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Abstract

This thesis describes the design, construction, and testing of a new source of entan-
glement. The goal is to produce pairs of photons which are not only polarization-
entangled, but also have a high brightness within a narrow bandwidth. This novel
source is more suitable than previous SPDC sources for transferring entanglement to
future qubit storage such as a trapped rubidium memory. The narrow bandwidth
is imposed by modifying the spectrum of the photon pairs by performing the down-
conversion inside a cavity. The collinear downconversion geometry inside the linear
cavity is achieved by using a quasi-phased-matched periodically-poled potassium ti-
tanyl phosphate (PPKTP) crystal. The single-pass free-space photon-pairs produced
were demonstrated to be polarization-entangled by measuring the Hong-Ou-Mandel
interference dip and measuring a violation of Bell’s inequality of 2.711±0.010 (which
was greater than the classical limit of 2). The cavity-enhanced downconversion was
observed with a brightness of 0.7 pairs/s per mW of pump per MHz of bandwidth in
the Gaussian mode collected (a generation rate of 110 pairs/s/mW/MHz is inferred).
The interference dip from the pairs was measured to have a visibility of 75% when near
the ideal equal-FSR operating point, where the pairs are in the biphoton triplet state.
When detuned to have unequal FSR the output pairs show the an interference dip
behavior consisting of a combination of triplet and singlet states that depends on the
time separation of the pair as it leaves the cavity. The observed results corroborate
detailed predictions of a Gaussian-state model of cavity-enhanced downconversion.

Thesis Supervisor: Erich P. Ippen
Title: Professor

Thesis Supervisor: Franco N.C. Wong
Title: Senior Research Scientist

3



4



Acknowledgments

I would like to thank my adviser Franco Wong for giving me the opportunity to work

on this project. And I wish to thank my coworkers, especially Elliot Mason who helped

teach me what I needed to understand about nonlinear optics and Eser Keskiner for

working with me on my first experiments. For the single-pass PPKTP experiments,

I thank Gaétan Messin for working with me to achieve our excellent results. And I

wish to thank Jeff Shapiro for bringing me from ignorance to excellence with respect

to the theory. I am grateful for the friendship and support of Shane Haas, Marco

Fiorentino, Marius Albota, Pavel Gorelik, Taehyun Kim, and Onur Kuzucu. Thank

you all for wonderful, and wide ranging, discussions that have helped make working

in this group, and eating lunch, something to look forward to each day.

I owe particular thanks to Theresa Robinson for proof-reading this thesis, and

helping me focus when procrastination was winning. I am also in debt to my parents,

Gerald and Pauline, who have always encouraged and supported me, and my brother

Andrew who has done the most to inspire me to achieve success and happiness.

And finally I want to thank the other member of my committee, Erich Ippen,

Daniel Kleppner, and Michael Feld for helping me achieve my ambition here at M.I.T.

5



6



Contents

Contents 7

List of Figures 11

List of Tables 13

1 Introduction 15

1.1 Teleportation Architecture . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Entanglement Source . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Single Pass Theory 21

2.1 Nonlinear Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Output state from the crystal . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Perturbative Calculation . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Forward Plane-Waves . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Non-Perturbative Calculation . . . . . . . . . . . . . . . . . . 29

2.3 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Tuning and Tolerances . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Degenerate Cone . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.3 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.4 Timing compensation . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Interference dip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7



8

2.5 Entanglement inequality . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Single Pass Experiments 49

3.1 Path of Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Degenerate Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Interference Dip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Coincidence Measurements . . . . . . . . . . . . . . . . . . . . 54

3.4 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Cavity Theory 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Simple Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Ultrabright peaks . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.3 Slightly Unequal FSR . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.4 Interference dips and entanglement . . . . . . . . . . . . . . . 81

4.3 Aside on using a QWP . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Laguerre-Gaussian Basis . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Perturbative Calculation . . . . . . . . . . . . . . . . . . . . . 89

4.4.2 Non-Perturbative Calculation . . . . . . . . . . . . . . . . . . 93

5 Cavity Experiment 95

5.1 Early designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Cavity Parameters and Tuning . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Interference Dip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Brightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Unequal FSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 Imperfect Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



9

6 Conclusion 125

6.1 Novel Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A Field Operators 129

Bibliography 137



10



List of Figures

1-1 Illustration of quantum teleportation. . . . . . . . . . . . . . . . . . . 17

2-1 Diagram of coordinate system in PPKTP crystal . . . . . . . . . . . . 35

2-2 Illustration of phase matching versus temperature . . . . . . . . . . . 37

3-1 Rendering of CCD image of output cone . . . . . . . . . . . . . . . . 52

3-2 Layout for interference dip experiment . . . . . . . . . . . . . . . . . 53

3-3 Quantum interference dip versus collected output . . . . . . . . . . . 56

3-4 Layout for CHSH experiment . . . . . . . . . . . . . . . . . . . . . . 58

3-5 Plots of CHSH data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4-1 Layout for the model of the single-ended cavity. . . . . . . . . . . . . 62

