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Abstract
Type II Diabetes mellitus is a genetically complex disease characterized by insulin
resistance in peripheral tissues, which results in simultaneous hyperglycemia and hy-
perinsulinemia. Because of the prevalence of type II diabetes, many researchers are
investigating the genetics of glucose homeostasis, however, traditional mapping tech-
niques have not been successful in determining all of the genes that regulate glycemia.
To complement these efforts, we used DNA microarrays to find differentially expressed
genes and combinatorial siRNA screening to investigate the effects of hepatic gene
transcription during periods of high and low glucose production. This strategy pro-
vides a new approach to studying the molecular mechanisms of disease pathogenesis.

Our investigations focused on discovering new genes that influence hepatic metabolism
and glucose production. Hepatocytes help maintain whole body glycemia by providing
glucose and other substrates during non-feeding periods. DNA microarrays contain-
ing 17,000 unique gene probes were used to study hepatic gene transcription during
normal, insulin resistant, and fasting states in C57/BL/6J mice. We analyzed this
data set using a combination of statistical and multivariate techniques to determine
41 different, genes that are differentially expressed and highly discriminatory of the
treatment groups.

Hepatocytes perform many physiological roles, thus to investigate which genes
from the microarray analysis affected hepatic metabolism, we developed combinato-
rial RNA-interference (RNAi) based gene silencing techniques. Using combinatorial
siRNA screening, we silenced genes that were over-expressed within the microarray
data set to study loss of function effects on hepatic metabolism, which was quantified
by measuring intracellular metabolite concentrations in relevant metabolic pathways.
Based upon the metabolite dependent clustering of experimental and control samples
using Fisher Discriminant Analysis, four of the silenced genes had a significant effect
on key metabolites involved in hepatic glucose output. Of these four genes, three
were shown to influence hepatic glucose output in our primary cell model.

Thesis Supervisor: Gregory Stephanopoulos
Title: Bayer Professor of Chemical Engineering
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Chapter 1

Introduction

Diabetes is a growing problem throughout the world and the subject of intense re-

search. The control of blood glucose levels within a person is mediated through a

number of complex systems, whose molecular basis is not completely understood.

Further insight can be gained by identifying genes that affect blood glucose levels

and determining their biochemical and physiological effects. This chapter provides

an overview of the disease and its significance to human health.

Chapter two introduces the general concept of quantitative and polygenic traits,

and discusses methods for discovering disease genes. Blood glucose control can be

considered a quantitative, polygenic trait, and therefore the background provided in

this chapter is necessary to compare and contrast our strategy with previous method-

ologies. Methodologies have evolved over the years, and the work presented herein

employed a novel approach whose advantages, disadvantages, and development are

presented.

Chapter three describes methods for gene characterization, once a gene has been

implicated as having a potential role in the phenotype being studied. Different ex-

perimental model systems are discussed, as well traditional and new methods for

manipulating gene expression including the introduction of RNA interference (RNAi)

as an efficient method for gene silencing. Development and application of RNAi to

cells in culture is presented.

Chapter four describes the application of the methods developed in chapter two

12



1.1. OVERVIEW OF DIABETES MELLITUS

to hepatic: gene discovery. This work identified genes that may mediate differences

between control mice, insulin resistant, diet-induced obese (DIO) mice, and DIO

mice who were fasted for 48 hours, returning their weights back to baseline. Forty-

one genes were identified that were differentially expressed and discriminatory of the

experimental treatments, implying an important role in the underlying physiology.

Chapter five applies combinatorial RNAi screening to genes identified in chapter

four. The effect of gene silencing on cellular metabolite pools was used to determine

which genes had a significant impact on hepatic metabolism. Of the 15 genes over-

expressed in the mouse experiments, four had an impact on metabolism, and three

of these reduced hepatic glucose output in our primary cell culture model.

1.1 Overview of Diabetes mellitus

Diabetes mellitus is a condition broadly characterized by elevated blood glucose levels

(hyperglycemia). The condition has been observed in humans for over two thousand

years and its name, "diabetes mellitus", was coined in 1674 by Thomas Willis [52].

Diabetes stems from the Greek word meaning "to syphon" in reference to the chronic

wasting that occurs in untreated patients, while mellitus comes from the Latin word

for honey in reference to the sweet taste of the urine that was often used in ancient

times for diagnosis [197].

Although overt diabetes presents clear symptoms, which include sweet smelling

urine, acetic breath, frequent urination, and weight loss, little was known about the

ailment until relatively modern times. The first conceptual break through in the

pathology of diabetes came in 1889, when Dr. von Mering and Dr. Minkowski of

Germany discovered a link to the pancreas [159]. These physicians found that if they

removed a dog's pancreas (pancreatectomy), the animal's urine would accumulate

high levels of sugar and it would develop a condition similar to diabetes. Thirty

years later, in 1921, Banting and Best discovered insulin as the key pancreatic factor

controlling glucose levels. After perfecting the isolation technique for bovine insulin,

they were able to treat the first patient, Leonard Thompson, in 1922. At the time of

13



1.1. OVERVIEW OF DIABETES MELLITUS 14

treatment Thompson was extremely ill, however, he made a miraculous recovery and

lived for an additional 13 years on bovine insulin.

Since these early observations research into diabetes mellitus has been widespread.

It is now accepted that diabetes mellitus actually constitutes a number of different

conditions, all portraying the hallmark hyperglycemia. These conditions are broadly

classified among two types (Type I and Type II), gestational diabetes, and a series

of rare syndromes [185]. Most diabetics fall under the modern classification system,

which diagnoses them as either Type I or Type II depending upon the underlying

cause. Type I diabetics have an autoimmune disorder that causes destruction of

P-cells in the pancreas, resulting in total absence of insulin. Type I diabetes is

often first observed in the early teen years and presents with the common symptoms

of frequent urination, weight loss, and may be associated with elevated serum and

urinary ketone levels (diabetic ketoacidosis). In contrast, Type II diabetics do not

have an autoimmune disorder, but instead are insulin resistant. Type II diabetes is

the most common form of the disease, often being detected during middle age, but

its incidence is rising dramatically in younger people [69, 68]. Type II diabetics are

frequently over weight and are usually diagnosed by elevated glucose levels during

clinical visits. Type II diabetics account for 90 - 95% of all known cases.

The rising incidence of Type II diabetes is a concern for both developed and

developing countries. Global estimates project an increase from 150 million diabetics

in 2000 to 220 million in 2010 [277]. This growth in disease incidence is largely

associated with a sedentary lifestyle and increasing levels of obesity, and has important

implications for the associated costs of health care. Diabetes is a leading risk factor

for retinopathy and blindness, nephropathy and kidney disease, neuropathy, and is

associated with a number of cardiovascular disease risk factors. In all, it is estimated

that diabetes accounts for over $130 billion in health care costs in the United States

and is the fifth leading cause of death [111]. Even with its rich history in research, the

spread of the disease has provided further incentives for understanding its molecular

basis, which will hopefully contribute to new therapies.

Although many hormones influence glucose levels, in healthy people glucose home-

1.1. OVERVIEW OF DIABETES MELLITUS 14



1.1. OVERVIEW OF DIABETES MELLITUS 15

ostasis is maintained largely by insulin signaling. Following a meal glucose is absorbed

into the blood where it is sensed by the pancreas. Pancreatic ,B-cells absorb glucose,

thereby increasing their ATP / ADP ratio. This increase causes ATP-sensitive potas-

sium channels to close, depolarizing the cells, which subsequently causes voltage-

regulated calcium channels to open. This leads to an increase in Ca2+ levels in the

cell and excretion of insulin via exocytosis from insulin containing vesicles [15]. Once

secreted, insulin travels through the blood to bind receptors on target tissue cells. In

glycemic terms, the primary insulin sensitive tissues are muscle, adipose, and liver.

Muscle cells take up glucose in response to insulin and store it as glycogen, but also

use it to synthesize proteins. Adipocytes respond to insulin by taking up glucose

and storing it as fat. Unlike muscle and adipose cells, liver cells do not modulate

glucose up-take in response to insulin; instead insulin binding induces hepatocytes

to suppress glucose production and store glucose as glycogen. Glucose homeostasis

in the postprandial state is shown in Figure 1-1.
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Figure 1-1: Glucose homeostasis in the postprandial state.

In Figure 1-1 rising glucose levels increase insulin secretion by the pancreas, which

drives glucose up-take by the muscle and adipose, and importantly suppresses glucose

output by the liver. Over time glucose and insulin levels fall back to normal. This

usually takes two to three hours depending upon the person, size of the meal, and
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meal composition.

Type II diabetics are insulin resistant and have simultaneous hyperglycemia and

hyperinsulinemia, as shown in Figure 1-2. In this condition, glucose is absorbed into

the blood stream and sensed properly by the pancreas, but target tissues no longer

respond adequately to the released insulin. Thus muscle and adipose tissues do not

remove glucose as they would normally, and hepatic glucose output continues even

in the presence of elevated glucose and insulin levels. To compensate, the pancreas

increases its level of insulin secretion, thereby resulting in the elevated insulin con-

centration observed in the blood of patients. Over time secretion of insulin by the

pancreas may diminish, leading to overt diabetes. The relative contributions of each

tissue (muscle glucose up-take, adipose glucose up-take, hepatic glucose output, pan-

creatic insulin secretion) to elevated glucose levels vary depending upon the specific

patient, contributing to the overall heterogeneity of the disorder.
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Figure 1-2: Impaired glucose homeostasis that takes place in Type II diabetics.

The exact molecular cause of Type II diabetes is unknown and many cross-

sectional and prospective epidemiological studies have been performed to determine

disease risk factors. These studies have shown several important characteristics exist

among various populations including ethnicity, obesity, age, sex, and genetics [95].

In addition, several biochemical and physiological markers, such as body mass in-
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dex (BMI), waist-to-hip ratio, fasting insulin concentration, and impaired glucose

tolerance have also been identified as independent risk factors [94].

In the U.S., African-Americans and Hispanics have at least a twofold increase in

risk relative to Caucasians, whereas Native Americans have a fivefold increase [99,

231]. Although the risk within these ethnic populations is inversely related to socioe-

conomic status, the differences between ethnic groups still arise when correcting for

socioeconomic class and other variables, suggesting that some genetic factors within

different ethnic populations contribute to their risk of Type II diabetes [93].

The strongest evidence for genetic risk factors comes from twin studies and rare

syndromes that demonstrate the potential for genetic influence. One study showed

that from 53 twin pairs, in which one twin had Type II diabetes, 48 of the co-twins

developed the disease in later assessments, representing a 91% concordance rate [10].

Notably in the same study, the five twins that did not have diabetes at the time, did

have mild glucose intolerance and abnormal insulin responses during oral glucose tol-

erance tests, suggesting they are also at risk of developing the disease with time. The

high concordance between twins, coupled with the differences between ethnic popu-

lations, are strong evidence that genetic factors are important to understanding the

molecular basis for the disease. This situation is vividly demonstrated by a number

of known syndromes of insulin resistance resulting from single gene mutations [74].

Although rare, these syndromes prove that specific genetic mutations, in a variety of

genes, can give rise to severe insulin resistance. Genes for which mutations have been

identified include those encoding insulin, the insulin receptor, and glucokinase [52].

Besides genetic risk factors, environmental effects also predispose certain popu-

lations to Type II diabetes. Obesity is a primary risk factor that is becoming more

common because of an environment that provides readily available food and an in-

creasingly sedentary lifestyle. Indeed, 85% - 90% of all patients clinically diagnosed

with Type II diabetes are overweight or obese [133]. Although numerous studies have

demonstrated the link between obesity and diabetes, and have even quantified the

increased risk due to various obesity related measurements (such as BMI and waist-

to-hip ratio), the mechanisms that link obesity to diabetes remain elusive. In this

I A - OVERVIEW OF DIABETES MELLITUS 17
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regard, because both disorders are complex, multigenic traits, discovering some of the

genes that are potentially involved would be a large contribution to the field.

Despite our clear deficiency in understanding the genetic basis for Type II dia-

betes, clinical diagnosis 1 has improved tremendously and treatments exist for con-

trolling diabetes. These treatments have evolved empirically over the last century

and currently present most patients with effective alternatives such that they can

lead relatively normal lives and often avoid many of the debilitating diabetic compli-

cations.

Diabetes management has a number of levels depending upon the severity and

complications of the specific patient. Because most patients are overweight, the first

line of defense is to control glycemia through life style changes. These usually re-

quire the patient to lose weight by changing their diet and increasing their level of

exercise. For patients that have insulin resistance, but not overt diabetes, weight loss

in the range of 5% to 10% usually reduces insulin resistance and improves insulin

tolerance [133], which may be enough to control glycemia. Because sustained weight

reduction is extremely difficult for many patients and because insulin resistance may

not be diagnosed until endogenous insulin secretion has already been diminished, ad-

ditional treatments are available. Thus if life style changes are ineffective, the next

level of treatment is oral hypoglycemic agents. There are currently several classes

of oral agents available, detailed in Table 1.1, as well as an increasing number of

new compounds [107]. If oral hypoglycemic reagents still do not adequately control

blood glucose levels, or if pancreatic secretion of insulin is not sufficient, then Type

II diabetics must start insulin therapy.

Because of the increasing incidence of Type II diabetes and the patient require-

1The clinically useful tests for diagnosing diabetes in patients are measurement of serum glu-
cose levels, glucose tolerance test, urinary and serum ketone levels, hemoglobin A1c, and urinary
microalbumin excretion [133]. Of these, the most commonly used for diagnosis is the measurement
of serum glucose levels, which in normal patients is less than 115 mg/ dL (6.4 mM) following an
overnight fast. A fasting serum glucose level of greater than 126 mg/ dL (7.0 mM) and an accom-
panying negative result in another clinical test, confirm the diagnosis of diabetes. Urinary serum
and ketone levels help identify Type I diabetics who may be developing ketoacidosis from excessive
fat metabolism in the absence of insulin secretion. Hemoglobin Alec and urinary microalbumin ex-
cretion help determine the extent of diabetes and effectiveness of disease management. Finger-stick
blood sugar is commonly used by patients to monitor their day-to-day glycemic control.
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Drug Class Mode of Action

Sulfonylureas Increase the secretion of insulin by /3-cells.
Biguanides Increases glucose utilization.
Glucosidase Inhibitor Decreases glucose absorption in the small intestine.
Thiazolidinediones Reduce insulin resistance.

Table 1.1: Oral Hypoglycemic Agents.

ments for managing glycemia, continued research and improved therapies are required.

As a primary defect in any single insulin sensitive tissue may lead to detrimental

insulin resistance, studying tissue specific molecular pathogenesis is a promising ap-

proach for providing targeted and efficacious treatments. By understanding the genes

involved in the disease, it may be possible to more accurately define the underlying

molecular mechanisms that regulate glycemia, and thereby develop more potent ther-

apies for this complex disease.
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Chapter 2

Methods of Gene Identification

This chapter provides an overview of methods and technologies used to identify dis-

ease related genes. For monogenic disorders this is a relatively straightforward task,

amenable to mendelian techniques such as pedigree analysis, gene mapping, and geno-

typing. For complex diseases associated with quantitative traits, whose phenotypes

are continuous in nature and are most often influenced by multiple genes, other meth-

ods are required, which have been far less elucidating in determining the complete

set of genes involved. For this reason, new experimental techniques, such as expres-

sion profiling using DNA microarrays, are being incorporated as a way of facilitating

the identification of genes that may be involved with complex traits, such as glucose

homeostasis. Because DNA microarrays are capable of generating massive amounts

of data, efficient analysis of the data is necessary and several methods are presented

for different experimental designs.

2.1 Genetics of Quantitative Traits

The goal of genetics is the analysis of the genotype of an organism [89]. This analysis

usually depends at least initially on the organism's phenotype; that is, some char-

acteristic of the organism is observed and its variation among different individuals

is studied. Depending upon the frequency of a characteristic's occurrence and how

the characteristic varies in relation to other characteristics, models can be built that
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describe and eventually identify, which genes primarily determine the phenotype. For

example, among Gregor Mendel's initial observations in peas were experiments de-

termining pea color [177]. Mendel observed that if he took one line of plants with

all green peas and crossed them with one another, all of the progeny1 peas were

also green. Likewise if he took a line of plants with yellow peas and crossed them,

the progeny all had yellow peas. However, if he took a plant with green peas and

crossed it with a plant having yellow peas, all progeny were yellow. Even more bizarre

was his observation that if he crossed the F1 generation, which were all yellow, with

themselves, he obtained a mixture of yellow and green peas, thus recapturing the

phenotypes of the parental lines. Mendel's analysis of these observations, built pri-

marily upon enumerating the distribution of pea colors in different crosses, allowed

him to propose a theory for inheritance that he could explain empirically based upon

his data [101]. In this specific case Mendel had demonstrated not only heritability of

a discrete trait, but also dominance as explained by the following simple model:

If the gene version, or allele, for yellow pea color is represented by " Y",

and green pea color is represented by "g", then the parental yellow peas

have a genotype YY, while the green peas are gg. A cross between these

two is represented as

By counting the frequency with which the yellow and green phenotype

appeared, Mendel could test his model against observation. For pea color

the yellow gene allele, Y, is dominant, so it would be anticipated that the

F2 progeny would have three plants with yellow peas for every one plant

that had green peas. Indeed, this was observed experimentally.

1Progeny of a parental cross are called the "first filial generation", or F1. Subsequent progeny
are represented as F 2, F 3, and so on.

Parental Cross YY x YY YY x gg gg99 x gg

F1 YY Yg + gY 99

F1 Cross YY x YY (gY, Yg) x ( Yg, Yg) gg x gg

12 YY YY+ Yg +g9Y+gg gg
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Since Mendel performed his simple experiments with plants, researchers have ex-

panded upon Mendel's concept of heredity and segregation of multiple traits to iden-

tify genes involved with many phenotypes in a variety of organisms. As time has

evolved, new methods have emerged from technological innovations. What began with

the simple enumeration of phenotypes, has progressed to the analysis of cosegregating

phenotypes [11], mapping the relative positions of genes [167, 263], enumerating chro-

mosomal stains and differential banding [66, 162, 212], enumerating the distribution

of restriction length polymorphisms [144], and finally on to DNA sequencing [71, 114].

These techniques have been used to explain many different observations ranging from

eye color in fruit flies to the occurrence of cystic fibrosis in humans.

Unfortunately, the vast majority of phenotypes are not qualitative, or discrete,

like Mendel's yellow and green peas. Instead most characteristics of interest have

a continuous, or quantitative, range of variability. For example, a person's height,

weight, skin color, or even fasting serum glucose concentration, may vary in an inter-

val that is intermediate to parental attributes. In these circumstances, even crosses

between extreme individuals of a population does not yield a Mendelian segregation

result, making the observations difficult to explain. This complication arises because

a given genotype may produce a range of phenotypes depending upon the environ-

ment, and most phenotypes are polygenic, depending upon multiple genes, each of

which contributes a small portion to the characteristic. Thus any given phenotype

may be represented as:

Phenotype = f(environment, g(cz genell, 3 gene 1 2, y gene 21l, 6 gene 22, ... ))

where geneij denotes allele j of gene i contributing to the observed phenotype, and

the Greek letters represent the relative contribution of the gene to the phenotype.

In type II diabetes serum blood glucose levels are a continuous phenotype dependent

upon the environment (age, diet, climate, physical activity) and a host of different

genes.

Geneticists have explained the continuous variation in phenotype by the concept

of quantitative inheritance, showing that it is sometimes possible to detect puta-
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tive quantitative trait loci (QTLs) [56]. A QTL is any region in the genome that

contributes to a quantitatively measured phenotype. It is anticipated, that within

the QTL region a segregating allele (or genetic variant) occurs that gives rise to the

observed statistical association with the phenotype variation.

In the 1990's it became possible to systematically map QTLs and over 2,000

different QTLs have been identified in a range of rodent phenotypes including obe-

sity [26, 276] and diabetes [195]. Despite new genetic technologies that improve the

feasibility of association studies [109], linkage studies [144], admixture studies and

others that can identify QTLs, less than 1% of these QTLs have been characterized

at the molecular level [75]; that is, an important region of the genome has been iden-

tified, but the actual gene(s) or genetic element(s) contributing to the QTL remain

unknown.

The value of QTL analysis to discovering disease genes is in reducing the region

of the genome under investigation. Once this has been done, other techniques such

as DNA sequencing, positional cloning, and transgenic knockouts can be used to

search for genes within the identified locus. By the end of 2001, this approach had

resulted in the discovery of 29 disease genes, eight of which were involved in diabetes

or obesity [137]. Genes discovered through QTL analysis are often highly penetrant 2 ,

with a large effect size3. This is a major drawback to finding all relevant genes to

a particular phenotype through QTL analysis alone. In addition, the experiments

are time consuming and require a large number of samples: 1,000 animals will only

map a QTL contributing 5% of the phenotype variation onto a 10 centimorgan (cM)

interval with 50% power [47].

There are a number of other problems with relying upon QTL analysis for de-

termining genes involved in quantitative traits or complex diseases. False positives

can still arise, even at the level of the gene coding sequence. For one thing there

2Penetrance is the number of individuals within a population that have a specific genotype and
the corresponding phenotype. Thus dominant genes, such as those responsible for Mendel's yellow
pea color, are almost completely penetrant; that is, all individuals that have an allele for yellow
color, look yellow.

3Effect size is the amount, or percentage, of phenotypic variation that is attributable to a QTL.
A QTL with a large effect size therefore contributes substantially to the observed phenotype.
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is degeneracy in the genetic code, thus a number of differentially segregating gene

sequences may result in the same protein and proteins with minor variations may

not be problematic. Genetic regulatory elements may also be responsible for signifi-

cant QTLs, however, because of their typically small size (and therefore usually low

information content) they may be extremely difficult to isolate, particularly if the

gene they regulate lies a considerable distance from the element or outside the QTL.

Because of these constraints other techniques are required to help dissect which genes

are ultimately involved in various quantitative disease phenotypes and piece together

the disease mechanism at the molecular level. It is unlikely that any single technique

by itself will be capable of conclusively determining all of the relevant genes, how-

ever, combining techniques can build a body of corroborating evidence from which a

consensus may arise.

2.2 Genomic Technologies

The human genome project (HGP) was biology's first major foray into the era of big

science. Like the physics projects that had come before it, it garnered an enormous

level of funding amid unprecedented fanfare for the field. The goals of the human

genome project were to [260]:

* Sequence all three billion base pairs of human DNA.

* Determine all of the approximately 20,000-25,000 genes in the human genome.

* Store the sequence and gene information in databases.

* Improve and develop new tools for data analysis.

* Transfer emerging technologies to the private sector.

* Address and discuss ethical, legal, and social issues arising from the project.

It was anticipated that even while the HGP advanced, the sequence data would pro-

vide a greater density of genetic markers for researchers mapping traits, particularly
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QTLs. Thus one priority was to make as much of the sequence publicly available as

soon as possible [186]. Once the entire sequence was complete, it would enable new

comparative studies with other organisms and provide the genes that lie within QTL

regions.

When the project was first conceived the idea of "genome-scale" experiments was

in its infancy, however, midway through the sequencing effort new technologies were

emerging that rapidly enabled many researchers to perform very large scale experi-

ments [82]. Currently large, high-through-put experiments are relatively common (in

comparison to their occurrence before the HGP) and can investigate DNA sequences,

sequence variation, RNA abundance, protein abundance, and metabolite concentra-

tions.

2.2.1 DNA Sequencing

As the human genome project began in 1990, it was well known that it could not be

completed using the existing technologies [151, 184, 262]. At that time the two most

commonly used sequencing techniques were a chemical degradation method developed

by Maxam and Gilbert [156], or an enzymatic method developed by Sanger [213].

Both methods used radioactively labeled DNA fragments that were separated by

gel electrophoresis and detected using autoradiography. These techniques were very

laborious and time consuming [259], which often precluded their use in QTL gene

discovery. Therefore, in addition to funding physical mapping experiments that would

help with sequence assembly, the HGP also funded new technology development,

particularly in DNA sequencing [184, 262].

Technology funding for the HGP served as a catalyst for the development of high-

through-put technologies and methods of analysis [184]. When the project began the

largest DNA sequence determined was the 250,000 bp cytomegalovirus sequence that

cost approximately $10 per basepair (bp) and required several years to complete [261].

By the end of the project, more than 1,400 megabases (Mbp) per year could be

sequenced at a cost of less than $0.09 per finished base pair [39]. These results were

extremely impressive and even outperformed the technology goals for the project.
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More importantly, the increase in sequencing capacity and decrease in cost, has now

made DNA sequencing fairly routine and amenable for most research groups. This

provides a technical resource for identifying mutations, genotyping, and determining

gene alleles within QTL regions that was largely unavailable before the HGP.

2.2.2 DNA Microarrays

Among the technologies emerging from the HGP were DNA microarrays, which are

used to separate DNA from a complex mixture. In its simplest form, the microarray

is composed of a substrate (such as a glass slide or nylon membrane) covered with

a specific arrangement of known DNA strands or fragments. The idea of covalently

attaching DNA to a substrate and using it to probe multiple DNA fragments from

a mixture was not new; many researchers had used the technique as an improved

method of Southern Analysis (dot blot and reverse dot blot), Northern Analysis, and

in situ hybridization for gene discovery [229]. In the HGP, researchers were trying

to improve the technology for use in sequencing methods known as sequencing by

hybridization with oligonucleotide matrix (SHOM) [27, 134, 149, 192].

The real innovation came by combining the use of DNA microarrays with reverse

transcription using labeled nucleotides. This created a system in which each mRNA

could be linearly converted into a labeled cDNA, separated by hybridization to its

complementary probe on a DNA microarray, and then quantified by measuring the

label abundance as shown in Figure 2-1. The first attempts at transcription moni-

toring were rather modest: Patrick Brown's 1995 Science paper [215] measured the

transcript levels of only 45 genes simultaneously on one array. Today, arrays contain-

ing more than 20,000 gene probes are not uncommon [150, 258].

