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Abstract

This report contains a brief conceptual introduction to the theory of wavelets.
The basic concepts are developed starting from the Windowed Fourier Trans-
form and time-frequency localization ideas. The continuous (in time and
scale) wavelet transform is briefly introduced and is followed by a more de-
tailed discussion of the discrete case. Wavelet frames are defined and the ex-
pansion and synthesis equations are developed for redundant discrete wavelet
frames. Some of the more important results on discrete wavelet frames are
presented next. These include results on tight and orthonormal frames. Fi-
nally, it is shown how wavelet theory and multiresolution ideas can be applied
to learning systems. In particular, it is shown that by constructing a neu-
ral network which has a multiresolution structure of a discrete wavelet frame
representation, there exist very simple parameter adjustment rules which im-
ply convergence of the network as well as having other desirable properties
related to spatially localized learning.
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1 Introduction

The modern theory of wavelets began to emerge in the early 1980's, however,
similar ideas can be traced back to the work of Haar (1910) and Gabor (1946).
The field spans many areas in which parts of this theory have been devel-
oped independently over the last thirty years. Consequently, an important
contribution of wavelets has been the unification of these ideas into a single
mathematical theory. Some of this theory was developed in harmonic anal-
ysis by Calderon (1964), in quantum mechanics by Aslaksen and Klauder
(1968) and in signal processing by Esteban and Galland (1977).

The recent explosion of research in this field has resulted in a unification
of theories in different areas as well as the introduction of numerous new
ideas. Hence, it is not possible to perform a thorough and brief survey of
the entire field. The purpose of this report is to provide the basic concep-
tual foundation for wavelet theory and present a few of the many important
results in this field.

The development in this report follows the path of least conceptual re-
sistance. The starting point for the development of wavelets will be the
time-frequency localization idea of the Windowed Fourier Transform (WFT).
Going from the WFT to the Continuous Wavelet Transform (CWT) is con-
ceptually trivial. The technical results here deal with admissibility of basis
functions, the synthesis formula, and characterizability of functions by the
CWT. The step from CWT to the Discrete Wavelet Transform (DWT) is
also trivial. However, many interesting technical issues arise in this case.
These include characterization and reconstruction of functions, admissibility
of the wavelet basis functions, redundancy in the representation, existence
of orthonormal bases having infinite or compact support, and many more.
Some of these are covered in detail and an attempt is made to provide general
comments on the important results and issues not covered in this report.

The main contribution of wavelets is their applicability to a wide variety
of problems with a common characteristic. That is, the functions (or sig-
nals) of interest contain short duration - high frequency components as well
as longer duration - low frequency components. In this case, the wavelet
basis can lead to a more parsimonious representation than the Fourier ba-
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sis, for example. Proponents of wavelet theory argue that this holds true in
many situations. In fact, it can be shown that the human auditory system
also processes signals in this way.

Following this theme, it is shown that this theory can be readily applied
to the field of neural networks. The network approximation properties and
choice of activation functions are given by the wavelet theory. The network
then tries to learn the DWT coefficients (weights) incrementally as it receives
more samples of the unknown function. It is shown that a simple Least Mean
Square (LMS) algorithm can be used to learn the weights. Furthermore, it
is shown that the restrictions on the basis functions automatically imply a
very desirable property of the neural network. Namely, the low (spatial)
resolution neurons are updated more slowly than the high resolution neurons
achieving a good trade-off between spatial localization and generalization.

2 The Basic Idea

The standard Fourier representation of signals works well only if the spectral
properties of signals are fairly stationary. If the spectral properties change
during the time frame of interest, the Fourier Transform is not a good way of
characterizing them. The idea of the Windowed Fourier Transform (WFT)
is to window the signal in time and perform a Fourier decomposition on the
windowed signal as the window slides along the time axis. More precisely,
one defines the continuous WFT as

(.winx)(w, r) = f dt x(t)g(t - r)e - iwt (1)

where the window function, g and its Fourier transform, g are both con-
centrated around zero. The transform (Fwinx)(w, r) essentially gives the
content of f near time r and frequency w.

