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Abstract

An experimental study of flow separation in an incompressible two-dimensional unsteady flow
was undertaken with the aim of validating recently developed flow separation criteria, which
are based on kinematic principles. Specifically, the so-called rotor-oscillator arrangement was
utilized to perform a series of experiments in steady, unsteady periodic, and aperiodic two-
dimensional viscous flows at low Reynolds number. Flow separation under these conditions was
investigated by means of flow visualization, shear stress sensors, and numerical simulation. The
existence of fixed and moving separation structures, as predicted by the recent criteria, was
verified in the experiments. Fixed separation structures were encountered in periodic flows and
random flows, while moving separation was observed in a slow periodic flow and a random flow
with linear drift. It was determined that separation in the rotor-oscillator experiment is strongly
correlated to two factors: flow unsteadiness and flow ejection from the wall. The balance of
the characteristic length and time scales of unsteadiness and ejection determines whether the
separating structure is moving or is fixed. The experimental and numerical results strengthen
the notion that the instantaneous zero skin friction point alone does not denote flow separation
in unsteady flow. Rather, flow separation in unsteady flow can be better understood from a
Lagrangian perspective, in which case it can be treated in a robust and coherent manner.
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Chapter 1

Introduction

The first accepted description of flow departing from a boundary wall was developed by Prandtl

[17]. Taking an Eulerian approach, Prandtl demonstrated that flow separation in a steady

incompressible two-dimensional flow occurs at the position on the boundary wall where the

skin friction vanishes and admits a negative gradient along the wall. The issue of where flow

separates from a boundary wall in unsteady flow, however, has been debated by researchers

over the last century [21]. Indeed, at present there is no broadly accepted definition of what is

implied by unsteady flow separation, and detailed understanding of the underlying mechanisms

has yet to be agreed upon.

The criteria developed for steady flows have served as a basis to attempt to describe sep-

aration in an unsteady general flow. Both, Eulerian and Lagrangian views of the flow field

have been employed [10]. Within the Eulerian perspective Rott [18] and Moore [16] performed

theoretical studies, Sears & Telionis [20] made numerical studies of boundary-layer type flow,

while Vidal [26] and Ludwig [15] performed experimental work on unsteady boundary layer

separation. Subsequently, their observations culminated in a comprehensive review by Sears &

Telionis [21], which initiated the notion that the positioning of the zero skin friction point does

not denote the location of the separation structure in unsteady flow.

Based upon the body of work presented by Sears & Telionis [21], the Moore-Rott-Sears

(MRS) principle was proposed as a criterion for unsteady flow separation. The MRS criterion

states that flow separation results from a point singularity off the wall where the shear vanishes

and its local velocity is equal to the velocity of the separation structure. Implementation of
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these criteria is impractical however, since it requires the knowledge of quantities away from

the wall and an a priori knowledge of the speed of the separation structure.

Unsteady separation viewed from a Lagrangian perspective was proposed by Van Dommelen

[24] and Van Dommelen & Shen [25]. The authors performed numerical studies of the Prandtl

boundary layer equations in Lagrangian coordinates. Their work succeeded in removing previ-

ous difficulties that had halted the Eulerian integration of the boundary layer equations, and

concluded that separation takes place at a singularity point where the boundary layer solu-

tion becomes numerically unstable. Furthermore, they identified separation as a material spike

arising from infinite stretching of a fluid particle in the direction normal to the wall and con-

traction along the wall. Although this work is pivotal in demonstrating the Lagrangian nature

of unsteady separation, further analytical work by Liu & Wan [14] refuted the existence of

singularities as an indication of boundary layer separation.

In later work following the Lagrangian spirit, Shariff et al. proposed a theory to describe

flow separation in incompressible two-dimensional time-periodic flows [22]. Shariff considered

separation as a fixed point on the wall that anchors an unstable manifold which exists in

the Poincar6 map of the periodic flow. This work first showed that separation in a periodic

flow occurs at the location where the average over time of the skin friction vanishes. This

approach was made more rigorous by Yuster & Hackborn [27] who reformulated the vanishing

mean-skin friction criteria for small-amplitude quasi-steady time-periodic incompressible flows.

These developments were supported experimentally by Hackborn, Ulucakli &Yuster [8]. The

experimental investigations employed a rotor-oscillator flow configuration to study separation,

demonstrating that flow separation can be studied at low Re.

Capitalizing on the Lagrangian notions of unsteady flow separation, Haller developed a

general criteria to describe flow separation in a two-dimensional compressible unsteady flow

[10]. Haller considered two types of separation structures in unsteady flows: moving and fixed

separation. The criteria determine separation from quantities on the boundary and corroborate

the idea that flow separation is not determined by the instantaneous zero skin friction point,

but requires a knowledge of the time history of surface quantities. Experimental verification of

the contributions by Haller remains to be performed; this is the aim of the current experimental

work.
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separation profile

M4(t)

separation point

Figure 1-1: Flow separation occurring at the boundary wall. The separation profile makes a
finite angle with the wall. Figure taken from Haller [10]

1.1 Theory of two-dimensional unsteady flow separation

An exact theory of unsteady separation for two-dimensional flows has been developed by Haller

[10]. The results obtained in this theory are valid for any mass-conserving flow. Separation

criteria are derived by considering the existence of a distinguished material line which attracts

fluid particles and ejects them away from the boundary. Hence, the distinguished material line

takes the name of separation profile, M(t). Anchoring the separation profile to a point on the

wall exists a location henceforth defined as the separation point, -y. Additionally, in order to

guarantee separation there is a finite separation angle that the separation profile makes with

the boundary wall. These definitions are illustrated in figure 1-1.

1.2 Fixed separation criteria

We begin by considering separation occurring at a fixed position on the boundary. In this type

of separation, the location for flow break away from the boundary remains fixed for all times

and anchors a time dependent separation profile. In dynamical systems this separation profile

is known as an invariant unstable manifold [5]. The separation profile is unique at all times in

fixed separation [10].
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The unsteady separation criteria derived by Haller are based on three fundamental assump-

tions: (i) there exists only one separation profile emanating from a separation point; (ii) the

separation profile is not tangent to the boundary wall; (iii) the derivatives of the separation

profile remain uniformly bounded. These assumptions ensure physical plausibility as well as

mathematical rigor of the criteria. Statement (i) is automatically satisfied in mass preserv-

ing flows without mass sinks or sources. Statement (ii) arises from physical observation; fluid

at the vicinity of a boundary wall separates when it departs from the surface and therefore

does not allow the existence of a tangent separation profile. Finally, statement (iii) prevents

mathematical unboundedness when deriving the separation formulae.

The criteria give rise to two necessary mathematical conditions for flow separation to occur

at a point p = (-y, 0) as illustrated in figure 1-1. The first condition for separation enforces the

non-tangency of the separation profile. For this point to exist in a compressible unsteady fluid

flow Haller [10] derived the following criterion

lim sup , f u <-'O.r) (1.1)

In equation (1.1) u is the horizontal component of the velocity, uy the rate change of the

horizontal velocity in the y direction perpendicular to the boundary, and p the wall density.

The integral is evaluated in backward time, from the present time to to any past time t.

Mathematically, this condition states that a separation point cannot exist if the material

line does not posses a finite slope relative to the direction perpendicular to the boundary at

all times. The slope of the material line describes the angle of flow separation. This type of

separation point is characteristic of flows where there exists a point on the boundary wall where

the skin friction has a zero mean for all times. This condition can be met by steady, unsteady

periodic or aperiodic flows.

In incompressible periodic flows the separation condition (1.1) reduces to

T
Uy (7, 0, t)dt = 0, (1.2)

where T is the period of the oscillatory flow. Here, the relevant time scale that contains all

the dynamics of the flow is the period T; any time scale greater than T provides redundant
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1*

separation profile

Y~tt) Mt.) *'(to- 2At)

separation point

Figure 1-2: The second criterion for flow separation requires that material lines to the left and
right of the separation profile align with the wall in backward time. This condition can not be
satisfied by a fluid at rest. Figure taken from Haller [1].

information. Equation (1.2) agrees with the results obtained by Shariff et al. [22].

In steady incompressible flows, the density is constant, and the limit of the integral in

equation (1.1) remains bounded when the rate of change of u in the y direction vanishes at the

separation point. Physically, the quantity uY can be related to the shear stress -r through

7W (X, 0) = VPUY (X, 0), (1.3)

where v is the kinematic viscosity. Thus, in steady state condition (1.1) for flow separation is

equivalent to Prandtl's first criterion [17]:

Tw(P) = vpuY (p, 0) = 0. (1.4)

The criterion (1.1) for separation is also satisfied by a flow at rest. In order to ensure there

is flow, a second criterion is necessary. The second separation criterion states that there is

a unique material line distinguished by the fact that all other material lines converge to the

boundary wall in backward time. Figure 1-2 portrays the second criterion. This condition
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cannot be satisfied by a fluid at rest, and is expressed mathematically as follows

limt,-, Jo [1 (uXy (7, 0, T) - vyy(y, 0, r)) - 2vxy(-, 0, T) J uy('") dT- = oo. (1.5)

In equation (1.5), v is the flow velocity in the y direction, x is the axis along the wall, and the

subscripts indicate partial derivatives taken along the x and y directions.

In periodic incompressible flows equation (1.5) reduces to

T

TUY (o, 0, t)dt < 0. (1.6)

Regardless of the flow time dependence, flow separation is observable only if both separation

criteria are satisfied; equations (1.1) and (1.5) are considered necessary conditions for flow

separation.

For steady incompressible fluids equation (1.5) reduces to Prandtl's second criterion for flow

separation.

Twx(P) = vpuXY (p, 0) < 0. (1.7)

This criteria can be understood physically as follows: the shear stress of the wall is the signature

of the direction and magnitude of the fluid flow passing over the boundary. When separation

occurs, the shear stress changes sign to account for different flow directions on each side of the

separation point. Thus, the shear stress admits a negative gradient along the wall.

Additionally, the theoretical work developed by Haller permits determining the shape of the

separation profile [10]. The equations for the separation profile are obtained using the third

fundamental assumption for the theoretical construction: the separation profile is continuously

differentiable. The separation profile can then be reconstructed utilizing Taylor expansions. For

unsteady incompressible flows the slope of separation, or linear approximation of the separation

profile, is written as

[uYY(-,O,r)+3uxy(y,O,T) ty(y,O,s)ds d-

fo(to) = limertio o (a. t)

where fo is the slope of the separation profile at the current time to. In the absence of time de-
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A(t)

<--= y(t)

Figure 1-3: Moving separation in unsteady flow, Figure taken from Haller [10].

pendence, equation (1.8) becomes Lighthill's formula for steady incompressible flow separation

[13].

1.3 Moving separation criteria

The previous section summarized the theory formulated for a fixed separation point in an un-

steady flow. On the other hand, an unsteady flow without a zero mean skin friction point on

the boundary can not have a fixed separation point. A separation point that is not stationary

and moves along the boundary wall is called a moving separation point. In moving separation,

the material line that draws fluid from the boundary has a finite life time. For times exceeding

this, the separation point moves and its motion is accompanied by the creation of a new at-

tracting material line anchored at a new separation point. In dynamical systems these material

lines are termed as finite-time invariant manifolds [9], and the separation profile they create is

non-unique in moving separation [10]. Moving separation is illustrated in figure 1-3

In order to describe moving separation, the lack of a time scale that circumscribes all the

dynamics of the fluid requires the formulation of the concept of effective separation point. Haller
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defines an effective separation point 'eff as the location in the boundary wall that satisfies

/ t UY ( e f, 0, ).d = 0. (1.9)
t0 P(eff10,T)

It is the point of zero mean shear stress for the time interval to to t. In fixed separation the

effective separation point is the true separation point. For moving separation, the effective

separation point converges to the true separation point as time advances [10]. The location of

the moving separation point 7, illustrated in figure 1-3, at a determined time is to is given by

y(to) = [JY(to - Tm(to),to) + 7Y_(to - Tm(to),to, (1.10)

where

Y+ (t, to) = sup -Yej (s, to), 7_ (t, to) = inf Yeff (s, to). (1.11)
sE[t,to) sE[t,to)

The effective separation points in equation (1.11) determine the interval

J(t, to) = /+(t, to) - y (t, to), (1.12)

which satisfies

1 fto
-6(to - Tm(to), to) max IuXY (x, 0, t)Idt = 1, (1.13)
2 to-TM(to) xEi(to -Tm'(to) ,to)

max us,(x, 0,t) < 0, t E [to - Tm(to), to], (1.14)
xEI(to-Tm(to),to)

where Tm represents the lifetime of the material line that induces separation. Haller showed

that moving separation profiles are not unique, and the time scale Tm distinguishes the material

line that stays in the vicinity of an effective separation point for the longest time [10].

In order to obtain approximations for the moving separation profile, the time scale Tm(to)

is utilized. The linear approximation for the separation profile is given by the slope

So-T0m(t 0 ) [UYY(YeffoT)+3uxy(Yeff ,O) ff Uy(YeffO,s)dsl dT

A (to) = to_ to-T o) .(1.15)
3& fto XY('Yef,0,-r)dT
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1.4 Unsteady separation from physical quantities

The separation conditions (1.1), (1.5), and (1.8) are a function of purely kinematical quantities.