DNA microarrays provide a new, and potentially more efficient, route to finding

gene targets involved in quantitative traits and biological processes associated with

complex diseases. The core concept is simple: genes that are differentially expressed

between unaffected (or control) samples and affected (or experimental) samples, po-

tentially play a role in the observed differences in phenotypes. The information de-

rived does not determine mutations or the sequence of segregating alleles, instead it
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TATGCGA 4C, INGCT4 ATCA

TATG~'~Cd~GW}GTAATCA GkGTACGCTGATGGT

crTACGC'rA GACTGGC

TATTCCGACGGCTAA rCA

ATAOCT46AC I ATACc(,rAcP

Figure 2-1: DNA microarrays work by exploiting the specificity of DNA base pairing.
The initial rules for hybridization were discovered by Erwin Chargaff and dictate that
each guanine noncovalently pairs with a cytosine and each adenine is paired with a
thymine [32]. The affinity and stability of the hybridized, double stranded DNA is
therefore directly related to sequence complementarity. In this figure the labeled
"target" molecules, representing the mRNA transcripts, compete for binding to their
immobilized complementary "probe" molecules on the array. Once equilibrium is
achieved, the arrays are washed and scanned to measure the transcript abundance.

quantitatively determines which genes are active or inactive in the environment from

which the samples are taken. Thus instead of looking for specific gene mutations that

in some way affect the observed phenotype, the cell's "reaction" (as defined by its gene

transcription) under one state is compared with the cell's "reaction" under a different

state to determine which genes mediate the observed differences in phenotype.

The advantages of using DNA microarrays for gene discovery, particularly with

respect to complex diseases, are that they provide information on actual genes, do

not require as many samples as QTL analyses, are highly parallel, and allow direct,

hypothesis based testing on a genomic scale. The fact that microarrays can directly

implicate specific genes is a considerable advantage given all of the work that QTL

analysis requires. Indeed, combining QTL analysis with DNA microarray results is a

complementary approach that has already resulted in the identification of two disease-

related genes [137], one of which is involved in insulin-mediated glucose uptake in

rats [2]. Another advantage is that DNA microarray analysis typically does not

require 100's of samples. So long as the variance in the array measurements can
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be quantified, direct statistical comparisons of transcript levels can be made with a

moderate number of replicates. Additionally, environmental changes can be used to

further parse differentially expressed genes and help determine their relevance. Thus

if it is known that a certain diet results in insulin resistance in one population, but

not another population, more complex experiments involving diet composition can

be designed to more accurately find the relevant genes involved.

The caveats of using DNA microarrays are that changes in gene transcription alone

may not be responsible for phenotypic changes, and analysis can be challenging when

confronted by 20,000 different transcript measurements. It is often, wrongly, inferred

that changes in transcript levels correlate to changes in protein levels, or even worse,

changes in protein activity; that is, sometimes it is assumed that translation occurs

with little or no regulation and that transcription is the dominating effect. Certainly

this is not true in a large number of cases [35, 92]. While increases or decreases in

transcription may alter protein levels, there is no single correlation or function that

tells how the concentration of mRNA is linked to the concentration of protein. Since

it is often held that most phenotypes are the results of protein activity, measuring

transcript levels alone does not necessarily correlate with a given phenotype. Thus

the change in the level of a specific mRNA, although highly correlated with the

phenotype, does not necessarily mean it causes the changes in phenotype.

There are currently two DNA microarray technologies that are commonly used.

One is a high density oligonucleotide system commercially available through Affymetrix 4

(Santa Clara, CA), the other is typically referred to as a "cDNA system." While there

are substantial differences between the two types of technologies [141], both quantify

the distribution of transcripts from a pool of RNA. While the technology surrounding

DNA microarrays continues to evolve, we developed and validated an assay for use

in our laboratory using the "cDNA system."

Our transcription monitoring system incorporates a fairly diverse set of experi-

mental and computational methods, from chemistry to molecular biology to image
4 The National Human Genome Research Institute provided funding for DNA Microarray research

that helped establish Affymetrix [39].
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and signal processing, all of which can affect the data. Thus, we first standardized

our protocols to understand what experimental artifacts may be introduced and how

the data may be affected by each step in the procedure. Our starting point for assay

development was based largely on previous published work done in similar laborato-

ries.

DNA Microarray Development

To investigate genes that may mediate biochemical processes involved in Type II di-

abetes, we developed a DNA microarray assay to measure transcript levels of over

16,000 mouse genes. The assay itself is relatively simple and uses the following pro-

cedure:

* Microarrays are printed with known DNA probe sequences on a substrate and

then blocked prior to hybridization.

* RNA is isolated from tissue or cell samples of interest.

* The RNA is labeled during reverse transcription with fluorescent nucleotides.

* The labeled cDNA target is hybridized to the microarray.

* The microarray is washed and then scanned with a laser to quantify the amount

of label hybridized to each probe.

Each of these steps requires some optimization and study in order to produce reliable

data.

To develop our microarray printing protocols we conducted a large set of control

experiments detailed below. These experiments usually used either a red, water

soluble dye with high autofluorescence, or COT-1 DNA with a stain.

In studying each of the sample preparation steps we have relied primarily on

control experiments where the same sample is divided in two and each half labeled

with either Cy3- or Cy5-dCTP dyes. The labeled samples are then hybridized to

the same array and should yield expression ratios of unity for every probe. In this
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way we can evaluate the variance in the ratios obtained, across a wide range of signal

intensities and experimental conditions.

Printing and Preparing DNA Microarrays

Printing of DNA microarrays containing several thousand DNA probes, or features, is

still an art in that the printing process must be developed and optimized empirically.

Because of the many variables (robotics, array substrate, array surface chemistry,

printing buffer, humidity, pin type, pin wear, pin blotting, pin capacity, probe type

(cDNAs or oligonucleotides), probe concentration, library size, run time), each of

which can change substantially based upon the specific system and laboratory, there

is no simple general way of optimizing array printing. Fortunately there are a number

of references on each of these subjects [103, 215, 220, 229, 257], and several good on-

line resources to guide development:

* The BioMicro Center at the Massachusetts Institute of Technology

- http://biomicro.mit.edu/forms/index.htm

* Microarrays.org, a public source of protocols and software hosted by the Uni-

versity of California, San Francisco

- http://www.microarrays.org/index.html

* The Institute for Genomic Research

- http://www.tigr.org/tdb/microarray/

* Patrick Brown's laboratory at Stanford University

- http://cmgm.stanford.edu/pbrown/mguide/index.html

* Whitehead Institute Center for Microarray Technology

- http://www.wi.mit.edu/CMT/Microarrayhome.html
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To print DNA microarrays we used a Versarray Chipwriter Pro arrayer from Virtek

(now owned by Bio-Rad), shown in Figure 2-2. This robotic arrayer can print 126

arrays per run and has automated pin cleaning, a robotic arm designed for handling

96 or 384-well plates, an environmentally controlled printing chamber, and is user

programmable. In conducting a series of control experiments to optimize the print-

ing conditions we found that pin cleaning was primarily dependent upon pin drying

(when any residual material was effectively removed by the vacuum), that the washing

station water cycle required monitoring, and that the mechanical arm for handling

the plates of the probe library was not reliable and also had to be monitored.

Figure 2-2: Virtek Chipwriter Pro Arrayer used to print DNA Microarrays.

In developing our microarray assay, we tested a variety of printing conditions us-

ing three different array substrates: Corning Gamma-Amino Propyl Silane (GAPS)

slides, Telechem Superamine slides, and Cel Associates poly-L-Iysine coated slides.

The chemistry on each of these substrate surfaces is similar in that the functional

group for binding DNA is a primary amine, which can provide two kinds of inter-

actions [233]. The amine moiety can bind DNA through ionic interactions between

positively charged amino groups and the DNA's negatively charged phospho diester

backbone. The other interaction is through the UV catalyzed formation of cova-

lent bonds between thymidine residues and the alkyl chains to which the amines are

attached. Of these, the Telechem Superamine slides had significantly lower signals
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compared to the GAPS and poly-L-lysine slides. The GAPS slides were ultimately

selected for array printing because of poor quality control by Cel Associates in pro-

ducing the poly-L-lysine slides, which commonly had visible surface imperfections.

The probe library that was printed onto the arrays contained 17,021 DNA probes,

supplied in 44 384-well round bottom Genetix plates. To conduct a single print run

of 126 microarrays using 16 printing pins would take approximately 72 hours. Thus

16 new Telechem pins were purchased, cutting the arraying time down to 36 hours

per run. When the new pins arrived, they had to be "worn in" to remove any metal

burrs or shavings and ensure they were capable of proper operation in the Telechem

printhead.

Several print runs were conducted using either herring sperm DNA or COT-1 DNA

in 3X sodium chloride-sodium citrate (SSC) or dimethyl sulfoxide (DMSO) buffers

at different humidity settings. The humidity level can vastly affect spot morphology

and size, depending upon the buffer used. We found that DMSO worked well as a

buffer at humidity levels between 10% and 30%, while humidity levels greater than

30% lead to large spots and very poor morphology. In contrast, 3X SSC worked well

at elevated humidities between 40% and 60%. At humidity levels below 40%, features

printed in 3X SSC became very small and did not attach well to the surface. Because

the ambient humidity level in the laboratory was routinely above 30%, we chose 3X

SSC as our printing buffer. This allowed us to control the humidity at approximately

50% using the arrayer's environmental control, and enabled the printing of 100 micron

features, spaced 175 microns apart (center-to-center) with very good spot morphology.

For each probe in the library, 600 pmol of material was provided. The recom-

mended printing concentration was 40 - 50 ,uM, however, adequate printing and ar-

ray signals from concentrations as low as 10 M had been communicated by other

users [252]. Using a subset of purified cDNA and oligonucleotide probes and RNA

target, the probe printing concentration was tested at 0.1, 10, and 40 PM, as shown

in Figure 2-3 on the following page. When the corresponding ratios were compared at

different probe concentrations, they were highly correlated indicating that although

signal intensities varied, the signal ratios, which represent the primary data obtained
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from a microarray, were largely unchanged as shown in Figure 2-4 on the next page.

In Figure_2-4, for each data series the X-axis represents the fluorescence ratio of the

probe printed at the lower concentration and the Y-axis represents the ratio for the

probe printed at the higher concentration. For example, blue diamonds show the

comparison of signal ratios obtained by hybridizing samples on arrays printed with

0.1 JLM(X-axis) and 10 JLM(Y-axis) probe concentrations.

In order to balance the number of arrays that could be obtained from the library

with the signal intensity, we printed our arrays at 20 JLM. This concentration allows

printing of 1,200 arrays from the library.
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Figure 2-3: Average signal intensity of cDNA and oligonucleotide probes as a function
of printing concentration.

The mouse gene library we printed on our arrays contained 17,021 probes based on

the Unigene Database, build Mm 102 (www.ncbi.nlm.nih.govjUnigenej).This library

(Operon Mouse Oligo Set Version 2) was composed of 70-mers representing 16,463

mouse genes from the UniGene Database [266]. The UniGene database automatically
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ratios across different probe printing concentrations.

clusters all mouse sequences in GenBank into a non-redundant set of genes. Each

cluster in the UniGene Database represents one unique gene, representative of all

cluster sequences, based on the longest region of high-quality sequence data.

Operon tries to minimize cross-hybridization by optimizing their oligonucleotide

sequences using BLAST (Basic Local Alignment Search Tool). This is not an op-

timal strategy for probe selection as small homologous regions have been shown to

contribute significantly to cross hybridization [125], and BLAST does not evaluate

these regions well because it is based on pair-wise similarity, as opposed to block sim-

ilarity [70, 146]. In addition, the melting temperature, Tm, of each 70-mer probe is

normalized to 78 C ( 5 C) based upon its nucleotide (GC) content. This tempera-

ture reflects the probe affinity for its complementary target, with higher temperatures

indicative of greater affinity. The Tm normalization ensures a consistent and stringent

hybridization across all selected probes. When a 70-mer could not be designed within

the specified Tm range, a shorter or longer sequence is substituted to maintain the
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Tm criteria.

Three print runs were conducted in series using these parameters:

* Corning GAPS slides

* 3X SSC buffer

* 20 L:M probe concentration

* 50% - 60% humidity

* 32 printing pins

Each print run contained 126 slides, printed all 45 plates (17,021 features) of the

library, and required approximately 50 minutes per plate, hence a single run took

approximately 35 hours to complete. The first run printed each feature one time on

each slide without redipping the pins. SYBR stains (Molecular Probes) following the

print run showed that array 126 did not possess all features, and visual inspection

implied that arrays 110 and after were deficient in some spots. For this reason, pins

were redipped in the second and third print runs. Redipping occurred for every gene

following printing of the 60th slide. After the 60th slide was printed, the pins returned

to the wells, reloaded, blotted eight times, and then restarted printing with slide 61.

All of the resulting slides contained all features.

After each print run, the probes were crosslinked to the microarray using a Strat-

agene Crosslinker (Stratagene, La Jolla, CA). Microarrays were subsequently blocked

using boric acid and methyl-pyrrolidinone. The blocking inactivates the surface where

features are not printed and prevents substantial binding of the target cDNA in those

areas [53, 238].

RNA Isolation and Labeling

Our RNA harvesting methods primarily used the commercially available RNeasy RNA

Extraction kit available from Qiagen (Valencia, CA). Briefly, the procedure entails

lysing the cells in a guanidine isothiocyanate buffer (that is highly denaturing and
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inactivates RNases), homogenizing the sample, adding ethanol and adjusting the pH,

then binding the sample to a silica-gel based membrane. Contaminants are washed

away, and the RNA is eluted in water. The procedure can be used to directly lyse

adherent cells while still attached to the flask, or following trypsinization and cell

harvest. The yields of the RNA isolation are quantitative, depending upon the cell

line and conditions used, with a coefficient of variation between 10 - 30%. Figure 2-5

shows the yield of RNA as a function of cell number.
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Figure 2-5: Yield of RNA as a function of cell number.
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Sample labeling relies upon the direct incorporation of CyDye (Amersham Phar-

macia) labeled nucleotides into cDNA during the synthesis reaction. This procedure

has been used historically in the laboratory, and the main differences between the

present and former methods are the amount of total RNA used, the primer used for

first strand synthesis, and reaction cleaning protocol. The results showed that no
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changes were obtained in the fluorescent ratios when the initial amount of total RNA

used in the assay was between 8 g and 20 ,ug. Based on these tests and the yield of

RNA from. culture samples, 10 ug of RNA is used with most sample preparations. For

mammalian RNA processing we have switched to using a mixture of poly-dT priming

and random hexamers. This, in theory, should give a cleaner sample, with a lower

potential for cross hybridization from cDNA derived from rRNA and tRNA present

in the total RNA sample. Sample clean-up used the Nucleotide Removal kit (Qia-

gen) which removes the excess dye and oligonucleotides smaller than 17 base pairs in

length. The binding capacity of this kit was shown to be more than adequate for our

samples. In addition to these procedural changes, the RNA degradation step was also

investigated. This work showed that completed degradation of the rRNA bands was

accomplished using our procedure, indicating potent degradation of residual RNA

following cDNA synthesis.

cDNA Hybridization, Scanning, and Data Acquisition

The hybridization protocol was investigated extensively, however, was not markedly

altered from the traditional protocol developed in the lab. In this regard, the Corning

hybridization chamber, hybridization temperature, and the hybridization time have

been investigated. The other hybridization chamber tested, from Stratagene, lead to

a greater degree of variation in the data and was therefore eliminated from further

consideration. Hybridization time was investigated over one and two day time inter-

vals. We selected single day hybridization because it resulted in higher fluorescence

signals.

The effect of temperature was studied as a way of altering the stringency of the

hybridization. Using a non-complementary set of control probes from Arabidopsis

thaliana, it was found that hybridization at 55 C lead to the least amount of cross

hybridization as shown in Table 2.1. At 50 C significant fluorescent signals were

obtained from the non-complementary control probes, while at 55 C or greater,

signals from the non-complementary probes were eliminated.

Fifty-five degrees Celsius was chosen for the hybridization temperature because
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Table 2.1: Arabidopsis thaliana gene probes. These gene probes have no known
homology to any mammalian genes and therefore should not bind labeled DNA
from mammalian samples. Conditions are selected that eliminate signals from these
probes to optimize the hybridization stringency. The probe printing concentration
(0.1 mM, 10 mM, or 40 mM) is shown at the top of each set of columns; PCR products
were probes generated using PCR fragments for these genes. Numbers in the Cy5 or
Cy3 columns represent the fluorescent signal intensity for that gene.

0.1 mM 10 mM 40 mM PCR Products
Hybridization # Features # Features # Features # Features

Temperature Gene Cy5 Cy3 Detected Cy5 Cy3 Detected Cy5 Cy3 Detected Cy5 Cy3 Detected
50 C Cabl 202 131 3 372 408 15 1695 1929 14 847 1120 15

LTP4 196 242 5 1525 1815 16 2410 2906 15 - - 0LTP6 - - 0- - 0- - 0 0
NACI - 0 0 142 124 1 0
PRKase 0 0 185 240 2 0
rbcL 239 296 2 492 731 4 8217 10680 16 0
RCA 207 215 5 639 684 15 4573 5291 14 2337 3060 16
RCPI 1696 1614 15 3882 4056 14 18857 16691 15 682 737 9
TIM 116 141 1 246 288 8 1311 1563 16 - - 0
XCP2 - - 0 - - 0 207 296 1 809 1214 14

55 C Cabl 0 0- - 0- - 0
LTP4 0 0 0- - 0 
LTP6 0 - 0 0 755 449 4
NAC1 0 0 0- - 0
PRKase - 0 0 0 0
rbcL - 0 0 933.8 980 4 0
RCA - 0 0- - 0 0
RCPI - 0 0 219.4 192.8 5 2342 1414 10
TIM 0 0- - 0- - 0
XCP2 - 0 0 0 0

60C Cabl - 0 0 - 0 0
LTP4 - 0 0 - 0 0
LTP6 - 0 0 - 0 0
NAC1 0- 0 0
PRKase 0 0 -0 0 
rbcL 0 0 -0 0 
RCA - 0 136 27 1 - 0 0
RCP1 0- 0 0 0
TIM 0 0 0 0
XCP2 0 0 0 0
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at temperatures of 60°C or greater, the signal intensity of the Cy5 channel was

substanti~lly decreased as shown in Figure 2-6. In contrast fluorescent signals from

the Cy5 channel routinely ranged from 10's to 10,000's, enabling a stringent assay

that could detect signals over three orders of magnitude.
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Figure 2-6: Effect of hybridization temperature on fluorescence signals. This fig-
ure shows the same sample labeled with both Cy3 and Cy5, hybridized at different
temperatures. In theory the probe signals should be equal in both channels, which
is closely approximated by the 50°C samples. However, as temperature increases,
gradual loss of the Cy5 signal is observed.

Once the hybridization is complete, the microarrays were washed at high agitation.

For washing we used a commercially available solution from Clontech (Mountain View,

CA) and 3X SSC. Microarrays were dried by low speed centrifugation.

After drying, microarrays were scanned with a Genepix Scanner (Axon Instru-

ments) to obtain the data. It was found that the spot intensity, as well as the

background intensity, were increased at higher laser PMT voltages and that repet-
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itive scanning of the arrays could affect the ratio data. Therefore all scans were

conducted as close to 600 V as possible for both laser channels. It was also found

that signals tended to fade with time following the hybridization, however the ratios

largely remained unchanged (indicating that the fluorescence signal for both dyes de-

graded at approximately the same rate). This degradation of signal intensity with

time occurred over days and is insignificant on the time scales required to scan the

microarrays following array washing.

Data analysis required as input the gene identifiers from the Genepix (scanner)

data output, the ratios of means of the Cy5/Cy3 pixel fluorescence corresponding to

each gene identifier, the ratio of means normalization factor (used to correct for the

difference in fluorescence and incorporation of the Cy5 and Cy3 fluorophores), and

the adjusted flags corresponding to each gene identifier. The adjusted flags marked

features that either did not possess basic fluorescence requirements sought by the

imaging software or had less than 60% of their pixels' intensities greater than two

standard deviations of the background intensity over the background intensity. Using

these data as input, Matlab returned the gene identifier, the mean of replicate spots

that were not flagged by our filters, the standard deviation of the unflagged replicates,

the coefficient of variation among replicates, and the number of observations used in

calculating the statistics for each gene.

DNA Microarray Validation

The developed DNA microarray protocols were extensively validated in the labora-

tory as described previously [28]. For validation, we prepared arrays containing an

approximately 13,000 gene sub-set of our oligonucleotide mouse library, printed in

triplicate. Total RNA from skeletal muscle and brain tissue were used for valida-

tion comparisons, and each sample was analyzed in duplicate and prepared using our

standard protocols. Matlab was used to calculate basic statistics.

The coefficient of variation (CV) was calculated for each replicated gene expression

and the distribution across all genes is plotted in Figure 2-7. For the muscle versus

muscle control arrays, the median CV across all probes was 10.2%. For the muscle
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versus brain arrays the median coefficient of variation across all probes was 9.8%.

This indicates that for a gene transcription ratio of 1, we might expect the true value

to lie between 0.9 and 1.1; similarly for a gene transcription ratio of 3, we might

expect the true value to lie between 2.7 and 3.3.
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Figure 2-7: Distribution of the coefficient of variation for DNA microarrays. The
coefficient of variation was calculated for every gene on the microarray and plotted
for the muscle versus muscle and muscle versus brain arrays.

Although the median CV across all probes for the muscle versus muscle control

arrays was 10.2%, some genes had a greater CV. The 314 genes on the muscle versus

muscle arrays with a fold difference greater than two common had a median CV of

24.7%. Because of their increased CV and high fold change, these 314 genes were

eliminated from subsequent analysis.

The arrays' ability to detect differential transcription between muscle and brain

RNA was evaluated by two different methods. In the first, we examined the number

of genes that were up- or down-regulated by a factor greater than two (that is, whose

mean ratio was either greater than two, or less than 0.5) in the muscle versus muscle

and the muscle versus brain RNA comparisons. This criterion has been used as a

basis for assessing differential transcription in a number of studies [119, 208, 256].

ill l
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In the second method, we defined a threshold for differential expression by using the

95% confidence interval determined from the muscle versus muscle control arrays.

Table 2.2 summarizes the results, where the p-values reported were from two-tailed

student t-l;ests.

# of Genes Differentially Expressed
Array # of Probes >2-Fold Genes at the

Condition Detected Different 95% Confidence Level
Muscle vs. Muscle 7574 438 429
Muscle vs. Muscle 6417 314 302

Average 6996 376 366
Muscle vs. Brain 7143 1201 1161
Muscle vs. Brain 8318 981 931

Average 7731 1091 1046

P-value 0.47 0.03 0.03

Table 2.2: Differential gene transcription validation data. This table summarizes
results of the array validation with respect to the study of differential expression.

Although in Table 2.2 there are only about 370 genes exceeding the threshold in

the muscle versus muscle arrays, more than 1000 genes were differentially expressed

in the muscle versus brain arrays. This result supports the assertion that the mi-

croarray assay method and selection criterion are significantly more likely to identify

differentially expressed genes.

In duplicate arrays, 76% of the genes observed on one muscle versus muscle array

were also observed on the duplicate; likewise 77% of the genes found on one muscle

versus braiin array were conserved on the duplicate. These data demonstrate the

inter-array reproducibility by showing the majority of genes are reproducibly found

in multiple replicate arrays.

In addition we were able to demonstrate the specificity of our microarrays by

patterning specific probes on the array, and then labeling the complementary targets

with either Cy3-dCTP or Cy5-dCTP. As shown in Figure 2-8 the labeled target

cDNA very specifically binds its respective probes, creating the observed pattern. In

Figure 2-8, the "red" probes surround the pattern bind cDNA target labeled with

Cy3, while the "green" probes making up the letters MIT are labeled with Cy5. The
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Figure 2-8: Test of DNA microarrasy specificity using patterned probes and purified
RNA.

orange spots at the top of the figure are a mixture of the two probes and give signals

of approximately equal intensity in both channels.

RT-PCR was also used to verify some of the array results. For each of the genes

investigated the variation in the ratios of the mRN A levels between the array results

and RT-PCR was less than 30% as shown in Table 2.3.

High-Fat vs. F/ WR vs.
Genes Assay Control Control
IL6st Array 154 ::l:: 21% * 144 ::l:: 21% * t

RT-PCR 167 ::l:: 19% * 185 ::l:: 15% * t
PTP4a2 Array 71 ::l:: 4% * 89 ::l:: 3% *

RT-PCR 75 ::l:: 16% 94 ::l:: 18%
RGS3 Array 35 ::l:: 5% * 54 ::l:: 8% *

RT-PCR 38 ::l:: 9% * 59 ::l:: 8% *

Table 2.3: Comparison of array results and RT-PCR results for selected genes. Data
are expressed as a percent of the control expression levels. F/ WR: Fasting/ weight
reduced mice

*Indicates that the measurements were significantly different from control values at
P < O.Ol.
tIndicates that the measurements made on the microarray were significantly different
from the RT -PCR measurements at P < 0.05.
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2.3 Data Analysis

Valuable information can be extracted from microarray data by using statistical and

data mining methods. Statistical methods rigorously quantify the reliability of dif-

ferences in the microarray data [171] and can objectively evaluate changes in gene

transcription ratios and derivative quantities [245]. Data mining is particularly useful

for uncovering patterns and structure in microarray data that might have otherwise

been difficult to detect through manual inspection and intuition alone [143, 200]. Ap-

plying statistics and data mining methods to microarray data in unison enables rapid

and reliable analysis without a priori assumptions.

Selection of a particular analysis method depends largely on the experimental de-

sign. While we explored the use of each method introduced in this chapter, subsequent

chapters rely primarily on Fisher Discriminant Analysis and Principle Components

Analysis because of our interest in classifying samples based upon their experimental

treatments. Each of these methods is described in the literature and only a brief

overview is given here.

2.3.1 Statistics

Many statistical methods can be used to analyze the gene transcription data [20, 130,

131, 271]. Use of any particular method is highly dependent upon the experimental

design and type of microarray technology used.

