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ABSTRACT

Mammalian development extends and exploits signaling pathways that function exclusively in
axon guidance in lower organisms. This emerging paradigm employs complex expression
patterns of expanded protein families to achieve the complexity and specificity required in
mammalian development. For example, the Drosophila axon guidance ligands, Netrin and Slit,
have recently been implicated in the development of several mammalian organ systems. While
the characterization of extra-neuronal functions of ligands and receptors has emerged, the
conservation of intracellular signaling pathways remains unclear. The Ena/VASP protein family
is a common downstream effector of multiple axon guidance signaling cascades. The analysis of
the Ena/VASP triple-null mouse allows us to determine the extent to which these intracellular
cascades have been conserved in the development of the mammalian nervous system as well as
other organs. Within the nervous system, we have uncovered novel roles for Ena/VASP in the
initiation of axon extension, guidance of non-commissural axons, and neuronal migration.
Outside the nervous system, we have observed a novel role for Ena/VASP in blood vessel
physiology. Interestingly, several developmental pathways for which axon guidance receptors
have been implicated appear to develop normally in Ena/VASP triple-null embryos. Future work
in Ena/VASP developmental biology will analyze the specific roles of Ena/VASP splice
isoforms and unique functions of individual Ena/VASP family members. I have developed a
lentiviral system for the creation of mouse transgenics including RNAi knockdowns that can be
applied to address these questions.

Thesis Supervisor: Frank Gertler
Title: Associate Professor of Biology
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PREFACE

The work described within this thesis consists of two fairly distinct projects: the development of

a lentiviral system for the induction of RNAi and an exploration into the biology of Ena/VASP

proteins. I intend to treat these topics independently as separate chapters within this thesis. In

terms of organization, I will present an introductory chapter followed by two chapters discussing

my work on Ena/VASP biology. I will follow with an introductory chapter on RNAi and a

chapter describing my work on lentiviral RNAi transgenesis. I will conclude with a single

chapter detailing conclusions from both fields of work and proposing a possible future set of

experiments that would employ the lentiviral system that I have developed (or a derivative

thereof) to further the analysis of Ena/VASP biology.
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Chapter I

Ena/VASP Biology: Roles Within and Outside the Nervous System
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Introduction

Genetic approaches in the lower metazoans D. melanogaster and C. elegans have

uncovered a wealth of ligands, receptors, and downstream signaling molecules that function in

axon guidance. Biochemical, cell biological and additional genetic approaches have described

how these molecules exert their effects by regulating the assembly, disassembly and architecture

of the actin cytoskeleton. By regulating the actin cytoskeleton, these molecules exert control on

the processes of membrane protrusion and withdrawal, the fundamental events that govern cell

morphology, polarity, and directed motility. The events downstream of ligand/receptor

interaction that result in alterations of the actin cytoskeleton are extraordinarily complex. A

single receptor may independently activate or repress several different pathways leading to actin

rearrangement, and multiple receptors may make use of overlapping subsets of these pathways.

Furthermore, dependent upon intracellular conditions, a ligand binding to its receptor can result

in opposing responses. In mammals, numerous examples have emerged identifying roles for

putative axon guidance ligands and receptors in diverse developmental processes including renal,

lung, heart, and blood vessel development. Mammals appear to have exploited these putative

axon guidance pathways to accomplish a wide array of complex developmental processes.

However, it is unclear to what extent the intracellular signaling pathways downstream of the

ligand/receptor interactions are conserved in these non-axon guidance functions.

Growth cone migration, like changes in cell morphology, polarity and directed motility,

relies upon the dynamic regulation of the underlying actin cytoskeleton. The regulated extension

and retraction of cell protrusions such as a broad lamellipodial protrusions or narrow filopodial

projections provides the basis for cell motility. The neuronal growth cone provides one model for

how actin rearrangement can mediate changes in cellular morphology and movement. The
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growth cone provides an extending axon a broad "antenna" across which it can sense gradients in

surrounding ligands. It enhances this spatial resolution by extending long filopodial protrusions

along the periphery of the growth cone. In response to an extracellular cue, the growth cone can

respond in several ways: filopodial protrusion, growth cone collapse or growth cone protrusion.

Furthermore, by limiting these responses to a subset of the growth cone area sidedness can be

generated necessary to achieve a turning response.

What are the mechanisms of protrusion, and filopodia generation, and collapse? Cell

shape is generated by the functional antagonism between membrane tension and cytoskeletal

support. An actin meshwork underlies the membrane surface throughout the cell. The importance

of the actin network to cell shape is demonstrated by the consequences of pharmacologic

disruption of the actin network by the depolymerizing drug Latrunculin B (LatB). Exposure of a

cell to LatB causes a dramatic alteration in morphology as the cell "rounds up" under the force of

membrane tension. Changes in cell shape are likewise mediated by alterations in this underlying

cytoskeleton. Actin forms a polar polymer with barbed and pointed ends. This nomenclature

reflects the appearance of myosin decoration along actin filaments by electron microscopy. This

structural polarity reflects a functional polarity. Within a cell, ATP-Actin monomers are

continually added to an extending barbed end, hydrolyze ATP within the filament, and are lost as

ADP-Actin from the pointed end. When these processes are in dynamic equilibrium there is no

net change in filament length. Actin filaments can be regulated by disrupting this equilibrium,

which can be achieved by modifying any of the following processes: rate of barbed-end

polymerization, rate of pointed-end depolymerization, severing of filaments, de novo nucleation

of new filaments, nucleation of new filaments from the sides of existing filaments and bundling

of actin filaments(Pollard and Borisy, 2003). For example, filopodia may be generated by
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enhancing filament bundling in conjunction with increased barbed-end polymerization. In

comparison, growth cone collapse may be effected through the inhibition of barbed-end

polymerization and/or severing of filaments. The cell contains a wealth of proteins with activities

affecting one or more of these properties of actin. The scope of these proteins and activities is

beyond the scope of this thesis, and I intend to focus this introduction on the activity of one actin

regulatory protein family, Ena/VASP.

Ena/VASP proteins directly interact with actin and regulate its assembly and geometry.

Ena/VASP proteins protect actin barbed ends from capping protein, and thus support the

generation of long actin filaments. Ena/VASP activity also inhibits the nucleation of new

filaments from the sides of existing filaments. EnaNASP activity thus promotes the formation of

long, unbranched filaments. Depending upon the intracellular milieu, these filaments may

interact with the membrane individually where they provide a biomechanically less effective

structure to resist membrane tension(Bear et al., 2002), or they may be assembled by bundling

proteins to produce filopodial protrusions(Mejillano et al., 2004).

The Ena/VASP family is well situated to act as a convergence point in several signaling

pathways that function in axon guidance. Within these signaling cascades, Ena/VASP activity is

regulated by both its phosphorylation state as well as the repertoire of proteins to which it is

bound. Previous work in mice using single or double-knockouts of EnaNASP family members

had identified defects in the guidance of commissural axons as well as mild defects in several

other developmental and physiological pathways. In vitro experiments and construction of

several putative Ena/VASP dominant-negative transgenics have greatly extended the list of

developmental and physiological functions assigned to Ena/VASP to include heart, skin, and
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In this introduction, I will discuss the molecular characteristics and function of

EnaNASP proteins, and examine how their functions are exploited by axon guidance pathways

in worms, flies, and vertebrates. I will also review the proposed functions of Ena/VASP outside

of axon guidance in a variety of developmental and physiological contexts.

Ena/VASP Protein Family

The Ena/VASP protein family consists of Drosophila Enabled(Gertler et al., 1990), C.

elegans Unc-34(Colavita and Culotti, 1998), Dictyostellium dVASP(Han et al., 2002), and three

orthologs in vertebrates mammalian enabled (Mena), vasodilator stimulated phosphoprotein

(VASP) and Ena/VASP-like (EVL)(Gertler et al., 1996; Reinhard et al., 1992). This protein

family shares a common domain structure consisting of an NH3-terminal Ena/VASP homology 1

(EVH1) domain and a COOH-terminal EVH2 domain that flank a central proline-rich region

(Figure 1). Mena contains an additional protein region not found in EVL or VASP. This region

contains several repeats of the highly charged sequence LERER. The function of this region is

not known. Mammalian Ena/VASP mRNAs are also subject to alternative splicing. Several

isoforms of Mena have been identified including the widely expressed 80kDa and 88kDa

isoforms, an immune specific 75kDa isoform, and a 140kDa isoform that is only expressed in

neurons and contains targets for tyrosine phosphorylation(Gertler et al., 1996; Tani et al., 2003).
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A second isoform of EVL exists, EVL-I, that has an additional 21 amino acids within the EVH2

domain(Lambrechts et al., 2000). Very little is known about the specific biology of these

isoforms, but they likely mediate the formation of distinct protein complexes by displaying

unique sites for protein-protein interaction(Klostermann et al., 2000; Krause et al., 2003;

Toyofuku et al., 2004). All three vertebrate proteins function equivalently in fibroblast random

motility assays suggesting that if a family member posseses a unique function it is only relevant

in specific physiologic situations(Loureiro et al., 2002).

Ena/VASP Structure/Function

EVH1 Domain

The NH3-terminal EVH1 domain bears structural but not sequence homology to the

pleckstrin homology (PH) domain(Fedorov et al., 1999; Prehoda et al., 1999). This PH structural

scaffold is not used to bind phosphoinositides, but instead mediates high-affinity interactions

with proteins containing the peptide motif (D/E)(F/W/Y/L)PPPPX(D/E)(D/E) (abbreviated

FPPPP)(Ball et al., 2002; Carl et al., 1999; Niebuhr et al., 1997; Smith et al., 1996). These motifs

are found in a diverse array of proteins implicated in signaling to the cytoskeleton (Table 1),

including the axon guidance receptor Sax-3/Robo(Bashaw et al., 2000; Yu et al., 2002), the focal

adhesion proteins zyxin and vinculin(Brindle et al., 1996; Drees et al., 2000; Niebuhr et al.,

1997; Reinhard et al., 1995b), the T cell adaptor protein Fyb/SLAP/ADAP(Coppolino et al.,

2001; Krause et al., 2000), the guanine nucleotide exchange factors (GEFs) RIAM and

Lamellipodin(Krause et al., 2004; Lafuente et al., 2004), and several other proteins(Boukhelifa et

al., 2004; Moeller et al., 2004). This high-affinity interaction is also exploited by the intracellular

pathogen Listeria monocytogenes to sequester Ena/VASP proteins to the surface of the

bacterium(Chakraborty et al., 1995; Gerstel et al., 1996; Pistor et al., 1995). Accumulation of
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Ena/VASP on the surface of Listeria is required for the actin polymerization based rocketing of

the bacteria within the cytoplasm(Ireton and Cossart, 1997).

Tablel: Ena/VASP Ligands
Ligand Binding Function Reference

Domain
Zyxin EVH 1 Recruitment to focal adhesions (Drees et al., 1999)
Vinculin EVH1 Recruitment to focal adhesions (Brindle et al., 1996)
Lamellipodin EVH1 Lamellipodial dynamics (Krause et al., 2004)
RIAM EVH1 Adhesion, Rap signaling (Lafuente et al., 2004)
Fyb/SLAP/ADAP EVH1 Immune responses (Krause et al., 2000)
Robo/Sax-3 EVH1 Axon guidance (Bashaw et al., 2000)
Robo4 EVH1 Angiogenesis (Park et al., 2003)
Palladin EVH1 Stress fiber, lamellipodial dynamics (Boukhelifa et al., 2004)
Fat EVH1 Cell polarization and motility (Moeller et al., 2004)
ActA EVH1 Recruitment to Listeria (Pistor et al., 1995)
Sema6A EVH1 Axon guidance (Klostermann et al., 2000)
Sema6D EVH1 Heart development (Toyofuku et al., 2004)
Profilin Pro Actin dynamics (Reinhard et al., 1995a)
Fe65 Pro (Ermekova et al., 1997)
Abl Pro Tyrosine kinase, axon guidance (Gertler et al., 1995)
Src Pro Tyrosine kinase (Gertler et al., 1995)
Tuba Pro Exocytosis, vesicle trafficking (Salazar et al., 2003)
Abi/NESH Pro Interaction with Abl (Loureiro, unpublished)
IRSp53 Pro Actin dynamics (Krugmann et al., 2001)
G-actin EVH2 Actin dynamics (Van Troys et al., 1996)
F-actin EVH2 Actin dynamics (Bachmann et al., 1999)
EnaNASP EVH2 Tetramerization (Zimmermann et al., 2002)
Trim9/Bad-1 ? Link to DCC/Unc-40/Unc-5 (Hao et al., submitted)
Gephyrin ? Postsynaptic actin dynamics (Giesemann et al., 2003)

Proline-Rich Central Region

The central proline-rich contains mediates protein-protein interactions and is a target for

protein phosphorylation. This region binds profilin and contains numerous binding sites for SH3

and WW domain containing proteins including the tyrosine kinases Abl and Src(Ahern-Djamali

et al., 1998; Ermekova et al., 1997; Gertler et al., 1996; Reinhard et al., 1995a). Drosophila

Enabled is tyrosine phosphorylated at multiple residues, and the vertebrate Ena/VASP proteins

share a conserved PKA/PKG phosphorylation site within the proline-rich region (discussed

below).
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It has been proposed that the interaction between Ena/VASP proteins and profilin is

essential for actin regulation(Reinhard et al., 1995a). Profilins bind G-actin, promote

the exchange of ADP to generate ATP-actin, and enhance the barbed-end polymerization of

actin(Blanchoin et al., 2000; Paavilainen et al., 2004). Listeria motility requires the presence of

the proline-rich region(Geese et al., 2002), and is enhanced by the inclusion of profilin both in

vivo as well as in reconstitution experiments in vitro(Geese et al., 2000; Loisel et al., 1999).

Knockout ofprofilin-I enhances the phenotype of the mena knockout mouse, uncovering a

neurulation phenotype (Lanier et al., 1999). Surprisingly, in a fibroblast assay for EnaNASP

activity, the central proline-rich region was dispensable in inhibiting whole cell motility(Loureiro

et al., 2002).

EVH2 Domain: Multimerization and Actin Binding

The 160-190aa COOH-terminal domain of Ena/VASP proteins contains a highly

conserved F-actin binding motif, G-actin binding motif, and coiled-coil region(Bachmann et al.,

1999). The F-actin binding motif can bind actin directly in vitro consistent with the proposed

molecular function of EnaNASP as direct effectors of the actin cytoskeleton (described

below)(Bachmann et al., 1999; Bear et al., 2002; Lambrechts et al., 2000). The G-actin binding

motif bears sequence homology to the actin binding site of Thymosin-P4(Van Troys et al., 1996).

The coiled-coil domain forms a right-handed coiled-coil and mediates both hetero- and homo-

oligomerization of Ena/VASP proteins(Ahern-Djamali et al., 1998; Kuhnel et al., 2004;

Zimmermann et al., 2002). All three of these regions are essential for Ena/VASP function in

fibroblast motility(Loureiro et al., 2002). Surprisingly, the EVH2 domain alone was sufficient to

rescue the whole-cell motility phenotype of Ena/VASP-deficient cells(Loureiro et al., 2002).

This suggests that one basic molecular function of Ena/VASP is mediated by the EVH2 domain,
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and that the NH3-terminal two-thirds of the molecule may function in the regulation of the

protein required for directed motility. Interestingly, the domain requirements for Ena/VASP

function in cell motility differ greatly from those required for Listeria motility, suggesting that

EnaNASP proteins may be used in distinct ways by different actin-driven processes.

Localization

The function of Ena/VASP proteins is intimately associated with their localization.

Ena/VASP proteins localize within the cell to sites consistent with their roles in regulating the

actin cytoskeleton: the leading edge of protruding lamellipodia, the tips of filopodia, focal

adhesions, and stress fibers (Figure 2)(Gertler et al., 1996). Localization to focal adhesions

requires the interaction of the NH3-terminal EVH I R 2 V P 1

domain with the FPPPP motif found in the focal

adhesion associated proteins vinculin and

zyxin(Niebuhr et al., 1997; Reinhard et al.,

1995b). Competition for EVH1 binding by

-l apd

Olmk wa J

a, /msUrcadm

exogenous expression of an FPPPP peptide causes G I

delocalization from focal adhesions(Bear et al., 2000). The intracellular pathogen Listeria

monocytogenes co-opts EnaNASP activity by displaying several FPPP repeats within its ActA

protein to sequester Ena/VASP on the bacterial surface to facilitate its actin-based intracellular

motility(Pistor et al., 1995; Pollard, 1995).

The mechanism of leading edge localization has additional complexity. Structural

mutants of Ena/VASP proteins have been used to dissect the mechanism of localization. Because

Ena/VASP proteins can hetero- and homo-oligomerize through a coiled-coil within the COOH-

terminal EVH2 domain(Bachmann et al., 1999; Zimmermann et al., 2002), localization studies
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required the use of an Ena/VASP-deficient cell line(Bear et al., 2000). EGFP-tagged EVH2

domain localized to a broad swath behind the leading edge of the cell, but was not sufficient for

restriction to the tip(Loureiro et al., 2002). This broad band of EVH2 localization corresponds

with a high concentration of free actin barbed ends. The EVH2 domain contains both F- and G-

actin binding motifs and deletion of either motif causes delocalization from the leading

edge(Loureiro et al., 2002). Furthermore, Cytochalasin D, a drug that binds actin barbed ends,

also eliminates Ena/VASP localization from the leading edge(Bear et al., 2002). Restriction of

Ena/VASP localization to the tip of the leading edge requires the EVH1 domain, but it alone is

not sufficient to recapitulate normal Ena/VASP expression. EGFP-tagged EVH1 domain

localizes to focal adhesions, and weakly to the leading edge(Bear et al., 2000). Recently, two

proteins containing EVH 1-binding motifs, RIAM and Lamellipodin, have been identified that

may function to bring Ena/VASP proteins to the tip of the leading edge(Krause et al., 2004;

Lafuente et al., 2004). These proteins each contain PH domains and GEF domains and thus may

provide a general link between Ena/VASP localization and phosphoinositide and small GTPase

signaling. Ena/VASP proteins have also been shown to interact directly with axon guidance

receptors that contain a consensus binding site for EVH1 domains. These include Robo, Sema6A

and Sema6D(Klostermann et al., 2000; Toyofuku et al., 2004; Yu et al., 2002).

Molecular Function

Lamellipodial Dynamics

In the classic model of cell locomotion, cells extend an initial actin based lamellipodium which

adheres to the substratum. The cell then either actively or passively draws its cell body towards

this extension while withdrawing at the trailing edge(Pollard and Borisy, 2003). The delineation

of Ena/VASP function within this paradigm was initially complicated by seemingly
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contradictory observations. Ena/VASP proteins drive the polymerization of actin by Listeria,

and preferentially associate with the leading edge of protruding lamellipodia(Bear et al., 2000;

Laurent et al., 1999; Rottner et al., 1999). In addition, the initial in vitro characterization of

VASP led several groups to report an actin nucleation activity(Bachmann et al., 1999;

Huttelmaier et al., 1999). Surprisingly, overexpression of Ena/VASP inhibited cell motility, and

inhibition of Ena/VASP increased cell speeds(Bear et al., 2000). This apparent paradox was

resolved by detailed observation of a protruding lamellipodium and electron microscopic

analysis of its underlying actin ultrastructure. Consistent with Ena/VASP's association with

protruding lamellipodia, the speed of membrane extension was directly proportional to the

concentration of EnaNASP. However, the protrusions from EnaNASP overexpressing cells

were not productive, instead withdrawing as membrane ruffles. Underlying this membrane

behavior, the actin architecture in Ena/VASP overexpressing cells consisted of long unbranched

filaments running parallel to the membrane. In contrast, EnaNASP-deficient cells possessed

shorter, highly branched filaments oriented perpendicular to the membrane(Bear et al., 2002).

The latter structure has been suggested to more effectively counter membrane tension to drive

stable membrane protrusion(Pollard and Borisy, 2003).

Biochemical Basis of EnaNASP Function

What is the biochemical basis for the alteration to the actin ultrastructure? Several lines

of evidence suggest that the primary activity of Ena/VASP is as a functional antagonist to

heterodimeric capping protein (CP). Actin filaments are polar structures with a barbed end and a

pointed end(Pollard and Borisy, 2003). Within a cell, actin assembly occurs through the addition

of actin monomer to free actin barbed ends found near the leading edge. This process is

terminated through the irreversible binding of heterodimeric capping protein(Pollard and Borisy,
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2003). Ena/VASP proteins bind to actin filaments through an F-actin binding motif within the

EVH2 domain leading to colocalization with the regions of the cell containing free barbed ends,

the filopodia and lamellipodia. This localization can be disrupted by low doses of the barbed-end

binding toxin Cytochalasin D. In vitro, Ena/VASP proteins can compete with capping protein to

permit actin polymerization(Bear et al., 2002). Finally, inhibition of capping protein, similar to

EnaNASP overexpression, causes filopodial protrusion in fibroblasts(Mejillano et al., 2004).

Thus, within a fibroblast, overexpression of Ena/VASP inhibits the ability of capping protein to

terminate filament elongation resulting in aberrantly long actin filaments. Filopodia formation in

neurons requires Ena/VASP activity, suggesting that the observations in fibroblasts are generally

applicable to other cell types (Lebrand et al., 2004).

The paucity of filament branching is inadequately explained solely by Ena/VASP anti-

capping activity. The seven member protein complex Arp2/3 binds to the sides of actin filaments

and overcomes the rate-limiting step in actin nucleation by mimicking an actin dimer. The new

filament is generated at a 700 angle from the existing filament, and thus the iterative action of

Arp2/3 proteins can generate the dendritic actin architecture observed in normal fibroblasts and

enhanced in Ena/VASP deficient cells. Interestingly, Arp2/3 together with EnaNASP are the

two proteins that are recruited by and required for Listeria actin assembly(Cossart, 2000; Geese

et al., 2002; Loisel et al., 1999). The absence of branches suggests that Ena/VASP proteins

directly affect Arp2/3 function. Several possible mechanisms exist for this activity: 1.

Ena/VASP and Arp2/3 may compete for overlapping binding sites at or near the actin filament

barbed end. 2. Ena/VASP proteins may have a debranching activity. 3. Arp2/3 activity may

require barbed end capping to nucleate a new filament.
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Recently, several other protein families have been described as regulating barbed end

capping. The formins function as processive cappers, allowing for the addition of new actin

monomer without dissociating from the extending barbed end(Harris et al., 2004; Kozlov and

Bershadsky, 2004; Otomo et al., 2005; Romero et al., 2004; Zigmond et al., 2003). Conversely,

the Eps8 protein has been shown to have capping activity(Croce et al., 2004; Disanza et al.,

2004). Interestingly, Ena/VASP proteins share common interacting partners with both of these

protein families. A yeast two hybrid screen identified Formin Binding Protein 3 (Fnbp3) as a

potential interactor of Evl (Jagganathan, Rubinson, and Gertler, unpublished observations). Eps8

binds Abil (Disanza et al., 2004), an Ena/VASP interactor, as well as RN-Tre which was also

identified in the Evl yeast two hybrid screen(Lanzetti et al., 2000)( Jagganathan, Rubinson, and

Gertler, unpublished observations). This suggests that macromolecular complexes exist

containing one or more proteins acting at the barbed end. The significance, function and

regulation of these complexes remain unclear.

Filopodia Formation

Ena/VASP proteins are critical in the formation of filopodia(Mejillano et al., 2004)

(Lebrand et al., 2004). Filopodia emerge from the dendritic actin array from the polymerization

of unbranched, bundled actin filaments(Svitkina et al., 2003; Vignjevic et al., 2003). Ena/VASP

proteins form tetramers in vivo(Zimmermann et al., 2002), with each member of the tetramer

capable of binding to and promoting elongation of an actin barbed end. As described above,

Ena/VASP activity also inhibits actin filament branching. Inhibition of EnaNASP activity

blocks the generation of filopodia, and inhibition of capping protein by RNAi results in enhanced

filopodia formation, suggesting that the levels of capping protein and EnaNASP activity

regulates the formation of lamellipodial versus filopodial protrusions(Mejillano et al., 2004).
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Focal Adhesions and Stress Fibers

The function of Ena/VASP proteins at focal adhesions remains uncertain. The specific

elimination of Ena/VASP from focal adhesions has no effect on fibroblast motility(Bear et al.,

2000). Recently, a role for EnaNASP proteins in cell adhesion and spreading has been described

downstream of the Rapl GEF RIAM(Jenzora et al., 2005; Lafuente et al., 2004). More

substantive roles for Ena/VASP at focal adhesions have been suggested for cell:cell and

cell:matrix contacts in epithelium and endothelium (discussed below).

Ena/VASP Regulation

Serine/Threonine Phosphoregulation

Upstream signaling pathways converge and regulate Ena/VASP proteins through one or

more phosphorylation sites. In contrast with Drosophila Enabled, which is phosphorylated by the

Abelson tyrosine kinase(Gertler et al., 1995), the phosphorylation of Ena/VASP proteins in

mammals is mediated primarily by cyclic-nucleotide dependent kinases. The initial identification

of VASP was based upon it acting as a substrate for phosphorylation by Protein Kinase A (PKA)

and Protein Kinase G (PKG) within platelets(Eigenthaler et al., 1992; Reinhard et al., 1992;

Waldmann et al., 1987). Mammalian Ena/VASP proteins can also be phosphorylated by the

Ca2+-regulated Protein Kinase C (PKC)(Chitaley et al., 2004). The three mouse Ena/VASP

homologs each possess one or more phosphorylation sites. Mena, VASP, and Evl share a

phosphorylation site within the central proline-rich region. However, Mena contains an

additional site within the EVH2 domain, whereas VASP contains this site and an additional site

within the EVH2 domain (Figure 1)(Butt et al., 1994; Gertler et al., 1996; Lambrechts et al.,

2000).
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Significant evidence suggests that phosphorylation is essential to Ena/VASP biology.

Ena/VASP-deficient cell lines show increased rates of cell motility. Expression of wildtype

Ena/VASP proteins, but not those containing phospho-site Serine-Alanine mutations could

restore wildtype motility(Loureiro et al., 2002). Elimination of VASP from platelets destroys the

normal inhibition of aggregation mediated by cAMP or cGMP(Aszodi et al., 1999), suggesting

that VASP is the critical PKA/PKG target in this process. In addition, the phosphorylation state

affects both the spectrum and avidity of Ena/VASP binding proteins(Harbeck et al., 2000;

Lambrechts et al., 2000; Laurent et al., 1999). Several groups have demonstrated changes in

VASP phosphorylation state associated with cell spreading (Howe et al., 2002; Lawrence and

Pryzwansky, 2001) or the formation of cell:cell contacts(Comerford et al., 2002). Within the

neuronal growth cone, Ena/VASP proteins are phosphorylated downstream of the axon guidance

receptor DCC, and this phosphorylation is associated with protrusion of growth cone

filopodia(Lebrand et al., 2004).

The phosphorylation of all three vertebrate Ena/VASP proteins results in a sizable band

shift in SDS-PAGE(Gertler et al., 1996; Halbrugge et al., 1992; Lambrechts et al., 2000).

Tagging the NH3- and COOH- terminus of Evl with YFP and CFP respectively resulted in a

change in Fluorescence Resonance Energy Transfer (FRET) when treated with the catalytic

subunit of PKA in vitro (Rubinson and Gertler, unpublished observation). These data suggested a

simple model whereby Ena/VASP phosphorylation caused a major structural shift in the protein

generating an active conformation. However, the phosphorylation state of purified Ena/VASP

proteins did not alter the anti-capping activity in an in vitro assay (Barzik and Gertler,

submitted). This suggests that while phosphorylation of Ena/VASP may mediate a structural
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change, the phosphoactivation of Ena/VASP likely requires the dissolution of a 3rd-party

inhibitory molecule within the cell.

Tyrosine Phosphoregulation

In Drosophila, Enabled is regulated by tyrosine phosphorylation. Drosophila enabled

was initially identified as a genetic suppressor and a substrate for the non-receptor tyrosine

kinase Abl(Gertler et al., 1995; Gertler et al., 1990). Ena also interacts both biochemically as

well as genetically with the tyrosine phosphatase Dlar(Wills et al., 1999). This antagonism

between tyrosine kinases and phosphatases functions to regulate Ena activity downstream of

axon guidance receptors(Bashaw et al., 2000; Gertler et al., 1995; Wills et al., 1999). Ena is not a

substrate of PKA/PKG phosphorylation, making tyrosine phosphorylation the sole mechanism of

its phosphoregulation.

The role of tyrosine phosphorylation in the biology of vertebrate Ena/VASP proteins is

more complicated. In contrast with Drosophila Ena, tyrosine phosphorylation does not appear to

be conserved as the basic mechanism of vertebrate Ena/VASP regulation. The Ena tyrosine

phosphorylation sites are not conserved in the vertebrate proteins, and Ena does not rescue the

cell motility phenotype in Ena/VASP-deficient mouse fibroblasts(Loureiro et al., 2002). None of

the potential tyrosine phosphorylation sites are conserved between vertebrate Ena/VASP

proteins. However, several recent studies provide evidence that Ena/VASP tyrosine

phosphorylation does occur. Vertebrate Ena/VASP proteins coimmunoprecipitate in a complex

with Abl(Howe et al., 2002) and directly interact with the Abelson interacting (Abi) family of

proteins at the cell leading edge through SH3 binding to the Ena/VASP proline-rich region

(Loureiro and Gertler, unpublished observations)(Tani et al., 2003). Abi proteins direct the

formation of a protein complex containing Ena/VASP proteins and Abl, and promote
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phosphorylation of Mena at Y296(Tani et al., 2003). More recently, Abl phosphorylation of

Mena at Y296 has been implicated in regulating the interaction of Mena and Sema6D during

heart development(Toyofuku et al., 2004).

Phosphoregulation During Axon Guidance

Genetic evidence in Drosophila and C. elegans places Ena/VASP proteins in pathways

regulated by the antagonistic function of tyrosine kinases including Abl and tyrosine

phosphatases such as Dlar and clr-1(Bashaw et al., 2000; Chang et al., 2004; Lanier and Gertler,

2000; Wills et al., 1999). However, in mammals, only Mena appears to be a target of tyrosine

phosphorylation(Gertler et al., 1996; Tani et al., 2003; Toyofuku et al., 2004). The conservation

of tyrosine phosphorylation as the mechanism of EnaNASP regulation downstream of axon

guidance receptors is unclear. As described above, the PKA-dependent protein phosphorylation

of Ena/VASP has been observed downstream of Netrin/DCC signaling in vertebrates(Dent and

Gertler, 2003). An intriguing possibility is that PKA/PKG phosphorylation has supplanted

tyrosine phosphorylation as the primary means of modulating Ena/VASP activity.

Several lines of evidence suggest that cAMP regulation of PKA plays an integral role

downstream of several axon guidance cues in vertebrates. Establishment of a cAMP gradient

across a neuronal growth cone is sufficient to cause a turning response(Lohof et al., 1992) and

cAMP is required for turning in response to a Netrin cue(Ming et al., 1997). In a series of

seminal papers from the Poo laboratory, attractive or repulsive responses could be mediated from

a single ligand/receptor interaction dependent upon extracellular matrix or the intracellular levels

of second messengers including cAMP and Ca2+(Hopker et al., 1999; Nishiyama et al., 2003;

Song et al., 1997). This switching behavior has been observed with several ligands including

netrin, SDF-1, acetylcholine, SemaIII, and myelin-associated glycoprotein (MAG) suggesting
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that modulating intracellular cAMP and Ca2+ provides a generalized mechanism to regulate

guidance responses(Henley et al., 2004; Hong et al., 2000; Nishiyama et al., 2003; Song et al.,

1998; Song et al., 1997; Xiang et al., 2002). Presumably, within the developing nervous system

this provides a fine level of control on axon guidance. Ena/VASP proteins, as substrates for

PKA/PKG and PKC, provide an intriguing potential target to participate in mediating this

switching.

Axon Guidance

During development, neurons direct an axon towards a distant target. Guidance decisions

are generated within the neuronal growth cone, a specialized structure at the end of a growing

axon. Within the developing brain, complex patterns and gradients of soluble and fixed guidance

cues are generated(Tessier-Lavigne, 1994). These cues include soluble axon guidance ligands

such as Netrin and Slit, bifunctional transmembrane proteins such as Ephs and their partner

Ephrins, Semaphorins and their partner Plexins, and extracellular matrix molecules such as

Laminin(Tessier-Lavigne and Goodman, 1996). These ligands can be either soluble or fixed, and

either attractive or repulsive. The growth cone must decipher these cues and respond to them in a

specific manner. Two axons with distinct targets must be able to pass through the same

microenvironment and respond independently(Song and Poo, 2001). It is believed that the

guidance of an individual axon is accomplished through a series of milestones. Axons destined

for a distant target pass through a series of intermediate targets along their journey. These

intermediate targets serve as choice points so that axons destined for different final targets make

divergent decisions upon reaching the same intermediate target. Intracellular conditions such as

the concentration of cAMP and Ca2+ permit growth cones to respond distinctly to identical

guidance cues. Guidance receptors activate a number of signaling cascades to mediate changes in
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the axon cytoskeleton including Rho GTPases, WASP and Arp2/3, tyrosine kinases, tyrosine

phosphatases, serine/threonine kinases, and Ca2+-dependent kinases (reviewed in (Korey and

Van Vactor, 2000). A detailed review of the signaling cascades is beyond the scope of this work,

and I will focus my discussion to the developmental role of Ena/VASP proteins in mediating

effects on the actin cytoskeleton.

Midline Guidance

The biological challenge of axon guidance is typified by the challenge of directing axon

growth across the midline of an embryo. Midline crossing is an essential event in a nervous

system that exerts contralateral motor control and sensation. To cross the midline, axons must

first be attracted towards the midline and then upon crossing must lose the attractive signal and

be repulsed to prevent recrossing. The molecules controlling this event were elucidated first in C.

elegans navigation of circumferential axons and then in Drosophila by identifying mutants that

impact the architecture of the ventral nerve cord. Two signaling pathways function in concert to

control midline crossing. In Drosophila, axon attraction towards the midline is mediated by the

ligands Netrin-1 and Netrin-2 binding their receptor frazzled/DCC, and repulsion after crossing

is controlled by the ligand Slit binding its receptors Robol, Robo2, and Robo3. Mutations in

Netrins(Harris et al., 1996; Mitchell et al., 1996) or frazzled/DCC(Keino-Masu et al., 1996;

Kolodziej et al., 1996) prevent the formation of commissural axons. The ventral nerve cord in

these mutants consists of two parallel tracts without crossing fibers. Mutations in Slit (Kidd et

al., 1999; Rothberg et al., 1988; Rothberg et al., 1990) or Robo(Kidd et al., 1998) caused

collapse of the ventral nerve cord onto the midline. The axons in these mutants approached the

midline through Netrin/DCC but no longer had a repulsive cue to prevent iterative recrossing. In

order to approach the midline the repulsive Slit/Robo pathway is inhibited by the cytoplasmic
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protein commissureless (Comm) which prevents surface expression of Robo until after crossing

has occurred(Keleman et al., 2005; Seeger et al., 1993; Tear et al., 1996).

As mentioned above, the genes involved in Drosophila midline crossing were initially

identified in C. elegans as mutations that regulate the ventral/dorsal guidance decisions in the

circumferential axons causing uncoordinated phenotypes. Surprisingly, Unc-6, the C. elegans

Netrin ortholog, can direct both the ventral and dorsal migration of circumferential

axons(Hedgecock et al., 1990; Ishii et al., 1992). C. elegans possess two receptors for Unc-

6/Netrin, Unc-40/DCC and Unc-5, and the response to Unc-6/Netrin is dependent upon which

combination of the two receptors is expressed on the growth cone(Wadsworth, 2002). When

expressed by itself, the C. elegans DCC homolog Unc-40 mediates ventral attraction towards a

gradient of Unc-6/Netrin(Chan et al., 1996; Hedgecock et al., 1990). When Unc-5 is coexpressed

with Unc-40, they direct ventral growth away from the Unc-6/Netrin gradient(Colavita and

Culotti, 1998; Hamelin et al., 1993). Similarly, Sax-3/Robo acts as a receptor for SLT-1/Slit in

directing ventral axon guidance in the worm(Zallen et al., 1999). Surprisingly, C. elegans Unc-

40 binds to Sax-3/Robo and participates in mediating the repulsive guidance downstream of

Slit(Yu et al., 2002).

In order to identify genes that participate in downstream signaling pathways, screens

have been conducted to identify genetic interactors of axon guidance receptors(Colavita and

Culotti, 1998; Gallo and Letourneau, 1999). Drosophila enabled was initially identified by its

suppression of pupal lethality caused by mutations in the non-receptor tyrosine kinase

abl(Gertler et al., 1989; Gertler et al., 1990). Subsequent analysis of the enabled mutant

phenotype showed defects in axon pathfinding including in motor axons and commissural axons

of the ventral nerve cord(Gertler et al., 1995; Wills et al., 1999). Genetic interaction with the
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tyrosine phosphatase Dlar demonstrated that Ena activity in axon guidance is regulated by the

antagonistic balance of the Abl tyrosine kinases and the tyrosine phosphatase Dlar. The C.

elegans enabled homolog, unc-34, was first identified in a screen for mutations causing a lack of

coordinated worm movement, and subsequently identified as a suppressor of phenotypes induced

by ectopic expression of the repulsive Unc-6/Netrin receptor Unc-5(Colavita and Culotti, 1998).