4-2 Layout showing cavity field operators . . . . . . . . . . . . . . . . . . 63

4-3 Spectra for degenerate double resonance . . . . . . . . . . . . . . . . 70

4-4 Spectra for non-degenerate double resonance . . . . . . . . . . . . . . 71

4-5 Spectra for non-resonant operation . . . . . . . . . . . . . . . . . . . 72

4-6 Spectra for detuned double-resonance . . . . . . . . . . . . . . . . . . 73

4-7 Model histogram, all peaks . . . . . . . . . . . . . . . . . . . . . . . . 75

4-8 Model histogram, zoom of single peak, no compensation . . . . . . . 75

4-9 Model histogram, zoom of a single peak, 95% compensation . . . . . 76

4-10 Model histogram, zoom of single peak, contructive interference . . . . 76

4-11 Model histogram, zoom of single peak, destructive interference . . . . 77

11



12

4-12 Plot of maximum and minimum output rates versus compensation . . 77

4-13 Plot of prediction of interference dip and revival . . . . . . . . . . . . 85

4-14 Model rate of output into various Laguerre-Gaussian modes versus

pump waist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4-15 Model conditional coincidence probablity versus pump waist . . . . . 92

5-1 Layout for pump laser . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5-2 Layout of cavity experiment . . . . . . . . . . . . . . . . . . . . . . . 99

5-3 Plot of singles and coincidece rate, 3 nm IF . . . . . . . . . . . . . . . 102

5-4 Plot of singles and coincidence rate, 1 nm IF . . . . . . . . . . . . . . 103

5-5 Histogram of inteference dip, 1 nm IF . . . . . . . . . . . . . . . . . . 105

5-6 Log-scale histograms of interference dip, 1 nm IF . . . . . . . . . . . 106

5-7 Ratio showing interference dip, 1 nm IF . . . . . . . . . . . . . . . . 107



List of Tables

2.1 FWHM Tuning ranges for phase matching . . . . . . . . . . . . . . . 36

3.1 Interference dip visibility versus iris size . . . . . . . . . . . . . . . . 56

3.2 Calculation of CHSH inequality . . . . . . . . . . . . . . . . . . . . . 60

5.1 Interference dip model versus data . . . . . . . . . . . . . . . . . . . . 110

13



14



Chapter 1

Introduction

George got stung by a bee and said,

“I wouldn’t have got stung if I’d stayed in bed.”

Fred got stung and we heard him roar,

“What am I being punished for?”

Lew got stung and we heard him say,

“I learned somethin’ about bees today.”

Shel Silverstein, Three Stings

The goal of quantum optics is to study the electromagnetic field where Maxwell’s

equations and “semi-classical” models no longer apply. Experiments to observe quan-

tum features [1] evolve into complex state preparation, and make it possible to per-

form fundamental tests of quantum theory, such as Bell’s inequality [2]. These states

have been or may eventually be used in larger experiments to perform precision mea-

surements, quantum computation [3], or encrypted communication [4]. In particular,

communication via quantum teleportation [5] has been proposed. Almost all these

systems use a source of entangled photons that have strong correlations beyond what

classical physics allows. The purpose of this work is to develop a novel entanglement

source to enable efficient communication via quantum teleportation. In particular

I will develop a source, and the corresponding theory, which produces polarization-
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entangled pairs where both photons are nearly the same frequency, i.e. degenerate.

The rate of pair generation within a few MHz of exact degeneracy will be over an

order of magnitude brighter that any previous system.

1.1 Teleportation Architecture

There are three ways to communicate a quantum state from one party to another. If

the sender knows what the quantum state is or how to prepare it, then the “recipe” can

be sent via normal, classical communications. If the state has been prepared, then the

physical subsystem underlying the state can be “transported” to the receiver; usually

this will be photons through free space or a fiber. There is a third way to send a

state, which is via a quantum “teleportation” protocol which is summarized below.

Like the “transport” mechanism, “teleportation” can transmit a message state which

is unknown to any of the participants.

To be concrete, define the message state to be the superposition of two particular

known orthogonal states in a Hilbert space. The quantum state of such a two element

system is called a qubit. As a precondition, all qubit teleportation protocols depend

on each of the two parties having half of a fully entangled pair of qubit states, such as

a singlet or triplet state. This source is shown in Fig. 1-1 at location S and the pair

is stored in two quantum memories at each location, marked M in the figure. The

sender Alice then needs to make a complete joint measurement of the message qubit

and the entangled qubit in the four state Bell basis (location B). The result of the

measurement puts those two qubits into a known Bell state with uniform probability

across the 4 states, generating two classical bits. This random pair of bits is sent

classically to the receiver Bob, who then performs one of 4 local unitary operations

(at location U) corresponding to the measured Bell state communicated by Alice, on

the shared entangled qubit. After the unitary operation, Bob’s qubit is then in the

same state as the message qubit was initially. At no point does Alice or Bob know or
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learn anything about the quantum state of the message.

The specific architecture proposed in Ref. [6] calls for the quantum memory to be

a single rubidium atom trapped in a high finesse cavity. Each half of the entangled

photon pair, perhaps distributed over up to 100 km of fiber, is sent into the cavity. The

atomic qubit storage is required since an all-photon system could not fully measure the

joint Bell state of the message and entangled qubits. The protocol checks whether the

two memory atoms have each absorbed a photon before proceeding. Thus the system

is limited by the rate at which suitable pairs can be created and distributed. These

pairs need to have photons at the right frequency to excite the rubidium memory

and need to have the right spatial mode to enter the high finesse cavity trapping

the rubidium atom. This work is an attempt to create a bright source of suitable

entangled pairs.