To assess differential gene expression, a gene by gene t-test [124, 241, 264] can

be applied to evaluate statistically significant expression differences in pairwise com-

parisons between the control and experimental samples. Another useful method is

Wilks-A based ranking [54, 115, 121]. This technique is particularly appropriate for

multi-class comparisons, ranking genes on the basis of their within group, and be-

tween group variances. Thus, a gene exhibiting a small variation within each of

several groups, but large variation between groups would rank highly; conversely a

gene that had a high level of variation within a group, and a low level of variation

among the groups would be ranked low. The Wilks-A score can be transformed into
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an F statistic, which can be compared with the F distribution to assess the statistical

significance of the observation.

2.3.2 Multivariate Analyses

Multivariate analyses are data mining techniques used to extract information from

data with many variables. Thus, as opposed to statistical techniques that often fo-

cus on the mean and variance of one variable, or differences in pairwise comparisons,

multivariate techniques focus on covariances or correlations [54, 121]. In a sense, they

attempt to uncover structure in the data set and identify what are the most impor-

tant variables. In microarray analysis, where numerous genes can be simultaneously

measured, these techniques provide a way of quickly finding important relationships

among the samples and genes. There are many different methods, however, Fisher

Discriminant Analysis, Principle Component Analysis, and Partial Least Squares were

the three most commonly used and explored in this work.

Fisher Discriminant Analysis

Fisher Discriminant Analysis [54, 121, 123, 230] (FDA) is a method that can be used

to determine combinations of genes that are capable of correctly classifying samples.

Thus if RNA samples were taken from normal mice, diabetic mice, and diabetic mice

receiving some treatment, FDA could be used to find genes whose expression classifies

the samples according to their collective gene transcription profiles. In this regard,

FDA is considered a supervised data analysis method, in that it is told at the outset

which samples belong to which classes. Conversely, a subset of the samples can be

used as a training set to develop a model that predicts the membership or other

samples.

The results of FDA are based on linear combinations of gene expressions that

consider the discriminatory power of gene groups as opposed to individual genes.

Samples are scored based on the weighted contributions of each gene to a newly

defined metric called a canonical variable. Because each gene's contribution to a
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sample's score is weighted by a coefficient called a "loading," genes with very small

loadings do not significantly contribute to the sample's score and classification, and

can therefore be eliminated from further consideration. Samples are scored according

to

S = E Alg + A292 + ... + Aigi +... + Angn (2.1)

where S is the sample score, Ai represents a gene's loading, gi represents a gene

transcription level, and the sum occurs over all discriminatory genes, n.

This technique can be used as a powerful tool to visualize microarray results in a

lower dimensional space defined by the canonical variables. The canonical variables

are one din-mensional metrics calculated as a weighted linear sum of the other variables,

in this case gene expressions. The underlying principle is that if the scores accurately

classify the samples, then the genes selected to determine the scores are discriminatory

of the treatments examined when sample classification is used as a criterion.

In FDA the canonical variables, V, are selected so as to maximize class sepa-

ration [123]. These variables are determined as the eigenvectors of the inter-group

variance, B, scaled by the intra-group variance, W, as

W-1BV = VA (2.2)

where

B=T-W (2.3)

T = (X - 1XT)T(X- 1XT) (2.4)

W = (Xj - 1Xf)T (Xj - 1XT) (2.5)

and the sum occurs over all of the sample classes. In this formulation X represents

the (n samples x g genes) data matrix, T represents the total variation among all

the data and the eigenvalues, A, indicate the discriminatory power of the canonical

variables.
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Principle Components Analysis

Principle component analysis (PCA) is similar to FDA in that it can be used as a

data reduction technique or to find structure in a data matrix. PCA reduces the

original set of variables (in this case genes) into a smaller, orthogonal set that is

composed of linear combinations of the variables of the original set. Unlike FDA,

PCA is unsupervised, that is, it does not require the a priori assignment of samples

to a specific class. Instead the coordinates of the smaller variable set are chosen such

that they capture as much of the total variance as possible in the original data. In

this way, it may be possible to identify groups of genes or samples that show similar

behavior. Like FDA, using PCA can help identify groups both computationally and

visually.

The procedure for using PCA is straightforward [3, 54, 164]. For a given data

matrix composed of n samples and g genes, the data may be scaled and is usually

transformed into a covariance or correlation matrix. If we let X represent the original

n x g data matrix, then the covariance matrix, C, is defined as:

C = 1] X - () (X1)( X)] (2.6)

where matrices have been denoted in bold, vectors are underlined, and the transpose is

indicated by the superscript T. Likewise the correlation matrix, R, can be calculated

as:

R = 1] D-2 [( j) (XTX- (XT 1)(X)) D ] (2.7)

where D - /2 is defined as the matrix whose main diagonal elements are the reciprocals

of the standard deviations of the g genes in X.

To identify the principle components, the set of vectors of coefficients, yl, Y2, ,

Yi, , Ym--1, Ym, such that yT X is maximized over all linear combinations of X

with the constraint yT y = 1 for all coefficient vectors, is sought. To find this set

of vectors, it; has been shown that they must satisfy g simultaneous equations of the
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form

(C - AI)yi = 0 (2.8)

or equivalently, depending upon the input matrix

(R- AI)y = 0 (2.9)

This is the common eigenvalue, eigenvector problem. Nontrivial solutions for the

eigenvectors, yi, can be found by solving for the eigenvalues, Ai, of the determinant

C - AiIl = 0 (2.10)

or

JR-AiIl = 0 (2.11)

The determinant of these equations results in a polynomial of order g; hence the g

roots associated with the polynomial are the eigenvalues. From this set, the first

principle component can be identified by choosing the largest eigenvalue (root of

the polynomial) and then solving for the corresponding eigenvector. This eigenvec-

tor gives the coefficients of the variables, genes in this case, of the first principle

component. The procedure is then repeated for each of the subsequent g eigenvec-

tors with the constraint that the principle components must be mutually orthogonal.

Other methods of calculating the principle components are possible such as orthog-

onal decomposition of the input matrix or by using nonlinear iterative partial least

squares [85, 207].

Because PCA is not scale invariant, using either the covariance or correlation

matrix will affect the solution obtained, and there is no way of relating the solutions

from the two different matrix transformations. For this reason it's prudent to conduct

both transformations and run the analyses in parallel.
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Partial Least Squares

In quantitative genetics, the relationship between the environment, genotype, and re-

sulting phenotype is called the "norm of reaction" [51]. The norm of reaction dictates

how a given distribution of environments maps onto a distribution of phenotypes for

a specific genotype. For example, in the study of diabetes it would be particularly

interesting to determine why certain ethnic groups (representing the genotype being

studied) within a given environment (representing the independent variables) have

elevated glycemia or increased risk for Type II diabetes (representing the dependent

variables that describe the phenotype of interest). To deal with these kinds of char-

acteristics, geneticists turned to basic statistical concepts that describe populations

in terms of their means and variation [129]. Unfortunately, the difficulty in finding

homozygous populations and controlling the environment, have relegated norm of re-

action studies to a few easily manipulated organisms such as the fruit fly Drosophila

melanogaster [44] and Arabidopsis thaliana [193]. The results of these studies have

generally yielded only small differences between genotypes and are not consistent over

a wide range of environmental perturbations [44, 89]. Furthermore these studies fo-

cus on how the variation in the phenotype distributes between the environment, the

genotype, and interactions thereof, and thus do not identify specific genes.

Microarray data can be used to identify genes, but some method of analysis is

required to link identified genes to environmental perturbations or changes in pheno-

type. Because both microarray and physiological data can possess many dimensions,

a regression method reduces the dimensionality to a significantly smaller set of vari-

ables is highly desirable.

One way to investigate these types of multivariate problems, where it is desired to

correlate multiple inputs, represented by an "X-Block," (X), with multiple outputs,

represented by a "Y-Block," (Y), is to use a regression method called partial least

squares (PLS) [83]. PLS considers the collective contributions of the inputs to the

outputs, and thus utilizes multidimensional data as opposed to other regression tech-

niques that use data with a single dimension. It is advantageous for large systems
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because both X and Y are decomposed into a lower dimensional space where their

relationship is explored.

As an example, we explored the application of PLS to microarray data by investi-

gating how a model cell line, Hepal-6 5, alters its gene expression to control glycolytic

flux in response to oscillating glutamine concentrations between 0 mM and 4 mM. It

has been previously reported that glutamine affects glucose up-take and glycolytic

flux [163, 196], and can serve as a carbon source for gluconeogenesis (206] and de novo

lipogenesis [112]. In these experiments, total RNA was isolated at each time point

and the microarray data was used for X; at the same time the forward flux through

phosphohexose isomerase was measured and used for Y. This flux indicator is derived

using tritiated glucose (2-3H-glucose), which generates labeled water [269]. Based on

the experimental results a PLS model was created, where the transcription data (11

samples x 3,185 genes) was related to the flux measurements (11 samples x 1 flux

measurement).

To create the PLS model, both the transcription data, X, and the flux data, Y

were autoscaled 6. The purpose is to remove distortion that may arise from very large

ratios, or variables that show dramatic swings across their timepoints. In this way, the

analysis proceeds with each gene on a normalized basis, such that the profiles become

more important than the absolute values. It should also be noted that autoscaling

the matrices makes them poorly conditioned, and nearly singular, as the determinant

of any autoscaled matrix is close to zero.

After autoscaling the data matrix, and selecting an initial set of genes based on

a signal-to-noise filter, PLS was run to construct the model. PLS decomposes the

original data matrices into a lower dimensional space and then builds a correlation

between the reduced matrices. The decomposition of the original matrices is defined

5 Hepal-6 cells are a murine hepatic carcinoma cell line.
6To autoscale the data, each gene measurement has it's mean value (calculated across all samples)

subtracted, and the difference is divided by the corresponding standard deviation. Autoscaling
converts the data in each row to mean zero and unit variance, and results in the correlation matrix.
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by their "outer" relations, given by:

X = T PT + E = thph + E

Y = U QT+F = uhq +F

(2.12)

(2.13)

Because it is possible to let the matrices T and U (referred to as the "score" matrices)

represent the variable matrices X and Y, a mixed inner relation can be established

through:

Y=T B QT+E

The resulting model is shown below in Figure 2-9.
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Figure 2-9: Partial Least Squares model prediction of glycolytic flux based upon gene
transcription values.

In Figure 2-9, the signal to noise filter does yield an improved fit to the data,

even when fewer latent variables are included in the model (all things being equal,
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the more latent variables included in the model, the more variance captured by the

model). Indeed, when the model was recreated using random sets of genes, excluding

the 132 used in the filtered model, none of the resulting models predicted the data

as well as the filtered model, nor did any of the resulting models capture as much of

the variance as the filtered model. This seemingly validated the model with respect

to the original X and any irrelevant genes contained therein.

In an attempt to further validate the method, the entire X-Block was random-

ized, and the model reconstructed. In this case, the model based on random data

made a prediction that was more highly correlated than the prediction based on the

actual data. That is, when random data from a distribution centered at zero with

a unit variance, was substituted for each element in the original X, the predicted fit

was even better than that obtained from the experimental data. This implies that

random occurrences, or noise in the data, could provide a model prediction as closely

correlated as the actual data. This result sets a new constraint for using the algorithm

because if PLS can generate relationships from random, irrelevant data, that have as

good predictability as those generated from the actual data, then we can have little

confidence in the significance of the relationships found. In terms of the algorithm

used, this result implies that the model is grossly overfit, as the inclusion of noise in

the data improves the model prediction.

Because of the failure of the actual data to provide a model whose prediction was

better than random data, a series of simulations was undertaken (see Appendix A

on page 148). These simulations were conducted to determine under what conditions

the actual data do a better job of prediction than random data.

We tested whether PLS derived models could arise by chance using completely

randomized data matrices that were not related to a pre-determined Y-block. Sim-

ulations were run by varying the number of "relevant" genes, "irrelevant" genes,

samples, and Y-block variables. In these simulations the Y-block is determined as a

linear function of the "relevant" genes, while the "irrelevant" genes are added to the

data matrix, but do not contribute to determining the Y-block a priori. In this way

it is possible to compare PLS models that relate the X-block to the Y-block when the
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algorithm is given perfect information (that is, only the relevant genes are contained

in the X-block), as well as when the X-block contains varying levels of information

(when a mixture of relevant and irrelevant genes are contained in the X-block). As

described in Appendix A on page 148, it was found that if the number of genes is

much greater than the number of samples, as typically occurs in a microarray exper-

iment, the model prediction based on actual, relevant data, could very easily arise

by chance from random data. Thus to have relevant models, the number of samples

used must make the data matrix closer to full rank, than is typical in most microarray

experiments. For full genome arrays this would require thousands of samples, which

is prohibitive in most experiments. Given these circumstances, PLS may not be a

suitable tool for discovering new relationships between gene transcription data and

other biochemical data contained within the Y-block. This does not preclude the use-

ful application of PLS to either discovery, or for modeling biological systems where

full rank data may be obtained. It does necessitate careful planning in the prudent

use of the technique.

Although there are usually many more genes than samples in microarray experi-

ments, depending upon the experiment there may be effective ways to limit the gene

domain. Most of these rely upon either rigorous computational methods (for exam-

ple, tests for reliable signals or differential expression), or biological hypotheses that

can be used to study a sub-set of the genes with respect to the desired outputs. In

these cases the researcher is either assuming that most of the relevant genes are in

the model, or is testing the model to try and find the relevant subset.

If microarray data were perfect and there was no variance in the measurements-if it

accurately determined the state of each gene under a given condition at a specific time,

then the models constructed using PLS would at least represent the "best fit" linear

approximation of how the transcription data in the X-block relates to the biochemical

data in the Y-block. Unfortunately the microarray data can have a significant degree

of variation and is susceptible to both random and systematic errors that may result

during experimentation [171]. Under these circumstances it is important to critically

evaluate model predictions, and correlations.
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2.3.3 Computational and Other Analyses

In addition to statistics and multivariate methods, many other methods of analy-

sis have been developed for microarray data. Among these are other techniques for

pattern discovery [60, 210, 269], as well as techniques for systems or network discov-

ery [126, 147, 217, 269]. Below is a brief introduction to two other techniques that

we explored in model systems.

Cluster Analysis

Cluster analysis is used to find genes that are potentially co-regulated. The idea is

that if one gene is induced or repressed in the same manner as another gene, across

many samples (either conditions or timepoints), then the two genes may be related.

While the biological significance of such a relation would still have to be assessed,

cluster analysis provides targets for the discovery of new transcriptional regulatory

elements and mechanisms.

Most clustering algorithms use the following process:

* Data acquisition;

* Data normalization;

* Data filtering;

* Data clustering.

Data acquisition was discussed largely in Section 2.2.2. Data normalization is used to

correct for artifacts that may influence the data, such as differing dye incorporation

rates, and has been reviewed substantially in the literature [199, 245, 270]. The most

commonly used normalization methods are mean-centering and autoscaling. Mean

centering reduces the mean transcriptional value of any gene across all samples to zero

by subtracting the gene's mean transcriptional value from each sample value (across

all samples in the data set). This causes the clustering algorithm to focus on the

variance in each gene about its mean as opposed to the absolute level of transcription
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for any given gene. Autoscaling transforms the data into a set that is mean centered

and has unit variance. This helps identify established patterns that are independent

of the mean and are well conserved across the samples. Data filtering is usually used

to remove noise in the data set. Many different types of filters exist and the choice of

any given filter depends partially on the experimental design. In this work, the most

common filter used was to remove genes that either did not have reliable values across

all samples, or genes that were not statistically different in one or more samples of

the data set.

Once the data processing is complete, the final step is to cluster the data. There

are many different algorithms, such as K-means clustering [48, 81], nearest neigh-

bor [240], self organizing maps [236], and hierarchial [50]. In the Hepal-6 experiments

(see above subsection on Partial Least Squares) the concentration of glutamine was

oscillated in the cells' medium causing changes in gene transcription and glycolytic

flux. To identify genes that were either correlated or anti-correlated with the flux

measurement, we used Pearson correlation [143] and the Teiresias [269], which is a

pattern discovery algorithm. Teiresias discretizes the expression data by categorizing

each transcription value into one of several predefined bins. It then finds patterns in

the discrete profiles. Figure 2-10 shows the result of using Teiresias to cluster genes

based on their relation to the glycolytic flux determined in the experiment.

The clustering results in the hepatoma experiment bring into focus the fact that

increased transcription of some genes was required to allow cells to respond to the

new environmental conditions (changing glutamine concentration). Most of the genes

found to be activated or anti-correlated with flux are not known to be directly con-

nected to intermediary metabolism, thus highlighting other genes or systems that are

perturbed as a result of glutamine changes in the medium. Teiresias sought out genes

that had a predefined pattern, but were not necessarily highly correlated with the flux

signal, because the algorithm allows variation within the pattern at certain positions7

7Teiresias can search transcriptional data for any predefined pattern. If the gene expression data
is discretized into bins of high (H), medium (M), and low (L) expression, then for an expression
profile with five samples, Teiresias can find full patterns (such as "M L M H M") or partially full
patterns (such as "(M,H) L (L,M) H M" or "M . M H ." where either value is permissable within
the parentheses, and the period allows any value, H, M or L.).
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Figure 2-10: Clustering of glycolytic related genes from the Teiresias algorithm.

While the role of the genes detected here in modulating flux has not been resolved,

the ability of this model to examine the relationship between genes and fluxes may be

an important tool for future studies. Among the genes identified, it was interesting

to note that, the analysis did not detect significant changes in expression for genes en-

coding glycolytic enzymes, highlighting the relationships of other genes to glycolytic

flux.

Time Lagged Correlations

The various forms of clustering [3, 60, 113] employed to date have produced valuable

information, including potential gene relationships and the identity of transcription

factor binding motifs. These methods, however, are limited in their ability to infer

causality or directional relationships between genes. The results of clustering algo-

rithms yield relations such as "gene A is a good predictor of gene B," which is an

equivalent statement to "gene B is a good predictor of gene A." Neither Bayesian
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networks [77], nor information theory based approaches [227] have made use of the

sequential nature of time-series data in current applications. Conversely, when enough

time points are available to prevent over fitting the data and find statistically signifi-

cant correlations, a discovery method to uncover potential causal relationships among

genes may be attempted. Directionality can be added to these probabilistic networks

by determining the temporal order in which gene expression patterns are affected in

a sequence.

A more complete picture of transcriptional regulatory behavior should be possible

by probing the transcriptional dynamics of carefully designed experiments covering a

wide range of conditions. Dynamic experiments that sequentially vary external para-

meters offer insights into how cellular physiology depends on changing environmental

conditions. Time-lagged correlation analysis is one method that can be applied to in-

fer putative causal relationships between system perturbations and system responses.

Linear Pearson correlations have been used to identify genes that are co-expressed

or anti-expressed for clustering purposes [143]. Time-lagged correlations extend this

technique by determining the best correlations among profiles shifted in time. For

a transcription profile represented by a series of n measurements taken at equally

spaced time points, the correlation between genes i and j with a time lag, T, is R()

(rij(T)), defined by

Sij(T) = ((xi(t) - i)(Xj(t + 7)- :tj)) (2.15)

r(T) - S(T) (2.16)

where xi(t) denotes the expression of gene i at time t, i is the expression value of

gene i averaged across all time points, and the angled brackets represent the inner

product between the time-shifted profiles. The matrix of lagged correlations R(r) can

be used to rank the correlation and anticorrelation between genes through conversion

to a Euclidean distance metric, dij:

dij = (cij - 2 cij + cjj)'/2 = (1.0 - Cij)/2
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cij = max rij(T) (2.18)

where, cij is the maximum absolute value of the correlation between two genes with

a time lag -. If the value of T that gives the maximum correlation is zero, then the

two genes are best correlated with no time lag. The matrix D = (dij) describes the

correlation between two genes, i and j, in terms of "distance" by making genes that

are least correlated (for any ) the "farthest" apart [6]. Thus by transforming the

correlation matrix, R, into a distance matrix, D, we are able to include highly anti-

correlated genes, in addition to correlated genes, in the network. By finding genes that

are closely related and then examining the corresponding value of r, an underlying

network of potential cause and effect relationships can be elucidated. Some caution

is needed to ensure genes with high correlation have been chosen using enough data

points to give statistical significance, otherwise all of the values used will merely

overfit the data. Such errors may be obvious if values for T are unreasonably long

from a biological standpoint.

Time lagged correlations were used to analyze metabolism in a model system,

where the photosynthetic bacterium, Synechocystis sp., was exposed to different light

conditions [217]. Dynamic light perturbations were induced in this system to drive

the transcriptional response of the bacteria, which was measured using DNA microar-

rays. The gene transcription responses were then placed into a network based upon

their time lagged correlations to either the input light signal or another gene cluster,

providing a set of putative causal relationships that could be tested in subsequent ex-

periments. After collecting transcriptional data from over 47 time points, the network

shown in Figure 2-11 was constructed.

In Figure 2-11 solid lines represent gene groups with correlation at the indicated

time lag, while broken lines represent gene groups that are anticorrelated at the in-

dicated time lag. The resulting network is composed of 50 groups containing 259

genes. The genes within the network include known genes that have demonstrated

light-induced regulation, as well as unannotated genes whose functions have yet to

be assessed. This suggests that dynamic studies of transcriptional behavior with
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Figure 2-11: Gene interaction network derived from time lagged correlation analysis
using gene transcription data.
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significant numbers of time-points can play a key role in understanding cellular regu-

lation. As other measurements such as protein and metabolite data become available,

time-lagged correlation studies should allow for the creation of hypothetical networks

similar to that in Figure 2-11, but with greater degrees of mechanistic information.

Such approaches will hold new insights into the regulation of biological systems.



Chapter 3

Methods for Gene Characterization

Following on Chapter 2, this chapter discusses various methods for gene character-

ization. Because genome sequencing projects have catalyzed the development of

high-through-put technologies that help identify an increasing number of genetic

targets [40, 78, 161] finding equally efficient methods to characterize these genes is

important.

Historically, studying loss of function phenotypes in cell culture or whole animals

has been a critical aspect to determining a gene's in vivo regulation and biochem-

istry. RNA interference, RNAi, is a recently discovered phenomenon that can be used

to specifically silence genes in a complementary, high-through-put manner [9, 154]

enabling the use of gene silencing to create loss of function phenotypes in greater

eukaryotes. This chapter summarizes our development of RNAi based gene silencing

methods in tissue culture.

3.1 Model Systems

To study diseases or quantitative traits in higher eukaryotes, an adequate model

system is required. From a research perspective, human studies in diabetes have

helped identify important risk factors (See Section 1.1), however they are limited

to clinical investigations that require appropriate training and usually cannot by

themselves delineate the fine biochemical processes that define disease pathogenesis.
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For mechanistic studies a greater degree of control is required and several different

models are possible.

Animal Models

Many different animal models exist for studying disease pathogenesis. Such animal

models include rats, chimpanzees, zebra fish, frogs, pigs, and dogs. One of the most

commonly used for studying diabetes and obesity is the mouse. The advantages of

this experimental model in gene discovery are numerous:

* Mice are mammals and therefore in the same infraclass 1 (Eutheria) as humans;

* Mice are readily available and easy to maintain in colonies because of their small

size and moderate living requirements;

* Mice reproduce relatively quickly and have an adequate life span for many types

of experiments;

* Mouse genes show a high degree of similarity to human genes [42, 178];

* There is a rich research history in the mouse that includes copious mutant

strains and well developed experimental techniques for transgenics.

In addition to these reasons, mice are a particularly good animal model for metabolic

diseases because they have an endocrine system that is very similar to the human

endocrine system. Thus the relevant tissues and organs that are affected in diabetic

patients, including the pancreas, white adipose tissue, muscle, and liver, are found

in mice and behave in a similar fashion. Glucose homeostasis, to our knowledge, is

largely regulated in a similar manner in all known mammals and therefore can be

studied in controlled and statistically rigorous detail in mice.

While mice have been extremely valuable in gene discovery and biochemical analy-

sis, they are not ideal for some types of experiments. For example, knocking genes

'In taxonomic hierarchy, the "infraclass" lies below Kingdom, Phylum, Subphylum, Class, and
Sublass [183].
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out in mice is very difficult, sampling may be limited depending upon the amount and

type of sample required, and selectively perturbing specific tissues organs or tissues

is often impossible. For experiments where these factors are limiting other models

may be used.

Primary Cells

In lieu of a relevant animal model, the next best model system is often primary

cells isolated directly from the animal. These cells are as readily available as the

animal itself, can be isolated in relatively large quantities from different organs or

tissues, are readily cultured and can be sampled with ease, and importantly they

maintain their differentiated tissue phenotype better than cell lines. Therefore it's

possible to isolate these cells and study how they react to imposed and well controlled

perturbations. The detail with which this is possible far exceeds that of the mouse

model, enabling the use of intricate imaging techniques, isotope labeling experiments,

binding experiments, and direct isolated use of agonists and antagonists.

The primary disadvantages to using primary cells is that they're no longer con-

nected to the other organs (and therefore there's an important loss of information

that in vivo studies provide), and the cells cannot be expanded or used for prolonged

experiments. Thus very large or long experiments, as one might design for use with

time lagged correlations, may be difficult to perform using primary cells.

Cell Lines

While cell lines are immortalized and therefore may display aberrant behavior that

does not refect phenotypes observed in vivo, they posses other advantages that peri-

odically make them a preferential system. Among the advantages of using cell lines

as a model system are

* Cell lines are easily stored and do not need to be isolated from an animal;

* Cell lines are usually viable over a longer period of time than primary cells;
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* Cell lines can be expanded to permit very large scale experiments.

Cell lines have been isolated from many different organs and animal models and some-

times have specific properties that make them good model systems. For example,

some cell lines over express hormones [228], glucose [88], or proliferate in response to

cytokine or hormonal treatment [145]. Such cells are often used for directed biochem-

ical studies of cellular signaling, metabolism, gene transcription, protein interactions,

or other specific aspects of cellular physiology. There are even a few cell lines that

are relatively well accepted models for certain tissue types [153, 208].