In addition to mediating repulsion through Unc-5, Unc-34 also has been placed downstream of

Unc-6/Netrin attraction through Unc-40. The attractive response to Unc-6/Netrin mediated by

Unc-40 occurs through two downstream pathways; one pathway proceeds through the Rac

GTPase Ced-10, and the other pathway proceeds through Unc-34/Ena(Gitai et al., 2003). The

signaling pathways linking Unc-40 and Unc-5 to Unc-34 have not been elucidated. A recent

collaboration has identified Bad-i as a genetic interactor within the Unc-40/Unc-5 repulsive

guidance pathway. Independently, a yeast two-hybrid screen conducted in our lab has identified

Trim9, the mammalian Bad-i homolog, as a binding partner for Ena/VASP proteins. These data

suggest a direct signaling pathway from Unc-40/DCC through Bad-I/Trim9 to Unc-34/Ena that

may be conserved in mammals(Hao et al., submitted; Jagganathan, Rubinson, and Gertler,

unpublished).

The unc-34 mutant also confers axon pathfinding defects in several neurons that partly

phenocopy mutations in Sax-3/Robo(Yu et al., 2002). Construction of sax-3;unc-34 double-

mutant worms provided additional genetic evidence that Unc-34 acts within the Sax-3/Robo

pathway. In contrast with Unc-6/Unc-40/Unc-5 signaling, Sax-3/Robo receptors contain an

EVH 1 binding motif, and interact with Unc-34/Ena biochemically(Yu et al., 2002), providing a

mechanism for Sax-3/Robo regulation of Unc-34/Ena.
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Emerging evidence suggest that the basic functions of the Netrin/DCC and Robo/Slit

pathways are conserved in vertebrates. In vitro, Slit proteins can repel axons from motor, retinal,

and forebrain neurons (Brose et al., 1999; Nguyen Ba-Charvet et al., 1999; Ringstedt et al.,

2000). Vertebrate Netrin signaling is more complicated. Netrins repel trochlear

axons(Colamarino and Tessier-Lavigne, 1995), and can mediate the attraction or repulsion of

spinal commissural neurons depending upon whether the neurons co-express the Unc-5 receptor

(Hong et al., 1999; Kennedy et al., 1994). Similarly, Netrins can either attract or repel retinal

axons depending upon factors such as ECM proteins and intracellular cAMP concentrations. (de

la Torre et al., 1997; Hopker et al., 1999; Ming et al., 1997). Deletion of netrin-1 or DCC results

in defective commissural axon guidance(Fazeli et al., 1997; Serafini et al., 1996). The in vivo

analysis of Slit/Robo pathways has been complicated by the expansion of these gene families and

overlapping expression of its members. Vertebrates appear to have three Slit and four Robo

genes, which display overlapping function and expression patterns(Li et al., 1999; Yuan et al.,

1999). Construction of the slitllslit2 double-knockout revealed midline crossing defects in the

forebrain but failed to reveal defects in spinal cord commissural neurons(Bagri et al., 2002).

However, the construction of the slitllslit2/slit3 triple-knockout mouse caused a phenotype that

mimicked the ventral nerve cord phenotype in the slit mutant fly(Long et al., 2004). In contrast,

only three of the four Robo genes are involved in commissural axon guidance. Robol I and Robo2

function analogously to Drosophila Robo in mediating the repulsive signals following midline

crossing(Long et al., 2004). In another parallel to the fly, the expression of both Robo 1 and

Robo2 is restricted to the postcrossing portion of the commissural axon(Long et al., 2004).

However, vertebrates do not have a comm homolog and the mechanism of pre-crossing Robo

inhibition had long been unknown. The recent characterization of the third Robo gene, rig-

31



I/robo3, has revealed a function in suppressing Robo signaling until after reaching the midline

(Marillat et al., 2004; Sabatier et al., 2004). Mutations in the human Rig-1/Robo3 homolog result

in analogous axon guidance defects that cause the horizontal gaze palsy with progressive

scoliosis syndrome (HGPPS)(Jen et al., 2004). Unlike Comm, Rig-1/Robo3 does not appear to

prevent Robol/Robo2 expression but instead acts to suppress signaling(Sabatier et al., 2004).

The mechanism by which vertebrates partition Robol/Robo2 expression to the post-crossing

axon remains unknown.

The conservation of midline guidance function in vertebrates suggests that the

downstream pathways are likewise conserved. As discussed earlier, Ena/VASP is required for

the burst of filopodial activity in the growth cone induced by Netrin-1 in vitro. In vivo, the

generation of the mena and mena/vasp knockout mice has uncovered several defects in axon

guidance at the midline. The mena knockout mouse fails to generate the cortico-cortico axon

tract and the corpus callosum(Lanier et al., 1999). The menalvasp double-knockout mouse has

defects in the major forebrain commissures that are also affected in the slitllslit2 knockout

mouse(Bagri et al., 2002; Menzies et al., 2004). The various mutant combinations of mena and

vasp demonstrate an inverse relationship between Ena/VASP dosage and phenotypic penetrance.

No defects in spinal commissural axons are observed in the mena/vasp double-knockout mice.

The three Ena/VASP family members share a broad and overlapping expression

pattern(Gambaryan et al., 2001; Lanier et al., 1999; Menzies et al., 2004) as well as overlapping

function(Bear et al., 2000; Loureiro et al., 2002). The presence of EVL, the remaining

Ena/VASP family member, can likely partly compensate for loss of Mena and VASP in tissues

in which it is expressed. The generation of the triple-knockout mouse should allow for the
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examination of the conserved roles of Ena/VASP as a downstream target of midline guidance

receptors.

Additional Roles for Axon Guidance Molecules Outside of the Nervous System

Numerous processes in development and physiology require the dynamic reorganization

of the cytoskeleton to mediate changes in cell morphology or cell movement. This is reflected in

part by the expanded use of axon guidance receptors in developmental pathways outside the

nervous system. Even within Drosophila, mutations within the Robo/Slit pathway have

phenotypes in tracheal development(Lundstrom et al., 2004). Reflecting the importance of

directed guidance in development, the generation of mouse knockouts of several axon guidance

molecules has uncovered unexpected phenotypes outside of the nervous system. A common

developmental challenge uses the recursive branching of a primary tube to generate a complex

structure. This process occurs in lung development in which the initial formation of a lung bud at

the terminus of the tracheal bifurcation produces the highly branched mature lung through a

series of branching steps between E10.5 and E 16.5 of embryo development (Cardoso, 2001).

Similarly, vasculogenesis and angiogenesis, the generation of blood vessels through the

formation of a large tube followed by a series of branching and sprouting events to eventually

create a capillary bed, occurs through a branching mechanism. During blood vessel branching

and extension, the new blood vessel is directed by a leading tip cell whose morphology and

function has been compared to the neuronal growth cone(Gerhardt et al., 2003). Reflecting this

visual and functional similarity, the Unc5 receptor, Unc5h2 (also referred to as Unc5b), and its

binding partner Netrin-1 have recently been implicated in both lung branching and

angiogenesis(Liu et al., 2004; Lu et al., 2004). The relationship between lung branching

morphogenesis, angiogenesis, and axon guidance has been further extended through the
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identification of several proteins integral to all three functions. Angiogenesis is regulated by the

action of the soluble ligand VEGF (Vascular Endothelial Growth Factor). The action of VEGF

occurs via binding to two classes of receptors- VEGFR (VEGF Receptor) and a group of

receptors classically involved in axon guidance, NRPs (Neuropilins)(Whitaker et al., 2001).

Interestingly, VEGF is expressed within neurons, and can affect axon outgrowth and neuron

survival in vitro(Sondell et al., 1999). Other axon guidance molecules that have been implicated

in angiogenesis and/or lung branching include Slit-2, Robo4, Sema3A, PlexinD1, and the NRPs

Npn-1 and Npn-2(Bachelder et al., 2003; Bates et al., 2003; Ito et al., 2000; Kawasaki et al.,

1999; Park et al., 2003; Shoji et al., 2003; Suchting et al., 2005; Torres-Vazquez et al., 2004).

This extensive use of axon guidance molecules in the angiogenesis and lung branching

morphogenesis reflects both a similarity in the mechanisms of development as well as a physical

linkage between the two processes as the lung and its vasculature develop together(reviewed in

(Autiero et al., 2005). Interestingly, Ena/VASP activity has been reported downstream of

Slit/Robo, Netrin/Unc5, and several Sema/Npn/Plexin combinations(Bashaw et al., 2000;

Forsthoefel et al., 2005; Gitai et al., 2003; Klostermann et al., 2000; Lebrand et al., 2004;

Toyofuku et al., 2004; Yu et al., 2002), suggesting that Ena/VASP may play a role in

angiogenesis and lung branching morphogenesis analogous to its role in axon guidance.

Beyond Axon Guidance - Ena/VASP in Physiology and Development

The broad expression of Ena/VASP proteins and their proposed function as direct

effectors of the actin cytoskeleton indicate their potential involvement in numerous processes

outside of axon guidance. In addition to the nervous system phenotypes described above,

Ena/VASP have been implicated through a variety of in vitro and in vivo experiments in a

spectrum of activities. The following section will delineate some of the reported functions for
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Ena/VASP proteins outside of axon guidance, and speculate on the possible pathways that

regulate their activity.

Platelet Aggregation

VASP was originally identified as the major substrate for Protein Kinase A and Protein

Kinase G within platelets. VASP is the only Ena/VASP family member expressed in platelets so

that the construction of the VASP-null mouse provided platelets deficient of all Ena/VASP

proteins(Aszodi et al., 1999). Thrombus formation is an exquisitely regulated process that

requires a robust, rapid, and specific response to a wound. Inappropriate thrombus results in

various pathologies including stroke, heart attack, and thromboembolisms. The inhibition of

platelet aggregation and platelet adhesion to vessel walls is in part mediated by the action of

cGMP and cAMP dependent kinases. Platelet activation is typified by a dramatic actin-

dependent change in morphology and a change in adhesive properties. Incubation of platelets

with collagen results in platelet aggregation. Addition of pharmacologic cAMP or cGMP analogs

inhibits this aggregation. Elimination of VASP prevented the cAMP/cGMP-dependent

inhibition of platelet aggregation(Aszodi et al., 1999; Hauser et al., 1999). In addition to

affecting platelet morphology, phosphorylation of VASP also inhibits the activation of the

GPIIb-IIIa integrin thereby inhibiting platelet interactions with the blood vessel wall in

vivo(Massberg et al., 2004).

Cortical Neuronal Migration and Architecture

Roles for Ena/VASP proteins have also been proposed in the migration of neurons in

development. During vertebrate cortical development newborn pyramidal neurons must migrate

radially from the ventricular zone outward to the cortical plate(Olson and Walsh, 2002). Their

movement is directed by the secretion of reelin by Cajal-Retzius cells that are present in the thin
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relatively acellular marginal zone that intervenes between the cortical plate and the pial

membrane(D'Arcangelo et al., 1995; Hirotsune et al., 1995). Essential for establishing cortical

organization, elongated radial glia provide tracts that neurons associate with during their outward

migration and their foot processes interact with one another and with the external ECM to form

the inner aspect of the pial membrane(Halfter et al., 2002). Within the cortical plate, neurons are

arranged in an outside-in orientation with later born neurons migrating beyond earlier born

neurons to form the outer layers of the cortex(Olson and Walsh, 2002).

EnaNASP mutation in lower organisms causes neuronal migration phenotypes. In C.

elegans, unc-34 mutation results in inappropriate migration of neurons(Withee et al., 2004; Yu et

al., 2002). In mice, individual pyramidal neurons in which EnaNASP proteins were inactivated

by a dominant negative construct migrated to inappropriately superficial positions within the

cortex(Goh et al., 2002). The mena/vasp double-knockout mouse does not have a neuronal

migration phenotype likely due to the continued expression of EVL in neurons.

At the Synapse

Several studies have suggested roles for Ena/VASP proteins at both the pre- and post-

synaptic cleft. Ena/VASP proteins are part of a large protein complex that includes Dynamin and

the "Wave inhibitory complex" that localizes to synapses and functions in endocytosis and

vesicle trafficking(Salazar et al., 2003). Ena/VASP proteins may also have functions in synaptic

exocytosis through a potential interaction with Trim9 (Jagganathan, unpublished), which has

previously been shown to regulate SNAP-25(Li et al., 2001). Recently, actin dynamics within

dendritic spines have been implicated in both Long Term Potentiation (LTP) and Long Term

Depression (LTD). Actin-dependent changes in dendritic spine morphology are necessary for

induction of LTP and LTD(Matsuzaki et al., 2004; Zhou et al., 2004). The interaction of
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Ena/VASP proteins with scaffolding molecules Gephyrin and IRSp53 within dendritic spines

suggests a potential role in mediating actin-based changes in learning and memory(Choi et al.,

2005; Giesemann et al., 2003; Krugmann et al., 2001).

Epithelial and Endothelial Function

The localization of Ena/VASP proteins to focal adhesions within both fibroblasts and

epithelial cell types prompted several investigations into potential roles in epithelial formation

and function. The expression of a COOH-terminal Mena fragment that includes the coiled-coil

domain (termed TD for Tetramerization Domain) was used as a putative dominant-negative

construct within skin epithelia in vivo(Vasioukhin et al., 2000). Expression of this construct

caused a skin blistering phenotype. Furthermore, microscopic analysis of keratinocyte epithelial

sheet formation in vitro showed adherens junction formation via a zippering of filopodial-like

extensions from adjacent cells. Inhibition of Ena/VASP activity prevented adherens junction

formation, leading to a proposed function for Ena/VASP proteins in the integrity of epithelial

monolayers(Vasioukhin et al., 2000). Neither the specificity of the TD construct nor the ability

of the TD to inhibit Ena/VASP function (as opposed to simply altering function) have ever been

established.

In a related process, Drosophila dorsal closure requires directed movement and fusion of

epithelial sheets. Abl loss-of-function mutations delay dorsal closure and can be partly

suppressed by loss of ena. Ena loss-of-function mutations cause mild dorsal closure phenotypes.

The severity of this defect is enhanced when combined with loss-of-function mutations in

armadillo, the Drosophila homolog to the adherens junction protein beta-catenin(Grevengoed et

al., 2001). Ena mutations disrupt the fusion of epithelial sheets but do not affect their integrity.

The fusion of epithelia requires the apposition of intact epithelia, which then fuse via the knitting
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of filopodial processes and adherens junction creation. If Ena had a general role in adherens

junction biology, mutations would be expected to causes global disruption of Drosophila

epithelia.

In mice, an equivalent process controls neurulation. The fusion of the neuroepithelium

requires a series of morphological changes that together with cell movements bring the neural

folds into apposition. This complicated process can be affected by a wide range of mutations

including cytoskeletal proteins and adhesion molecules. Combinations of both mena/profilin-

land mena/vasp knockouts cause defects in neurulation that result in excencephaly(Lanier et al.,

1999; Menzies et al., 2004).The existence of exencephaly is consistent with a role for Ena/VASP

proteins in dorsal closure; however, the complexity of neurulation and the lack of an available in

vitro model for the process can not rule out Ena/VASP functioning in a morphological change

rather than in cell:cell adhesion.

Immune System

Immune cell activation and function require actin reorganization. Engagement of the T

Cell Receptor (TCR) by MHC/antigen on an Antigen Presenting Cell (APC) induces a well-

described cascade of tyrosine and serine/threonine kinases. Essential to the complete activation

of a T cell is the establishment of an immunological synapse in which an actin-rich cup forms

beneath the engaged TCR and nearby integrins are activated to stabilize T cell:APC

interaction(Ryser et al., 1982; Valitutti et al., 1995). The importance of actin rearrangement in T

cell function is reflected by mutations in WASP (Wiskott-Aldrich Syndrome Protein), a regulator

of Arp2/3 activity, resulting in an X-linked immunodeficiency(Nonoyama and Ochs, 1998). The

potential link between EnaNASP proteins and immune function is suggested by several pieces

of evidence. VASP and EVL are strongly expressed in immune cells including T cells, and Mena
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has been reported to be expressed in B cells(Lanier et al., 1999; Tani et al., 2003). The T cell

adaptor protein Fyb/SLAP/ADAP is phosphorylated downstream of TCR engagement, binds

Ena/VASP proteins through an EVH 1-binding motif, and binds WASP, suggesting the existence

of a regulatable complex controlling actin assembly. Finally, inactivation of Ena/VASP with a

dominant negative construct impairs the in vitro polarization of actin assembly necessary for T

cell immunological synapse formation and macrophage phagocytosis(Coppolino et al., 2001;

Krause et al., 2000). Surprisingly, deletion of Fyb/SLAP/ADAP did not affect actin assembly in

an in vitro T cell activation assay(Peterson et al., 2001). The discrepancy between these results

has not been resolved but may reflect the presence of an alternate pathway that may activate

Ena/VASP proteins.

Heart Development

Mutations within the actin binding components that compose the myocyte sarcomere

result in the human cardiomyopathies including hypertrophic and dilated cardiomyopathy. It is

believed that the disruption of the sarcomere causes myocardial disorganization dysfunction that

causes theses diseases. Within a myocyte Ena/VASP localizes via an EVH 1 interaction to the

intercalated disks that serve to join adjacent myocytes(Eigenthaler et al., 2003). Disruption of

Ena/VASP function by the overexpression of an EVH1 transgene causes a dilated

cardiomyopathy(Eigenthaler et al., 2003). In comparison with other dominant negative

approaches in which a mitochondrial-targeted FPPPP-containing peptide is used to sequester

Ena/VASP on the surface of mitochondria, the overexpression of EVH 1 may bind to a variety of

FPPP-containing proteins potentially disrupting their function. Recently a role for

Semaphorin/Plexin signaling in the development of the heart was reported(Toyofuku et al.,

2004). The myocardial architecture of the heart is defined by two parameters: wall thickness and
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trabeculation. The Abl-dependent phosphorylation of Mena regulates Mena's interaction with

Sema6D and controls the thickness and trabeculation of the myocardium(Toyofuku et al., 2004).

The study demonstrates a biochemical interaction of Mena, but not VASP or EVL, with

Sema6D, suggesting a unique role for Mena in heart development. However, this potential role is

undermined by the lack of a heart phenotype in the mena knockout mouse.

Summary

Ena/VASP proteins directly affect the architecture of the actin cytoskeleton, localize to

focal adhesions, and are targets for tyrosine and serine/threonine kinases. In vivo, Ena/VASP

proteins function downstream of axon guidance receptors in Drosophila and C. elegans to

translate signals from extracellular ligands into directed cell motility. In mice, construction of the

mena, vasp, and mena/vasp double-knockout mice have uncovered roles for Ena/VASP proteins

in forebrain commissure formation, neurulation, and platelet function. Numerous additional roles

have been assigned to Ena/VASP proteins based upon in vivo experiments using questionable

dominant interfering strategies or in vitro assays. The generation of the mena/vasp/evl triple-null

mouse will allow the complete description of Ena/VASP function in nervous system (Chapter 2)

and extra-nervous system functions (Chapter 3). Future work to identify family-member and

splice-isoform specific functions will require the construction of additional transgenic and

knockout mice. This process will be greatly enhanced by a lentiviral system for RNAi (Chapter

5).
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Abstract

A newly born neuron must migrate to its correct location within the developing nervous

system and elaborate axons and dendrites that connect with their synaptic targets. Previously,

analysis of mice lacking Mena and VASP uncovered roles for EnaNASP in the midline

guidance of forebrain axons(Lanier et al., 1999; Menzies et al., 2004). We report here the

generation of an Ena/VASP-deficient nervous system through the disruption of the remaining

Ena/VASP family member, EVL. Neurons lacking all three Ena/VASP family members fail to

elaborate axons both in vivo and in vitro in the absence of the extracellular matrix (ECM)

component laminin. In the presence of laminin, axons are initiated but are defective in

outgrowth. Finally, brains from these mice possess numerous ectopic neuronal outgrowths

resembling those observed in mice with disruptions in laminin (Halfter et al., 2002) or its

integrin receptors (De Arcangelis et al., 1999; Georges-Labouesse et al., 1998; Graus-Porta et al.,

2001).
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Introduction

Nervous system development requires the coordination of neuronal differentiation, neuronal

migration, axogenesis, axon extension, axon guidance and synapse formation. As described in

the previous chapter, Ena/VASP proteins regulate the actin cytoskeleton and function in

signaling cascades directing axon guidance. This chapter will focus on Ena/VASP function in the

nervous system including neuronal migration, neuritogenesis and axon extension. To avoid

redundancy in text, the reader is referred to chapter 1 for introduction to axon guidance and

general background on Ena/VASP proteins.

Cortical Neuronal Migration

Newborn neuroblasts migrate outward from the proliferative ventricular zone along radial glia

to establish the mature 6-layered cortex. During cortical plate development, newer born

neuroblasts migrate beyond their predecessors to establish the outer cortical layers. Two major

classes of human congenital disorders affect cortical organization, lissencephaly and cobblestone

cortex. In addition, a spontaneous mouse mutation reeler causes disruption of motor coordination

and inversion of cortical layering. The identification of the genes causing these disorders and

their analysis in mice has elucidated the basic pathways underlying cortical development.

Human lissencephalies are defined by the gross absence of cerebral gyri in humans (mice do

not possess cortical folds) and the histologic disruption of cortical layering(Olson and Walsh,

2002). Superficial to the cortical plate is a relatively neuron-free marginal zone. The secretion of

Reelin (product of the Rein gene that is mutated in the reeler mouse) by the Cajal-Retzius (C-R)

cells within the marginal zone directs the outward migration of neuroblasts through its action at

the LDL-receptors VLDLR and ApoER2(D'Arcangelo et al., 1999; Hiesberger et al., 1999).
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Downstream signaling through Dab affects cytoskeletal dynamics through unknown

mechanisms(Howell et al., 1999).

Mutations in several cytoskeletal proteins, such as filamin, result in cortical migration defects

in mice and humans(Couillard-Despres et al., 2001; Fox et al., 1998). Interestingly, inactivation

of Ena/VASP proteins in individual neuroblasts by retroviral infection in utero resulted in the

inappropriate migration of infected cells beyond the appropriate layer(Goh et al., 2002).

Mutation of C. elegans Unc-34 also causes misguided neuronal migration(Forrester and Garriga,

1997; Withee et al., 2004). These results suggest a role for Ena/VASP proteins in coordinating

neuronal migration.

Neuroblast migration beyond the pia mater generates ectopias causing the bumpy appearance

of cobblestone cortex. The etiology of cobblestone cortex involves disruptions of pial membrane

integrity(Yamamoto et al., 1997). The pia mater is generated by adherens junctions between

radial glia endfeet and adhesion between glial endfeet and the extracellular matrix (ECM).

Mouse knockouts of the ECM component laminin or its neuronal integrin receptors (ac6p and

a31 1)(Delwel et al., 1996; Mercurio and Shaw, 1991) cause cobblestone cortex and show

immunohistochemical evidence of radial glia endfoot and ECM disorganization(De Arcangelis et

al., 1999; Georges-Labouesse et al., 1998; Graus-Porta et al., 2001; Halfter et al., 2002).

Furthermore, disruption of the intracellular signaling moleculefocal adhesion kinase (FAK) in

either radial glia or meningeal fibroblasts also generates a cobblestone cortex(Beggs et al., 2003).

The pial gaps that result allow C-R cell placement outside of the pia which directs the invasion

of neuroblasts to form ectopias(Halfter et al., 2002).

Axogenesis and Axon Outgrowth
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The process by which neuroblasts establish cell polarity to generate an axon has been

extensively modeled in vitro(Dotti et al., 1988). Neurons progress from the elaboration of a

lamellar and filopodial veil (Stage 1) to the outgrowth of minor processes (Stage 2) with the

eventual selection and extension of a single process to generate an axon (Stage 3)(Dotti et al.,

1988). The initial establishment of neuronal processes (Stage 1 to Stage 2) appears to involve

reorganization of the cytoskeleton from the actin-based protrusion of lamellapodia and filopodia

to the microtubule-based protrusion of cell processes (Yu et al., 2001). The preponderance of

research on neuronal polarity has focused on the selection of an axon during Stage 2 to Stage 3

transition(Andersen and Bi, 2000; Bradke and Dotti, 2000; Inoue et al., 2005; Nishimura et al.,

2004; Shi et al., 2003). The physical extension of an axon, axon outgrowth, is essential to both

the formation and eventual guidance of an axon to its target. In vitro, outgrowth can be enhanced

by the ECM component laminin (Lein et al., 1992) as well as signaling by neurotrophins and

netrins (Gates et al., 2000; Loeb et al., 1991; Serafini et al., 1994). A recent report suggests that

Netrin/DCC and neurotrophin/Trk stimulated outgrowth depends upon the NFAT family of

transcription factors(Graef et al., 2003). Disruption of the NFAT c2/c3/c4 genes prevented axon

outrgrowth in vivo and in vitro but did not disrupt neuronal differentiation(Graef et al., 2003).

The transcriptional program turned on by NFAT signaling necessary for outgrowth remains to be

determined.

Role of Integrins and ECM in axon guidance

Significant crosstalk exists between axon guidance factors and integrin/ECM signaling.

Netrins contain structural homology to the ECM component laminin(Ishii et al., 1992; Serafini et

al.), and can bind integrins to mediate development outside of the nervous system(Yebra et al.,

2003). Conversely, laminin can influence axon guidance (McKerracher et al., 1996) such as by
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converting Netrin-mediated axon attraction to repulsion in vitro(Hopker et al., 1999). Finally,

integrins can modulate the signaling by slits(Stevens and Jacobs, 2002) and function as a

receptor for semaphorins (Pasterkamp et al., 2003) in axon guidance.

Summary

Ena/VASP proteins have been implicated as sites of convergence in axon guidance signaling

cascades(Lebrand et al., 2004) and are associated with sites of cell:cell and cell:ECM

junctions(Bachmann et al., 1999; Reinhard et al., 1995; Vasioukhin et al., 2000). Disruption of

Mena, alone or in combination with VASP, causes defects in axon guidance at the

midline(Lanier et al., 1999; Menzies et al., 2004) but does not affect neuronal migration,

axogenesis or axon outgrowth. To determine the complete spectrum of Ena/VASP activities in

the nervous system, we have knocked out the remaining Ena/VASP family member, EVL, and

generated embryos lacking all three Ena/VASP proteins. The subsequent chapter will discuss

Ena/VASP loss of function phenotypes observed elsewhere in the mouse.
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Results

Generation of EVL-deficient Mice

To investigate the requirement of EnaNASP proteins in nervous system development, we

generated a targeted disruption of the EVL locus. Exons 2 and 3 of EVL were replaced with a

cassette encoding neomycin resistance

(Fig. 1A), deleting most of the NH3- A_ EALS_

terminal coding region of EVL and
Eon 2 Eon 3

W Typ EW lt* El 
producing a frameshift downstream. The

Trg Conswu i -
EVL locus was targeted in embryonic stem

Ta~ped EV Als 

cells, and recombination determined by
R EE Ee ee

PCR and Southern blot (data not shown). T EV

Five independent targeted ES clones were T"wdE LAe
PCR

isolated and used to generate chimeric C.

mice. Chimeric mice experiencing
EVt Wednm Bbt

germline transmission were used to
Figure 1. Generation of EVL knockout mice. A. The
targeting vector contained a neomycin resistance cassette

generate heterozygous mice that were then flanked by genomic DNA from introns 1 and 3 of the EVL
locus. Homologous recombination deleted exons 2 and 3 of

intercrossed to produce mice homozygous EVL, removing much of the N-terminal EVH1 domain and
producing a downstream frameshift that blocks translation of

for the mutant EVI allele. Mice the remaining transcript. B. PCR genotyping was performed
on tail samples from the offspring of an EVL heterozygous
intercross (Ee x Ee). Wild type and targeted alleles are

homozygous for the EVL disruption are noted. C. Extracts were prepared from wild type (EE),
heterozygous (Ee), and homozygous mutant (e) brains.

fully viable and observed at the expected Equal amounts of total protein were loaded and analyzed for
levels of EVL by western blot. No EVL protein was detected
in lysates prepared from ee brain lysates, indicating the

Mendelian ratios (data not shown). Gross tareted allele eliminates EVL exression.

morphological analysis of mice lacking EVL did not reveal any obvious phenotypes. Western

blot analysis of brain lysates from wild type (EE), heterozygous (Ee), and homozygous mutant
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(ee) mice, as determined by PCR genotyping (Fig. B), was performed to determine if the

targeted locus eliminated EVL protein expression. As expected, expression of EVL was reduced

in the heterozygous mutant animal and eliminated in the homozygous mutant animal (Fig. 1C).

Ena/VASP proteins are required for proper DRG and trigeminal nerve formation

EVL knockout mice were crossed to existing Mena and VASP mutant lines. Viable

Ena/VASP triple mutant combinations were then mated to each other to generate mice null for

all Ena/VASP proteins (mmvvee). Ena/VASP-deficient mice were never observed as adults;

however, the expected number of mmvvee embryos were recovered at E10.5. The majority

(83%) of mmvvee embryos displayed defects in neural tube closure, a defect noted previously in

embryos lacking both Mena and VASP {Menzies, 2004; discussed in Chapter 3 }. Occasionally,

mmvvee embryos were isolated that appeared smaller and possibly developmentally delayed

when compared to littermate controls. Although we can not formally exclude the possibility, the

phenotypes reported below for mmvvee embryos are likely not the simple consequence of

developmental delay. The in vivo phenotypes discussed in this study were observed consistently

throughout development and were present in both normal-sized and the smaller embryos. The in

vitro analyses discussed below were conducted at both E13.5 and E14.5 and equivalent results

were observed in both sets of experiments.

Whole-mount neurofilament staining was performed on E10.5 mmvvee embryos to

visualize the developing nervous system. Significant defects in dorsal root ganglia (DRG)

development and spinal nerve outgrowth were observed in mmvvee embryos (N=4) (Fig. 2, A-

D). Though present, the DRGs in mmvvee embryos appeared poorly formed based on

neurofilament staining at E10.5 (Fig. 2D), and were significantly smaller and less well developed

at E14.5 (Fig 2J, white arrows) compared to control littermates (Fig. 21, white arrows).
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Figwure 2

Figure 2. Loss of Ena/VASP causes severe defects in spinal nerve formation. (A-F) Whole-mount
immunostaining with anti-neurofilament antibody was performed to visualize the developing nervous system in
E10.5 embryos. Compared to control littermates (A, C, E), mmvvee embryos (B, D, E) showed severe defects in
spinal nerve (white arrows in C and D) and trigeminal nerve outgrowth (white arrows in E and F). The three
branches of the trigeminal ganglia are labeled in the control (e): ophthalmic (op), maxillary (mx), and mandibular
(md). Note the lack of outgrowth of all three nerves, particularly the ophthalmic, in the triple null embryo (F).
(G, H) Transverse sections through E10.5 control (G) and mmvvee (H) embryos stained with anti-BIII-tubulin
and counterstained with hematoxylin. Dorsal is up. Spinal nerve outgrowth and development was severely
limited in mmvvee embryos (black arrows, H) compared to littermate controls (black arrows, G). In addition,
defects in commissural axons reaching the floor plate (fp) were observed frequently in mmvvee embryos (black
asterisk, G and H). (I, J) Spinal cords and attached dorsal root ganglia (DRG) were dissected from control (I)
and mmvvee (j) E14.5 embryos. Though present, DRGs (white arrows) were smaller and poorly developed in
mmvvee embryos compared to littermate controls.

Peripheral axonal projections from the DRGs were severely shortened in mmvvee embryos, and

in some instances, appeared misrouted (Fig. 2D, white arrows).
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Profound defects were also noted in the axonal projections of the trigeminal ganglia in

mmvvee embryos(Fig. 2, E and F). Some neurite outgrowth from the three branches - the

ophthalmic, maxiallary and mandibular - was observed, but the axonal projections were severely

stunted, particularly the projections forming the ophthalmic branch(Fig. 2F). Defects in

trigeminal ganglia and spinal nerve development were far more severe in mmvvee embryos

compared to littermate embryos possessing one Ena/VASP allele (e.g. mmVvee and mmvvEe),

indicating that all three vertebrate Ena/VASP protein participate in nervous system

development(see below).

Outgrowth defects observed in mmvvee embryos did not appear to arise from neurons

failing to differentiate, as similar levels of B3-tubulin staining were observed in transverse

sections through the DRGs of mmvvee and control embryos (Fig 2, G and H). As neurons were

able to differentiate, we cannot account for the smaller size of DRGs in mmvvee embryos, but it

may reflect a defect in sensory neuron migration to the developing DRG. B3-tubulin staining did

provide further evidence for the lack of DRG axonal outgrowth of mmvvee mutants compared to

control littermates (Fig 2, G and H, black arrows). A potential defect in commissural axon

growth was also noted. In control embryos, commissural axons were observed at the floor plate

(fp) and crossing the midline (Fig 2G, black asterisk). However, in mmvvee embryos

commissural axons are rarely observed at the floor plate (Fig 2H, black asterisk). This defect

will be explored further using specific markers for commissural axons, such as TAG-1.

To explore the defect in axonal outgrowth further, DRGs were isolated from mutant

embryos, dissociated, and neurons cultured in vitro. Neurite outgrowth was observed in DRG

neurons isolated from mmvvee embryos (Fig. 3A, top panel), but axonal length was significantly

reduced compared to the littermate MmVvee control (Fig. 3A, bottom panel). These
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observations are consistent to what was observed in vivo, and provide further support for the role

of Ena/VASP proteins in axonal extension. These results also strongly suggest the defects

observed are cell autonomous, given the low number of non-neuronal cells in dissociated

cultures.

Ena/VASP proteins regulate cell motility and axon guidance, and play a critical role in

controlling growth cone morphology. Therefore, we questioned whether loss of Ena/VASP

affected growth cone motility. Time lapse movies of DRG growth cones revealed that loss of
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Figure 3. Loss of Ena/VASP affects DRG axon outgrowth and growth cone motility. A) Loss of Ena/VASP
reduces the extent of axon outgrowth. Neurons from dissociated DRGs were plated on 0.1 mg/ml PdL and
20pg/ml laminin for 24 hours, fixed and stained with phalloidin to label actin filaments (red) and an antibody to
neuron-specific B3-tubulin (green). Shown are montages of representative neurons of each genotype. Schwann
cells do not express 63-tubulin and appear red. B) Loss of Ena/VASP decreases both the speed and persistence of
DRG growth cone motility. After 48 hours in culture, time-lapse movies (20 second intervals for 30 minutes)
were collected of randomly selected DRG growth cones from each genotype. Red bars indicate the mean speed of
growth cone translocation. Blue data points indicate persistence as measured by dividing the net distance the
growth cone traveled from the first frame to the last frame by the total distance the growth cone traveled.
Numbers within the red bars are the number of growth cones measured for a given genotype.



Ena/VASP decreased both the speed and persistence of growth cone movement (Fig. 3B). A

marked reduction in actin bundles and filopodial production in growth cones of mmvvee neurons

was also observed (data not shown), consistent with a previous report implicating Ena/VASP

function in filopodial formation(Lebrand et al., 2004).

Loss of Ena/VASP causes defects in neuronal migration and fiber tract formation in the

developing brain

Defects observed in E 10.5 mmvvee embryos suggested a role for Ena/VASP proteins in

axonal outgrowth in the peripheral nervous system. Past work has clearly defined a role for

Ena/VASP proteins in CNS development. To determine how loss of Ena/VASP affects CNS

development, we analyzed triple null embryos later in development. Approximately 75% of

mmvvee embryos survive to E16.5, but the majority of these embryos are exencephalic,

precluding analysis of brain development. mmvvee embryos typically died between E16.5 and

E18.5 from cardiovascular defects (discussed in Chapter 3). We were, however, able to collect a

few non-exencephalic mmvvee embryos at E16.5 and older. Since mutant embryos were

limiting, we applied a combination of MRI and classic histological techniques to probe for

defects in brain development.

MRI provides a non-invasive method to examine brain morphology in three dimensions.

New MRI techniques such as diffusion tensor microimaging (LDTI) permit increased resolution

of morphological structures, and have been used successfully to visualize cortical layering and

fiber tract formation in the mouse brain(Mori et al., 2001; Zhang et al., 2002). Three E16.5

embryo littermates -MMVvee, mmVvee, and mmvvee - were analyzed using a combination of

standard MRI (Fig 4A) and gDTI (Fig 4, B-E) techniques.
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A number of striking defects were observed in both mmwee and mmVvee brains, though

all defects observed were more severe in the mmmvee brain. Both brains were hydrocephalic,

possessing enlarged ventricles (Fig. 4A, black regions in center of brain). Hydrocephaly was

accompanied by a significant reduction in brain matter, particularly in the mmvvee brain.

Histological examination of additional mmvvee brains revealed similar defects in ventricle size

and total brain matter with no evidence of widespread apoptosis in the developing brain (data not

shown).

Major defects in cortical development were observed in the Ena/VASP-deficient brain.

Tensor imaging revealed that the intermediate zone was poorly developed and disorganized in

the mmvvee brain, and thin in the mmVvee brain compared to the MMVvee littermate (Fig. 4B,

orange arrow in bottom panels points to intermediate zone). In addition, the ventricular zone

appeared thin in some regions in the mmvvee brain (data not shown). H/E staining of mmvvee

brains revealed that the intermediate zone was present, but lacked cellularity and showed signs of

disorganization compared to control, and that the ventricular zone was thin in areas (Fig. 5, G

and H). Cortical layering appeared largely intact in mmvvee brains, with the exception of the

ectopias discussed below (Fig. 4C, blue arrows). The intermediate zone is comprised largely of

axons extending from the cortical plate, and the defects observed could be indicative of a defect

in axonal extension.