1.2 Entanglement Source

The workhorse of experimental quantum optics has been nonlinear χ(2) crystals and

χ(3) fibers. Such materials can produce pairs of subharmonic photons via spontaneous

parametric downconversion (SPDC) when driven with a phase-matched pump laser.

Under the proper conditions these output pairs are polarization entangled. The band-

width of the spontaneous pair generation is quite large, from 250 GHz to 5 THz. The

proportion of the output which is within the ∼30 MHz bandwidth of the rubidium

transition is 10−4 at best. When one takes into account the spatial mode matching

into the atomic qubit cavity the rate of suitable pairs can be very low.

The optical parametric oscillator (OPO), constructed from a nonlinear material

placed inside a cavity, has been well studied in the near-threshold regime where it

produces squeezed signal and idler output beams. Far below threshold it acts as

an optical parametric amplifier (OPA) and should produce discrete pairs instead of

beams, i.e. the pair generation rate is less than the cavity decay rate so the cavity is on
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average empty of downconverted photons. These pairs should be produced primarily

at the cavity resonances, and a type-II OPA, producing a pair with two different

polarizations, would produce polarization entanglement. The proposed architecture

of the source, detailed in Ref. [7], calls for using a combination of two such sources of

narrowband polarization entanglement. The second OPA is used to avoid having a 50-

50 beam splitter with a single OPA and losing half the pairs. This work is an attempt

to create a single type-II OPA that generates degenerate polarization-entangled pairs

at the 795 nm rubidium transition wavelength. Similar experiments, using type-I

downconversion, which produces co-polarized photons, have been performed by Ou

et al. [8, 9, 10] using type-I downconversion in a linear cavity, and by Kobayashi [11]

using two type-I crystals in a ring cavity.

The nonlinear material used for SPDC is periodically potassium titanyl phosphate

(PPKTP). The poling allows the pump and output pairs to be collinear and for the

crystal to be relatively long, which contributes to the brightness of the narrowband

output. The single-pass performance in producing polarization-entangled pairs was

investigated first. The first chapter provides the theoretical basis for single-pass down-

conversion and the second chapter describes the corresponding experiments. The

theory for the low-power OPA cavity is then presented, including spatial mode ef-

fects, in the following chapter. Then the experimental results for the cavity-produced

polarization entanglement are detailed.
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Chapter 2

Single Pass Theory

The Mediterranean has the color of mackerel, changeable I mean. You

don’t always know if it is green or violet, you can’t even say it’s blue,

because the next moment the changing reflection has taken on a tint of

rose or gray.

Vincent Van Gogh

This chapter presents a model of spontaneous parametric downconversion (SPDC)

and specializes it for our experimental conditions. Some of the field notation that

will be used here is derived in appendix A. The next section presents an overview of

nonlinear χ(2) material, and is followed by derivations of the SPDC optical state that

emerges from the crystal. These derivations are not novel, but the non-perturbative

derivation is generalized slightly and then applied to PPKTP. This result will also

form part of the starting point for chapter 4. Based on this state several calculations

related to experimental conditions and results are then presented. Numerical values

are given where it will be useful to aid understanding an expressions or understand

the next chapter’s experiments.

21



22

2.1 Nonlinear Crystal

The induced polarization of some materials is more complicated than a linear depen-

dence on the incident field. These nonlinear materials have higher order dependencies,

usually expressed in tensor form as

Pi = χ
(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + ... (2.1)

The i,j,k,l subscripts being from 1 to 3. The χ’s are the electric susceptibilities,

and for most materials the processes of interest are derived from the χ(2) three-wave

mixing or χ(3) four-wave mixing terms. The downconversion in PPKTP is a three-

wave mixing process. The second and third indices of χ
(2)
ijk are symmetric so the

alternative notation dab is used where a = i and b varies from 1 to 6 to represent jk

values of 11, 22, 33, 23(32), 13(31), 12(21) (with extra factor of 2 so that d is half

of χ: 2dab = χijk) [12]. The KTP crystal has a mm2-orthorhombic crystal structure

(space group Pna 2). This symmetry classification ensures that only 7 values of χ
(2)
ijk

or 5 values of dab are not zero: d31, d32, d33, d24, and d15.

We convert a pump with the electric field polarized along only the 2nd or y-axis,

with signal output polarized along the 3rd or z-axis and idler output polarized along

the 2nd or y-axis. The pump is continuous wave (cw) and propagating along the 1st

or x-axis, and the signal and idler beams are emitted close to this direction. The d24

coefficient is thus responsible for the type-II downconversion seen in our experiments,

and the rest of the tensor can be neglected [13].