Despite their "off-the-shelf" ease of use, cell lines usually lose their differentiated

tissue characteristics during the immortalization process used to establish their lin-

eage. For example, while primary hepatocytes can readily produce glucose in culture,

hepatic cell lines, such as Hepal-6 and HepG2, are predominantly glycolytic and can-

not be induced to produce glucose. For this reason in vivo data from an animal model,

or data from primary cells, is generally preferred in studies of cellular physiology.

3.2 Gene Knock-out and Over-expression

Once a gene has been implicated in disease pathogenesis, either through QTL analysis,

microarray studies, or some other method, the molecular mechanism through which

it contributes to the observed phenotype is sought. This work entails a host of

biochemical studies which often include measuring transcription of the gene in various

tissues and under different conditions, measuring levels of the corresponding protein,

determining the gene product's function, mutation analysis, and finally understanding

how the gene participates in a molecular pathway that explains observed phenotypes.

Many of the in vitro experiments (such as determining enzymatic activity and

kinetics, in situ hybridization, affinity, etc.) required for gene characterization are

straightforward, and may be conducted in bacteria (for gene cloning and protein

production), cell culture, primary cells, or tissues taken from an animal. One of the

difficulties, however, is assessing the gene's cellular function in greater eukaryotes.

This is critical for understanding the physiological role of the gene and it's product.
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Both over-expression studies [23, 57, 100, 152, 181] and mutation studies [58, 139,

166, 235, 237, 251] have been successfully employed to elucidate a gene's effect on

physiology, however, the through-put of these experiments is much lower than those

used for gene identification.

In bacteria and in some lower eukaryotes such as yeast, the techniques for assessing

gene function in vivo is well developed and almost trivial to perform; however, in

higher eukaryotic cells, tissues, or animals, determining gene function in vivo can

be an enormous task. The reason for the difficulty in conducting in vivo studies in

higher eukaryotes is the intricate experiments required to disrupt gene function (gene

"knock-out") and over-express genes. These problems include specifically targeting

genes for disruption to obtain a viable transgenic animal, or targeting specific organs

in transient over-expression studies.

Although systems have been developed to create a variety of specific mutations

(chromosome rearrangements, deletions, insertions, point mutations, tissues specific

mutations, inducible mutations, etc. [23, 29, 168]), the process is time consuming [67]

and the experimental manipulations are not trivial. The overall process for knocking-

out a gene follows these steps:

* The targeted gene is isolated (preferably from the same genetic background as

the intended blastocyst) from a genomic library to produce a clone.

* A construct is engineered to disrupt the gene by homologous recombination that

allows for double selection.

* Embryonic Stem (ES) cells are electroporated with the engineered DNA con-

struct.

* Transgenic ES cells are selected for through resistance to a toxic chemical (such

as gancyclovir). Individual clones are then selected.

* Clones are screened by Southern analysis and polymerase chain reaction (PCR)

for the appropriate homologous recombination event.
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* Positive recombinant ES clones are injected into blastocysts and implanted into

the uterus of a foster mother.

* Pups are born and chimeric animals can be selected by their coat color. The

recombinant event is then validated again by Southern analysis (and PCR).

* Appropriate chimeric animals are then crossed to generate heterozygous and

homozygous mice.

Depending upon the success of each of these steps, generating new, validated knock-

out animals with the correct mutation takes at least one and a half years, and more

typically two to three years [67, 168]. A similar process is used to introduce a new

gene into an animal for expression studies [67]. Both of these processes are time

consuming, cumbersome because of the required level of screening, and not trivial to

perform.

In addition to transgenic techniques, it is also possible to conduct transient gene

expression experiments by transfecting cells with an expression vector. While this is

relatively easy with primary cells or cell lines2, transient over-expression in animals

can be more difficult and requires some degree of optimization. In most cases either a

viral vector or plasmid DNA are injected directly into the animal, and the phenotype

is observed post-injection [37, 41, 135, 255]. Potential issues can arise in targeting

specific tissues depending upon the mode of delivery and vector used, as well as

unintended vector effects. Vector effects can be controlled for in experiments, but

may still generate artifacts if they interfere with the animal's physiology. Because of

these reasons the ability to test a gene's function in vivo has not kept pace with the

ability to identify potentially important disease related genes [75].

Until recently generating knock-out cell lines was also difficult, requiring a high

degree of screening, and many cell lines were derived from the knock-out animal

itself. Further, cell lines suffer from being a less relevant animal model. Fortunately

2 Transfection experiments in cell culture can be performed simply by exposing the cells to a trans-
fection mixture containing the DNA vector of interest and a chemical carrier. Some optimization
is required, however, the results may be adequate for screening gene effects or to study particular
molecular or cellular phenomena such as protein binding, protein phosphorylation, or metabolism.
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this situation changed with the discovery of RNA interference (RNAi), which allows

the creation of "functional knock-outs" through post-transcriptional gene silencing.

Thus for the first time, it is now possible to efficiently decrease gene expression in

primary cells and cell lines, and to a lessor degree animals.

3.3 RNA Interference

RNA interference (RNAi) refers to a highly conserved biological pathway that can

be exploited for post-transcriptional gene silencing in many different cell types [98,

160]. First discovered in Caenorhabditis elegans [73],its efficacy has been subsequently

demonstrated in Drosophila melanogaster [188], plants [249], a variety of cell lines [63,

138], and even whole animals [106, 158]. Interestingly, among these distantly related

organisms, the different mechanistic aspects of the RNAi pathway have diverged,

making the use of RNAi for gene silencing species dependent. The core pathway that

appears to be well conserved is illustrated schematically in Figure 3-1.

Gene
~ Silencing

Rise
Complex

f)

Dicer
Complex

Extracellular
Space

Cell
Membrane Intracellular Space

Figure 3-1: The core pathways of RNA interference (RNAi). RNA may be delivered
by transfection to the RISC complex to activate the pathway (1); or it can be pro-
duced endogenously from a transfected plasmid, expressed as a micro-RNA from the
genome, or expressed from an engineered virus (2).

In the core pathway, double-stranded RNA (dsRNA), enters the cell cytoplasm, ei-
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ther through the transcription of endogenous genes encoding microRNAs (miRNA) [90],

viral delivery [209, 216], or complex formation with a lipid carrier and endocyto-

sis [55, 63], where it encounters the Dicer enzyme complex. This complex has two

RNase III motifs, an RNA helicase domain, and a dsRNA binding domain [176, 198].

Dicer cuts the dsRNA into 19 - 21 base pair (bp) fragments, typically with a 1 or 2

nucleotide overhang [170]. In most cell types the RNA Interference Silencing Com-

plex [97], or RISC complex, binds these small interfering RNAs (siRNA), unwinds

them, and uses their hybridization ability to target and degrade longer, complemen-

tary transcripts. In plants there is an amplification mechanism [108], and in some

cell types there is also a mechanism that inhibits translation [275]. Notably, if longer

dsRNA oligonucleotides (>30 bp) are used to transfect mammalian cells, they will

elicit a response entailing interferon synthesis and protein kinase (PKR) activation

that stalls translation by phosphorylating the translation initiation factor eIF2a [49].

This response is non-specific, inhibiting all of translation. Because longer dsRNA can

stop translation in mammalian cells, Dicer's role appears to be in processing miRNAs.

miRNAs are endogenously expressed RNAs that form hairpin loop and stem struc-

tures that are cleaved to their active form. Although translation inhibition can occur

in the presence of long dsRNA, researchers have shown that the silencing pathway

can be activated downstream of Dicer, by supplying short interfering RNAs (siRNAs)

to RISC [242].

Thus far most research using RNAi has focused on reducing the expression levels

of single genes, and observing the resulting phenotype at some subsequent point in

time. These experiments have primarily investigated the effects of specific genes on

predefined dependent variables [25, 157], modulation of the host system response to

infection [165, 118], and preliminary findings in animals [155, 158, 209].

The RNAi pathway provides a new tool for exploring gene function. Use of the

RNAi pathway enables a simple and efficient way to modulate gene expression by

creating effective loss-of-function phenotypes. This assumes that the gene silencing

pathway itself functions autonomously and is truly gene specific, a hypothesis yet

to be fully proven [117, 214]. Furthermore, the technique relies on the selection of
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efficacious targeting sequences, which has been studied extensively [62, 96, 204, 247].

Because the silencing mechanism of RNAi occurs via a protein-catalyzed path-

way, the dynamics of the pathway must be considered for optimal application of this

method. In each RNAi application the efficiency of silencing depends on a number

of factors, some of which are under the control of the experimenter. To conduct an

RNAi-based silencing experiment, gene specific sequences must be selected and de-

livered to the cells at a predetermined time. It is therefore important to understand

how an experimental protocol affects gene silencing experiments. To understand this

relationship, one must account for a number of key variables including the efficiency

of transfection, the dynamics of gene activation and repression, the level of mRNA

transcription, the stability of the mRNA transcript, the rate of protein translation,

and the protein's stability, among other factors.

In this work we developed RNAi-based gene silencing protocols in hepatoma cells,

and then extended those results to primary hepatocytes. Gene silencing provides an

efficient way for us to screen genes identified in other studies in a relevant cell culture

model, which serves as the first level of characterization preceding future physiological

studies in animals. While developing these methods, we also investigated some of

the primary experimental parameters that control RNAi-based gene silencing and

formulated a model to describe the silencing pathway. We studied the effect of RNA

concentration, complex exposure time, and the relative timing of transfection on the

dynamics of gene silencing in cells transiently expressing green fluorescent protein

(GFP). RT--PCR was used to measure the GFP transcript levels, while the amount

of protein was determined by measuring the fluorescence emitted from washed cells.

We found that the level of gene silencing can be controlled between 0% and 100% by

altering the experimental parameters used. In addition, we also developed a simple

model that is useful to understand how these experimental parameters affect the

degree of gene silencing and help plan more complex experiments where multiple

genes are involved.
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3.3.1 RNAi Experimental Development

An important determinant of gene silencing experiments is the conditions of the

siRNA transfection. In both cell culture and animal experiments [160] the amount

of siRNA used and method of delivery are critical parameters. Depending upon the

duration and desired level of gene silencing required a particular experiment, the

siRNA dose will be influenced by the siRNA sequence, the level of gene transcription,

the stability of the mRNA transcript, and the stability of the siRNA. Many different

delivery methods have been demonstrated in the literature [222], however, in this

work we focus on non-viral delivery of synthesized siRNAs.

The efficiency of RNA transfection into Hepal-6 cells was measured using fluorescein-

labeled, non-silencing RNA. Figure 3-2 on the next page shows a titration of the RNA-

dependent fluorescence measured one day after transfection for different amounts of

labeled siRNA in the transfection mixture. As shown, a monotonically increasing

response is obtained. Besides dose, the efficiency of transfection also depends on the

length of time that the cells are exposed to the transfection mixture. Figure 3-3

shows the dynamic change in RNA-dependent fluorescence on subsequent days fol-

lowing exposure of Hepal-6 cells to 1 g of fluorescein-labeled non-silencing RNA

for different lengths of time. The results indicate that different amounts of siRNA

may be delivered by varying the dose of RNA in the complex mixture and the time

of exposure. The latter effect, however, saturates above two hours when 1 g of RNA

is used.

Next we examined the silencing of a GFP expressing plasmid by co-transfection

with GFP siRNA. Figure 3-4 on page 72 shows that fluorescence decreases with

increasing amounts of siRNA. In this system, control cells were treated with plasmid

and (unlabeled) non-silencing siRNA. In contrast, 1 tg of siGFP was sufficient for

almost 100'%o silencing and the effect is stable for at least four days.

To study the effect of transfection time on the production of GFP in Hepal-6 cells,

we transfected the cells with a DNA plasmid encoding GFP. Positive control cells were

co-transfected with non-silencing siRNA, mock-transfected negative control cells were
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exposed to the transfection conditions but received no plasmid or siRNA, and GFP

siRNA was used to treat experimental cells at three different times. One treatment

of the experimental cells used co-transfection, in the second treatment the siRNA

was added 24 hours after the DNA transfection, and in the third treatment cells were

transfected with the siRNA 48 hours after the DNA transfection. The results of this

experiment are shown in Figure 3-5. It can be seen that only the co-transfection

condition was effective in silencing the expression of GFP protein as determined by

the fluorescence level. Transfecting 24, or 48 hours later had no significant effect.
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- Mock-Transfected Negative Control

Figure 3-5: Effect of transfection time on GFP Silencing.

To understand the dynamics of RNAi-based gene silencing in this system, we re-

peated the co-transfection experiments, this time measuring both the protein levels,

as indicated by the amount of fluorescence observed, and the mRNA levels, using

RT-PCR. Figure 3-6 on the following page shows the obtained data. The mock-

transfected cells show no increase in mRNA or fluorescence throughout the experi-

ment, demonstrating the background levels of the assays. The positive control (cells
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transfected with plasmid DNA and non-silencing siRNA) shows a very rapid increase

in the level of mRNA over the first 24 hours, followed by a subsequent increase in

the protein levels 24 hours later. Interestingly, there's a large decrease in the mRNA

levels on day two, indicative of plasmid loss from the cells. In the cells co-transfected

with GFP siRNA, there was some accumulation of mRNA, but much lower than the

level of the positive control, and the protein level never exceeded that of the negative
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-Figure 3-6: Dynamics of GFP mRNA and protein levels during gene silencing with
siRNA.

Figure 3-6 illustrates the importance of monitoring both the RNA, and the pro-

tein levels in this system. For example, although there were only small changes in

the RNA levels on days 2, 3, or 4 there are actually large differences in the protein

levels. In Figure 3-6 the shallow rise of the GFP mRNA level in the GFP siRNA

co-transfected treatment demonstrates two things. First, although the observed flu-

orescence never increased over the levels of the negative control, the mRNA level did

increase. Thus to suppress the level of transcripts in the co-transfected cells to that
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of the negative control cells more siRNA must be delivered. Second, because there

was no observed increase in the fluorescence level in the co-transfected treatment,

despite a small increase in mRNA levels, the fluorescence assay may not be sensitive

enough to adequately quantify the amount of GFP protein at low concentrations.

Because of the steep decline in the GFP mRNA levels of the positive control, it

is clear that any transfection time other than co-transfection will not result in high

levels of silencing. For some experiments, only partial silencing may be desirable, and

controlling the time of RNA transfection is one way in which partial silencing may

be obtained.

The principal finding illustrated by Figure 3-6 is that the dynamics of gene ex-

pression is a key factor to effectively manipulate the RNAi silencing pathway. By

knowing when a gene is activated and how quickly it is repressed, the rate of tran-

scription and translation, the mRNA and protein stability, and the rate of transcript

degradation through the RNAi pathway, one can design robust experimental protocols

to modulate the intracellular concentration of RNA and protein to desired levels.

RNAi Gene Silencing Model

The experimental system in which the cells are co-transfected with plasmid DNA

expressing a reporter gene and the corresponding specific siRNAs has been investi-

gated by a number of researchers [63, 187], but the system dynamics have not been

studied in detail. The results of Figures 3-2 - 3-6 were used to construct a model

capturing the current understanding of the RNAi mechanism in fully confluent, ad-

herent manmmalian cells. The model describes the dynamics of mRNA transcript (T),

protein (P), plasmid (template DNA, D), and transfected siRNA (R) concentrations

during RNAi-based gene silencing from a transfected plasmid by the following set of

differential equations:
dD
-= -kdDD (3.1)

dR
-kdRR (3.2)

dt
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dT
d = kTD - kTdT - kTRRT (3.3)

d = kpjST-kpdP (3.4)

Concentrations are expressed per unit cell mass. The loss of plasmid is represented as

a first-order process, but this could also be thought of simply as the loss of transcrib-

able template, due to gene repression. A similar first-order process is assumed for the

loss of siRNA, R. Transcripts are generated at a rate proportional to the concentra-

tion of plasmid present and similarly destroyed in a first order process. The silencing

mechanism reflected in the last term of equation 3.3 is assumed second order with

respect to the concentration of the silencing RNA and transcript. Finally, the level

of protein production is proportional to the concentration of transcript, and degrades

according to a first order process.

The rate constants were determined by minimizing the squared difference between

the numerically integrated model predictions and the actual data for both the mRNA

and protein levels of the co-transfected and positive control treatments. The deter-

mined rate constants agree well with those measured previously in the literature [211]

and are given in Table 3.1.

Figure 3-8(a) compares the model results with the data for the mRNA concentra-

tions under the different conditions. The model accurately describes the kinetics of

the mRNA pool for the positive control, silenced, and negative control treatments. It

predicts a maximum in the pool size approximately 0.5 days following transfection,

followed by a steady decrease in mRNA as the plasmid is lost from the culture. Fig-

ure 3-8(b) shows the model predictions for the mRNA levels when siRNA transfection

occurs 24, or 48, hours after DNA transfection, while Figure 3-8(c) shows the model

predictions for the protein levels under all conditions. Replotting the predictions from

Figure 3-8(c) as a percent fluorescence of the positive control allows us to compare

it with the original data obtained. Figure 3-8(d) shows the resulting comparisons.

The trends agree qualitatively well with the actual data, illustrating the utility of the

model.

Although models like the one designed here are system specific, they are valuable
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Rate Constant Value Description
kdD (day- 1) 1.68 Gene repression, or loss of plasmid rate constant.

Directly contributes to the decreasing
concentration of transcript over time.

kdR (day-1 ) 1.93 siRNA degradation rate constant. Directly
contributes to the reduction in mRNA via the
RNAi silencing pathway.

kts (transcripts/ 301.69 Transcript synthesis rate constant.
template/ day)

ktd (day-1) 2.11 Transcript degradation rate constant.
ktR (day-l siRNA- 1) 16.67 Transcript degradation rate constant from the

RNAi silencing pathway. Directly contributes to
the reduction in mRNA via the silencing
pathway.

kpS (protein/ 0.11 Protein synthesis rate constant.
transcripts/ day)

kpd (day-1 ) 0.04 Protein degradation rate constant.
Ro (siRNA/ cell) 1.0 Initial concentration of siRNA in cell.

Table 3.1: Rate Constants for RNAi-Based Gene Silencing Model.

tools in exploring the outcome of different gene silencing protocols and the interplay

between key experimental parameters. To illustrate, the model was applied to a par-

ticularly interesting case arising from multi-gene interactions. Consider the relatively

simple two gene system in which one gene, A, induces a second gene, B, and the

second gene in turn represses A. This situation can arise in a number of biological

contexts [1,:)2, 226] and can result in oscillatory behavior depending upon the rate

constant values. The model equations are:

dRA
dR= -kRARA
dt

(3.5)

dTA
- = kTsAdt

- kTdTA - kTRARATA - kTAPPB

dPAP- = kPAsTA - kPAdPA
dt

dRB
= -kRBRBdt

(3.6)

(3.7)

(3.8)

3.3. RNA. INTERFERENCE 79



3.3. RNA INTERFERENCE 80

dTB
= kTSBPA - kTBdTB - kTRBRBTB (3.9)

dPB - kPBTB - kPBdPB (3.10)

Concentrations are expressed per unit cell mass, and the units and processes are sim-

ilar to those described in the previous model. Gene A is constitutively transcribed,

resulting in a zero-order generation process for transcript A, but repressed (or equiv-

alently, degraded) by a first order process controlled by protein B. Gene B is induced

by the protein product of gene A, resulting in a first-order accumulation.

The behavior of the native system using predefined rate constants is shown in

Figure 3-10(a). Here we see the rising rate of transcript A leads to the formation of

protein A, followed by the formation of protein B, which eventually rises to a level that

suppresses gene A transcription. This type of behavior could easily be identified in

microarray experiments where, depending upon the sampling frequency and method

of autoscaling, these profiles would have a high probability of clustering together or

being linked through time lagged correlation analysis.

In this system the timing of RNA transfection is crucial and can have a variety

of results from no effect to prolonged silencing. Likewise, depending upon how much

knowledge is known a priori, the time at which RNA transfection is initiated can be

exploited to control or study the system. For example, if genes A and B were identified

in a cluster and we wanted to study their effects, then one approach would be to silence

each gene individually. In contrast to the previous system, if we transfected at the

perceived time of gene induction in an attempt to completely silence gene B for an

extended period of time, virtually no change in the mRNA and protein levels will be

observed as shown in Figures 3-10(b) and 3-10(c), respectively. Conversely, if gene

B siRNA is transfected 0.4 days after gene A induction, then accentuated silencing

can be attained and much larger differences in the mRNA and protein levels between

the silenced and control cultures observed (Figures 3-10(b) and 3-10(c)). If repeated

doses are used, then gene B can be effectively silenced, eliminating its repressive effect

on gene A to a greater extent, and allowing a more in-depth study of gene A at low

levels of gene B expression (Figure 3-10(d)).
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Figure 3-9: Model predictions of RNAi-based gene silencing in a two gene system.
(a) Model predictions for native expression of genes A and B with no silencing. (b)
Comparison of transcript levels between gene B silencing treatments. Only small dif-
ferences are observed between the untransfected negative control and co-transfection
conditions. However, the delayed transfection condition becomes 0.5 days out of phase
with the negative control.
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The model used to describe our co-transfection experiment also has utility in

designing optimal experiments for endogenous genes that can be activated and re-

pressed. Generally gene silencing will be most effective if the siRNA is transfected at

the time of gene induction. However, in some cases we investigated, depending upon

the rate constants governing gene expression, gene silencing may require unreasonably

large amounts of siRNA. Such procedures are expensive and may be toxic to cells that

can only tolerate lower amounts of transfection reagents. These situations can usually

be mitigated, maintaining effective silencing for the desired duration, by using much

smaller doses with repeated applications. The protocol specifications will be set by

the experimental hypothesis and the anticipated variance in the dependent variable,

whether RNA, protein, or some other molecule. Additionally, within any desired pro-

tocol, other effects should be considered to tailor the regimen for the specific system

including the tolerance of the cells to the transfection conditions and length of time

over which the silencing must occur. For example, because most RNA transfections

are performed in serum free medium (to avoid RNA degradation caused by RNases

within the serum), using higher levels of siRNA with lower complex exposure time

may be useful when transfecting cells that are sensitive to the absence of serum or

other medium constraints.

3.3.2 Use of the RNAi Pathway for Gene Silencing

In rare cases, the use of RNAi may not be feasible to silence a desired gene. If the

level of gene transcription is high, but the efficiency of transfection is low, then stable

transfection using a retroviral vector, followed by cell selection, may be required, or

the use of transgenics to generate a knock-out animal may be unavoidable. Because

cell lines can vary greatly in their transfection efficiency, it is prudent to optimize

the transfection prior to beginning a set of silencing experiments. In this way, an

optimized procedure can be used to expedite the experiments and any constraints that

the transfection may create will be recognized and accounted for during experimental

design.

Despite RNAi's apparent ease of use, the results can easily be misinterpreted if
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careful experimental planning and monitoring are not observed. For example, had the

GFP siRNA only been transfected 24 or 48 hours after the plasmid DNA, virtually

no silencing would have been observed, as shown in Figure 3-5 and 3-8(d). In other

cases, even if dynamic experiments are not being performed, if the rate of protein

turn-over is slow, then even when transcript levels fall to zero adequate amounts

of protein may reside in the cell, performing its normal function, and resulting in

no observed phenotypic difference. For these reasons it is important to monitor the

gene's products, not only at the transcriptional level, but also at the protein level

when possible.

In order to experimentally decompose cascades of interacting genes within a net-

work, knowing the right time to transfect during transient experiments is critical. In

this regard, we have shown the utility of a simple model that can help determine

when to transfect and how much RNA to use. The model takes into account the rate

of transcription, transcript stability, translation efficiency, protein stability, siRNA

stability, and rate of degradation due to RNAi-based silencing. In Figure 3-8(d) we

see that the model predictions agree qualitatively well with the data, indicating low

levels of silencing would be observed if the cells were transfected 24 to 48 hours af-

ter the DNA transfection. Conversely, our model of a two gene system described by

equations 3.5 - 3.10, transfecting initially with siRNA for gene B has little effect,

while transfecting at a later time results in more effective silencing of gene B. Indeed,

for a given amount of siRNA, this model could be used to predict the appropriate

transfection time for any desired transcript or protein level.

The ability to decrease gene expression, or partially silence a gene, at just the

right time, may not initially seem enormously valuable, until one starts to consider

networks of interacting genes that often underlie quantitative traits. Baltimore, et.

al., recently dissected the interactions between nuclear factor kappa-B (NFkB) and

its small family of inhibitors, IkB-a,b,e [110]. In this work, the researchers relied

upon knock-out cell lines to finally establish the correct interactions between the

components, which showed oscillatory behavior. Not only could this have been done

with much less effort using RNAi, but by partially silencing certain components at
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precise times, the researchers could have potentially shown cycle dampening and other

phenomena, assuming the mathematical model they proposed is correct.

It's important to note, that although our model of differential equations describes

these processes in terms of "rate constants," none of these model parameters are

actually constant, and all need to be assessed for a given set of experimental conditions

and genes. For example, depending upon the cellular environment, transcription may

be enhanced or repressed through the binding of regulatory elements upstream of

the gene [24, 244]; likewise transcripts can possess differential stability depending in

part upon their UTR sequences [268]; translation efficiency can also be affected by

UTR sequences [191]; and the distribution of enzymes involved in the proteasome

degradation pathway may affect protein stability [84]. Certainly for specific genes,

different mechanisms may influence any of these steps. The point is that in order

to utilize the model, the parameters should be determined under the desired set of

conditions so that the model represents as closely as possible the in vivo situation.

The rate constants for all of the equations are easily determined using a variety of

experimental techniques. If the gene is known to be inducible, then simply measur-

ing the transcript abundance following induction will lead to the transcription rate

constant. (C:onversely, spike and chase assays [79], or the nuclear run-on assay [239],

can determine the amount of new synthesis, which over time can also determine the

rate. Transcript degradation can be determined by exposing cells containing a tran-

script pool to the RNA polymerase II inhibitor, actinomycin, and then tracking the

rate of pool degradation [203]. With this information, one can compare the rates in

the presence and absence of siRNA, to determine the degradation rate due to the

RNAi-gene silencing pathway. Protein synthesis can be measured in similar ways,

but often relies on the use of labeled essential amino acids [5]. Protein degradation

can be measured by exposing cells containing a protein pool to the translation in-

hibitor, cycloheximide, and then tracking the fall in protein levels over time. One can

use either fluorescently labeled, or radio-labeled, siRNA in transfection experiments

to determine the rate of degradation of the RNA in vivo.