Strikingly, gDTI analysis revealed the presence of extra-cortical layers (ectopias)

throughout the cortex in the mmvvee brain. Ectopias are produced by the aberrant migration of

neurons across the basal lamina, and are hallmarks of the human congenital disorder cobblestone

cortex. Ectopias were identified clearly by H/E staining (Fig. 4, B and D), and observed in all

late stage non-exencephalic brains studied (n=4), but never in brains from embryos expressing
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Figure 4. MRI reveals structural defects Ena/VASP-deficient brains. A) Horizontal (top row), coronal
(middle row) and sagittal (bottom row) T2-weighted MRI images of E 16.5 brains. Hydrocephalus is evident in
mmVvee and mmvvee brains in comparison to control (MMVvee) with enlargement of all ventricles (black
regions within brain). Increase in ventricle size correlates with a reduction of brain matter particularly in the
midbrain. B) ,tDTI imaging of a coronal sections reveals disorganization within the intermediate zone.
Magnification of the area enclosed in the white box reveals a well-defined cortical plate (green arrow),
intermediate zone (orange arrow) and ventricular zone (purple arrow) in the MMVvee brain. The thickness
(distance between cortical plate and ventricular zone) and organization (green signal in control intermediate zone
indicates alignment of tissue) of the intermediate zone is decreased in the mmVvee and mostly absent in the
mmvvee brain. C) Triple-null brains exhibit Type-II lisencephaly. In addition to the three cortical layers,
extracortical layers (blue arrows) can be seen in multiple planes from an mmvvee brain. D) DTI reveals a
defect in optic chiasm formation in embryos lacking Ena/VASP. The optic nerves from an mmvvee brain are
poorly organized and fail to generate an optic chiasm. The optic nerves from an mmVvee brain generate a poorly
formed chiasm in comparison to the MMVvee brain. E) Hippocampal fiber tracts (yellow arrow) are observed in
both mmvvee and mmVvee brains, but are not as well defined as in the MMVvee brain.
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one or more Ena/VASP allele (data not shown). B3-tubulin staining demonstrated that these

ectopias were, as expected, comprised of differentiated cortical neurons that migrated past the

Pial membane and accumulated in the arachnoid space. (Fig. 51). In many instances, the ectopic

neurons appeared to spread into or along the arachnoid membrane, sometimes migrating well

past the point of escape (Fig. 5, B and D). Finally, H/E staining suggested that these ectopic

neurons extend axons across the Pial membrane and marginal zone and into the poorly formed

intermediate zone (Fig. 5D, black arrows). Additional staining experiments are needed to

determine if these ectopic neurons are projecting axons into the cortex.

Additional brain structures were poorly formed in brains from mmvvee embryos. RtDTI

imaging indicated the layered structure of the hippocampus was poorly developed in mmvvee

brains, and the dentate gyrus was not well defined (data not shown). H/E staining confirmed that

the hippocampus was not well developed (Fig. 5F). Interestingly, though poorly organized,

numerous fiber tracts were observed emerging from the hippocampus by MRI to form the ventral

hippocampal commisure fiber tract(Fig. 4E), although the ventral hippocampal fiber tract failed

to reach the midline. In contrast, we were unable to identify fiber tracts for the other major

forebrain commissures, including the corpus callosum and the anterior commissure (data not

shown). Mice lacking Mena and VASP also fail to form forebrain commissures, but misguided

fiber tracts could be identified for all of the major commissures (Menzies et al., 2004). In

addition, the cerebellum was small, lacked some convolution, and was devoid of most white

matter (data not shown). Also, the amygdala was reduced in size (data not shown).

Dosage-sensitive defects in optic nerve outgrowth and optic chiasm formation were

observed in mmVvee and mmvveee embryos. The optic chiasm is an X-shaped structure found

at the midline that is formed by the posteriorly projecting axons of retinal ganglion cells. In the
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Figure 5

Figure 5. Loss of Ena/VASP affects brain development A-D) Ectopias are observed in mmwee brains. H/E
staining of a control El 18.5 embryo brain shows normal cortical layering (A, higher magnification in C). In
mmvvee brains, neurons born in the ventricular zone (VZ) have migrated beyond the cortical plate (CP), through
the marginal zone (MZ) and across the pial (P) membrane where they accumulate in large clusters (D, higher
magnification in D). In some instances, these clusters appear to send out processes, presumably axons, back
across the marginal zone and cortical plate and into the intermediate zone (IZ) (black arrow in B, higher
magnification in D). E,H) mmwee brains show defects in hippocampus formation. Compared to control (E), the
hippocampus in mmwee brains appears disorganized and poorly formed. G, H) Cortical layering defects in
mmvvee brains. The VZ is extremely thin and the intermediate zone shows signs of disorganization and a lack of
cellularity in mmvvee mutants (H, control in G). I) B3-tublin staining confirms that the ectopias are composed of
differentiated neurons in mmwee brains.
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mmVvee mutant, the optic nerves were formed and projected into the brain, but inappropriately

stopped at the midline and failed to generate the optic chiasm (Fig. 4D, middle panels). This

phenotype is more severe in the mmvvee mutant, where the optic nerves appear thinner and

never reach the midline. A more subtle defect in optic chiasm formation was previously reported

in mice lacking Mena(Menzies et al., 2004), and these results provide further evidence that

EnaVASP proteins are required for optic nerve and optic chiasm formation.

Ena/VASP proteins are required for cortical neuron development

The misorganization of the intermediate zone observed in the mmvvee brain suggested

potential defects in cortical neuron axon outgrowth. To explore this possibility further, we

cultured cortical neurons from mmvvee brains in vitro. Due to the lack of non-exencephalic

mmvvee brains, neurons were isolated and cultured from exencephalic mutants. Cortical

neurons isolated from exencephalic mutants behaved similar to neurons isolated from non-

exencephalic mutants of the same genotype, and when differentiated, assumed the same

morphology as cortical projection neurons (data not shown).

Cortical neuritogenesis in culture follows a well defined set of stages. Stage 1 cortical

neurons display extensive lamellipodia and filopodia along their periphery. Stage 2 neurons

possess multiple minor processes, but have not established an axon. Stage 3 neurons have

extended a single axon (Fig. 6A). Intriguingly, EGFP-Mena expressed in cortical neurons

localizes to the tips of actin-rich lamellipodia and filopodia in Stage 1 and Stage 2 of

development(Fig. 6A) The majority of wild type neurons typically reach stage 3 of development

after 48 hours in culture. Cortical neurons were isolated from either E13.5 or E14.5 mutant

embryos, plated onto poly-D-lysine coated coverslips, and scored for developmental stage after

48 hours in culture. Strikingly, the majority (74%) of cortical neurons from mmvvee mutants
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were observed in stage 1, with only 2% of neurons reaching stage 3 (Fig 6B). This was in sharp

contrast to neurons from an MmVvee littermate, where 69% of neurons developed to stage 3(Fig.

6B). The defect in mmvvee cortical neurons was largely a failure to develop from stage 1 to

stage 2, defined as neurite initiation or neuritogenesis, as similar levels of stage 2 nuerons were

observed in all three genotypic classes (Fig. 6B). Neurons from an Mmvvee mutant displayed an

intermediate phenotype, suggesting the defect was sensitive to Ena/VASP dosage(Fig. 6B).

Furthermore, Mena was the most critical allele for neuritogenesis, as one allele of Mena

promoted maturation more effectively than one allele of either VASP or EVL (see below and

data not shown).

We attempted to rescue the defect in mmvvee neuritogenesis by restoring Ena/VASP

function. EGFP-Mena was transfected into mmvvee cortical neurons immediately after

dissection, and stage development of EGFP-expressing neurons scored and compared to

untransfected neurons. Expression of EGFP-Mena was sufficient to restore cortical

neuritogenesis to levels observed in neurons expressing two or more alleles of Ena/VASP (Fig.

6C). Consistent with Mena being the most critical allele for development, expression of EGFP-

EVL rescued neuritogenesis, but was less effective than EGFP-Mena (Fig. 6C).

To determine the nature of the developmental defect in Stage 1 mmvvee neurons, we

analyzed the cellular morphology and membrane dynamics of mmvvee cortical neurons. Usually

few and occasionally no filopodia were observed in fixed stage 1 neurons, and there was a

marked reduction in actin bundles along the periphery of the cell (Fig. 6D). The architecture of

both the peripheral actin and the central microtubule cytoskeletons appeared disorganized (Fig.

6D). Lamellipodial and filopodial dynamics of stage 1 neurons were measured by time-lapse

video microscopy. Kymographic analysis revealed a marked decrease in protrusive activity in
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Figure 6. Loss of Ena/VASP from cortical neurons inhibits axon formation. A) Stages of cortical neuron
development in vitro plated on poly-d-lysine (PdL). Cortical neurons expressing EGFP-Mena (green), stained
with phalloidin to label actin filaments (red) and labeled with an antibody to tyrosinated tubulin (blue) to label
microtubules. Stage 1 neurons exhibit extensive lamellipodia and filopodial-rich periphery with no processes.
Stage 2 neurons possess one or more minor processes but have not yet extended an axon, while stage 3 neurons
have extended a single axon. B) Cortical axon formation is sensitive to EnaVASP dosage. Cortical neurons
were scored for developmental stage after 48 hours in culture. Progression from Stage 1 to Stage 3 is enhanced
with additional alleles of Mena or VASP. C) Transfection with Mena or rescues cortical neuron development.
mmvvee neurons were transfected with a plasmid expressing EGFP-Mena [(+)Mena]. Untransfected neurons in
the same dish were used as controls. Transfection of EGFP-Mena rescues cortical development similar to
neurons containing one allele of Mena (Mmvvee). D) Stage 1 neurons from mmvvee cortices have a marked
decrease in filopodial protrusions. Cortical neurons were stained with phalloidin to label actin filaments (red) and
neuron specific 3-tubulin (green), indicating that these cells are indeed differentiated neurons. E) Dynamics of
Stage 1 neurons are sensitive to Ena/VASP dosage. Time-lapse movies of individual Stage 1 neurons were
collected at 5 sec intervals for 10 minutes. Representative frames are shown for each genotype (top row). Single
pixel wide kymographs (middle row) generated along the lines indicated in the top left panel show protrusions
and retractions along those lines during the movie. Arithmetic minima from each frame of the time-lapse were
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mmvvee neurons (Fig. 6E). Intriguingly, the few filopodia that were elaborated in mmvvee

Stage 1 neurons were far less motile than those in neurons possessing one or two alleles of

Ena/VASP (data not shown). Similar to the developmental defects, lamellipodial and filopodial

dynamics were sensitive to the number of Ena/VASP alleles present as increasing the level of

Ena/VASP increased protrusive activity (Fig. 6E).

The defect in cortical neuron neuritogenesis in vitro might explain the disorganized

intermediate zone and lack of axonal outgrowth in vivo. However, we observed axonal

outgrowth and fiber tract formation in specific regions of the brain, most notably from cortical

ectopias, retinal ganglia, and the hippocampus. Axons, although stunted, also formed from

DRGs in vivo and in vitro. Interestingly, it appeared that cortical neurons generated axons from

within ectopias but failed to do so from within the cortical plate. We hypothesized that ectopic

neurons may be exposed to a different ECM microenvironment. The pial membrane is generated

by the fusion of radial glial endfeet and adhesion between the endfeet and laminin in the

surrounding ECM. Staining of wildtype brains for laminin demonstrated that laminin is found

solely in the surrounding pia but not within the cortical plate (Fig. 6F). In the PNS, laminin

expression was also observed within DRGs (Fig. 6F).. We hypothesized that neuritogenesis

may occur via two pathways: one requiring Ena/VASP fimunction and the other requiring laminin.

To test this hypothesis, we attempted to rescue neuritogenesis with laminin in vitro. Cortical

neurons from an mmvvee mutant were plated onto poly-D-lysine coated coverslips with or
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overlaid (bottom row) showing filopodial and lamellipodial activity over the ten minute time course. F)
Expression of laminin-1 in the E13.5 spinal column and brain. Laminin-1 immunoreactivity is limited to the pial
membrane surrounding the forebrain and midbrain (left panel) and is present in the DRGs (right panel, white
arrows). G) Laminin-1 rescues the Ena/VASP-deficient axon outgrowth phenotype in vitro. mmvvee cortical
neurons were plated on PdL or PdL supplemented with 20pg/ml laminin-l [(+)Ln] and scored for developmental
stage after 48 hours in culture. Development of mmvvee neurons grown on laminin is similar to MMVvee
neurons grown on PdL alone.



without laminin. Strikingly, the presence of laminin rescues the Ena/VASP-deficient

neuritogenesis defect almost completely (Fig. 6G).
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Discussion

Ena/VASP Proteins are Required for Neurite Initiation, Axonal Outgrowth, and Neuronal

Migration

Ena/VASP function is required for multiple processes during nervous system

development. Loss of Ena/VASP resulted in poorly formed spinal nerves that exhibited reduced

outgrowth both in vivo and in vitro. Reduced outgrowth was also noted in hippocampal and

retinal fiber tracts, and the majority of forebrain commissures failed to form in Ena/VASP-

deficient brains. Analysis of the cortex revealed a thin ventricular zone and disorganized

intermediate zone where cortical fiber tracts were either poorly formed or absent. However, no

obvious defects were noted in cell differentiation or cell death. Loss of Ena/VASP function

caused a severe form of cobblestone cortex, the possible result of a poorly formed pial membrane

and increased cortical neuron migration. Analysis of cortical neuron development in vitro

revealed Ena/VASP proteins are required for neuritogenesis. This defect could be rescued with

laminin, indicating that Ena/VASP protein and laminin function in independent pathways to

promote neurite initiation.

This study clearly demonstrates, for the first time, that Ena/VASP proteins are required

for neuritogenesis and axon outgrowth. It is interesting to note that the observed defects in the

vertebrate nervous system are more severe than might be expected from studies of Ena/VASP

function in worm and flies. Multiple genetic studies in C.elegans and D. melanogaster have

shown that loss of Ena/VASP causes cell autonomous defects in axon guidance (Gertler et al.,

1995; Gitai et al., 2003; Yu et al., 2002); no defects in neurite initiation or axon extension have

ever been reported (discussed in more detail below). In fact, loss of Enabled cause a bypass

defect in the ISNb motor axon guidance in Drosophila - the motor axon extends too far as it fails
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to recognize and respond to a choice point (Wills et al., 1999). One possibility is the activation

of an Ena/VASP-independent pathway for neuritogenesis and outgrowth in the fly and worm,

similar or identical to the laminin-dependent pathway described below. Also, the most severe

defects were observed in the cortex, a mammalian-specific brain structure, suggesting that

Ena/VASP proteins have evolved to meet a unique and specific requirement for neural

development.

The Ena/VASP-dependent outgrowth defects share some striking similarities to

outgrowth defects observed in mice lacking calcineurin-NFAT signaling. The NFAT

transcription complex is regulated by calcinuerin, and calcinuerin-NFAT signaling controls

aspects of neuronal morphogenesis (Crabtree and Olson, 2002). Ablation of the NFAT

transcription complex proteins NFATc2, NFATc3 and NFATc4 (c2/c3/c4) causes striking

defects in DRG and trigeminal ganglion outgrowth as well as defects in commissural axon

projection in vivo, all similar to loss of Ena/VASP function. Furthermore, cell autonomous

defects in sensory axon outgrowth in vitro were observed, similar to the reduction in outgrowth

observed in mmvvee DRG neurons in vitro. Phenotypes observed in NFAT (c2/c3/c4) knockout

mice were not due to an increase in cell death or neuron differentiation. Interestingly, netrin was

found to stimulate NFAT-dependent transcription through calcineurin and the netrin receptor

DCC, and inhibiting calcineurin signaling blocked netrin-dependent outgrowth from DRG

explants (Graef et al., 2003). Ena/VASP functions downstream of Netrin signaling during axon

guidance (Colavita and Culotti, 1998; Gitai et al., 2003; Yu et al., 2002), and Netrin stimulates

Ena/VASP-dependent filopodia formation (Lebrand et al., 2004). Given the evidence presented

in this report that Ena/VASP regulated changes in the actin cytoskeleton are required for
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neuritogenesis, it is intriguing to speculate that Ena/VASP proteins cooperate with

calcineurin/NFAT signaling to promote outgrowth downstream of netrin.

Axon Outgrowth and Guidance

Ena/VASP mutations in the fly and worm primarily cause defects in axon guidance

(Colavita and Culotti, 1998; Gertler et al., 1995; Gitai et al., 2003; Wills et al., 1999; Yu et al.,

2002). The axons in these mutants form, extend, but take an inappropriate path due to a failure

to respond to guidance cues, including the midline guidance cues Netrin and Slit(Bashaw et al.;

Colavita and Culotti, 1998; Forsthoefel et al., 2005; Gitai et al., 2003; Yu et al., 2002). In

addition to the genetic links with midline guidance pathways, Ena/VASP proteins physically

interact with the axon guidance receptors Robo, and Sema6A (Bashaw et al., 2000; Klostermann

et al., 2000). Consistent with this, mice lacking both Mena and VASP fail to generate the major

forebrain commissures. The axon tracts from these mice extend towards but fail to reach the

midline(Menzies et al., 2004). Filopodia formation in response to Netrin requires Ena/VASP

proteins, suggesting a molecular mechanism for Ena/VASP involvement in guidance

decisions(Lebrand et al., 2004).

The analysis of axon guidance in mice completely deficient for Ena/VASP proteins is

complicated by several factors. First, cortical neurons failed to complete axogenesis and thus did

not form fiber tracts (discussed below). Second, the axons that were formed, including spinal

nerves and hippocampal fibers, appeared severely stunted, indicative of a defect in axon

outgrowth. In support of this, dissociated DRG neurons form shorter neurites when cultured in

vitro. Microscopic analysis of growth cone dynamics revealed Ena/VASP-dependent defects in

the rate of growth cone extension and persistence. These defects exist in the absence of guidance

or neurotrophic factors and represent a fundamental defect in growth cone mechanics. Consistent
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with this, we observed a decrease in actin bundling and filopodia extension in DRG neurons

lacking Ena/VASP proteins. These results suggest that Ena/VASP proteins play an essential role

in neurite initiation and extension through their regulation of actin dynamics. Therefore, analysis

of specific guidance decisions during development was precluded by Ena/VASP-dependent

neurite development.

Neuritogenesis in Ena/VASP-deficient mice requires laminin

Based upon both in vivo and vitro observations, we propose that there are two pathways

for neurite initiation, one requiring Ena/VASP proteins and a second that is ECM-dependent. In

vivo, we observed a nearly complete agenesis of the major cortical fiber tracts including those

forming the corpus callosum in mice lacking all Ena/VASP proteins. This is in contrast with

mice lacking only Mena and VASP. While major forebrain commissures were absent in these

mice, the axon tracts were present but failed to reach the midline(Menzies et al., 2004).

Similarly, mice expressing only a single allele of VASP also formed cortical fiber tracts,

suggesting that a complete loss of Ena/VASP expression is required to block axogenesis.

Consistent with a failure to observe cortical fiber tracts by MRI, the intermediate zone

underlying the cortical plate was disorganized and contained few axons. Interestingly, several

non-cortical axon tracts appeared to form but had obvious defects in outgrowth and guidance.

Notably, fiber tracts were observed initiating from retinal ganglia, hippocampi, and DRGs.

Surprisingly, axonal outgrowths were also noted emerging from cortical neurons present in

ectopias. The ability of cortical neurons to complete axogenesis from within an ectopia but not

from within the cortical plate strongly suggested an underlying difference in the

microenvironment of an ectopic cortical neuron. Ectopic neurons sit on top of the pial basal

lamina whose primary ECM component is laminin-1 (Georges-Labouesse et al., 1998). Laminin-
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1 has previously been implicated in the extension and guidance of axons (Anton et al., 1999;

Lein et al., 1992). Similarly, expression of laminins has been reported in the developing retina,

hippocampus and DRGs, but is notably absent from the cortical plate {Georges-Labouesse,

1998; Libby, 2000; Sharif, 2004; De Arcangelis, 1999; and this study}. Laminins are bound by

several integrin receptors including a6 13, a6 4 and a3 1(Hynes). Both a6 1 and a3 1 are

expressed throughout the brain including cortical neurons(Georges-Labouesse et al., 1998;

Graus-Porta et al., 2001). The ability of laminin-l to rescue EnaNASP-deficient cortical neuron

axogenesis in vitro further supports the model that either Ena/VASP or integrin signaling support

axogenesis. Mice deficient in both a6 and a3, or l3! have been generated and do not possess any

defects in fiber tract formation (De Arcangelis et al., 1999; Graus-Porta et al., 2001). This likely

reflects the ability of broadly expressed Ena/VASP proteins to compensate for loss of integrin

signaling (Lanier et al., 1999; Menzies et al., 2004). We propose that disrupting Ena/VASP

activity in P-deficient neurons would block axogenesis throughout the nervous system.

Molecular insight into neurite initiation

Ena/VASP proteins regulate the geometry of the actin cytoskeleton in both fibroblasts

and neurons. In fibroblasts, Ena/VASP overexpression promotes the formation of long,

unbranched actin filaments in extending lamellipodia, whereas loss of Ena/VASP creates short,

highly branched networks of actin filaments (Bear et al., 2002). In neurons, overexpression of

Ena/VASP increases the number of filopodia and actin bundles in the growth cone, while loss of

Ena/VASP decreases filopodia and actin bundles and creates a dense, slightly disorganized actin

network (Lebrand et al., 2004). Ena/VASP-dependent alterations in the lamellipodial actin

network create profound changes in lamellipodial dynamics and affect cell movement in

fibroblasts (Bear et al., 2000; Bear et al., 2002). Therefore, we hypothesize that Ena/VASP-
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regulated actin assembly in cortical neurons is required for neurite initiation in the absence of

laminin.

The cytoskeletal architecture of stage 1 Ena/VASP-deficient cortical neurons plated on

poly-D-lysine was markedly different from control neurons. Wild type Stage 1 neurons display

lamellipodia rich with actin bundles and filopodial projections that are unique from the classic

fibroblast lamellipodia. In contrast, few if any filopodial protrusions or actin bundles were noted

in the lamellipodia of Ena/VASP-deficient neurons. Furthermore, the microtubules appeared

fragmented and disorganized. Inhibiting Ena/VASP function in primary hippocampal neurons

causes similar defects in actin organization of the growth cone (Lebrand et al., 2004). Thus, the

observed defects are consistent with the current model for Ena/VASP function in regulating actin

geometry.

How might EnaNASP-regulated actin bundles and filopodia promote neurite initiation?

One possibility is that actin bundles play an important role in supporting microtubule elongation

and stabilization. The interplay between actin filaments and microtubules is thought to be

critical for axon outgrowth, turning, and guidance (Dent and Gertler, 2003), and has been

suggested to play an important role in neurite initiation (Dehmelt and Halpain, 2004). In this

model, Ena/VASP proteins promote the formation F-actin bundles along the stage 1 neuronal

lamellipodial veil. These actin bundles serve as guides for probing microtubules, and

stabilization of microtubules at points along the cell periphery promotes outgrowth and neurite

formation. In the absence of bundled actin, microtubule stability would be compromised and

outgrowth ablated.

Our results indicate that neurite initiation can occur independent of EnaNASP proteins

through laminin. If the primary function of Ena/VASP in neurite initiation is regulating actin

81



assembly, specifically the formation of actin bundles, it seems likely that another protein or set

of proteins are functioning in place of Ena/VASP to promote the assembly of bundled actin. The

formin family of proteins is an attractive candidate for this role. Formins promote actin

assembly at the barbed-end of actin filaments and promote filament elongation (Zigmond, 2004)

and function downstream of Rho GTPase signaling (Peng et al., 2003; Watanabe et al., 1999).

Furthermore, the formin mDia2 has been found to function downstream of Cdc42 and Rif in the

formation of filopodia (Pellegrin and Mellor, 2005). As noted above, laminin is bound by

multiple integrins, and integrin engagement is known to activate multiple signaling pathways,

including Rho GTPase signaling (Hynes, 2002). Rho GTPase activation could in turn stimulate

mDia2 or another formin protein and promote actin filament and bundle formation, and thus

provide the structural requirements for neurite initiation.

Neuronal Migration and Pial Integrity

Mutation of either ECM components (laminins or perlecan) or their integrin receptors

generate cortical abnormalities resembling those observed in the Ena/VASP-deficient brain(De

Arcangelis et al., 1999; Georges-Labouesse et al., 1998; Graus-Porta et al., 2001; Halfter et al.,

2002). Cobblestone cortex is also a feature of several human congenital disorders including

Fukuyama Muscular Dystrophy (FCMD), Walker-Warburg Syndrome (WWS), and Muscle-Eye-

Brain Disease (MEB) (Olson and Walsh, 2002). The genes responsible for these human

syndromes encode a-dystroglycan or proteins involved in its gycosylation(Brockington et al.,

2001; Hayashi et al., 2001; Yoshida et al., 2001). Glycosylation of a-dystroglycan is essential for

its binding to laminin and is required for basal lamina integrity(Brockington et al., 2001; Chiba

et al., 1997). Mutation of Ena/VASP proteins generates focal ectopias, but through the majority

of the cortical plate neurons respect the marginal zone barrier. Histologically, the brain has a
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laminin- 1 positive pial membrane. Together these results suggest that the basal lamina can form

in Ena/VASP-deficient brains, but that it likely has defects in its structural integrity.

How might Ena/VASP-deficiency disrupt basal lamina integrity? Histologic analyses of

mouse models of cobblestone cortex have identified defects in both radial glial endfoot

organization and disruption of the overlying ECM. Recently, focal adhesion kinase (FAK), has

been identified as the first intracellular signaling molecule generating cobblestone cortex(Beggs

et al., 2003). Surprisingly, deletion of FAK from either meningeal fibroblasts or radial glia but

not neurons was sufficient to generate cortical ectopias (Beggs et al., 2003). This further suggests

that the inappropriate neuronal migration in cobblestone cortex is a secondary effect of basal

lamina disruption, and that basal lamina disruption can be mediated by cell autonomous defects

in either radial glia or fibroblasts (Beggs et al., 2003; Shearer and Fawcett, 2001; Sievers et al.,

1994). FAK is a nonreceptor tyrosine kinase that, like Ena/VASP proteins, is associated with

integrin-mediated focal adhesions. Through both its tyrosine kinase and protein scaffold

activities, FAK is required for focal adhesion integrity and signaling through actin in

fibroblasts(Ilic et al., 1995; Sieg et al., 1998). In contrast, fibroblasts lacking Ena/VASP proteins

still form focal adhesions and have no obvious adhesive or motility defect(Bear et al., 2000). The

generation of a cobblestone cortex may indicate a link between FAK and Ena/VASP signaling

downstream of integrin engagement to laminin. An alternative hypothesis for cobblestone cortex

is that Ena/VASP proteins function at adherens junctions may disrupt interactions between glial

endfeet. Ena/VASP proteins localize to adherens junctions, and have been implicated in their

generation and integrity (Eigenthaler et al., 2003; Vasioukhin et al., 2000). Further work will be

needed to discern between these two possibilities.
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Intriguingly, the ectopias observed in both the EnaNASP-deficient and FAK-deficient

brains are distinct from those seen in integrins or laminin mutants. In the latter brains, neuronal

invasion does not extend significantly beyond the marginal zone into the pial membrane. In

contrast, disruption of either Ena/VASP or FAK causes the invasion of neuroblasts beyond the

pial membrane into the subarachnoid space, with the inward extension of axons back through the

cortical plate into the intermediate zone. However, the ectopias present in Ena/VASP-deficient

mice showed far greater invasion beyond the pia into the arachnoid space. While the formation

of the ectopias reflect defects in pial integrity, the subsequent extensive invasion observed in

Ena//VASP-deficient mice may reflect a cell autonomous increase in neuronal motility. Such an

increase would be consistent with the previously observed enhanced motility of individual

neurons lacking EnaNASP proteins in vivo (discussed below)(Goh et al., 2002).

Disruption of Unc-34/Ena in C. elegans affected the migration of many neurons and

disruption of Ena/VASP function in individual mouse neuroblasts caused their inappropriate

positioning within the cortical plate(Forrester and Garriga, 1997; Goh et al., 2002; Withee et al.,

2004). Surprisingly, the cortical plate in EnaNASP deficient brains appears grossly normal;

however, we can not rule out subtle neuron autonomous defects in cortical positioning or

layering. Our inability to generate sufficient numbers of nonexencephalic EnaNASP-deficient

brains has thus far precluded neuronal birthdate analysis. Further work will be necessary using

both birthdate analysis and employing layer-specific antibodies to determine whether neuronal

migration is affected in these brains.
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Experimental Procedures

Generation of EVL knockout mouse. A BAC mouse genomic DNA clone was obtained from

Genome Systems that contained the EVL locus. The targeting vector was constructed by

subcloning regions surrounding exons two and three of the EVL locus into the vector

pPGKneobpAlox2PGKDTA (a gift from Philip Soriano). The final targeting vector contained a

neomycin resistance cassette under the control of the PGK promotor flanked by a 1.0 kb genomic

DNA fragment upstream of exon 2 and 5.0 kb fragment downstream of exon 3. The targeting

vector was electroporated into early passage R1 embryonic stem (ES) cells. Over 1000 G418

resistant ES colonies were picked and screened for homologous recombination by PCR. 5 clones

were identified, and homologous recombination reconfirmed in these clones by Southern blot.

All 5 clones were injected into blastocysts to generate chimeric mice. 4 of the 5 clones produced

high percentage chimeras, but subsequent breeding revealed that only one clone went germline.

This clone was used to establish the EVL knockout line used in this study. To confirm loss of

EVL protein, adult mouse brain lysates were probed with anti-EVL polyclonal antibody 1404 by

Western blot.

Embryonic stem cell culture. R1 ES cells were cultured in DME (Specialized Media) plus 15%

ES cell tested fetal calf serum (HyClone) and supplemented with L-Glutamine (Specialized

Media), Penicillin/Streptomycin (Specialized Media), B-mercaptoethanol (Specialized Media)

and LIF-conditioned media. When necessary, G418 was added to a final concentration of 300

jpg/ml. R1 cells were cultured on a monolayer of irradiated primary mouse embryonic

fibroblasts (MEFs).
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Mouse Colony. Chimeric mice were initially crossed to C57/B6 mice to determine germline

transmission of the mutated EVL allele. Progeny from these crosses were then backcrossed into

the inbred lines 129/Sv, C57/B6, and Balb/c. All inbred mouse lines were obtained from

Taconic. All experiments described were conducted with mutant mice on a mixed background,

primarily a mix of Balb/c and 129/Sv.

Small (less than 1 cm) pieces of tail were cut from P10 mice for genotyping purposes.

Genomic DNA was prepared from these tail samples and used for PCR. To genotype embryos,

DNA was isolated from either yolk sacs (E10.5) or tails (E12.5-E18.5).

For timed pregnancies, mating pairs were set up in the evening and checked for vaginal

plugs the following morning. Plugged females were removed from the mating pair and

sacrificed at the appropriate time. The day of the plug was deemed embryonic stage E0.5.

Whole-mount Neurofilament Staining. Embryos were collected at E10.5 and fixed in 80%

MeOH, 20% DMSO at 4°C overnight. The following day, embryos were bleached in 60%

MeOH, 20% DMSO, and 20% H202 at room temperature for 6 hours, washed in MeOH and then

stored in MeOH at -200 C until staining. For staining, embryos were rehydrated by washing in a

series of MeOH in PBS dilutions. After rehydration, embryos were blocked overnight at 4°C in

PBS + 0.5% Triton X-100 + 2% nonfat dry milk + 3% normal donkey serum. The following

day, anti-neurofilament monoclonal antibody H3 (Developmental Studies Hybridoma Bank) was

added at 1:200 and incubated overnight at 40 C. Post-primary antibody washes were performed

using PBS + 0.5% Triton X-100 + 2% nonfat dry milk. Embryos were washed at least 6 times

for one hour. Embryos were then incubated with preabsorbed donkey anti-mouse antibody

conjugated to horseradish peroxidase (HRP) overnight at 4°C. Embryos were washed

extensively before labeling with diaminobenzidine (DAB) plus NiC12. After staining, embryos
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were dehydrated in EtOH and either stored at -200 C or imaged after being cleared in methyl

salicylate.

Histology and Immunohistochemistry. Tissues for histology were fixed in either 10% formalin

or Bouin's fixative (Electron Microscopy Sciences). Tissues were embedded in paraffin,

sectioned, and stained with hematoxylin and eosin (using standard techniques). For

immunohistochemistry, sections were dewaxed in xylene, rehydrated through ethanol and when

appropriate, incubated in 3% H202 for 10 minutes to extinguish endogenous peroxidase activity.

Samples were treated with Retrievagen A (pH 6.0) (BD Pharmingen) to improve antigen

exposure. Staining was performed using the TSA Biotin System (PerkinElmer Life Sciences) for

signal amplification. Sections were blocked in TNB buffer and incubated overnight in antibodies

to f1III-tubulin (anti-PIII-tubulin, Promega) and laminin (anti-laminin, Sigma). Following the

overnight incubation, samples were washed and incubated for 1 hour with HRP-conjugated anti-

mouse or anti-rabbit antibodies. Biotin-labeled tyramide was then added to amplify the signal

for 10 minutes. Finally, sections were incubated in streptavidin-HRP (1:1,000) or streptavidin-

fluorescein (1:500) (PerkinElmer Life Sciences). Samples labeled with streptavidin-HRP were

developed with diaminobenzidine (Vector Labs), counterstained with hematoxylin and mounted.

Samples labeled with streptavidin-fluorescein were mounted in Fluoromount-G (Electron

Microscopy Sciences). Bright field images were taken on an inverted Nikon microscope using

Nomarski optics and recorded with a CCD camera. Fluorescent images were captured on

confocal microscope (described in more detail below).

MRI. Before imaging, we placed specimens in PBS for more than 24 h to wash out the fixation

solution and transferred them into home-built MR-compatible tubes. The tubes were then filled
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with fomblin (Fomblin Profludropolyether, Ausimont, Thorofare, New Jersey, USA) to prevent

dehydration.

Imaging was performed using an 11.7 Tesla spectrometer with microimaging gradient uint

(300 Gauss/cm maximum). A saddle coil (10mm diameter Bruker Biospin, Billerica, MA, USA)

was used as both the radio frequency signal transmitter and receiver. The NMR sequence was

based on a 3D fast echo sequence with navigator-echo phase correction scheme and segmented

k-space acquisition (Mori et al.) with an echo train length of 4. 3D diffusion-weighted images

were acquired with a repetition time of 0.9 s, an echo time (TE) of 25 ms, and four signal

averages. The field of view 16 mm x 9 mm x 9 mm and the native imaging resolution was

approximately 0.09 mm x 0.09 mm x 0.09 mm. At least six diffusion weighted images with b

values of 1000-1200 s/mm2. Diffusion sensitizing gradients were applied along six different

orientations: [0.707, 0.707, 0], [0.707, 0, 0.707], [0, 0.707, 0.707], [-0.707, 0.707, 0], [0.707, 0,

-0.707], [0, -0.707, 0.707]. We also acquired at least one image with a b value of 150 s/mm2.

The imaging time for DTI was approximate 20 h.

The diffusion tensor was calculated using a multivariate linear fitting method, and three

pairs of eigenvalues and eigenvectors were calculated for each pixel (1,2). The eigenvector

associated with the largest eigenvalue was referred to as the primary eigenvector. For the

quantification of anisotropy, fractional anisotropy (FA) was used. Color map images were

generated by combining the images of primary eigenvector and FA into RGB images. In the

color map images, the ratio among R(ed), G(reen), and B(lue) components of each pixel was

defined by of the ratio of the absolute values of x, y, and z components of the primary

eigenvector, and the intensity was proportional to the FA. Red was assigned to the anterior-

posterior axis, green to the medial-to-lateral axis, and blue to the superior-inferior axis.
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Plasmids. For all neuronal transfections, Ena/VASP constructs were cloned into a pCAX vector

containing a beta-actin promoter and a CMV enhancer (REF). These vectors contained an EGFP

or mCherry (Shaner et al., 2004) sequence N-terminal to Ena/VASP for visualization.

Cortical and DRG cell culture, Transfection and Immunocytochemistry. Primary dissociated

cortical neurons were prepared from E14.5 mice and cultured in serum free medium essentially

as described (Lebrand et al., 2004). For exencephalic embryos, the most anterior regions of

cortex were removed. Neurons were initially cultured in 5% fetal bovine serum (FBS) (Hyclone)

in Neurobasal Medium (Gibco) with B27 supplements and glutamine, and later switched to

serum free medium after one hour in culture. Neurons were plated on coverslips coated with 1.0

mg/ml poly-d-lysine (PdL) (Sigma) at a concentration of 5000 cells/cm2. Laminin- 1 (BD

Biosciences) was added to the cultures at 20pg/ml. Primary dissociated dorsal root ganglion

neurons (DRGs) were dissected from E13.5-E14.5 mice and cultured on 0. Img/ml PdL and

20g/ml laminin-l at a concentration of 1000 cells/cm2 in 5% FBS in Neurobasal medium with

B27 supplements and glutamine.

Neurons were transfected in suspension, before plating, with the aid of a Nucleoporator

(Amaxa) according to manufacturers instructions with the exception that 10-15gg of DNA was

used in each transfection.

