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Abstract

The training and usage of multilayer neural networks on discontinuous (e.g.
bang-bang) feedback control problems are discussed. Training sets are cre-
ated from optimal open loop trajectory information and a heuristic for trim-
ming the base data set is presented. Apriori knowledge about solution tra-
jectories is seen to improve the training process.

1 Introduction

Consider a plant with limitations on the control inputs and a corresponding
cost functional to be minimized. Solving for the optimal controls in feedback
form, even when given full state information, is not a trivial task. Given an
initial state, iterative techniques do exist for calculating the optimal controls
via numerical solution of the associated two point boundary value (TPBV)
problem [4]. This is an "open loop" trajectory; no knowledge of optimal
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controls for states off this trajectory is obtained. However, it is typically
desirable to have a "closed loop" controller that will drive any state in a
desired region to the origin, directly mapping measured states into optimal
controls.

"Neural networks" have been hailed as a useful tool for approximating an
input to output mapping over a closed region of state space [3, 6]. Given a
sufficient amount of optimal state space (input) to control (output) informa-
tion the neural network can be trained to act as a closed loop controller for a
plant. However, effective training of a neural network on a given problem is
often a reflection of the researcher's experimentation with various heuristics
in a search for rapid convergence to a good solution. The effectiveness of
a training technique is ultimately dependent on the combination of network
architecture, cost functional, and data set.

Discontinuous (e.g. bang-bang) optimal control problems involve plant, cost
functional, and control restrictions that result in controls switching "hard"
between a discrete set of values as the plant state moves along a trajectory
toward the origin. An explanatory physical example is that of a vehicle
on a line to be moved from a given position and velocity to a "stop sign"
at position zero as fast as possible. The vehicle is limited in its ability to
accelerate and brake. The time optimal control will require accelerating as
fast as possible to a certain point and then braking as hard as possible. The
extremes of the single control input are in this case the "bang-bang" values
of the control.

Consider training a neural network using trajectories obtained from a "black
box" that can calculate (in a computationally expensive manner) the open
loop solution to two-point boundary value problems for a given plant. The
trained neural network will act as an approximation to an optimal closed
loop controller in a "real time" situation, possibly involving noise, where
the "black box" solver could not. The neural network thus forms a bridge
between the available resource and the desire for a controller. The question
of interest here is how the particulars of a discontinuous optimal control
problem can be used to set up an effective network training technique, and
how the trajectory based nature of the training data will affect the training
process and results.

Typically neural networks are trained with trajectory based data when the
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network must learn in an "on-line" fashion [8, 10, 5]. By presuming the avail-
ability of a "black box" solver, a simpler "off-line" neural network training
procedure can be used while studying the implications of trajectory based
training.

2 Problem Statement and Notation

This paper investigates the setup of neural network training for full state feed-
back control problems with discontinuous optimal controls and the symptoms
of trajectory based training that occur in the trained networks. The focus is
on the selection of a trajectory based data set and the effects of that selection
as opposed to the training process itself.

Two continuous time plant/cost functional combinations are discussed in this
paper. These sample problems have known closed loop solutions that provide
a reference for the neural network trajectory based results.

2.1 Time/Fuel Optimal Double Integrator

This plant is very similar to the vehicle/stop sign problem described in the
introduction, but with a penalty for fuel usage associated with accelerating
and braking.

The two state system is defined as [1]:

,xl (t) = x 2 (t) (1)

x2 (t) = u(t)

where u, the control, is restricted in magnitude:

lu(t)l < 1 (2)

x1 represents the position of the vehicle, and x2 represents the velocity of the
vehicle.

The total cost to be minimized is defined as:

J =~ [k + lu(t)l] dt (3)

k > 0 constant
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where T is defined as the finite time when the state x = 0. In this paper
k=1.

The solution to this problem is derived in [1] and has the form of figure 1.

(k=l)

u=-1

-2

-52 -.......... .............. .:.. ....... ..................................... ...............