Practical applications, however, require criteria expressed in terms of physically measurable

quantities. For unsteady incompressible flows, the separation criteria can be expressed as

lim sup (-y, 0, r)dr < 00, (1.16)
t-i-_ 0 to

lim 1r (-Y, )-)dF = 0o. (1.17)

Similarly, the slope can be written

t [PX(To,T) +3rwx(7,0,T) ' rTW(,O,s)ds dT

fo(to) - lim 1O, (1.18)t-+- 3 f r.2(-, 0, r)d

where p is the pressure. The above equations are derived enforcing the non-slip boundary condi-

tion at the wall and using identities resulting from manipulation of the Navier-Stokes equations.

These criteria can be utilized for moving and fixed separation after proper manipulation of the

time scales for integration.

The above expressions indicate that unsteady flow separation can be resolved by using

sensing devices for pressure and shear stress along the boundary wall. Experimentally, it suffices

to place an array of sensors near the region of interest to determine flow separation in real

time. The criteria developed by Haller are practical, and in principle can be implemented in

engineering applications.

1.5 Preview of chapters

The body of this thesis is devoted to validating the main results of the theoretical work devel-

oped by Haller [10]. This comprises verifying the existence of fixed separation points, moving

separation points, and determining flow separation based on shear stress measurements on the

wall.

A description of the theory covering the rotor-oscillator flow is presented in Chapter 2.
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Important features of the flow such as its low Reynolds (Re) and Strouhal (Sr) numbers, and

description of the relevant analysis and numerics are discussed. Chapter 3 provides a description

of the experimental apparatus used to produce a rotor-oscillator flow. The characteristics of

the different actuators, data acquisition system, dye visualization, and shear stress sensors are

covered.

Experimental and supporting numerical results on flow separation in steady and unsteady

flows are treated in Chapter 4, 5, and 6. Chapter 4 considers steady separation in the rotor-

oscillator, flow previously studied by Hackborn [81. Fixed separation points in the unsteady

rotor-oscillator flow appear in Chapter 5. Specifically, the existence of a fixed separation point

in a periodic flow and a random flow is investigated. Chapter 6 explores moving separation

points under two types of unsteady conditions: slow periodic flow and random flow with linear

drift. The former results from a rotor oscillation with frequency approaching to zero, while

superimposing a random motion with a constant velocity translation produces the latter motion

type.

Chapter 7 summarizes the findings of the experiments and comments on the performance

of the flow separation criteria. Additionally, this section discusses aspects of the experimental

studies that can be further improved for future work.
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Chapter 2

The Rotor-Oscillator Flow

The aim of this work is to determine the behavior of an unsteady two-dimensional flow separat-

ing from a boundary wall utilizing the separation criteria developed by Haller [10]. To formulate

accurate descriptions of unsteady flow separation it is necessary to work with a system that

provides: repeatability, observability, and control over the factors that induce the separation.

These functional requirements pose challenges because of the varying time and length scales

inherent to unsteady flows.

Classical experimental arrangements that might be considered are a forward/backward step

flow, and flow over an airfoil. These flow configurations are illustrated in figures 2-1 and 2-

2. Both arrangements present a practical engineering application for the separation criteria.

However, both require a large apparatus and unsteady separation occurs on short time and

length scales that are difficult to visualize and simulate.

We shall consider unsteady separation generated by a so-called rotor-oscillator arrange-

ment. This arrangement was first considered by Hackborn to study flow mixing and separation

in Stokes flow [8]. The experimental arrangement consisted of a rotating cylinder immersed

in a tank whose sidewall was able to oscillate to introduce unsteadiness to the flow. The re-

sulting flow was two-dimensional. Figure 2-3 indicates a cross section of the flow arrangement

considered by Hackborn. Hackborn's experimental and theoretical work shows that flow sepa-

ration in this configuration is controlled by the rotational speed of the rotor and the oscillatory

motion of the sidewall. Furthermore, it was demonstrated that in this arrangement unsteady

flow separation occurs on time scales of the order of seconds and length scales of the order of
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Figure 2-1: Streamlines for flow through sudden expansion in a step flow, Re 25. Figure
taken from Fearn & Mullin [3]. Flow separation occurs on the top and bottom wall of channel.

Figure 2-2: Streamlines on NACAOO12 airfoil at 19.43 degrees, Ma = 0.3. Figure taken from
Sahin [131. Separation occurs at the leading edge.
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Figure 2-3: Cross section of rotor-oscillator flow arrangement considered by Hackborn [4]. Flow
separation and re-attachment occur at the bottom sidewall. The cylinder rotating near the wall
is 6 mm in diameter, the flow has Re<1.

centimeters, making it suitable for experimental investigation.

The experimental construction utilized in the present study, described in detail in chapter

3, consists of a cylinder with rotational motion about its axis and translational motion along

the axis of a long fluid tank as indicated in figure 2-4. The latter feature differs from the

arrangement proposed by Hackborn, in which it was the sidewall that moved, and allows more

flexibility and control over the type of unsteadiness introduced into the flow. The cylinder

extends from the top to the bottom of the fluid tank, and the sidewalls of the tank are parallel

to the translational motion of the cylinder. Similar to the configuration considered by Hackborn,

flow generated by this arrangement is expected to be nominally two-dimensional [8]. Unsteady

flow separation occurs at the stationary sidewall. A cross-section of the expected flow is shown

in figure 2-5. The location of separation is determined by the type of motion featured by the

rotation and translation of the cylinder.

2.1 Governing equations and relevant parameters

Assuming a two-dimensional flow, the governing equations of fluid motion in the experimental

configuration are the two dimensional Navier-Stokes equations.

au-- au 0u 1 ap 0 2 U4 _2

+ +U-=-- +v + )(2.1)87 82 By p + V8-2 g
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Figure 2-4: Rotor-oscillator configuration. The cylinder rotates around its axis and translates
parallel to the sidewalls.

&u 0u aU 18 & 842 02u+ O + U- =u -- + V( + ) (2.2)T ax- a y p a y 5 2 +ap2>

where U is the velocity in the x direction, U is the velocity in the y direction, and p is the pressure.

The high viscosity of the fluid employed in the experiments permits the simplification of the

inertial terms yielding the Stokes equations. This standard procedure is performed by means

of non-dimensionalization, using the relevant physical parameters that control the dynamics of

the experiment.

The driving mechanism of motion in the fluid is the cylindrical rotor. The rotor has a

characteristic radius r, and is rotating at angular velocity w. The momentum provided by the

rotating cylinder diffuses away towards the walls of the tank. As the tank becomes wider, the

velocity of the fluid near the walls decreases; thus an appropriate length scale is the half width

of the tank h. In addition to the rotation, the rotor is forced to move back and forth in the

direction parallel to the walls with a sinusoidal velocity of characteristic frequency ce. Utilizing
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instantaneous streamline

flo w separation

Figure 2-5: Rotor-oscillator cross section for the arrangement in which the cylinder oscillates
from side to side. The flow is two-dimensional and separation occurs on the sidewall. The zero
shear stress instantaneous streamline is drawn; it makes a revolution around the cylinder.

these parameters a characteristic velocity, steady time scale, and oscillatory time scale can be

defined.

In order to define the characteristic velocity it is necessary to consider the radius of the

cylinder, r, and the half width of the tank, h. Increasing the size of the rotor results in higher

fluid velocity at the tank walls; on the other hand, placing the side walls far apart from the

rotor produces slower fluid velocities at the tank boundaries. Thus, the characteristic velocity

depends on the tangential velocity of the rotor, wr, and the ratio of the cylinder radius and the

half width of the tank. An appropriate velocity scale is therefore

2

h (2.3)

The steady time scale is obtained from the characteristic length scale, h, and velocity, v, and

is given by
h2

t = . (2.4a)
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The oscillatory time scale is determined by the period of the sinusoidal motion of the rotor,

~ 27r
t = -. (2.4b)

a

The characteristic parameters in equations (2.3), (2.4a), and (2.4b) define the dimensionless

numbers that are relevant to this problem. The Reynolds number

VL r 2 W
Re = = -(2.5)

LI V

shows the relation of the viscous forces and inertial forces. In order to quantify the importance

of the unsteady effects in the fluid, the Strouhal number, Sr, is defined as

convective time scale h2 a

forcing time scale 27rr 2w

Utilizing the characteristic parameters the governing equations can be expressed in dimen-

sionless form with the following substitutions:

= hxa, (U, V) = W(U V), 27= t, Pa 2 W . (2.7)h (uv, e-,3 L - h2 P

In the cases where the rotor-oscillator experiments have a Re less than unity, it is appropriate to

assume that the pressure varies linearly with the characteristic velocity [1]. After substitution

into equations (2.1) and (2.2) the dimensionless equations are

SrRe- + Re(u -Vu) -Vp + V 2 u, (2.8)
at

where

U = (u, v). (2.9)

In the limit where both Re < 1 and Sr 0 0(1) the inertial terms can be neglected in equation

(2.8) . These forces still exist in the system but are negligible compared to the viscous forces.

The fact that the time derivative in the equations can be neglected means the flow can be

approximated as quasi-steady. The resulting equations that describe the fluid motion are given
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by

V 2u = Vp, (2.10)

V -u = 0. (2.11)

Equation (2.10) is the vector form of the Stokes equations, while equation (2.11) is the continuity

equation for an incompressible fluid. The reduction of the Navier-Stokes equations to the Stokes

equations greatly simplifies the mathematical problem. The Stokes equations are linear, thus

the superposition principle of solutions can be applied. In addition, the flow has a quasi-steady

behavior, namely, the flow time dependence can enter only through the boundary conditions of

the problem.

2.2 Steady solution for the rotor-oscillator experiment

Hackborn analyzed the steady flow field resulting from a rotating cylinder immersed in a fluid

container of idealized infinitely long walls [6] [7], and validated his mathematical model in a

series of experiments that describe separation and mixing regions in a Stokes flow [8]. This

section summarizes the steady flow solution for the cylindrical rotor experiments proposed by

Hackborn [6].

Due to the high viscosity of the fluid and the geometry of the experiment, the experiment

can be modeled as a two-dimensional system laying in the Stokes flow regime. The tank is

idealized as two infinitely long plates, due to its relatively large length-to-width ratio (5:1),

and the effects of the bottom, end, and surface of the tank are neglected. These assumptions

are supported by observations made by Hackborn [8] and Swanson & Ottino [23]. Hackborn

observed no effect correlated with the depth and surface of the tank when flow visualization

dye was injected far away from both the surface and the bottom. Due to the slowness of the

flow at the end walls of the tank, the effect of the ends on the flow field was encountered to be

negligible. Hence, the physics of the fluid flow encountered in the experimental setup can be

modeled in a two dimensional space.

In order to model the rotational motion of the cylinder, Hackborn utilized a two-dimensional

steady line rotlet. A line rotlet is a singularity that exerts a finite torque per unit length on the
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surrounding fluid. Mathematically, the line rotlet is commonly written as a stream function of

the form

T = -ln(r), (2.12)

where o- is the line rotlet strength, and r is the distance from the rotlet origin. It can be readily

shown that the torque per unit length exerted by the rotlet is 47ro-p [6]. For a stream function

to solve the Stokes equations it must be bi-harmonic, specifically, it must satisfy the equation

V4 T = 0. (2.13)

The steady line rotlet satisfies this equation and thus satisfies the Stokes equations.

Introducing appropriate Cartesian coordinates and boundary conditions along with the rot-

let stream function, Hackborn obtained a closed solution for the steady rotor-oscillator problem.

For convenience, dimensionless coordinate axes are imposed on the experiment configuration as

shown in figure 2-6. The dimensionless coordinates are obtained from the substitutions

f(T,V) = h(x, y), c = hc, 7 = a W} . (2.14)

The y-axis is located equidistant and parallel to the infinitely long walls, the plates are located

at x = -1 and x = 1, and the rotor is placed at the point (xy) = (c,O), where c is the

dimensionless distance in the x direction of the rotor from the origin.

The dimensionless stream function solution for the steady rotor problem can be written

! = ln(R0 ) + /, (2.15)

where R, is the distance of a point in the flow plane to the cylinder. The first term in (2.15)

represents the line rotlet, and the second term, 1, is the stream function of the undisturbed

flow field. In the Cartesian coordinates the line rotlet is written explicitly as

In(R) = In [(X - c)2 + y2 / . (2.16)
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Figure 2-6: Coordinate system for Hackborn's analytic solution of the rotor-oscillator flow.

The velocities in the x and y directions are given by

(2.17)U= -__ =

49y ' X'

and the boundary conditions are represented by the equations

U 0, x = 1,

u -+ , o ->0,as y -> 0.