Neurons were fixed in warmed 4% paraformaldehyde/0.25% gluteraldehyde in Krebs'

solution with 0.4M sucrose (Lebrand et al., 2004) to preserve the cytoskeleton and fine

morphological features such as filopodia. Cells were blocked in 10% BSA/PBS and extracted

with 0.2% Triton X-100 in block. Cultures were stained with Alexa-phalloidin (Molecular

Probes) at 1:100 dilution, neuron specific 133-tubulin at 1:1000 (Promega) and tyrosinated tubulin
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(clone YL1/2) at 1:1000 (Chemicon). Alexa-conjugated secondary antibodies were used at

1:1000 (Molecular Probes). Neurons were imaged with the aid of TE2000 microscope (Nikon)

equipped with a spinning disk confocal head (Yokagawa), a Lambda 10-2 multiposition filter

wheel (Sutter) and Orca-ER cooled CCD camera (Hammamatsu). This system was coupled to a

Coherent 70C 2.5W multi-band laser. Wavelengths were selected with separate excitation and

emission filters (Chroma) in the Sutter filter wheels. Live-cell phase contrast images for

morphological quantification and growth cone translocation were collected with an Orca-ER

coupled directly to the Nikon TE2000 microscope so as to avoid image dimming and degradation

through the spinning disk head. All hardware was controlled by Metamorph software (Molecular

Devices).
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Abstract

Ena/VASP proteins have conserved roles in regulating the actin cytoskeleton downstream of

signaling cascades and are required for a variety of developmental processes. Throughout

development, most cells express one or more EnaNASP proteins. Previous studies in vitro and

in vivo using transgenic mice have led to proposed roles for Ena/VASP in a range of processes

including heart development, skin formation, immune cell function and endothelial cell function

in addition to their known roles in nervous system development. To investigate the extent of

EnaNASP involvement in these processes we generated embryos lacking all three EnaNASP

proteins. Ena/VASP-deficient embryos suffered from severe subdermal edema and survived

until late in embryogenesis before succumbing to intraamniotic hemorrhage. Histological and

molecular analysis of the embryos showed defects in endothelial cell function, and epithelial

sheet fusion. In contrast to several published reports, we did not observe defects in skin

formation or heart development.
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Introduction

Regulation of actin dynamics is essential for cell morphology, polarity and motility. As

reviewed extensively in Chapter 1, the Ena/VASP protein family, consisting of C. elegans Unc-

34, Drosophila Ena and the vertebrate Mena, VASP and EVL, has emerged as direct modulators

of actin architecture acting downstream of a number of signaling pathways. The protein family

shares a common domain structure, overlapping expression patterns, and has interchangeable

functions in many in vitro cell assays(Bear et al., 2000; Loureiro et al., 2002).

As discussed in previous chapters, Ena/VASP proteins have roles in neurite formation and

axon guidance. This chapter will focus on the roles for Ena/VASP proteins at sites of adhesion as

it applies to the formation, fusion, and structural integrity of epithelia. Other roles for Ena/VASP

in immune cell function and branching morphogenesis will be discussed.

Focal Adhesions: Sites of cell:matrix interaction

The preponderance of EnaNASP research has focused upon its function regulating actin

dynamics in filopodia and lamellipodia. However, the majority of Ena/VASP within the cell is

associated with cellular adhesion structures such as focal adhesions and adherens

junctions(Gertler et al., 1996). Integrin mediated focal adhesions provide cells with a tether to

the underlying extracellular matrix (ECM). Regulated assembly of focal adhesions beneath

protruding lamellipodia coordinated with disassembly of adhesions at the cell's trailing edge is

essential for productive motility(Mitra et al., 2005). Integrin contacts with the ECM are mediated

intracellularly by linkage with the actin cytoskeleton. Within the cell, actomyosin stress fibers

emerging from focal adhesions provide a tensile apparatus with which the cell can engage ECM.
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A wealth of proteins associated either directly or in complex with the cytoplasmic domains of

integrin molecules have roles in regulating actin dynamics. The focal adhesion proteins Zyxin

and Vinculin recruit Ena/VASP proteins to focal adhesions through EVH1 interactions(Brindle

et al., 1996; Reinhard et al., 1995). However, the function of Ena/VASP at focal adhesions has

remained unclear. The specific delocalization of Ena/VASP proteins from focal adhesions does

not affect the speeds of migrating fibroblasts in vitro(Bear et al., 2000). However, interaction

with the Rap 1-binding protein RIAM suggests a role for Ena/VASP activity in cell spreading and

focal adhesion formation downstream of Rap 1(Lafuente et al., 2004). Other groups have

identified changes in Ena/VASP phosphorylation that correlate with cell spreading and

trypsinization (Garcia Arguinzonis et al., 2002; Howe et al., 2002; Lawrence and Pryzwansky,

2001).

In vivo, the VASP knockout has a defect in the inhibition of agonist induced aggregation of

platelets(Aszodi et al., 1999; Massberg et al., 2004). Platelet aggregation employs adhesion and

signaling through aII3 integrin binding to fibrinogen(Andrews and Berndt, 2004). Platelet

aggregation is inhibited by prostacyclin- or nitric oxide (NO) - induced activation of PKA and

PKG respectively. VASP is the only Ena/VASP family member expressed in adult platelets, and

is the critical substrate of PKA/PKG in mediating inhibition of aggregation(Aszodi et al., 1999).

The mechanism by which Ena/VASP affects aIIP3 function has not been determined, but may

involve its interactions with RIAM and Fyb/SLAP/ADAP (Danielewski, 2005; Oberfell, 2001 }.

Compensation by other Ena/VASP proteins has complicated attempts to describe a role for

Ena/VASP in cell:ECM adhesion in other tissues.

Ena/VASP in cell:cell interactions
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Adherens junctions are distinct adhesive structures that mediate cell:cell interactions, but like

focal adhesions are sites of Ena/VASP localization(Bachmann et al., 1999). Adherens junctions

form through the Ca2+-dependent homophilic interaction of cadherins (Drubin and Nelson, 1996;

Geiger and Ayalon, 1992). Although some adherens junctions are used in transient cell:cell

contacts, epithelial sheets require robust and stable adhesion between neighboring cells. To

achieve this stability epithelia employ both E-Cadherin containing adherens junctions as well as

specialized cadherin structures that link to intermediate filaments called desmosomes(Kowalczyk

et al., 1999). The molecular basis for adherens junction formation during development has been

postulated to require the initial interdigitation of filopodia (Vasioukhin et al., 2000). Ena/VASP

localizes to both the tips of filopodia as well as to adherens junctions and has been implicated in

the integrity of cell:cell contacts in vivo, presenting the attractive hypothesis that Ena/VASP may

be central to adherens junction formation. Disruption of Ena/VASP function in keratinocytes

with the TD construct did not affect cell:ECM adhesion but caused blister formation due to a

failure in cell:cell adhesions between basal keratinocytes(Vasioukhin et al., 2000).

Further evidence of Ena/VASP function at cell:cell adhesions comes from cardiac myocytes.

Similar to the skin epithelium, cardiac myocytes also form desmosomes but in the context of a

specialized cell:cell contact called an intercalated disk(Severs, 1985). Intercalated disks allow for

the coordinated muscular contraction across sheets of myocytes necessary for proper heart

function. Ena/VASP proteins localize to intercalated disks(Markert et al., 1996), and the

myocyte expression of the VASP EVH 1 domain disrupts this localization in vivo (Eigenthaler et

al., 2003). The dislocalization of VASP from intercalated disks correlated with changes in

intercalated disk integrity and the development of dilated cardiomyopathy(Eigenthaler et al.,

2003).
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Epithelial Fusion

The generation of cell:cell contacts is recapitulated in the fusion of epithelial sheets. Fusion

events occur at specific sites during mouse development including neurulation, craniofacial

fusion, eyelid fusion, periumbilical and perigenital midline fusion, and digit sculpting(Martin and

Parkhurst). Disruption of Mena in combination with either VASP or the actin monomer binding

protein Profilin- causes craniofacial defects(Lanier et al., 1999). Failure of cephalic neural tube

closure in these mice results in exencephaly. Neural tube closure requires the formation of a

hinge in the neuroepithelium placing the neural folds in apposition; these folds can then fuse to

close the neural tube(Copp and Greene, 2000; Copp et al., 2003). The mechanism that causes the

failure in neurulation in Ena/VASP mutants has not been elucidated. The roles of Ena/VASP in

regulating cell shape and motility suggest that any or multiple steps in closure may be affected.

Intriguingly, mutations in Drosophila ena cause defects in the related process of dorsal

closure(Grevengoed et al., 2001). Drosophila dorsal closure has provided a model for epithelial

fusion(Martin and Parkhurst, 2004). Epithelial sheets extend toward one another through the

coordinated action of a leader edge directing the movement of the trailing sheet and leader edge

compression by a contractile actin ring(Redd et al., 2004). The knitting of filopodial extensions

from the apposed sheets initiates the fusion of epithelia, which then matures through the

generation of adherens junctions(Martin and Wood, 2002). The role of ena in dorsal closure may

reflect defects in leader edge motility, filopodial formation and knitting, or adherens junction

assembly. Regarding the latter possibility, while the fusion of apposed epithelia is defective, the

integrity of the cell:cell contacts within the epithelial sheets is normal. This is a clear discrepancy

from the epithelial failure causing mouse skin blistering. Thus, the role of Ena/VASP in the

formation and integrity of cell:cell contacts remains elusive.
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Epithelial and Endothelial Function

Ena/VASP has also been implicated in the physiology of mature epithelium and endothelium.

The generation of a barrier is an essential function of the endothelial lining of the vasculature.

With the exception of the capillaries of the renal glomerulus and liver, the endothelial monolayer

reliably excludes the transudation of large macromolecules across the vessel wall. Failure in the

barrier results in the loss of albumin to the interstitium generating an osmotic pressure that

supports the loss of water resulting in edema, or hydrocephalus if it occurs at the blood brain

barrier (Rubin and Staddon, 1999). Furthermore, the regulated transmigration of immune cells

across the endothelial monolayer results in the temporary formation of gaps that must be repaired

to preserve barrier function. The association of Polymorphonuclear cells (PMNs) promotes the

regeneration of the barrier following their transmigration, and this promotion is in part mediated

by PKA(Comerford et al., 2002). Both endothelial and epithelial barriers are generated by the

formation of occludens junctions between cells mediated by homophilic interactions between

ZO-1 proteins(Harhaj and Antonetti, 2004). It has recently been found that phosphorylated

VASP associates with ZO-1 at cell:cell contacts in vitro, and that VASP phosphorylation by

PKA correlates with increases in endothelial cell barrier function(Comerford et al., 2002). The

integrity of endothelial barrier function varies inversely with cell:cell tension(Carbajal and

Schaeffer, 1999). This tension may be provided by the action of myosins at actin stress fibers. By

their localization to focal adhesions and occludens junctions Ena/VASP proteins provide a link

between adhesion molecules and actin stress fibers. Potentially, Ena/VASP could inhibit the

transmission of tensile forces from stress fibers between adjacent cells thereby enhancing barrier

function.

Axon guidance molecules in development
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The mature endothelial monolayer lines the inner aspect of blood vessels. During development

the migration of endothelial cells in response to extracellular cues generates the highly branched

vascular system in a process called angiogenesis(Risau, 1997). This iterative vascular branching

and extension is driven by the migration of an endothelial tip cell that has been proposed to

function similarly to a neuronal growth cone(Gerhardt et al., 2003). As in axon guidance, an

extending blood vessel must migrate towards a distant target, and in the case of organ

vascularization must enter its target at a precise location (Geiger et al., 2005). Recently, further

similarities to the growth cone have been elucidated. The guidance of tip cells requires the

expression and activity of axon guidance molecules. Similar roles for axon guidance molecules

have been postulated in the related developmental process of lung branching morphogenesis. The

Slit receptor Robo4 binds Mena and is specifically expressed in endothelial cells and knockdown

of Robo4 causes defects in zebrafish angiogenesis(Bedell et al., 2005; Park et al., 2003; Suchting

et al., 2005). Netrin interaction with the Unc5b receptor affects the behavior of both endothelial

tip cells and respiratory epithelium(Liu et al., 2004; Lu et al., 2004). In flies and worms,

Ena/VASP proteins function downstream of both Robo/Slit and DCC/Unc5/Netrin pathways

during axon guidance. The extent to which the pathways downstream of axon guidance

molecules have been conserved in their extraneuronal functions is not clear.

Ena/VASP activity has also been implicated in cell movements that define the architecture of

the heart during development. The heart wall has two basic characteristics- thickness and

trabeculation. The generation of a heart wall of proper thickness and trabeculation is mediated by

signaling by Plexin-Al through the Sema6D receptor(Toyofuku et al., 2004). Sema6D signaling

guides myocyte migration within the heart wall. Interestingly, Sema6D was found to associate
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with both Abl and Mena (but not EVL or VASP), and the tyrosine phosphorylation of Mena by

Abl inhibited Mena:Sema6D interactions(Toyofuku et al., 2004).

Immune system development and function

Activation of T cells through interaction with antigen presenting cells (APCs) causes T cell

polarization and formation of an actin dependent structure referred to as the immunological

synapse(Bromley et al., 2001). Ena/VASP interacts with the immune cell adaptor protein

Fyb/SLAP/ADAP, and disruption of Ena/VASP localization in cultured T cells by expressing an

EVH1 ligand blocks immune synapse formation(Krause et al., 2000). Similarly, disruption of

Ena/VASP in macrophages prevents the formation of the phagocytic cup necessary to internalize

opsonized substrates through the Fcyl receptor(Coppolino et al., 2001).
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Results

Characterization of genotypic

combinations of Ena/VASP

To address the reported roles for Ena/VASP in physiology and development, and to

uncover additional Ena/VASP functions, we established crosses between triple-heterozygotic

(MmVvEe) animals to determine the viability of various genotypic combinations (Table 1). As

previously reported the mmvvEE mouse is not viable, and as expected we did not recover

genotypic combinations lacking both Mena

and VASP(Menzies et al., 2004).

Interestingly, we were able to recover

Mmvvee mice, albeit at lower than expected

frequencies, suggesting that loss of both

VASP and EVL can be tolerated and that

expression from a single Mena allele is

sufficient for mouse development. In contrast,

we were unable to recover mmVVee mice

indicating that EVI expression is required in

the absence of Mena. Together, these results

indicate that EVL or VASP function is

required for postnatal viability only in the

absence of Mena.
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Table 1: Recovered Genotypes from Triple-
heterozygotic crosses

Genotype Odds # observed # expected
MMVVEE 1/64 12 8
MMVVEe 1/32 23 16
MMVvEE 1/32 23 16
MmVVEE 1/32 24 16
MMVvEe 1/16 57 31
MmVVEe 1/16 58 31
MmVvEE 1/16 33 31
MmVvEe 1/8 77 63
MMVVee 1/64 12 8

MMVvee 1/32 21 16
MmVVee 1/32 21 16
MmVvee 1/16 44 31
MMvvEE 1/64 13 8
MMvvEe 1/32 19 16
MmvvEE 1/32 9 16
MmvvEe 1/16 21 31
mmVVEE 1/64 3 8
mmVVEe 1/32 9 16
mmVvEE 1/32 10 16
mmVvEe 1/16 2 31
MMvvee 1/64 5 8
Mmvvee 1/32 5 16
mmVVee 1/64 0 8
mmVvee 1/32 0 16
mmvvEE 1/64 1 8
mmvvEe 1/32 0 16
mmwee 1/64 0 8

Total 502
· · 4 l a wT lTr ,,! __ · · _ II

aDle . Mmvv ;e animals were crossea ana tne
progency were genotyped at P10. Several genotypics
classes are greatly reduced from expected
frequencies



mmWee mice die at birth due to

respiratory failure

To address the specific decrease in

mmVVee and mmVVEe mice (Table 1 and

Fig. 1A) we established crosses to generate

these mice at high frequencies. Embryos

were surgically collected and recovered

viable at expected Mendelian frequencies

throughout development (data not shown).

Genetically engineered mice with perinatal

lethality are typically lost due to either a

failure in respiration or feeding. To

determine the mode of lethality we

surgically collected embryos just prior to

birth at E18.5 and observed them for the
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Figure 1: mmVVee mice die perinatally from respiratory failure
but complete lung branching morphogenesis normally. A) MmEe
mice were intercrossed and litters were genotyped between P8.5-
P16.5. mmee mice were never recovered as adults, and mmEe
mice were significantly reduced in frequency. B) Embryos were
harvested at E18.5 from mmEe x Mmee crosses, and observed for
15 minutes after dissection. mmee mice failed to breathe, became
cyanotic, and stopped movement within minutes of birth. C)
Lungs were explanted from El 11.5 embryos and cultured for 96
hours in organ culture dishes. Images were taken at 48 and 96
hours after dissection. D) The total number of terminal lung buds
was counted along the periphery of images such as those in panel
C. No differences were noted in lung branching between mmee
mice (red bars) and MmEe controls (blue bars) at any of the time
points. E) One of several matings used to restrict loss of EVL
expression to the developing nervous system.

ability to breathe. Despite opening their mouths in an attempt at gasping, all mmVVee and most

mmVVEe mice were unable to breathe at birth, and within five minutes of dissection had become

strikingly cyanotic and ceased movement (Fig. 1B). When immersed in liquid fixative the

mmVVee mice sunk to the bottom in contrast with anesthetized littermates (not shown).

Histologically Ena/VASP-deficient lungs had normal lobation and size but the failure of

mmVVee to inflate their lungs prevented a reasonable comparison with their littermates.

Lung branching morphogenesis occurs normally in mmVVee mice
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Respiratory failure is an extraordinarily common cause of death in genetically engineered

mice, with a startlingly varied list of etiologies including failures in lung development, formation

and innervation of the diaphragm, and central defects in the CNS respiratory center. Recently,

several groups have identified roles for axon guidance receptors in lung branching

morphogenesis(Anselmo et al., 2003; Ito et al., 2000; Liu et al., 2004). To determine whether

Ena/VASP functions in lung branching morphogenesis we dissected the trachea and its

associated immature lung buds at E11.5 (Fig. 1C, top row). Dissected lungs were grown in vitro

in organ culture dishes for 96 hours and the extent of branching was documented at 48 hours and

96 hours post-dissection (Fig. 1C). To determine the extent of lung branching morphogenesis in

mmVVee compared to littermate MmVVEe controls, the number of terminal lung branches was

counted around the periphery of both lungs. At all stages of lung development analyzed, no

differences in the morphology or extent of branching were noted in mmVVee mice when

compared to MmVVEe littermate controls (Fig. 1C and D).

Respiratory failure in mmVVee mice is secondary to a nervous system defect

To further delineate the etiology of respiratory failure in the mmee mice, we employed a

conditional EVL allele (Eflo) in which exons 2 and 3 are flanked by LoxP sites. The elimination

of EVL expression was then restricted to the nervous system by introducing Cre recombinase

under the control of the neuron-specific Nestin promoter (Fig. D). We were unable to recover

mmVVEl°Xe;Cre+ mice suggesting that EVL expression is required within the nervous system

for perinatal survival. Surprisingly, similar matings failed to produce MmVVEfl°Xe;Cre+ mice.

Crosses with the traditional EVL-knockout recovered MmVVee mice at expected ratios (Table 1

and Fig. 1A). The inability to obtain these mice from the conditional disruption of EVL in the
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nervous system suggests that the loss of EVL can be compensated for during development but

the sudden loss of EVL expression during neuronal differentiation is not tolerated.

Ena/VASP-deficient mice have no major defects in early development

As expected we were unable to generate Ena/VASP-deficient mice of genotyping age (Table

1). To determine the requirement for Ena/VASP during mouse development we established

timed pregnancies, denoted the morning the plug was found as EO, and collected embryos

throughout embryogenesis. Crosses were established to produce mmvvee mice at 1-in-4 or 1-in-

8. Embryos were collected at various times after fertilization and genotyped to determine

whether Ena/VASP-deficient mice were being recovered.

To determine whether Ena/VASP plays a role in the patterning of early embryos we collected

embryos at E8.5 at which point gastrulation has been completed and basic embryo topology has

been established. At E8.5-E10.5, triple-nulls

were generated at the expected frequency

without any obvious gross phenotypes (Table 2).

This indicates that Ena/VASP is not required for

the cell migrations in early mouse development.

EVL has limited involvement in neurulation

or craniofacial defects

The mmvvEE mouse has previously been

reported to have defects in neurulation and

craniofacial fusion(Menzies et al., 2004). The

defect in neurulation is limited to the cephalic
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Table 2
Recovery of Mutant Genotypes E8.5-E10.5

E8.5-E10.5
Observed E8.5-E10.5 Expected

MMVvEe 15 11.5

MmVvEe 23 23.0

MMWee 2 1.5

MMVvee 23 25.1
MmVVP7 n

MmVvee 60 50.3

MMvvEe 17 21.6

MmvvEe 50 43.3

mmVvEe 9 11.5

MMwee 34 33.8
Mmvvee 59 67.5

mmVVee 1 1.5

mmVvee 19 25.1

mmvvEe 24 21.6

mmvvee 35 33.8

Total 374.0
Table 2. Embryos from various matings were collected
at E8.5, E9.5, and E10.5 and genotyped. The expected
and observed number of mice at E8.5, E9.5 and E10.5
for each genotypic class were pooled. All genotypic
combinations were recovered at expected frequencies.



neural tube and along with craniofacial defects generates exencephaly and cleft palate and lip

(CPL). The fusion of the neural tube occurs at E9.5. To determine whether the loss of EVL

contributed to the neurulation defect we examined embryos at E10.5-E18.5. mmvvee embryos

demonstrated exencephaly and CPL with similar pentetrance to that reported for the mmvvEE

mice (82% and 64% respectively)(Table 3). With the exception of a very low penetrance of non-

cephalic defects, the triple-null phenotype was limited to the head and palate. mmVVee mice

completed neurulation normally (Fig. 1 B), and mmVvee mice had a similar incidence of neural

tube defects as the previously reported mmVvEE mice (Table 3).

The similar penetrance and expressivity of the neurulation defect suggests that EVL does not

play an important role in neural tube fusion, and that a critical role for Ena/VASP in neurulation

is restricted to the head and face. Interestingly, approximately 25% of E 10.5 mmvvee embryos

appeared to be dead or dying by histology. Analysis of the dying E10.5 embryos demonstrated

intraembryonic hemorrhage, apoptosis, and tissue necrosis (data not shown). We failed to

111

Table 3: Recover and Phenotypes of Embryos at E18.5

Genotype #Observed # Expected % Exencephalic % Hemorrhage

MMVvee 17 22 0% 0%

MmVvee 40 43 0% 0%

MMvvEe 20 15 0% 0%

MmvvEe 27 31 4% 4%

MMvvee 83 56 1% 0%

Mmvvee 106 112 6% 5%

mmVvee 29 22 10% 7%

mmvvEe 16 15 63% 56%

mmvvee 34 56 82% 76%

Total 372
mmvvEE

(Menzies et al.,
2004) 64% 0%

mmVvEE
(Menzies et al.,

2004) 7% 0%
Table 3. Embryos from various crosses were harvested at E18.5. At dissection they
were scored for the presence of exencephaly and intraamniotic hemorrhage. Collected
embryos were genotyped and the and the recovery of genotypic classes was compared
with that expected by Mendelian ratios. The recovery of mmvvee was 60% of the
expected value.



observe hemorrhage in the surviving E10.5 embryos and it is unclear if the hemorrhage is

endothelial cell autonomous or the proximal cause of embryonic death. The loss of embryos at

E10.5 can partly explain the reduction in triple-nulls recovered at E 18.5 (Table 3- 40% reduction

in viable triple-nulls).

Neurulation defects are insensitive to nutrient supplementation

Women of reproductive age are routinely advised to supplement their diet with folic acid. The

administration of folic acid greatly reduces the incidence of the caudal neurulation defect that

causes spina bifida(Copp and Greene, 2000). Consistently, administration of folate in mice can

rescue some mouse models of neurulation defects(Carter et al., 1999; Gefrides et al., 2002).

More recently, a second class of folate-insensitive mutations have been found to respond to

administration of inositol(Greene and Copp, 1997). To determine whether the neurulation defects

in Ena/VASP-deficient mice were sensitive to either inositol or folate, we administered

intraperitoneal injections of inositol and folic acid and harvested litters between E 14.5 and

E18.5. The incidence of exencephaly was similar between treated and untreated females

indicating that Ena/VASP mutations are neither folate nor inositol responsive (data not shown).

Ena/VASP-deficient embryos die between E16.5 and E18.5 due to intraamniotic

hemorrhage

E18.5 mmvvee embryos could be easily identified by their swollen red appearance within the

uterine horn (Fig. 2A). Dissection of the maternal and extraembryonic tissue revealed pallid

exencephalic embryos within an amniotic sac swollen with blood (Fig. 2A). At E18.5, 76% of

mmvvee embryos, and 56% of mmvvEe embryos suffered from intraamniotic hemorrhage (Table

3). A significant percentage of the mmvvee mice had died in the day or two preceding dissection

as determined by lack of fetal heartbeat. This defect was not reported in the mmvvEE
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exencephalic embryos indicating that the hemorrhage requires the loss of at least one EVL allele.

The identification of hemorrhagic nonexencephalic mmvvee embryos demonstrates that these

two phenotypes occur independently. Hemorrhagic embryos that were still alive as determined

by the presence of a heartbeat were
Figure2 

dissected from the amnion and observed A

to determine the origin of the hemorrhage.

Surprisingly, an origin of the hemorrhage

could not be identified, suggesting that the I

accumulation of blood may result from a c D

Cod
slow leak and not a catastrophic event.

Consistent with the slow loss of blood,

.1~
intraamniotic hemorrhage was also Figure 2: mmvvee embryos suffer intraamniotic hemorrhage and

cardiovascular dysfunction. A) At dissection, mmvvee embryos
observed at E 17.5 and E 16.5 albeit with within the uterine horn are swollen and bright red. Dissection of an

mmvvee embryo and a littermate control reveal the accumulation of
blood within the amniotic sac and the pallid appearance of the

lesser severity and lower penetrance. Thus embryo. In this instance the embryo is exencephalic, but

intraamniotic hemorrhaging is also seen in non-exencephalic

it is likely that the intraamniotic embryos. B) 4x magnification of control and an mmvvee embryo
reveals the extensive subdermal edema throughout the trunk
particularly concentrated at the back of the embryo. C) mmvvee

hemorrhage occurs as a stochastic event embryos that have not suffered intraamniotic hemorrhage contain
dilated peripheral blood vessels compared with controls (as
indicated by arrows). D) Smooth muscle cells completely

late in development that gradually drains circumscribe blood vessels in triple-null embryos

the embryo of blood.

Histologic analysis of hemorrhagic E16.5 and E18.5 embryos was conducted to further

describe the mechanism and extent of the hemorrhage. To determine whether the intraamniotic

hemorrhage was indicative of a general defect in blood vessel integrity, we surveyed the embryo

for any evidence of intraembryonic hemorrhage. Consistent with our failure to observe gross

evidence of intraembryonic hemorrhage, such as blood pooling or red splotching of the skin, we
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found no evidence of major hemorrhage within the embryo. Some Ena/VASP-deficient embryos

appeared to contain red blood cells that were immediately outside of the vascular lumen. The

observation of scattered extravascular red blood cells but not frank intraembryonic hemorrhage is

consistent with small fenestrations within the endothelial lining permitting blood cell

extravasation (discussed below). It is formally possible that the intraamniotic blood

accumulation could represent the slow extravasation of red blood cells from umbilical or

superficial vessels, but the extent of hemorrhage makes this scenario unlikely. However, the

pallid appearance of the hemorrhagic embryos strongly suggested that the blood was of

embryonic and not maternal origin, and no architectural defects were observed in the placenta

(data not shown). The precise origin of the intraamniotic hemorrhage remains under

investigation.

E18.5 triple-null embryos have phenotypes indicating cardiovascular dysfunction

In our histologic analysis of E18.5 embryos we noted the appearance of several phenotypes

that were similar to patterns associated with congestive heart failure (CHF). Congestive heart

failure typically results in an adult as a seculae to heart dysfunction after myocardial infarction.

Failure to pump blood adequately results in accumulation of fluid causing vascular distention,

peripheral edema, and hepatic congestion. Embryos at E18.5 experience profound subdermal

edema throughout the trunk (Fig. 2B). There was also evidence of mild hepatic congestion and

pericardial edema (data not shown).Within embryos that had not suffered intraamniotic

hemorrhage, the peripheral vasculature within the skin was greatly distended (Fig. 2C). The

majority of the skin's vasculature should normally be fine-caliber capillaries. Vessels with

calibers similar to the aorta could easily be identified passing within the dermis of triple-null

embryos (Fig. 2C). Smooth muscle cell (SMC) association with the vasculature is essential for
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maintenance of vessel caliber, regulation of blood pressure, and vessel structural integrity. To

determine whether there was a defect in SMC migration or organization with the peripheral

vasculature we stained sections with an antibody against smooth muscle actin (SMA). SMA

immunoreactivity completely circumscribed both central and peripheral vessels and there was no

evidence of SMC disorganization (Fig. 2D)

Heart development does not require Ena/VASP proteins

Several papers have suggested a role for Ena/VASP proteins in the development and function

of the heart(Eigenthaler et al., 2003; Toyofuku et al., 2004). The phenotypes observed at E 18.5

could be caused by heart muscle dysfunction or a structural defect in the heart. To determine

whether an underlying heart abnormality was associated with the cardiovascular phenotypes

observed at E 18.5 we analyzed the hearts from mmvvee embryos both with and without

subdermal edema. No difference was

noted in wall thickness between F e 3
* C rohl TriV-Nul

Ena/VASP-deficient embryos and
60x

controls (Fig. 3C). There existed some

variabilitv in the deree of RI Can T.,E x, Ct,m~ Tridet I

trabeculation among mmvvee embryos.

All mmvvee embryos exhibited

trabeculation, but in some cases the

trabeculation was similar to controls

/T- ), f- 1 ,t

(tlg. 3;) whereas in others the
Figure 3: Ena/VASP deficient mice possess normal skin, gut and
heart epithelia A) 60x magnification H&E of skin from control

trabeculae were thicker and more and mmvvee El 18.5 embryos. B) H&E staining of intestinal

sections from El 18.5 embryos. C) H&E staining through similar

poorly organized in comparison with heart sections. The wall thickness and trabeculation are
comparable in mmvvee and control sections.
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controls. To determine whether there were any underlying anatomic defects in heart and outflow

tract development we serially sectioned Ena/VASP-deficient hearts at E14.5 and E18.5 for

histological analysis. The ventricular septum, atrioventricular septa and valves, aortic valve and

root, and pulmonary valve and root all appeared normal (data not shown). We did not directly

assess cardiac output or rhythm. However, heart dysfunction typically results in secondary

changes in heart morphology including hypertrophic or dilated cardiomyopathies. Both the

thickness of the heart wall and the overall size of the heart appeared normal (Fig. 3C and data not

shown).

Subdermal edema precedes other phenotypes and can be observed as early as E14.5

The complicated spectrum of cardiovascular phenotypes at E18.5 could represent one of

several etiologies. The observed phenotypes are interrelated and any individual phenotype may

both be a sequelae and enhancer of any another phenotype. To determine the primary defect in

the triple-null mouse we analyzed embryos at earlier time points to identify the onset and

progression of cardiovascular failure. Subdermal edema, but not intraamniotic hemorrhage,

vascular distension or hepatic congestion, was observed as early as E14.5 (data not shown).

mmvvee embryos at E14.5 could be identified by gross examination based upon the balloon-like

expansion of skin along their dorsum. Histology confirmed that this expansion represented

subdermal edema throughout the trunk particularly concentrated dorsally (data not shown). The

earlier appearance of the subdermal edema suggests that phenotype may be the primary event in

the cardiovascular failure.

Ena/VASP proteins participate in endothelial barrier function

The etiologies of subdermal edema include any combination of events that change the balance

of hydrodynamic forces within the small blood vessels. Increases in intravascular hydrostatic
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pressure (such as those secondary to CHF) or decreases in oncotic pressure result in transudation

of fluid. Although the presence of distended vessels suggests an increase in hydrostatic pressure,

the onset of edema precedes vessel distention thus an increase in hydrostatic pressure is likely

not the primary cause of edema. Changes in ionic and protein content of blood plasma are

typically caused by dysfunction of the kidney, and recently Slit/Robo signaling has been

implicated in kidney development(Grieshammer et al., 2004). However, mmvvee mice show

normal kidney histology, and Periodic Acid Schiff (PAS) staining failed to show evidence for

pathological protein reabsorption in the proximal tubules that typically accompanies

inappropriate albumin secretion from the capillaries (data not shown). Edema can also be caused

by inadequate drainage by the lymphatic system, leading to the accumulation of fluid in

peripheral tissues(Karkkainen et al., 2004). Although a microscopic analysis of lymphatics was

not conducted, our histologic analysis of the heart and great vessels showed the presence of a

normal thoracic duct which drains collected lymphatic fluid into the superior vena cava (SVC)

(data not shown).

Endothelial barrier dysfunction allowing protein loss from the blood plasma can cause edema.

Throughout the vasculature, endothelial cells form a tight barrier through tight junctions. The

passage of proteins, cells and solutes across this barrier is regulated. Failure of this barrier allows

the passage of albumin into the interstitium altering the hydrodymnamic forces within the vessel

resulting in the transudation of water. Endothelial cells express Ena/VASP proteins and the

phosphorylation of Ena/VASP has been reported to correlate with barrier function(Comerford et

al., 2002). To determine the localization of Ena/VASP proteins within endothelial cells we

expressed a GFP-tagged VASP construct within cultured human umbilical venous endothelial

cells (HUVECs). VASP localized to regions of cell:cell contacts and colocalized with actin at
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stress fibers (Fig. 4A). To determine whether Ena/VASP proteins play a role in barrier function

we employed an Ena/VASP dominant negative construct that sequesters Ena/VASP to the

surface of mitochondria by fusing a mitochondrial targeting cassette to the EVH1 ligand FPPPP

(the construct is abbreviated as mito). This construct has been well characterized in previous

studies as a highly effective and specific inhibitor of Ena/VASP function(Bear et al., 2000).

HUVECs expressing either mito, GFP-VASP, or GFP alone were allowed to form a monolayer.

We assayed the ability of a fluorescently tagged dextran, of similar size to albumin, to cross the

monolayer. When compared to the GFP expressing cells, expression of mito allowed

approximately 5x greater permeability to the dextran molecule. Conversely, overexpression of

GFP-VASP significantly increased the barrier function of the monolayer (Fig. 4B).

To determine whether loss of Ena/VASP proteins affects barrier function in vivo we analyzed

the endothelial monolayer of blood vessels by thin section electron microscopy. In comparison to

control venules (Fig. 4, C and D), the endothelial lining of Ena/VASP-deficient venules (Fig. 4,

E-H) contains defects in cell:cell junction integrity. The cell:cell junctions in the control cells

(Fig. 4, C and D, black arrows) extends across the width of the cell:cell interface. However, the

junctions between EnaNASP-deficient endothelial cells often form gaps (Fig 4, F and H, yellow

arrows) between areas of apparently normal junction formation (Fig. 4, F and H, black arrows).

We believe that the gaps represent areas of defective occludens or adherens junctions between

normal desmosomes. Immuno-EM with junction-specific antibodies will be necessary to clarify

the defect. Consistent with inappropriate leakage through endothelial barrier gaps we observed

extravasated red blood cells surrounded by rings of deposited fibrin (Fig. 4, E and F, pink

asterisks). Elsewhere large deposits of fibrin were observed within the interstitium (Fig. 4G).
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Figure 4
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Figure 4: Disruption of Ena/VASP proteins affects endothelial barrier cell function in vitro and in vivo. A) GFP-
tagged VASP expressed in HUVEC monolayers colocalizes to cell:cell contacts and stress fibers. HUVEC cells
expressing GFP-VASP (green) were stained with phalloidin to label actin (red) at 60x magnification. B)
Expression of the dominant-negative construct (mito) inhibits barrier function in HUVEC monolayers. Movement
of dextran was compared between expressing mito, GFP, or overexpressing VASP. C-H) Electron microscopy of
mmvvee endothelial cells show disorganized junctions and hemorrhage. Control venules (C-D) contain well
formed junctions (black arrows) that extend that extend through the thickness of the cell:cell interface. The boxed
area in (C) is shown in higher magnification in D. Ena/VASP deficient venules (E-F) show junction formation

119

45

4

03.5

3

2;

0.5



Epitheliogenesis does not require EnaNASP proteins

The defect in endothelial barrier function may represent an underlying defect in the formation

and integrity of epithelial sheets. Previous reports had described an essential role for Ena/VASP

in the formation of adherens junctions, with expression of a putative Ena/VASP dominant

negative construct within keratinocytes causing extensive blister formation in vivo(Vasioukhin et

al., 2000). To determine whether epithelial sheets formed appropriately we analyzed skin (Fig.

3A) and gut epithelia (Fig. 3B) for abnormalities. With the exception of the previously described

subdermal edema, the skin showed appropriate histology throughout its thickness with no gross

or histologic evidence of blistering (Fig. 3A). Similarly, in the columnar epithelia of the small

and large intestines, there was no evidence in monolayer defects.