It is instructive to interpret the WFT in the following two ways [1].The
first interpretation of the CWFT is the obvious one of a Fourier Trans-
form windowed in time, ('winx),(w). The second is a modulated filter
bank, (Fwinx)(Tr), where the filter impulse response is given by go(t) =
g(-t)e-iwt. In connection to the first interpretation, one can consider the
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ability of the WFT to discriminate two pulses in time. The time resolution
of g is defined as

At = k ft 2[g(t)j 2dt 1/2

ft= t Ig(t)l 2dt) (2)

One can also consider the ability to discriminate between two sinusoids. The
frequency resolution is defined as

(f w2 1(w)1 2 dw 1/2AW=( fel2(w 19(0)I2dw ) l / (3)
This means that two pulses that are more than At apart in time and two
sinusoids that are more than Aw apart in frequency can be resolved fairly
well. There is, however, a fundamental limitation to how small both can
become. This limitation is given by the relationship

At*. aw > 4 (4)

with equality achieved for Gaussian windows.

The limitation of the WFT is that the window, g, is fixed and therefore so
are At and Aw. However, in applications where high frequency phenomena
have shorter duration than the low frequency components, one would like to
have better time resolution at higher frequencies.

What wavelets do is vary At and Aw in a special way [2]. At low frequen-
cies, the wavelets have better frequency resolution and at high frequencies
they have better time resolution. In particular, the relationship for wavelets
is Aw/w =constant. This can be seen by examining the Continuous Wavelet
Transform (CWT) [2].

(Twavf)(a, b) = la1-1/2 L dt f(t)b(-) (5)

The translation variable is b (like r in WFT), the scale a is like l/w, and ?,b is
a bandpass function satisfying some additional constraints which will be dis-
cussed shortly. Note that as la-ll increases, the support of b(t-~) decreases
which is exactly the goal. The function 4b is called the "mother" wavelet and
the rest of the wavelet basis is obtained via dilations and translations of ~b.
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Figure 1: Comparison of WFT to DWT basis functions

The definitions /a'b(t) = Ial-1/ 2 b(-9b) and (TWavf)(a, b) = (f, l," b) will be

used in the remainder of this report. Moreover, ¢ will be used to denote the
Fourier transform of q.

The following is a comparison of the WFT with the CWT.

gW,"T(t) = g(t- r)e- iwt vs. ,' a b(t) = la-1/ 2 (t-bQ)

Windowed Fourier Wavelet

This is shown graphically in Figure 1 where one can see that the envelope of
the basis functions for the WFT is constant, while the wavelet functions get
"squashed" at higher frequencies. When one gains time resolution at higher
frequencies, the frequency resolution must be given up. This is usually not a
restriction since one typically does not need fine frequency resolution at very
high frequencies.

Just as the discrete windowed Fourier transform (DWFT) is obtained by
a discretization of r and w, the discrete wavelet transform (DWT) is obtained
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Figure 2: Tiling of the Time-Frequency Plane

by a discretization of the translation variable b and the scale a. More pre-
cisely, one chooses a = am for some fixed ao > 1. Note that the closer a0 is to
1, the higher the frequency density (higher redundancy). Because the width
of b(ao-m.) is proportional to an one chooses b = nboam for the translation.
Thus, at higher frequencies (smaller m) there are smaller incremental trans-
lations (finer time resolution) but larger increments in a (coarser frequency
resolution), while at lower frequencies (larger m) there are larger incremen-
tal translations (coarser time resolution) but smaller increments in a (finer
frequency resolution). This results in the discretized wavelet functions

m,n -- aol-m/ 2 tb(aOmt - nbo) . (6)

Another way to compare the WFT to the wavelet transform is by con-
sidering the tiling of the time-frequency plane. Each tile corresponds to a
basis function which is essentially time-frequency localized in that particular
tile. In the case of the DWFT, the tiling is a regular grid, but in the discrete
wavelet case, the time-frequency plane is tiled in a logarithmic manner (see
Figure 2). The bottom line is that the WT is better at "zooming" in on
short duration, high frequency phenomena.

The following table displays all of the Fourier and wavelet transform for-
mulas for comparison.
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Transform Continuous Discrete

Fourier (Ff)(w) = f dt e-iwt f(t) (tFf)(n) = f dt e-inwotf(t)

Windowed (Fwinf)(w, r) = f dt f(t)g(t - r)e- 'it (Fwinf)m,n = f dt f(t)g(t - nTo)e- imwo t
Fourier

Wavelet (TWavf)(a, b) = lal- / 2 f dt f(t)3b(te-) (Twavf)m,n = lao1-m/2 f dt f(t)tb(aom t - nbo)
ao > 1, a -am b -nboam

3 What Can One Study About Wavelets?

The study of wavelets splits naturally into two parts. The first is the con-
tinuous wavelet transform which was given in Equation 1. The continuous
case is particularly easy because there is an exact reconstruction formula for
f in terms of (Twavf)(a, b) and a,

' b . The second part is the discrete wavelet
transform. In this case, there generally does not exist an exact synthesis
formula. This leads to two important questions:

1. Do the DWT coefficients (f, Obm,n) completely characterize f? (charac-
terization via {P/m,n})

2. Is it possible to compute f as a linear combinations of the functions
{?I'm,n}? (representation via {; m,n})

These questions will be answered in the following sections.