Figure 1: Optimal Switch Curves for the Time/Fuel Double Integrator Prob3 -l = -gk--'i'0 ~ .... 4...... ........................ .................... ' ! .................... . ....................................

X1 = -9*X2 lx

4



k + 4
2k

There are three possible control values -1, 0, +1. An optimal trajectory of
a vehicle switches the control a maximum of two times: for example, the
vehicle may initially "brake" (u = -1), then coast (u = 0, constant velocity
X= horizontal line in state space), then accelerate (u = +1) to the origin.

2.2 Time Optimal Harmonic Oscillator

This perfectly observed two state plant is to be driven to the origin using
two controls in minimum time:

x1 (t) = x 2 (t) + u(t) (5)

xi2(t) = -x1(t) + u 2(t)

J= dt (6)

As in the double integrator problem, the controls are individually limited in
magnitude; lui(t)l < 1 and lu2(t)l < 1. The solution is derived in [1] and
appears in figure 2.

The state space is divided into four regions, each with a corresponding opti-
mal control. Clockwise from the first quadrant the optimal controls are:

u=[-1,-1], [-1,+1], [+1, +1], [+1,--1] (7)

Optimal trajectories consist of clockwise arcs spiraling in to the origin. The
example trajectory in figure 2 is the optimal path from x(0) = [3, 3].

2.3 Neural Network Architecture

A standard multilayer neural network will be used, with a single hidden layer
combined with an output layer. For a detailed description of multilayer neural
networks see [2, 3]. Hidden layer nodes will have a transfer function extending
from -1 to +1:

c(Zli) = -1 + 1 + e-, (8)
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Figure 2: Switch Curves and Sample Trajectory for the Time Optimal Har-
monic Oscillator Problem

where zli is a scalar input to the node formed from the input state and the
network parameter matrix W1 and vector b, (see figure 3):

Zli = [Wlil . * Wlin]X + bzi (9)

n is the length of the input vector x. The vector output of the hidden layer
is defined as:

c(zl) = [ = a(Wlx + bi) (10)
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where p is the number of hidden nodes.

The number of hidden nodes is typically determined empirically. In this
research the number of hidden nodes varied from thirty to one hundred.
Thirty nodes was found to be sufficient to train the networks for both prob-
lems; extra nodes slowed training but did not adversely affect the training
observations. The examples displayed in this paper were trained using fifty
hidden nodes.

The discrete set of control values found in these example problems with dis-
continuous solutions indicates that the neural network is actually perform-
ing a classification task, forming a static map between a state and a control
"class". As a result, the output layer is chosen to be made up of softmax
units, with each unit corresponding to an optimal control value. The network
architecture corresponding to the double integrator (three possible control)
case is shown in figure 3. Given the weighted input vector to the output
layer:

z2 = W 2u((WlX + bl) + b2 (11)

the softmax outputs are defined as:

eZ2i

EPr1 ez2r

The softmax unit outputs range from zero to one, and sum to one by defini-
tion. When used to control a plant, the softmax units will be implemented
in a "winner-take-all" fashion:

1. The current state is input to the network,

2. the softmax outputs are calculated,

3. the control corresponding to the softmax unit with the largest value is
applied to the plant.

In figure 3 for example, if for the current state x, ys > ys and ys > y], then
the control u = 0 would be applied to the plant.

The network architecture for controlling the harmonic oscillator is the same
as in figure 3 except that there are four softmax output units. Each unit
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Figure 3: Network Architecture for the Double Integrator Time/Fuel Con-
straint Problem

corresponds to one of the four optimal control vectors from the list in 7 and
seen in figure 2.