This parametric process can only proceed if the requirements of the conservation

laws of energy and momentum of the photons are met. The photon momenta inside

the crystal depends on the indices of refraction; these are from the χ
(1)
ij tensor, and

in the principal coordinate system of the crystal reduce to nx, ny, and nz. Some non-

linear material, such as the commonly used beta-barium oxide (BBO), are uniaxial:

two indices are identical and thus labeled ordinary, while the third index is labeled
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extraordinary and is also named the optic axis. KTP is a biaxial crystal: all three

indices are different from one another, though in the case of KTP nx differs only

slightly from ny. We take these indices from the Sellmeier equations and temperature

dependence given in Ref. [14]. Having three distinct refractive indices produces two

optic axes (thus the name biaxial) inclined at 17.65◦ to the z-axis in the yz-plane

(value is at 795 nm), instead of a single optic axis. This lack of symmetry in a biax-

ial crystal creates slightly more complex formulas for wave propagation than in the

uniaxial case [13]. This complexity is mitigated by the previously stated choice of

aligning the pump to the x-axis, which essentially eliminates all first order corrections.

The desired process of converting from the ultraviolet (UV) to a degenerate in-

frared (IR) pair does not satisfy the momentum conservation laws in KTP: this process

is not phase matched. Instead the KTP has been periodically poled which causes

the sign of the d24 coefficient to alternate in each domain. This creates a position

dependent d24(r) which replaces the usual momentum phase-matching condition with

quasi-phase matching (QPM) condition [15]. By carefully choosing the poling period

and adjusting the temperature of the crystal a quasi-phase-matching condition can

be satisfied.

2.2 Output state from the crystal

The simplest derivation that is often presented involves calculating the biphoton

state as a first order perturbation using the interaction Hamiltonian. The biphoton

derivation ignores the possibility of emitting more than a single pair, but this is a

good approximation for low power cw-pumped operation. This derivation also allows

for a more realistic setup, i.e. non-plane-wave, pump beams. It gets the phase delay

right due to a subtle choice of crystal location along the x-axis. It is derived here as

a demonstration of how it is done with a quasi-phase-matched biaxial material.

A non-perturbative propagating field solution is possible for the plane-wave pump,
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and is derived after this biphoton derivation. It is clearer where the phase delay comes

from, but harder to generalize the full solution beyond the plane-wave pump. The

single-pass field solution is needed to build the cavity solution. In the low power limit

this coincides with the biphoton solution.

For all the experiments, pump and idler have approximately horizontal (y-axis)

polarization and the signal has vertical (z-axis) polarization. The deviation of the

eigen-polarizations from exactly horizontal and vertical will be ignored in the paraxial

approximation, just as the small deviation of deff from d24 will be ignored.

2.2.1 Perturbative Calculation

The downconversion interaction Hamiltonian in the crystal in terms of the electric-

field operators [16, 17, 18, 19, 20]:

Ĥint(t) =

�
V

d3r d24(r)Ê+
P (r, t)Ê+

S
†(r, t)Ê+

I
†(r, t) + H.c. (2.2)

The integration over the crystal volume places the origin of r at the center of the

output face of the crystal. This location of the origin produces the most immediately

useful form of the biphoton amplitude.

Due to the small value of |d24(r)| the single-pass pump can be treated in the high-

intensity and non-depleted classical limit. Thus Ê+
P will be replaced by the complex

electric-field intensity EP , with a profile ÃP :

E+
P (r, t) =

�
d2qdω i

√
~ω

2ǫ0nP (q, ω)c
ÃP (q, ω)

exp(iκP (q, ω)x + iq · s − iωt)

(2π)3/2
,

(2.3)
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where s ≡ (y, z) and κ is the function for kx:

κS,I,P (q, ω) =

√(
nS,I,P (q, ω)ω

c

)2

− |q|2. (2.4)

In the integrand in (2.2), the periodically-poled d24(r) can be approximated by an

infinite crystal and expanded in a Fourier series:

d24(r) =






+d24 for 0 < x mod Λ < 0.5Λ,

−d24 for 0.5Λ < x mod Λ < Λ

, (2.5)

d24(r) =
∑

m=1,3,5,...

deff

mi

(
exp

(
i
2mπ

Λ
x

)
− exp

(
−i

2mπ

Λ
x

))
, (2.6)

deff ≡
(

2d24

π

)
, (2.7)

where Λ is the poling period of the PPKTP crystal. For quasi-phase matching in

the system under study, only the exp(±i2π
Λ

x) terms contributes significantly to the

integration. For other systems the ability to manufacture a short enough period to

achieve matching can be lacking, in which case the next higher 3rd order term can be

used instead. The definition above puts the origin x = 0 at a domain boundary; other

possible locations along x result in a constant global phase shift in the Fourier series.

This phase shift will not affect the results of experiments, much as the absolute phase

of the pump will not affect the results. Experiments which, for instance, cascade two

PPKTP crystals would depend on the exact locations of the domain boundaries, and

the type of interactions involved. Phases that result from such subtleties do make

comparing different authors’ derivations more tedious.

The exp(±iκmx) terms from the fields combine with this term so that the quasi-

matched output will depend on the momentum mismatch in the x direction, defined
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as

∆k(qS, qI , ωS, ωI) = κP (qS + qI , ωS + ωI) − κS(qS, ωS) − κI(qI , ωI) −
2π

Λ
. (2.8)

The phase mismatch ∆k will be zero for exact quasi-phase matching. In particular

it will be frequently assumed that ∆k(0, 0, ωP /2, ωP/2) = 0 for forward degenerate

phase matching.