Within the above subdivisions, there are many issues which deal with
sampling and time-frequency localization properties of wavelets, admissi-
bility conditions for wavelet bases, existence of orthonormal wavelet bases
having compact or infinite support (discrete only), regularity of the wavelets
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and the wavelets' ability to characterize the regularity of f, as well as many
other interesting topics.

4 Continuous Wavelets

This section briefly introduces the continuous wavelet transform, states the
synthesis formula and comments on some of the CWT results not covered in
this report. Recall the definition of the CWT:

(Twavf)(a, b) = lal -- / 2 / dt f (t) b() (7)

where a is the scale (like 1/w) and b is the translation in time. Thus, the CWT
maps L 2(R) into L 2(R 2) (lots of redundancy). It is shown in Daubachies [2]
that a function f can be perfectly reconstructed from the CWT via the "res-
olution of the identity" formula:

oo daoo a
f(t) = C-1 J L a d (f, okab)oab(t) (8)

where Cp = 2lr J dCkb(()121l1-1 < 

This implies, in particular, that ,(O) = 0 or f /b(t)dt = 0. In the continuous
case these are the only constraints on admissibility of ;b.

4.1 Comments on Other CWT Results

There are numerous results dealing with the CWT. These include general
theorems on sampling and reconstruction and are not limited to wavelets.
One interesting result shows how the CWT of f can be used to characterize
regularity, or H6lder continuity of f.

Definition 4.1 If(x) - f(y)[ < CIx - y l , a E (0, 1] means f is Hl1der
continuous with exponent a.

The main result is given by the following theorem which is proved in [2].

Theorem 4.2 Suppose f dx(1 + Ix[I)[b(x)I < oo and ;b(0) = O. If f is
bounded and H-cont with exponent a, then I(Twavf)(a, b)l < C'ac+1/2
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Conversely, suppose that ib is compactly supported and f is bounded and con-
tinuous. If for some a E (0, 1] the CWT of f satisfies
1 (f, 2 ",b)_ < Caa+1 / 2 , then f is H-cont with a.

This says that if a function has a certain amount of regularity, its DWT
coefficients will "fall off" with frequency at a certain rate.

Unlike the WFT, the CWT can also characterize local regularity of f by
considering H6lder continuity at a point. These results are also given in [2].

5 Redundant Discrete Wavelet Frames

This section presents a fairly detailed discussion of redundant discrete wavelet
frames. The term redundant means that the wavelets {(i.m,n} do not neces-
sarily constitute an orthonormal set (but do span L 2 ). One of the goals of
this section is to show that orthonormality imposes strict constraints on the
wavelet functions and it is not even clear until the next section whether there
exist any orthonormal families of wavelets besides the Haar basis.

Recall the two questions:

1. Do the DWT coefficients (f, iIm,n) completely characterize f?
(characterization via {(.m,n})

2. Is it possible to compute f as a linear combinations of the functions
{(bm,,)}? (representation via ({bm,n})

For the CWT these are both clearly implied by the resolution of identity
(ROI) formula. For DWT this is not as clear. Is there a similar ROI formula
for DWT and is there a similar admissibility condition for Ob? The answer is
"sort of". It will be shown that for reasonable ,b and appropriately chosen
a0 and bo, there exist 1bm,n which satisfy

f = E(f, m,n)iPm,n
m,n
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It then follows that for any g E L 2

(g, f) = E(g, m,n)(m,n, f) or that
m,n

g = (g, bm,n)-bm,n in the weak sense.
m,n

This will show that possibly different functions need to be used in the char-
acterization and representation of f.

5.1 The Frame Operator

In order to reconstruct f from (f, abim,n) one needs

{(fi, Om ,n)} close to {(f2, m,n)} * fi close to f2

This really says that the DWT viewed as a linear operator must be bounded
and have a bounded inverse. This is examined more rigorously in the follow-
ing development.

The DWT must be a bounded operator from L 2(R) to 12(Z 2) and will be
for any ;b which has some decay in time and frequency, ;b(0) = 0, ao > 1,
and bo > 0. The boundedness of the DWT is expressed as

I I(f, Om,n) 12 < Bllf 112
m,n

Using the natural topologies on L 2(R) and 12(Z 2) to measure closeness,
the "only if" part of the above statement becomes:

3a < oo s.t. E I(f, m ,n)I 2 < 1 == lifll2 < a
m,n

which means that AIfll12 < Em,n I(f, m ,n)12 for some A = a-1 > 0.