Given a data set, training the network takes place using the popular gradient
descent technique known as incremental backpropagation. Incremental back-
propagation involves updating the network weights after each input stimulus
is presented. The order of stimulus presentation is reset randomly after each
pass through the data set. A momentum parameter can be added which
attempts to speed training and avoid local minima. In this work, parameter
updates follow the formula from reference [2, chapter 6, equation 6.24]. The
learning rate rj during pass t through the training set is defined as 7r(t) = N

where N is the number of training pairs in the data set. The momentum
parameter used to speed learning is c = 0.8. For further detail on backprop-
agation and its variants, see [7, 9, 2].
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Select initial state x (O) 

Two Point Boundary Value Solver
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Use ' to train neural network

Figure 4: Generating a Training Set
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3 Development

Given the plant, neural network architecture, and training algorithm, the
selection of a data set is the remaining element needed before the network is
trained. In the general case the data set will be generated from optimal open
loop trajectories via a "black box" two point boundary value (TPBV) solver
for a given plant. Figure 4 depicts the general process of creating the data
set. In the examples in this paper, prior knowledge of the feedback solution
meant that Runge-Kutta integration was used instead of TPBV solvers to
obtain trajectory data.

The two main features that will characterize the data set are its distribution,
which will result from the choice of initial conditions fed to the trajectory
solver, and its size, measured by number of data pairs.

3.1 Distribution of the Data Set

In selecting initial conditions to feed to the trajectory solver and hence to
the training algorithm, one has a choice between randomly selecting initial
conditions or hand-picking initial conditions in some "suitable" fashion. The
underlying presumption is that some limits on the state magnitudes of in-
terest are known; i.e. the network is to approximate the optimal control
solution well at least within some specified region around the origin.

Random initial conditions, uniformly distributed in some subset of the region
of interest, appear the quickest way to begin network training, and assume
no special knowledge about the plant and its trajectories.

Selecting the initial conditions purposefully would suggest that some knowl-
edge about the state trajectories of the plant is known; perhaps initial con-
ditions are selected that are believed representative of the entire state region
of interest, or perhaps the controls in some portion of the state space are
known to be particularly important to minimizing the cost functional. In
other words, initial conditions are being selected because they are a priori
believed to improve the effectiveness of the data set in training the neural
network quickly and accurately as compared to a random selection.
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3.2 Size of the Data Set

A trajectory returned from the two point boundary value solver might well
contain a large number of state/control pairs, approximating a continuous
trajectory from an initial condition to the origin. A collection of these tra-
jectories may contain so many data points that the training algorithm will
slow to a crawl. This is particularly true as the number of network nodes
increases (recall from section 2.3 that fifty hidden nodes are used in these
examples). Thus it would be valuable to examine the information contained
in these trajectories and attempt to remove "less necessary" data points in
an effort to speed the training process without compromising the quality of
the trained network mapping from states to controls.

Figures 5 and 6 display a collection of trajectories selected as an example for
this research. The forty initial conditions for the double integrator yielded
21612 training pairs (state/control), and the forty initial conditions for the
harmonic oscillator yielded 10672 training pairs. As these figures illustrate,
optimal trajectories for "classification" control problems consist of several
arcs, each with a constant control value. Yet it is the data pairs near the
switch curves that provide the critical information about the proper state to
control mapping. The data pairs near the center of each arc provide largely
redundant information about how the region between two switch curves cor-
responds to a constant control value (figure 7).

This is not to suggest that the data near the center of each arc is useless.
Indeed, removing this data altogether would make good training results in-
feasible for two reasons. First, a data set concentrated entirely around the
optimal switching curves would result in invalid outputs in the large "be-
tween switch curve" regions where there would be no training data. Second,
in higher dimensional state cases switch curves can be switch surfaces, and
it is valuable to keep information that reflects the position of these surfaces.

The heuristic used in this research, labeled trajectory subsampling, is to
remove a large percentage of a given central fraction of each arc of constant
control. The actual points removed are selected randomly within the central
portion of the arc (figure 8). To avoid losing information about small arcs,
no data is removed from any arc with fewer than a threshold number of data
points.
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Figure 5: Trajectory Training Data for the Double Integrator Time/Fuel
Problem

The heuristic parameters used in this research are:

Double Integrator Harmonic Oscillator
Minimum Arc Size = 100 50
Central Arc Percentage = 70% 85%
Percent to Remove = 90% 95%

A subsampled training set is displayed in figure 9. The trimmed data sets
contained 9338 points for the double integrator and 5284 points for the har-
monic oscillator.
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Figure 6: Trajectory Training Data for the Harmonic Oscillator Problem

4 Findings

For the double integrator plant, the neural network architecture described
in section 2.3 was trained using the regularly spaced initial conditions of
figure 5 and separately using a random initial condition data set. This latter
set contained forty initial conditions uniformly selected from {x11, Ix21 < 4,
and trajectory subsampling was applied.