Whereas the formation of epithelial monolayers appears unaffected in Ena/VASP-deficient

mice, we wondered whether the neurulation and craniofacial defects may represent a more

general failure in the fusion of epithelial sheets. Epithelial sheet fusion occurs at several sites on

the embryo during development. In addition to fusion of the neural folds and the fusion of the

medial nasal prominence and the right and left maxillary prominences, the superior and inferior

eyelids fuse late in fetal development at E15.5 to protect the developing eye. Other sites of

epithelial fusion events include midline fusions at the umbilicus and genitals, and sculpting of

the digits. Consistent with a role in epithelial fusion, mmvvee mice at El 18.5 fail to undergo

eyelid fusion (Fig. 5A, second row). The majority of mmvvee mice have properly formed pedal
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(black arrows in E and G). However, when magnified (F and H) contain gaps (yellow arrows) between areas of
apparent desmosomes formation (black arrows). The presence of extravasated red blood cells (pink asterisks in E
and F) and fibrin deposits (fibrin in G, and dark ring surrounding extravasated red blood cells in E and F) is
indicative of plasma and red blood cell leakage. Note the presence of macrophage (labeled "M" in panel E) and
neutrophil (PMN in panel G) engulfing extravasated red blood cells and fibrin respectively.



digits and midline fusion at the umbilicus and Fe 5

genitals (Fig. 5C and data not shown).
E16

Several mmvvee mice were recovered

exhibiting omphalocele, the protrusion of

small intestines and liver into the umbilicus

(Fig. 5B). However, whether the omphalocele

represents a defect in midline fusion,

increased intraabdominal pressure due to C

edema and hepatic congestion, or an

unrelated developmental defect can not be Figure 5: mmvvee embryos possess defects at sites of
epithelial fusion. A) Failure of eyelid fusion can be

distinguished. Interestingly, Mena&'-;Profilin '- observed at E16.5 (top row, note open puckered eyelids
indicated by arrow) and becomes more evident at El 8.5
(bottom row). A similar failure in eyelid fusion can be

mice also show a failure of eyelid fusion in observed in Mena/-;Profilin-1 +/ mice. B) Occasionally,
E18.5 mmvvee mice were observed with gut hemriation

addition to the reported defects in neurulation at the umbilicus. C) The sculpting of digits is unaffected
in triple-null mice.

(Fig. 5A). Failure in fusion may represent a

defect in directed cell motility at the leading edge of the epithelia, a failure of filopodial knitting,

or a failure in adherens junction formation. To help differentiate between these possibilities we

examined the fusion of the eyelids shortly after the completion of fusion at E 16.5. At E15, the

eyelid epithelia begin to migrate towards one another preceding the fusion event. The eyelids of

a nonexencephalic mouse at E16.5 appeared puckered and are not properly apposed when

compared to a littermate control (Fig. 5A). This observation indicates that eyelid fusion is not

secondary to exencephaly, and that the failure in fusion may result from a failure in apposition or

filopodial knitting.

VASP and EVL are not required to form an immune system
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Mice lacking VASP and EVL are viable as adults (Table 1) but are noticeably smaller in size

than littermates when observed at four weeks of age (data not shown). Cells of the hematopoietic

system express high amounts of VASP and EVL and very low levels of Mena. As much of the

immune system develops postnatally we hoped that the MMvvee mice may provide a mode to

analyze EnaNASP proteins' role in the immune system. Previous work has shown a role for

Ena/VASP proteins in the function of T cell and macrophage cell lines(Coppolino et al., 2001;

Krause et al., 2000). Inhibition of Ena/VASP prevented immune synapse formation in T cells

and macrophage phagocytosis of opsonized beads. Several events in immune system

development require actin cytoskeleton rearrangement including the homing of T cell precursors

to the thymus and emigration of mature immune cells from sites of development to the

bloodstream and lymph nodes. We questioned whether Ena/VASP may play a role in immune

system development in vivo. We analyzed cells from the blood, peripheral lymph nodes, thymus,

bone marrow, and spleen by fluorescent activated cell sorting (FACS) using antibodies against

mature cell markers for B cells, T cells, and myeloid cells including macrophages and PMNs.

Each of these compartments possessed the normal complement and ratios of mature

hematopoeitic cell types, suggesting that loss of VASP and EVL is tolerated during immune

system development (data not shown). Interestingly, we noted the presence of macrophage and

neutrophils engulfing extravasated fibrin and red blood cells in the mmvvee electron microscopy

sections (Fig. 4, E and G). This indicates that Ena/VASP-deficient inflammatory cells are

capable of localizing to sites of vascular damage and engulfing damaged tissue.
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Discussion

In the fly and worm the functions of Ena/VASP proteins are largely confined to the nervous

system. Previous work with the Mena and VASP knockout mice confirmed the developmental

importance of Ena/VASP in the nervous system and suggested additional extraneuronal roles for

Ena/VASP. This work demonstrates that Ena/VASP proteins play important roles in fusion of

epithelial sheets and in some epithelial functions. However, in contrast with published reports,

we have found no evidence for Ena/VASP in the anatomic or cellular architecture of the heart,

nor in the integrity of the skin. Nor does the loss of Ena/VASP cause general defects in cell

migration necessary for establishing basic embryo topology or organogenesis. Furthermore,

recent work has defined new roles for axon guidance molecules in the development of branched

structures such as the lungs and blood vessels. While we have observed dysfunction of blood

vessels, we have not observed defects in the branching morphogenesis of blood vessels or of

lungs. This suggests that the pathways downstream of axon guidance molecules have not

necessarily been conserved outside of the nervous system.

Ena/VASP in epithelial development and function

During development, the neural folds are brought into apposition through a series of actin-

based alterations in cell morphology and movement. This is followed by filopodial knitting

between the adjacent sheets which then fuse through the maturation of adherens junctions.

Defects in neurulation are caused by one of three classes of mutations: folate-responsive,

inositol-responsive, and non-responsive. The latter group can not be rescued by the dietary

administration of folate or inositol. The mechanism by which supplementation with either

nutrient ameliorates neurulation has been unclear. Administration of inositol may affect Ca2 + or

phosphoinositol signaling at the membrane, whereas folate functions as an essential cofactor in
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several metabolic pathways(Copp and Greene, 2000). The recent identification of RIAM and

Lpd as PH-domain containing proteins that interact with Ena/VASP suggested a link between

inositol signaling and Ena/VASP, and that Ena/VASP proteins may form part of the inositol-

responsive neurulation pathway(Krause et al., 2004; Lafuente et al., 2004). The failure of

Ena/VASP-deficient mice to respond to inositol supplementation indicates that Ena/VASP is not

part of this pathway.

The mmvvEE and the Mena/;Profilin+ / mice have been previously described to exhibit

exencephaly(Lanier et al., 1999; Menzies et al., 2004). However, the mechanism of exencephaly

and its relationship to CLP has been unclear. Analysis of these embryos at E8.5, prior to neural

tube fusion, showed the neural folds are not properly apposed suggesting that a primary defect

may lie in the hinge region(Menzies et al., 2004). However, mutations of Drosophila Ena cause

defects in dorsal closure, a process analogous to a variety of epithelia fusion events in the

developing mouse, including neurulation(Grevengoed et al., 2001). Our work has uncovered

failures in a variety of these events including eyelid fusion, and midline fusion at the umbilicus.

Further, these fusions are similarly affected in the exencephalic Mena/';Profilin +/' mouse. While

we can not eliminate a possible contribution of hinge formation, we believe that mutation of

Ena/VASP proteins results in a fundamental defect in epithelial fusion.

Work in a variety of cell types, including fibroblasts and primary neurons, have described a

role for Ena/VASP proteins in the formation of filopodia. Initiation of epithelial fusion has been

reported to require the interdigitation of filopodia. An attractive hypothesis suggested by this

work is that failure to elaborate filopodia in apposed epithelia prevents fusion initiation.

However, prior to fusion the sheets must migrate towards one another in a process of directed

motility mediated by as yet undescribed factors. Ena/VASP proteins function in lamellipodial
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dynamics required for directed motility, and loss of EnaNASP may prevent the proper

apposition of epithelia necessary for fusion. Consistently, analysis of eyelid closure at El 16.5,

when the eyelids should have just completed fusion, shows abnormal puckering, suggesting the

lids were not properly apposed. Further work will be necessary to distinguish between these two

possible modes of fusion failure.

Previous work had suggested an essential role for Ena/VASP proteins in the generation and

maintenance of an epithelial monolayer. The expression of a COOH-terminal portion of

mammalian VASP including the coiled-coil region responsible for tetramerization (TD

construct) in keratinocytes resulted in skin blistering at birth(Vasioukhin et al., 2000). This result

and the prominent localization of Ena/VASP proteins at cell:cell junctions and focal adhesions

suggested an integral role for Ena/VASP proteins in the establishment of an intact epithelium.

The Ena/VASP-deficient embryos described in this study do not possess a skin phenotype. An

ultrastructural analysis by electron microscopy will be necessary to determine if the junctions

between adjacent keratinocytes are normal or whether a similar defect may be present as seen in

endothelial cells. Furthermore, to test the integrity of the keratinocyte junctions we plan to assay

the skin's barrier function.. Regardless, the lack of blistering in the EnaNASP-deficient mice

represents a clear distinction from previously published reports. This discrepancy likely reflects

non-specific activities of the TD domain. The expression of TD was predicted to form non-

productive tetramers with endogenous Ena/VASP proteins. However, the requirements for

Ena/VASP tetramerization for function are unclear. While expression of a mutant Mena allele

lacking its coiled-coil domain (MenaCOco) prevents rescue of motility defects in an Ena/VASP-

null cell line, expression of Mena °c °OCO in a wildtype cell line induces an overexpression

phenotype(Loureiro et al., 2002). Furthermore, the TD construct contains additional sequence
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from the EVH2 domain outside of the coiled-coil. The ability of an isolated EVH2 domain to

rescue EnaNASP-null fibroblast motility and to bind actin barbed ends in vitro suggests that the

N-terminal two-thirds of Ena/VASP likely serve localization and regulatory functions but are not

central to Ena/VASP's anti-capping activity(Loureiro et al., 2002). Overexpression of a Mena

mutant lacking the F-actin binding region (MenaAFAB) retains a coiled-coil and can form

tetramers but does not have anticapping activity. Expression of this construct in a wildtype cell

line does not produce an overexpression phenotype but neither does it interfere with endogenous

Ena/VASP function despite its ability to tetramerize with endogenous Ena/VASP(Loureiro et al.,

2002). Thus, one can not predict the functional consequences of TD overexpression at the

adherens junction, but it is likely not purely inhibitory.

Similarly, in vivo myocyte expression of a VASP NH3-terminal EVH1 construct caused dilated

cardiomyopathy and disorganization of myocyte intercalated disks(Eigenthaler et al., 2003).

These defects were not present in the mmvvee embryos. The overexpression of an EVH1 domain

within a cell delocalizes endogenous Ena/VASP proteins from proteins containing FPPPP

ligands. However, the functional consequence of EVH 1 binding to its ligands in the absence of

the proline-rich region and EVH2 domain is unclear.

In contrast with the integrity of epithelia, loss of Ena/VASP clearly affects the integrity of

endothelia, possibly through its association with tight or adherens junctions. Interestingly,

junctions were able to form between adjacent endothelial cells, but these junctions were

incomplete and possibly reflected desmosome but not adherens or occludens junction formation.

The status of the occludens junction has been reported to determine endothelial cell barrier

function. EnaNASP proteins have been previously reported to interact with the tight junction

protein ZO-1 in a phosphorylation-dependent manner(Comerford et al., 2002). Furthermore,
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phoshorylation of VASP correlates with increased barrier function of endothelial

monolayers(Comerford et al., 2002). Barrier function of epithelial and endothelial sheets is

inversely related to tension forces between cells(Stevens et al., 2000), and these properties are

normally regulated by cAMP and Ca2+ levels within endothelial cells(Moore et al., 1998). In

vitro, inhibition of Ena/VASP function in HUVEC cells causes an increase in cell tension and a

decrease in barrier function(this study and Furman et al., unpublished observations). A disruption

of barrier function in vivo would be predicted to cause edema due to the loss of albumin to the

interstitium. Consistently, we have identified subdermal edema as a primary phenotype in

Ena/VASP triple-null embryos, and have observed ultrastructural defects in junction integrity

between endothelial cells. Ena/VASP-deficient mice also develop hydrocephalus (Chapter 2),

one possible cause of which is barrier dysfunction at the blood brain barrier.

Lack of conservation of axon guidance signaling cascades in branching morphogenesis

Surprisingly, triple-null mice did not show severe defects in either angiogenesis or lung

branching morphogenesis. Members of the Slit/Robo, Netrin/DCC/Unc5, and Sema/Plexin

families have all been implicated in the generation of these iteratively branched structures(Bedell

et al., 2005; Ito et al., 2000; Kawasaki et al., 1999; Liu et al., 2004; Park et al., 2004; Park et al.,

2003; Suchting et al., 2005; Torres-Vazquez et al., 2004; Xian et al., 2001). Ena/VASP interacts

genetically and/or biochemically with these pathways in axon guidance in worms, flies, and

vertebrates. The protrusion of filopodia by primary hippocampal neurons in response to netrin

requires PKA phophorylation of Ena/VASP proteins(Lebrand et al., 2004). Consistently, mice

lacking both Mena and VASP fail to form the major forebrain commissures similar to defects in

midline guidance caused by Netrin-1 or DCC mutation(Fazeli et al., 1997; Menzies et al., 2004;

Serafini et al., 1996). Furthermore, the endothelial-specific Robo, Robo4, has been shown to
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interact with Mena(Park et al., 2003). Endothelial tip cells are believed to navigate in a filopodial

dependent manner similar to the neuronal growth cone(Gerhardt et al., 2003; Lu et al., 2004).

The ability of endothelial tip cells lacking Ena/VASP proteins to respond to axon guidance cues

remains to be examined; however, either the extension of filopodia is not required for tip cell

navigation or filopodial protrusion and tip cell guidance downstream of axon guidance receptors

can occur through an Ena/VASP-independent mechanism.

Ena/VASP proteins within the immune system

The loss of VASP and EVL is tolerated in mouse development and in the generation of the

mature cells of the immune system. Previous work had linked Ena/VASP proteins with the T cell

adaptor protein Fyb/SLAP/ADAP, and suggested that this interaction was essential for immune

functions including immunological synapse formation and macrophage phagocytosis

downstream of the Fcy receptor(Coppolino et al., 2001; Krause et al., 2000). Confounding data

from the Fyb/SLAP/ADAP knockout mouse failed to identify a role for this protein in actin

polymerization in T cells during immunological synapse formation(Peterson et al., 2001).

Electron micrographs in this study appear to show Ena/VASP-deficient macrophage and

neutrophil engulfment of cellular and proteinaceous debris. The requirement for Ena/VASP in

macrophage phagocytosis may be specific to signaling through the Fcy receptor. Alternatively,

Ena/VASP may not be required for the actin-based extension of podocytes needed for

phagocytosis. Additional work with Ena/VASP-deficient immune cells in vitro will be needed to

resolve this discrepancy with the literature.

VASP and EVL are the predominant Ena/VASP proteins expressed in cells of the

hematopoeitic system(Lanier et al., 1999). However, mice lacking both proteins form an immune

system and do not show evidence of immunological compromise. One possibility is that loss of
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VASP and EVL can be tolerated in the absence of pathogen exposure. Preliminary experiments

suggest that the response to some infectious agents may be compromised in MMvvee mice

(Makar et al., unpublished observations). Recently, expression of a 75kDa isoform of Mena has

been reported in B cells, where it appears to be tyrosine phosphorylated by Abl(Tani et al.,

2003). Thus the expression of Mena within immune cells may compensate for loss of VASP and

EVL. Due to the embryonic lethality of the triple-null we were unable to determine the fate of

the triple-null immune system (except as described above). The ability of triple-null

hematopoeitic stem cells (HSCs) isolated from E13.5 livers to rescue the hematopoeitic system

of a lethally-irradiated mouse is currently under investigation.
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Experimental Procedures

Animals. Mena(Lanier et al., 1999), VASP (Aszodi et al., 1999), EVL (constructed by

Kwiatkowski AV and Leslie, J, described in Chapter 2), and EVLflO (constructed by

Kwiatkowski AV and Leslie J) mutant mice were previously generated. To determine the

viability of Mena;VASP;EVL (MVE) combinations, the EVL mutant allele was crossed into

MenaVASP (MV) mice that were maintained on a mixed background. Triple-heterozygote MVE

crosses were established and pups were genotyped between P8.5-P16.5. To generate mmVVee

embryos, mmVVEe mice were crossed with MmVVee mice to recover ME double-nulls at an

expected frequency of 1 of 4. The ME crosses were initially conducted using mice on mixed

backgrounds, and later duplicated by intercrossing mice that had been backcrossed at least four

times to the inbred strains 129sv, C57BL6, or Balb/c. An equivalent strategy was employed to

generate VE double-null mice. For timed-pregnancies, the morning that a vaginal plug was

discovered was denoted embryonic day 0 (EO). To generate mmvvee embryos at reasonable

frequencies, Mmvvee studs were crossed with Mmvvee, MmVvee and MmvvEe mice. Triple

nulls were expected at frequencies of 1 of 4, or 1 of 8 for the latter two crosses. To test the ability

of folic acid and inositol to rescue exencephaly we administered folic acid (3 mg/kg body weight

in PBS; Sigma) daily by intraperitoneal injection between EO.5-E11.5, and myo-inositol

(10mg/kg body weight in PBS; Sigma) daily between E8.5-E10.5.

Histology and Immunohistochemistry. Hematoxylin and eosin (H&E) and Periodic Acid

Schiff (PAS) stainings were performed on 5-micron sections using standard techniques.

Immunohistochemistry using anti-smooth muscle actin antibody (clone 1A4 ascites, Sigma) was

performed at 1:400 dilution and amplified via Tyramide Signal Amplification (Perkin Elmer) and

detected with DAB (diaminobenzamidine) (as described in Chapter 2).
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Organ culture. Embryos from ME crosses were harvested at E 11.5 into PBS at 4 degrees

Celsius until dissection. The trachea and primordial lungs were carefully dissected under a

dissecting microscope onto organ culture inserts (Falcon cell inserts with 0.8-micron pore size).

Cell inserts were placed into 6-well dishes containing 0.5 ml of serum-free BGJb medium

(Fitton-Jackson modification; GIBCO/BRL). Media was replaced after 48 hours in culture. Lung

buds were photographed immediately after dissection, 48 hours post-dissection, and 96-hours

post-dissection. Terminal lung buds were counted along the periphery of the samples without

knowledge of sample genotypes.

Endothelial Cells. HUVECs (Clonetics) were infected with retroviruses containing eGFP,

eGFP-VASP or eGFP-Mito-FPPP expression constructs and isolated by FACS. Fluroescence

images were obtained of EGFP-VASP expressing HUVEC monolayers on a Deltavision Spectris

deconvolution microsope (Applied Precision). Transwell permeability assays were performed by

adding 0.5 x 106 HUVECs per transwell (Coming, PC membrane, 12MM diameter, 0.3 mM

pore) and maintained at confluence for 3 days with daily media changes. Texas Red Dextran

(Molecular Probes, 40,000 MW) was added to the top transwell chamber at a final concentration

of 2 mg/ml and flux across the endothelial monolayer assessed by hourly sampling from the

bottom chamber. Data shows a representative experiment done in triplicate. Error bars are

standard deviation.

Electron microscopy. Entire embryos were immersed in fixative immediately after dissection in

2.5% Formaldehyde, 2.5% Glutaraldehyde in a 0. 1M Sodium Cacodylate Buffer, pH7.4

(Electron Micrscopy Sciences). After several days in fixative, tissue was cut into smaller pieces

and returned to fixative. Tissue samples were placed in 1% Osmiumtetroxide/1.5%

Potassiumferrocyanide (in H20) for 1 hour at room temperature in the dark, washed with water,
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and then placed in 1% Uranyl Acetate in H20 for 30 minutes. Samples were dehydrated through

ethanol into propyleneoxide, and then infiltrated and embedded in Epon/Araldite resin. Ultrathin

sections were cut (Reichert Ultracut-S Microtomes) and imaged by transmission electron

microscopy (JEOL 1200EX).
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Abstract

The pace and modes of biological research have been revolutionized by the discovery and

subsequent development of RNAi as a research tool. Applied to in vitro screens, RNAi allows

for rapid and powerful forward genetics to identify genes involved in a particular process. The

speed and specificity of the RNAi response allows for the rapid construction of cells and animals

lacking a protein of interest. This facility has transformed reverse genetics in mammals. It allows

researchers to invert the normal path of experimentation and study the phenotype of a

hypomorphic cell line or tissue before deciding to proceed with further investigation. In addition

to basic research, RNAi has tremendous potential as a therapeutic. This chapter will review the

biology of RNAi, discuss its potential as a therapeutic tool, and evaluate the mechanisms for its

delivery into cells, tissues and animals.
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Introduction

The mechanisms by which gene function are determined in vivo consist of overexpression,

mutation, and gene deletion. These processes can be conducted in both tissue culture as well as

in animals (transgenics and knockouts). Arguably the most informative of these approaches is

gene deletion. However, elimination of gene function has previously required the costly and

time-consuming construction of a knockout mouse, a technique that can not be transferred to

human biology. As an alternative, dominant-interfering constructs have been employed to

abrogate gene function. However, this approach requires controls to demonstrate the

effectiveness and specificity of the construct. These controls are difficult to validate and are

often ignored by the researcher, undermining the legitimacy of the results. There are numerous

examples within the literature of knockout mice that once constructed undermine published

phenotypes obtained with dominant interfering constructs (see Chapter 3 of this thesis).

The completion of the human and mouse genome projects has provided researchers with a

nearly complete list of genes coded in the genome. Analysis of the genome has uncovered

several trends that demonstrate the inadequecy of homologous recombination as the sole means

for gene disruption. Many genes are present within the genome as members of gene families.

These families can contain several members with overlapping expression and function. As such,

phenotypes often emerge only with disruption of multiple family members, and distinct

phenotypes may emerge with different combinations of knockouts (see Chapters 2 and 3 of this

thesis). The time and expense associated with knockout construction makes the complete

characterization of a gene family extraordinarily difficult. Second, the human genome is

estimated to possess only 30,000 genes, a surprisingly modest increase in complexity when

compared to lower eukaryotes(Lander et al., 2001). However, it has been proposed that
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alternative splicing provides significant additional complexity and that 40-60% of human genes

are alternatively spliced(Modrek and Lee, 2002). Our ability to determine the functional

significance of these splice isoforms requires a method to eliminate isoform-specific gene

products.

The introduction of long double-stranded RNAs (dsRNA) abrogates gene expression in

primitive organisms through a process known as RNA interference (RNAi). Initially described in

Caenorhabditis elegans and Drosophila melanogaster, RNAi is highly conserved in all

multicellular organisms (Hannon, 2002; Sharp, 1999) including plants (Baulcombe, 1999). The

potential use of RNAi in mammalian cell cutlure and animals was initially stymied by the

dsRNA-dependent induction of a potent and non-specific anti-viral response mediated by the

dsRNA-dependent protein kinase (PKR)(Caplen et al., 2000; Ui-Tei et al., 2000). This response,

also known as the interferon response, inhibits protein translation and causes apoptosis(Stark et

al., 1998). Most RNA viruses generate a dsRNA form during their life-cycle. The interferon

response has two arms: a cell autonomous suicide mechanism and a paracrine signal through

secreted interferon to inhibit protein synthesis in neighboring cells(Williams and Haque, 1997).

The breakthrough discovery by the Tuschl group demonstrating that 21 nucleotide (nt) dsRNAs

could induce RNAi without triggering the interferon response has allowed RNAi technology to

be applied to mammals(Elbashir et al., 2001 la).

The biology of RNAi

RNAi as a Novel Mechanism that Regulates Development, Physiology, and Disease

The initial description of RNAi resulted from the discovery that introduction of

exogenous long dsRNAs in C. elegans caused sequence-specific loss of expression of

mRNAs(Fire et al., 1998). Since then, RNAi has been observed in most eukaryotes, with the
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notable exception of Saccharomyces cerevisiae(Hutvagner and Zamore, 2002b). The

evolutionary conservation of this process is thought to reflect the importance of a class of short

noncoding RNAs, termed microRNAs (miRNAs). miRNAs were initially discovered in a screen

for genes required for larval development in C. elegans(Lee et al., 1993). More recently, several

groups have identified hundreds of miRNAs in species ranging from C. elegans to humans

through experimental and computational strategies(Lagos-Quintana et al., 2001; Lau et al., 2001;

Lee and Ambros, 2001; Lim et al., 2003). A recent study has shown that overexpression of

miRNAs alters the development of immune cells in mice(Chen et al., 2004), and that deletion of

RNAi machinery (discussed below) disrupts both mouse and Xenopus development(Bernstein et

al., 2003; Wienholds et al., 2003) indicating that miRNAs are critical for normal development

and tissue physiology in mammals. Genomic microarray analysis has demonstrated a startling

abundance of transcribed non-polyadenylated RNA throughout the genome, many of which

likely function as miRNAs(Cheng et al., 2005). A computational approach to identify potential

miRNA targets indicates that hundreds of genes within the human genome are likely regulated

by miRNAs(Lewis et al., 2005). Intriguingly, misexpression of miRNAs has been reported in a

number of cancers, suggesting that miRNAs may contribute to disease processes (Calin et al.,

2002; Calin et al., 2004). To date little is known about the targets of most miRNAs(Bartel,

2004). In large part this is because these RNAs show imperfect homology with the mRNAs that

they regulate(Doench and Sharp, 2004).

Biochemistry of RNAi

Significant strides have been made in our understanding of the biochemical mechanisms by

which endogenous miRNAs silence gene function. Initially, miRNAs are transcribed as

precursors up to 2 kb in length that exhibit significant secondary structure owing to the presence
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of stretches of bases that can undergo extensive base pairing followed by stretches that adopt

loop structures(Lagos-Quintana et al., 2002; Lee et al., 2002). Importantly, the pairing regions, or

stems, present in miRNAs often contain a small number of mismatched bases that create

"bubbles" in the miRNA structure(Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and

Ambros, 2001).

Primary miRNA transcripts are processed in the nucleus by the RNase III enzyme, Drosha,

into approximately 70-nt-long precursors, known as pre-miRNAs(Lee et al., 2003). These are

exported to the cytoplasm, where they are cleaved by a second RNAse III enzyme, Dicer. Dicer

converts pre-miRNAs into double-stranded 21- to 23-nt-long mature miRNAs(Bernstein et al.,

2001). Mature miRNAs associate with an enzymatic machine known as the RNA-induced

silencing complex (RISC). The composition of the RISC is not completely defined, but includes

Argonaute family proteins(Hammond et al., 2001; Hutvagner and Zamore, 2002b; Morel et al.,

2002; Mourelatos et al., 2002; Sasaki et al., 2003; Sontheimer, 2005; Tabara et al., 1999;

Williams and Rubin, 2002). The RISC unwinds miRNAs and associates stably with the

(antisense) strand that is complementary to target mRNA(Martinez et al., 2002; Schwarz et al.,

2003; Tomari et al., 2004).

Depending on the degree of homology between a miRNA and its target mRNA, the miRNA-

RISC complex inhibit gene function by one of two distinct pathways(Bartel, 2004). Most

miRNAs pair imperfectly with their targets and silence gene expression by translational

repression(Grishok et al., 2001; Hutvagner et al., 2001; Ketting et al., 2001). This RNAi

mechanism appears to operate most efficiently when multiple miRNA-binding sites are present

in the 3'UTR of the target mRNAs(Bartel and Chen, 2004; Doench et al., 2003). In some cases,

miRNAs exhibit perfect sequence identity with the target mRNA and inhibit gene function by
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triggering mRNA degradation(Hutvagner and Zamore, 2002a). As discussed below, this appears

to be the dominant mechanism by which synthetic siRNAs and plasmid-expressed shRNAs

silence gene expression.

RNAi as an experimental tool

Discovery and Design of siRNAs

The bubbles and loops that intersperse miRNAs presumably allow these transcripts to avoid

evoking the PKR/interferon response. These transcripts are processed by DICER to yield 21-23nt

dsRNA intermediates with 3' overhangs(Zamore et al., 2000). These intermediates then guide

the RISC machinery in degrading the corresponding mRNA(Elbashir et al., 2001b). The

experimental application of RNAi in mammalian cells was reliant upon this understanding of

RNAi biochemistry. Chemically synthesized dsRNAs that mimic these DICER products (called

siRNAs) could induce RNAi without activating PKR/interferon.(Elbashir et al., 2001a). The

specificity of the approach (discussed below) was suggested by the exquisite sensitivity to single

basepair mismatches in the center of the dimer(Elbashir et al., 2001 a).

Initial efforts to apply this technology were partly frustrated by the failure of a majority of

siRNAs to function in directing mRNA cleavage. Guidelines for the design of siRNA sequences

relied upon empirical observations that were minimally useful and often contradictory(Elbashir

et al., 2001a; Elbashir et al., 2001b; Tuschl et al., 1999). These rules governed such properties as

GC-composition, and the region of the mRNA targeted (5' UTR, coding sequence, 3' UTR).

Recently, two approaches have converged on a unified set of rules governing siRNA design.

The first approach was based upon the apparent symmetry of an siRNA. An siRNA is made up

of two single-stranded RNAs, only one of which (antisense) complements the targeted mRNA.

While the RISC complex initially binds the double-stranded siRNA, it only stably associates
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with a single strand. Strand choice was determined by the comparative melting temperature of

the two ends of an siRNA. The RISC complex preferentially associated with the antisense strand

only if the melting temperature of the 5' end of the antisense strand (to the sense strand) was

lower than the 3' end (Khvorova et al., 2003; Schwarz et al., 2003). The introduction of

mutations in the sense strand to decrease the melting temperature at the 5' end of the antisense

strand resulted in more effective silencing. Independently, researchers at Dharmacon employed a

systematic approach to delineate the properties of an effective siRNA. A large panel of siRNAs

was generated against two genes and the effectiveness of each siRNA was analyzed. Shared

traits that associated with effective siRNAs were identified to generate a scoring system for

siRNA design(Reynolds et al., 2004). The most important attribute identified by Dharmacon was

the melting temperature at the 5' end of the antisense strand.

Stable Induction of RNAi in Mammalian Cells Through Expression of shRNAs

In some organisms, RNA-dependent RNA polymerases exist that are able to amplify siRNAs

and even pass them on through the germ line(Sijen et al., 2001; Smardon et al., 2000). As a

consequence, introduction of dsRNAs triggers long-lived, organismal, stable gene silencing in

these organisms(Sijen et al., 2001). These polymerases do not exist in mammalian cells and,

consequently, both the degree and longevity of gene silencing induced by siRNAs is limited by

the number of RNA molecules introduced into a cell. In many cell culture systems, gene

silencing is seen for only a few days after siRNAs are administered(Elbashir et al., 2001 a). This

is not true for all cell types, especially those that do not proliferate. Stable gene silencing induced

by siRNAs has been observed for weeks in macrophages and hepatocytes(Song et al., 2003a;

Song et al., 2003b). Chemical modification of the RNA backbone to increase intracellular

stability also enhances siRNA longevity(Chiu and Rana, 2003).
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As opposed to siRNAs, short hairpin RNAs (shRNAs) can be transcribed from a DNA

template from a single promoter. shRNAs are composed of complementary RNAs of 19-30nt

with an intervening loop region. This sequence folds into a stem-loop structure that resembles

endogenous pre-miRNAs, and as such, shRNAs are processed by DICER to produce siRNAs

within the cell(Brummelkamp et al., 2002b; Paddison et al., 2002; Paul et al., 2002). The RNA

polymerase III promoters U6 or H1 are used to drive expression of shRNAs. RNA polymerase

III (Pol III) directs transcription of tRNAs, snRNAs, the RNaseP RNA, and other small RNAs

within the cell. Pol III transcription is well-suited for shRNA production. Transcription initiation

and termination sites are well-defined, and transcription is highly efficient- polIII recycles to

complete several rounds of transcription without leaving the DNA template(Dieci and Sentenac,

1996; Paule and White, 2000). The U6 and Hi promoters are unique from other pol III promoters

in that the promoter sequences are located upstream of their start sites(Chong et al., 2001).

Regulated and Tissue-Specific Gene Silencing by RNAi

The development of shRNA expression-based RNAi suggested the development of

techniques to control the timing and/or tissues in which the shRNA was expressed. Several

approaches have been developed for this purpose. Hybrid promoters have been constructed to

create tetracycline or ecdysone responsive Hi or U6 promoters(Chen et al., 2003; Czauderna et

al., 2003b; Gupta et al., 2004; Matsukura et al., 2003; van de Wetering et al., 2003; Wang et al.,

2003; Wiznerowicz and Trono, 2003). A second approach makes use of a modified U6 promoter

that is incompetent for transcription due to the inclusion of a floxed cassette. Cre recombinase

mediated recombination regenerates a competent U6 promoter to drive shRNA

expression(Fritsch et al., 2004; Kasim et al., 2003; Tiscornia et al., 2004; Ventura et al., 2004).

Pol II promoters, which drive the expression of polyadenylated mRNAs, provide an alternative
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means to avhieve tissue-speicifc shRNA production. With few exceptions, most of the early

attempts to drive shRNA production directly from a pol II promoter were not successful due to

the imprecise transcription start site and post-transcriptional modifications (polyadenylation, 5'

methylguanisine cap)(Shinagawa and Ishii, 2003; Xia et al., 2002). More recently, shRNA

constructs have been buried within the 3'UTR of genes, to resemble naturally occurring

miRNAs(Zeng et al., 2002).

RNAi Specificity

The most contentious issue in the experimental application of RNAi concerns the

specificity of gene silencing. The initial description of siRNAs claimed the exquisite sensitivity

to single base pair mutations in the middle of the siRNA sequence(Elbashir et al., 2001a). This

argues that perfect homology (at least in the middle of the siRNA) is required for gene silencing.

Several groups have claimed marked alterations in the protein levels of nontargeted genes

following RNAi administration. Other groups have employed microarrays to directly probe to

specificity of RNAi(Bilanges and Stokoe, 2005). The concentration of siRNA(Persengiev et al.,

2004), off-target homology with the 5' end of the siRNA(Jackson et al., 2003; Saxena et al.,

2003), and even the mechanism of siRNA delivery (Fedorov et al., 2005) have all been shown to

affect the spectrum and degree of RNAi specificity. As noted above, miRNAs frequently contain

mismatches from their mRNA targets and result in gene silencing via translational

repression(Doench and Sharp, 2004). Thus, the off-target effects caused by siRNAs could result

from its acting similarly to miRNAs. As the mechanisms for generating off-target silencing are

further delineated rules can be generated to predict potential non-specific targets(Qiu et al.,

2005). These can be combined with the sequences from the genome project and the guidelines

for siRNA construction to generate a heuristic to allow the use of effective and specific siRNAs.
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PKR/Interferon Induction

A second major concern among researchers using RNAi in mammals is the possibility that

exogenous dsRNAs, despite their short length, may trigger an antiviral interferon response

mediated by the PKR. Indeed, many early attempts at silencing gene expression using dsRNAs

using strategies analogous to those developed for primitive organisms failed because they

triggered the production of interferon, nonspecific gene silencing, and apoptosis in mammalian

cells. Early work by Tuschl and colleagues suggested that dsRNAs that were less than 30 bases

in length were able to silence gene expression in a specific manner, while eluding the molecular

machinery responsible for triggering the interferon response(Elbashir et al., 2001 la). This finding

has been corroborated by the successful use of siRNAs as reagents to interfere specifically with

gene function in a wider variety of different mammalian systems. The successful production of

transgenic knockdown mice expressing shRNAs (discussed below) strongly suggests that

PKR/interferon induction is not a general property of shRNAs. However, a number of studies

suggest that short dsRNAs can trigger the expression of some of the target genes of the interferon

response and, in some cases, can induce the cellular changes associated with this process(Bridge

et al., 2003; Kim et al., 2004; Sledz et al., 2003). It is not clear how often siRNAs and shRNAs

trigger the interferon pathway and which conditions favor this response to these RNAs. It may

be that chemical features of dsRNAs, as well as their expression levels and delivery routes, may

determine whether they become visible to the interferon response machinery(Bridge et al., 2003;

Kim et al., 2004; Sledz et al., 2003).

Similar to the interferon response, evidence exists that siRNAs and shRNAs can activate

dendritic cells and other cells of the immune system through a much more specific and restricted

class of receptors, the Toll-like receptors (TLRs), that can recognize foreign nucleic acids

150



including dsRNAs(Alexopoulou et al., 2001; Kariko et al., 2004). Analysis of viral genomes has

uncovered an unexpected abundance of virally encoded miRNA sequences(Bennasser et al.,

2004; Pfeffer et al., 2005). Therefore, an immune mechanism to differentiate between

endogenous miRNA and virally encoded miRNAs may have evolved. It is possible that there are

structural requirements to experimentally introduced shRNAs to avoid triggering this immune

response. While the consequence of this remains to be determined, these findings do raise the

possibility that RNAi reagents may trigger adverse immune responses in vivo.

RNAi delivery: Hail to the vector

In Vivo Delivery of siRNAs to Induce RNAi

By allowing efficient and cheap silencing of gene expression, RNAi promises to provide a

significant boost to research of the genetic basis of normal tissue physiology, as well as disease

process in animal models. For this reason, many groups have worked on developing strategies to

deliver siRNAs or shRNAs to cells and tissues of experimental animals. Early efforts focused on

direct administration of synthetic siRNAs, and four major delivery methods have been shown to

be successful. The first of these, intravenous injection of siRNAs in a large volume (1 ml) of

saline solution, works by creating a back-flow in the venous system that forces the siRNA

solution into several organs (mainly the liver, but also kidneys and lung with lesser

efficiency)(Lewis et al., 2002; McCaffrey et al., 2003).

Gene silencing has also been achieved in vivo by injecting smaller volumes of siRNAs that are

packaged in cationic liposomes. When siRNAs are administered intravenously using this

strategy, silencing is primarily seen in highly perfused tissues, such as the lung, liver, and

spleen(Sorensen et al., 2003). Local delivery of siRNAs has been shown to be successful in the

central nervous system(Baker-Herman et al., 2004). Gene silencing has also been achieved by
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electroporation of siRNA duplexes directly into target tissues and organs, including muscle,

retina, and the brain(Kishida et al., 2004; Kong et al., 2004; Konishi et al., 2004).