Putting this together results in the general definition of a frame.

Definition 5.1 A family {qj ; j E J}in a Hilbert space X- is called a frame
if there exist A > O, B < oo s.t. for all f E 't

Allf ll2 < l(f, j) 12 < Bllfll (9)
jEJ
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The constants A and B are called the frame bounds. If A = B, the frame
is tight. By the use of the polarization identity one can show that in this case

f = A - ' -(f, Oj) j

in the weak sense. Tight frames are not necessarily orthonormal (only if
A = B = llijll = 1). When the frame is not tight it is necessary to introduce
the frame operator.

If {qj} is a frame in 'H, the frame operator F is the linear operator from
'H to 12 (J) defined by

(Ff)j = (f, qj) = (ij, f)

The adjoint F* can easily be computed.

(F*c, f) = (c, Ff)= E cj(0j, f)
jEJ

and so F*c= Scj;j .
jEJ

Since Equation 9 implies that A < IIF*FII < B, this means that F*F is
invertible and II(F*F)-111 < A - '.

Let qj = (F*F)-lqj which results in a new frame. In particular, the family
{(j} is a frame with bounds

B-'1lfl12 < I(f, j) l2 < A-l'llf 112 (10)
jEJ

The associated frame operator is F ': Y-+ 12(J) and is defined by

(Ff)j= (f, j) 

It is true that P = F(F*F)- 1 and F*F = (F*F)-1, but the important
relation is

F*F = F* = 2. (11)

11



The new frame {qj} is called the dual frame. The answer to the charac-
terization and reconstruction questions lies in Equation 11 which really says
that

y(f, Oj)> j = f = o(f, j)qij . (12)
jEJ jEJ

The left side gives a reconstruction formula in terms of DWT coefficients,
while the right side gives a superposition representation in terms of the -j.
Thus, the two questions are just duals of one another. An immediate question
is how does one actually compute the ~j's ? This will be partially answered
in the following section.

5.2 Redundancy and Reconstruction

The DWT frames are usually redundant which results in many possible su-
perposition representations of f = Xj cjkj. One can show that for any such
representation

E Icjl2 > I(f, &j)12
i i

This says that the most "economical" d representation of f is in terms of the
coefficients (f, qj).

Similarly, there are many possible reconstructions from the DWT. If f =
,j(f, Oj, )uj, one can also show that for any such reconstruction

I (Uj,g) 12 > E I(j, s)12
i J

which means that the most economical reconstruction of the DWT of f is
via a superposition of j 's.

The reconstruction of f from (f, Oj) requires the computation of ~j =
(F*F)-lqj. If A ; B then F*F A+B__. In fact, the following equality
holds.

A + B (fJ)J + RfjEJ
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where R = I- A+F*F. It can also be shown thatA+B

(F*F)-1 2= ( R)-1A+B(R)

and Ek=o R k converges in norm to (ZI - R)-1 . Now the dual frame is given
by

2 00

A+BZk=O

and can be approximated by finite sums which converge exponentially:

Nl,\( r N +1I1f- YU (fMJ)oill < ( r -/f 11
jEJ f 

where ?N = 2A+B E=o Rkoj and r = (B/A) - 1. This gives the motivation
for constructing frames that are tight or almost tight.

There exist recursive approximation algorithms for computing ij or f di-
rectly, and some of the current research is aimed at speeding up such recursive
algorithms [4].

5.3 Admissibility and Frame Bounds

How can one tell if a , mother wavelet, a0 and bo will constitute a frame?
The first result in this direction gives a necessary condition for admissibility
and is proved in [2].

Theorem 5.2 If ;m,n(X) = aom/2 ;(aomx - nbo), m,n E Z constitute a
frame with A, B, then

boAn < fOd d -A11( )12 < boInaoB
2O < 2ir

and bnhno°A < food¢ -1lI4(¢)12 < boIn aB2?r 2z'

This places a strong restriction on tight frames, especially orthonormal frames.
Note that the admissibility condition for the CWT

Jf d -113()12 < X
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falls out of this trivially. The discrete case is indeed much more difficult than
its continuous counterpart.

The next result proven in [2] gives a sufficient condition for .m,n to con-
stitute a frame.