For input vacuum states, the first order perturbation result for the output is

a biphoton state with amplitude Φ. Expressing the signal and idler Ê+† fields as

integrals using (A.26) and rearranging leads to perturbation

|Ψbi〉 =
i

~

� ∞

−∞
dt Ĥint(t) |0〉 ,

=

� �
d2qSdωSd2qIdωI Φ(qS, qI , ωS, ωI)â

†
S(qS, ωS)â†

I(qI , ωI) |0〉 ,

(2.9)

where the amplitude Φ includes the pump field and all other integrals. The leading
√

ωm/nm(qm, ωm) factors in the E+
M fields will be approximated by their forward

(q = 0) quasi-monochromatic value. This approximation will not be applied to the

qm and ωm dependence in the exp(...) factors. The pump beam is well contained

inside the crystal cross-section and thus diffraction can be ignored and the
�

dy and�
dz integrals can have their limits taken to ±∞ without significant error. All the

integrals in Φ can now be evaluated:

C =

(
i

~

)(−deff

i

)√
ωSωIωP

nSnInP

(
~

2ǫ0c

)3/2
i(−i)(−i)

(2π)3/2
(2.10)

=

(
ideff

~

)√
ωSωIωP

nSnInP

(
~

2ǫ0c(2π)

)3/2

(2.11)
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Φ(qS, qI , ωS, ωI) =

� ∞

−∞
dt

� 0

−L

dx

� ∞

−∞
dy

� ∞

−∞
dz

�
d2qP dωP

(2π)3

CÃP (qP , ωP ) exp(i∆k(qS, qI , ωS, ωI)x)

exp(i(qP − qS − qI) · s) exp(−i(ωP − ωs − ωI)t) (2.12)

=

� 0

−L

dx

�
d2qPdωPCÃP (qP , ωP )

exp(i∆k(qS, qI , ωS, ωI)x)δ2(qP − qS − qI)δ(ωP − ωs − ωI) (2.13)

= CÃP (qS +qI , ωS +ωI)
[1 − exp (−iL∆k(qS , qI , ωS, ωI))]

i∆k(qS , qI , ωS, ωI)
(2.14)

= CÃP (qS + qI , ωS + ωI)L

sinc

(
L∆k(qS, qI , ωS, ωI)

2

)
exp

(
−i

L∆k(qS , qI , ωS, ωI)

2

)
. (2.15)

The final amplitude shows that for this low-power regime the output is proportional

to the |ÃPL|2, but the sinc width is inversely proportional to L. So the low-power

total downconversion rate is proportional to the product of the pump power and the

crystal length.

2.2.2 Forward Plane-Waves

In a single plane-wave pump (pwp) model, which a large-focus Gaussian cw-pump

beam of single frequency ωP approximates, the pump profile is:

ÃP (qS + qI , ωS + ωI) = AP δ2(qS + qI)δ(ωP − ωS − ωI), (2.16)
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which reduces the bi-photon state to an integration over just the three signal photon

variables. It is worth noting that |AP | has units of photons per area per time. The

expressions for the biphoton reduce to

∆k(qS, ωS) = κP (0, ωP ) − κS(qS, ωS) − κI(−qS, ωP − ωS) − 2π

Λ
(2.17)

Φ(qS , ωS) = CAP L sinc

(
L∆k(qS , ωS)

2

)
exp

(
−i

L∆k(qS , ωS)

2

)
(2.18)

|Ψbi,pwp〉 =

�
d2qSdωSΦ(qS, ωS)â†

S(qS, ωS)â†
I(−qS, ωP − ωI) |0〉 , (2.19)

The pump has been reduced to the ultimate paraxial limit of q → 0, as in the case

of weak pump beam focusing, but the output signal and idler still have appreciable

off-axis amplitude. It is possible to filter the output state and collect only the cases

where qS is nearly zero: the forward output. The remaining state only depends on

ωS. Consider operation when the degenerate case (ωS = ωI) is exactly quasi-phase

matched and let ω ≡ ωS − ωP/2 be the detuning of the signal above degeneracy:

0 = (ny(ωP )ωP − nz(ωP /2)ωP/2 − ny(ωP /2)ωP/2)
1

c
− 2π

Λ
(2.20)

∆k(0, ωS) = (ny(ωP )ωP − nz(ωS)ωs − ny(ωP − ωS)(ωP − ωS))
1

c
− 2π

Λ
(2.21)

∆k(0, ωS) =
(
ny(ωP )ωP − nz

(ωP

2
+ ω

)(ωP

2
+ ω

)
−

ny

(ωP

2
− ω

)(ωP

2
− ω

))1

c
− 2π

Λ
. (2.22)

The quasi-monochromatic limit means that ω << ωP/2 so expanding nz and ny to

first order in ω gives:

∆k(0,
ωP

2
+ ω) ≈ −

(
nz

(
ωP

2

)
+ n′

z

(
ωP

2

)
ωP

2
− ny

(
ωP

2

)
− n′

y

(
ωP

2

)
ωP

2

)
ω

c
(2.23)

∆k(0,
ωP

2
+ ω) ≈ ∆k′ω

c
, (2.24)
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which defines ∆k′. The prime in ∆k′ is, admittedly, an abuse of notation unless units

were changed so that c is 1. But it is also worth noting that this ∆k′ is dimensionless,

and it depends only on the material and ωP /2; for KTP at 795 nm the value ∆k′

is -0.10592. All the complexity of the polarization tensors, the biaxial crystal, and

Sellmeier equations reduce in the forward limit to this single constant.