(2.18)

(2.19)

Equation (2.18) is the non-slip boundary condition at the walls, and Equation (2.19) bounds the

velocity as the walls of the tank extend to infinity. Hackborn showed that the stream function

solution that satisfies the above conditions is

1 1 - 2e1 /2,y cos[1/27r(x - c)] + e'Y
= - In + h(x, k) cos(ky)dk,

2 t1 + 2el/2,ry cos[1/27r(x + c)] + exuy .
(2.20)

where the function h(x, k) is defined to be

h(x, k) = 2 [tanh k cosh(kx) - x sinh(kx)] cosh(kc) + 2 [coth k sinh(kx) - x cosh(kx)] sinh(kc)
snhk2k) - 2k

(2.21)

Equations (2.20) and (2.21) solve the two-dimensional problem of a rotating cylinder im-
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mersed in a tank of infinitely long walls. The solution models the steady case of the rotational

cylinder without oscillatory motion in the y direction. For this purpose, a line rotlet singularity

has been employed; the rotlet can be seen as a cylinder of infinitesimal radius. The Hackborn

solution is valid for Re < 1 and Sr of 0(1). More details on this solution will be given in

chapter 4. Moreover, this steady solution will form the basis of our investigation of unsteady

flows in chapter 5 and 6.
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Chapter 3

Experimental and numerical

methods

In this chapter we describe the apparatus utilized to produce a two-dimensional rotor-oscillator

flow, the visualization method to evidence flow separation, and the sensors employed to take

shear stress measurements at the wall. Additionally the numerical methods are described.

These include a FLUENT model, Gaussian quadrature for integration, and particle tracking.

3.1 Rotor-oscillator physical apparatus

The experimental arrangement comprised a fluid tank, an aluminum structural support, and

motion control hardware. An image of the arrangement is shown in figure 3-1. An acrylic

tank with dimensions of 12 cm in width, 13 cm in height and 42 cm in length was utilized to

contain the fluid. Pressure forces acting on the walls were not a concern because of the small

volume of fluid and the walls' thickness of 1 cm. The tank had an open top allowing the fluid

to have a free surface exposed to the environment. Fluid was removed from the container by

means of a valve located at the base of one of the sidewalls. Supporting the acrylic tank there

was an aluminum structure designed to elevate the container 20 cm from ground level. The

aluminum structure was firmly fixed to the tank and allowed visualization of the inside fluid

from all directions. In order to observe the tank's cross section, a 45 degree mirror was placed

underneath the aluminum structure. With the purpose of driving the fluid motion, a cylinder
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bracket IOS motor cylinder

linear stage

MSdrive23

Figure 3-1: Experimental arrangement for rotor-oscillator flow. The picture shows the acrylic
tank, aluminum structural support, and motion control hardware.
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Figure 3-2: Motion control schematic. The upper branch involving the IOS34 motor controlled
the rotational motion, while the lower branch involving the MDrive23 controlled the transla-
tional motion.

was mounted on a linear stage and immersed into the fluid tank. The cylinder was 12 cm in

length and 6 mm in diameter. During the experiments, both an aluminum cylinder and an

acrylic cylinder were employed.

A schematic of the motion control in the experiments is presented in figure 3-2. The cylinder

possessed two degrees of freedom: rotation around its own axes, and translation along the

long axis of the tank. Both motions were controlled using the commercial software LabVIEW

version 7 and a motion control card type PCI-7344 from National Instruments. The motors,

encoders, stepping drivers, and power supplies were all acquired from Intelligent Motion Systems

(IMS). The rotational motion was introduced using an inside-out stepper motor type IOS34 and

monitored by an IMS optical encoder with a single end encoder connection. Figure 3-1 shows

the IOS motor with the optical encoder incorporated. In order to rotate at the desired angular

speed, the motion card PCI-7344 sent orders to a micro-stepping driver type IM805. The

translational motion was achieved using a LINTECH linear stage 10" in length. The motion
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was driven by a 1/4" lead screw whose rotation translated the IOS motor along the long axis

of the tank. The stage motion was driven and monitored by a MDrive23 motor driver that

possessed micro-stepping and motion control. In order to power both motors, two unregulated

linear power supplies of type IP804 were utilized.

3.1.1 Geometric alignment for rotor-oscillator apparatus

In order to generate a two-dimensional flow it was important to align the experiment components

properly. There were three important aspects of the arrangement that needed to be aligned

with accuracy: the acrylic tank, linear stage, and cylinder. The acrylic tank was supported by

the aluminum structure, as shown in figure 3-1. The horizontal level was set by means of four

adjustable screw mounts positioned in the bottom of each leg of the structure. The angle of

inclination of the tank relative to the horizontal plane was ±0.1 degree as measured using a

Starett level model #98. The sidewalls of the fluid tank were vertical within 11 degrees relative

to the direction of gravity as measured with a Dasco Pro angle finder.

Parallel alignment of the stage to the sidewalls was required for translational motion of the

cylinder parallel to the long axis of the tank. Alignment was achieved by measuring the distance

of the cylinder from the sidewall at different positions along the tank using aluminum gauges

accurate within ±0.1 mm. The procedure consisted of moving the stepper motor to both ends

of the linear stage and then measuring the distance of the cylinder from the wall using the

aluminum gauges. As a result, the linear stage was aligned to the fluid tank base within +0.1

degrees as measured with the Starett level and parallel to the sidewalls of the tank within ±2

degrees as measured with the Dasco Pro angle finder.

In addition to the parallel translation of the cylinder, it was necessary to have a cylinder

whose axis of rotation is perpendicular to the base of the tank. This is important since failing

in this requirement results in an eccentric rotational motion. The quality of this alignment

depended on the machining quality of the cylinder and the ISO motor. By utilizing micro-

positioning, it was determined that the cylinder is straight within 1 mm of its rotational axis.
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Figure 3-3: Dynamic viscosity of corn syrup-water mixture at T = 20 C. Viscosity mean value
is 1.33 Pa-sec.

3.1.2 Viscous fluid for experiments

In order to maintain a small Re viscous fluids were used in the experiments. The experiments to

visualize the fluid separation were first run utilizing a corn syrup-water mixture, and glycerol.

The preparation of the former fluid consisted of 110 mL of water every 1000 mL of syrup. Using

this composition a viscosity close to that of pure glycerol is achieved. In order to confirm that

the corn syrup mixture was indeed a Newtonian fluid, the viscosity was measured as function

of the shear rate employing a AR1000 rheometer. In figure 3-3 the dynamic viscosity of the

corn syrup-water mixture at different shear rates is presented.In general, the results indicated

a 7 % standard deviation from the mean viscosity value and therefore the corn syrup mixture

was considered a suitable Newtonian fluid for experimentation.

The experiments to acquire shear stress measurements were performed utilizing glycerol.

This fluid was also characterized utilizing the AROGO rheometer. In figure 3-4 the dynamic

viscosity of glycerol at different shear rates is presented. In general, glycerol displayed a 3 %

standard deviation from the mean viscosity value. The dynamic viscosity of the fluids when

performing separation experiments ranged between 1.1 Pa-sec and 1.6 Pa-sec.
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Figure 3-4: Dynamic viscosity of glycerol at T = 20 C. The mean viscosity value is 1.13 Pa-sec.

3.1.3 Flow visualization method

The method for visualization involved placing dye by mechanical means into the fluid flow of

the tank. A mixture of fluid and india ink black powder was utilized. By mixing 10 gr of powder

dye with 50 mL of the fluid (i.e. corn syrup or glycerol), the dye acquires a fluid form of density

similar to the fluid density, thus minimizing buoyancy effects. The dye is placed my means

of a syringe with a cylindrical needle 1 mm in diameter. A mechanical stage attached to the

aluminum support structure held the syringe. By driving the mechanical stage, the syringe in a

typical experiment deposited 3 to 5 cm material lines of dye along the wall before the cylinder

started to drive the fluid motion. Additionally, streak line visualizations were performed. This

was achieved by attaching a plastic pipe to the wall and drilling holes at different locations

along the pipe. The visualizations are presented in the experimental results section.

3.2 Sensor system for shear stress measurements

The hot-wire anemometer system comprised two main subsystems: the hot-wire sensor and

the anemometer electronics. The hot-wire sensor was a thin wire made of aluminum. The
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anemometer circuit was designed to maintain the hot-wire at constant temperature under flow

conditions, requiring bridge balancing of the hot-wire, signal output selection, and hot-wire

time response modulation. The anemometer provided a voltage signal related to the shear-

stress that could be processed through data acquisition software in a computer platform. The

following sections describe the procedures and underlying fundamentals to utilize the hot-wire

system developed by Kenny Breuer and his research laboratory at Brown University.

3.2.1 Constant temperature operating principle

Anemometers that operate under constant temperature require a controlled current supply to

regulate the heat losses from the sensing element. The heat loss is compensated and a nearly

constant resistance sensing element can be achieved. Figure 3-5 shows a schematic of the

circuit, in which R is the hot-wire resistance, V is the voltage across the hot wire, and V is the

output voltage which is recorded by the anemometer [2]. The constant temperature anemometer

circuitry is characterized by a differential DC amplifier, sensing element, and reference voltage.

The sensing element is placed in a leg of a Wheatstone bridge, in which feedback is used to

maintain the resistance of the hot-wire.

3.2.2 The sensing element

The sensing element was made of a Platinum wire soldered between two electrodes on a PCB

board. Figure 3-6 shows a sensor utilized to measure shear stress. Because of its small diameter,

15 pm, the platinum wire is initially coated with zinc, and is commonly known as a Wollaston

wire. In order to remove the zinc it was necessary to utilize nitric acid in a 50 % water solution.

The Wollaston wire was submerged in the nitric acid for 2 minutes and 30 seconds, the zinc

etched and the platinum wire remained. Then, the wire was soldered on the electrodes utilizing

a micro-positioner and mildly activated resin flux. The length of the wire was 1.5 mm resulting

in a typical resistance of the wire between 9 and 15 Q.

The sensor in the experiments was part of a 10 sensor PCB board, such as that shown in

figure 3-7. The board comprises two rows of 5 sensors each and allows more than one sensor at

the time to take measurements. The sensors in the same row have a separation of 4 mm and

the two rows are offset by 2 mm. The resulting resolution of the whole board is of 2 mm.
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Figure 3-5: Wheatstone bridge circuit for anemometer.

Figure 3-6: Platinum wire soldered between electrodes on PCB board. The electrodes have a
length of 3 mm. The wire has a diameter of 15 pm and a length of 1.5 mm.
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Figure 3-7: Sensor array to take shear measurements.

3.2.3 The Anemometer

The anemometer board controlled the temperature, and thus resistance, of the sensing element.

Figure 3-8 indicates the main components of the anemometer. In order to achieve bridge

balancing, the resistance R 3 , shown in figure 3-5, must be tuned in the anemometer circuit

by utilizing the resistance rotary switches. There are four resistance switches rated as follows:

coarse, medium, fine, and extra-fine (from left to right as indicated in figure 3-8). They were

systematically adjusted to balance the Wheatstone bridge.

Another important parameter is the overheat ratio, which is defined as

T - To
ar = , (3.1)

where To is the ambient reference temperature, and T is the temperature of the sensing element.
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Figure 3-8: Anemometer board and its components.

In practice, the resistive overheat ratio is employed, defined as

a R - Ro (3.2)
Ro

where Ro is the resistance at ambient temperature (cold resistance) and the actual resistance,

R, is given by

R = Ro[l + a(T - To)], (3.3)

a being the temperature coefficient of resistivity. This parameter is important since it deter-

mines the temperature of the hot-wire and the sensitivity to exterior temperature changes. The

system employed an overheat ratio of 1.32 to take shear stress measurements.

In order to have a dynamic Wheatstone circuit bridge it is necessary to introduce an offset

voltage. As indicated in figure 3-5, the voltages V and V2 are the inputs to the amplifier,

which will have a zero output if the input difference is zero. Therefore, it is necessary to

establish an operation point using an offset voltage which establishes a mean current through

the sensing element. A method to introduce the offset voltage is using a bridge bias, Vofiset.

The characteristic damping, natural frequency and stability of the system are functions of the
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voltage offset [2].

The voltage output could be offset by a desired amount using the offset knob indicated in

figure 3-8. In order to minimize errors when offsetting the voltage, the gain value was set to 20,

and the output knob (see figure 3-8) to channel 0 before offset. Channel 0 provides the (bridge

voltage + offset)*gain signal. More specifically, if you wish to operate with an output voltage

of V0= 0 V for certain flow conditions with a gain value of 1, you will use the offset to adjust

the output from channel 0 to the value Vo = 0 V. However, if after adjusting the offset you have

an error of 1 mV and decide to change the gain to a higher value, the error will be amplified by

a factor equal to the gain value. The resulting output signal from the hot-wire can be amplified

using the amplification octal switch indicated in figure 3-8. Amplification values up to 200 are

possible, the experiments employed an amplification value of 20.

Finally, a cut-off frequency for the signal from the sensing element can be specified by means

of the signal filtering switch indicated in figure 3-8. The system has cut-off frequencies between

500 Hz and 20 kHz. In order to reduce the noise introduced by the IOS motor, the 500 Hz filter

was used when acquiring measurements.