Theorem 5.3 If b, ao satisfy

00

inf E IWb(aO )I 2 > 0
-1<ll<a m=-oo

0oo

sup Z IW(amo)l 2 < 00
<.l(<ao m=-o00

and if f(t) = sup( Em ;b(a~m)[I kb(aWm + t)l decays at least as fast as (1 +
Itl)-(1+') for some e > O, then there exists a bo such that Om,,n constitute a
frame for all bo < bo. The following frame bounds also hold.

= bo <1 =-oo

o sup l l<a b(aM () -
- E [ bo k) / ( k)]/

bo 1_<IIl<ao m=--oo k=- 
k90

The main point of all this is that for many different Ob's, there are ranges
of a0 , bo such that ;?m,n constitute a frame. The challenge is in trying to
construct tight or even orthonormal frames. A typical construction of a tight
frame will be shown later. Then, in Section 6, a systematic procedure for
constructing orthonormal frames will be presented.

5.3.1 Connection to WFT Frames

The preceding analysis on wavelet frames is not limited to wavelets and
the windowed Fourier transform can be analyzed in the same way. The
discretization of gw,t(x) = eiwXg(x - t) is

gm,n(x) = eimWO°g(x - nto)
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One can analyze cases when g,,, constitute a frame and look at expansion
and reconstruction formulae. One result is

2irA < 2r Il1gll2 < B
- woto

This implies that for an orthonormal basis (assuming g is normalized), g,,,
constitute a frame only if woto = 2ir. This is in contrast to the wavelet case
where there is no such constraint on a0 , bo. One can derive similar results for
frame bounds and dual frames, and construct window functions which result
in tight frames.

The main point is that all of the wavelet analysis is not unique to wavelets
since the wavelet is only one way of tiling the time-frequency plane. There
are many possible ways of doing this and some of the current research deals
with the construction of orthonormal frames having more general and even
time varying tilings of the time-frequency plane [5].

5.4 Construction of Tight Frames

This section briefly shows a construction of a tight frame. The idea is to
construct a b having finite support and satisfying the equality for the frame
bound. The first step is to define some Ck function, v such that v(x) = 0 for
x < 0 and v(x) = 1 for x > 1. One example is the following function.

0 x<0
v(zx)= sin2 OX < x <1

1 x l

For arbitrary ao > 1 and bo > 0 define ;b as follows.

0 < I or > aol
( = [lna0o]-/2 sin A( 1 < < aol

cos L7r (-aol )] aol< <a21

where = 2r[bo(ao2 - 1)] - 1. This function satisfies

support(+) = l(ao - 1) = 2ir/bo and

E I(aao,)l 2 = (inao)-x,(,oo)(6)
mEZ
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where X is the indicator function. One can then show that for any f E L 2

E lI(f, 'm,n) 2 = 2 lf ll
m,nEZ bo In ao

which shows that the frame is indeed tight.

5.5 Truncated Reconstructions

In practice, only a finite number of basis functions can be used in the com-
putations. One can derive results which essentially say the following. If the
mother wavelet is sufficiently time-scale localized and if f is essentially glob-
ally localized in some region of time and frequency, then only a finite number
of Okm,n's are necessary to approximate f very well. Again, this analysis can
be performed on wavelet frames as well as windowed Fourier frames. This
is an important topic for actual implementation but we will not dwell on it
here.

5.6 What Does Redundancy Buy?

There is evidence that computations are more robust to errors in coefficients.
This can be explained by noting that the more redundant the frame, the
"smaller" is Ran(F). This means that if there are random errors in the DWT
coefficients (e.g., quantization error), more of this error will be perpendicular
to Ran(F) and hence, will not contribute to the reconstruction of f. One
can construct simple finite dimensional examples to illustrate this fact [2],
but general results are still unsolved (at least in 1992).

6 Existence of Orthonormal Wavelet Bases

One of the most important results in wavelet theory is the existence of or-
thonormal bases which, unlike the Haar and Littlewood-Paley bases, have
good time and frequency localization. This is an important improvement over
the WFT for which there is a theorem which says that given an orthonormal
WFT frame, one must sacrifice either good time or frequency localization.
One can use a construction similar to the tight frame construction with some
additional tricks. However, the next section discusses a remarkable innova-
tion which allows one to systematically construct orthonormal wavelet bases.
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6.1 Multiresolution Analysis

The technique of multiresolution analysis was developed by Mallat and Meyer
in 1986. This explained some of the "magic" behind the constructions of
orthonormal wavelet bases. Multiresolution analysis uses a nested sequence
of subspaces in L 2 which are just scaled (by two) versions of each other and
tend to all of L 2. In particular, let the closed subspaces Vj satisfy

... V2 C V1 C VO C Vc 1 c V-2 C .--

U V = L 2(R)
.ez

fnli = {o}
jEZ

Two other requirements for multiresolution analysis is scaling by two and
shift invariance. More precisely,

f E Vj X= f(2i- ) E Vo and

f E Vo =: f(.- n) E Vo for all n E Z

Note that the two requirements imply that

f E j * f( -2in) e Vj for all n E Z.