Similarly networks were trained for the harmonic oscillator problem using the
selected initial conditions of figure 6 and from a data set separately formed
from forty random initial conditions and trajectory subsampling.
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Trajectory to origin

/ i >I Data points away from switch curves

Axes are switch curves ' \ / may be as dense as those near the switch points,
between constant but provide less information during training

between constant '

control values

Especially useful
data points "

Short arc of //

constant control
Control changes value

Control changes value
Overabundant information here slows training

Figure 7: Data in the Center of Arcs Contributes Little to Training

Symptoms of these trajectory based training examples were found both close
to the origin, where the trajectories congregate on "terminal arcs" leading
to the origin with a constant control, and away from the origin, where im-
balances in the training data affected the trained network's switch curves.
These observations are discussed in the following sections.

4.1 Data Distribution Away from the Origin

Compare figure 10, the result of training using hand-selected initial condi-
tions, with figure 11, the result of training using random initial conditions.
In the hand-selected case, the lack of training information above the switch
curve in quadrant two results in a roll-off of the network switch curve away
from the optimal switch curve (curve [a]). In the random case however, there
are training points up in quadrant two, but none defining a switch point. In
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A given fraction of data points in
this section are randomly selected
and removed before training

Axes are switch curves 

between constant

control values Original Data Training Data
along trajectory \
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no points removed

Control changes value
Control changes value

Figure 8: Arc Data Randomly Removed From Center Region

reducing the training error, the network switch curve is pushed away, pinch-
ing the u = 0 region undesirably (curve [b]).

Simulation using a network controller with curve roll-off results in the larger
initial conditions switching too late to reach the origin in an optimal manner;
the trajectories circle the origin an extra time and then are driven properly by
the valid switch curves near the origin. Simulating a controller with a pinched
u = 0 region and an initial condition in that region results in controls that
switch repeatedly. The imaginary vehicle brakes then coasts repeatedly as
the state works its way along the switch curve until the network and optimal
switch curves match near the origin.

These roll-off and pinching effects are caused by the distribution of data
present in the trajectory data. These opposing effects point out how a more
careful selection of initial conditions could improve a network solution by
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Figure 9: Reduced Trajectory Data for Double Integrator Problem

avoiding these extremes. There is clearly a tradeoff between obtaining a base
solution in a timely manner or putting in extra time and effort to improve
the solution. Unfortunately, in higher dimensional spaces it may be more
difficult to see where data should be sampled to improve the training process,
increasing the effort required for an improved solution.

The disadvantage of randomly selecting initial conditions is further exempli-
fied by figure 12 for the harmonic oscillator problem. Although the initial
conditions were selected uniformly over the state space region of interest,
the distribution of switch points resulting from these trajectories is clearly
not uniform. Compared with figure 2, the quality of the trained network's

16



switch curve varies significantly. Since relatively few switch curve crossings
take place far from the origin, the correspondence between the optimal and
trained switch curve is particularly poor near the edge of the region of inter-
est.

4.2 Terminal Arcs Near the Origin

Classification control problems will have only a small set of optimal trajecto-
ries that lead directly to the origin with a constant control (review figure 1).
All optimal trajectories must switch onto one of these paths, or "terminal
arcs". As a result, the number of data points along these arcs will accumu-
late as trajectories are added to the training set, biasing the network training
process to "particularly minimize" the error near these arcs.

In the harmonic oscillator example emphasizing these arcs close to the origin
is a desirable effect. This is because the cost of a trajectory in this prob-
lem (recall equation 6) turns out to be most dependent on how the state is
controlled near the origin. For example, the plant was controlled with the
partially trained network with switch curves displayed in figure 13. Notice
that at this early point in the training process the network contains little
of the optimal switch curve detail. Nonetheless, the extra cost incurred by
the non-optimal controller was only approximately five percent for various
sample trajectories (from untrained initial conditions).