RNA interference has the potential to greatly expedite our understanding of gene
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function. Experimentally it is easier to implement than transgenic technologies, how-

ever still requires careful planning and monitoring to be effective in a given experi-

ment. Here we have shown that both the amount of RNA used in the transfection, as

well as the complex exposure time during the transfection, can be altered to facilitate

the experimental design. These can be important factors in planning more complex

experiments, where the silencing of multiple genes is involved.

We have also shown that the dynamics of gene transcription are important to con-

sider when using RNAi-based gene silencing. Whether conducting static or dynamic

experiments, one must know the appropriate time to transfect when using siRNA.

Using a GFP-expressing plasmid as our model system, we have shown that vastly

different results can be obtained depending upon when the siRNA is transfected rel-

ative to gene induction. Because many phenomena of interest rely on gene induction,

we feel having a good understanding of the transient nature of RNAi, and the associ-

ated implications is important to adequately using the technique. To help investigate

and understand our model system, we created a mathematical model that could track

the concentration of all key components. The RNAi system fits into this framework

well, suggesting that the model will have utility in planning, and analyzing, future

experiments.

3.3.3 Methods

Cell Culture

Hepal-6 mouse hepatoma cells (ATCC) were expanded in T25 flasks (Corning) con-

taining 10 mL of DMEM medium (Gibco, 25 mM glucose, 4 mM glutamine, phe-

nol red; formulated to 1% with penicillin-streptomycin and 10% with fetal bovine

serum) until confluent at approximately 4 x 106 cells per flask. These cells were then

trypsinized and used to inoculate 24-well plates (BD Falcon), which were monitored

for confluency (typically 2 - 3 days post-inoculation). All cells were cultured in an

incubator at 37 C with a 5% CO2 atmosphere. All experimental treatments were

conducted in either triplicate or quadruplicate.
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DNA Transfection

Hepal-6 cells expressed green fluorescent protein (GFP) following transfection with

pTracer plasmid DNA (Invitrogen), which encodes the GFPuv gene, expressed from

a cytomegalovirus (CMV) promoter. For each well, 0.7 pug of DNA was diluted into a

final volume of 50 IL of serum free Opti-MEM medium( Gibco). In a separate tube,

1.4 L of Lipofectamine 2000 (Invitrogen) was mixed with 48.6 L of Opti-MEM

medium per well. The two mixtures were allowed to incubate for five minutes, were

mixed, and then allowed to incubate for another 20 minutes to promote the formation

DNA--carrier complexes. While the mixture incubated, the medium from each well of

the 24-well plate was removed, and the cells were washed with sterile, pre-warmed,

PBS (Gibco). Following the incubation, each well received 100 uL of the complex

mixture, and was allowed to incubate. One milliliter of fresh medium was added

to each well after the incubation was complete. Mock-transfected control cells were

treated in the exact same manner, however, the mixture used did not contain any

pTracer DNA.

RNA Transfection

Hepal-6 cells were transfected with synthesized siRNA. In these experiments two

types of siRNA were used: siGFP RNA (Qiagen, catalog # 1022064) and non-

silencing, siNS, RNA (Qiagen, catalog # 1022076, catalog #1022079). Our trans-

fection protocol used Lipofectamine 2000 as the RNA carrier because a previous

comparison using Transmessenger (Qiagen) or Oligofectamine (Invitrogen) carriers,

demonstrated that Lipofectamine 2000 resulted in the highest transfection efficiency

as shown in Figure 3-11.

The amount of siRNA used per well varied depending upon the experiment, how-

ever, the general procedure used was always consistent. Typically the siRNA was di-

luted into a final volume of 50 L of serum free Opti-MEM (Gibco) medium. Serum

free medium is necessary to avoid RNase activity that may be present in serum and

degrade the siRNA. In a separate tube, Lipofectamine 2000 (Invitrogen) was mixed
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Figure 3-11: Comparison of RNA transfection reagents.

into a final volume of 50 jiL of serum free Opti-MEM medium per well. Twice the

amount of Lipofectamine 2000, as measured in /IL, was used for a given amount of

siRNA, as measured in /ug. Thus for a mixture containing 1 /,g per well of siRNA,

2 /zL per well of Lipofectamine 2000 was used. Previous experiments showed that

there was no significant difference whether 2 pL or 3 ALL of Lipofectamine per ,ug of

siRNA were used (data not shown). The two mixtures incubated for five minutes,

were mixed. and then allowed to incubate for another 20 minutes. While the mixture

incubated, the medium from each well of the 24-well plate was removed, and the cells

were washed with sterile, pre-warmed, PBS (Gibco). Following the incubation, each

well received 100 L of the siRNA complex mixture, and was allowed to incubate for

at least two hours unless otherwise noted.

Fluorescence Measurements

Both GFP and fluorescein fluorescence measurements were made by transferring the

washed cells to black 94-well plates and using a plate reader with appropriate optical
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filters (Packard). Before transferring the cells, the growth medium was removed and

the cells were washed with 1 mL of prewarmed, sterile PBS. After washing, the cells

were trypsinized using 100 ,uL per well of trypsin (Gibco). The entire cell slurry was

then transferred to the 94-well plate and fluorescence measured on the plate reader.

RT-PCR Measurements of GFP mRNA Levels

Total RNA was isolated from individual wells using the RNeasy kit (Qiagen) according

to the manufacturer's instructions. Briefly, the cells from each well were treated with

500 /uL of buffer RLT formulated with -mercaptoethanol. The resulting lysate was

transferred. to a QIAshredder column (Qiagen) and homogenized using centrifugation

for 2 minutes at maximum speed. One volume of 70% ethanol was added, and the

ethanol-lysate mixture was loaded onto RNeasy mini spin columns provided with the

kit. The columns were washed once with 700 L of buffer RW1, and then twice with

500 AL of buffer RPE, and finally eluted using 30 AL of RNase free water (Ambion).

Typical yields were between five and 10 ug of total RNA per well, and were stored

at -30 C until processed.

Our RT-PCR assay uses a two-step protocol in which complementary DNA (cDNA)

is first synthesized, then diluted and used in a polymerase chain reaction (PCR). For

cDNA synthesis, 1 ug of total RNA was mixed with 1 ug of oligo-dT18_20 (Invitro-

gen), heated at 70 C for ten minutes, and then mixed with 2 L of 5 mM dNTPs

(Invitrogen), 2 iL of 100 mM DTT (Invitrogen), 4 uL of 5X First Strand Buffer

(Invitrogen), and 200 U/ mg of Superscript II reverse transcriptase. The final volume

of each reaction was 20 ,uL, with the remainder consisting of RNase free water. The

reverse transcription reaction proceeded for two hours at 42 C. Once complete, the

remaining RNA was degraded by addition of 1.5 /zL of 1 N NaOH and incubation at

65 C for 10 minutes. The NaOH was then neutralized by the addition of 1.5 AL of

1 N HC1, and 3 L of the final mixture was diluted into 297 LL of RNase free water.

RT-PCR was conducted in 94-well plates using the iCycler RT-PCR machine

(Bio-Rad). Briefly, 1 L of the final, diluted cDNA template was mixed with 19 AL

of RNase free water, 25 LL of Bio-Rad RT-PCR Supermix (Bio-Rad), 2 L of sense
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and antisense primers, and 1 LL of 12.5 mM dNTPs. The final primer concentration

was 0.25 mM. The sense primer sequence was 5'- GGTGTTCAATGCTTTTCCCG -

3', and the antisense primer sequence was 5' - CGCGTCTTGTAGTTCCCGTC - 3'.

The resulting PCR fragment is 128 nucleotides long and has been verified using gel

electrophoresis. As an internal control we used a similar procedure to monitor the

levels of --Actin mRNA, which are assumed to be constant over most experimental

conditions. The PCR cycle used a single three minute hot-start at 95 °C, followed

by 50 cycles of 30 seconds at 95 °C, one minute at 60 °C, and two minutes at 72 °C,

during which time the reaction fluorescence was measured.

GFP standards were developed by amplifying the entire GFP gene by PCR, clean-

ing the resulting mixture, and then diluting it to concentrations from 10- 4 g/ LL to

10- 9 ug/ pL. The R2 value of the standard curve, relating the threshold cycle to the

amount of GFP standard, was always greater than 0.97.
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Chapter 4

Hepatic Gene Identification

Having developed methods of gene identification described in Chapter 2, and tools to

accommodate gene characterization described in Chapter 3, we began our investiga-

tions into Type II diabetes using a relevant mouse model. Initially our work focused

on discovering genes that were important to mediating the liver's response to diet-

induced obesity, insulin resistance, and insulin sensitivity from fasting and weight

reduction [:201].

4.1 Gene Identification Strategy

Obesity is a growing concern in the industrialized world. It is estimated that over

61% of adult Americans are overweight or obese [128] and an alarming number of

children and adolescents are following suit [86]. Of primary concern are the associ-

ated complications stemming from obesity's growing prevalence, among which type

II diabetes is reaching epidemic proportions.

The liver plays a critical role in glucose homeostasis by secreting glucose into the

blood during the postabsorptive state. During insulin resistance, hepatic glucose out-

put (HGO) increases and several key molecules contributing to this phenotype have

been widely studied [38, 132, 182, 273]. Despite these extensive efforts, the genes

identified thus far do not alone account for all of the variability in HGO, which is

a complex, quantitative phenotype. Further insight may be obtained by conducting
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genome wide transcriptional studies during diet induced obesity (DIO) and its asso-

ciated insulin resistant physiological state. This approach is a critical step towards

further defining the molecular processes that regulate the phenotype and thereby

augment the discovery of potential therapeutic targets.

C57/BL/6J mice fed a high-fat diet become obese, hyperglycemic, and hyperin-

sulinemic, reflecting an insulin resistant metabolic state [61, 76, 148, 189, 234] that

resembles the human condition. Although it has been demonstrated that short-term

caloric restriction can improve insulin resistance [13], the regulatory pathways that

control hepatic metabolism during DIO and associated insulin resistance, and the

improvement of insulin resistance with caloric restriction, are the focus of intense

research efforts. The molecular mechanisms underlying these pathways rely upon

alterations in gene transcription [180], which can be monitored using DNA microar-

rays [122, 243].

To investigate hepatic gene regulation in response to DIO and insulin resistance,

whole genome microarrays containing 17,280 gene probes were used to examine tran-

scription in two groups of C57/BL/6J mice: 1) the "control mice" received a normal

diet for 10 weeks, 2) the "high-fat mice" received a high-fat diet for 10 weeks. In

addition, to assess hepatic gene regulation in response to caloric restriction, which is

a commonly recommended treatment for DIO and insulin resistance, a third group of

mice was used, the "fasted/ weight reduced mice," which was fed the same high-fat

diet for ten weeks followed immediately by 48 hours of fasting, returning their weights

to baseline levels prior to tissue harvest. Fasting/ weight reduction data provides fur-

ther differentiation among genes that not only respond to DIO and insulin resistance,

but are also normalized by caloric restriction.

An extensive bioinformatics analysis led to the identification of 41 discriminatory

genes participating in key molecular pathways in DIO, insulin resistance, and fasting/

weight reduction. The implicated pathways involve signal transduction and protein

metabolism and secretion. In addition, the 41 genes identified can accurately clas-

sify the three groups of mice ("control," "high-fat," and "fasted/ weight reduce"),

and importantly, they represent a set of candidate genes that may influence hepatic
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function during periods of insulin resistance and sensitivity.

4.2 Experimental Results

The effect of 10 weeks of high-fat feeding and 48 hours of

caloric restriction on body weight in C57/BL/6J mice

C57/BL/6.J mice significantly increased their body weight by 32% after 10 weeks

of high-fat feeding (p < 0.001; Table 4.1). After 48 hours of fasting, their weights

returned to baseline levels and were not significantly different from the control mice,

but were significantly less than mice maintained on the high-fat diet (p < 0.001;

Table 4.1).

Weight 48 hours Weight at
Feeding Prior to Harvest Harvest

Diet Regimen (Average ± St. Dev., n) (Average - St. Dev., n)
Normal Chow Control 35.6 ± 1.8, 9 35.6 ± 1.5, 9

High-Fat Control 47.1 ± 5.8*, 9 51.7 ± 4.4*t, 5
High-Fat Fasted 37.3 ± 2.6, 4

Table 4.1: Experimental treatments and mouse weights.

*Indicates that the weight was statistically different from the control at P< 0.001.
tIndicates that the weight of the high-fat and fasted mice was different at P< 0.001.

Microarray analysis of hepatic genes after 10 weeks of high-fat

feeding and 48 hours of fasting/ weight reduction in C57/BL/6J

mice

To determine hepatic gene transcription levels, total RNA was isolated from liver

tissue of control, DIO-C57/BL/6J mice, and DIO-C57/BL/6J mice fasted for 48

hours. The RNA was fluorescently labeled during a reverse transcription reaction and

hybridized l;o DNA microarrays that were used to measure the transcript abundance

of each gene.
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Employing statistical and data mining methods we searched the transcription

data set for hepatic genes that show statistically significant responses during DIO,

associated insulin resistance, and fasting/ weight reduction. We used the t-test to

determine the statistical significance of every pairwise gene difference between the

treatments. The t-test showed that 1981 genes had at least one statistically significant

(p < 0.05) change between the treatments. Within this gene set, 113 genes were

significantly changed between the high-fat fed mice and the control mice, 169 genes

were significantly changed between the fasting/ weight reduced mice and the control

mice, and 260 genes were significantly changed between the high-fat fed and fasting/

weight reduced mice, all at p < 0.01. From the 1981 genes selected by the p < 0.05

cutoff, we retained the 1169 genes that had a Wilks-A value below our cutoff criterion

of 0.47, which is equivalent to a p-value of less than 0.05 [115]. From these genes we

selected those with the greatest Fisher Discriminant Analysis (FDA) and Principle

Component Analysis (PCA) loading coefficients [54], resulting in the 41 genes reported

in Table 4.2.

To show individual gene responses to the dietary treatments, the 41 genes in

Table 4.2 were classified into six groups according to changes in the p-values from

pairwise comparisons between the control mice, the high-fat fed mice, and the fast-

ing/ weight; reduced mice. This classification arranges the genes according to their

transcript levels during the physiological states examined. For example, Group A in

Table 4.2 comprises genes that were significantly elevated or repressed (p < 0.05) by

high-fat feeding, but then normalized to (insignificant, p > 0.05) control levels by

fasting and weight reduction. Similarly, group B genes were significantly elevated or

repressed (p < 0.05) by high-fat feeding and partially normalized to control levels by

fasting/ weight reduction: the expression differences are still significant (p < 0.05)

when comparing both the high-fat and control mice with the fasted/ weight reduced

mice. The genes of each group along with their normalized expression levels are given

in Table 4.2.
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ldL lid White Bars = Control Mice
Black Bars = High-Fat Mice

Group A Gray Bars = F / WR Mice

Genes up- or down-regulated by the high-fat diet and normalized to control levels by

fasting/ weight reduction.

Gene GenBank Control High-Fat F/WR Biological

Name # Mice Mice Mice Role

Crym NM_ 016669 1.01 0.47 1.27 J.L-Crystallin

Cyp2c37 NM_ 010001 2.29 0.55 2.21 Cytochrome P 450

Eva BC015076 -0.70 0.00 -0.45 Epithelial

V-like Antigen

Kcnk8 NM_ 010609 1.33 -0.08 0.95 Potassi urn Channel

Ndph NM_ 010883 1.45 2.16 1.14 Neuron Function

Pmml AK004631 2.48 1.37 2.28 Protein Secretion

Serpina5 NM_ 008785 0.22 0.99 0.32 Serine Protease

Inhibitor

Sh3kbpl AK004636 0.16 1.43 0.26 Signaling

1110034 G24Rik AK004090 1.53 0.38 1.20 Unknown

1700019L13Rik AK006130 1.84 0.98 2.03 Unknown

493044 2L21Rik NM_ 026253 0.15 1.29 0.36 Unknown

4930579D07Rik AK016314 1.62 0.37 1.14 Unknown

4932422M17Rik AK016534 0.70 0.22 1.19 Unknown

continued on next page
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~ lid White Bars = Control Mice
Black Bars = High-Fat Mice

Group B Gray Bars = F / WR Mice
Genes up- or down-regulated by the high-fat diet and partially normalized to control

levelsby fasting/ weight reduction.
Gene GenBank Control High-Fat F/WR Biological
Name # Mice Mice Mice Role
Eif4a2 NM_ 013506 2.02 0.60 1.23 Translation

Fshj3-1ikeEST AK017593 3.00 1.68 2.67 Hormone
Mup4 NM_ 008648 3.23 1.82 2.58 SecretedProtein

PTP4a2 NM_ 008974 1.57 1.07 1.41 Signaling
RGS3 AF350047 2.50 0.97 1.62 Signaling
Tcam1 NM_ 029467 2.02 0.98 1.56 Adhesion Molecule

lrr1l lrr.t White Bars = Control Mice
Black Bars = High-Fat Mice

Group C Gray Bars = F / WR Mice
Genes up-regulated by high-fat diet and fasting/ weight reduction, or genes down-regulated

by high-fat diet and up-regulated by fasting/ weight reduction.
Gene GenBank Control High-Fat F/WR Biological

Name # Mice Mice Mice Role

1500004A 08Rik AK005141 -0.73 -0.15 0.53 Unknown

2300009A 05Rik AK009046 0.49 0.15 1.16 Unknown

2810055C24Rik AK012951 1.17 0.52 1.52 Protein

Degradation

continued on next page
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lnJ1 lhL White Bars = Control Mice
Black Bars = High-Fat Mice

Group D Gray Bars = F / WR Mice

Genes up- or down-regulated by the high-fat diet and fasting/ weight reduction.

Gene GenBank Control High-Fat F/WR Biological

Name # Mice Mice Mice Role

Bmp2 NM_ 007553 1.79 2.40 2.86 Development

Copz2 NM_ 019877 3.47 4.88 5.85 Vesicle Trafficking

Fosb NM_ 008036 0.68 1.89 2.25 Signalling

Gabrrl NM_ 008075 0.49 1.78 2.34 Receptor

Has3 NM_ 008217 2.15 0.71 1.12 Hyaluronan

Synthesis

IL6st NM_ 010560 0.46 1.09 0.99 Signalling

Rab3c NM_ 023852 1.01 1.69 2.39 Exocytosis

Ttr NM_ 013697 2.90 2.23 1.70 Hormone Transport

1110007C24Rik AK014449 0.78 2.13 2.98 Unknown

2700062B08Rik NM_ 029838 2.17 3.58 4.19 Putative Collagen-

like (CLAC)

3110004A 18Rik AK013988 0.81 2.18 3.02 Unknown

4833414G15Rik AK019515 0.75 1.45 2.11 Putative

Phosphatase

4933432M07Rik AK017027 -0.63 0.53 0.30 Protein Degradation

5730458M16Rik AK017674 -0.32 0.68 0.91 Unknown

continued on next page
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lrrt1 lh White Bars = Control Mice
Black Bars = High-Fat Mice

Group E Gray Bars = F/ WR Mice

Genes up- or down-regulated by fasting/ weight reduction.

Gene GenBank Control High-Fat F/WR Biological

Name # Mice Mice Mice Role

Gtrl NM_ 023182 0.31 0.59 2.02 Protein Metabolism

Resp18 NM_ 009049 1.21 1.03 0.33 Hormone Secretion

Snrpg NM_ 026506 0.68 0.51 1.67 Translation

2310034£21 Rik NM_ 025631 -0.84 -0.54 0.33 Unknown

ktl lliIL White Bars = Control Mice
Black Bars = High-Fat Mice

Group F Gray Bars = F/ WR Mice

Genes up- or down-regulated by high-fat diet and fasting/ weight reduction.

Gene GenBank Control High-Fat F/WR Biological

Name # Mice Mice Mice Role

1700095D 18Rik AK007076 0.88 1.54 2.43 RNA-binding Region

Table 4.2: Log2 ratios of genes found common to all analysis methods. Included

are genes identified using t-test, Wilks-A ranking, fisher discriminant analysis, and

principle component analysis. These genes are organized by their pairwise t- test

results, and the relation between their log2 ratios as shown by the corresponding bar

charts. The log2 ratios of each group are measured relative to a standard reference

RNA sample (see Methods). F/ WR: Fasting/ Weight Reduced.

The 41 discriminating genes contributed to the classification observed in Figure 4-

1. In Figure 4-1, each sample is given two canonical variable (CY) scores, based on

weighted sums of its gene expression values. The genes with the largest contributions

to CVl and CV2 are given in Table 4.2, suggesting these genes underlie the biological

differences between the samples. Figure 4-1 shows that 10 weeks of high-fat feeding

altered the transcriptional levels of genes so as to separate the control and high-fat

mice in the CVl and CV2 space. However, while 48 hours of fasting/ weight reduction
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normalized many of the genes contributing to CV2, resulting in a return to control

levels for that variable, the genes contributing to CV1 remained perturbed, resulting

in the observed separation between the fasted/ weight reduced mice and control mice.

This suggests that while some genes, and their associated pathways that differentiate

DIO and insulin resistance from normal physiology, return to control levels as weight

is reduced, other genes remain perturbed, reflecting further physiological adaptations

that occur during these treatments.
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Figure 4-1: Fisher discriminant analysis plot of mouse liver samples. Samples were
scored according to the canonical variables determined by Fisher Discriminant Analy-
sis (FDA). Each canonical variable is defined as a weighted sum of 100 specific genes,
including each of the 41 genes contained in Table 4.2. To score a sample, the gene ex-
pression value is multiplied by an FDA coefficient, called a loading, and the products
from the 100 genes used in the analysis are summed to give the canonical variable
score for the sample. F/ WR: Fasting/ Weight Reduced.

Among the 41 discriminatory genes identified in this study, interleukin 6 signal

transducer (IL6st), protein tyrosine phosphatase 4a2 (PTP4a2), SH3-domain kinase

binding protein 1 (Shk3bpl), and regulator of g-protein signaling 3 (RGS3) are of
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special interest because based on known biology they may contribute to the physiolog-

ical changes that accompany DIO, insulin resistance, and increased insulin sensitivity

due to fasting/ weight reduction. Both IL6st and ShSkbpl are significantly upregu-

lated after 10 weeks of high-fat feeding (p < 0.001), but only Sh3kbpl is normalized

to baseline levels after 48 hours of fasting and weight reduction (Table 4.2). Both

PTP4a2 and RGS3 are significantly downregulated after 10 weeks of high-fat feed-

ing (p < 0.01), and both are partially normalized after 48 hours of fasting/ weight

reduction (p < 0.01 for fasted/ weight reduced versus high-fat and fasted/ weight

reduced versus control; Table 4.2).

RT-PCR analysis of IL6st, PTP4a2, RGS3, G6P, PCK1, and

malic enzyme

We compared the transcript levels measured by RT-PCR with the ratios measured

using DNA microarrays by dividing RT-PCR expression values observed in high-fat

fed mice and fasted/ weight reduced mice by the expression values measured in the

control mice. Liver mRNA levels for each mouse in the study were determined by

RT-PCR for IL6st, PTP4a2, and RGS3. The values measured by RT-PCR were not

significantly different from the results observed by hepatic microarray analysis (p >

0.05; see Table 2.3 on page 43) for all genes except IL6st between the fasting/ weight

reduced mice and control mice. Notably, in this single case, both microarray analysis

and RT-PCR show significant increases (p < 0.001) in the levels of IL6st mRNA,

demonstrating similar qualitative changes between the measurement methods. The

close agreement between the micoarray results and RT-PCR results validates the

specificity and accuracy of our microarray measurements. The difference in the ratios

between the values determined by RT-PCR and those determined by microarray

analysis was less than 30% for each of these genes (see Table 2.3 on page 43).

Although several commonly studied genes, such as glucose-6-phosphatase (G6P),

phosphoenolpyruvate carboxykinase (PCKI), and malic enzyme, were eliminated by

our bioinformatics analysis, we evaluated their expression by RT-PCR because of
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the considerable attention they have received in the literature in connection with

hepatic glucose output. G6P and PCK1 were upregulated following 10 weeks of

high-fat feeding, but only the change observed in G6P achieved statistical significance

(p = 0.09 for PCK1 and p < 0.01 for G6P in the high-fat versus control comparison;

Table 4.3). Fasting/ weight reduction resulted in even larger increases in mRNA levels

for both G6P and PCK1 (p < 0.01 versus controls; Table 4.3). In contrast, malic

enzyme exhibited significant underexpression following 10 weeks of high-fat feeding,

with further down-regulation following fasting/ weight reduction (Table 4.3).

High Fat vs. F/ WR vs.
Genes Assay Control Control
G6P RT-PCR 476 ± 72% * 769 + 216% *

PCK1 RT-PCR 132 ± 28% 217 ± 80% *
Malic Enzyme RT-PCR 9.1 ± 1.5% * 0.1 ± 0.1% *

Table 4.3: RT-PCR results for G6P, PCK1, and malic enzyme. Expression levels are
represented as a percent of expression in the control mice.

*Indicates that the measurements were significantly different from control values at
P < 0.01.

4.3 Discussion of Gene Identification Findings

Diet induced obesity (DIO) in C57/BL/6J mice is a commonly used animal model for

the development of insulin resistance in humans [61, 76, 148, 189, 234], which results

in simultaneous hyperglycemia and hyperinsulinemia. Although short-term caloric

restriction and weight loss can improve insulin resistance [13, 65, 104], the regulatory

mechanisms in the liver that lead to insulin resistance in response to DIO, as well

as the improvement of insulin sensitivity in response to short-term caloric restriction

and weight reduction, remain largely unknown. To identify genes involved in hepatic

physiology during DIO and short-term caloric restriction, we used DNA microarrays

to measure genome-wide transcript abundance.