One example of spaces satisfying both requirements is

Vj = {f E L2 f1[2jk,2j(k+l)] = constant}

This is called the Haar multiresolution analysis. One final requirement is the
existence of a d such that 0o,n is an orthonormal basis for Vo. This implies
that for a fixed j, qj,n is an orthonormal basis for Vj. The Haar example is
shown in Figure 3.

Note that {~j,. : j, n E Z} is not an orthonormal basis for L 2 and there
is no cheating going on. One starts with qn, an orthonormal basis for Vo and
gets Obm,n, an orthonormal basis for all of L 2!
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0,-1 o0,0 (0,1

1 11

-1 0 1 2 -1 0 1 2 -1 O 1 2

Figure 3: Orthonormal Basis for Vo in the Haar Case

feV-1 fl EV 0 f2 EWO

1 1 + 1

0 1 0 11

-1

Figure 4: Decomposition of the Space V-1 into Vo E Wo
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The main idea is to define, for each j, a closed subspace Wj C Vj-l to be
the orthogonal complement of Vj in Vj-1. This means that

Vj_l =Vj Wj and Wj I Wk if j f k.

It follows that L 2 = (DjEz Wj and the scaling property also carries over to
the Wj's. This is shown for the Haar example in Figure 4.

The multiresolution analysis gives an orthonormal basis {7/m,n,} such that
for a fixed j, {j,n : n E Z} is an orthonormal basis for Wj. The details are
a bit lengthy to show but the result is the following.
Given a 4 such that for a fixed j, 4j,k is an orthonormal basis for Vj, let
hn = (4, _-l,n) and mo(~) = ZEn hne-ine. Then, a possible choice of an
orthonormal basis for L 2 (R) is given by {bm,~n} where

'~()- = 2i/2mo(,/2 + 7r)q(1/2)p(~) (13)

and p is a 2r periodic function with IP( )I = 1 a.e.

Thus, the multiresolution analysis starts with an orthonormal basis q for
Vo and gives an orthonormal basis for L 2. The Haar example is illustrated
in Figure 5.

One can, in fact, start with a (limited resolution) Riesz basis q, use an or-
thogonalization trick to get an orthonormal basis q (like Gramm-Schmidt for
infinite dimensional spaces) and define Vo as the span of q. Many examples of
this type can be found in [2]. Virtually all orthonormal bases constructed up
to now can be shown to be a result of the multiresolution analysis. However,
there do exist constructions of orthonormal bases which cannot be a result
of multiresolution analysis. These bases have poor decay properties and it is
an open question whether imposing some smoothness on / would eliminate
such pathological cases.

6.2 Connection to Subband Coding

Writing down the equations for ;b in the time domain, one can derive an
iterative algorithm for computing the DWT coefficients for a function f. In
particular, it can be shown that if E = 1hnql,n then 0,b = ](-l)nh_n+l.
From this it follows that

j,k = E hn-2k j-l,n
n
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=j,k = .gn-2kkj-l,n
n

where gn = (=, _1-l,.) = (-l)nh_n+l
This implies that the DWT of f can be computed as follows. Starting from
(f, t0O,n) one computes (f, 0i,n) and (f, 4 1,n). Using the equations above, one
now takes (f, ,,.) and computes (f, I2,n) and (f, 02,n), etc. This can be
viewed as computing coarser and coarser approximations of f along with the
difference in information between adjacent resolution levels. This is equiva-
lent to the subband coding scheme where a signal is split into its high and
low frequency bands, the two signals are subsampled (decimation) and the
low frequency signal is split up further, etc.

7 Compactly Supported Orthonormal Bases

The construction of orthonormal bases using multiresolution analysis leads
to wavelet bases of infinite support unless the orthonormal 0 have compact
support. It can be shown that if 0 has compact support, then mo must be
a trigonometric polynomial. From there, one can use Bezout's theorem and
spectral factorization to construct an mo. Once a feasible mon0 is picked, ¢ is
given by

00

'(~) = (2ir)- / 2 II mo(2-j.)
j=1

This is a tight frame with frame bound of one. To insure that it is or-
thonormal I1111 must equal one and this puts another technical constraint
on mo0 () (several equivalent conditions must hold). In general, there are no
closed form solutions for O's or O's resulting from this approach. However,
Daubachies shows ways to compute values of 0 recursively.