3.2.4 Sensor calibration

Obtaining measurements in the rotor-oscillator flow requires calibration to transform the voltage

signal of the sensing element into shear stress. In order to obtain a quantitative relationship

between voltage and shear stress the calibration procedure followed two steps: near-zero shear

stress calibration and fixed-position calibration. Both steps are performed in the rotor-oscillator

arrangement and employ a FLUENT Navier-Stokes solution of the shear stress for calibration.

The near-zero shear stress calibration determined the voltage value that corresponded to the

zero shear stress location. In steady state, fluid flow at the zero shear stress point is transverse

to the wall. Although the boundary sidewall is flush with the sensor, its finite size results in

heat transfer to the fluid at the zero shear stress location. More explicitly, zero shear stress does

not correspond to a zero voltage reading and requires a systematic procedure for calibration.

Additionally, the sensing element is perpendicular to the two-dimensional plane where motion

occurs, and unable to determine flow directionality [11]. Therefore, the voltage corresponding

to the zero shear stress location is a minimum and is mathematically discontinuous. Figure 3-9
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Figure 3-9: Shear stress on the wall calculated utilizing FLUENT. The simulation was performed

at an angular rate w = 60 rad/sec, and cylinder separation from cylinder c = 2.5 cm.

shows a FLUENT shear stress profile and figure 3-10 shows how the FLUENT profile would

appear when measured with the hot wire.

Because of the physical constrain of the sensor, it is necessary to have a near-zero shear

stress calibration. The procedure comprised determining the zero shear stress location guided

by numerical simulation and experimental verification, and moving the rotating cylinder to

fixed positions where voltage values for low shear stresses are obtained. In figure 3-11 the data

obtained in a near-zero shear stress calibration is shown. The figure shows voltage values at

four different distances from the rotating cylinder. The smallest voltage value corresponded

to the zero shear stress point, located 2.8 cm away from the cylinder. This result was first

obtained using a FLUENT simulation, then was verified experimentally. Immediately after the

zero shear point measurement, the rotating cylinder was displaced 2 mm towards the sensor,

thus the distance separating the two became 2.6 cm. The cylinder remained in its new still

position and a new voltage measurement was acquired. This procedure was repeated until the

distance separating sensor and cylinder was 2.2 cm or 2.0 cm. Because of momentum diffusion

and thermal equilibration, the voltage measurement at each point was taken over a 3 minute
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Figure 3-10: Expected output of shear stress sensor at w = 60 rad/sec and c = 2.5 cm.
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Figure 3-11: Near zero shear stress calibration. The rotor has angular rate C = 60 rad/sec,
cylinder separation from wall c = 2.5 cm. Experiment performed using glycerol as working
fluid.
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Figure 3-12: Fixed position calibration for sensor. The cylinder is right above the sensor. The

sensor undergoes calibration at different angular velocities. The distance of the cylinder from

the wall c = 2.5 cm.

period to obtain a steady state value. As a result the calibration of one sensor lasted 15 minutes

and voltage drift in the sensor became important.

During a 30 minute period, voltage drift in the sensor ranged between 10 and 40 mV. These

values corresponded to 5 to 30 % error when measuring shear stress values of the order 10-1 Pa

at the vicinity of the zero stress location (see figure 3-16). Thus, in order to obtain accurate

measurements only one sensor was employed to obtain shear stress profiles so that the time of

calibration is minimized as well as the amount of drift in the signal.

While the near-zero calibration was useful to measure low shear stress values located away

from the rotor, the fixed-position calibration was faster and more accurate for shear measure-

ments close to the cylinder. In figure 3-12 the voltage measurements for calibration in a fixed

position are shown. To continue calibrating the sensor after the near-zero calibration, the second

step consisted of bringing the cylinder over the sensor and keep the position fixed throughout

the test. The cylinder was then rotated at constant angular speed until the flow over the sensor

reached steady state. Once the transients disappeared, the cylinder changed its angular veloc-

ity to a higher value almost instantaneously, then this procedure was repeated until the peak
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Figure 3-13: Calibration curve utilized to take shear stress measurements.

angular velocity was reached. An example set of results are presented in figure 3-12 in which

the cylinder starts the calibration with w =20 rad/sec, and finishes the calibration with w =

60 rad/sec.

Following the data acquisition steps the calibration continues by comparing the voltage

values with shear stress values computed numerically utilizing FL UENT. The numerics simulate

the experiments performed and assign a shear stress values to every point considered in the

calibration. The details of the numerical simulation are explained in section 3.3. A typical

calibration utilized in the experiments is shown in figure 3-13. The first five calibration points

correspond to the near-zero shear stress calibration while the higher points correspond to the

fixed position calibration.

Sensor time response under flow conditions

The characteristic time scales for the transient behavior in a fixed position calibration can be

seen in figure 3-14. As a result of a step change in angular velocity, the response of the sensor

shows to be almost instantaneous. The characteristic time scale for adjustment agrees with the
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Figure 3-14: Transient response of the shear sensor when applied a step change in angular

velocity. The rotation rate is changed from w 20 rad/sec to w = 30 rad/sec.

momentum diffusion time scale defined as

Td = (3.4)
V

where L is a characteristic length, and v is the kinematic viscosity. The calibration curve shown

in figure 3-14 was obtained for a cylinder distance from the wall c = 2.5 cm using glycerol as

working fluid. The time scale, Td, that momentum takes to diffuse from the cylinder to the wall

is approximately 0.6 sec. In figure 3-14, the sensor takes 0.9 sec to adjust its response to the step

change in angular velocity. In the lower and upper portions of the step, the frequency of the

oscillatory signal corresponds to the rotational frequency of the cylinder at which calibration

took place, in this case 20 and 30 rad/sec. These results imply that at large velocities the sensor

was able to follow the flow field.

Comparing the average value of the voltage with the amplitude of oscillatory noise, it is

clear that the error introduced by the cylinder geometry and alignment is small. The typical

noise due to geometry and alignment was of the order of 1 %. On the other hand, figure 3-11

demonstrates that the transients for the near-zero calibration are dramatically longer. This
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behavior suggests that because of the slow velocities of the fluid away from the cylinder, the

heat transfer rate is dramatically decreased, augmenting the transient behavior. In view of this,

shear stress measurements in high frequency flows were not performed since the time scale at

which the flow field is changing is much faster than the time scale at which the sensor responds.

3.3 Numerical techniques for flow simulation

In order to perform the numerical simulations two resources were utilized: numerical solution

by means of the commercial software FLUENT; and the analytical solution obtained by Hack-

born, presented in the second chapter of the present work [6]. In the simulation performed using

FLUENT, the rotor-oscillator arrangement was modeled as a two dimensional flow with station-

ary and moving wall boundary conditions. The stationary wall boundary condition models the

tank walls, while the moving wall boundary condition represents the rotation of the cylinder.

The geometry considered for the model was a plane of 40 cm in length and 10 cm in width

thus resembling the tank cross section. In this two-dimensional plane the cylinder reduces to

a circle with a radius of 3 mm. To obtain an accurate description of the flow field, the mesh

generated in the FLUENT contained 480000 elements. The tank wall, where separation occurs,

was partitioned in segments of 1 mm; the remaining walls were partitioned in elements of 5

mm, and the cylinder circumference representing the rotor was divided in segments of 0.5 mm

resulting in a fine resolution for the region of interest. The geometry was meshed using a Tri

type mesh. The equations solved were the full two-dimensional incompressible Navier-Stokes

equations. The residual error for the steady state solution was of the order of 10- 4 . The FLU-

ENT model has advantage over the solution provided by Hackborn since the size of the cylinder

that drives the motion is explicitly modeled [6].

The analytical solutions by Hackborn, discussed in chapter 2, can be evaluated by using

numerical integration. In order to reduce computational time a Gaussian Quadrature was uti-

lized. This method showed convergence of the flow field solution. In order to obtain information

of other physical quantities such as shear stress and pressure distribution on the tank walls,

standard finite difference schemes were employed. The results obtained via Hackborn solution

were compared to simulations performed by the commercial software FLUENT. There was a
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close agreement in the results for the experiment configurations modeled as steady.

3.3.1 Hackborn solution using Gaussian quadrature for integration

Gaussian Quadrature provides an approximation for an integral by choosing the optimal ab-

scissa to evaluate the function to be integrated. The abscissas are computed from the roots of

the Legendre polynomials of order n, P, (x). These polynomials have the properties of being

orthogonal, having all its roots in the interval [-1,1] and being symmetric with respect to 0.

In general, the integral of the function f(x) over the interval [a, b] can be evaluated from

in

F(x) = f(x)dx = Witi GM f (--) (3.5)

The right hand side contains the integrand evaluated at the roots of the Legendre polynomial

of order n, and a weighting function for every polynomial root. In order to apply the Gaussian

Quadrature it is necessary to change the original integration interval [a, b] to the interval [-1, 1],

which is the interval where the Legendre polynomial roots live. Both the weighting function

values and roots of the Legendre polynomial of any order n can be found in mathematical

tables.

The integration of equation (2.20) showed convergence for Legendre polynomials of increas-

ing order. The region of integration was near by the flow separation point of the sidewall at a

distance c = 0.5 from the cylindrical rotor. The exact solution was assumed to be that com-

puted from the Legendre polynomial of degree n = 20. The solution of the entire flow field for

the rotor configuration was obtained with a Legendre polynomial of order n = 14.

3.3.2 Steady solution for rotor-oscillator experiment

The solution provided by Hackborn yields the entire velocity field of the rotor experiment. The

velocity field allows visualization of separation regions near the wall, as can be seen in figure

3-15. The velocity field shows that the momentum provided by the rotor decreases very rapidly

when moving away from the rotor. The characteristic velocities of the flow at the sidewalls are

slow, of the order of 0.5 mm/sec, and therefore particle departure from the sidewall occurs at

large time scales.
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Figure 3-15: Steady solution for rotor-oscillator flow utilizing Hackborn's solution.

It is also of interest to quantify other physical notions such as shear stress and pressure.

In Haller's kinematic theory [101, flow separation can be predicted from the shear stress and

pressure distributions over the surface. In the steady rotor-oscillator experiment the shear stress

and pressure were computed at the sidewall located at x = 1. Hackborn explored the steady

separation in the rotor experiment utilizing Prandtl criteria [8] given by equations (1.4) and

(1.7). The results obtained by Hackborn [8] are shown in Table 3.1 along with their comparison

to the results obtained in the present work using a Gaussian quadrature. The results are

shown using dimensionless quantities defined in chapter 2. A difference on the order of 2%

was found. There are two separations points; the first separation point is of greater interest

since the characteristic flow velocities are of one order of magnitude bigger than those in the far

separation point; therefore, the measurement of shear stress and pressure distribution is more

Rotor position c 0.25 0.441 0.5 0.75
Hackborn separation points 0.906 0.681 0.599 0.267

3.648 3.297 3.137 2.374
Calculated separation points 0.919 0.694 0.611 0.276

3.66 3.31 3.151 2.388

Table 3.1: Dimensionless separation point for rotor-oscilator flow
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accessible to current sensor technology.

The shear stress and pressure distribution were computed utilizing standard finite difference

schemes. The numerical schemes are accurate up to second order. The results were compared

to simulations run in the commercial Navier-Stokes solver software FLUENT and are shown in

figures 3-16 and 3-17. The solutions for the shear stress provided by both methods, Hackborn

and FLUENT, differ on the order of 10-2 Pa. In addition, the zero shear stress point, or point

of steady flow separation, is different on the order of millimeters. The result obtained for the

pressure distribution differs on the order of 10-1 Pa.
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Figure 3-16: Shear stress at wall predicted by FLUENT and Hackborn analytic solution.
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Figure 3-17: Pressure at wall predicted by FLUENT and Hackborn analytic solution.
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Chapter 4

Fixed separation in steady flows

Fixed separation occurs when fluid particles are ejected to the main stream from a fixed position

on a boundary wall. In steady flows, fixed separation follows a time independent separation

profile rooted at a single point on the wall, the fixed separation point. In this chapter, the exis-

tence of this separation point in the rotor-oscillator arrangement is investigated experimentally

and numerically.

The experiments sought to verify that the rotor-oscillator flow fulfills the functional require-

ments to validate the separation criteria. The experimental work employed two methods to

characterize flow separation: flow visualization, and measurements of wall shear stress. The

former method is direct and explicitly shows where flow separates from the boundary wall. The

latter method is indirect and infers flow separation through the theory developed by Haller [10].

Supporting numerical simulations used FLUENT commercial software to investigate the steady

flow field properties. Flow separation in these simulations was determined by either numerical

particle tracking or via Haller's separation criteria [10].