Using (2.24) the forward formulas for Φ can be simplified to:

Φ(0, ω) ≈ CAP L sinc

(
Lω∆k′

2c

)
exp

(
−i

Lω∆k′

2c

)
(2.25)

|Ψbi,pwp,forward〉 ≈
�

dω Φ(0, ω)â†
S(0, ωP/2 + ω)â†

I(0, ωP /2 − ω) |0〉 , (2.26)

where for L of 1 cm this is, numerically:

ω → 2πf, (2.27)

Φ(0, 2πf) ≈ CAP (1 cm) sinc

(
f

90.1 GHz

)
exp

(
−i

f

90.1 GHz

)
, (2.28)

which is the source of the forward FWHM bandwidth of 251 GHz listed in table 2.1.

For bandwidth defined between the first zeros of the sinc2 function, instead of half

maximum, the value is 566 GHz which spans 1.19 nm around the central 795 nm

wavelength. So a 1 nm wide filter is closely matched to the SPDC of this system, and

an ideal square 1 nm filter admits 90% of the output.

2.2.3 Non-Perturbative Calculation

It is possible to view the crystal as the concatenation of shorter crystals and consider

the downconversion in each section. This limit should produce differential equations

that connect the state in the crystal at position x with the state at x + dx. Such

a differential equation can be derived either from Maxwell’s equations including the

nonlinear polarization and then quantized as in [21] or via a quantum description

of spatial progression in nonlinear medium as in [22]. The latter derivation will be
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generalized and applied to the PPKTP system.

The generator for spatial progression is a momentum operator G and is used to

compute the derivative of an operator S as

∂Ŝ(x)

∂x
=

i

~

[
Ŝ(x), Ĝ(x)

]
(2.29)

where Ĝ(x) and Ŝ(x) are composed of field creation and annihilation operators

â±(q, ω; x) and â±†(q, ω; x) which are defined in appendix A. These explicitly de-

pend on the x coordinate, and obey the commutation relations in Eq. (A.15). They

subsume the x dependence of the plane waves so that the electric field is now of the

form

Ê±
m(s, t; x) =

�
d2qdω i

√
~ω

2ǫ0nm(q, ω)c

exp(i(q · s − ωt))

(2π)3/2
â±

m(q, ω; x). (2.30)

The linear generator of x progression, in vacuum or a medium, is Ĝ(x):

Ĝ0(x) =
∑

j=1,2

�
d2qdω ~|κj(q, ω)|

(
â+

j
†(q, ω; x)â+

j (q, ω; x) − â−
j
†(q, ω; x)â−

j (q, ω; x)
)
.

(2.31)

This produces the expected result for progression:

∂â+
m(q′, ω′; x)

∂x
=

i

~

[
â+

m(q′, ω′; x), Ĝ0(x)
]

(2.32)

=
∑

j=1,2

�
d2qdω

i~

~
|κj(q, ω)|

[
â+

m(q′, ω′; x), â+
j
†(q, ω; x)â+

j (q, ω; x)
]

(2.33)

=
∑

j=1,2

�
d2qdω iκj(q, ω)δ2(q′ − q)δ(ω′ − ω)δmjâ

+
j (q, ω; x) (2.34)

= iκm(q′, ω′)a+
m(q′, ω′; x). (2.35)

This can be integrated to get back the explicit exp(iκx) dependence, but now obvi-
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ously relative to the origin of x = 0:

â±
m(q, ω; x) = exp(±iκm(q, ω))â±

m(q, ω; 0). (2.36)

This can also be exploited to evaluate commutators at different x coordinates by

referring them both back to x = 0.

For the QPM downconversion the relevant nonlinear part of Ĝ(x) is ĜNL(x) is

(using s ≡ (y, z)):

ĜNL(x) =

�
d2s

�
dt d24(r)

(
E+

P (r, t)Ê+
S
†(s, t; x)Ê+

I
†(s, t; x) + H.c.

)
(2.37)

ĜNL(x) =

� �
d2qSdωsd

2qIdωI deff

√
~ωP

2ǫ0nP c

√
~ωS

2ǫ0nSc

√
~ωI

2ǫ0nIc

1

(2π)3/2

(
ÃP (qS + qI , ωs + ωI)â

+
S
†(qS, ωs; x)â+

I
†(qI , ωI ; x)

exp

(
iκp(qS + qI , ωS + ωI)x − i

2π

Λ
x

)
+ H.c.

)
. (2.38)

Note that the above encodes specific choices of phase for the pump at x = 0 and the

location of the crystal domain boundary at x = 0. For the monochromatic pump that

will be considered this simplifies to

ĜNL(x) =

� � �
d2qSd2qIdωS deff

√
ωPωS(ωP − ωS)

nPnSnI

(
~

2ǫ0c(2π)

)3/2

(
ÃP (qS + qI)â

+
S
†(qS, ωS; x)â+

I
†(qI , ωP − ωS; x)

exp

(
iκp(qS + qI)x − i

2π

Λ
x

)
+ H.c.