7.1 Related Results

Other results consider the regularity properties of various compactly sup-
ported orthonormal wavelet bases (Hl1der exponent results). These can be
grouped into frequency domain and time domain methods. Typically, regu-
larity is gained at the expense of longer support. Symmetry of wavelets is
also studied. One remarkable result says that the only compactly supported
real orthonormal wavelet basis that is also symmetric is the Haar basis. The
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way to get symmetry is by introducing the biorthogonal bases. In this case,
there is the frame .m,n and the dual frame Im,n used for reconstruction.
The additional requirements are /b' is symmetric and (Ibm,n, 1k,l) = 6m,k 56n,l-
There is also a plethora of results available for biorthogonal wavelet bases.
Another important topic not covered in this report is wavelet packets. This
is a construction which uses multiple wavelets to cover the time-frequency
plane in a manner which is best suited for the particular signals of interest.

The field of wavelets is so vast that it is impossible to even comment on
all of the interesting results within the confines of this report.

8 Recent Advances in Wavelets

Recently, an entire issue of the IEEE Transactions on Signal Processing was
devoted to the applications of wavelets. The research directions are broad
and cover a range of topics including music, speech and image processing
and detection, time-scale analysis, sampling theorems, regularity results,
algorithms for fast computation of wavelet frames, more general time-scale
plane tilings, adapted wavelets, and many others. The researchers include
mathematicians, physicists, and engineers. Wavelet theory is being applied
to everything imaginable and the field is growing at an incredible rate.

In staying with the current theme, the next section proposes a way in
which wavelet theory can be applied to the field of neural networks.

9 Applications to Neural Networks

Neural networks and learning systems is a field which gained tremendous pop-
ularity in the mid 1980's and has recently gained acceptance in the "mathe-
matically rigorous" community. There are many areas in this field and the
one considered here is supervised learning (network is aware of its errors
as seen by a knowledgeable observer) [7]. The viewpoint which lends itself
to approximation theory is that a neural network can be thought of as a
nonlinear function approximator. In this framework, the network is viewed
as a nonlinear system parameterized by a vector known as the "weights".
As more samples of the unknown function are disclosed to the network, the
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weights are adjusted to decrease the prediction error.

Typically, there are two main issues to address. The first is choosing the
architecture of the network. This will depend on the particular application
and the kinds of functions which will need to be learned. The second is
training the network, or deciding on a learning mechanism.

It was argued in [6] that for certain on-line applications (e.g, system iden-
tification) it is important to have a localized learning architecture. That is,
each weight should affect the network output over a small subset of the input
space. This means that if learning takes place over some region of input space
for an extended period of time, the network does not "unlearn" the function
for input values outside this region. This learning localization causes one
to sacrifice generalization properties of the network. Loosely speaking, gen-
eralization is the capacity to store large amounts of information in a small
number of parameters. It will be shown that the wavelet architecture along
with some learning algorithm achieve a good tradeoff between the two ex-
tremes.

The network architecture typically considered in localized learning is a lin-
ear combination of spatially localized functions (e.g., radial basis functions)
where the weights are comprised of the linear coefficients, and sometimes
the position and spatial decay of the basis functions. When the weights are
simply the linear coefficients, there exist some simple and provably conver-
gent training algorithms such as Widrow's Least Mean Squares algorithm [8].
Such an architecture is shown in Figure 6.

The next section shows that a network consisting of multiresolution layers
can be viewed as a DWT representation of the unknown function. The
wavelet theory is used for choosing a basis and the learning mechanism tries
to iteratively approximate the DWT coefficients. One property which is a
direct consequence of using a wavelet basis is that the more "spatially global"
neurons are updated more slowly than the "spatially local" ones. This is
exactly what is needed for spatially localized learning behavior.
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Figure 6: Neural Network Architecture

9.1 Neural Network as a Wavelet Representation

The neural network architecture given by

Fnet(x) = E Ck9k (X)
k

can equivalently be described by

Fnet(x) = Cmnbmn(X)
m n

where ?Pm,n is the translated and dilated version of b as defined earlier. The
spatial support of the neurons, for two dimensional inputs and a0 = 2, is
shown in Figure 7. Note that multiresolution does not mean multilayer, and
the network output is still a linear combination of every neuron in the net-
work (see Figure 6).