4.1 2D Nature of the rotor-oscillator flow

The theory considered in chapter 1 applies to general unsteady two-dimensional flows. The

rotor-oscillator flow is an arrangement where three dimensional effects are minimized by choos-

ing a relatively large width to depth ratio of the tank, and focusing on fluid flow in a plane

between the base and free surface of the tank. The length of the tank was four times the width

53



Separation point

Figure 4-1: Flow separation points occurring at same location in flow planes at different depths.

and flow visualization in these experiments was performed at a depth of 4.5 cm, as measured

from the free surface (the tank depth is 12 cm). Intuitively, it would seem that the best region

to perform flow visualization is the center of the tank, which would be the case if the boundary

conditions were the same at the top and bottom of the tank. This was not the case in the

rotor-oscillator experiment, as the bottom enforced a zero velocity condition whilst the top was

a free surface. As such, we found motion to be most two-dimensional in a plane 4.5 cm below

the free surface.

To label the flow as two-dimensional the velocity field occurring at different depths must

be identical and no mass flux should occur between horizontal planes. Therefore, in a two-

dimensional flow it is necessary that the separation point at different depths of the tank occurs

at the same position, thus implying that the planar velocity fields at different depths are nearly

identical. Figure 4-1 portrays different flow planes in which fluid separates at the same location.

With the purpose of verifying the flow two-dimensional nature, the point of flow separation

at different depths along the length of the cylinder was measured. Material lines of dye were

placed along the wall at different depths in the tank, as measured from the free surface of the

fluid. The cylinder had a constant angular velocity, w = 60 rad/sec, giving a Re = 0.46 as

defined in equation (2.5). The parameters utilized in these experiments are summarized in

table 4.1. The experiments were performed at 18 ±0.1 C, corresponding to a 3 % viscosity

Re = W Sr= -h

r 3mm a 0
w 60 rad/sec h 5 cm
V 1.2 x 10-3 m2 /s A (no oscillation) 0 cm

Table 4.1: Experimental parameters to verify the 2D nature of the rotor oscillator flow
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Figure 4-2: Separation point at different depths of the fluid tank. Re 0.46.

fluctuation. This thermal fluctuation is expected to be irrelevant to the dynamics of the flow

since the Re number for the flow is well in the Stokes regime.

The region of the tank where material lines of dye remained in a two-dimensional plane

lay between 6.5 cm and 4.5 cm depth. Outside this range, flow visualization revealed three-

dimensional trajectories of the material line of dye. Small three-dimensional effects are expected

because of the non-slip boundary condition at the bottom of the tank and the free surface on the

top. However, by considering the regions near the center of the tank, the visualizations indicated

that there was indeed a robust two-dimensional flow in the rotor-oscillator configuration suitable

for studying unsteady flow separation.

It was observed that separation occurred at a fixed point in the wall at the same location

for different flow planes between 4.5 cm and 6.5 cm. In figure 4-2 the visualization results

are presented. The separation point was measured to occur at 2.8 ±0.1 cm from the position

of the cylinder. There is an uncertainty in the measurements caused by the finite width of

the separation profile. At the location where separation takes place, flow was drawn into the

separation profile whose base was anchored at the wall. The width of the dye attracted to the

separation profile generated an uncertainty of ±1 mm, as shown in figure 4-3.
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Figure 4-3: Separation profile for steady flow at Re = 0.46. The profile has a finite width
resulting in uncertainty when measuring the separation location.

4.2 Separation in steady flow

Flow separation in steady flows has been demonstrated to occur at the position of vanishing skin

friction along the boundary wall. The theory Prandtl developed in 1904 provided a set of criteria

given by equations (1.4) and 1.7) that describe separation in steady flows [17]. In the rotor-

oscillator flow with no translational motion of the cylinder, the flow is steady and separation

occurs at the point of zero skin friction. Hackborn [8], studied the location of flow separation

for the steady rotor-oscillator experiment and compared these results to the analytical solution

for the flow field developed in his previous work [6]. Previous work by Hackborn indicates

that for Re numbers of order of unity the separation point does not depend on the angular

velocity of the cylinder and shows strong correlation to the cylinder distance from the wall [8].

In the present experiments the location of the flow separation is studied and compared with

the Hackborn analytical solution and numerical simulations performed using the commercial

software FLUENT. Additionally, the location of the separation point is studied as a function

of the rotational speed of the cylinder and its distance from the wall. The flow considered in

the experiments of this section had Re = 0.46.
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Figure 4-4: Separation point location in steady state flow determined utilizing dye visualization.
1 rpm is equivalent to 7r/30 rad/sec.

4.2.1 Experimental results utilizing flow visualization

Varying the rotation rate of the cylinder and its distance from the wall, the separation point

location was measured. The point of separation was visualized by drawing material lines of dye 4

cm to 5 cm in length along the wall, and observing the separation locations. The wall separation

from the cylinder was limited to 3.8 cm; for greater separations of the wall the visualizations

revealed that the velocity field was not well confined to a two-dimensional plane. Experimental

runs were each performed in nearly constant temperature conditions. The temperature range

for the experiments was between 17 C and 19 C and the temperature variation during an

individual experimental run was +0.1 C.

In figure 4-4 the experimental data is presented. The results show that there is not significant

variation of the separation point as the angular velocity is increased. For example, for c = 3.5

cm the location of separation remained at 3.6 cm over a range of angular velocity between

150 rpm and 650 rpm or 15.7 rad/sec to 68.1 rad/sec. Recalling the definition of the Re for

this flow, Re = it is clear that the Re number of this flow does not affect the location

of the separation point. On the other hand, the location of the separation point possesses a
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quasi-linear dependence on the distance of the cylinder from the wall.

4.2.2 Numerical simulations compared with experimental flow visualization

In order to visualize flow separation from a surface, particle tracking was used in the numerical

simulations. In the rotor-oscillator experiment separation occurs at the sidewall closer to the

rotor. For the steady separation profile, the rotor is not oscillating and therefore there is no

change of the flow field properties with time. Placing particle seeds in the vicinity of the walls

allows following the trajectories that such particles take as time progresses. To simulate particle

tracking in the flow the Hackborn solution was employed, whilst shear stress on the wall was

obtained using FLUENT.

To visualize how the fluid particles behave near the separation point, a material line of

particles was placed near the boundary wall. As can be seen in figure 4-5, the separation profile

formed and remained unchanged. The particle seeds are attracted towards the separation point

and then ejected and stretched, forming the separation profile.

The comparison of the numerical and experimental results is shown in figure 4-6, in which

the results of numerical particle tracking are compared directly with the experimental results

in figure 4-4. The ratio of the location of separation predicted by the numerics and the value

experimentally measured is on the y axis while the Re number is on the x axis. In the Re

number the fluctuation of the viscosity with temperature has been accounted for. The simu-

lations performed by FLUENT differ in the location of separation by about 1 mm to 2 mm,

which represents an error of 5 %. The analytical solution was corrected to closely match the

experimental results for different angular velocities and cylinder distance from the wall.

Finally in figure 4-7, we present a direct comparison between the experimental and numerical

separation profiles utilizing Hackborn's solution for w = 60 rad/sec and c = 2.8 cm. The location

of separation agreed within 1 mm, however, the slope of the separation profile was different.

This can be attributed to inertial effects that were not accounted for in the particle tracking

performed utilizing the Hackborn solution, or to three-dimensional effects.
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Figure 4-5: Numerical visualization of separation in steady flow by using a material line. Once
the separation profile was formed it remained unchanged for all times. The simulation was
perfomed using an angular rate w = 60 rad/sec and distance of the cylinder from the wall c
2.5 cm. The particle tracking was performed using Hackborn's solution.

4.2.3 Comparison of numerical results with separation inferred from shear

stress measurements

In order to demonstrate the practicality of the separation criteria by Haller [10], the shear stress

sensor system described in chapter 3.4 was utilized to acquire measurements on the wall. The

measurements are used to determine flow separation using equation 1.1, and compared with

the numerical results. All measurements were acquired under the same flow conditions; the

parameters chosen were angular rate w = 30-60 rad/sec and distance of the cylinder from the

wall c = 2.5 cm. Because of the constant viscosity of glycerol under low shear rates, all the
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Figure 4-6: Comparison between numerical simulation using FLUENT and experimental mea-
surements in the steady rotor-oscillator flow.

tests employed glycerol as working fluid.

Utilizing both dye visualization and shear stress the separation point at steady state was

determined and the results are shown in figure 4-8. The visualization and shear stress mea-

surements agreed to within experimental accuracy. The flows were simulated numerically, and

a comparison between the experimental measurements and simulation is shown in figure 4-9.

The agreement between experiment and simulation has an error smaller than 2 %.

Finally, we measured the experimental shear stress profile for the steady flow. In order to

construct the profile, measurements were taken using a single sensor. For all tests, the sensor was

fixed at a determined wall position and the cylinder translated to different locations, changing

its position relative to the sensor. Since the lateral walls of the tank are far away from the region

of interest and the Re is small, their effect in the flow field was negligible, making this approach

possible. To minimize the effect of sensor drift, at every point where a measurement was taken

a new sensor calibration was performed. The comparison between numerical simulation and

experimental data is shown in figure 4-10. Overall, there is good agreement between numerical

and experimental data.
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Figure 4-7: Separation profile in the rotor-oscillator flow. The angular velocity W= 60 rad/sec,
distance of cylinder from the wall c = 2.5 cm. Particle tracking was performed using Hackborn's
solution.

61



25 30 35 40 45 50 55

Angular velocity (rad/sec)

Figure 4-8: Steady separation measured utilizing
distance of the cylinder from the wall c = 2.5 cm.

1.15

E

a)

E

CL

xw

1.1 1-

1.05

0.95 -

0.9 -

0.85

0.81
0.

dye visualization and shear sensors. The

0.50.25 0.3 0.35 0.4 0.45

Re

Figure 4-9: Steady separation measured utilizing dye visualization and shear sensors compared
to FLUENT simulations. The distance of the cylinder from the wall c = 2.5 cm.

62

3.1

3

2.9-

2.8 -

2.7 -

C

0
M-

0 Shear stress
A Visualization

t t { t
2.6[

2.5-
20 60 65 70

0 Shear stress
Visualization -

I I

1

2



4
0 Experimental

3.5 ---- ----- ----- -------- ---------- NS solver

2. -------- --- ----------- ----------- ----------- ----------- -----------

25 ------------ ---- ------- ----------- ----------- ----------- -----------

1 ------------- -------- -- ----------- ----------- ----------- -----------

0.5
0 1 2 3 4 5 1

Position along wall (cm)

Figure 4-10: Comparison between experimental and numerical shear stress obtained using FLU-
ENT. The parameters are w = 60 rad/sec and c = 2.5 cm.

The experimental shear measurements, flow visualizations, and numerical simulations pre-

sented in this chapter show that the rotor-oscillator flow was indeed a two-dimensional flow,

where separation occurs on observable time and length scales. The presented data are also

consistent with the notion that in a steady incompressible flow separation occurs at the point

where the shear stress vanishes, following Prandtl's separation criteria.
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Chapter 5

Fixed separation in unsteady flows

Fixed separation in unsteady flows can be observed under periodic time dependence of the flow

field. In an incompressible periodic flow, previous work by Shariff et al. [22] demonstrated

that flow separation occurs at a fixed separation point, and that the instantaneous zero skin

friction point does not indicate the location where fluid flow departs from the boundary. The

theoretical developments were corroborated by the experimental work of Hackborn [8], who

explored the effect of periodic time dependence in the rotor-oscillator flow.

A significant advance of the theory of fixed separation in periodic flows has been developed by

Haller [10]. The formulation covers compressible flows, and furthermore predicts the existence

of fixed separation points in aperiodic as well as periodic flows, provided there is a long term

zero mean skin friction point.

In the work presented here the flow field was incompressible, and the unsteady flow con-

ditions were produced by translation of the cylinder in the rotor-oscillator flow. Specifically,

time-periodic flow in the experiments was obtained by sinusoidal translation of the cylinder

whilst aperiodic flow conditions were produced by a random-type translation of the cylinder.

5.1 Theoretical treatment of fixed separation in unsteady flow

Fixed separation can occur in periodic or aperiodic flows. The location of a fixed separation

point in an unsteady flow field can be determined using the criteria developed by Haller [10],
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which are described in section 1.4 and recapitulated here. The location of separation -y satisfies

lim t A ' d = 0, (5.1)

limt.f[ (uxy(-Y, 0, T) - vyy(, 0, T)) - 2vxy(y, 0, T) fA U Ods] d= 00, (5.2)

and the slope of separation fo is determined by

ti [uy(7, 0, T) + 3uxy(7, 0, T) fA y, 0, s)ds dT

A (to) = lim .t (5.3)t-+-00 3 A UXY (7, 0, -r) dr

In periodic flows the dynamics of the flow field are fully described in one period of oscillation,

thus equation (5.1) reduces to

T (Tw ( ,OT) dT = 0 (5.4)
0o P 2 (-y, .r)'

where T is the period. Similarly, the slope of separation profile is given by the equation

T f Uy(-Y, 0, T) - 3uxy(Y, 0, T) fT Uy (, 0, s)ds dT

fo(to) 3 . y ,0,T)dT (55)

5.2 Fixed separation in periodic flow

5.2.1 Periodic flow solution for rotor-oscillator flow

Hackborn considered the problem of a rotating cylinder submerged in a rectangular tank with

an oscillatory sidewall [5]. The flow behavior was described using the superposition of a steady

line rotlet between two parallel plates and a time-periodic Couette shear flow. The superpo-

sition principle is possible because in the limit of Re < 1 and Sr number of 0(1) the Stokes

approximation holds and the properties of linear systems apply.