)
. (2.39)
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With the pump as a single forward plane-wave and frequency ωP with AP real:

K ≡ deff

~

√
ωPωS(ωP − ωS)

nP nSnI

(
~

2ǫ0c(2π)

)3/2

AP , (2.40)

= −iCAP (2.41)

ĜNL(x) =

�
d2qSdωs ~K

(
â+

S
†(qS, ωS; x)â+

I
†(−qS, ωP − ωs; x)

exp

(
iκpx − i

2π

Λ
x

)
+ H.c.

)
(2.42)

This is the starting point for deriving the coupled progression equations for the down-

conversion:

∂â+
S,I(qS, ωS; x)

∂x
=

i

~

[
â+

S,I(qS, ωS; x), Ĝ0(x) + ĜNL(x)
]
, (2.43)

∂â+
S (qS, ωS; x)

∂x
= iκS(qS, ωS)â+

S (qS, ωS; x) + iKâ+
I
†(−qS, ωP − ωS; x) exp

(
iκpx − i

2π

Λ
x

)
,

(2.44a)

∂â+
I (qI , ωI ; x)

∂x
= iκI(qI , ωI)â

+
I (qI , ωI ; x) + iKâ+

S
†(−qI , ωP − ωI ; x) exp

(
iκpx − i

2π

Λ
x

)
.

(2.44b)

Change the signal and idler operators to simplify the equations:

â+
S (qS, ωS; x) → exp(iκS(qS, ωS)x)ãS(x), (2.45a)

â+
I (−qS, ωP − ωS; x) → exp(iκI(−qS, ωP − ωS)x)ãI(x), (2.45b)
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so that only deviations from normal progression are important, leading to

∂ãS(x)

∂x
= iK exp(i(κP − κS(qS, ωS) − κI(−qS, ωP − ωS) − 2π

Λ
)x)ã†

I(x) (2.46a)

∂ãI(x)

∂x
= iK exp(i(κP − κS(qS, ωS) − κI(−qS, ωP − ωS) − 2π

Λ
)x)ã†

S(x) (2.46b)

∂ãS(x)

∂x
= iK exp(i∆k(qs, ωs,−qS, ωp − ωs)x)ã†

I(x) (2.47a)

∂ãI(x)

∂x
= iK exp(i∆k(qs, ωs,−qS, ωp − ωs)x)ã†

S(x). (2.47b)

Putting r = 0 at the center of the output face, this can be solved (e.g. by Mathe-

matica™) to give the output operators at x = 0 in terms of the input operators at

x = −L:

ãS(0) = µãS(−L) + νã†
I(−L) (2.48a)

ãI(0) = µãI(−L) + νã†
S(−L) (2.48b)

µ = µ(qS, ωS) ≡ exp(i∆kL/2)

(
cosh(pL/2) − i

∆kL

2

sinh(pL/2)

pL/2

)
(2.49a)

ν = ν(qS, ωS) ≡ iKL exp(−i∆kL/2)
sinh(pL/2)

pL/2
(2.49b)

p ≡
√

|2K|2 − ∆k2 (2.50)

1 = |µ|2 − |ν|2. (2.51)
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Transforming back to the â+
m operators gives

â+
S (qS, ωS; 0) =µ

(
âS(qS, ωS;−L) exp(iκS(qS, ωS)L)

)
+

ν
(
â+

I (−qS, ωP − ωS;−L) exp(iκI(−qS, ωP − ωS)L)
)† (2.52a)

â+
I (−qS , ωP − ωS; 0) =µ

(
âI(−qS , ωP − ωS;−L) exp(iκI(−qS , ωP − ωS)L)

)
+

ν
(
â+

S (qS, ωS;−L) exp(iκS(qS, ωS)L)
)†

.

(2.52b)

In the absence of the nonlinear coupling µ is 1 and ν is zero and the solution above

is just the standard phase difference going through the medium.

The solution can be inverted to solved for the input annihilation operators in

terms of the output ones. Since the eigenvalues of those input operators with a

vacuum input state are zeros, this leads to equations of the output operators on the

output state that equal zero. These can be solved when the number of signal and

idler photons is equal, and the solution is a Bose-Einstein distribution of pairs:

|Ψ; x = 0〉 =

�
d2qdω

1

µ(q, ω,−q, ωP − ω)

∞∑

n=0

(
ν(q, ω,−q, ωP − ω)

µ(q, ω,−q, ωP − ω)∗

)n

(
â+

S
†(q, ω; 0)â+

I
†(−q, ωP − ω; 0)

)n |0; x = 0〉 (2.53)

In the low power limit when AP is very small we can assume |K| ≪ ∆k and |KL| ≪ 1,

and thus

p ≈ i|∆k| (2.54)

µ(L) ≈ 1 (2.55)

ν(L) ≈ iKL sinc(∆kL/2) exp(−i∆kL/2). (2.56)

In this limit the term ν(L) |1〉S ⊗ |2〉I matches the perturbative result (2.15) for the

biphoton amplitude up to phase factor of −i, which is global and will not affect
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y, φ = 0

x

θ

φ

z, φ = π/2

Figure 2-1: Diagram of coordinate system in PPKTP crystal. The x, y, and z are
the crystal axes. The pump propagates in the +x direction. The θ coordinate is
the the off-axis angle measured from x. The φ coordinate indicates which transverse
direction, measured in the y-z plane from y.

measurements.