The results from wavelet theory characterize neuron function bases which
constitute frames and possess certain regularity (if that is required of the ap-
proximation). Additionally, if one knows the spatial and frequency bounds
on the function to be learned, then wavelet theory provides bounds on errors
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due to a truncated wavelet reconstruction. This is extremely important be-
cause it provides information about the size of the network given the desired
accuracy. Such results are generally missing from the neural network lit-
erature, where only asymptotic (in network size), "universal approximator"
results are available [9].

The remaining challenge is in learning the DWT incrementally from the
samples of the unknown function f. This is tackled in the following section.

9.2 Learning Mechanisms

Once the multiresolution architecture is fixed, the neural network can be
viewed as a wavelet frame representation. So far there is nothing "neural"
here. The point where learning comes in is in determining the DWT coeffi-
cients. This is where the departure from the DWT begins.

In standard wavelet analysis, the function f is completely known and the
DWT is computed by (f, bm,,). In the learning case, f is not known, but
as time marches on, more samples of f are disclosed to the network. The
network uses this information to adjust its weights in order to decrease the
prediction error. The connection to wavelets is that the optimal network
weights which minimize the prediction error are precisely the DWT coeffi-
cients of f (this result was stated in Section 5.2). Hence, what is needed is a
parameter update rule which will cause the weights to converge to the DWT
of f.

The solution is to use an update law which is known to work for any
network architecture that is linear in the parameters. The simplest of these
is the Least Mean Square (LMS) algorithm.

9.2.1 LMS Algorithm

The LMS algorithm has been around for quite some time and an excellent
treatment is provided in [3]. The main idea is to adjust the parameters in
a way that optimally reduces the squared prediction error. This is really a
gradient descent method and the parameter update law takes on the following
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form:
cj[k] = cj[k - 1] - Aqj(x[k])e[k] (14)

where it is assumed that Fnet(x) = Zcjqbj(x), e[k] = f(x[k]) - Fnet(x[k])
and A is a small positive constant which gives the step size. Under certain
persistent excitation conditions and suitable choice of A, the LMS algorithm
converges to the global optimum in this linear case. One can make this rig-
orous based on sufficient sampling of the input space of f and everything
tending to either 0 or oo.

The important point is that there is a simple algorithm which can in-
crementally update the network parameters and provide convergence to the
DWT. Once the learning is complete, the functions corresponding to zero
(or sufficiently small) DWT coefficients can be removed. The result is an
efficient multiscale representation of the function f via a neural network.

9.3 Learning Properties

There are some nice properties associated with the wavelet architecture and
the simple learning algorithm. The important property is that localized
learning is maintained because parameters corresponding to the lower reso-
lution neurons are updated much more slowly than those for the high resolu-
tion neurons. This means that when the input jumps into a new region and
the prediction error becomes large, the higher resolution neurons adjust to
counteract most of the error and the lower resolution neurons are adjusted
more cautiously. This exactly what is needed.

On the other hand, if f is frequency band limited, the convergence of LMS
guarantees that the weights of the high resolution neurons will converge to
very small values even though they adapt much faster. This shows that there
is also a certain amount of generalization in the network and eventually, the
few lower resolution neurons will adapt if they alone are capable of approxi-
mating f.

The first property can be explained by the fact that in the LMS rule,
the change in cj is proportional to Oj. But Sj is proportional to ao/ 2 where
increasing m corresponds to increasing spatial resolution. In the case where
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a0 = 2 and the number of resolution layers used is N, for a given input x
there are N neurons that are active. This means that only those N weights
need to be updated. If the network "sees" an error e at this time, the error
credit is assigned according to the magnitudes of these N basis functions.
If A is chosen such that the error is exactly canceled after the parameter
update, the result can be viewed as the jth neuron canceling 2i/2/S of the
total error e, where S = (1 - 2-N/2)/(21/2 - 1).

The second property is a simple consequence of the fact that for LMS
(under mild conditions) the weights converge to the global optimum (in this
case DWT).

In this way, wavelet theory along with the LMS rule provide a systematic
construction of neural network architectures having certain desirable prop-
erties, and achieve an efficient representation of a function once it is learned.

10 Conclusion

This report has presented a conceptual overview of wavelets, as well as some
of the important results in the field. This was followed by an application
of this theory to neural networks. The report hopefully shows that the field
of wavelets is vast and full of interesting results ranging from practical to
the esoteric. The field is thriving because it brings together researchers from
many different fields and hence, there is no shortage of innovative ideas. It
is hard to imagine where wavelets will be 10 years from now, but one can be
sure that fields typically dominated by Fourier techniques will undergo great
change.
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