The present work considers the analogous situation of a rotating cylinder with oscillatory

translational motion in the direction parallel to the sidewalls of a tank. The flow solution is

obtained by assuming the flow to behave quasi-steadily. Thus, for small oscillatory frequencies

and amplitudes, the solution of the flow at any time can be represented by a steady line rotlet

whose origin translates according to the imposed oscillation.
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In the experimental arrangement the cylinder is periodically displaced so that the observer

in the laboratory frame sees the back and forth periodic motion of the cylinder. The walls of the

tank and the observer are stationary in the lab frame. In the frame of the oscillating cylinder it

is the walls that move periodically. Thus, in a frame attached to the oscillatory motion of the

rotor a flow solution can be obtained from the principle of superposition of solutions. Similar

to the approach of Hackborn [6], the problem can be modeled as a line rotlet and an oscillatory

Couette shear flow. Using the coordinates shown in figure 2-6, the oscillatory solution for the

flow vi resulting from motion of the wall located at x = h is given by

V x
vi -(1+ -) sin(at), (5.6)

2 h

where V is defined as

V = Aa. (5.7)

A being the peak-to-peak amplitude of oscillation, and ac is the oscillatory frequency. Similarly,

the oscillatory flow v2 for the wall located at x -h is given by

V
V2 = -(1 - x) sin(at). (5.8)

2 h

Superimposing equations (5.6), (5.8), and a line rotlet yields the solution for the oscillating

rotor problem in the frame relative to the rotor. The solution can be written as

dx - = d- (5.9)
dt dy'

d y _d &
=i - d + V sin(at), (5.10)dt dx

where T is the line rotlet stream function given by equation (2.20). Equations (5.9) and (5.10)

show that in the quasi-steady limit the time dependence can be almost removed by a change

of reference frames. The solution in the laboratory frame can be obtained by subtracting the

periodic velocity term in equation (5.10) and by imposing the appropriate time dependent

translation on the line rotlet origin. The solution is given by equation (2.20), along with the

66



translation of instantaneous origin coordinates for the rotlet equation

Yo - V sin(aT)dT = yo - V[1 - cos(oet)]. (5.11)

Equation (5.11) translates every point of the steady rotlet solution with the same oscillatory

translational motion of the rotating cylinder. This equation states that for sufficiently small

amplitude and frequency of oscillation the inertial effects in the fluid are nil. Essentially, the

cylinder is moving slowly through a viscous fluid and the flow field at any time t is a replica

of the flow field of a previous time; the only property changing in the flow field is the position

of the cylinder. The unsteady solution considered neglects the flow field resulting from the

translation of the cylinder alone which was found to have no effect on the shear stress field at

the boundary.

Associated with the linearity of the problem is that the pressure and shear stress will move

quasi-steadily with the periodic forcing introduced by the translating cylinder. This result and

the separation criteria developed by Haller, in turn allows determining the location of separation

by oscillating the wall shear stress profile with exactly the same time dependence of the cylinder

motion [10]. Information only at the boundary wall is required to determine the location of

flow separation.

5.2.2 Experimental results

The parameters varied in the periodic flow experiments were the amplitude and frequency of

oscillatory translation. The angular velocity, w, and distance of the cylinder from the wall, c,

were kept constant with values of 60 rad/sec and 2.5 cm respectively. The results obtained

in the steady regime described in section 4.2, indicate that for small Re numbers W does not

affect the separation point, and therefore we also expected that W would not play a role in the

location of separation for the quasi-steady flow at low Re.

The translational motion utilized was of the type

A
y = [1 - cos(at)], (5.12)

2

where A is the peak-to-peak amplitude for oscillation, ce the oscillatory frequency, and y is
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Figure 5-1: Time sequence of fixed separation in periodic flow. The peak-to-peak amplitude
of oscillation A = 3 cm, the oscillatory frequency a = 2 rad/sec. Images are taken at the
beginning and at the end of oscillatory motion of the cylinder. Time progresses from left to
right and from top to bottom.

aligned with the long axis of the tank. The resulting Re is 0.46 and the Sr number varied between

0.2 and 2. The separation point was visualized by means of streak lines of dye introduced at

the boundary wall. There was an uncertainty of ±1 mm when measuring the location of the

separation point due to the finite width of the material line of dye, as shown in figure 4-3. The

temperature fluctuations of the experiments resulted in a 5 % change in the Re number through

the variation of viscosity

A time sequence of the flow visualizations is presented in figure 5-1. The peak-to-peak

amplitude of oscillation A = 3 cm and the oscillatory frequency a = 2 rad/sec. Flow separation

occurred at a fixed location on the wall. The location of separation was 5.0 cm from the origin

with an uncertainty of t1 mm. In frame 5-1(a) one can observe the cylinder at the origin
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Figure 5-2: Experimental data obtained for fixed separation in a periodic flow using dye visu-
alization.

of the oscillation. Dye starts to be drawn into the separation location, following the unstable

manifold or separation profile. Many periods later, frames 5-1(b) to 5-1(f) show the back and

forth motion of the cylinder. Flow separation takes place at a fixed position while the separation

profile is time dependent. The angle of the separation profile is steeper when the cylinder is at

the origin than when the cylinder has reached the end of its forward oscillation.

Measurements of the fixed separation point location for a range of parameters based on dye

visualization are presented in figure 5-2. The peak-to-peak amplitude of oscillation A was varied

from 1 cm to 3 cm, and a between 0.2 rad/sec to 2.5 rad/sec. Because of limitations in the

maximum attainable speed of the mechanical stage to translate the cylinder, a measurement

of the separation point in an oscillatory motion with A = 3 cm and a = 2.5 rad/sec could

not be acquired. The location of fixed separation moved away from the cylinder origin as A

was increased, and for a set value of A the separation point was insensitive to the frequency

of oscillation. This result suggests that the shear stress field in the experimental flow was the

same for different oscillatory frequencies and moved quasi-steadily, hence inertial effects did not

play a role.
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5.2.3 Comparison of flow visualization experiments with numerical simula-

tions

Material lines and streak lines separating from the boundary wall were visualized in a numerical

simulation utilizing the periodic solution for the rotor-oscillator flow given by equations (5.9)

through (5.11). Additionally, after implementing the criteria developed by Haller the point of

flow separation and the slope of the separation profile were determined from the shear stress

and pressure distribution on the wall obtained from the Hackborn's solution.

The material line and streak line tracking was performed using information of the entire flow

field, while implementing the separation criteria requires information along the boundary wall

only. Indeed, according to equation (1.1) locating the separation point in the rotor-oscillator

periodic flow requires only determination of the shear stress distribution over the wall. More

specifically, at the limit of low Re and Sr the rotor-oscillator flow field at any time is a replica of

its steady state flow field, but displaced along with the oscillatory cylinder. Thus, the flow field

of the experiment moves quasi-steadily and follows the time dependent forcing of the cylinder.

Therefore, determining the shear stress profile in steady state provides enough information to

obtain the time dependent shear and determine the separation point via Haller's criteria.

Figure 5-3 shows a time sequence of a material line and streak lines separating from the

wall, along with the location of the separation point and separation profile determined via Haller

criteria. The simulations in figure 5-3 were performed utilizing Hackborn's solution. To perform

these simulations a peak-to-peak amplitude of oscillation A = 2 cm, oscillation frequency ce = 5

rad/sec, and distance of the cylinder from the wall c = 2.5 cm were chosen. The streak lines are

shown in green, the material line in red, the instantaneous zero skin friction streamline in black,

and the predictions using Haller's criteria in blue. The simulations indicate that both material

line and streak lines reveal the same location for the fixed separation point under unsteady

conditions. Haller's criteria captures the location of separation very accurately. Furthermore,

the separation profile agrees at first order with the separation profile observed in simulation.

The profile computed via Haller's criteria is a time-dependent linear approximation of the

unstable manifold depicted by the material lines and streak lines. The frequency of oscillation

for the angle of separation corresponds to the frequency of the oscillatory translational motion

of the cylinder.
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Figure 5-4: Comparison of the experimental results obtained by flow visualization and numerical

simulation for the separation point in a time-periodic flow using criterion given by equation

(1.1).

To compare the location of separation in the experiments with the numerical models, the

flow simulations were performed utilizing the same Re and Sr for the experimental results shown

in figure 5-2. The criteria developed by Haller used as input the shear stress data generated

from the FLUENT model. Figure 5-4 summarizes the results. There is a close agreement

between the experimental visualizations and the results from Haller theory, with agreement

being typically better than 5 % over the range of Strouhal numbers investigated

A direct comparison between streak lines visualized in an experiment and a numeric sim-

ulation is shown in figure 5-5. The parameters for simulation were peak-to-peak amplitude

A = 3 cm, oscillatory frequency at = 2 rad/sec, and distance of the cylinder from the wall c =

2.5 cm. The numerical and experimental images are taken at same times. The blue lines in

the pictures indicate the separation point and separation profile obtained via equations (5.4)

and (5.5), utilizing shear stress and pressure generated numerically. Figure 5-5 shows that the

quasi-steady approximation for the rotor-oscillator flow is valid for time periodic flows at low

Re and Sr numbers, as in the vicinity of the wall, numerics and dye visualization revealed that

fixed separation occurs at the same location within ±1 mm. Dye visualization shows that as
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the cylinder reaches the origin of its oscillation the separation profile becomes steeper in the

experiment, this behavior is not captured by the numerics. However, as the cylinder reaches the

far end of its oscillation, the separation profile from numerics and visualization are qualitatively

similar. The difference in shape of the separation profile could be attributed to inertia effects

neglected in the simulations or three-dimensional effects in the dye visualizations.

5.3 Fixed separation in aperiodic flows

In the theory developed by Haller, the existence of fixed separation points is not limited to

periodic flows, but extends to aperiodic flows that contain a unique zero-mean skin friction

point as time progresses [10]. To investigate this in the rotor-oscillator flow, an aperiodic flow

was introduced using a random translational motion for the cylinder along the long axis of the

tank. Numerical simulation and experiments in this work demonstrate that fixed separation

can be encountered in aperiodic flows as predicted by Haller [10].

5.3.1 Experimental results

The random motion imposed along the translational axis of the cylinder was generated using

the commercial package LabVIEW. In order to generate the random motion, a number between

-1 and +1 was chosen with equal probability, and multiplied by half the maximum peak-to-peak

amplitude, resulting in a new position of the cylinder relative to the origin (the position of the

cylinder at time t = 0). The cylinder then made a move from its original position to the newly

assigned location. In this way, the translational motion had a zero mean displacement due

that the back and forth random cylinder motion around origin. All cylinder moves had the

same duration, therefore each move had a different velocity since the new cylinder location was

generated at random. In figure 5-6 a typical position profile of the cylinder translation along

the tank is presented.

The main variable adjusted in the experiments was the maximum amplitude for the cylinder

translation. As in the periodic experiments, the distance of the cylinder from the wall was kept

constant at c = 2.5 cm and the angular velocity at w = 60 rad/sec. The different peak-to-

peak amplitudes for the cylinder translation ranged between 1 cm and 3 cm. Because each
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experiment was generated with a distinct random pattern, experiments were repeated three

times for each translational amplitude to ensure that the separation point was not dependent

on the nature of the random motion. The location of the separation point was recorded utilizing

dye visualization, with a characteristic error of +1 mm due to the finite width of the dye line.

The typical duration of each run was approximately 2 minutes, long enough to remove the

transients and observe fixed separation.

The data points collected from the experiments are shown in figure 5-7. As the amplitude of

the tests was increased, the location of fixed separation moved away from the origin, as observed

in the time-periodic experiments. Although each of the three experiments performed with the

same amplitude utilized a different random sequence, the location of the separation point was

the same and remained fixed over the time span of the experiments. The experimental results

indicate that the random forcing results in a unique point of zero skin friction at the boundary

wall, and this is the point where separation occurs.
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5.3.2 Comparison of flow visualization experiments with numerical simula-

tions

Because of the small Re and Sr, a quasi-steady approximation was applied. In this flow the Re

is defined as in equation (2.5), the Sr is defined as

Sr =- (5.13)
r 2 WT

where c is the distance of the cylinder to the wall, r is the radius of the cylinder, W is the angular

velocity, and Tr is the typical time scale for the cylinder random translation. A typical value

for -r is 2 sec, thus the Sr is of the order of unity showing that the quasi-steady approximation

still can produce meaningful results. Using numerical simulation, the point of separation was

determined by applying Haller's criteria, using as input the numerical shear stress generated

in FLUENT. The comparison between the experimental measurements of the separation point

under random forcing with different amplitudes and the separation points determined using

Haller's criteria is presented in figure 5-8. Both measurements differed in less than 2 %.
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Figure 5-8: Comparison between separation point measured by dye visualization and its pre-
dicted value employing Haller's criteria applied on FLUENT generated shear stress.