Although successful, it is likely that these strategies to silence genes are limited by the

stability of siRNAs molecules in vivo and the efficiency by which they are taken up target cells

and tissues. Much effort has been directed to increasing the half-life of the siRNAs by modifying

the chemistry of the RNAs used(Braasch et al., 2003; Braasch et al., 2004; Chiu and Rana, 2003;

Czauderna et al., 2003a). A number of groups have also used plasmid-based shRNAs, instead of

siRNAs, to obtain relatively long-lived gene silencing in vivo(Zhang et al., 2003). A number of

approaches have also been shown to improve cell and tissue delivery of siRNAs and shRNAs,

including conjugating RNAs to membrane-permeant peptides and by incorporating specific

binding reagents such as monoclonal antibodies into liposomes used to encapsulate

siRNAs(Muratovska and Eccles, 2004; Zhang et al., 2003).

The therapeutic potential of siRNA delivery was stunningly demonstrated by a group at

Alnylam Pharmaceuticals. siRNAs against Apolipoprotein B (Apo B) were chemically modified

to increase stability and to include a conjugated cholesterol moiety. The included cholesterol

moiety caused the siRNAs to reside within plasma lipoproteins that were then efficiently

endocytosed by cells of the liver and small intestines. The silencing of ApoB was monitored by

a reduction in serum ApoB and cholesterol levels(Soutschek et al., 2004).

Retroviral and Lentiviral Vectors for RNAi and Gene Therapy

To obtain efficient and long-lived gene silencing using RNAi in cells and tissues, many

groups have developed a variety of viral vectors to deliver siRNAs both in vitro and in vivo.

Retrovirus-based vectors that permit stable introduction of genetic material into cycling

cells(Lois et al., 2001) have been engineered to express shRNAs and to trigger RNAi in

152



transformed cells, as well as in primary cells(Abbas-Terki et al., 2002; Brummelkamp et al.,

2002a; Dirac and Bernards, 2003; Hemann et al., 2003; Hommel et al., 2003; Qin et al., 2003;

Rubinson et al., 2003; Stewart et al., 2003; Tiscornia et al., 2003). Because they infect and are

expressed in certain adult stem cells, notably hematopoietic stem cells, retrovirus-based vectors

have also been used to create "knockdown" tissues in mice(Hemann et al., 2003).

Lentiviruses, a class of retroviruses that includes HIV, provide even more wide-ranging

applications of RNAi. Lentiviruses provide several advantages over murine retroviruses. The

presence of a nuclear localization sequence (NLS) on several viral proteins allows import of the

pre-integration complex into the nucleus of non-cycling cells(Bukrinsky and Haffar, 1997). This

extends the range of infectible cells to include noncycling and postmitotic cells such as neurons

and naive immune cells(Abbas-Terki et al., 2002; Dirac and Bernards, 2003; Hommel et al.,

2003; Rubinson et al., 2003). Attempts to use murine retroviruses to express exogenous genes in

transgenic animals fail due to methylation and silencing of the viral LTR during

development(Cherry et al., 2000). In contrast, lentiviral integrants are not susceptible to

methylation and lentiviruses can be used to generate transgenic mice(Lois et al., 2002; Pfeifer et

al., 2002) and other animals(Hofmann et al., 2003; Hofmann et al., 2004). Finally, lentiviruses

better tolerate the expression of genes from one or more internal promoters(Mitta et al., 2004;

Reiser et al., 2000). This allows for the generation of bifunctional lentiviral vectors that are

capable of co-expressing shRNAs as well as either marker proteins (GFP) or other genes of

interest. For these reasons, lentiviral RNAi vectors have been developed to generate transgenic

knockdown animals by infecting embryonic stem cells or single-cell embryos(Rubinson et al.,

2003; Tiscornia et al., 2003). These animals display expected loss-of-function phenotypes and

transmit the integrated shRNA construct and resulting phenotype to their offspring, suggesting
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that this technique represents an efficient, low-cost alternative to knockout technologies to study

normal tissue physiology and disease processes in a variety of experimental animal

systems(Rubinson et al., 2003; Tiscornia et al., 2003).

In addition to their use in basic research, lentiviruses have been proposed as a vector for gene

therapy. Ex vivo lentiviral infection of hematopoeitic stem cells can deliver wildtype copies of

mutant genes. Efforts to use lentiviruses to deliver the wildtype yc chain gene into hematopoietic

stem cells from patients suffering from X-linked Severe Combined Immunodeficiency (X-SCID)

successfully generated a functional immune system(Hacein-Bey-Abina et al., 2002). Similar

strategies have been proposed for treatment of hemoglobinopathies(Puthenveetil et al., 2004).

The use of lentiviral delivery of RNAi has been proposed as a gene therapy agent. RNAi

knockdown of the HIV co-receptors CCR5 and CXCR4 within the hematopoetic stem cells of an

HIV-positive patient should produce an uninfectible immunce cell population(Anderson and

Akkina, 2005; Anderson et al., 2003; Zhou et al., 2004). Researchers have used RNAi to target

the HIV mRNA directly {Novina, 2002 #318. However, the rate of HIV mutation and the

sensitivity of RNAi to mismatched basepairs suggest that this technique may have limited

efficacy in vivo.

The potential therapeutic use of lentiviruses has recently encountered a signficant stumbling

block. All retroviruses integrate randomly into the genome with integration hotspots at sites of

active transcription{Schroder, 2002 #352}. Several of the X-SCID patients treated with ex vivo

lentiviral therapy subsequently developed leukemia. The leukemic cells represented a clonal

population of lentivirus infected cells in which the viral integration disrupted a tumor suppressor

gene LMO-2(Hacein-Bey-Abina et al., 2003). Changes to the treatment protocol that rely on a
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modified vector and significantly smaller pools of infected cells should minimize the risk of an

integration resulting in tumorigenesis.

Adenovirus and Adenovirus-associated viruses for RNAi delivery

Highly effective siRNA delivery systems have also been created that are based on

adenoviruses and adenovirus-associated viruses (AAV). Adenoviruses can infect a wide range of

cells, and have been shown to silence gene expression in vivo(Arts et al., 2003; Shen et al., 2003;

Shen and Reske, 2004; Zhao et al., 2003). However, as opposed to retroviruses, adenoviral

vectors do not integrate into the genome and tend to induce strong immune responses. In

contrast, AAV does not cause disease in humans (Hildinger and Auricchio, 2004) and can

integrate into the genome of infected cells. Unlike retroviruses and lentiviruses, AAV tends to

integrate at a defined location in the genome, thus minimizing the chance of a mutagenic effect

of the integrated virus(Kay and Nakai, 2003; Thomas et al., 2003). Effective gene silencing

mediated by AAV-based vectors has been demonstrated following systemic or tissue-specific

injection of viral particules(Boden et al., 2004; Xia et al., 2004; Xia et al., 2002). The

unexplained death of a patient undergoing AAV-delivered gene therapy at the University of

Pennsylvania has dampened some of the enthusiasm for this vector.

Creation of Transgenic Animal Models Using RNAi

In addition to use of lentiviral vectors, more traditional transgenesis strategies have been used

to successfully create loss-of-function models to study gene function in rodents using RNAi, thus

providing another strategy by which RNAi might provide an alternative to creating gene

knockout animals(Fedoriw et al., 2004; Hasuwa et al., 2002; Shinagawa and Ishii, 2003; Stein et

al., 2003). Inheritable RNAi transgenesis has been achieved both through expression of shRNAs

and long dsRNAs whose expression is restricted to the nucleus or oocyte(Fedoriw et al., 2004;
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Hasuwa et al., 2002; Shinagawa and Ishii, 2003; Stein et al., 2003). On the basis of this small

number of pioneering studies, it appears that RNAi is effective at silencing gene expression in

many, if not all, tissues(Hasuwa et al., 2002). In some instances, attempts to create RNAi

transgenic animals by injection of plasmids encoding shRNAs into single cell embryos have

been unsuccessful, whereas injection of DNA into blastocysts has succeeded(Carmell et al.,

2003). This may reflect a toxic effect of overexpression of siRNAs during early development,

possibly due to competition with miRNA pathways.

Whereas RNAi in transgenic animals has been shown to recapitulate some loss-of-function

phenotypes established in knockout animals, there is mounting evidence that the RNAi

phenotype will often appear more variegated than the knockout phenotype(Kunath et al.,

2003)(see Chapter 5 of this thesis). This is probably due to the fact that RNAi does not abrogate

gene expression, but rather reduces it to varying levels. Although this may in some cases limit

the use of RNAi in vivo, it is also likely to provide important new insights into the genetic basis

of normal tissue physiology, disease processes, and therapeutic strategies by demonstrating the

effects of altering gene expression to varying degrees. In particular, RNAi may prove especially

important in the creation of animal models of human diseases in which susceptibility and

resistance are encoded by alleles that show relative, rather than absolute, differences in

expression levels(Hemann et al., 2003).

Summary and prospects

In the past few years, RNAi has come to prominence as a novel and essential biological

process, as well as a powerful experimental tool and a potential therapeutic strategy. New

discoveries in the field of RNAi biochemistry, coupled with technological break-throughs, have

permitted the creation of effective RNAi reagents that can be used to study normal tissue
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physiology and disease processes in a range of settings, including experimental animals. By

further exploring the biology of RNAi and improving delivery and evaluation technologies for

RNAi reagents, these strategies will become more effective and more generally available. Now

that the first phase I clinical studies of RNAi are on the horizon, several questions related to the

safety and efficacy of using RNAi as a therapeutic strategy must be addressed. Ongoing and

future preclinical studies in animal models will hopefully help optimize RNAi therapeutics for

applications in humans.
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Abstract

RNA interference (RNAi) has recently emerged as a specific and efficient method to

silence gene expression in mammalian cells either by transfection of short interfering RNAs

(siRNA)(Elbashir et al., 2001) or, more recently, by transcription of short hairpin RNAs

(shRNA) from expression vectors and retroviruses(Brummelkamp et al., 2002a;

Brummelkamp et al., 2002b; Lee et al., 2002; McManus et al., 2002b; Miyagishi and Taira,

2002; Paddison et al., 2002a; Paul et al., 2002; Sui et al., 2002; Yu et al., 2002). However, the

resistance of important cell types to transduction by these approaches, both in vitro and in

vivo(McCaffrey et al., 2002), has limited the use of RNAi. Here, we describe a lentiviral

system for delivery of shRNAs into cycling and non-cycling mammalian cells, stem cells,

zygotes, and their differentiated progeny. We demonstrate that lentivirus-delivered shRNAs

are capable of specific, highly stable, and functional silencing of gene expression in a variety

of cell types and also in transgenic mice. Our lentiviral vectors should permit rapid and

efficient analysis of gene function in primary human and animal cells and tissue, and the

generation of animals that show reduced expression of specific genes. They may also provide

new approaches for gene therapy.
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Rapid progress in sequencing genes and characterizing their expression patterns has

resulted in a growing list of coding regions that are predicted to contribute to normal

mammalian tissue function and to the development of disease. Current approaches to study

gene function, such as generating "knockout" mice, are time-consuming, expensive to

perform, and cannot be directly applied to human tissues. RNA interference (RNAi) has

recently emerged as a rapid and efficient means to manipulate and investigate gene function

in mammalian cells(McManus and Sharp, 2002). Viral vectors, particularly retroviral vectors,

are efficient, stable gene delivery tools in mammalian cells(Lois et al., 2001; Scherr and Eder,

2002), and recent studies suggest that they can stably express shRNAs in transformed and

primary cells(Brummelkamp et al., 2002a). We have developed a lentivirus-based vector

called pLL3.7 that expresses RNAi-inducing shRNAs under the control of the U6

promoter(Tuschl, 2002) (Fig. 1A). The pLL3.7 vector was also engineered to express EGFP

as a reporter gene, permitting infected cells to be tracked by flow cytometry (Fig. 1A, ID).

Lentiviruses have two key advantages over other gene delivery systems. First, they can infect

many non-cycling and post-mitotic cells(Naldini, 1998; Naldini et al., 1996). Second,

transgenes expressed from lentiviruses are not silenced during development. Therefore

lentiviruses can be used to generate transgenic animals through infection of embryonic stem

cells or embryos(Lois et al., 2002; Pfeifer et al., 2002).

Initial experiments indicated that pLL3.7 vectors could be used to generate high titre

infectious lentivirus and could express shRNAs and silence gene expression upon infection of

mammalian cell lines (Fig. ID, E, F, see Methods for details). To test whether pLL3.7

could be used to silence gene expression in primary mammalian cells, CD8+ T cells derived

from the spleens of OTI T cell receptor (TCR) transgenic mice
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Figure : Stable gene silencing and production of processed shRNAs in a T cell line by a lentiviral vector.
A. Creation of a shRNA-expressing lentivirus vector. pLL3.7 was engineered by introducing the mouse U6
promoter upstream of a CMV-EGFP expression cassette to create a vector that simultaneously produces shRNAs
and a reporter gene. To facilitate the introduction of RNAi stem-loops, a multiple cloning site was placed
immediately following the U6 promoter. Key: SIN-LTR: self-inactivating long terminal repeat; T: HIV
packaging signal; cPPT: central polypurine track; U6: U6 (RNA polymerase III) promoter; MCS: multiple
cloning site; CMV: cytomegalovirus (RNA polymerase II) promoter; EGFP: enhanced green fluorescent protein;
WRE: woodchuck hepatitis virus response element. B. Sequence of the CD8 stem loop used in this study. A
sequence known to silence CD8 as an siRNA (McManus et al., 2002a) was adapted with a loop sequence from
Brummelkamp et al.(Brummelkamp et al., 2002b) to create an shRNA. The presumed transcription initiation site
is indicated by a +1. Nucleotides which form the loop structure are indicated in green font (Loop). The pol III
terminator stretch (a stretch of Us in the RNA) is indicated in red font. C. Predicted structure of CD8 shRNA
produced from pLL3.7 CD8. D. Stable silencing of CD8 by pLL3.7 CD8. Sorted populations of infected E10 cells
were maintained in long-term culture. E10 cells pLL3.7 CD8 (CD8 RNAi virus) were sorted four days after
infection for GFP expression and low CD8 expression, while control virus infected cells were sorted for GFP
expression only. Each population was cultured for one month and analyzed for CD8 expression via flow
cytometry at weekly intervals. The CD8 and GFP levels expressed by infected cells 4 days following infection
and after one month of culture are shown. E. Specific degradation of CD8 mRNA induced by pLL3.7 CD8. CD8
and CD4 mRNA levels in uninfected E10 cells, or E10 cells infected with either pLL3.7 (Control Virus) or
pLL3.7 CD8 (CD8 RNAi Virus) and sorted on the basis of GFP and CD8 expression, were assayed by Northern
blot. The bands representing CD8 and CD4 mRNA species are identified by lines. F. Generation of processed
shRNAs in cells infected with pLL3.7 CD8. The cells analysed for CD8 and CD4 mRNA levels in E. were also
assayed for the presence of processed shRNAs by Northern blot. The location of 21, 22, and 23 nucleotide RNAs
are identified by arrows.

were activated with cognate peptide in vitro and infected with a version of pLL3.7 engineered

to express a shRNA that silences expression of murine CD8 (pLL3.7 CD8) (Fig. IB,
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lC)(McManus et al., 2002a; McManus et al., 2002b). After three days, cells were harvested

and analysed by flow cytometry. Between 68 and 82% of the cells were infected and

reproducibly showed approximately a 14-fold reduction in CD8 expression, demonstrating

that lentivirus-driven expression of shRNAs efficiently silenced gene expression in primary T

cells (Fig. 2A). This effect of pLL3.7 CD8 was specific since infected cells showed normal

expression of other T cell surface markers (Fig. 2A, and data not shown). To determine

whether pLL3.7-based vectors could also silence gene expression in non-cycling cells, we

infected murine dendritic cells with RNAi lentiviruses that expressed shRNAs against the

pro-apoptotic molecule, Bim(Strasser et al., 2000) (pLL3.7 Bim). Infection of these cells with

pLL3.7-based lentiviruses was also efficient, as gauged by GFP expression, and resulted in a

significant reduction of Bim expression in cells that received pLL3.7 Bim (Fig. 2B).

To determine whether lentivirus-mediated expression of shRNAs could induce

functional silencing of a gene in primary cells, OTI T cells(Hogquist et al., 1994) were

infected with an RNAi lentivirus that targeted CD25, the alpha chain of the IL-2 receptor

(pLL3.7 CD25) (Fig. 2A). IL-2 is an important growth factor for T cells, and T cells derived

from mice that lack the receptor for this cytokine fail to proliferate in vitro(Willerford et al.,

1995). Activated OTI T cells infected with pLL3.7 CD25 showed on average a 25-fold

reduction in IL-2Ra chain expression, but expressed normal levels of other surface markers

(Fig. 2A, and data not shown). These cells were challenged with increasing concentrations of

IL-2, resulting in a 4- to 5-fold reduction in the response to this cytokine (Fig. 2C). Since not

all cells were infected in these

173



Figure 2

A cov e cm uW cs RII

GFP

ai , ̂""l, l 

-- GFP -- ~mlM 

b m_ i lB ~I~~i~ 'i:LL~CO I

D _

Figure 2: Functional silencing of genes in cycling and non-cycling primary immune cells in vitro and in
vivo by a lentiviral vector. A. Specific silencing of genes in cycling T cells by pLL3.7 CD8 and pLL3.7 CD25.
OTI CD8+ TCR transgenic T cells were activated for 3 days with cognate peptide and then infected with pLL3.7,
pLL3.7 CD8, or pLL3.7 CD25. The efficiency of infection was determined by assaying GFP expression by flow

cytometry. The expression of CD8 and CD25 on infected T cells was assayed by staining with specific antibodies
that bind these surface markers. B. Efficient infection and gene silencing in non-cycling dendritic cells with
pLL3.7 Bim. Bone marrow derived dendritic cells were infected with pLL3.7 or pLL3.7 Bim. The efficiency of
infection was determined by assaying GFP expression by flow cytometry (green line) and comparing to
uninfected control cells (purple peak). The expression of Bim in pLL3.7 CD8 infected and control dendritic cells
was assayed by Western blot. C. Functional silencing of genes in primary T cells with pLL3.7 CD25. OTI CD8+
TCR transgenic T cells were infected and activated as in A. and then cultured for 48 hours in the presence of
increasing concentrations of IL-2. Proliferation was assessed by 3H-thymidine incorporation. D. Efficient
infection of HSCs and gene expression in differentiated progeny with pLL3.7 CD8. HSCs were purified from the
bone marrow of wild type mice, infected with pLL3.7, pLL3.7 CD8, or pLL3.7 CD25, and then cultured for 3
days with IL-3, IL-6, and SCF. The efficiency of infection was determined by assaying GFP expression by flow
cytometry (left histogram, green line) and compared to uninfected cells (purple peak). Bone marrow chimeras
were generated by injecting sorted (GFP+) HSCs into lethally irradiated recipients. 6 to 8 weeks later the
contribution of these cells to the mature spleen cells of the chimeras was determined by staining with the
congenic marker CD45.2, analysing GFP expression by flow cytometry (right histogram, green line), and
comparing to mice that received uninfected HSCs (purple peak). Histograms show GFP expression of HSC-
derived (CD45.2+) cells. E. Functional gene silencing in T cells derived from HSCs infected with pLL3.7 CD8.
The percentage of CD8+ T cells in the spleen of bone marrow chimeras from pLL3.7 (left dot plot) and pLL3.7
CD8 (right dot plot) was determined by staining with antibodies to CD4 and CD8, as well as the congenic marker
CD45.2, and flow cytometry. Dot plots show CD4 and CD8 expression of HSC-derived (CD45.2) cells.
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experiments (typically between 70 and 85% of cells were GFP+), it is likely that the actual

inhibition of IL-2-induced proliferation by RNAi was even more significant.

Lentivirus-based vectors are capable of stably expressing transgenes in stem cells, and

are not silenced during development(Pfeifer et al., 2002; Scherr and Eder, 2002). We tested

whether pLL3.7 could be used to silence gene expression in murine haematopoietic stem cells

(HSCs) and their progeny. To accomplish this, HSCs were purified from whole bone marrow

by cell sorting, infected with pLL3.7 or pLL3.7 CD8, and then cultured for 2 days in the

presence of cytokines. This protocol led to infection of 30 to 60% of HSCs (Fig. 2D). Next,

GFP+ cells were sorted and injected into lethally irradiated congenic mice. After 8 weeks, the

infected HSCs had contributed to all blood cell lineages in reconstituted mice as determined

by staining for the congenic CD45 allele, and about 20 to 40% of HSC-derived lymphocytes

were GFP+ (Fig. 2D). The presence of GFP- cells is probably the consequence of the low

activity of the CMV promoter in these cells(Schmidt et al., 1990). To examine whether

lentivirus-mediated expression of shRNAs in T cells resulted in gene silencing in vivo,

splenocytes from reconstituted mice were stained and analyzed by flow cytometry. The

frequency of CD8+ T cells present in mice that received HSCs infected with pLL3.7 CD8

were reduced at least 10-fold compared with those receiving cells infected with pLL3.7

(Figure 2e). No effect was seen on CD4+ T cell levels and other immune cell populations,

indicating that lentivirus-induced gene silencing was both functional and specific.

Confirming that we had infected true haematopoietic stem cells, we were able to serially

passage bone marrow cells from reconstituted mice and still observe lentivirus-driven

expression of GFP in haematopoietic cells (data not shown).
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Lentiviruses have also been reported to infect mouse embryonic stem (ES) cells and

to maintain their expression in transgenic mice generated from these cells(Pfeifer et al.,

2002). We were able to generate and maintain stable lines of ES cells that were infected with

pLL3.7 CD8, or with versions of pLL3.7 that expressed shRNAs against

p53(Paddison et al., 2002b), pLL3.7 p53, or a neuron-specific isoform of Mena(Gertler et al.,

1996), pLL3.7 Mena+ (Fig. 3A, and data not shown). To test whether gene silencing could be

maintained throughout organogenesis, uniformly GFP+ ES cell populations that had been

infected with RNAi lentiviruses were purified by cell sorting and injected into RAG-deficient

blastocysts, which were then implanted into pseudopregnant foster mothers. Because RAG-

deficiency blocks T and B lymphocyte development in the bone marrow, any peripheral T

and B lymphocytes present in the chimeric progeny must be derived from the injected (wild

type) ES cells(Chen et al., 1993). The degree of chimerism in animals derived from cells

infected by each virus was between 50 and 90% as gauged by GFP fluorescence analysis of

whole mice and dissected organs (Fig. 3C, and data not shown). About 20 to 40% of immune
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Figure 3: Functional silencing of genes in
embryonic stem cell-derived mice by a lentiviral
vector. A. Generation of stably infected ES cell lines
with pLL3.7 CD8. AK7 ES cells were infected with
pLL3.7 CD8 and sorted for GFP expression. GFP
expression in cultured cells was determined 2 weeks
later by flow cytometry (green line) and compared with
uninfected controls (purple peak). B. Identification of
pLL3.7 CD8-infected ES cell-derived thymocytes in
chimeric mice. Thymocytes from uninfected (purple
peak) and pLL3.7 CD8 (green line) ES derived mice
were harvested and analyzed for GFP expression. C.
Fluorescence imaging of paws of pLL3.7 CD8-infected
ES cell-derived mice. The paws of control and pLL3.7
CD8 ES chimeric mice were imaged with standard
epifluorescence for expression of EGFP. D. Silencing
of CD8 in the thymus and spleen of pLL3.7 CD8-
infected ES cell-derived mice. Thymocytes and
splenocytes from one-week old control and CD8 RNAi
(pLL 3.7 CD8) ES cell-derived mice were harvested
and stained for CD4 and CD8 expression.
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Figure 4: Functional silencing of genes in immune cells of transgenic mice derived from lentivirus-injected
zygotes. A. Infection of zygotes with pLL3.7 CD8. Single cell embryos were infected with pLL3.7 CD8, or left
uninfected (control), and cultured for 3 days, at which time they were imaged with standard epifluorescence for
expression of EGFP. B. Generation of transgenic mice from pLL3.7 CD8-injected zygotes. Whole mice and paws
of mice derived from embryos that were uninfected (control) and infected with pLL3.7 CD8 were imaged with
standard epifluorescence for expression of EGFP. C. Expression of processed shRNAs in multiple tissues in
transgenic mice derived from pLL3.7 CD8-injected zygotes. Tissues were harvested from 8-week old CD8 RNAi
transgenic mice (pLL3.7 CD8) and assayed for the presence of processed shRNAs by Northern blot. D. Silencing
of CD8 in the thymus and spleen of transgenic mice derived from pLL3.7 CD8-injected zygotes. Thymocytes and
splenocytes from two-week old control and CD8 RNAi transgenic (pLL3.7 CD8) mice were harvested and
stained for Thyl, CD4 and CD8 expression. Dot plots show the expression of CD4 and CD8 on T cells (Thyl+).
E. Silencing of p53 in the brain and liver of transgenic mice derived from pLL3.7 p53-injected zygotes. Brain and
liver were harvested from 8-week old p53 RNAi transgenic mice (pLL3.7 p53) and control mice. The levels of
p53 in these tissues were determined by Western blot.

cells in these mice were GFP+ (Fig. 3B and data not shown). To examine whether lentivirus-

mediated expression of shRNAs resulted in the silencing of CD8 in vivo, thymus and spleen

cells of 7 day-old chimeric mice were stained with antibodies against CD8 and CD4, and then

analysed by flow cytometry. Developing T cells in the thymus of pLL3.7 CD8 mice showed

approximately a 9-fold reduction in CD8 expression (Fig. 3D). Furthermore, very few CD8+

T cells were detected in this organ or in the spleen (Fig. 3D). In contrast, thymocytes from

these mice showed normal expression of CD4, and normal percentages of mature CD4+ T
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cells in their lymphoid organs (Fig. 3D). No effects were observed on T cell differentiation

and numbers in mice derived from pLL3.7 Mena+ and pLL3.7 infected ES cells (Fig. 3D and

data not shown).

An efficient and broadly applicable approach to generate transgenic animals is direct

lentiviral infection of single cell embryos(Lois et al., 2002). To determine whether this

methodology could be used to bypass the use of ES cells and to directly generate transgenic

mice that show specific silencing of genes, we infected single cell embryos with RNAi

lentiviruses. Embryos infected with pLL3.7, pLL3.7 CD8, pLL3.7 CD25, pLL3.7 p53, or

pLL3.7 Mena+ expressed GFP after 3 days of culture (Fig. 4A, and data not shown), and

produced offspring that showed expression of GFP and siRNAs in all tissues tested (Table 1,

Fig. 4B, 4C, and data not shown). Identical to ES cell chimeric mice, two-week old RNAi

transgenic mice generated from zygotes that were infected with pLL3.7 CD8 showed

approximately a 10-fold reduction in CD8 expression in developing thymocytes (Table 2 and

Fig. 4D). The numbers of mature CD8+ T cells in the peripheral lymphoid organs of these

mice was also reduced (Table 2 and Fig. 4D). Importantly, gene silencing was maintained in

adult mice (Table 2). As in HSC-reconstituted and ES cell-chimeric mice, the expression of
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Table 1: EFFICIENT GENERATION OF RNAi TRANSGENIC MICE
THROUGH INFECTION OF ZYGOTES WITH LENTIVIRUSES
RNAi Litters Total mice Number of transgenic Number of lentiviral
Lentivirus born offspring integrants

(number/percentage) (range/average)
Control 2 15 8/53% 2 to 5/3.4
CD8 4 32 16/50% 2 to 6/3.1
CD25 7 42 11/26% N.D.

P53 4 22 5/23% N.D.
Legend: RNAi transgenic mice were generated with pLL3.7 (Control), pLL3.7 CD8, pLL3.7 CD25, and
pLL3.7 p53 as described in the text. Transgenic offspring were identified based on their expression of GFP
in the skin at 2 to 4 days of age using a 100W UV light source. The number of lentiviral integrants present
in the genome of transgenic (GFP+) mice was determined by Southern blot. No lentiviral integrants were
detected in 5 non-transgenic (GFP-) mice analyzed. N.D. Not determined.



GFP in immune cells of RNAi transgenic mice generated with pLL3.7 vectors was low

(between 5 and 60%).

Although all mice showed an equal degree of CD8 gene silencing in cells exhibiting silencing

(Table 2), the percentage of cells showing gene silencing differed between transgenic strains

(Table 2). This variation may be a function of the number of integrated lentiviral genomes

present in different transgenic lines (Table 2). Gene silencing was not restricted to immune

cells, since brain and liver cells derived from transgenic mice that expressed pLL3.7 p53

showed markedly reduced expression of the p53 tumor suppressor protein (Fig. 4E).

The promise of RNA interference as a means to efficiently silence genes in mammalian

cells has become widely recognized(Hannon, 2002; McManus and Sharp, 2002; Paddison et

al., 2002a; Tuschl, 2002). The results presented here demonstrate that lentiviruses can be

used to express shRNAs and reduce gene expression in cycling and non-cycling cells from

different tissues, as well as in chimeric and transgenic mice. This technology should allow
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TABLE 2: STABLE AND FUNCTIONAL SILENCING IN ADULT RNAi
TRANSGENIC MICE
Age of RNAi
transgenic mice 2 8 8 8 8 8 9 9
(weeks)
Decrease in % of
Decrease in % of 56% 20% 35% 44% 99% 100% 46% 56%
mature CD8+ cells

Decrease in CD893% 93% 93% 88% 87% 92% 94% 94%
expression
Number of
lentiviral N.D. 2 3 2 6 5 4 3
integrants
Legend: The frequency of CD8+ T cells present in neonatal and adult CD8 RNAi transgenic mice and age-
matched controls and the reduction of CD8 expression in cells showing gene silencing was determined by
staining lymphocytes with antibodies against Thyl, CD4, and CD8. The percent reduction in CD8+ T cells
seen in CD8 RNAi transgenic mice was determined by dividing the frequency of CD8+ T cells in CD8
RNAi transgenic and control mice. The percent reduction in CD8 expression was determined by dividing
the mean fluorescence intensity of CD8 staining on T cells (Thy 1+) from CD8 RNAi transgenic mice that
showed silencing by the mean fluorescence intensity of CD8 on T cells from control mice. The number of
lentiviral integrants present in the genomes of the CD8 RNAi transgenic mice analyzed was established by
Southern blot. N.D. Not determined.



systematic genetic analysis in most cell types and tissues, including those of human origin,

and should facilitate comprehensive studies of gene function in mice, as well as species that

are not traditionally amenable to genetic manipulation. Lentiviral expression vectors might be

used therapeutically to silence disease-causing genes, render cells resistant to infectious

organisms, and to facilitate the creation of tissues deficient in specific antigens as source of

transplant organs. Future modifications to lentiviral expression vectors, such as the inclusion

of inducible polIII promoters, will likely extend the range of cells and situations in which

they can induce RNAi.
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Methods

Construction and validation of an RNAi lentivirus system: The complete details of the

construction of pLL3.7 and other "LentiLox" vectors are described online at

http://web.mit.edu/ccrhq/vanparijs/. In brief, the pBFGW plasmid(Lois et al., 2002) was

extensively modified to carry loxP sites, a CMV promoter driving expression of EGFP, and

the mouse U6 promoter with downstream restriction sites (HpaI and XhoI) that allow the

efficient introduction of oligonucleotides that code for shRNAs (Fig. 1A, B, 1C). The U6

promoter was chosen to drive expression of shRNAs since it had been shown by other groups

to efficiently transcribe small RNAs that silence gene expression(Tuschl, 2002). Because

very little is known about the effects of placing a strong RNA polymerase (pol) II promoter

(CMV) close to a pol III promoter (U6), some degree of promoter interference was

anticipated that might decrease expression of shRNAs in infected cells. The CMV promoter

was therefore placed between LoxP sites to allow its removal if necessary.

To confirm that pLL3.7 could be used to silence gene expression in mammalian cells,

a shRNA predicted to target CD8 was used to generate pLL3.7 CD8 (Fig/ lb, c). The CD8

shRNA used was based on sequences that had previously been shown to downregulate this

molecule in T cells(McManus et al., 2002a; McManus et al., 2002b). Lentivirus particles

were generated as described below and used to infect E 10 cells. Infected (GFP+) cells on

average showed a 16-fold reduction of CD8 expression (Fig. 1D). Inhibition of CD8

expression was specific since the levels of other surface proteins were not altered (Fig. 1D,

and data not shown). Furthermore, in a subline of E 10 cells engineered to express human

CD8, which differs from mouse CD8 by 4 of 19 nucleotides in the targeted region, only the

murine version of the gene was silenced (data not shown). Cells infected with control virus

(pLL3.7) or viruses expressing shRNAs against other genes showed no decrease in CD8

levels (Fig. 1D and data not shown). To confirm that the decrease in surface expression of
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CD8 seen in infected E10 cells resulted from mRNA degradation, CD8 transcript levels in

sorted (GFP+) cell populations infected with either pLL3.7 CD8 or a control virus was

quantified by Northern blot (Fig. 1E). E10 cells that exhibited silencing expressed short

RNAs of approximately 21 nucleotides that were complementary to an anti-sense strand of

the CD8 stem loop, demonstrating that lentivirus-encoded shRNAs were being expressed and

processed into siRNAs (Fig. IF). To test the stability of lentivirus-induced RNAi in

mammalian cells, we followed expression of CD8 in long-term cultures of E10 cells infected

with pLL3.7 or pLL3.7 CD8 and sorted for expression of GFP (Fig. D). No change in

expression of CD8 was observed over the course of a month, and these cells remained

uniformly GFP positive (Fig. D). However, in each experiment a small fraction (2 to 10%)

of infected (GFP+) E10 cells showed no evidence of gene silencing. These cells were shown

to express no shRNAs (data not shown), suggesting that the activity of the U6 promoter was

reduced, possibly due to positional effects on the inserted transgenes (Lois et al., 2001), (Lois

et al., 2002).

Design and sequences of shRNAs used in this study: The pLL3.7 vector was engineered to

allow efficient and directional introduction of oligonucleotides that encode shRNAs

downstream of the U6 promoter. To this end an HpaI site was introduced such that digestion

with this restriction enzyme leaves a blunt end at the -1 position of the promoter. An XhoI

site was introduced further downstream (Fig. 1A). To design shRNAs, we have developed a

set of criteria based both on the known specificity requirements for RNAi(Elbashir et al.,

2001) and the structure of pLL3.7. In brief, we search the whole mRNA of target genes,

including untranslated regions, for sequences that display the consensus sequence;

AAGNl8TT. The GN1 8 component of this sequence should ideally have a GC content of

approximately 50%, lack stretches of 4 or more As or Ts, which act as termination sequences

for RNA polymerase III, and be devoid of substantial secondary structure. This sequence
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should also be screened for significant homology to other genes. Once an acceptable GN18

sequence is identified, a 5' thymidine is added to reconstitute the U6 promoter following

HpaI digestion of pLL3.7 and a loop sequence is added to the 3' end of the sequence

(TTCAAGAGA)(Brummelkamp et al., 2002b), followed by the reverse complement of the

GN18 sequence and a polymerase III termination sequence (TTTTTT). Once both the sense

and anti-sense strands have been designed, sequences are added that allow the

oligonucleotide to be annealed to an XhoI site. It should be noted that these design criteria do

not guarantee that a sequence will be created that silences gene expression. More complete

and up-to-date information on shRNA design, which incorporates new information on RNAi

specificity and shRNA design as this becomes available, is available online (see above).

CD8 oligonucleotide sequences:

Sense: TGCTACAACTACTACATGACTTCAAGAGAGTCATGTAGTAGTTGTAGCTTTTTTG

Antisense: GTTACAAAAAAGCTACAACTACTACATGACTCTCTTGAAGTCATGTAGTAG

TTGTAGCA

CD25 oligonucleotide sequences:

Sense: TGCATTCACCTAATCGGCTGTTCAAGAGACAGCCGATTAGGTGAATGCTTTTTTG

Antisense:

GTCACCAAAAAAGCATTCACCTAATCGGCTGTCTCTTGAACAGCCGATTAGGTGAATGCA

Bim oligonucleotide sequences:

Sense: TGGAGGGTGTTTGCAAATGATTCAAGAGATCATTTGCAAACACCCTCCTTTTTTG

Antisense: GTCACCAAAAAAGGAGGGTGTTTGCAAATGATCTCTTGAATCATTTGCAAACACCC

p53 oligonucleotide sequences:

Sense:

TGGTCTAAGTGGAGCCCTTCGAGTGTTAGAAGCTTGTGACACTCGGAGGGCTTCACTTGGGCCTTT

TTGGAA

Antisense:

TCGATTTCCAAAAAGGCCCAAGTGAAGCCCTCCGAGTGTCACAAGCTTCTAACACTCGAAGGGCT

CCACTTAGACCA
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Mena+ oligonucleotide sequences:

Sense: TGTCCTGTGCCTGGCCTACTTTCAAGAGAAGTAGGCCAGGCACAGGACTTTTGGAAAC

Antisense:

CGAGTTCCCAAAAAGTCCTGTGCCTCCTCTACTCTTGAAAGTAGGCCAGGCACAGGACA

Generation and titre of lentivirus: Lentiviral production was performed as described(Lois

et al., 2002). Briefly, pLL3.7 and packaging vectors were co-transfected into 293T cells and

the resulting supernatant was collected after 36 h. Virus was recovered after concentrating by

ultracentrifugation for 1.5 hours at 25,000 rpm in a Beckman SW28 rotor and resuspended in

PBS (15-200[tL). Lentiviral titres were determined by culturing 3T3 cells with serial dilutions

of concentrated lentivirus preparations. The percentage of infected cells was determined by

assaying GFP expression by flow cytometry after 48 hours and for a typical preparation was

approximately x 108 infectious units (IFU)/ml.