The 41 most discriminating genes determined by our bioinformatics analysis lie

101



4.3. DISCUSSION OF GENE IDENTIFICATION FINDINGS

essentially within two large groups (see Table 4.2 on page 98): 1) Genes that are

significantly induced or repressed by 10 weeks of high-fat feeding and completely

(Group A) or partially (Group B) normalized by 48 hours of fasting/ weight reduction,

2) Genes that are significantly induced or repressed by 10 weeks of high-fat feeding,

but are not normalized by 48 hours of fasting/ weight reduction (Group D). Both of

these groups contain genes involved in signal transduction pathways, as well as protein

metabolism and secretion, highlighting the importance of these molecular pathways

in the hepatic response to DIO and fasting/ weight reduction.

Because genes in Group A and B (Table 4.2) were perturbed by DIO, their expres-

sion levels correlate with observed physiological differences that develop during this

condition. These differences include elevated concentrations of serum triglycerides,

leptin, and tumor necrosis factor-a, as well as changes in the levels of other factors

that have been previously demonstrated to play a physiological role during DIO in

C57/BL/6J mice [1, 76, 148, 189, 234]. Notably, Group A and B genes are either

completely (Group A, Table 4.2) or partially (Group B, Table 4.2) normalized fol-

lowing 48 hours of fasting/ weight reduction, when insulin sensitivity has increased,

suggesting they may be important to the development of hepatic insulin resistance

during DIO.

Several relevant signal transduction pathways are influenced by the genes within

Group A and B (Table 4.2), particularly ShSkbpl, PTP4a2, and RGS. While ShSkbpl

and PTP4a2 may be directly involved with insulin signaling, by respectively binding

PI-3-kinase and dephosphorylating protein tyrosine residues, RGS3 interacts directly

with G-proteins and some evidence suggests RGS family members may also indirectly

affect proteins in the MAPK signal transduction pathways [136] as well as certain

tyrosine phosphatases [140].

ShYkbpl (SH3-domain kinase binding protein, also called Ruk) belongs to the

CD2AP/ CMS family of adapter-type proteins, which mediate a number of different

cellular mechanisms including signal transduction [250]. Insulin signaling occurs via

phosphorylation of insulin receptor substrates (IRSs) that interact with signal trans-

duction molecules including PI-3-kinase, Grb2, nck, and SHP2 [267]. Sh3kbpl has
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been shown to directly inhibit PI-3-kinase signaling by binding the p85c regulatory

subunit in vivo and in vitro, and interacts with Grb2 in vitro [87]. Therefore, in-

creased levels of Sh3kbpl mRNA in the high-fat fed mice relative to both the control

and fasted/ weight reduced mice, suggests that Sh3kbpl may mediate DIO associated

insulin resistance in hepatocytes via a mechanism described in Figure 4-2.

Si H ic p
Phosphorylation Hepatic Glucose Output

SI (:rh( Glycogen SynthesisI, 1 - Growth
IRSinactive IRSactive Protein Synthesis

PI-3-Kinase PI-3-Kinase
inactive active

Figure 4-2: Inhibition of PI-3-Kinase signaling by Sh3kbpl. In this figure, insulin,
I, binds to its receptor, activating the receptor's tyrosine kinase activity. Insulin
receptor substrates, IRS, are activated by phosphorylation. IRS phosphorylates PI-3-
kinase, which migrates to the cell membrane where it generates phosphatidylinositol,
PI, second messengers, which alters physiological processes. Shown here, Sh3kbpl
is capable of binding the regulatory subunit of PI-3-kinase, inhibiting its ability to
generate PI second messengers, and thereby attenuating insulin signaling.

PTP4a2 (Protein tyrosine phosphatase 4a2) dephosphorylates tyrosine residues

in proteins. When insulin binds its receptor it activates the receptor's tyrosine kinase

activity [36, leading to autophosphorylation and subsequent tyrosine phosphorylation

of molecules containing Src homology 2 (SH2) or phosphotyrosine binding (PTB)

domains, such as insulin receptor substrates (IRSs). Therefore PTPs can influence

insulin signaling by dephosphorylating protein tyrosine residues. Although it would be

anticipated that PTPs would attenuate insulin signaling, they have been implicated

in both positive and negative regulation of this pathway [8]. A definitive role for

many PTPs in glucose homeostasis and insulin signaling has not been established,

however, PTPiB knock-out mice have enhanced insulin sensitivity and are resistant

to DIO [64]. Therefore if PTP4a2 also negatively regulates insulin signaling, its
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significant downregulation (p < 0.01) following 10 weeks of high-fat feeding may be

a physiological adaptation that helps protect hepatocytes against insulin resistance,

which is normalized by fasting/ weight reduction.

RGS3 (Regulator of G-protein coupled receptor (GPCR) signaling 3) has been

primarily studied in neurons [7, 120, 225] and cells in culture [31, 253]. RGS proteins

bind G subunits and generally increase the GTPase activity [224]. We found that

hepatic RGS3 mRNA levels are significantly decreased (p < 0.01) after 10 weeks of

high-fat feeding, but partially normalized by fasting/ weight reduction. These find-

ings are particularly relevant because hepatocytes express a truncated form of RGS3

that has been shown to directly inhibit Gsca stimulated cAMP production and Gq6c

stimulated IP production [33], in addition to interacting with, Gioe [175]. Glucagon

signals via a GPCR that stimulates adenyl cyclase and increases cAMP levels [14].

Because the truncated form of RGS3 inhibits cAMP production, lowering RGS3 con-

centration may augment basal cAMP levels and thereby promote hepatic glucose

output resulting from cAMP induced phosphoenolpyruvate carboxykinase (PCK1)

expression and cAMP repressed glucokinase transcription. Although glucokinase ex-

pression levels were not measured, PCK1 mRNA levels were increased by both 10

weeks of high-fat feeding and fasting/ weight reduction (see Table 4.3 on page 101).

While genes in Group D (see Table 4.2 on page 98) were also significantly induced

or repressed following 10 weeks of high-fat feeding, unlike genes in Group A and

B, they do not respond to 48 hours of fasting/ weight reduction. Therefore hepatic

regulation of Group D genes may not be as directly linked to changes resulting from

DIO and insulin resistance and sensitivity. Despite this, it is interesting that a number

of Group D genes are also implicated in several signal transduction pathways that

may be activated by DIO. These genes include BMP2, Fosb, Gabrrl, IL6st, and

4833414 Gi 5Rik.

BMP2 (Bone morphogenetic protein 2), is a highly conserved member of the trans-

forming growth factor-B (TGF-/) gene family. BMP2 is related to BMP9, which was

the first reported hepatic factor shown to decrease blood glucose levels by increas-

ing insulin release and decreasing food intake [34]. While these mechanisms may
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be a compensating response to DIO, they oppose the physiological adaptations that

accompany 48 hours of fasting/ weight reduction, and therefore additional studies

are required to determine the effects of BMP2 upregulation in mice following these

dietary treatments.

FosB is a member of the AP-1 family of transcription factors [4]. These molecules

are considered immediate early genes, because they initiate responses to environmen-

tal stimuli [218]. The Fos family of transcription factors form either homodimers with

one another, or heterodimers with the Jun family of transcription factors, which then

bind DNA to alter gene transcription [172]. Because insulin affects the expression of

members of the AP-1 family of transcription factors [179], it is not surprising that

during DIO and fasting/ weight reduction, conditions that perturb insulin signaling,

significantly increase transcription of FosB.

IL6st (Interleukin 6 signal transducing subunit, also called gp130) is a key com-

ponent in cytokine signal transduction that occurs during inflammation through the

JAK (Janus kinase)/ STAT (signal transducers and activators of transcription) path-

way. IL6st forms homo- and heterodimers with other signal transducing subunits in

response to binding by an assortment of ligands including IL-6, IL-11, LIF, CT-1,

CNTF, and OSM [105]. Among these, IL-6 knockout mice develop mature-onset

obesity [254], and treatment of hepatocytes with IL-6 reduces the expression of

PCK1 [38], thus implicating IL-6 in the regulation of hepatic glucose output. There

are at least four different Jaks (Jakl, Jak2, Jak3, and Tyk2) and seven different STAT

factors (STAT1, 2, 3, 4, 5a, 5b, and 6) that can interact with IL6st. Of particular

relevance to DIO and insulin resistance is STAT3. The liver-specific STAT3 knockout

mouse is insulin resistant and develops glucose intolerance when fed a high-fat diet,

due in part to increased expression of PCK1 and G6P [116]. Adenoviral mediated

reconstitution of STAT3 signaling ameliorated glucose intolerance in both L-ST3KO

and Lepr-/- mice [116] by lowering PCK1 and G6P levels, demonstrating the impor-

tance of STAT3 signalling to hepatic glucose output. Because IL6st is significantly

upregulated (p < 0.001) by 10 weeks of high-fat feeding and 48 hours of fasting/

weight reduction, when PCK1 and G6P were also induced relative to control lev-
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els (see Table 2.3 on page 43), it may be that IL6st performs a sensitizing function

that contributes to feedback control of hepatic glucose output via IL6 and STAT3

signaling.

In addition to the cellular signaling pathways that contained differentially ex-

pressed genes identified in this study, a number of genes involved in protein metabolism

and secretion were also identified. Although a direct link between protein metabolism/

secretion and DIO/ insulin resistance is not as well established, in other insulin sen-

sitive tissues the release of hormones and trafficking of receptors clearly plays a role

in regulating tissue specific responses to insulin and glucose. Group A and B genes

involved in protein metabolism and secretion pathways include Kcnk8, Pmml, Ser-

pina5, and Eif4a2. Group D genes that were identified include Copz2, Rab3c, and

4 933432MO7Rik.

Serpina5, encodes a serine protease inhibitor. Serine protease inhibitors represent

a family of glycoproteins that are known to inactivate serine proteases by forming

stoichiometric enzyme-inhibitor complexes. Among the proteases known to be inhib-

ited by Serpins are trypsin, chymotrypsin, the sperm protease acrosin, and a variety

of proteases involved in hemostasis [274]. Copz2 encodes a vesicle coating protein

that helps to mediate vesicle trafficking, while Rab3c is a member of the Ras onco-

gene family that encodes a monomeric GTP-binding protein that is implicated in

regulated exocytosis and vesicle transport, and has been suggested to play a role in

GLUT4 translocation in rat cardiac muscle cells [248]. Hence, Copz2 and Rab3c may

synergistically influence protein trafficking in response to 10 weeks of high-fat feeding

and 48 hours of fasting/ weight reduction.

Using DNA microarrays we have investigated the effects of DIO and fasting/

weight reduction on liver gene transcription. We have analyzed this data set using

four computational methods that represent a rigorous approach to analysis requiring

no a priori assumptions about the data. This has enabled us to infer the importance

of any given gene change among a multitude of gene differences resulting from DIO

and fasting,/ weight reduction. Our results lead us to focus on 41, out of an initial

1981 genes.
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Although many of the genes resulting from our analysis have not yet been stud-

ied extensively in the context of energy homeostasis, several are related to important

molecular pathways that have been previously identified in the literature. Those path-

ways include different signal transduction cascades, as well as pathways involved in

protein metabolism and secretion. Given the diverse functions of the liver, identifying

genes involved in signaling and protein metabolism pathways in response to DIO and

fasting/ weight reduction is not surprising. Among the genes involved in signaling

are Sh3kbpl, Rgs3, PTP4a2, BMP2, IL6st, Fosb, Gabrrl, and possibly Rab3c. Genes

implicated in protein metabolism and secretion pathways include Crym, Serpina5,

Eif4a2, Ctrl, Snrpg, Kcnk8, Copz2, and Rab3c.

While the link between many of these genes and DIO will require further investi-

gations, their identification here is an important contribution to understanding how

the hepatic response to DIO and fasting/ weight reduction is mediated through a va-

riety of molecular pathways. These genes all share a consistent set of attributes that

made them stand out in the data set. They demonstrate significant differences be-

tween the dietary treatments, are individually discriminatory of each treatment, and

are members of a set that classifies each sample using both supervised and unsuper-

vised algorithms. Genes that satisfy all of these criteria represent good candidates for

influencing the liver's response to DIO and fasting/ weight reduction, and therefore

warrant more detailed investigations.

4.4 Methods

Animals

Three to five week old C57/BL/6J mice were obtained from Jackson Laboratories

(Bar Harbor, ME). All animals were allotted a seven day acclimation period with

access to food and water ad libitum, and were maintained at 25 C with a 12-hour

light/ dark cycle (lights on from 06:30-18:30) for the duration of the study. A normal

chow (Purina Rodent Chow; Harlan Teklad #5008; 6.5% fat, 49% carbohydrate, 23%
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protein, 3.5 kcal/ g) and high-fat diet (Harlan Teklad #TD88137, 42.16% fat, 42.81%

carbohydrate, 15.02% protein, 4.53 kcal/ g) were fed to respective mice, as outlined

below.

This report explored alterations in hepatic gene mRNA levels in C57/BL/6J mice

fed either a control or high-fat diet for 10 weeks, as well as alterations in mRNA

levels of C57/BL/6J mice fasted for 48 hours following 10 weeks of high-fat feeding.

Fasted animals were allowed access to water during the fasting period. All animals

were sacrificed by CO2 asphyxiation, followed by immediate collection of liver tissue,

which were stored at -80 C as previously described [278].

The control group consisted of C57/BL/6J mice fed normal chow diet for 10 weeks.

The experimental group consisted of C57/BL/6J mice fed a high-fat diet for 10 weeks

(n = 9/ group). The ten week high-fat dietary treatment has been demonstrated to

be long enough for C57/BL/6J mice to develop insulin resistance and a condition that

resembles type 2 diabetes [189, 234]. Two days before tissue harvest, the C57/BL/6J

mice on the high-fat diet were divided into two groups, with one group remaining on

the high-fat diet (n = 5) and one group fasting for the final 48 hours (n = 4). Mouse

weights were recorded two days prior to, and on the day of tissue harvest.

All animals were handled in accordance with the principles and guidelines es-

tablished by the National Institutes of Health. The protocol was approved by the

Institutional Review Board at Beth Israel Deaconess Medical Center, Boston, MA.

Preparation of total RNA and cDNA for microarray hybridiza-

tion

Total RNA was purified from liver tissue samples using STAT-60 (Tel-Test, Inc.,

Friendswood, TX) according to the manufacturer's instructions, and stored at -80 C.

Labeled control cDNA was made from Total RNA control samples (Universal Mouse

Reference RNA, catalog # 740100, Stratagene) using Cy3 dCTP (Perkin-Elmer), and

labeled liver cDNA was made from total RNA experimental samples using Cy5 dCTP

(Perkin-Elmer) during reverse transcription, as described previously [28].
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Microarrays were prepared using GAPS glass slides (Corning) and a Virtek arrayer

(Bio-Rad). Arrays contained 17,280 features, printed from a synthesized oligonu-

cleotide mouse library (Operon) as described previously (see Section 2.2.2) [28].

RT-PCR analysis of IL6st, PTP4a2, G6P, PCK1, and malic

enzyme

A two-step RT-PCR protocol was performed to confirm the mRNA levels of several

genes. In this procedure the cDNA synthesis was performed as detailed previously [28]

except the Cy-labeled nucleotides were replaced with unlabeled nucleotides such that

all dNTPs were at the same final concentration during the reaction. PCR was con-

ducted in 94-well plates using the iQ SYBR Green Supermix Kit (Bio-Rad), according

to the manufacturer's instructions on an iCycler RT-PCR machine (Bio-Rad). Briefly,

1 L of the final, diluted cDNA template was mixed with 19 L of RNase free water,

25 AL of Bio-Rad RT-PCR Supermix (Bio-Rad), 2 uL of sense and antisense primers,

and 1 MtL of 12.5 mM dNTPs. The final primer concentration was 0.25 /MM. The

PCR cycle used a single three minute hot-start at 95 °C, followed by 50 cycles of 30

seconds at 95 C, one minute at 60 °C, and two minutes at 72 °C during which time

the reaction fluorescence was measured. Each mouse sample was measured in either

triplicate or quadruplicate.

The sense and antisense primer sequences were: for interleukin 6 signal trans-

ducer (IL6st) 5'- GCGGCTCGAACTTCACTGC - 3', and 5' - CACGATGTAGCTG-

GCATTCACG - 3'; for protein tyrosine phosphatase 4a2 (PTP4a2) 5'- TTTCT-

GCTGCGGAACATTTCAAG - 3', and 5' - GCGTGCGTGTGTGAGTGTG - 3'; for

regulator of g-protein signalling 3 (RGS3) 5'- GCACATCCCGCATTCCAGTTAC

- 3', and 5' - AGGGAACACCAGGACTTTAGGG - 3'; for glucose-6-phosphatase

(G6P) 5'- GTGATTGCTGACCTGAGGAACG - 3', and 5' - TGCCACCCAGAG-

GAGATTGATG - 3'; for phosphoenolpyruvate carboxykinase (PCK1) 5'- CAGAGA-

GACACAGTGCCCATCC - 3', and 5' - AAGTCCTCTTCCGACATCCAGC - 3'; for

malic enzyme 5'- GCCAGAGGATGTCGTCAAGG - 3', and 5' - ATTACAGCCAAG-
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GTCTCCCAAG - 3', respectively. These primers each gave specific fragments of the

correct length when viewed upon a 4% agarose gel (data not shown). As an internal

control P-Actin mRNA levels were also measured. The sense and antisense sequences

were 5' - AATAAGTGGTTACAGGAAGTC- 3' and 5' - ATGAAGTATTAAGGCG-

GAAG - 3', respectively.

Gene specific standards were developed by amplifying the entire mRNA coding

sequence of each gene by PCR from a cDNA library, gel purifying the resulting band,

and then diluting it to concentrations from l0 - 4 g/ /iL to 10-9 jg/ /iL. The R2

value of the standard curve, relating the threshold cycle to the amount of standard

template, was always greater than 0.97. The mRNA levels of 3-actin measured were

not significantly (p > 0.05) different between the dietary treatments for any of the

groups.

Computational methods

A combination of statistical and data mining methods were used to extract infor-

mation from the microarray data (see Section 2.3 on page 44 for more information).

Statistical methods rigorously quantify the reliability of differences in the microarray

data [171] and can objectively evaluate changes in gene transcription ratios and deriv-

ative quantities. Data mining is particularly useful for uncovering patterns and struc-

ture in microarray data that might have otherwise been difficult to detect through

manual inspection and intuition alone [143, 200].

A t-test [241] was used to evaluate whether a gene exhibited statistically significant

expression differences in pairwise comparisons between the control, high-fat, and

fasting/ weight reduced groups (see Section 2.3.1). The t-test results showed that

1981 genes had at least one statistically significant (p < 0.05) change between the

treatments.

Wilks-A based ranking [115] was used to identify discriminatory genes that differ-

entiated the three groups (see Section 2.3.1 on page 44 for more information). In this

analysis a Wilks-A threshold value of 0.47 was used, which is equivalent to a p-value

of 0.05. From the 1981 genes selected by the p < 0.05 cutoff, we retained the 1169
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genes that had a Wilks-A value below 0.47.

Fischer Discriminant Analysis [230] (FDA) was used to identify not just individual

genes, but; combinations of genes whose expression levels are capable of correctly

classifying the control mice, high-fat mice, and fasting/ weight reduced mice. FDA

is based on linear combinations of gene expressions and considers the discriminatory

power of gene groups as opposed to individual genes (see Section 2.3.2). As shown in

Figure 4-1, using expression data of the selected gene combinations allows accurate

classification of the dietary treatments suggesting that the genes in Table 4.2 are

discriminatory of the conditions examined when sample classification is used as a

criterion. ()n the basis of the successful classification afforded by the FDA projection,

discriminatory genes were selected using the magnitude of the loading coefficients.

Principle Component Analysis [54] was used as an unsupervised classification pro-

cedure to complement FDA. The results of the PCA analysis largely mirrored the FDA

results (data not shown).

Methods used here, along with the data set, are available for public use at our

laboratory's web-site [19]. The entire data set is also available through the National

Center for Biotechnology Information's Gene Expression Omnibus database [173, 59].
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Chapter 5

Effect of Hepatic Gene Silencing

on Metabolism

Forty--one genes were identified in Chapter 4 based upon their differential expression

between the control, high-fat, and fasting dietary treatments. Because these genes

demonstrate significant expression differences between the treatments, are individu-

ally discriminatory of each treatment, and are members of a set that classifies each

sample using both supervised and unsupervised algorithms, they are good candidates

that may influence the liver's response to diet-induced obesity and fasting/ weight re-

duction. In this chapter we apply the gene silencing methods developed in Chapter 3

to a subset of these genes to assess their effects on hepatic metabolism.

5.1 Hepatic Gene Characterization

Insulin resistance leads to excess hepatic glucose output (HGO), which is driven

primarily by gluconeogenesis and glycogenlysis, and whose genetic basis is not under-

stood. In Chapter 4, DNA microarrays were used to analyze hepatic gene transcrip-

tion in a mouse model of diet-induced obesity (DIO). From this work, 41 genes were

rigorously identified as good candidates for further study.

Unfortunately, many of the genes listed in Table 4.2 have not been studied in

detail and are not known to be directly involved in glucose production. This is

112



5.1. HEPATJC GENE CHARACTERIZATION 113

sometimes a problem when interpreting the results of microarray studies: many genes

are differentially expressed and can be used to classify the experimental treatments,

however, they have little or no support from other scientific studies in the literature.

Furthermore, the information required to assess their biological relevance, or place

them in a physiological context, cannot be gathered from only transcription studies

which do not answer questions such as:

* Is the observed difference in phenotype the cause or the result of differences in

transcript levels?

* Does the change in transcript levels correspond to a change in protein levels?

* Is the gene being actively induced, repressed, or is there a difference in transcript

degradation rate?

* What is the function of the gene's RNA or protein product?

To answer these questions, other experiments are required to complement the mi-

croarray results.

A common approach is to select gene candidates from the set that have been

studied previously and evaluate their regulation and function with respect to the new

phenotype of interest. This might proceed by:

* Searching for gene mutations in animal models that either susceptible or resis-

tant to a phenotype of interest, such as obesity or insulin resistance.

* Monitoring the gene's expression and splicing variants in other tissues.

* Studying the gene's tissue specific regulation.

* Determining the mRNA half-life.

* Cloning the mRNA coding sequence and expressing it in different cellular mod-

els.

* Performing biochemical studies on the protein product.
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* Determining whether the protein is secreted or localized to specific portions of

the cell.

* Identifying other proteins or molecules that bind the gene's protein product.

* Disrupting the gene in a mouse model or cell line.

While many different experiments can be conducted to assess a gene's physiological

effects, from this list it is clear that proceeding directly from microarray experiments

to the detailed task of gene characterization is a large undertaking. Even in the case

where there are 41 strong genetic targets, performing this barrage of experiments on

each gene :is an enormous task. Thus, when studying specific molecular phenotypes,

such as HGO, one would prefer to further decrease the number of gene candidates

and find those that are most relevant to the phenotype from within the set.

One of the most effective ways to investigate how a gene influences a phenotype is

to disrupt or eliminate the gene and then observe changes in the phenotype. Although

in vivo manipulation of genes is very time consuming and high-through put evaluation

is currently prohibitive for most laboratories (see Section 3.2 on page 64), as discussed

in Chapter 3, RNA interference (RNAi) can be effectively used to silence genes and

thereby create "functional" gene knock-outs in cellular models. RNAi can therefore

be used to screen loss of function gene effects on phenotypes of interest.

Hepatocytes can produce glucose from proteins and amino acids, primarily ala-

nine, as well as from lactate [174]. The chemical reaction network that converts

substrate nmlolecules into glucose is shown schematically in Figure 5-1, where each

edge represents a chemical reaction between the node molecules. These reactions are

catalyzed by enzymes, some of which are reversible and some of which are irreversible.

The regulation of these enzymes, and therefore their intracellular catalytic activity,

can be controlled at many levels including transcription of the enzymes' genes, trans-

lation of the transcript, post-translational modification of the enzyme, and enzyme

inhibition.

Normally, during the postabsorptive period, when insulin levels are falling, the

liver produces glucose first by breaking down glycogen via glycogenlysis, and then
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At

Extracellular Space

Figure 5-1: Metabolic network for hepatic glucose production. This figure shows key
components of the metabolic network employed by hepatocytes to produce glucose
from amino acids, primarily alanine, or lactate. Circled molecules can be measured
using a combination of gas chromatography and mass spectrometry (GC-MS). Abbre-
viations: G6P (glucose-6-phosphate), F6P (fructose-6-phosphate), FBP (fructose-
1,6-bisphosphate), DHAP (dihydroxyacetone phosphate), GAP (glyceraldehyde-3-
phosphate), 3PG (3-phosphoglycerate), AcCoA (acetyl-coenzyme A), PEP (phos-
phoenolpyru-vate).
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from amino acids and lactate through gluconeogenesis, by catalyzing the reactions

in Figure 5-1 that link these sets of molecules. Conversely, during the postprandial

period (see Figure 1-1 on page 15) when blood glucose and insulin concentrations are

high, hepatocytes take up glucose to store it as glycogen, a glucose polymer, and also

stimulate glycolysis. These processes are mediated to a large extent by the binding

of insulin to its receptor, which activates a series of cell signaling and regulatory

events that control the intracellular metabolic network. For example, in Figure 5-1

the line connecting glucose to glucose-6-phosphate represents two reactions: move-

ment of glucose through the glucose transporter, Glut-2, and phosphorylation of

glucose by hepatic glucokinase (also called hexokinase). The second reaction through

hexokinase is influenced by insulin receptor binding, which simultaneously inhibits

the reverse reaction (conversion of glucose-6-phosphate to glucose) catalyzed by the

enzyme glucose-6-phosphatase. The next line, connecting glucose-6-phosphate to

glycogen, also represents a series of reactions that are catalyzed by phosphoglucomu-

tase, UDP--glucose pyrophosphorylase, and glycogen synthase. The rate of reaction

between glucose-6-phosphate and glycogen (or vice versa) is influenced by insulin,

glucagon, and other hormones. Thus, this simple pathway, between extracellular

glucose and intracellular glycogen, proceeds through five different enzymes, each of

which is produced by gene transcription, mRNA translation, and some of which are

regulated by post-translational modification.