Particle tracking in the flow field under a random forcing was obtained using the quasi-

steady approximation for the rotor-oscillator solution developed by Hackborn [6]. In similar

fashion to the periodic flow solution, it was assumed that as the cylinder translates the inertia

effects are negligible, and at every time step the flow field is a replica of the field at a previous

time. Mathematically, the flow solution is translated with the equation

y = yo - r(t) (5.14)

where y is the long axis of the tank, yo is the initial position, and r(t) is the random motion

term.

Figure 5-9 shows a comparison between the experimental material line dye visualization

and numerical material line simulation obtained utilizing Hackborn's solution. The blue line

in the experimental pictures uses Haller criteria with shear stress and pressure generated by

the FLUENT model; the instantaneous zero skin friction streamline is shown in black. Haller's

criteria accurately captures the point of fixed separation. In the same manner as the periodic

flows the separation profile is time dependent, the first order approximation is shown in figure
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5-9. The predicted separation profile is slightly flatter than the profile drawn by the dye.

Simulation indicates that the instantaneous zero skin friction streamline position changes in

similar fashion as the position of the cylinder, yet separation takes place in a fixed position

strengthening the notion that in unsteady flow the time history of the shear stress determines

flow separation.
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Chapter 6

Moving separation in unsteady flows

In chapter 5 fixed separation in unsteady flow was investigated. Particularly, fixed separation

points were encountered in periodic flows with frequencies of oscillation a = 0.1 rad/sec or

higher. Additionally, a flow field generated by a random motion of the cylinder was considered.

The flow admitted a location on the wall where the mean skin friction was zero at all times,

resulting in fixed separation.

In the limit of infinitesimally small frequency for a periodic flow, the oscillatory time scale

becomes dramatically larger than the time scale at which flow ejection from the wall occurs,

suggesting that the separation point could move along the boundary. In the case of the random

flow experiments, the random motion of the cylinder could be superimposed on a slow drift in

one direction, in which case there would not be a point on the wall with zero mean skin friction

for all times, hence, fixed separation would not occur. In this scenario too, the separation

structure could move along the wall, following the slow drift. The work presented in the

current chapter investigates the existence of separation points that move along the boundary

wall, focusing on simulations and dye visualizations of a slow periodic flow and random flow

with a linear drift.

6.1 Theoretical treatment of moving separation

As discussed in chapter 1, in moving separation the separation point moves as time advances.

Associated with the moving separation point is a moving separation profile that is modeled
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using a finite time invariant manifold [9] [10]. The criteria developed by Haller determines the

separation point -y at a time to using the following equations

y(to) = 1[7(to - Tm(to), to) + y_(to - Tm(to), to)], (6.1)

where -y+ and -y_ are effective separation points obtained from

\ Uf ( fef , 0 , 1 dT = 0 , (6 .2 )
to PC7ef f, 0, 7)

for the time intervals

7+s(t, to) Sup 'yeff (S, to), -_ (t, to) = inf Yeff (s, to), (6.3)
sE [t,to) SE [t,to)

and Tm is a time scale defined later. Then, the spatial interval containing the separation point

is

65(t, to) = '+(t, to) - Y_ (t, to) (6.4)

which must satisfy the condition

1 ~to
-6(to - Tm(to), to) max IuXy (x, 0, t)Idt = 1, (6.5)
2 to-Tm(to) XEI(to-Tm(to),to)

max uXY (x, 0, t) < 0, t E Ito - Tm(to), to], (6.6)
xEI(to-Tm,(to),to)

where Tm(to) is the time scale that distinguishes the unstable manifold that remains close to

the separation point for the longest time. The slope of the separation profile is determined via

L.h Tm (to) [yY(Yeff,0, r)+3uxyye, 0, T)f[Uy(tYeff,0, s)ds dT
A (to) = 0_, .to (6.7)

3 jt X bz~eff , 0,1 r) dT

6.2 Moving separation in slow periodic flow

The experiments in this section concern separation in a low frequency oscillatory flow. Experi-

ments were performed at a frequency a = 0.01 rad/sec and both flow visualization and shear

stress measurements were taken. In order to visualize the location of separation, streak lines
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were initialized at the boundary wall. The experimental results were supported by numerical

simulations, utilizing Hackborn's analytic solution to model the dye visualization and FLUENT

to compare the shear stress measurements.

Images of the slow oscillatory flow are shown in figure 6-1. A peak-to-peak amplitude

A = 3 cm, separation of the cylinder from the wall c = 2.5 cm, and angular velocity w = 60

rad/sec were considered. A quasi-steady approximation for the Hackborn solution was utilized

to simulate the flow field and separation criteria given by equations (6.1) through (6.7) were

applied to the numeric simulations. The separation point and slope calculated using Haller's

criteria are indicated in blue while the instantaneous zero skin friction streamline is shown in

black. The oscillatory motion starts in frame 6-1 (a) with the cylinder moving towards the right.

In frame 6-1(b) the cylinder reaches one end of the oscillation and starts its journey back to

finish in frame 6-1(d). As time advances, the separation location moves along with the cylinder.

Haller's criteria follows the zero skin friction point closely, however the numerical visualizations

indicate that the point where the streak lines are ejected differs on the order of 1 mm from

the moving separation criteria. Although this is a periodic flow and in theory we have fixed

separation, for practical purposes, the observed point of separation is moving.

In addition to the visualizations, shear stress measurements were taken during the slow

oscillatory motion. The shear stress measurements were acquired utilizing one hot wire, whose

calibration procedure is described in chapter 3. As discussed in section 3.2, the time response

of the sensing element allows taking measurements in periodic flows with small oscillatory

frequency a, but not for large values of a. In figure 6-2 the time dependent shear stress at

a fixed position in the wall is shown. The time dependent experimental shear measurements

showed agreement to better than 15% when compared to numerical simulations.

We applied Haller's criteria to both the anemometer shear stress measurements as well as

to FLUENT generated shear profiles. In figure 6-3 a comparison between numerical and exper-

imental prediction of the separation point is shown. Experimental shear stress and numerical

shear stress resulted in moving separation points that were on the order of 1 mm apart.

In addition to the shear measurements, the dye visualization allowed direct measurement of

the separation point with an accuracy of 1.5 mm because of the finite width of the separation

profile. In figure 6-4 a comparison between the position of the zero skin friction point and the
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Figure 6-1: Comparison between numeric and dye visualization of slow oscillatory flow. The
frequency a = 0.01 rad/sec, and the amplitude of oscillation is A = 1.5 cm. The numerical
simulations utilized the Hackborn solution.
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Figure 6-2: Time dependent shear stress experimentally measured and computed utilizing FLU-
ENT.

location of flow separation determined from shear measurements and dye visualization is shown.

The moving separation point determined from experimental shear stress via Haller criteria and

the dye visualizations closely follow the zero skin friction point. The experimental measurements

differ from the zero skin friction point by 1.5 mm. Constraints such as sensor resolution and

finite width of the dye do not allow better accuracy in the results. At the beginning of the

flow motion, Haller's criteria does not possess enough information to determine the point of

separation, as indicated in figure 6-5. Conditions (6.1) through (6.6) fail to be satisfied due to

the lack of information regarding the flow dynamics. Because the shear stress values measured

with sensors differ from those simulated by FLUENT, the time at which the first separation

point can be computed is not the same for both methods. This is also illustrated in figure 6-5.

In chapter 5 identical parameters were used for the periodic flows studied, however, a larger

frequency for oscillation resulted in fixed separation. Thus, visualizations suggest that there is

a transition from fixed separation to moving separation as the oscillatory frequency is reduced.

Specifically, if the frequency of the oscillatory motion is incrementally reduced, the time scale at

which fluid is ejected from the wall becomes more important than the time scale of unsteadiness
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Figure 6-3: Moving separation point computed from shear stress sensor and FLUENT shear

field via Haller's criteria.

or period of oscillation. In theory, the criteria for fixed separation still applies for the slow

oscillatory motion; however, as a goes to zero the resulting unstable manifold aligns closer to

the wall, implying that if the dye were infinitely thin, it could be possible to distinguish a fixed

separation point. In practice, on the length scales we are considering, the point of separation

moves along the boundary wall. Thus, Haller's moving separation criteria is better suited for

capturing the physical phenomena.

6.3 Moving separation in aperiodic flows

In the previous section moving separation in a slow periodic flow was discussed. The results

showed that the separation point closely followed the zero skin friction point in a slow periodic

flow. In this section, moving separation in an aperiodic flow is investigated by means of numer-

ical simulation and dye visualization. More specifically, the flow field resulting from a random

fluctuation imposed over a linear translation of the cylinder is considered.

The type of translational motion and the rotational rate of the cylinder determine the

nature of flow separation on the boundary wall. Previous results indicated that the flow field
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Figure 6-4: Separation point measured from dye visualization and from shear measurements
compared to the position of the zero skin friction point.
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Figure 6-5: Onset of flow motion provides insufficient information to utilize moving separation
criteria.

generated by a purely random translational motion of the cylinder induces a fixed separation

point. This result is expected, since the translational motion had a zero-mean displacement

that also resulted in a zero-mean skin friction point for all times. In the present study, however,

the random motion of the cylinder is superimposed on a linear drift, producing a non-zero mean

skin friction point and hence moving separation. The type of translational motion used by the

cylinder to induce moving separation is illustrated in figure 6-6.

By means of dye visualization, the random flow plus linear drift was observed in the rotor-

oscillator flow. Random fluctuations in the motion were introduced every 2 seconds, and the

linear drift had a rate of 0.0625 cm/sec. Dye visualization showed that the separation point

moved along the wall, following the slow linear drift of the cylinder. The random fluctuations

had almost no effect in the position of the separation point. In figure 6-7 images of the separation

profile are shown. The motion of the cylinder lasts approximately 90 seconds. Each image is

taken at nearly 30 seconds intervals. In frame 6-7(a) the cylinder has moved from the origin for

30 seconds, approximately 30 seconds later the cylinder is in frame 6-7(b), finally the cylinder

stops its motion in frame 6-7(c). The separation point moved seemingly equal distances at each
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Figure 6-6: Motion of the cylinder as time advances. The trajectory is generated by adding a
random signal of zero mean and a linear profile.

frame, suggesting that the linear drift was determining the motion of the separation point.

Building upon observation of the dye visualization we investigated separation numerically,

adopting a quasi-steady approximation of the flow field. In similar fashion to chapter 5, the shear

profile was obtained using FLUENT commercial software. The quasi-steady approximation for

the time dependence results in the instantaneous zero-skin friction streamline moving in the

same manner as the cylinder driving the flow.

There were three important time scales to consider in this arrangement: the linear drift

time scale, the random time scale, and the rate of rotation of the cylinder. The first two time

scales relate to the unsteadiness, and the latter relates to the ejection rate. In similar fashion

to the slow periodic flow, a slow linear motion will result in the location of separation closely

following the zero skin friction point. However, if random perturbations are introduced, it is

expected that the zero skin friction point will fluctuate significantly about the separation point.

Initially, if we consider random fluctuations occurring on a time scale comparable to that of

the linear drift, it is expected that separation closely follows the zero skin friction point. This

behavior is illustrated in figure 6-8. The random perturbations were introduced every 5 seconds,
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Figure 6-7: Flow separation in a random flow with linear drift. The separation of the cylinder
from the wall c = 2.5 cm.
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Figure 6-8: Moving separation in flow driven by random fluctuation over a linear drift. The
random perturbations are introduced every 5 seconds.

and had a maximum peak-to-peak amplitude of 1.5 cm. Utilizing the moving separation criteria

given by equation (6.1) through (6.6), the location for flow separation was shown to follow closely

the zero skin friction point. As the frequency of random perturbations increased, the separation

point started to distance itself from the zero skin friction point. In figure 6-9 the separation

point in a flow field with random perturbations occurring at a higher frequency is shown. The

random fluctuations occurred every 0.1 seconds and the maximum amplitude was again 1.5

cm. As expected, the motion of the separation point receded from the zero skin friction point.

In figure 6-10 a closer view of moving separation is shown. The average displacement of the

moving separation point in figure 6-9 is 3.6 mm, differing significantly from the results obtained

for low frequency random oscillation shown in figure 6-8 where the average displacement of the

separation point is 5.6 mm.

In order to illustrate the effect of the time scale of the random perturbations, a study of the

separation point under random fluctuations introduced at different time scales was performed.

For all the simulations, the maximum displacement of the random motion was 1.5 cm. In figure

6-11 the results are presented. On the y axis the mean displacement of the separation point is
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Figure 6-10: Closer look at the separation point in the random+linear driven flow.
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Figure 6-11: Mean displacement of the separation point for random fluctuations introduced at
different time scales.

shown and the mean displacement of the zero skin friction point is 6.7 mm. As the time scale

for the random fluctuations was made smaller the moving separation point did not follow the

zero skin friction point as closely. The simulations started with random fluctuations entering at

a frequency of 0.2 Hz resulting in a separation point mean displacement of 5.6 mm; increasing

the frequency to 100 Hz damped the mean displacement of the separation point to 3.6 mm as

shown in figure 6-11.