T cell and dendritic cell infection: CD8+ T cells were activated by culturing splenocytes

derived from OTI TCR transgenic mice at a density of 2x106 /ml in the presence of 1 gg/ml of

OVA peptide and 100ng/ml IL-2. After 24 and 48 hours cultures were supplemented with 20

and 100x106 lentiviral particles (MOI of 10 to 50), 10 g/ml Polybrene, and spun for 1 hour at

30°C at 1,200 RPM in a Beckman Allegra 6R centrifuge. Supernatant was removed following

infection and replaced with growth medium containing l gg/ml OVA and 100ng/ml IL-2. T

cells were harvested for experiments after 72 hours. Dendritic cells were generated by

culturing whole bone marrow cells for 7 days at a density of 2x 106 per ml in the presence of

20ng/ml GM-CSF. During this culture period, fresh cytokine was provided every other day.

The resulting cell populations were typically greater than 60% CD 1 lc+ as determined by

flow cytometry (data not shown). On day 7 dendritic cells were transferred to a new plate,

cultured at a density of 2x106 cells per ml with medium containing no GM-CSF, and infected
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on day 8 and 9 with approximately 100xl 06 (MOI of 50) lentiviral particles. Cells were

harvested for analysis on day 10.

Haematopoietic stem cell infection: Whole mouse bone marrow cells were depleted for

cells expressing B cell (B220) and granulocyte lineage markers (CD 1 lb) using magnetic

beads (Miltenyi) and then sorted for Scal+ and c-Kit+ cells. These cells were spin infected

with RNAi lentiviruses at an MOI of approximately 10 to 50, and then cultured at a density of

2x106 cells per ml for 2 days in the presence of IL-3 (20ng/ml), IL-6 (50ng/ml), and SCF

(50ng/ml). Infected HSCs were sorted for GFP expression, after which approximately 2x1 05

cells were injected into lethally (1200 rads) y-irradiated recipient mice that were congenic for

the CD45 antigen to allow us to distinguish host and donor cells (HSCs were derived from a

mouse strain that expresses CD45.2 on hematopoietic stem cells, recipient mice expressed

CD45.1 on these cells). Most reconstituted mice also received 2x 106 host-derived (CD45.1)

whole bone marrow cells. Bone marrow chimeras were analysed between 6 and 8-weeks after

reconstitution for GFP expression in splenocytes and CD8 gene silencing by staining and

flow cytometry. In all experiments, progeny of infected HSCs were identified by staining for

the congenic marker, CD45.2.

ES cells infection: AK7 ES cells were maintained and infected as described(Pfeifer et al.,

2002). Clones of ES cells were picked, expanded, and analyzed by flow cytometry for GFP

expression. If the clone contained a mixed population of infected and uninfected cells, the

GFP+ population was purified by fluorescence activated cell sorting prior to blastocyst

injection.

Generation of RNAi chimeric and transgenic mice: For ES cell-derived mice,

approximately 10-12 pLL3.7-infected GFP+ ES cells were injected into Rag2' / blastocysts,

which were then implanted into a pseudo-pregnant female recipient mouse(Chen et al., 1993).
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Neonates resulting from these injections were screened for chimerism by determining the

level of GFP fluorescence of their skin and paws. Highly chimeric (>50%) neonates were

used for analysis. To generate lentiviral transgenics, approximately a small volume of high-

titre LentiLox lentivirus (108 IU/t1l) was injected into the perivitelline space of single-cell

mouse embryos, which were then implanted into pseudo-pregnant female recipient mice(Lois

et al., 2002). The resulting neonates were screened for lentiviral integration by Southern blot

and expression by GFP fluorescence.

Flow cytometry: For flow cytometric analysis, the following phycoerythrin (PE) conjugated

antibodies were used: anti-CD4 (clone RM4-5), anti-CD8 1 (clone 53-6.7), anti-CD25 (clone

PC81), anti-CD45.2, anti-CD95.2 (Thyl.2) and strepavidin. Allophycocyanin (APC)-

conjugated anti-CD8 [] and biotin-conjugated anti-Thyl.2 were also used for analysis. All

antibodies were from BD Pharmingen (San Diego, California). All plots shown are gated for

viable cells, which were isolated by selecting PI' cells.

Northern blot analysis: For Northern blot analysis, cells were lysed with Trizol reagent

(Invitrogen), and total cellular RNA was prepared according to the manufacturer's

instructions. RNA was prepared from tissues using RNAlater (Ambion Diagnostics)

according to manufacturer's instructions. CD4/CD8 probe hybridization was performed as

described(McManus et al., 2002b). For the small RNA Northern, total RNA (60 jig) was

fractionated on a 10% denaturing polyacrylamide gel and transferred to nylon membrane.

The membrane was hybridized to a probe consisting of a 2 lnt CD8 siRNA sense strand 5'

end-labeled with 32
p. A 5' radiolabeled oligonucleotide probe to 5S RNA was used to

determine equal loading of RNA.

Western blot analysis: For Western blot analysis, mouse tissues were lysed in RIPA buffer

(150mM NaCl, 50mM Tris pH 8.0, 1% Triton X-100, 0.5% Sodium deoxycholate, 0.1%

Sodium Dodecylsulfate) supplemented with Complete Protease Inhibitor Tablets (Roche).
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Protein concentrations were determined using BCA Protein Assay (Pierce). Equal amounts

of protein (100g) were loaded per lane and run on a 10% SDS-PAGE gel. Protein was

transferred to a PVDF membrane. p53 was detected using anti-p53 Ab-3 (Novagen) diluted

1:1,000 and Donkey anti-mouse conjugated with horse radish peroxidase diluted 1:10,000.

The blot was developed with ECL+ reagent (Amersham Biosciences).
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The broad and overlapping expression patterns of the vertebrate Ena/VASP proteins have

limited our understanding of their functions during development. Previous work had established

Ena/VASP proteins as regulators of directed cell migration and axon guidance through their

effects on actin cytoskeleton architecture. This study provides the first comprehensive analysis of

Ena/VASP protein function during vertebrate development. In chapter two, we established a role

for Ena/VASP proteins in axogenesis and axon extension in addition to the previously described

role in axon guidance. In addition, we found surprising evidence for a role in the integrity of the

pial membrane. Both the defects in axogenesis and pial integrity have intriguing implications for

EnaNASP function at integrin-mediated adhesive structures. In chapter three, we found that

Ena/VASP has functions in the fusion and integrity of some epithelial sheets. Surprisingly,

Ena/VASP function was dispensable for the complex cell migrations necessary to generate basic

embryo topology and organogenesis. Thus, Ena/VASP function in the formation and integrity of

adherens and tight junctions play an unexpectedly important role in vertebrate development. This

study has extended our understanding of Ena/VASP biology and forced us to reconsider its roles

beyond those of regulating the protrusion of lamellipodia and filopodia.

The inefficiency of mouse knockout construction has proved an impediment to biological

progress. As example, the initial descriptions of both the Mena and VASP knockout mice were

published by independent groups in 1999 (Aszodi et al., 1999; Lanier et al., 1999) and the

Mena; VASP double-knockout was published in 2004(Menzies et al., 2004). The

Mena; VASP;EVL-deficient mice are described for the first time in this study, nearly a decade

after construction of the Mena knockout began. The Ena/VASP protein family is typical of many

gene families in vertebrates, with the complete elucidation of their function requiring the

elimination of all the family members. In chapter five, we have described a novel method for the
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construction of hypomorphic alleles in mice using lentiviral delivery of RNAi. This method will

not supplant the creation of knockouts by homologous recombination. However, as an adjunct, it

allows for the rapid, inexpensive and effective knockdown of gene function in mice. This

technique can be used to accelerate the analysis of gene function in the mouse, and can easily be

applied iteratively to disrupt entire gene families. The lentiviral system is versatile and can be

applied towards gene knockdowns in cell lines, primary cells, including post-mitotic or non-

cycling cells, as well as in the construction of mice.

Ena/VASP proteins in the nervous system

We have analyzed the role of Ena/VASP in the development of the mouse nervous

system. Loss of all three alleles of Ena/VASP caused a failure in axogenesis by neurons within

the cortical plate. The ECM of the cortical plate is rich in fibronectin and collagen but lacks

laminin. Surprisingly, cortical neurons that had invaded past the laminin-rich pial membrane

were able to form axons. Elsewhere in the developing nervous system, neurons that developed in

the presence of laminin generated axons. This supports a model in which axogenesis requires

either Ena/VASP proteins or laminin to occur. Consistent with this model, neuritogenesis of

cortical neurons in vitro could be rescued by the addition of laminin. At this time the molecular

mechanisms by which either Ena/VASP or laminin support axogenesis is unclear. Analysis of

EnaNASP-deficient cortical neurons in vitro show clear disruptions of the actin and microtubule

cytoskeletons, and a complete absence of filopodial or lamellipodial protrusions. As far as we are

aware, Ena/VASP proteins are the first molecules implicated in the stage 1 to stage 2 transition

of axogenesis. Ena/VASP has been implicated in the generation of filopodia by binding to actin

barbed ends and protecting them from capping protein (CP)(Bear et al., 2002; Lebrand et al.,

2004; Mejillano et al., 2004). One possibility is that Ena/VASP may direct the formation of
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filopodia, and that filopodia initiate the formation of neuritic processes. Alternatively, Ena/VASP

localizes via its interactions with Vinculin and Zyxin to the intracellular domain of integrins.

Cortical neurons express two laminin receptors, a313, and a6p3. Potentially, in the absence of

laminin, Ena/VASP activity at these or other integrin receptors is sufficient for neuritogenesis. In

the absence of Ena/VASP, intracellular signalling at a311 and/or a6p1 requires engagement of

laminin binding. Signaling through integrin receptors may activate proteins that can perform

analogous functions to Ena/VASP at the leading edge. The formins, like Ena/VASP proteins,

bind to actin barbed ends and support the continued addition of actin monomers(Zigmond et al.,

2003). To demonstrate that these integrin receptors are employed in neuritogenesis we could

employ the snake venom toxin disintegrin, which specifically blocks integrin heterodimers

containing p1. Assuming that laminin rescue requires integrin activity, we could discriminate

between EnaNASP function in filopodial extension and integrin signaling through the

transfection of cortical neurons with either Ena/VASP structural variants (discussed in Appendix

A), or a construct that specifically delocalizes endogenous Ena/VASP proteins from focal

adhesions(Bear et al., 2000). The COOH-terminal EVH2 domain is sufficient to mediate barbed-

end binding, filopodia protrusion, and rescue cell motility defects of Ena/VASP deficient

fibroblasts (Appendix A). This mutant appears to be constitutively active. Expression of the

EVH2 domain in Ena/VASP-deficient neurons would test whether barbed-end anticapping

activity was sufficient to rescue neuritogenesis. Alternatively, expression of a short peptide

encoding the EVH 1-binding motif, FPPPP, delocalizes Ena/VASP proteins from focal adhesions

by disrupting their interactions with Vinculin and Zyxin. Expression of this construct in wildtype

cortical neurons would test whether Ena/VASP activity at the intracellular domain of integrins is

required for neuritogenesis in the absence of laminin. However, the identification of FPPPP-
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containing proteins at the leading edge indicates that this approach may lack the specificity

necessary to address this question(Krause et al., 2004; Lafuente et al., 2004). To determine the

nature of the intracellular signaling pathways occurring at integrins we could use a combination

of pharmacologic and RNAi inhibition of candidate downstream molecules. Lentiviruses can

infect post-mitotic primary neurons and could be used to delivery shRNA constructs against

candidate molecules such as specific formins or capping protein. Numerous pharmacologic

compounds exist with specific activity against Rho GTPases, allowing us to probe their specific

involvement.

The second major finding within the nervous system was the formation of a cobblestone

cortex. As discussed extensively in Chapter 2, the formation of cobblestone cortex has

previously been associated with disruptions of the basal lamina due to mutations of laminin, its

integrin receptors, or the intracellular signaling molecule FAK(De Arcangelis et al., 1999;

Georges-Labouesse et al., 1998; Graus-Porta et al., 2001). The requirement for these proteins is

exclusively in the radial glia or meningeal fibroblasts, but not within neurons(Beggs et al., 2003).

Thus, it is likely that the generation of ectopias in the Ena/VASP deficient brain reflects a

requirement of Ena/VASP downstream of adherens junctions (between radial glia endfeet) or

adhesive contacts between glial endfeet and the laminin-rich basal lamina. As expression from a

single EVL allele rescues this phenotype, we could test the cell autonomy of neuronal ectopias

through the cell type-specific delivery of Cre recombinase to eliminate a floxed allele of EVL.

The use of Nestin-Cre to eliminate EVL from both neurons and radial glia(Betz et al., 1996), and

Nex-Cre to eliminate EVL solely in migrating neurons(Beggs et al., 2003) should allow us to

determine whether Ena/VASP function in radial glia is required for proper cortical organization.

To determine the nature of Ena/VASP function in the establishment of the pial basal lamina we
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could culture Ena/VASP-deficient meningeal fibroblasts in vitro and assay their ability to

produce an organized laminin ECM(Beggs et al., 2003).

A more detailed analysis of brain development was precluded in this study because of the

prevalence of exencephaly in mice lacking both Mena and VASP. The construction of a

conditional allele of Mena would facilitate the production of Ena/VASP deficient brains.

Typically this would require the introduction of a Mena targeting construct into a wildtype ES

cell line. However, this new allele of Mena would then need to be crossed into the VASP and

EVL mutant backgrounds. To accelerate this process we could generate an ES line from

blastocysts having an Mmvvee genotype, and target the remaining allele of Mena. This ES line

would allow the analysis of Ena/VASP brains in the Fl generation by crossing chimeras with

Mmvvee mice that also carry a Cre transgene. The ES line could also be readily differentiated

into neurons or endothelial cells in vitro, and transfected with Cre recombinase to simplify the

analysis of these cell types. Alternatively, lentiviral delivery of conditional shRNA can be

achieved directly into single-cell embryos allowing for the analysis of mice in the first

generation. Several groups have published methods for the conditional expression of shRNAs

from lentiviral vectors, including a direct modification of the system described in chapter

five(Ventura et al., 2004). This would circumvent the construction of a targeting vector, and

allow for the conditional ablation of Mena activity through the introduction of tissue-specific Cre

transgenes. Finally, shRNAs under the control of tetracycline-inducible promoters would allow

for the analysis of EnaNASP-deficiency at specific developmental time-points, or postnatally.

Ena/VASP proteins outside the nervous system

In our analysis of Ena/VASP function outside of the nervous system we found defects in

the generation of cell:cell junctions in specific situations. While we failed to recapitulate the
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previously reported defect in cell:cell junctions between keratinocytes(Vasioukhin et al., 2000),

we encountered defects in the fusion of epithelial sheets and the integrity of the endothelial

monolayer. Endothelial barrier function has been attributed to the function of occludens

junctions. Consistently, we have found evidence for the successful formation of desmosomes

with gaps that may represent occludens junction defects. Immuno-EM will be necessary to

determine conclusively whether the junctional defects represent occludens or adherens junction

disruption. The proper formation of adherens junctions in the skin and gut epithelia is suggested

by the lack of blistering or histologic deficit. By contrast, the fusion of epithelial sheets requires

adherens junction assembly after knitting of filopodia from apposed epithelial sheets. This

process appears to be defective in the fusion of the upper and lower eyelid, neural tube fusion,

and occasionally at the periumbilicus. Developmentally, fusion requires a number of activities,

and can not be easily observed or teased apart. The process of wound healing in the adult

recapitulates embryonic epithelial fusion(Martin and Parkhurst, 2004). To discriminate between

a requirement of Ena/VASP in filopodial extension and adherens junction assembly we could

examine the process of wound healing ex vivo or in the adult mouse. Two alternative approaches

can be used as experimental modalities; the surgical application of Ena/VASP-deficient skin

grafts to recipient adult mice allows for the analysis of wound healing in the absence of

Ena/VASP proteins. Alternatively, limb buds from Ena/VASP-deficient embryos can be

maintained in culture and used to model wound healing. Scanning electron microscopy of

wounds during closure will allow us to assess the formation and knitting of filopodia from

epithelial sheets. The delivery of fluorescently-tagged markers of adherens junctions will allow

us to observe the formation adherens junctions during epithelial fusion in real time.

Summary
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Five years ago, our lab published a paper that indicated that Ena/VASP function at focal

adhesions was dispensable for fibroblast adhesion and motility(Bear et al., 2000). This result was

easily incorporated in a model of Ena/VASP function that emphasized their role to the response

of neuronal growth cones to guidance cues by modulating actin dynamics at protrusive

membrane structures. The work described in this thesis clearly demonstrates that much of

Ena/VASP proteins' function in development requires its function at sites of cell:cell and

cell:matrix adhesions. The development of in vitro systems to model Ena/VASP function at

adhesions will be essential in describing molecular mechanism of the developmental defects.
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Appendix A

Critical roles of phosphorylation and actin binding motifs, but not the central

proline-rich region, for Ena/VASP function during cell migration

Joseph J. Loureiro, Douglas A. Rubinson, James E. Bear, Gretchen A. Baltus, Adam V.

Kwiatkowski, and Frank B. Gertler

Reprinted from Molecular Biology of the Cell (Mol. Biol. Cell 2002 13: 2533-2546; published

online before print as 10.1091/mbc.E01-10-0102) with the permission of The American Society

for Cell Biology.

The author contributed Figure 1C, 3B, 7B. Supplementary movies are available online at the

Molecular Biology of the Cell website
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Abstract

The Ena/VASP protein family is implicated in the regulation of a number of actin-based

cellular processes including lamellipodial protrusion necessary for whole cell translocation. A

growing body of evidence derived largely from in vitro biochemical experiments using purified

proteins, cell-free extracts and pathogen motility has begun to suggest various mechanistic roles

for Ena/VASP proteins in the control of actin dynamics. Using complementation of phenotypes

in Ena/VASP-deficient cells and overexpression in normal fibroblasts, we have assayed the

function of a panel of mutants in one member of this family, Mena, by mutating highly

conserved sequence elements found in this protein family. Surprisingly, deletion of sites

required for binding of the actin monomer-binding protein profilin, a known ligand of EnaNASP

proteins, has no effect on the ability of Mena to regulate random cell motility. Our analysis

revealed two features essential for Ena/VASP function in cell movement, cyclic-nucleotide

dependent kinase phosphorylation sites and an F-actin binding motif. Interestingly, expression

of the C-terminal EVH2 domain alone is sufficient to complement loss of Ena/VASP function in

random cell motility.
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Introduction

Cell motility is a complex and highly regulated process. Many aspects of organismal

development and physiology require that cells control their movement in response to diverse

arrays of environmental signals. To move, cells must maintain polarity while coordinating

membrane extension, changes in adhesiveness and contractile mechanisms. These processes all

depend upon dynamic remodeling of the actin cytoskeleton. While the basic biochemistry of

actin polymerization has been extensively studied, the mechanisms by which cells orchestrate

assembly, organization and disassembly of actin networks during cell movement remain poorly

understood.

The Ena/VASP proteins are a conserved family of molecules known to regulate cell

movement and shape change (Gertler et al., 1996; Reviewed in Bear et al., 2001). Drosophila

Ena regulates axonal growth cone migration in response to several types of signaling pathways

(Bashaw et al., 2000; Lanier and Gertler, 2000). The three vertebrate Ena/VASP proteins,

Vasodilator-stimulated phosphoprotein (VASP), Mammalian Enabled (Mena), and Ena-VASP-

like (EVL) negatively regulate fibroblast motility by modulating lamellipodial behavior (Bear et

al., 2000; Bear et al., submitted). Other data implicates EnaNASP proteins in actin-dependent

processes including Jurkat T-cell polarization, inhibition of platelet aggregation and the motility

of the intracellular pathogen Listeria monocytogenes (Smith et al., 1996; Niebuhr et al., 1997;

Aszodi et al., 1999; Krause et al., 2000; Skoble et al., 2001). Biochemical data support a role for

Ena/VASP proteins in actin dynamics ( Huttelmaier et al., 1999; Harbeck et al., 2000;

Lambrechts et al., 2000) and the proteins localize to cellular structures rich in actin assembly

such as protruding lamellipodial and filopodial tips (Reinhard et al., 1992; Gertler et al., 1996;

Lanier et al., 1999; Rottner et al., 1999).

203



Ena/VASP proteins share a conserved domain structure, consisting of an Ena-VASP

Homology 1 (EVH1) domain at their amino termini and a carboxy-terminal EVH2 domain.

Ena/VASP proteins all contain a more variable central region between the EVH1 and EVH2

domains rich in polyproline clusters. The EVH1 domain has been crystallized and adopts a

structure related to PH and PTB domains (Fedorov et al., 1999; Prehoda et al., 1999). The EVH1

domain binds directly to a consensus motif, (D/E)-FPPPP-X(D/E)(D/E) (Niebuhr et al., 1997),

and plays an essential role in focal adhesion targeting of Ena/VASP proteins by binding to

proteins containing the EVH1 binding motif (Gertler et al., 1996).

Much less is known about the cellular function of the proline-rich region and the EVH2

domain. Various lines of evidence suggest that the EVH2 domain can promote oligomerization

of Ena/VASP proteins and can bind directly to F-actin in vitro (Bachmann et al., 1999;

Huttelmaier et al., 1999; Harbeck et al., 2000). The proline-rich region can bind to profilins,

small actin monomer-binding proteins, as well as proteins containing SH3 and WW domains -

protein modules that bind to specific proline-rich motifs (Reinhard et al., 1995; Gertler et al.,

1996; Ermekova et al., 1997). Adjacent to the proline-rich region, the three vertebrate

Ena/VASP proteins also contain one or more sites for phosphorylation by the cyclic-nucleotide

dependent kinases, PKA and PKG (Butt et al., 1994; Gertler et al., 1996; Lambrechts et al.,

2000). Phosphorylation of Ena/VASP proteins at the single PKA site found in all three proteins

induces changes in electrophoretic mobility and protein:protein interactions (Lambrechts et al.,

2000). Although the in vivo functional significance of this phosphorylation is unknown, VASP

knockouts exhibit platelet aggregation defects associated with misregulation of PKA-mediated

intracellular signaling, suggesting that VASP may be the major physiological substrate for PKA

in that cell type (Aszodi et al., 1999).
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To gain insight into the function of Ena/VASP proteins, we have performed a systematic

mutagenesis of conserved motifs within this protein family. We have previously isolated from

mena;vasp-null embryos a clonal fibroblastic cell line (MVD 7) that lacks detectable EVL protein

and therefore is deficient in all known Ena/VASP proteins (Bear et al., 2000). MVD7 cells move

more rapidly than do MVD7 cells expressing physiological levels of Mena (Bear et al., 2000), and

a companion study finds that they do not support normal Listeria intracellular movement (Geese

et al., accepted). We used complementation of the hypermotile phenotype of MVD7 cells to

conduct a structure-function analysis of Ena/VASP-mediated regulation of whole cell motility.

The average speed of motile cell populations was quantitated in a videomicroscopy-based long-

term cell tracking assay. This allows us to directly measure the effect of Ena/VASP function on

cell motility. Our analysis of cells expressing mutant forms of Mena indicates that the proline-

rich region is dispensable for function in random cell motility, but identifies two key features for

function of this protein family: an F-actin binding motif and Ser/Thr phosphorylation.
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Results

All three murine Ena/VASP proteins rescue Ena/VASP-dependent cell motility defects.

Ena/VASP proteins have a broad, overlapping expression pattern in developing and adult

mice, and a variety of genetic and biochemical experiments indicate they likely share

overlapping functions within most cells. We tested the ability of different Ena/VASP proteins to

complement MVD7 cells in a random motility assay. At subconfluent densities, MVD7 cells have

morphological attributes typical to mammalian fibroblasts including filopodia, focal contacts,

and protrusive lamellae (Fig 1B). Previously, we demonstrated that stable expression of EGFP-

Mena in MVD7 cells complements loss of Ena/VASP function by decreasing their average speed

(Bear et al., 2000). We have extended that analysis to include EGFP-mVASP (murine VASP)

and EGFP-EVL. We also tested Drosophila EGFP-Ena because it is structurally similar to

mammalian Ena/VASP proteins (Fig. 1A), and because mammalian Ena/VASP transgenes

complement the loss-of-function phenotype of mutations in Drosophila Ena (Ahern-Djamali et

al., 1998, and F. Gertler, unpublished).

Each transgene was stably inserted by retroviral infection into MVD7 cells and sorted by

FACS for uniform EGFP signal levels. This approach minimizes genetic drift of the novel

transgenic line from the parental cell line and facilitates a direct comparison of activities of

different protein variants. All four Ena/VASP proteins were detected by Western blotting at

comparable levels (Fig. 1C). Therefore, this approach generated cell populations that stably

express equivalent levels of EGFP-tagged proteins on a per cell basis within each population,

and comparable expression levels of the EGFP-tagged proteins among the different populations.

We previously demonstrated that Ena/VASP activity in cell motility depends on the function

of Ena/VASP proteins at the cellular leading edge (Bear et al., 2000). All four family members
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Fig. 1. Expression and subcellular distribution of Ena/VASP proteins in Ena/VASP-null fibroblasts. A. All
Ena/VASP proteins contain two highly conserved domains, EVH1 and EVH2, that flank a less conserved central
proline rich region. Percentages denote degree of amino acid identity between a mammalian Ena/VASP domain and
the same domain in Drosophila Ena. B. Ena/VASP null MVD7 cells make typical fibroblastic actin-dependent
structures such as stress fibers terminating at Vinculin positive focal contacts (arrow in Vinculin panel), lamellae
with N-WASP positive leading edges, and F-actin rich filopodia (arrowheads in F-Actin panel). Note that filopodia
denoted are N-WASP positive (arrowheads in N-WASP panel). Scale bar= 10 m. C. Mammalian EGFP-Mena,
EGFP-mVASP, EGFP-EVL, and Drosophila EGFP-Ena are stable in MVD7 cells and accumulate at comparable
levels. 10 plg total protein/lane of RIPA extracts were loaded onto an SDS-PAGE gel and analyzed by Western blot
probed with anti-EGFP Ig and Anti-Actin Ig as a loading standard. D. All four EnaVASP proteins have identical
subcellular distribution properties in MVD7 cells. Two examples are shown. Scale bar = 1 Olm.

displayed similar subcellular distributions (Fig 1D; Supplemental Fig SI1 panels 8, 13, 18, and

23). Colocalization of EGFP signal with Vinculin demonstrated proper localization of all four
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Ena/VASP proteins to focal adhesions (Supplemental Fig Si: panels 10, 15, 20, and 25), while

colocalization of EGFP signal with N-WASP, a lamellipodial leading edge marker, demonstrated

that all four family members localize to the leading edge (Supplemental Fig S1: panels 10, 15,

20, and 25). All four Ena/VASP proteins were also concentrated at the distal tips of filopodia

(data not shown). These results indicate that all the Ena/VASP proteins exhibit a subcellular

distribution pattern in MVD7 cells similar to those reported for other fibroblastic cell types

(reviewed in Bear et al., 2001).

We used time-lapse video and fluorescence microscopy to analyze the ability of the different

Ena/VASP proteins to function in MVD7 cells. As we previously observed with EGFP-tagged

Mena, expression of EGFP-mVASP, EGFP-EVL, or Drosophila Ena in MVD7 cells did not

grossly change the F-actin network of MVD7 cells as judged by phalloidin staining

(Supplemental Fig S1: panels 1, 6, 11, 16, and 21). We next analyzed cell behavior. Individual

living cells were filmed at high magnification to observe subcellular dynamics and filmed at

lower magnification to characterize mean population speeds.

MVD7 cells complemented with any of the family members were able to form filopodia, focal

adhesions and stress fibers that were morphologically indistinguishable from the parental MVD7

cells as judged by fluorescence, phase-contrast and interference reflection microscopy of fixed

and living cells (Fig B; Supplemental movies M1 and M2; data not shown). We then

quantitated cell speeds by tracking individual cells over four hours, calculating a mean speed for

each cell, and comparing the population statistics of the experimental group with the parental

MVD 7 control group (Fig 2A and B; Supplemental movie M3). We found, as previously shown,

208



1

t-

B t=4 hrs

.I

l Z-

i , -

IrrOrd alm.. Ig .C X 5 S 7 X

Fig 2. Mammalian Ena/VASP proteins complement
MVD7 cells in a random motility assay. A. Example of
MVD7 cell translocation. To quantitate eukaryotic cell
speed, time-lapse movies are generated at 5 minute
intervals for at least four hours. Arrows point to the same
cell at two time points. B. (left) The cell is then
processed digitally by outlining the cell perimeter in each
frame. Shown is an overlay of all the timepoints for one
cell. (right) An area-based centroid is calculated from
each outline in every frame to generate a path for the cell.
Average speed is calculated from this data set; at least
twenty cells are quantitated for each data point. Data is
displayed in a Box and Whisker format to show the
distribution of the entire cell population. In a Box and
Whisker format, the top of the upper line marks the 90th

percentile. The top of the rectangle marks the 75th

percentile. Within the rectangle the black box is the mean
and the horizontal line is the median. The bottom of the
rectangle is the 25

th percentile, and the bottom of the
lower line is the 10th percentile. C. The three mammalian
Ena/VASP proteins complement MVD7 cell motility
phenotypes (Denoted by "*" beneath box and whisker
plot; ANOVA p< 104), but EGFP-Ena fails to
complement (ANOVA p>.05) (MVD7 n=20,
MV 7::EGFP-Mena n=20, MVD7::EGFP-mVASP n=24,
MVD7 ::EGFP-E V L n=25, MVD7::EGFP-Ena n=20).

that MVD7 cell speeds were reduced by the expression of EGFP-Mena to physiological levels.

EGFP-EVL and EGFP-mVASP reduced MVD7 cell speed equivalently, indicating that all three

murine Ena/VASP proteins function interchangably in this assay (Fig. 2C). Interestingly,

Drosophila EGFP-Ena failed to complement the hypermotility phenotype even though its

subcellular distribution and expression levels were indistinguishable from mouse Ena/VASP

proteins (Fig. 2C), indicating that Drosophila Ena lacks some critical feature for function in cell

movement present in all murine Ena/VASP proteins.

EGFP-Mena mutant proteins are stable in MVD 7 cells.

Since all murine Ena/VASP proteins functioned equivalently in the whole cell motility assay,

we chose one member, Mena, to use for a structure-function analysis of Ena/VASP proteins. A

series of structural variants of EGFP-Mena were generated to define the regions of EGFP-Mena

that regulate cell motility properties of MVD7 cells. As noted above, extensive information on
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the structure and function of the EVH1 domain exists. Therefore, we focused our attention on

the remainder of the protein. Small internal deletions and point mutations were chosen on the

basis of evolutionary conservation and known biochemical properties (Gertler et al., 1996;

Bachmann et al., 1999; Fig. 3A). EGFP-Mena mutants were stably expressed in MVD7 cells and

sorted for uniform EGFP signal levels as described above. Western blotting confirmed that the

mutant EGFP-Mena proteins accumulated to levels comparable with the wildtype protein in

MVD7 cells and migrated at their predicted sizes (Fig. 3B).

Fig 3. Small deletions and point mutations do not
disrupt protein stability. A. A series of structural
mutants were engineered to determine the structural
requirements for Ena/VASP function in cell motility.
Small deletions or point mutations were introduced into
EGFP-Mena, and those constructs were stably integrated
into cell lines by retroviral insertion. Stable cell
populations expressing comparable levels of EGFP-
Mena transgene were isolated by FACS. B. SDS-PAGE
analysis of RIPA extracts (7.5 ,gg total protein/lane)
probed with Anti-EGFP to detect transgene and Anti-
Actin Ig as a loading standard. EGFP-Mena structural
variants are stable and accumulate at comparable levels.
Relative mobility shifts of structural variants correlate
with their respective deletion sizes.
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The central proline-rich region is dispensable for Ena/VASP function in random whole cell

motility.

Three structural features are present between the EVH 1 and the EVH2 domains of Mena.

The first is a conserved block of 16 residues distal to the EVH1 domain that is deleted in EGFP-
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MenaaQ. Although this block is only conserved among vertebrate EnaNASP proteins, all

Ena/VASP proteins have a high incidence of glutamine residues in their primary structure at this

region. In VASP and EVL, the "Q" block is twelve residues from the most conserved Ser/Thr

phosphorylation site. However, within Mena a repetitive sequence unique to Mena is inserted

between the "Q" block and the phosphorylation site. The repeat LERER occurs 6 times in this

77 amino acid stretch, which also contains seven glutamines. These 77 amino acids are deleted

in EGFP-MenaALER. Finally, all Ena/VASP proteins share a proline-rich region known to bind

profilin, Src and Abl SH3 domains, and the WW domain of FE65. This region is deleted in

EGFP-MenaAPR ° .

Colocalization with N-WASP and Vinculin indicated that the three mutants all localized

normally to the leading edge and focal adhesions, respectively (Fig. 4A, panels 1-3; data not

shown). EGFP-MenaAQ, EGFP-MenaALER, and EGFP-MenaaPRO were each capable of

complementing MVD7 cells in the cell motility assay to the same extent as wildtype EGFP-Mena

(Fig. 4B). These results indicate that the LERER repeat unique to Mena and the conserved "Q"

motifs are dispensable for subcellular targeting and whole cell movement. Surprisingly, the

interactions between the polyproline-cluster of Ena/VASP proteins and proteins such as profilin

are not required for proper subcellular localization or for function of Ena/VASP proteins in

random cell motility.

Interaction with the F-actin network is essential for Ena/VASP function in cell motility.

Our previous study indicated that the EVH 1 domain alone is detected in the cytoplasm, at

focal adhesions, weakly along the leading edge, and in the nucleus (a property of EGFP alone)

(Bear et al., 2000). Since deletion of the proline-rich region resulted in a subcellular distribution

equivalent to that of full length Mena, we speculated that the EVH2 domain harbors an activity
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that increases the efficiency of leading A

edge targeting. We deleted four conserved

hlnk within the FEVH-2 dnmain t test

this hypothesis. s
~40.

The first conserved region in the b 0.

EVH2 domain, "TLM" (Thymosin-P4-
to * * *

Like Motif), is a motif related to the actin-

monomer binding site in Thymosin-P4

(Van Troys et al., 1996). Although EGFP-

MenaATLM was excluded from the nucleus, Fig 4. Deletion of regions between the EVH1 and EVH2
domain does not affect localization or function in cell
motility A. EGFP-MenaAQ, EGFP-MenaALER and EGFP-

it was diffusely distributed throughout the MenaP R° have subcellular distibution properties similar to

wildtype EGFP-Mena. EGFP-MenaP R ° is shown. Anti-
cytoplasm (Fig 5A panels 1-3), weakly Vinculin Ig (arrow panel 1) colocalizes with EGFP-Mena

mutants at focal adhesions (compare arrows in panels 1 and

detected at focal adhesions, and barely 2). Anti-N-WASP Ig (arrowhead in panel 3) colocalizes with
EGFP-Mena mutants at the leading edge (compare
arrowheads in panels 2 and 3). Scale bar = 10pm.

detectable along the leading edge of B. Box and whisker plot of speed distributions indicate
that EGFP-MenaaQ, EGFP-MenaALER and EGFP-MenaaPR

lamellipodia. EGFP-MenaTLM failed to cell populations have speeds comparable to rescued cell
populations (ANOVA p<10 4 for each) with speeds

MVD7 comparable to EGFP-MenaWT (MVD 7 n=30, MVD 7 ::EGFP-

Mena n=24, MVD7:: EGFP-MenaAQ n=26, MVD7
:: EGFP-

Mena ALE R n=22, MVD7 :: EGFP-MenaP R °O n=21).
(Fig 5B).

The next conserved region within the EVH2 domain binds F-actin in vitro (Bachmann et al.,

1999; Lambrechts et al., 2000) and was deleted to create EGFP-Menâ FAB (F-actin binding).

EGFP-MenaFAB localized robustly to focal adhesions, but was only barely detectable along the

leading edge of lamellipodia, comparable to the signal observed with the EVH1 domain alone,

suggesting that the F-actin binding motif plays an important role in concentrating Ena/VASP at

lamellipodial tips (Fig 5A panels 4-6). EGFP-Mena aFAB failed to complement the motility
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Fig 5. The EVH2 domain is necessary for function in
cell motility A. EGFP-MenaTLM and EGFP-Mena FAB
have altered subcellular distibution properties as
compared to wildtype EGFP-Mena. EGFP-MenaTLM is
mostly diffuse throughout the cytoplasm, but is slightly
enriched at focal adhesions (arrows in panel 1 and 2).
Arrowhead in panel 3 denotes N-WASP positive leading
edge, which is not enriched for EGFP-MenaTLM
(compare arrowheads in panel 2 and 3). EGFP-
MenaFAB is enriched at focal adhesions (arrows in
panels 4 and 5), but is not enriched at the leading edge as
compared to wildtype protein (arrowheads in panels 5
and 6). EGFP-Mena LC D also had altered subcellular
distibution properties as compared to wildtype EGFP-
Mena. It is mostly diffuse throughout the cytoplasm, but
e Alt~etetA ,t fncr1l ,hicllrmn (renmnarp arrrQ in anpeln
ow in Iv·uI · vlllIVI v rIvio x/ 11o 1o

7 and 8). EGFP-Mena ALCD is barely detected at the
leading edge (compare arrowheads in panels 8 and 9).
Scale bar = 10pm. B. Box and whisker plot of speed
distributions indicate that EGFP-MenaATLM and EGFP-

MenaAFAB do not complement loss of EnaNASP
function in MVD7 random cell motility assays (ANOVA
p<10 4 for each) and EGFP-Mena APW E cell populations
have speeds comparable to rescued cell populations
(ANOVA p< 104). Box and whisker plot of speed
I 1 I _ L I _ ' _ _ I _ : _1:___ ACOCO

: ILIIULULIUII S lsU 11UIa UlatL rUrr-ll¥ll aIIU

. ; ^ EGFP-Mena L CD do not complement loss of Ena/VASP
e 5 X A; function in MVD7 random cell motility assays (ANOVA

:- S 2 p<l04 for each) (MVD7 n=30, MVD7::EGFP-Mena

' -g n=24, MVD7 :: EGFP-MenaTLM n=28, MVD7:: EGFP-
Mena FAB n=20, MVD7 :: EGFP-MenaaPwE n=26, MVD7 ::

EGFP-MenaAcoco n=27, MVD 7 :: EGFP-MenaALCD

n=30).

defects in MVD7 cells, indicating that the ability to interact with F-actin is essential for the

function of Ena/VASP proteins in whole cell movement (Fig 5B). Interestingly, EGFP-MenaAFAB

fully supports intracellular Listeria motility (Geese et al., accepted), indicating that this mutant

retains some type of biological activity.