Hepatic glucose output, which is a complex, quantitative trait that increases dur-

ing insulin resistance, is not genetically defined and a variety of different gene mu-

tations may present with the same phenotype (see Section 1.1), or alter the rate of

HGO. The rate of HGO ultimately depends on the collective flux, or reaction rate,

of glucose from all hepatocytes, which in turn depends upon the flux of the indi-

vidual intracellular reactions that constitute the glycogenlysis and gluconeogenesis

pathways. The flux through an enzymatic reaction is dictated by two variables: sub-

strate concentration and enzyme activity. However, enzyme activity is a function

of the concentration of the enzyme (and therefore transcriptional and translational

control), mutations in the enzyme or other regulatory proteins, the concentration
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of products and other chemical species, and post-translational modifications. Thus

even in a modestly sized network similar to that shown in Figure 5-1, the regulatory

complexity and number of genes involved may be substantial.

The fluxes of the cell ultimately define its physiological state, which can be de-

scribed in part by the distribution of intracellular metabolites. Like transcriptional

profiling, metabolite profiling can be used to classify experimental treatments and

differentialte among many physiological states. This is particularly important when

studying complicated phenotypes like hepatic glucose output, which may present sim-

ilar symptoms, but have diverse molecular causes.

From the DNA microarray results of Chapter 4, we selected 15 genes that were

overexpressed during one of the dietary treatments and screened their effects on he-

patic metabolism using RNA interference. The screening experiments were carried out

in primary hepatocytes isolated from C57/BL/6J mice and metabolites were isolated

from cultures of these cells treated individually, or combinatorially, with siRNA(s) to

silence specific genes that were up-regulated in the feeding studies (see Chapter 4).

The results demonstrate that certain genes significantly perturbed metabolite levels

in ways that emulated conditions of decreased glucose production. In addition, while

these genes individually had a small but significant impact on reducing hepatic glu-

cose output, their combined effects were substantial, as measured in our assay. Thus

by using combinatorial siRNA screening we were able to rapidly find genes that de-

creased hepatic glucose output in our primary cell model. Because they were initially

discovered based upon their gene expression values in a relevant animal model, they

may by important for the regulation of HGO in C57/BL/6J mice.

5.2 Gene Silencing Strategy for Studying Hepatic

Metabolism

To study the effects of gene silencing on intracellular metabolite concentrations, a

relevant model system was required that could induce both increased and decreased
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hepatic glucose output levels, and was still amenable to efficient gene silencing. We

used primary hepatocytes isolated from C57/BL/6J mice as our model system. The

advantages of these cells are that they can produce glucose (in contrast to hepatoma

cell lines that generally only take up glucose), retain some of their differentiated phys-

iological characteristics, and can be readily used in gene silencing experiments. The

drawbacks to using these cells are that they must be isolated directly from the mice,

which limits the size of experiments that can be performed, they are no longer con-

nected to the other tissues in vivo, and that relatively large numbers of cells must be

used to obtain reproducible signals from gas chromatography and mass spectrometry

(GC-MS). Furthermore, because of the large number of cells required and their inter-

mittent availability, the cost of these experiments (in terms of both time and money)

is quite high. Thus to increase speed and decrease costs, a combinatorial approach

was employed to conduct gene silencing experiments, once control experiments had

validated the model system.

In the combinatorial approach, fifteen siRNAs were selected and split into three

groups of five. Primary hepatocytes were transfected with each group of siRNAs,

and groups that had a substantial effect on the metabolite profiles were split into

smaller groups in subsequent experiments. In this way it's possible to screen the

effects of all 15 siRNAs and determine the primary effect of a single siRNA within

a maximum of seven experiments using a binary search. Figure 5-2 illustrates the

screening approach.

There are a number of caveats to investigating the phenotypic effect of different

genes using combinations of siRNAs. First, we are assuming that a single gene has

the primary effect observed, which may or may not be true. Because these genes

all share common selection criteria (see Chapter 4), being identified under the same

experimental conditions, they may actually work together or have some additive or

interactive effects. Second, it is known that the RNAi gene silencing pathway can

become saturated [22, 221]. Thus, there is a limit on the number of genes, and the

corresponding degree of silencing, that can be silenced within a single experiment;

this number is dependent to some extent on the absolute levels of gene expression
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Figure 5-2: Combinatorial siRNA screening strategy for 15 genes. Using this approach
the primary effects of a single gene could be discovered in only seven experiments. In
this case siRNA groups highlighted in gray have the primary effect on the phenotype,
which can be mapped down to the single gene, either gene B or gene C, using a binary
search.



5.3. RESULTS OF CONTROL EXPERIMENTS 120

because only a finite amount of dsRNA that can be delivered and utilized by the

RISC complex for gene silencing. Third, because this is a screening approach, the

expression values for all silenced genes are not measured in the early stages of the

screen. It is possible that the degree of silencing for some genes within the screen

may be less than adequate to illicit an observable effect, which would increase the

number of false negatives. It is unknown what the likelihood is a priori of incomplete

silencing affecting the experimental results. Given the large number of candidate

genes, however, this is an acceptable risk in conducting these experiments.

5.3 Results of Control Experiments

The primary cell culture model was tested for glucose production under gluconeogenic,

control conditions, and three conditions of low glucose production: actinomycin treat-

ment, treatment with siRNA specific to glucose-6-phosphatase (G6P), and treatment

with siRNA specific to phosphoenolpyruvate carboxykinase (PCKi). Actinomycin is

a non--specific inhibitor of transcription [232, 269] that should lower the levels of all

transcripts in the cell. This acts as a positive control, which provides insight to the

degree of glucose reduction that we might anticipate from silencing only key genes.

The caveat to using actinomycin is that it is a transcription inhibitor, while RNAi

based gene silencing relies upon a protein catalyzed pathway (See Section 3.3 on

page 67) and therefore is likely to have different kinetics. Nonetheless, actinomycin

treatment affects the transcription of all genes and therefore is believed to be a rep-

resentative positive control. Silencing of G6P and PCKI act as positive controls for

the effects on two key gluconeogenic genes. Both of these genes are known to be

important for hepatic glucose output and therefore lower levels of glucose production

are anticipated when silencing these genes. The results of these control treatments

are show in Figure 5-3.

In Figure 5-3 the actinomycin treatment has the largest effect on HGO, decreasing

the amount by over 20%. Likewise, both G6P and PCKI siRNA treatment decrease

HGO by approximately 15%. The corresponding levels of G6P and PCKI gene
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Figure 5-3: Production of glucose by primary hepatocytes. The graph shows he-
patic glucose production under high producing control conditions, control conditions
treated with actinomycin, and control conditions treated with either G6P or PCK1
siRNA.
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expression during these treatments were measured by RT-PCR. Figure 5-4 shows that

at the time of sampling, transcript levels of G6P and PCK1 had been substantially

reduced by actinomycin and siRNA treatments, relative to control levels.
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Figure 5-4: Measurement of G6P and PCKI gene transcription levels from hepato-
cytes during control, actinomycin, and siRNA treatments.

While these measurements are based upon the amount of glucose produced by

hepatocytes over a 24-hour period, it was surprising that neither actinomycin treat-

ment, nor silencing of key gluconeogenic genes resulted in complete suppression of

HGO. This suggests that in addition to silencing of overexpressed genes, overexpress-

ing repressed genes may play a key role in further reducing HGO.

In addition to measuring HGO during these treatments, intracellular levels of key

metabolites were also measured using GC-MS. The concentrations of ca-ketoglutarate

(aKG), citrate, isocitrate, succinate, fumarate, malate, pyruvate, phosphoenolpyru-

vate (PEP), 3-phosphoglycerate (3pg), glyceraldehyde-3-phosphate (GAP), fructose-

6-phosphate (F6P), glucose-6-phsophate (G6P), ribose-5-phosphate (R5P), and ribi-

tol were measured within the samples and compared across treatments as shown in
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Figure 5-5 and Figure 5-6.
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Figure 5-5: Measurement of glycolytic metabolite levels at different hepatic glucose
output rates.

In Figure 5-5 actinomycin treatment reduces the concentration of all metabolites,

but especially 3PG and PEP. In contrast, silencing of G6P and PCKl only appears to

significantly affect G6P and perhaps pyruvate. Thus, because actinomycin treatment

results in a greater decrease in glucose production than silencing of either G6P or

PCK1, to gain further reduction in HGO, genes that affect the pool size of 3PG and

PEP may be particularly important for further reducing glucose production. Likewise

in Figure 5-6, while actinomycin treatment reduced the pool size of every metabolite

in the TCA cycle, it had a particularly strong effect on citrate and a-ketoglutarate.

This time, while both G6P and PCKl gene silencing significantly reduced the size

of all metabolite pools, it may be important to find genes that regulate the levels

of citrate and a-ketoglutarate to reduce RGO to the same extent as actinomycin

treatment.

Although large reductions in several metabolites, such as citrate and a-ketoglutarate,
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occurred during the actinomycin treatment, which had the lowest amount of hepatic

glucose output, the entire metabolite profiles can be used to quantify the metabolic

state of the cell. Metabolites were chosen from central carbon metabolism (glycolytic

and gluconeogenic pathways), the TCA cycle, and pentose phosphate pathway to

monitor hepatic metabolism. The resulting profiles were analyzed with Fisher Dis-

criminant Analysis (FDA) to generate lower dimensional metrics to classify the control

and experimental treatments.

Using FDA the control, actinomycin treatment, and G6P and PCK1 siRNA treat-

ments, representing three different levels of HGO, can be separated based upon their

metabolite profiles, as shown in Figure 5-7.
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Figure 5-7: Fisher discriminant analysis of control metabolite samples, each with a
different hepatic glucose output rate.

Because Figure 5-7 shows a clear separation resulting from the treatments, it in-

dicates that the information required for sample classification is contained within the

data set. In Figure 5-7 canonical variable 1 separates all three treatments, while

canonical variable 2 separates the actinomycin treated samples from the control sam-
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ples and samples treated with siRNA.

The loadings (see Section 2.3 for more information) used to create the projection

in Figure 5-7 are given in Table 5.1. The selected loadings are used as coefficients

to score the samples based on a subset of metabolite concentrations. The metabo-

lites selected for sample classification include a-ketoglutarate, citrate, and phospho-

enolpyruvate, which were identified by inspection of the control metabolite profiles

as being key metabolites to low glucose producing conditions. Canonical variable 1

captured 71.54% of the variance in the data set, while canonical variable 2 captured

the remaining 28.46% of the variance.

Canonical Variable a-KG Citrate F6P Fumarate G6P PEP R5P
1 0.859 0.683 -0.802 -0.622 -0.701 0.869 0.796
2 -0.513 -0.642 -0.458 -0.327 -0.605 -0.405 -0.634

Table 5.1: FDA loadings for the projection of control samples in the CV1 and CV2
space.

Using the loadings of the canonical variables we can classify experimental samples

based upon their metabolite distributions and determine if they reside in high or low

glucose producing regions. In this way it is possible to determine which genes and

groups of genes from our set impact hepatic metabolism.

5.4 Results of Endogenous Silencing Experiments

Genes were selected from Table 4.2 based upon their expression levels and screened

using gene silencing to determine their effect on hepatic metabolism. To expedite

the silencing experiments, genes were assembled into groups, shown in Table 5.2, and

hepatocytes were treated with each group of siRNAs to determine their effect on the

pool sizes of intracellular metabolites.

Figure 5-8 shows the FDA results from hepatocytes treated with either Group I,

Group II, or Group III siRNAs relative to the control treatments.

Figure 5-8 shows that although treatment of hepatocytes with Group I and Group

II has some effect on metabolite distributions, those samples cluster close to the high
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Group siRNAs
I Sh3kbpl, BMP2, Gabrrl, IL6st, Rab3c
II RIK111, Co125al, Nt5c3, K17RIK, Rnf148
III Eva, LRR, Hgfl, LIM, RIK
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Table 5.2: Groups of siRNAs used in combinatorial screening experiments.
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Figure 5-8: Fisher discriminant analysis of hepatic samples treated with either Group
I, Group II, or Group III siRNAs from Table 5.2.
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producing control samples. In contrast, the Group III samples clustered with the

low glucose producing samples treated with actinomycin. Based on these results

we proceeded by focusing on the Group III siRNAs (Eva, LRR, LIM, Hgfl, RIK),

measuring the gene expression levels by RT-PCR and conducting additional silencing

experiments.

To investigate the effects of the Group III siRNAs, we divided the group into two

subgroups, Group A and Group B. Group A was composed of siRNAs for Hgfl, LIM,

and RIK. Group B contained siRNAs for Eva and LRR. Figure 5-9 presents the FDA

projection of Group A gene silencing, including silencing results of the individual

genes. Figure 5-10, Figure 5-11, and Figure 5-12 present the corresponding RT-

PCR results for gene expression during the siRNA treatments. Likewise, Figure 5-

13 presents the FDA projection of Group B gene silencing, while Figure 5-14 and

Figure 5-15 shows the results of the corresponding RT-PCR measurements.
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Figure 5-9: Fisher discriminant analysis of Group A siRNAs.
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Figure 5-12: RT-PCR results for RIK expression in different hepatic treatments.

Figures 5-10, 5-11, 5-12, demonstrate effective, specific silencing was achieved

in each of the siRNA treatments. Because Group A clusters close to Group III in

Figure 5-9, and the individual genes of Group A cluster in a region near the samples

treated with G6P and PCK1 siRNAs, it appears that Hgfl, LIM, and RIK each

contribute to the sample classification and individually affect hepatic metabolism

during these treatments.

Figures 5-14 and 5-15 show that specific gene silencing was also attained for Eva

and LRR. In this case, however, only Eva appears to have a direct effect on hepatic

metabolism, because samples treated with Eva siRNA cluster near those treated

with actinomycin, Group III siRNAs, and Group B siRNAs. In contrast, samples

treated with LRR siRNA cluster with the high glucose producing control samples,

thus indicating that hepatic metabolism was not significantly altered by silencing this

gene. Because the Eva samples do not cluster directly with the Group B samples, it

may be that in the presence of LRR and Eva silencing there is an interaction that

leads to a further change in metabolism. Also, it should be noted that in Figure 5-
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Figure 5-15: RT-PCR results for LRR expression in different hepatic treatments.

15 there may be some non-specific effects on LRR silencing from Group A siRNAs.

Although this difference was not significant (P > 0.05), the mean value is decreased.

To determine whether the metabolite projections correlated with glucose produc-

tion, cells were treated with each group of siRNAs, and each individual siRNA, and

glucose production into the medium was measured. From this data, the reduction in

hepatic glucose output was calculated and plotted in Figure 5-16. Figure 5-16 shows

that the combined effect of all siRNAs in Group III results in approximately a 10%

reduction in hepatic glucose output, comparable to the effect of silencing G6P and

PCK1. Likewise, each subgroup and individual gene has a lessor effect and these

are approximately additive. The effect of LRR silencing did not significantly reduce

hepatic glucose output, in agreement with the clustering of those samples with the

control samples.

In addition to the FDA projections, the data set was also analyzed using PCA, a

non-supervised method (see Section 2.3.2 on page 45 for more information). Figure 5-

17 shows the projection obtained from principle components 2 and 3. This projection
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Figure 5-16: Reduction in hepatic glucose output from actinomycin and siRNA treat-
ment.

clearly separates samples producing high amounts of glucose and those producing low

amounts of glucose and the overall separation between the treatments is consistent

with the FDA projections.

Based on these results, of the 15 genes in Table 5.2, only Eva (GenBank Accession

# NM_007962, previously BC015076), Hgfi (GenBank Accession # NM_178149, pre-

viously AK005141), LIM (GenBank Accession # NM_024263, previously AK007076),

and RIK (GenBank Accession # AK017674) significantly effect on hepatic metabolite

levels, and of these, only Eva, Hgfl, and RIK cause a significant individual reduction

in glucose output. When silenced in combination, the reduction in glucose produc-

tion was approximately additive from these three genes. Conversely, LRR (GeneBank

Accession # NM_026253) did not appear to have a substantial effect on metabolism,

although it was differentially expressed in the liver samples from C57/BL/6J mice

(see Chapter 4) and also did not have a significant effect on glucose production.

Eva (Epithelial V-like Antigen) is a putative transmembrane type 1 glycoprotein

with an immunoglobulin V-type domain and although it has only been studied in the

.1-1
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context of thymus development, its expression in liver tissue has been demonstrated

previously [91]. Because increased expression of Eva was observed in DIO-C57/BL/6J

mice and then renormalized in DIO-C57/BL/6J mice fasted for 48 hours, and that

siRNA silencing of Eva lead to a significant change in hepatic metabolite levels,

suggests that further studies in hepatocytes are warranted to understand its role in

hepatic physiology.

Hgfl (Hepatocyte Growth Factor-Like; also called macrophage stimulating 1) en-

codes a highly conserved factor found in many species including Mus musculus, Homo

sapiens, Rattus norvegicus, Gallus gallus, and Canis familiaris. Hgfl has been widely

studied in a variety of contexts, probably because of its sequence and structural simi-

larity to Hepatocyte Growth Factor (HGF)1 and high-levels of expression. Expression

of Hgfi is controlled by Hepatocyte Nuclear Factor-4 (HNF-4) and coactivated by

CREB-binding protein (CBP) [169, 265]. The appearance of HNF-4 2, as a regula-

tor or Hgfl is interesting because several other genes in Table 4.2 are either directly

influenced by HNF-4 (such as Ttr [43]) or belong to a gene class for which HNF-4

regulates other members of the class (such as Cyp2c37 [12, 194] and Serpina5 [205]),

suggesting that HNF-4 may have played an important role in the differential expres-

sion observed in these genes. The Hgfl protein contains a conserved Kringle Domain,

which are generally believed to play a role in protein binding, and a nonfunctional pro-

teolytic serine protease-like domain. It binds the murine receptor stk, which belongs

to the tyrosine kinase family or receptors (similar to the insulin receptor) [142], and

induces complex pleiotropic effects, some of which are implicated in inflammation.

Indeed, Hgfl knock-out mice have even been constructed and studied [16]. These

mice develop normally and have no obvious unchallenged phenotype other than the

formation of large lipid vacuoles in the cytoplasm of hepatocytes. The lipid vacuoles

have no effect on hepatic production of serum albumin, aminotransferases, bilirubin,

gamma-glutamyltranspeptidase, or alkaline phosphatase. Personal communication
1Hepatocyte Growth Factor has been shown to be essential for embryogenesis [246], as well as

useful in prolonging P-cell life and cell mass [45, 80]. HGF has also been implicated in protecting
against diabetic neuropathy in rats [127] and protecting against diabetic nephropathy [46] in mice.

2HNF-4 mutations cause Maturity Onset Diabetes of the Young 1 (MODY1), a rare syndrome
that resembles Type II diabetes but is caused by single gene mutations [52].
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with the lead author who constructed the Hgfi knock-out mice indicated that glucose

homeostasis and hepatic glucose output had not been studied in these mice [17].

LIM (Limitrin), like Eva, is a putative type I transmembrane protein with two

immunoglobulin V-type domains. Members of this protein superfamily often mediate

either hom.ophilic or heterophilic cell adhesion interactions, but also serve as receptors

that facilitate interactions between the cell and extracellular matrix. Thus far Lim

has only been studied in the context of neurobiology, where it is suggested to be

involved with brain maintenance and maturation [272]. LIM's sequence is identical

to asp3, an adipocyte-specific protein that is up-regulated during the differentiation

of the 3T3---L1 cell line.

It is interesting that Eva and LIM, two genes from the same class of molecules,

were identified in these studies. Although Eva was induced by high-fat feeding and

normalized by 48 hours of fasting and weight reduction, LIM was increased by high-

fat feeding and even more so by 48 hours of fasting and weight reduction. Thus de-

spite similar regulation during high-fat feeding, their response to fasting and weight

reduction differs. Although members of the transmembrane immunoglobulin super-

family are not commonly associated with metabolic changes, they are associated with

diabetic complications and inflammation processes, to which Eva and LIM may po-

tentially contribute.

RIK (or 5730458M16Rik) is an unclassified gene identified in an EST sequencing

project [30., 223]. The top two genes with which it has a high degree of similar-

ity, as determined by BLASTn are MettlS (expectation score 2x10- s6 using default

BLASTn parameters) and Flotl (expectation score 2x10-8 3 using default BLASTn

parameters). Mettl3 is a N6-adenosine-methyltransferase, which is involved in the

methylation of eukaryotic mRNA on adenosine residues. Although it is believed that

adenosine methylation performs a regulatory role in mRNA maturation and trans-

lation, the mechanism and its consequences have not yet been determined [21]. In

contrast, Flotl is caveolae-associated integral membrane protein involved in vesicle

trafficking and signal transduction [18]. Neither gene has been directly implicated in

Type II diabetes or metabolism, and the connection to RIK is tenuous.
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It should be noted that because the screening strategy only measured effects on

intracellular hepatic metabolites and did not explicitly measure the level of gene

silencing in every case. Therefore, it is possible that the degree of silencing for some

genes in Group I and Group II, that are important, was not high enough to result

in a measurable effect. Likewise, the results are specific to our model system, which

displays some physiological characteristics that hepatocytes possess in vivo, but may

be missing other characteristics. Thus some genes may have their in vivo effects

hidden in our cell model, but may still be important to controlling hepatic glucose

output.

Despite the experimental caveats, our approach to studying the genetics of hepatic

glucose output, beginning in Chapter 4 with transcription monitoring using genome

scale DNA microarrays, proceeding with a bioinformatics analysis and focusing on 15

genes in silencing experiments, has allowed us to identify four genes that influence

hepatic metabolism out of an initial set of over 17,000. This strategy and approach

is a good model for future investigations as it enables efficient and meaningful gene

identification based upon no a priori assumptions about the system or data.

5.5 Methods

Isolation and culture of C57/BL/6J mouse primary hepato-

cytes

Hepatocytes from C57/BL/6J mice were isolated as described previously [219, 190]

and seeded onto Type I collagen-coated T25 tissue culture flasks (BD Biosciences,

Bedford, MA) at 4.0 million cells/well in 4.0 ml of Hepatocyte Medium Base supple-

mented with 1 nM insulin, 100 nM dexamethasone, and 20 mM glucose. Hepatocyte

Medium Base is composed of DMEM powder (Sigma) was supplemented with 3.7 g/L

NaHCO 3, 30 mg/L proline, 100 mg/L ornithine, 610 mg/L niacinimide, 0.544 mg/L

ZnC12, 0.75 mg/L ZnSO4 7 H2 0, 0.2 mg/L CuS0 4 5 H20, 0.025 mg/L MnSO 4,

146 mg/L glutamine, 2 g/L bovine serum albumin, 100,000 units/L penicillin, and
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100,000 mg/L streptomycin. The medium was sterilized by filtration through a 0.22

/im filter and stored at -20 °C. The cells were allowed to attach for one hour at 37 °C

in a humidified atmosphere containing 5% CO2. After the attachment period, cells

were washed with PBS and incubated in 2.6 mL of medium (Hepatocyte Medium

Base supplemented with 1 nM insulin and 100 nM dexamethasone) formulated with

the apppropriate siRNAs.

Transfection of siRNA

siRNA transfection was carried out as reported previously [202] (See Section 3.3.3 on

page 86 for further details). Briefly, the corresponding siRNA (Ambion, siRNAs are

listed in Table 5.2) was formulated with Lipofectamine2000 (Invitrogen) in Hepato-

cyte Medium Base supplemented with 1 nM insulin and 100 nM dexamethasone as

described above for the appropriate experiment. Transfection exposure times were

at least four hours in every treatment. Metabolites and RNA were isolated from the

cells 24 hours after transfection.

RT-PCR of selected genes

A two-step RT-PCR protocol was performed to confirm the mRNA levels of Eva,

Hgfl, LIM, LRR, and RIK. cDNA synthesis was performed as detailed previously [28]

(See Section 4.4). PCR was conducted in 94-well plates using the iQ SYBR Green

Supermix Kit (Bio-Rad), according to the manufacturer's instructions on an iCycler

RT-PCR machine (Bio-Rad). Briefly, 1 zL of the final, diluted cDNA template was

mixed with 19 L of RNase free water, 25 L of Bio-Rad RT-PCR Supermix (Bio-

Rad), 2 L of sense and antisense primers, and 1 ,uL of 12.5 mM dNTPs. The final

primer concentration was 0.25 1IM. The PCR cycle used a single three minute hot-

start at 95 C, followed by 50 cycles of 30 seconds at 95 C, one minute at 60 C,

and two minutes at 72 °C during which time the reaction fluorescence was measured.

RNA from treatment sample was measured in at least quadruplicate.

Eva, Hfl, and LIM were measured using primers designed for the Quantitect
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RT-PCR kit(Qiagen) according to the above protocol. The specificity of these re-

actions were checked by gel electrophoresis and gene specific standard curves were

generated that resulted in an R2 value of greater than 0.97 in every set of reac-

tions. For the other genes monitored, the sense and antisense primer sequences were:

G6P 5'- GTGATTGCTGACCTGAGGAACG - 3', and 5' - TGCCACCCAGAGGA-

GATTGATG - 3'; for PCK1 5'- CAGAGAGACACAGTGCCCATCC - 3', and 5'

- AAGTCCTCTTCCGACATCCAGC - 3'; for LRR 5'- ATCACATTTGATGGGA-

GAAAACGCC - 3', and 5' - GCAAGATACACTTGGGGAAGGTGGT - 3'; and for

RIK 5'- T'GTGGTTGCTGGGACTTGAACTTCA - 3', and 5' - TGGTGAGATG-

GCTCAGTGGGTAAGA - 3', respectively. It's noteworthy that Quantitect primers

for LRR and RIK were also ordered, however the primers obtained did not result in

specific, reproducible sequences. New primer sets were designed, from which primers

were selected that gave specific fragments of the correct length when viewed upon

a 4% agarose gel (data not shown). As an internal control P-Actin mRNA levels

were also measured. The sense and antisense sequences were 5' - AATAAGTGGT-

TACAGGAAGTC - 3' and 5' - ATGAAGTATTAAGGCGGAAG - 3', respectively.