In the double integrator case however, the accumulated data along terminal
arcs tended to "swamp" what little non-terminal arc data points happened
to be near the origin. As is visible in the center of figure 11, the switch
curves of the trained network do not meet at a point but rather along a
short line segment, pinching out the u = 0 optimal control region near the
origin. Notice that the pinching effect is more pronounced in this random
data case than in figure 10 since fewer random trajectories contained switch
points close to the origin.

While the pinching does not prevent the neural network from successfully
controlling the double integrator plant, it appears that the accumulation of
data points along the terminal arcs could have been trimmed before training.
This could have speeded training slightly without affecting the performance
of the trained network. This is a second example link between time spent
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preparing the training set and the effectiveness of the training and imple-
mentation of the neural network controller.

4.3 Beyond the Training Region

It is desirable for the controller to act "reasonably" beyond the training
region, so as to drive the state generally towards the origin instead of away.
In both the double integrator and harmonic oscillator examples this was the
case. The double integrator switch curves at the edges of figures 10 and 11
continue roughly linearly out beyond the training region. The harmonic
oscillator switch curves in figure 12 also extend linearly beyond the training
region. This result is sufficient for these examples to drive the state toward
the training region, albeit in a non-optimal manner.

5 Conclusion

The selection of the initial conditions used to create a training set have a sig-
nificant impact on the performance of the trained network. Prior knowledge
of state trajectory behavior is seen to facilitate the selection of a represen-
tative set of trajectories that adequately locate switching surfaces. Extra
setup time taken to trim the data set will reduce the training time while the
features of trajectories from classification control problems can be exploited
to avoid losing the most significant training information.

The double integrator and harmonic oscillator control problems permitted
the investigation of the symptoms of trajectory based training. In particular,
example "reactions" of a standard training algorithm to the nonuniformities
in the training distribution were observed. The value of specially trimming
the data set, such as to reduce the accumulation of identical trajectory data,
is found to vary based on the particular problem, which suggests that clever-
ness in approaching a given problem will be rewarded over following a fixed
technique for training neural networks.
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Figure 13: Optimal and Partially Trained Switch Curves for the Harmonic
Oscillator: Trajectory Costs are Similar

22



References

[1] M. Athans and P. L. Falb. Optimal Control: An Introduction to the
Theory and its Applications, pages 703-710,595-609. McGraw-Hill Book
Company, 1966.

[2] J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural
Computation. Addison-Wesley Publishing, Redwood City, CA, 1991.

[3] K. Hunt, D. Sbarbaro, R. Zbikowski, and P. Gawthrop. Neural networks
for control systems - a survey. Automatica, 28(6):1083-1112, 1992.

[4] Donald E. Kirk. Optimal Control Theory. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1970.

[5] S. Mukhopadhyay and K. S. Narendra. Disturbance rejection in nonlin-
ear systems using neural networks. Technical Report 9114, Yale Univer-
sity, December 1991.

[6] K. Narendra and K. Parthasarathy. Identification and control of dy-
namical systems using neural networks. IEEE Transactions on Neural
Networks, pages 4-27, March 1990.

[7] K. Narendra and K. Parthasarathy. Gradient methods for the optimiza-
tion of dynamical systems containing neural networks. IEEE Transac-
tions on Neural Networks, pages 252-262, March 1991.

[8] R. Newton and Y. Xu. Neural network control of a space manipulator.
IEEE Control Systems, pages 14-22, December 1993.

[9] A. van Ooyen and B. Nienhuis. Improving the convergence of the back-
propagation algorithm. Neural Networks, 5:465-471, 1992.

[10] Paul J. Werbos. Approximate dynamic programming for real-time con-
trol and neural modeling. In David White and Donald Sofge, editors,
Handbook of Intelligent Control, pages 493-525. Multiscience Press, New
York, 1992.

23


