motion), but it is

unclear what proportion of the crust represents shield versus rejuvenated volcanism.

4. Discussion

The strong relationship between the geochemistry of Samoan lavas and our gravity-
based estimate of crustal flux along the chain suggests there is a process-oriented
mechanism for producing variations in lava compositions, meaning that lava compositions
are a function of what materials are sampled from a multi-component mantle. Below we
address two parameters that, if varied systematically, could potentially result in a systematic
change in the composition of melts produced from the upwelling plume: lithospheric
thickness and potential temperature of the plume.

A very interesting model for melting of a heterogeneous mantle has recently been
developed by Ito and Mahoney (2005). They show that the same mantle (composed of
multiple components) can produce magmas of varying composition (in trace elements and
heavy isotopes) depending on lithospheric thickness at the location of magma genesis. This
is due to fundamental differences in the solidus temperatures of the different components
and the depth at which melting is ‘shut-off” by the lithospheric cap. They assume that, at a
given pressure, depleted mantle will melt at a higher temperature than enriched mantle, so
melting that is terminated deeply will result in magmas with strong enriched mantle
signatures; on the other hand, if the melting column extends to more shallow depths, the
enriched melt will be diluted by depleted mantle melts.

Applying this concept to Samoa would suggest that the lithosphere beneath western
Samoa is thinner than beneath eastern Samoa, resulting in the production of more melt from
the depleted mantle component and, in summation, a greater total melt volume. We will need
to explore the implication that western Samoan lavas reflect a greater degree of melting than

eastern Samoa lavas; at the present state of investigation, it is not clear if this is the case (as a
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side-note, water concentrations in western Samoan lavas may be the key to this question, but
such data has not yet been collected).

Changes in the potential temperature of the plume may also explain our observations by
controlling the length of the melting column from the bottom instead of the top. At a
constant lithospheric thickness, a cooling mantle plume will not be able to produce as much
melt from its depleted mantle components, resulting in the geochemical and geophysical
evolution from Savai’i to Vailulu’u. However, because of small melt productivity during
deep melting (e.g., Asimow et al., 2004), it is possible this scenario will not be able to
account for the large differences in crustal volume between western and eastern Samoa.

A changing composition of the Samoan plume (i.e., proportion of depleted to enriched
material) would not easily account for coupled variation of calculated igneous flux and
9Pb/***Pb. If the plume changes composition as it upwells beneath the Pacific Plate, but
potential temperature and lithospheric thickness remain constant, we would expect the
depleted material to produce less total melt volume because of a higher solidus temperature
than the enriched material. Our observation is the opposite of this: depleted signatures occur
with the greatest crustal volumes.

The last option is the one of coincidence. Consider that the average crustal volume
(~1200 km’; Figure 10) over Upolu and Tutuila is the ‘constant’ crustal volume of a full-
grown Samoan shield volcano. Volcanoes to the east have not yet been fully developed,
whereas Savai’i has entered a stage of extensive, post-shield, rejuvenated volcanism (as
historically documented). From this perspective, geochemical variations would be
independent of the igneous flux, unless the average Pb isotopic composition of a volcano

changes with growth.
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Figures
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Figure 6-1. Smith and Sandwell (1997) predicted bathymetry for the study region based on a combination
of shipboard bathymetric measurements and bathymetry calculated from free air gravity measured by
satellite altimetry. The Samoan Islands are shown in black in the southeastern corner of the map. The red
box around them marks the boundaries of the map shown in Figure 9.

239



-300 -200 -100 0 100 200 300
Free Air Anomaly (mGal)

Figure 6-2. Free air anomaly map for the study region from Sandwell and Smith (1997).

240



,50 1 ,50
A0° 10°
152 48 -15°

170° 1750 180° 185° 190° 195°

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Shiptrack Bathymetry (m)

Figure 6-3. Real bathymetry measured by shiptrack. Data sources are Smith and Sandwell (1997) and
SeaBeam data from the 1999 AVON 2 and 3 cruises of the R/V/ Melville.
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Figure 6-4. Regional sediment thickness map from Divins (2001). Since the sediment cover is generally
very thin, we have not considered it in the calculation of MBA.
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Figure 6-5. Mantle Bouguer anomaly map of the study region calculated according to the Parker (1972)
algorithm as implemented by Kuo and Forsyth (1988) and Lin et al. (1990). Negative anomalies indicate
excess low-density material, such as over the Samoan Islands and a large portion of the southwest quadrant
of the map (some of which may be related to the Samoan plume).
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Figure 6-6. Depth to the Moho from sealevel calculated with a downward continuation of the MBA signal,
assuming that all the MBA anomaly is due to crustal thickness variations.
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Figure 6-7. Crustal thickness map calculated by subtracting seafloor topography (fig. 3) from the Moho
depth (fig. 6).

245



170° 175° 180° 185° 190°

Excess Crustal Thickness (km)

Figure 6-8. Excess crustal thickness calculated by subtracting 6 kilometers from the crustal thickness map

in Figure 7. This provides an estimate of crustal flux associated with volcanism after formation of the plate
at the East Pacific Rise.
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Figure 6-9. Top panel shows excess crustal thickness for the region around Samoa. The boundaries of this
map are defined by the red box in Figure 1, but the coordinates here are expressed as kilometers, with the
origin being the southwest corner of Figure 1. The ‘along-axis’ line runs from Savaii at its northwest end to
Vailulu’u Seamount at its southeast end. The total distance of the along-axis line is 585 km. ‘Across-axis’
lines are perpendicular to the along-axis line and are 200 km wide. Plotted here are examples of across-axis
lines every 20 km along-axis. Also plotted are two white cross axis lines that mark locations of the cross
sections shown in the bottom two panels. Bottom left panel is a cross section of crustal thickness across the
middle of Savaii, with a maximum of almost 25 km of crust. At the opposite end is Vailulu’u, shown in the
bottom right panel. Maximum excess crustal thickness here is only ~7 km; the two additional cross-sections
of Vailulu’u are shown for a semi-3D perspective. For reference, the large mass of excess crust shown at
the coordinate (1950, 20) is related to the Tonga Arc, but is not a completely reliable estimate of crustal
thickness due to ‘edge effects’ at this map boundary.
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Figure 6-10. A two-panel plot illustrating crustal flux along the Samoan volcanic chain and its surprisingly
good inverse correlation with ***Pb/*Pb. Crustal flux is reported as the volume of crust in a 200 km by 1
km area (map view) along the axis shown in Figure 9; i.e., each point is an integration of a cross-section
such as those shown in the bottom two panels of Figure 9. Mean **Pb/™Pb values for each island or
seamount are plotted in red, with upper and lower bars indicating the full ranges (data is from Chapter 2).
As crustal flux is monotonically decreasing from west to east, mean **Pb/’**Pb is monotonically
increasing. We speculate this relationship is due to increasing lithospheric thickness or waning potential
temperatures of the Samoan plume over time.
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