Gene specific standards were developed for each gene by PCR from a cDNA library,

gel purifying the resulting band, and then diluting it to concentrations from 10 -4 ug/

[tL to 10-11 ig/ L. The R2 value of the standard curve, relating the threshold cycle

to the amount of standard template, was always greater than 0.97. The mRNA levels

of -actin measured were not significantly (p > 0.05) different between the treatments

for any of the groups.

Metabolite isolation and profiling

Metabolite isolation and profiling was carried out using methods described previ-

ously [72]. Briefly, cultured hepatocytes were lysed using 0.7 mL of methanol (Sigma)

per T25 flask and allowed to incubate for 15 minutes. During the incubation 4 g of

ribitol were added to each flask to serve as an internal control. The complete sample

was then transferred to a polypropylene 15 mL tube (Falcon) and 0.7 mL of sterile

water (Ambion) and 0.38 mL of chloroform (Sigma) were added. The samples were
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mixed vigorously and then centrifuged for three minutes at 3200 x g. Following cen-

trifugation, 1.3 mL of the aqueous phase was transferred to a 1.5 mL microcentrifuge

tube (Eppendorf). Samples were subsequently dried overnight in a vacufuge (Eppen-

dorf). The dried samples were resuspended in 50 L of methoxyamine hydrochloride

(20 mg/ mL pyridine) and the liquid was transferred to a glass vial and incubated

at 30 C for 90 minutes. Following the incubation the samples were derivitized us-

ing 80 LL of MSTFA + 1% TMCS (Pierce) and incubated for 30 minutes at 37 C.

The sample was finally transferred to vials compatible with the mass spectrometer

autosampler and loaded onto the instrument for injection.

The resulting spectrum from each sample was then analyzed for 3-phosphoglycerate,

a-ketoglutarate, citrate, fructose-6-phosphate, fumarate, glyceraldehyde-3-phosphate,

glucose-6-phosphate, malate, phosphoenolpyruvate, pyruvate, ribose-5-phosphate,

ribitol, and succinate.

Glucose measurements

The amount of hepatic glucose output was measured by sampling of the culture

medium 24 hours following transfection (or medium change). The measurements

were made using a YSI Glucose/ Lactate analyzer.

Data analysis

Metabolite concentration data were normalized to the ribitol internal control. The

data were then assembled into a single data matrix, where each row represented a

sample and each column a metabolite. The matrix was autoscaled by subtracting

the mean of each column vector from each sample and dividing the difference by the

standard deviation of the column vector. The data was then analyzed using BioSys-

tAnse [19] for the FDA projections and by using Matlab for the PCA projections (see

Section 2.3.2 on page 45 for more information regarding these techniques).
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Chapter 6

Summary and Significance of Work

6.1 Summary of Thesis Results

The spread of diabetes is an important problem throughout the world and the subject

of intense research. Because blood glucose control is mediated through a number of

complex systems, whose molecular basis is not completely understood, further insight

can be gained by identifying genes that contribute to its regulation. Ultimately

glycemic regulation is a balance between glucose up-take (primarily by the muscle

and adipose tissue) and glucose production (primarily by the liver). This thesis

focused on identifying genes that influence hepatic metabolism and glucose output.

Traditionally researchers have used gene mapping and linkage studies to determine

genes involved in a particular phenotype. This approach has been successful for some

single gene disorders, however, it is more difficult to employ in polygenic traits, such

as hepatic glucose output. For this reason we used genome scale DNA microarrays,

containing 17,000 gene probes, to monitor hepatic gene transcription in control mice,

mice with diet induced obesity and insulin resistance, and mice with diet induced

obesity that; had been calorically restricted, returning their weight to control levels.

This approach is fundamentally different than mapping studies that search for muta-

tions in genes associated with the phenotype. Instead, we searched for genes that are

differentially expressed under the experimental conditions and therefore may directly

affect changes in phenotype, such as the development of insulin resistance. It is im-
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portant to understand that these genes may or may not have mutations associated

with the disease, however, because they are differentially expressed, they are likely

to be related to the molecular mechanisms that define the physiological differences

resulting from the experimental treatments.

Our microarray studies identified 41 genes that were differentially expressed and

could rigorously classify the samples. These genes were found using t-tests, Wilks-

A based ranking, Fisher Discriminant Analysis (FDA) and Principle Components

Analysis (CA). Because of the successful treatment classification based on expression

levels of the 41 identified genes, they represent good candidates that contribute to

the observed changes in hepatic physiology.

In our work we were primarily interested in genes that were involved with hepatic

metabolism, particularly hepatic glucose output (HGO). Because the liver performs

many diverse physiological functions, such as glucose production, lipid production and

metabolism, serum protein production, and xenobiotic detoxification, more screening

was necessary to determine which genes affected hepatic metabolism. Traditionally

studying loss of function phenotypes has been one of the most important ways of

determining a gene's role in vivo, thus we developed RNA interference (RNAi) based

gene silencing techniques to further screen the identified genes to determine their

potential metabolic roles.

RNAi is a method that can be used to post-transcriptionally silence genes; that

is, it directs the specific degradation of RNAs resulting gene transcription. By de-

grading the mRNA of candidate genes, the RNAi pathway prevents translation into

protein products or any direct activities that the RNA molecules may possess. To

efficiently screen the 15 over-expressed genes from our mouse studies, we developed

combinatorial gene silencing protocols that utilized short-interfering RNAs (siRNAs).

Using the combinatorial approach it was possible to determine the effects of 15 genes,

mapping down to a single gene effect, within seven experiments.

Metabolite profiling was employed to quantitatively describe the metabolic state of

hepatocytes during the silencing experiments. Metabolites were chosen from central

carbon metabolism (glycolytic and gluconeogenic pathways), the TCA cycle, and
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pentose phosphate pathway to represent the physiological state. Control treatments

that induced different levels of HGO were analyzed with Fisher Discriminant Analysis

(FDA) to generate lower dimensional metrics that represented the information from

the metabolite profiles. The two metrics developed (the canonical variables resulting

from the FDA analysis) could accurately classify the control treatments and were

used to project experimental treatments in the reduced FDA space. Based upon

the metabolite dependent classification of the experimental siRNA treatments, we

focused on one group of five genes that clustered within the lowest glucose producing

control samples. The genes contained within this group were Eva, Hgfl, LIM, LRR,

and RIK.

Potent gene silencing of all five genes simultaneously resulted in an 11% reduc-

tion in HGO, which was similar to the results of silencing PCK1 or G6P, two key

gluconeogenic genes. When the five genes were silenced in smaller groups, or indi-

vidually, their classification changed within the FDA space and their effects on HGO

decreased. Of the five genes, four (Eva, Hgfl, LIM, RIK) had a significant effect on

hepatic metabolism. Of these four genes, only Eva, Hgfi and RIK reduced HGO

significantly, each by about 5%.

Although each of these genes individually contribute a small amount to HGO, they

would have been very difficult, if not impossible, to identify using traditional mapping

techniques. It is not currently known whether these genes have mutations that are

associated with disease, however, it is now known that in primary hepatocytes, they

individually and collectively can influence HGO. For this reason, Eva, Hgfl, and

RIK provide important new research targets and further insight into a very complex

phenotype.

6.2 Significance of Results

While classical gene identification techniques work for well defined, single gene phe-

notypes, more complex, multigenic phenotypes can benefit from other approaches to

gene identification. Complex diseases, such as type II diabetes, require additional
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information to rapidly identify genes involved in the defining molecular pathways.

This work integrated experimental techniques including DNA microarrays, RT-PCR,

RNAi based gene silencing, and metabolite profiling, along with multivariate analysis

techniques, to study glucose production in primary hepatocytes. In doing so we were

able to efficiently identify genes that affected hepatic metabolism and HGO.

While the methods used here are not unique, our application provided a new

process for identifying genes involved in complex phenotypes. The high through-

put nature of DNA microarrays provides enormous amounts of data, driving the

identification of candidate genes through statistical and multivariate analysis. In

this work we were interested in hepatic genes that mediate the metabolic changes

that occur when C57/BL/6J mice are placed on a high-fat diet, or when obese mice

are calorically restricted. By analyzing the DNA microarray data, we discovered 41

genes that could discriminate the dietary treatments. Each of these genes represents

a rigorous candidate for future investigations. Such applications represent a growing

shift from the single hypothesis testing that biologists traditionally rely upon, to

an expanding landscape of analyses, which not only investigate large numbers of

individual components, but also the systemic features of their interactions.

Instead of conducting linkage studies to associate a chromosomal region with a

phenotype, DNA microarrys enable studies work directly at the molecular level. Thus

instead of genotyping populations to determine regions that associate with disease,

and then dissecting the region for the genetic components that affect a given phe-

notype, genes can now be readily linked directly to a phenotype of interest. This

opportunity also presents some serious challenges associated with understanding how

large numbers of variables interact, interpreting true signals within a "noisy" envi-

ronment, and often performing experiments in information limited systems. These

circumstances have been encountered in engineering before and are therefore amenable

to some of the analysis techniques that have been previously developed.

Certainly there are caveats to pursuing such lines of research and the resulting

data may be confusing to interpret. However, high-through-put studies markedly

overcome the time constraints and tedious work involved in identifying QTLs, can be
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performed with limited staff, and usually leave no shortage of interesting genes for

further investigation. Furthermore these types of investigations provide an important

conceptual shift in studying biology; one that moves away from the link between

genetic alleles and phenotype to one that focuses on the mechanism of the phenotype.

That is, our approach has not analyzed how the distribution of alleles influence a

specific phenotype and instead focuses on how differences in gene transcription define

the phenotype. In this way we can more rapidly develop models that explain our

observations, look for relevant mutations if need be, and use the results to help guide

the development of improved therapies.

While stringent analysis of microarray data can be used to find genes whose tran-

scription levels are associated with a phenotype, directly testing the genes for specific

physiological effects still proves challenging. To more rapidly sort through the gene

candidates, equally high-through-put methods of gene characterization and further

relevance screening must be developed.

Unlike prokaryotes and yeast, genetic manipulation of mammalian cells is very

tedious, difficult to perform, and time consuming. With the discovery of RNA inter-

ference (RNAi), this situation changed. For the first time it has become possible to

efficiently study the effects of specific loss of function phenotypes on genes of inter-

est. Although still in its infancy, the cost, through-put, and required optimization

of RNAi based gene silencing promises to decrease in the future, thereby providing

a complementary gene "characterization" technology to DNA microarrays as a gene

discovery technology.

The RNAi protocols we developed were used to study how silencing of genes iden-

tified in our mouse studies influenced glucose production from primary hepatocytes.

Because our assay for HGO was time consuming, measuring glucose production over

a 24-hour period, and provided little mechanistic insight on the intracellular environ-

ment, we used metabolite profiling as the basis for quantitatively assessing hepatic

metabolism. The metabolite profiles from control treatments that induced different

HGO rates were analyzed using Fisher Discriminant Analysis (FDA) and could be

used to classify the treatments. The classification metrics derived from the FDA
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analysis allowed us to further delineate the changes in hepatic metabolism caused by

gene silencing.

In order to increase the efficiency of our silencing experiments, we developed

combinatorial screening using siRNAs. The combinatorial strategy allowed us to

find four genes out of an initial set of 15, that had a significant effect on hepatic

metabolism in seven experiments. In addition to decreasing the number of experi-

ments required, it also showed that multiple genes could be simultaneously silenced,

revealing (non)additive effects of silencing gene combinations. This provides a method

for testing individual genes and determining if they have a complementary or antago-

nistic impact a phenotype. In our study four of the genes (Eva, Hgfi, LIM, RIK) had

an influence on metabolism in primary hepatocytes, but only three (Eva, Hgfl, RIK)

decreased hepatic glucose output, and those decreases were approximately additive.

Eva, Hgfl, LIM, and RIK may have been difficult to discover using other ex-

perimental methods, given that they are not well characterized and intuitively are

distantly linked to HGO. While the putative roles of these genes are not closely re-

lated to metabolism, our studies support the assertion that they may be involved and

could potentially contribute to the variance in HGO observed in Type II diabetics.

Although this assertion needs to be further to be validated and studied in greater

detail, the new direction resulting from this research is an important contribution:

it adds a new piece to the puzzle of HGO regulation. Determining the in vivo ef-

fects of these genes on hepatic glucose production in a mouse model would provide

an important validation, or caveat, of this work. Because biological science is very

serendipitous, with a large element of unpredictability, such discoveries deserve to be

explored based upon their merit.

While we focused on silencing genes that were over-expressed during the dietary

treatments in our mouse experiments, over half of the genes identified from the mi-

croarrays were repressed. Many of these genes encoded signalling proteins that may

also be involved in the development of insulin resistance. Thus future work should

look at over-expression of the repressed genes during high-glucose producing con-

ditions. Determining the effects of these repressed genes on metabolism and HGO
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is a complementary approach that we did not explore. Our approach also could be

extended to study glucose up-take by muscle and adipose tissues, insulin secretion

by -cells or other interesting phenotypes.

The ability to integrate new technologies with advanced analysis methods and

readily employ those to medical research has the potential to make significant future

contributions. The strategy used here to identify candidate genes is a good case study

upon which other investigations may be based. Our approach certainly lends itself to

the investigation of other relevant phenotypes and should find growing applications

in the future.



Appendix A

Partial Least Squares Simulations

Partial least squares (PLS) is a linear regression method that creates correlations

between multivariate sets of data. For this reason it can be a valuable tool for

empirical modeling of biological systems, which often have multiple relevant input

and output variables of interest.

In this thesis, PLS was used to analyze and derive potential relations between a

dependent data set, Y, and the underlying gene transcription data, X. In this way,

we have attempted to identify the genes that regulate or influence some biologically

relevant features of the cellular system.

Generally speaking, transcriptional data sets have vastly more genes, g9, than

samples, s, and are referred to as "underspecified" (that is, s << g). The converse

situation may arise if a predefined gene set were used such that the number of samples

were equal to, or greater than the number of genes in the model; such a data set,

with s > g, is referred to as "overspecified."

To test the ability of PLS to create models that cannot be produced by random

occurrence, simulations were conducted with the aim of determining how the infor-

mation structure of the input data affected the resulting model. The input data, X,

to the PLS algorithm has three primary components that define its structure and

content: the number of samples, s, the number of "relevant" genes, g, and the num-

ber of "irrelevant" genes, ng (the "noisy genes") 1. Within this framework, several

1By relevant, we refer to genes that have some affect or contribution to the output data contained
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immediate questions were investigated. First, in DNA microarray experiements it

is most common for the number of genes in our data set to grossly outnumber the

number of samples, that is, the case of the underspecified data matrix. How is PLS's

ability to create models that predict the Y-Block affected by the number of relevant

and irrelevant genes? Second, it is important to know how sensitive PLS is to the

number of samples contained. Is there an optimal ratio of genes to samples? Does the

distribution of relevant and irrelevant genes affect the required number of samples?

A.1 PLS Gene Simulations

The first set of simulations were designed to test the effect of the number of irrelevant

genes on the PLS model prediction. This is an important consideration for studying

quantitative, polygenic traits, particularly if DNA microarrays are going to be used

as the basis for gene identification. In this case, the number of genes monitored in

an experiment is almost certainly much greater than the number of genes that actual

regulate a given trait, and therefore understanding how the added genes may impact

correlations derived from PLS is an important consideration.

Gene simulations investigated under what conditions the PLS model predictions,

based on either actual or random data, converged as a function of the number of

irrelevant genes. In describing these simulations, "actual data" refers to data that

was used in a linear model to construct the dependent data matrix, Y. Thus in every

simulation, Y is some linear function of the number of relevant genes, whose values

comprise the actual data, as defined by

Y = X b (A.1)

where X is the randomly generated X-Block of actual data, and b is the randomly

generated correlation vector. To the X-Block, irrelevant genes are added that are

simply random data placed within the data matrix, and do not contribute to the

in the Y-Block. By irrelevant, we refer to genes that do not substantially contribute to the data
contained in the Y-Block.
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values of the dependent data matrix, Y. As X becomes larger by the incorporation of

more irrelevant genes, the elements of b that correspond to the additional irrelevant

genes are given values of 0, so that in any given simulation the number of relevant

genes remains constant. Once X, b, and Y are constructed, PLS is used to relate X

to Y, and -to relate a randomly generated X-Block, to Y. The result of the correlation

between X and Y is called Yp, while the result of the randomly generated X-Block

and Y is called Y,. Each test is repeated 100 times for each combination of s, g, and

ng.

To evaluate how PLS performed in the simulation, the Euclidean distance between

Y and Yp, and between Y and Yr was calculated. Once the mean and standard de-

viation of the 100 test results were compiled for each metric, the test was restarted by

adding another irrelevant gene. When the difference between the last ten simulation

results of the actual data was not significantly different from the last ten simulation

results of the random data (as measured by a two-way t-test, P = 0.05), the simula-

tion ended and the number of irrelevant genes was recorded. Figure A-1 schematically

shows how the first set of simulations was conducted.

The simulations began with a two gene, two sample, one Y-variable model, and

proceeded by first increasing the number of irrelevant genes (ng), for different num-

bers of actual genes (g) used to make the Y-Block, and finally repeating the entire

simulation by including more Y-variables, all of which were functions of the X-Block.

Although the difference in the distance in Figure A-2is the largest when the X-Block

is full rank, the variance in the model fits derived from random data is large and

therefore the differences between the models is not statistically significant. Also the

mean agreement between the prediction and the actual Y continues to improve as

more irrelevant genes are added. This implies that the algorithm is overfitting, espe-

cially since the variance in the model is decreasing. Table A.1 summarizes the data

from this set of simulations.
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Figure A-I: Schematic of PLS simulation algorithm for testing the effect of additional
irrelevant genes on model prediction.
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Figure A-2: PLS simulation results from adding additional irrelevant genes to the
model.
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Table A.1: Summary of PLS Simulation Data.

In Table A.1 there are several things to notice. First the number of actual genes

pertinent to the model does not markedly influence the number of total genes it takes

for the models to converge. This means that very complex relationships, as found

in polygenic quantitative traits, will be more difficult to substantiate because such

relationships can easily arise simply from noise in the data set. Next, increasing the

number of Y-variables in the model decreases the number of irrelevant genes necessary

for convergence. This affect only differentiates the single Y-variable model from the

others, and is the result of the Y-Block transitioning from being overspecified, to full

rank, and finally to being underspecified.

Another interesting aspect of Table A.1 is the fact that as the number of actual

genes in the model increases, the initial difference between the actual model prediction

and the random model prediction decreases. This trend is independent of the number

of Y-variables included in the model, which further substantiates the previous point

that as the genetic model becomes more complex by including more genes, PLS will

Number Number Number Number of Number of Initial Difference
of Initial of Acutal of Total Genes Samples at between Model and
Samples Genes Y-Variable at Convergence Divergence Random Prediction

2 2 1 83 20 0.324

2 10 1 83 20 0.093

2 20 1 110 19 0.073

2 30 1 104 19 -0.045

2 2 2 52 17 0.444

2 10 2 44 18 0.030

2 20 2 64 18 0.030
2 30 2 51 19 0.005

2 2 3 37 16 0.380
2 10 3 58 19 0.021

2 20 3 52 19 0.045
2 30 3 52 19 0.018

2 2 4 48 17 0.363
2 10 4 46 19 0.052
2 20 4 48 19 0.085

2 30 4 51 21 0.044
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have an increasingly difficult time identifying its exact salient features as opposed to

noise in the data.

Finally, the amount of variance captured from the X-block and Y-block in the

first latent variable, did not vary substantially between the models. It's noteworthy

that as the number of samples increases, the variance captured by the model spreads

through the subsequent latent variables. Because different simulations have different

numbers of latent variables included, only the amount of variance captured by the

first variable was tracked. This variable captures the largest amount of variance from

the Y-block of any of the latent variables. Because the algorithm is designed to both

capture variance, and find correlation, it is not surprising that the random data model

obtains a comparable level of variance in the first latent variable for both blocks.

Based on these initial simulations some conclusions can be made about employing

PLS with different data sets:

* As the number of real genes pertinent to the Y-block data increases, the more

difficult it is for PLS to identify a statistically significant model.

* As the number of irrelevant genes in the X-block increases, the more difficult it

is for PLS to identify a statistically significant model.

A.2 PLS Sample Simulations

In addition to investigating the effect of the gene number on the model predictions, it

is also important to understand the effect of the number of samples. For example, for a

given number of genes in the model, is there a minimum number of samples necessary

to find a statistically significant model? How sensitive is the model prediction to

the number of samples? If a large number of genes are included, is it possible to

do enough experiments to make PLS a worthwhile technique, or is it only relevant

to look for correlations between subsets of genes? These questions are important

because they have an impact on the practical applications of PLS and what kind of

data is necessary for its implementation.
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To test the effect of the number of samples on the model prediction, simulations

were conducted in two ways, using the same aforementioned criteria. The first set of

simulations simply continued the gene expansion simulations conducted in Section A.l

by adding more samples to the matrices and investigating how long it took the random

and actual model to diverge. More samples were included to see if the model would

perform the same "overfitting" that appeared to happen as more genes were added.

As shown in Figure A-3, as additional samples are added to the matrices, the

random data model performs less and less well relative to the actual data model.

Relative to the random data model, the model based on the actual data quickly yields

better predictions of the V-Block then what could be obtained by chance, making the

model results s'tatistically more significant.
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Figure A-3: PLS simulation results from adding additional samples to the data ma-
trix.

These differences are reflected in the amount of variance captured by the first

latent variable in the model. Figure A-4 shows the amount of variance captured from

the X-Block and V-Block from both models as a function of the number of samples.
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In Figure A-4 we see that the Y-block variance captured by the random model drops
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Figure A-4: Variance captured by the first latent variable of the Y-Block and X-Block
in PLS model simulations.

off monotonically as more samples are added to the experiment. Interestingly, al-

though the means for the X-block latent variables also decrease as more samples are

added, the variance in the actual data model latent variable is much smaller than the

random data model latent variable. Despite this increased variance, it appears that

the decreasing accuracy of the random data model is primarily due to the algorithm's

inability to capture the Y-Block variance with a random X-block as the number of

samples increases.

The other method of simulation used to test the effect of increased numbers of

samples, is to first increase the number of samples, with only relevant genes included

in the model, and then see how many irrelevant genes are required for the model

predictions to converge. This is similar to the simulation carried out above in Sec-

tion A.l, however here the samples are first increased, followed by the number of

irrelevant genes included in the data matrix. In this case, the maximum number of
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samples used in the simulation was 80, and the maximum number of irrelevant genes

used was 800. Figure A-5 shows the results of the model simulations.
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Figure A-5: PLS model simulation wherein the number of samples was initially in-
creased, followed by the number of irrelevant genes.

This simulation took four days of computer time to complete, and after all 800

irrelevant genes had been included, the two models still had not completely converged

(although the standard deviations of the models did overlap). It is interesting in Fig-

ure A-5 that the number of samples causes for a very large initial divergence between

the actual and random data, and that the actual data prediction appears to get con-

tinually better as more samples are included. However, once the number of irrelevant

genes is increased, the two models quickly begin to converge. Because the model

initially does a better job of prediction as the number of samples is increasing, the

amount of variance captured from the Y-Block is increasing. Likewise, as the number

of irrelevant genes increases, the variance captured from the Y-Block decreases. Both

of these effects are reflected in the amount of variance captured by the first latent

variable during the simulations (data not shown).
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Together, these simulations support the notion that in order to use PLS to iden-

tify statistically meaningful relationships in the data, having an adequate number

of samples is crucial. While processing more samples on full genome microarrays is

time consuming, costly, and can be tedious for large numbers of arrays, the relation-

ships obtained should hold information that is both relevant and significant to the

investigation.

Biology is currently attempting to address, and understand, the problems associ-

ated with the systemic features of phenotypic behavior. The potential of large scale

biological experiments has yet to be completely realized partially because of the diffi-

culty in obtaining useful information from these projects. This difficulty is enhanced

by the absence of any clear method for linking, or integrating, different data types.

Partial least squares, PLS, has been proposed as one method for identifying trends

between different data types. A large number of simulations were undertaken to test

the reliability and application of PLS to using an independent data set to predict a

dependent data set. In our laboratory the independent data set usually takes on the

identity of gene transcription data, while the predicted data set is usually chemical

reaction flux data, or physiological data, however the algorithm itself can use any

type of data matrices.

The results of the simulations have shown that for experiments typical in most

DNA microarray studies, the resulting correlations are not significant unless a large

number of samples are used. In one set of simulations, 20 samples were required to

identify statistically significant models with 100 total genes, regardless of the number

of actual genes contributing to the Y-Block. In practice, if the number of genes in-

cluded in a set of experiments can be limited in a meaningful way, so as to decrease

the relative number of irrelevant genes in the data set, then both statistically sig-

nificant and unique relations can be identified which underlie the regulatory genetic

structure.

It should be emphasized that prudent use of this and other methods is necessary,

in addition to good experimental design. For many microarray experiments utilizing

cDNA technology, the researcher generally loses genes as the number of samples grows
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(because as a requirement for inclusion in most models, the gene must be reliably

detected in every sample), which complicates these problems. If genes relevant to

the variables contained in the Y-Block are lost due to poor observability, then the

resulting model will have a poor fit, and although the number of samples may rival

the number of genes in the set, the resulting model will still not be significant due

to its poor predictive capability. Conversely, if a large number of samples are not

obtained, then the likelihood of having a statistically relevant model is low. Based

on these problems, the best the researcher can do is identify relevant gene sets to

the Y-Block variables (either from previous knowledge and intuition or from other

methods such as discriminant analysis or statistics), process a lot of samples that span

the space of values defined by the Y-Block variables, and conduct as many replicates

as is feasible. If these three criterions can be met, then PLS can provide researchers

the ability to link diverse sets of data in the study of systemic biological properties.
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