As the frequency was increased, the Sr number became larger and inertial effects became

important so that a Navier-Stokes solution is necessary to obtain accurate results in the simu-

lations. The numerical simulations employed Sr between 0.2 and 110. In figure 6-11 the points

corresponding to a mean displacement of 0.36 cm and 0.35 cm correspond to a Sr of 11 and 110

respectively, breaking the quasi-steady approximation.

The flows investigated in this chapter show moving separation structures along the wall.

The slow oscillatory motion in theory admits a zero mean skin friction point as time goes

to infinity, but in practice it has been shown that the separation structure can be accurately

followed using the moving separation criteria. In the case of the random flow plus linear drift,
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it was demonstrated that in the limit where the random fluctuations occur at very small time

scales compared to the time scale of the linear drift, the moving separation point tends to follow

the underlying linear motion of the cylinder. On the other hand, if the both time scales are

comparable, the separation point follows closely the instantaneous zero skin friction point.
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Chapter 7

Conclusions

Unsteady separation has been an outstanding issue that has received attention from theoreti-

cians as well as experimentalists over the last century. Nevertheless, a precise definition and

thorough understanding of separation in unsteady flow is still a source of debate. In the present

work, we have embraced a Lagrangian approach to fluid separation and have investigated the

recently developed theory by Haller [10]. Specifically, separation experiments and numerical

simulation were performed using the so-called rotor-oscillator flow [8]. Flow visualization and

shear stress measurements were acquired through the experiments, whilst numerical simula-

tions were utilized to corroborate the experimental observations. In the following paragraphs a

summary of the findings of this research is presented.

The experimental investigations verified the existence of well defined separation structures

in unsteady flow. More specifically, fixed separation points and moving separation points in a

viscous flow with different types of time dependence were encountered, as predicted in Haller's

theory [10]. The separation criteria successfully captured the trend of the separation struc-

tures, demonstrating that fluid separation in unsteady flow can be better comprehended from

a Lagrangian perspective. In addition, the notion of weighting the shear stress, rather than

looking to the instantaneous zero skin friction alone to determine separation, was emphasized

in experiments containing fixed and moving separation structures.

Fixed separation, this being separation that originates at a fixed point on the boundary,

was investigated in flow fields with two types of time dependence: periodic and random. In

both type of flows, the existence of a unique stationary point where flow ejection occurs at
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all times was verified employing dye visualization and numerical simulation. Experimentally,

dye visualization of the flow allowed direct measurement of the separation point. In order

to find the separation point, streak lines were placed at the wall vicinity and the point of

separation was measured with an accuracy of +1 mm. The rotor-oscillator experiments in the

time-periodic flow indicated that for a fixed amplitude of oscillation the location of the fixed

separation point is independent of the frequency of oscillation, provided that the frequency

does not approach to zero. By assuming a quasi-steady behavior of the flow field, streak lines

were simulated for the time-periodic experiments. Additionally, the shear stress profile on

the wall was simulated to apply Haller's fixed separation and determine the separation point.

The location of the separation point in the periodic flow based on streak line visualization,

experimental or numerical, agreed with the predicted value by Haller's criteria within 4 %.

The theory developed by Haller demonstrates that a flow field containing a point on the

boundary with vanishing mean skin friction for all time admits a fixed separation point. There-

fore, fixed separation is not limited to periodic flows, or a flow with a well defined time de-

pendence. Indeed, the theory predicts that fixed separation can occur for random motion with

zero-mean displacement in the rotor-oscillator flow. In a similar manner to the investigations

in periodic flows, the location of the separation point was determined via dye visualization and

numerical simulation for a random flow. Physically flow separation was observable using either

streak or material lines: the former was utilized in the periodic flow studies while the latter

was implemented in the random flow. By means of a quasi-steady approximation of the flow

field, the shear stress was simulated and Haller's criteria for fixed separation was applied to the

data. The predictions utilizing the fixed separation criteria agreed closely with the experimental

observations, typically to within 4 % accuracy.

A separation structure that moves along the wall as time progresses is termed moving sep-

aration. This type of separation was investigated in two environments: in a slow periodic flow

field, and in a random flow field with slow translational drift. The periodic flow was charac-

terized by its highly quasi-steady behavior, due to its small frequency of oscillation. In this

scenario, Haller's criteria for moving separation was applied to both numerically-generated and

experimentally-measured shear stress. In the case of the experimentally measured shear, a hot

wire anemometer was placed in the wall and utilized to obtain time-dependent measurements.
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The numerical simulation followed the quasi-steady approach from the fixed separation studies.

Thus, moving separation was determined with both techniques and the resulting locations for

fluid separation agreed within ±1 mm. The position of the separation point via Haller's criteria

differed by less than 5% from the observed separation, demonstrating accuracy and feasibility

of the method.

Continuing the study of moving separation, we then considered a flow field that does not

contain a particular location on the wall where the mean skin friction vanishes for all times. For

this flow the motion of the cylinder comprised random motion plus linear drift. This flow field

was investigated predominantly by numerical simulation, although supporting experimental

visualizations were performed. In order to perform the numerics, random motion with Sr

between 0.2 and 110 were considered. By generating the shear stress numerically, Haller's

criteria was applied to random motions with increasing Sr and a fixed amplitude of oscillation.

Basic flow visualization was undertaken to qualitatively understand the nature of the moving

separation point. As expected, for a cylinder motion where the random fluctuations occur at

small time scales compared to the linear drift, the separation point moves along the wall at

a similar rate as the linear drift. The general trend showed that as the random fluctuations

occurred on shorter time scales, they became less important and the separation point followed

the linear drift more closely. As the time scale of the random fluctuations approached zero, the

experience obtained from flow visualization suggests that there should be nearly no fluctuation

of the separation point around the linear drift motion. However, the random component of the

moving separation points in the numerical simulations were not fully damped, disagreeing with

the experimental observations.

The investigations demonstrated that unsteady flows admit points of separation that can

remain stationary or move along a wall, depending on the flow conditions. What is more, ex-

perimental observations indicated that there are length scales and time scales that determine

whether we perceive separation as fixed or moving. Specifically, in the rotor-oscillator experi-

ment there are two important length scales: the unsteadiness length scale, x, and the ejection

length scale x,. The first length scale comes from the motion of the zero skin friction point

along the wall, which is determined by the translational motion of the cylinder in this study,

whilst the second length scale is determined by the distance from the wall at which the sepa-
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ration structure encounters the main flow field; for example, in a boundary layer the ejection

length scale is the boundary layer thickness. Additionally, there are two important time scales:

the unsteadiness time scale, t,, and the ejection time scale, te. In the rotor-oscillator flow

the unsteadiness time scale is defined by the frequency of translational motion of the cylinder,

whilst the ejection time scale is mainly determined by the rotational velocity of the cylinder.

The afore mentioned characteristic parameters form the dimensionless numbers

Sx = X, (7.1)
Xe

St = -t (7.2)
te

Equations (7.1) and (7.2) can be utilized to determine a priori the type of separation in the

flow. In figure 7-1 the suggested criteria to determine whether separation is fixed or moving

are shown. The first step is to determine if the length scale at which ejection is occurring is

smaller or greater than the characteristic length scale of unsteadiness. A separation structure

will appear fixed if Sx < 1. In the rotor-oscillator arrangement this is equivalent to a flow

where the translational motion of the cylinder is sufficiently small, such that independent of

the motion frequency separation at the wall will appear fixed. If the translation of the cylinder

is large, separation can be fixed or moving depending upon the time scales and nature of the

flow, as indicated in the right branch of figure 7-1. Fixed separation will result if the ratio

St < 0(1) and there exists a location on the boundary with zero-mean skin friction for all

times, this is the case of the periodic flow and random flows considered in chapter 5. However,

if there is not a point on the boundary with zero-mean skin friction, the type of separation can

not be determined. An example of a flow that will satisfy Sx > 1, St < 0(1), and no zero-mean

skin friction point on the boundary would be that resulting from a cylinder translating to a

distance far from the origin in an infinitesimally small time; there is not evidence to ponder that

separation is moving or is not occurring at all. Moving separation is guaranteed if St > 1. This

is confirmed in chapter 6 for slow periodic flow and random-drift flow, in which the cylinder

translation is slow compared to the ejection rate.

Taking the view that the flows studied clearly show either fixed or moving separation,

utilizing the dimensionless numbers defined by (7.1) and (7.2) the results obtained can be
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St <=0(1)

Zero-mean No zero-mean
skin friction skin friction

Fixed separation Fixed separation

St >>1

Moving separation

Figure 7-1: Chart indicating the type of separation according to the characteristic length and
time scales of the flow.
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Length scale Time scale

Xe = 3 mm Ue =(a)2 rw, te = e-

Table 7.1: Unsteady and ejection length and time scales for experiments.

Fixed separation Moving Separation
Periodic flow Slow periodic flow
A > xe 1-3 cm A > xe 3 cm
a 0.5- 2.5 rad/sec a 0.01 rad/sec

St 7_T~eW27rx 2
_= _2-10 St = 2 540

Random flow Random plus drift flow

B > r 1-3 cm C > r 6 cm
r 1.5 sec 90 see

t = 7" 1.3 St 78
for all exp. w = 60 rad/sec, c = 2.5 cm and x, = 3 mm.

Table 7.2: Summary of the flows studied according to separation type.

categorized. In table 7.1 the characteristic length and time scales are presented. Notice that the

ejection length scale can not be easily quantified since there is ambiguity in defining the distance

from the wall where the separation structure becomes the main stream. The experiments

indicated that the ejection scale is of the order of millimeters, thus, from observation we estimate

this value to on the order of 3 mm. The typical translation of the cylinder in the experiments

is of the order of centimeters, hence, the type of separation is determined by the right branch

of figure 7-1 since Sx > 1. The ejection time scale, te, is defined as the ratio of the ejection

length scale, xe, and ejection velocity, ue. Because we are in a Stokes flow, a quadratic decay

of the velocity as we move away from the cylinder is assumed.

Following the right branch of the chart in figure 7-1, the type of separation observed in

the rotor-oscillator experiments is presented in table 7.2. In table 7.2, oe is the frequency of

oscillation of the periodic motion; -r, the time scale for the random motion without drift and ,

the time scale for the linear drift of the random plus drift motion. Representing the relevant

length scales are: A, the peak-to-peak amplitude of oscillation for the periodic motion; B

the maximum peak-to-peak amplitude for the random motion and C the displacement of the

random plus linear drift motion. Fixed separation and moving separation are distinguished by

the magnitude of St.
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The experimental and numerical results demonstrated the ability to predict the location of

the separation point in unsteady flow and distinguish fixed from moving separation. However,

errors originating in the dye visualization method and sensor technology for shear stress resulted

in small discrepancies between experiments and theory. Inherent to dye visualization is the

addition of mass to system and the finite width of the dye when taking measurements. By

improving the visualization technique a greater resolution will be achieved; methods which are

non-intrusive should be considered. Preliminary review of the visualization methods available

indicate that the most promising option is utilizing Molecular Tagging Velocimetry (MTV) [121.

In regards to the shear stress measurements, it was not possible to directly confirm that the

location of the zero skin friction point is not associated with the location of flow separation.

The hot wires available allowed accurate measurements in steady and highly quasi-steady flows,

such as the slow periodic flows. Nonetheless, the low heat transfer rate from sensor to fluid,

due to the slow flow velocities, deterred shear measurements in flows with high Sr, such as

the high frequency periodic and random flows. Fundamentally, the working principle of hot

wires would require a sensing element order of magnitudes smaller than the ones utilized for

the current work in order to measure shear stress in the periodic and random flows. Future

efforts in measuring shear stress should explore alternative technologies that do not rely on heat

transfer to the fluid as working principle for measurement. A possible alternative is the use of

optical shear stress sensors [4].

Moving separation in unsteady flows with arbitrary flow dependence, such as the random

plus drift flow, were not investigated in detail. The experimental observations and numerical

simulations suggested that the Haller's criteria for moving separation qualitatively indicated

the right trends. However, a degree of accuracy achieved in other flow types was not attained.

In order to further validate Haller's ideas, it is necessary to further pursue experimentally and

theoretically moving separation within flows of arbitrary time dependence.

The type of flows we have studied demonstrate that flow separation in an unsteady flow

strongly depends on flow quantities on the wall weighted over time. As such, the instantaneous

zero skin friction point by itself is clearly an erroneous measure of the location of unsteady flow

separation. The experimental investigations verified the existence of fixed separation points

and moving separation points in a viscous flow with different types of time dependence. More
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specifically, it was demonstrated fixed separation occurs in flow fields at the location on the

wall where the mean skin friction vanishes for all times. On the other hand, flow fields that

do not possess a unique point with a zero-mean skin friction can admit a separation point that

moves. Haller's criteria allowed concise and accurate investigation of flow separation. The theory

promises a very robust approach to enlighten the mechanism and factors affecting separation in

unsteady flow. By following Lagrangian ideas for separation, there exists tremendous potential

for further theoretical tuning and fresh and creative experimental work.
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