The third region is a small set of 12 conserved amino acids defined by the EGFP-MenaPWE

mutant that is between the FAB and the oligomerization region (COCO, see below). No know

function has been ascribed to the PWE region. EGFP-MenaPW E localized in a pattern similar to
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the wildtype protein (data not shown), and fully complemented the motility phenotype of MVD7

cells (Fig. 5B).

Potential oligomerization motifs are required for full Ena/VASP function in cell motility.

The C-terminus of the EVH2 domain contains a predicted coiled-coil region that can mediate

oligomerization of Ena/VASP proteins (Ahern-Djamali et al., 1998; Carl et al., 1999). To assess

the requirement for oligomerization in Ena/VASP function, we made two mutants intended to

disrupt the formation of EGFP-Mena oligomers. EGFP-Menaa °c °O harbors an internal deletion

that excises the predicted coiled-coil motif in the EVH2 domain. EGFP-Menaa °c °O localized

within the cytosol, was enriched at focal adhesions, but was only weakly detected at

lamellipodial leading edges (data not shown). In the motility assay, EGFP-Mena A °c ° provided

only partial function as compared to the wildtype protein, but it did reduce average cell speeds

significantly as compared to the parental MVD7 cell line (ANOVA, p< 0.05) (Fig 5B).

We wondered if the Mena-specific LERER region could contribute to function in the absence

of the COCO region. The LERER repeat region is predicted to form a potential extended helix

with alternating charges, and therefore could serve to form an additional oligomerization motif.

As described above, deletion of the LERER region by itself has no effect on localization or

function of EGFP-Mena, we deleted both the LERER region and the coiled-coil region to

generate EGFP-MenaLCD (LER-COCO double-mutant). Although this mutant had similar sub-

cellular distribution properties to EGFP-Mena a c °c °, it was more difficult to detect along the

leading edge (Fig. 5A panels 7-9). In the motility assay, EGFP-MenaALCD did not alter the

hypermotile phenotype of MVD7 cells (Fig. 5B). These results suggest that oligomerization of

Ena/VASP proteins is required for full function of these proteins in cell motility.

Ser/Thr phosphorylation regulates mammalian Ena/VASP protein function.
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The failure of Drosophila Ena to replace its murine orthologs in the motility assay prompted

us to focus on features conserved within the vertebrate proteins that are missing in Ena. Between

one and three cyclic nucleotide-dependent kinase phosphorylation sites flank the proline-rich

core in all vertebrate Ena/VASP proteins. Drosophila Ena lacks any known PKA/PKG

phosphorylation sites. To test whether phosphorylation of the highly conserved PKA/PKG sites

is required for Ena/VASP function in mammalian cell motility, six different EGFP-Mena

mutants were engineered. Individual phosphorylation sites are mutated from serine to alanine in

EGFP-MenaS236A and EGFP-MenaS376A to block phosphorylation of only one site. Conversely,

each phosphorylation site is mutated from serine to aspartic acid in EGFP-MenaS 236 D and EGFP-

Mena 3 76D to mimic constitutive phosphorylation at each site. In EGFP-MenaAA, the two

phosphorylation sites were each mutated to alanine (S236A, S376A), while in EGFP-MenaD D ,

both phosphorylation sites were mutated to aspartic acids (S236D, S376D).

All six phosphomutants localized in a subcellular pattern indistinguishable from wildtype

EGFP-Mena, colocalizing with Vinculin at focal adhesions and with N-WASP at the leading

edge (Fig. 6A panels 1-3; data not shown). However, EGFP-MenaAA failed to complement loss

of Ena/VASP function while EGFP-MenaDD caused a statistically-significant reduction of cell

speed (Fig. 6B). This latter result is consistent with in vitro analysis suggesting that replacing

serines with aspartic acid in Ena/VASP proteins mimics phosphorylation (Harbeck et al., 2000).

Functional analysis of the single point mutations indicate that Ser236, the only phosphorylation

site conserved in all three murine Ena/VASP proteins, is more critical since conversion of that

site alone to alanine affects Ena/VASP function. Mutation of Ser376 to alanine alone had no

effect on Ena/VASP function. As with EGFP-MenaDD, mutation of either phosphorylation site to

aspartic acid did not disrupt function in whole cell motility. These results indicate that although
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Fig 6. Blocking Ser/Thr phosphorylation does not disrupt localization, but affects function A. EGFP-MenaAA
has subcellular distibution properties indistinguishable from wildtype EGFP-Mena. Anti-Vinculin Ig detects focal
adhesion complexes (arrow in panel 1) that colocalize with EGFP-Mena phospho-mutants (compare arrows in panel
I and 2). Anti-N-WASP Ig marks the lamellipodial leading edge (arrowhead in panel 3) and colocalizes with
EGFP-Mena mutants (compare arrowheads in panels 2 and 3). Scale bar = 10pm. B. Box and whisker plot of speed
distributions indicate that EGFP-MenaS23 6A and EGFP-MenaAA cells have speeds comparable to parental cell lines
(ANOVA p< 104 ) whereas EGFP-Menas37 6A, EGFP-MenaS236 D, EGFP-MenaS376D, and EGFP-MenaDD speeds are
statistically slower, with speeds comparable to EGFP-MenaWT (ANOVA p<104 ; MVD7 n=30, MVD7 ::EGFP-Mena
n=24, MVD7 :: EGFP-MenaS 2 3 6 A n=20, MVD7:: EGFP-MenaS 3 7 6A n=20, MVD7 :: EGFP-MenaAA n=31, MVD7 :: EGFP-

MenaS2 36D n=20, MVD 7:: EGFP-MenaS 376 D n=20, MVD7:: EGFP-MenaDD n=20).

Ena/VASP phosphorylation is essential for function in cell movement, phosphorylation has no

obvious role in subcellular targeting of the proteins. Furthermore, blocking phosphorylation at

the site common to all three mammalian Ena/VASP proteins is sufficient to block EGFP-Mena

function in cell motility.

Some EGFP-Mena mutants that fail to complement MVD7 cells induce an overexpression

phenotype in Rat2 fibroblasts.

Previously, we reported that overexpression of Mena to four times normal levels causes a

significant reduction in the speed of Rat2 fibroblasts (Bear et al., 2000). We used this

overexpression assay as a second way to test whether any of the mutants that failed to rescue
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Fig 7. Some of the mutants that failed to complement
MVD7 cells had an overexpression phenotype when
expressed in Rat2 cells, which express endogenous
EnaNASP proteins. A. EGFP-Mena expressed in Rat2
fibroblasts accumulates at focal adhesions (arrows in
panels 1 and 2) and along lamellipodial leading edges
(arrowheads in panels 2 and 3). EGFP-MenaATLM is

detected at focal adhesions (arrows in panels 4 and 5),
but not at the leading edge (arrowheads in panels 5 and
6). EGFP-MenaFAB localizes to both focal adhesions
(arrows in panels 7 and 8) and the leading edge
(arrowheads in panels 8 and 9). Both EGFP-MenaA ° °OCO

(data not shown) and EGFP-MenaLCD have similar
subcellular distribution patterns in Rat2 fibroblasts with
enrichment at focal adhesions (arrows in panels 10 and
11) and the leading edge (arrowheads in panels 11 and
12). Scale bar = 10pm. B. Box and whisker plot of
speed distributions indicate that EGFP-MenaTLM,
EGFP-Mena^ AB and EGFP-MenaAA do not elicit an
overexpression phenotype in Rat2 random cell motility
assays (ANOVA p<10 .4 for each population) and EGFP-
MenaA °c °c and EGFP-MenaALCD cell populations have
speeds comparable to cell populations overexpressing
wild type EGFP-Mena (ANOVA p<104 for each) (Rat2
n=38, Rat2::EGFP-Mena n=30, Rat2:: EGFP-MenaTLM
n=27, Rat2:: EGFP-MenaFAB n=30, Rat2:: EGFP-
MenaAcoco n=31, Rat2:: EGFP-MenaLCD n=22, Rat2::
EGFP-Mena n=33).

normal motility of MVD7 retained some function in this overexpression assay. We made stable

Rat2 cell lines expressing EGFP-Mena mutants and assayed the subcellular distribution (Fig. 7A)

and functional capacity of those mutants as compared to wildtype EGFP-Mena (Fig 7B).

We tested whether overexpression of non-phosphorylatable EGFP-Mena affected cell speed.

As in MVD 7 cells, EGFP-MenaA localization was indistinguishable from wildtype EGFP-Mena

(data not shown). Analysis of cell speeds indicated that EGFP-MenaAA failed to induce a

statistically-significant reduction in the overall speeds of the cell population (Fig. 7B). However,

visual inspection of the tracking movies suggested that some cells within the EGFP-MenaAA -

expressing population did appear to move more slowly than parental Rat2 cells. In fact, the
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median value of EGFP-MenaAA speed was nearly identical to that of wildtype EGFP-Mena

(indicating that at least half the cells within the population were slowed to the same extent as

wildtype EGFP-Mena overexpression).

As in MVD7 cells, EGFP-MenaTLM again localized diffusely throughout the cytoplasm (Fig

7A panels 4-6). This was surprising since EGFP-MenaATLM should oligomerize with endogenous

Ena/VASP proteins, and suggests that deletion of this small conserved region may have broader

consequences on the structure of Ena/VASP proteins. Overexpression of EGFP-MenaTLM does

not reduce Rat2 cell speed (Fig. 7B).

The subcellular distribution of EGFP-MenaFAB was significantly altered in Rat2 cells as

compared to MVD7 cells. Whereas EGFP-MenaFAB was nearly absent from the leading edge of

MVD7 lamellipodia, it was clearly detected along the leading edge of Rat2 lamellipodia, perhaps

due to its ability to oligomerize with endogenous Ena/VASP proteins (Fig. 7A panels 7-9).

Although EGFP-MenaAFAB is enriched at the leading edge of Rat2 cells, it does not cause an

overexpression phenotype (Fig. 7B). This indicates that the F-actin binding motif of the EVH2

domain is essential for the phenotype induced by overexpression of Ena/VASP proteins.

EGFP-MenaaCOCO and EGFP-MenaLCD had the same properties in Rat2 cells. Both proteins

were found at focal adhesions, but were mostly diffuse throughout the cytoplasm (Fig. 7A panels

10-12; data not shown). However, both EGFP-MenaCOCO and EGFP-MenaLCD expression in

Rat2 cells elicited an overexpression phenotype comparable to overexpression of wildtype

EGFP-Mena in Rat2 cells (Fig 7B).

The EVH2 domain alone is sufficient for Ena/VASP function in random whole cell motility

in the absence of PKA phosphorylation.
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Our functional assays confirmed the physiological importance of earlier observations

indicating that EnaNASP proteins interact with F-actin and that they can multimerize with each

other. Both of these functions map to the conserved EVH2 domain and mutations within that

domain disrupt localization and function. We wondered whether expression of the EVH2

domain alone would complement MVD7 cell motility phenotypes.

EGFP-EVH2 localized to the lamellipodia of MVD7 cells, although it exhibited a broader

distribution within this structure than EGFP-Mena, which concentrates just at the distal edge of

lamellipodia (Fig 8A panels 1-3). EGFP-EVH2 was not enriched at focal adhesions, but did

weakly decorate stress fibers. The failure of EGFP-EVH2 to target focal adhesions in MVD7 cells

is consistent with earlier work indicating the essential role of EVH 1-mediated interactions in

focal adhesion targeting of Ena/VASP proteins (Gertler et al., 1996; Bear et al., 2000). When

EGFP-EVH2 was expressed in Rat2 cells, the EGFP signal was concentrated at the tips of

lamellipodia and in focal adhesions in a pattern identical to the endogenous Ena/VASP proteins,

likely due to the ability of the EVH2 domain to oligomerize with endogenous Ena/VASP

proteins (Fig. 8A panels 4-6). Together, these results indicate that although the EVH2 domain

can target to a broad region of the lamellipodia, other parts of Ena/VASP proteins such as the

EVH I1 domain are required for targeting to the tip of lamellipodia and to focal adhesions.

We next tested EGFP-EVH2 in the cell motility assays. EGFP-EVH2 complemented loss of

Ena/VASP function in MVD7 cells to an extent equivalent to the full-length protein (Fig. 8 C).

Similarly, when EGFP-EVH2 was expressed in Rat2 cells, it induced an overexpression

phenotype identical to intact Mena (Fig. 8 C). We also tested whether the EVH2 domain of Ena

complements MVD7 cells and found that it too reduces average cell speeds (Fig 8 C).
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Fig 8. The EVH2 domain negatively regulates cell motility in both MV"' and
Rat2 fibroblasts A. EGFP-EVH2 does not accumulate at focal adhesions in MVD7

cells (compare arrows in panels 1 and 2) but is detected at focal adhesions in Rat2
cells (compare arrows in 4 and 5). EGFP-EVH2 is enriched along the leading edge of
MVD7 cells (arrowheads in panels 2 and 3), but EGFP-EVH2 has a slightly broader
distribution pattern along the edge of MVD7 cells. In contrast EGFP-EVH2 is tightly
colocalized with N-WASP along the leading edge of Rat2 fibroblasts (arrowheads in
panels 5 and 6). Scale bar = 10gm. B. The EVH2 domain is not phosphorylated in
Rat2 cells. Rat2::EGFP-EVH2 cells were treated with 10 PM or 100 pM forskolin
for 30 min and compared to extracts treated in vitro with phosphatase or PKA as
negative and positive controls, respectively. Top panel is blotted with 16C2, which
recognizes 3 bands in the PKA treated positive control lane corresponding from top to
bottom with Mena, EGFP-EVH2, and VASP. Although VASP and Mena have a
dosage sensitive increase in the phosphorylation of their EVH2 domains, the EVH2
domain by itself is not as good a substrate for forskolin-induced phosphorylation.

C. Box and whisker plot of speed distributions indicate that EGFP-EVH2 can
complement loss of Ena/VASP function in MVD7 cells (left panel, ANOVA p<10

'4)

and can elicit an overexpression phenotype in Rat2 fibroblasts (right panel, ANOVA
p<10-4). Expression of the EVH2 domain of Ena is also capable of complementing
MVD7 hypermotility phenotype. (MVD7 n=30, MVD7::EGFP-Mena n=24,
MVD7::E G F P -E V H 2 n=22, MVD7 ::EGFP-Ena-EVH2 n=20; Rat2 n=38, Rat2::EGFP-
Mena n=30, Rat2::EGFP-EVH2 n=27)

We wondered if the EVH2 domain alone is a substrate for PKA ser/thr phosphorylation. To

test this we treated Rat2 cells stably expressing EGFP-EVH2 with forskolin, which stimulates
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adenylate cyclase thereby increasing the intracellular concentration of cAMP necessary to

activate PKA within cells. We found that a mouse monoclonal antibody, 16C2, which was

developed for detection of VASP protein that are phosphorylated on Ser238, cross reacts in vitro

with PKA phosphorylated Mena and EGFP-EVH2 (Fig 8 B). Surprisingly, we found that

forskolin treated Rat2::EGFP-EVH2 cells labeled both VASP and Mena but failed to label

EGFP-EVH2. We also found that EGFP-EVH2 is not phosphorylated in forskolin treated MVD7

cells (data not shown). This suggests that phosphorylation of the EVH2 domain is not required

for its function in whole cell motility (see below), and it also suggests that co-recruitment of

EGFP-EVH2 to the leading edge by binding to endogenous Ena/VASP proteins in Rat2 cells is

not sufficient to phosphorylate the EVH2 domain. Recall that neither full length Ena (Fig 2 C)

nor EGFP-MenaS236A (Fig 6 B) complements the MVD7 hypermotility phenotype, suggesting that

elements outside the EVH2 domain of full length Ena/VASP protein regulate the physiological

activity of the EVH2 domain. Together, these results indicate that the EVH2 domain contains

the core mechanistic elements of Ena/VASP proteins required for their function in random whole

cell motility, but that the EVH 1 and/or central proline-rich region are required to regulate

Ena/VASP function.
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Discussion

We have conducted a structure-function analysis to identify features of EnaNASP proteins

required for function in three different assays: subcellular targeting in MVD7 cells, rescue of the

hypermotile phenotype of MVD7 cells, and overexpression effects on Rat2 fibroblast motility

(Table 1). In a companion study, we analyzed several of these mutants for their ability to

support intracellular Listeria motility (Geese et al., accepted; Table 1).

Localization in MVD7 Functional Assay
Focal Leading Complement Overexpression Complement

Adhesions Edge Cell motility Phenotype in Listeria motility
In MVD7 Rat2 cells In MVD7

MenaWT + + + + +
MenaAQ + + + NA NA

MenaLER + + + NA NA
MenaPRO + + + NA +/-
MenaATLM +/- - - +
Mena FAB + ++

MenaPWE + + + NA NA
MenaaCco +- +/ - +/- + +
MenaLCD +- - - + NA
MenaS236A + + +/- NA NA
Mena376A + + + NA NA
MenaAA + + +/- +/-
MenaS236D + + + NA NA
Mena376D + + + NA NA
MenaDD + + + NA ++
MenaEvl 2 + + + NA

One striking result of these studies is that different experimental assays revealed distinct

structural requirements for Ena/VASP function. In the case of whole cell motility, the F-actin

binding motif within the EVH2 domain is essential for localization within MVD7 cells and for

activity in both MVD7 and Rat2 cells. In contrast, intracellular Listeria motility is unaffected or

even enhanced by the absence of the FAB motif. Conversely, the polyproline-rich region of
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Mena is dispensable for function in random whole cell movement, but appears to play an

important role in intracellular Listeria motility (Geese et al., accepted).

We draw three general conclusions from these observations. First, all of the mutants studied

displayed partial or complete activity in at least one of the functional assays. This observation

combined with the fact that all the mutant proteins were detectable by both FACS analysis and

western blotting suggests that failure of a given mutant to function in one of these assays is

unlikely to result from a trivial failure in global protein folding. Second, the role of Ena/VASP

proteins in Listeria motility differs from their function in lamellipodia. We postulate that

different sets of features within the same molecules are required differentially for each process.

Third, on a more general note, the requirements for various Ena/VASP motifs in these assays

suggest that Ena/VASP proteins may be used in distinct ways by different actin-driven processes.

As a result, it may not be prudent to assess the function of these molecules in other contexts,

such as Jurkat T-cell polarization or axonal growth cone guidance (Lanier et al., 1999; Krause et

al., 2000), solely by extrapolation from the results obtained in fibroblast motility or in Listeria

motility assays. Furthermore, it is possible that other cell types or processes may utilize the three

murine Ena/VASP proteins in ways that are not interchangable.

The polyproline-rich region is dispensable for Ena/VASP regulation of random cell

motility

The identification of Ena/VASP proteins as profilin ligands, mediated through the proline-

rich region, provided a potential mechanism by which this protein family might regulate actin

assembly (Reinhard et al., 1995). Profilin binds G-actin, promotes the exchange of ADP for

ATP on G-actin, and permits bound ATP-actin to be added onto the barbed ends of actin
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filaments (reviewed in Pollard et al., 2000). The observations that both Ena/VASP proteins and

profilin can increase the rate of Listeria motility within cell-free systems (Loisel et al., 1999) and

that profilin recruitment is proportional to intracellular Listeria speed (Geese et al., 2000)

supports such a model. In this model, Ena/VASP-profilactin complexes concentrate actin

monomer at sites of rapid actin assembly. However, in cell free systems Ena/VASP proteins can

increase the rate of Listeria motility in the absence of profilin (Loisel et al., 1999). Consistent

with this, EGFP-MenaP R ° can partially restore Listeria motility in MVD7 cells (Geese et al.,

accepted).

Our results indicate that the central proline-rich region is dispensable for normal subcellular

targeting and function in fibroblast motility, therefore interactions with profilin, SH3, and WW

domains are all dispensable for the function of Ena/VASP proteins in random cell movement.

Previous genetic studies suggest that, in the absence of Mena, the process of neurulation is

sensitive to the level of profilin I (Lanier et al., 1999). It is possible that the concentration of

profilin in MVD7 is high enough such that direct interaction with Ena/VASP proteins is not

required for their function, even if the molecules do form complexes within cells. Alternatively,

profilin recruitment may not be essential to regulate whole cell motility, but it may be important

for other functions of this protein family. Additionally, recent reports have postulated a role for

WW-mediated binding of Fe65 to Mena in the regulation of cell motility (Sabo et al., 2001), and

a requirement for SH3-mediated binding of IRSp53 to Mena in the promotion of filopodial

outgrowth (Krugmann et al., 2001). As noted, Ena/VASP-null cells possess morphologically

normal filopodia, indicating that they are not strictly required for filopodial formation. Since

expression of EGFP-Mena aP R ° is sufficient to complement cell motility phenotypes, binding of

ligands to the Pro-rich region is not required for Ena/VASP function in cell motility. Although
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this discrepancy may reflect cell-type differences, it does prompt a re-evaluation of models in

which profilin or SH3/WW-domain recruitment are critical for the fimunction of Ena/VASP

proteins in cell motility.

The role of F-actin binding activity in Ena/VASP localization and function

The F-actin binding motif within the EVH2 domain plays an important role in Ena/VASP

targeting to the leading edge within MVD7 cells. Interestingly, the EGFP-Menâ FAB mutant

displayed a normal subcellular distribution in Rat2 cells, presumably due to oligomerization with

endogenous Ena/VASP proteins. Similarly, subcellular targeting by the isolated EVH2 domain

was affected by the presence of endogenous Ena/VASP proteins, a factor not controlled for in

two recent studies that proposed a role for the EVH2 domain in subcellular targeting (Price and

Brindle, 2000; Nakagawa et al., 2001).

Previously we reported that the EVH1 domain could direct GFP to the leading edge and focal

adhesions, although the targeting was weak and accompanied by a background nuclear signal.

Despite its ability to target GFP, the EVH 1 domain alone fails to mediate robust leading edge

targeting of full length Ena/VASP proteins. Deletion of the 18 residue F-actin binding motif

within the EVH2 domain resulted in a mutant protein that could target appropriately to focal

adhesions, but at best weakly to the leading edge. Consistent with these results, we have recently

shown that Ena/VASP proteins are recruited to the leading edge by a direct interaction with the

barbed ends of elongating actin filaments (Bear et al., submitted).

The EVH2 domain by itself can target GFP to the lamellipodia by a mechanism that depends

on the FAB motif (data not shown). By itself, EVH2 does not decorate focal adhesions. Close

examination of the distribution of EGFP-EVH2 revealed that EVH2 alone targets a broader

region of lamellipodia than full-length Ena/VASP proteins, which decorate only the tips of
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protruding lamellipodia. We speculate that the EVH domain refines the EVH2-mediated actin

dependent targeting of Ena/VASP proteins, thereby restricting them to the very tips of

lamellipodia by interacting with either unknown protein ligands or perhaps phosphotidylinositol-

containing phospholipids.

The EVH2 domain is sufficient to regulate random motility

Although the EVH2 domain alone does not fully recapitulate wildtype Ena/VASP

localization within lamellipodia, it functions equivalently to full length Mena protein in

fibroblast motility assays. Within MVD7 cells, EVH2 localizes to lamellipodia but not to focal

adhesions, confirming our previous observations that the hypermotile phenotypes observed by

genetic deletion or neutralization approaches within fibroblasts are a consequence of effects on

lamellipodia and do not involve loss of Ena/VASP function at focal adhesions.

The EVH2 domain contains two motifs, FAB and COCO, with established biochemical

properties. Whereas EGFP-Mena FAB localizes predominantly to focal adhesions in MVD7 cells,

in Rat2 cells it is also detected at the leading edge. Since EGFP-MenaF AB fails to elicit an

overexpression phenotype in Rat2 cells we conclude that F-actin binding is essential for the

function of Ena/VASP proteins within lamellipodia. The capacity of EGFP-Menâ AB to support

normal, or even enhanced rates of intracellular Listeria motility (Geese, et al., accepted) provides

conclusive evidence that Ena/VASP proteins are utilized by this pathogen by a mechanism that is

distinct from the ways in which these same molecules function in lamellipodia during whole cell

motility.

In Rat2 cells, as in MVD7 cells, oligomerization mutants localize to focal adhesions, but are

generally diffuse throughout the cytoplasm, suggesting that oligomerization plays a role in

targeting to lamellipodia. Since the EVH2 domain alone is sufficient to support normal motility,
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and EGFP-Mena ° c ° is not, we conclude that oligomerization is necessary for full function of

the EVH2 domain.

EGFP-MenaTLM still contains the coiled-coil region that appears functional in other mutants.

TLM is similar to a motif that mediates G-actin binding within molecules such as Thymosin-34

and Villin (Gertler et al., 1996). The failure of EGFP-MenaTLM to localize properly in Rat2

cells suggests that deletion of this 14 amino acid residue region may have a broader impact on

Mena structure, though the capacity of EGFP-MenaTLM to localize to focal adhesions and to

partially support Listeria motility suggests that it retains some function. It will be important to

determine whether the TLM region actually binds G-actin and to establish what role this motif

plays in the overall function of the EVH2 domain.

Regulation of Ena/VASP proteins by phosphorylation.

PKA/PKG phosphorylation of EnaNASP proteins has been correlated with a number of

physiological processes that involve cytoskeletal remodeling (e.g. - Walter et al., 1993).

Furthermore, inhibition of platelet aggregation by cyclic-nuleotide kinase agonists is

dramatically attenuated in VASP-deficient mice (Aszodi et al., 1999; Hauser et al., 1999). There

are three PKA/PKG sites in VASP, two are present in Mena, and only the amino terminal site is

contained within EVL. We analyzed the functional requirements for the two sites found in

Mena. Phosphorylation of the first, highly conserved site is essential for function, while we

observed no obvious role for the second site in our assays. Since phosphorylation of this first site

also induces a shift in the electorphoretic mobility the Mena, EVL and VASP, we propose that it

is the major site for regulation of this protein family in vertebrates.

Surprisingly, EGFP-Ena failed to complement the MVD7 random cell motility phenotype

although it is structurally similar to murine Ena/VASP proteins and localized appropriately. This
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result is especially striking in light of the ability of vertebrate Ena/VASP proteins to replace Ena

function in Drosophila. While Drosophila Ena is phosphorylated on serine as well as tyrosine

(Gertler et al., 1995), it lacks the highly conserved PKA/PKG site found in vertebrates (Gertler et

al., 1996). The ability of the isolated Ena EVH2 domain to function in mammalian cells

indicates that it contains all of the key properties required for function of the domain. It appears

likely that the reason why intact Ena fails to function in mammalian cells is that regulation by

PKA/PKG is a feature that has been incorporated into Ena/VASP proteins after the divergence

between invertebrates and vertebrates.

The isolated Mena EVH2 domain, which complements MVD7 cells, lacks the key site

contained in all the vertebrate proteins. Interestingly, the site within the Mena EVH2 domain is

phosphorylated in the intact protein, but not when the EVH2 domain is expressed by itself. It is

likely that interactions with the EVH1 or proline-rich region are important for recruiting protein

complexes that contain PKA/PKG. One candidate class of proteins may be A-kinase anchoring

proteins (AKAPs) which localize PKA to specific regions within cells (reviewed in Diviani and

Scott, 2001).

How does phosphorylation regulate Ena/VASP function? Phosphorylation plays no obvious

role in subcellular targeting, suggesting that the Ena/VASP proteins are regulated at their sites of

function. In addition to causing shifts in electrophoretic mobility, phosphorylation of Ena/VASP

proteins is known to alter their affinities for some, but not all, of their binding partners in vitro

(Halbrugge et al., 1990; Gertler et al., 1996; Lambrechts et al., 2000). The most conserved

phosphorylation site within vertebrate Ena/VASP proteins lies between the EVH1 and EVH2

domains. Substitution of a phospho-mimetic aspartic acid for the serine residue at this site

permitted Mena function in MVD 7 cells, providing further evidence that the phosphorylated form
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of the protein is active and suggesting that cycling between phospho and dephospho-forms may

not be required for Ena/VASP function. Phosphorylation also appears to increase the ability of

EnaNASP proteins to support Listeria motility. Therefore, phosphorylation likely activates

Ena/VASP proteins in the context of a variety of cellular functions. Together, our results lead us

to propose that phosphorylation relieves inhibitory interactions that somehow block the activity

of the EVH2 domain.
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Methods and materials

Subcloning of EGFP-Ena/VASP proteins and engineering of EGFP-Mena structural

variants. EGFP-Ena/VASP family members were subcloned into pMSCV-EGFP retroviral

plasmid using standard techniques. EGFP-Mena structural variants were generated using

mutagenic PCR primers. For small deletions, two rounds of PCR were required. First,

mutagenic primers were used to amplify regions upstream and downstream of the intended

deletions. Those PCR products were then purified and combined at equimolar ratios to serve as

template for a second PCR reaction to amplify an altered mena ORF. For point mutations,

mutagenic primers were used to amplify the entire plasmid (pBSII) containing the mena ORF.

Double-mutant ORFs were generated by subcloning. Mutations were confirmed by sequencing

and RFLP analysis. Mutagenic primers were designed in complementary pairs; only the sense

orientation is listed below. Q:

5 'GACAAAATTCACAGCTACCTGCTCAACTGCAAGAACAGCAGCGACAGAAGGAAC3

'. LER:

5 'GAAGGCAACTGCAAGAACAGCAGCGACAGGAGCGCAGAATGTCCAATGCTGCTG

CCCC3'. PRO: 5'GGGCCTTGTCTTGGGAGCATCTGGAATTTTCTCTGG3'. TLM:

5'GACAATCGCCCTTTAACTTCCCGGGTGGAGGATG3'. FAB:

5 'CTGGGCGTGGGAATGGACCTCTTCCTCTAGCTGAGAAGGGATCAACAATAGAAAC

AGAAC3'. PWE:

5 'CTGCTAAGGCCCCATCAACAAGTACACCTATGAACGGCAGTAAGTCACCTGTCAT

CTCC3'. COCO: 5 'GGCTGAAGCAGGACATTAGCAAGTCGAACACTGC3'. S236A:

5'GAGCGCAGAATGGCCAATGCTGCTGCC3'. S326D:

GAGCGCAGAATGGACAATGCTGCTGCC. S376A:
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5'GCAAAACTTAGGAAAGTGGCCCGGGTGGATGG3'. S376D: 5'

GCAAAACTTAGGAAAGTGGACCGGGTGGATGG3'.

Retroviral packaging, infection, FACS sorting, and cell culture

Culture of Rat2 cells is described in Gertler, et al, 1996. Isolation of MVD7 fibroblastic cells

is described in Bear, et al., 2000. The MVD7cells were cultured at 32 °C in Immorto media (high

glucose DME w/ 15% fetal calf serum, pen/strep, L-glut and 50U/ml recombinant mouse

interferon-gamma (Gibco-BRL)). Retroviral plasmids described above were transiently calcium-

phosphate transfected into Bosc23 packaging cells (3.3 g retroviral plasmid and 1.7 ptg pCL-

Eco helper plasmid), and supernatant was collected after 48 hours. MVD7 cells or Rat2 cells

(ATCC) plated at 50% confluency were exposed to infectious supernatant for 24 hours in the

presence of 4pg/ml polybrene. Infected cells were cultured to 90% confluency, trypsinized, and

FACS sorted in PBS/5% FCS. EGFP positive cells were harvested and cultured for one passage

and then resorted for EGFP signal intensity levels that matched EGFP-Mena wildtype controls.

To confirm FACS analysis and assess protein stability, RIPA extracts from each cell line were

resolved by SDS-PAGE and probed with Anti-EGFP Ig, using Anti-Actin Ig as a loading control.

Immunofluorescence and microscopy

Cells were plated on acid-washed coverslips coated with 10pg/ml fibronectin (Sigma), and

allowed to spread for 6-8 hours. They were fixed and stained as described in Gertler et al., 1996.

Anti-Vinculin Ig (hvin- 1, Sigma) was used at 1:400. Anti-N-WASP was used at 1:1000 (Gift of

R. Rohgati and M. Kirschner). Coumarin-phallicidin (Molecular Probes) was used at 1:20.

Images were collected on a Deltavision Zeiss microscope and digitally deconvolved using SGI

Softworx graphics processing software.
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Videomicroscopy, quantitation and statistical analysis of motility movies

Cells were first adapted overnight in CO2-independent video microscopy media (high-

glucose DME, 350mg/L NaHCO3, 25mM HEPES, L-Glut, Pen/Strep, 15% FCS, 50U/ml

interferon-gamma). 4,000 MVD 7 or 10,000 Rat2 adapted cells were plated on a AT dish

(Bioptechs) pretreated with 10gg/ml fibronectin and blocked for 1 hour with lmg/ml tissue

culture grade BSA. MVD7 cells were plated for 8 hours before filming and Rat2 cells were plated

for 2 hours before filming. Time-lapse images were collected every 5 minutes for 4 hours for

MVD7 cells, and every 5 minutes for 2 hours for Rat2 cells. At least two acceptable movies from

each genotype were quantitated using DIAS software (Solltech). Individual cells chosen for

quantitation a) were not in contact with other cells for more than 15 minutes (i.e. - 3 frames), b)

did not undergo mitosis, and c) stayed within the viewing area for the duration of the movie. The

cell periphery was outlined in each frame using a Wacom digital tablet. DIAS software then

computed an area-based centroid for each cell in each frame that subsequently defined a motility

path for each cell. Average speed was calculated from paths for at least twenty cells per

genotype. Data sets were analyzed by one-way unstacked ANOVA (n = number of cells).

Statistical significance was determined by one-way unstacked analysis of variance. EGFP-Mena

structural variants complemented loss of Ena/VASP function if their mean 95% confidence

intervals overlapped with that of wildtype EGFP-Mena.

Biochemical analysis of Ser/Thr phosphorylation of EVH2 domain

Rat2 cells stably expressing EGFP-EVH2 were grown to 90% confluency and treated with

forskolin solubilized in DMSO (10 [tM or 100 gM final forskolin concentration) or DMSO alone

for 30 minutes. Cells were then lysed in NP-40 buffer (1% NP-40, 150mM NaCl, 50 mM Tris,

pH 8.0) containing protease inhibitors (Complete tablets, Roche Diagnostics) and phosphatase
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inhibitors (1 mM sodium vanadate and 1 mM sodium flouride). Protein extracts were run on 8%

SDS-PAGE gels and probed with mouse monoclonal 16C2 antibody (1:100, Vasopharm), rabbit

polyclonal anti-EGFP (1:100, Clonetech), and anti-Mena rabbit polyclonal 2197 (1:5000).

Positive and negative controls for PKA ser/thr phosphorylation of Mena, VASP, and EGFP-

EVH2 were generated by harvesting Rat2::EGFP-EVH2 extracts in NP-40 buffer with protease

inhibitors and running either in vitro phosphatase reactions (NEB) or PKA kinase reactions

(NEB) for 30 min.
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Lardei a L. .up Fig SI

Supplemental Fig SI. All four Ena/VASP proteins have similar subcellular distribution patterns in MVD7

cells. MVD7 cells stably expressing individual EGFP-Ena/VASP fusion proteins were characterized by
immunofluorescence for colocalization with vinculin, a focal adhesion marker, and N-WASP, a leading edge
marker. Cells were also labeled with phalloidin to characterize the actin cytoskeleton. For each cell population,
each of the four channels is shown in black and white, and a merger of the vinculin (blue), EGFP (green), and N-
WASP (red) is shown in color. Note the presence of typical actin structures including stress fibers and enrichment
along lamellipodial edges is grossly unchanged in MV 7and MVD7 cells expressing Ena/VASP proteins (compare
panel 1 to 6, 11, 16, and 21). All four EnaNASP proteins colocalize with vinculin at focal adhesions (compare
"vinculin" column with "EGFP" column, and note merger of signals in color panels 10, 15, 20, and 25).
Colocalization at the leading edge between N-WASP and EGFP fusion proteins is also observed with all four
Ena/VASP proteins (compare "NWASP" column with "EGFP" column, and note merger of signals in color panels
10, 15, 20, and 25). Scale bar = 10pm.

Supplemental Movies available online at the Molecular Biology of the Cell website

Supplemental Movie MI. Timelapse movie of an MVD7 cell recorded at a magnification of 600x using phase-
contrast optics. Frames were collected every 15 seconds. MVD7 cells have features typical to fibroblastic cells
including protrusive lamellipodia and dynamic filopodia.

Supplemental Movie M2. Timelapse movie of an MVD7 ::EGFP-Mena cell recorded at a magnification of 600x
using phase-contrast optics. Frames were collected every 15 seconds. Stable expression of EGFP-Mena does not
grossly alter MVD7 lamellipodial dynamics.

Supplemental Movie M3. Side-by-side comparison of MVD7 and MVD7::EGFP-Mena cell populations.
Frames were recorded at five minute intervals at 40x magnification using phase-contrast optics.
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