2.3 Calculations

2.3.1 Tuning and Tolerances

Consider the non-forward output while keeping the pump as a plane wave. To be

concrete, take the numbers for the index of refraction of PPKTP (from Ref. [14])

with Λ = 8.88 µm and tuned for forward phase-matching at degeneracy when at 25◦C.

Use a spherical coordinate system for the signal beam direction (in air) with θ = 0

along the x axis and φ from y to z. The expression for ∆k in leading orders gives:

∆k ≈ 0.1996dT + 6.083dp − 2.220df + 53.16q2
y + 57.03q2

z (2.57)

∆k ≈ 0.1996dT + 6.083dp − 2.220df +
(
1.012 cos(φ)2 + 1.085 sin(φ)2

)
dθ2 (2.58)
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Variable FWHM
dT 2.78◦C
dp 91.5 GHz
df 251 GHz
qy .145 rad/µm
qz .140 rad/µm
dθ 1.01◦– 1.05◦

Table 2.1: Tuning ranges of Eq. (2.58) for 10 mm crystal. The q can be compared
to |k| ≈ 7.90 rad/µm.

• ∆k: phase mismatch per crystal length in radians per mm

• dT : temperature difference in ◦C

• dp: pump detuning in THz

• df : signal detuning above degeneracy in THz

• dθ: angle between signal beam and x axis (degrees)

• φ: angle around x axis of signal beam from y to z

• qy,z: transverse wave vector (radians per µm)

The most important dropped term was −.009259df 2 and is only -0.0058331 radians

for a 10 mm crystal when df is 251 GHz. So the expansion above is a very good ap-

proximation near degeneracy. The almost round nature of the output is also apparent,

and can be approximated by a circular 55.10|q|2 or 1.048dθ2 .

With a L = 10 mm crystal the full-width half-maximum (FWHM) tuning tol-

erances, i.e. sinc(∆kL/2)2 = 1/2, are shown in Table 2.1. From Eq. (2.58), a

temperature change of 10 mK is balanced by a shift in df of less than 1 GHz. Thus

the quasi-phase matching is stable against small temperature fluctuations. Tuning

the temperature dT is the preferred way to achieve degenerate phase matching, as

opposed to trying to tune the pump frequency dp.
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Signal

PPKTP
too hot

PPKTP
too cold

F
re

qu
en

cy

(H-pol)
Idler

Output angle

(V-pol)
Degenerate
Cone

Forward
Degeneracy

Figure 2-2: Illustration of the phase matched output frequencies of the signal and
idler beams versus output angle for three temperatures. On the left, the output is
degenerate at a non-zero angle, in the middle the forward output is degenerate, and
on the right none of the output pairs have degenerate frequencies.

2.3.2 Degenerate Cone

Maintaining phase matching (∆k = 0) as the angle is varied causes the central fre-

quency of z-polarized signal beam to detune to higher frequencies while the idler

beam detunes to lower frequencies (df > 0). If the forward output is frequency de-

generate, then this makes the off-axis pairs increasingly distinguishable. For dθ of 1◦

the detuning is about 0.49 THz (≈ 1 nm).

The off-axis output can be made degenerate if the temperature or the pump is

tuned, as shown in Fig. 2-2. The degenerate output can be changed from forward
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into a cone. If the temperature is lowered below that of forward degeneracy, then

the system still has degenerate outputs in a cone of some finite angle. This has been

observed experimentally in our group by Marco Fiorentino [23]. The cones are almost

but not exactly circular, with a few percent difference between horizontal and vertical

widths. The degenerate pairs in the cone are non-collinear which avoids the 50-50

beam splitter used to separate 50% of the forward collinear output (and lose the other

50% which does not separate at the beam splitter).

2.3.3 Correlation Functions

Calculations of the properties of the output pairs can often be simplified to a few

correlation function building blocks. These can be derived fairly simply from the

non-perturbative result at the output face by substituting back to the input face with

vacuum inputs. Let ω0 ≡ ωP/2 and expand the expression for ∆k about forward

degenerate operation; Fourier integrals over frequency are extended to ±∞ since the

sinc function will limit the bandwidth:

â±
S (q, t; x) ≡

�
dω â±

S (q, ω0 + ω; x)
exp(−i(ω0 + ω)t)√

2π
(2.59)

â±
I (q, t; x) ≡

�
dω â±

I (q, ω0 − ω; x)
exp(−i(ω0 − ω)t)√

2π
(2.60)

[a±
m(q, t; x), a±

m′

†(q′, t′; x)] = δm,m′δ2(q − q′)δ(t − t′) (2.61)

∆k(q, ω0 + ω) ≈ ∆k′ω/c + ∆kyq
2
y + ∆kzq

2
z . (2.62)
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First calculate the normally ordered correlation function for a vacuum state:

〈â+
S
†(q1, t1; 0)â+

S (q2, t2; 0)〉 =

�
dω1dω2

2π
exp(i(ω0 + ω1)t1 − i(ω0 + ω2)t2)

exp(iL(κI(−q2, ω0 − ω2) − κI(−q1, ω0 − ω1)))
〈
ν(q1, ω0 + ω1)

∗â+
I (−q1, ω0 − ω1;−L)

ν(q2, ω0 + ω2)â
+
I
†(−q2, ω0 − ω2;−L)

〉

(2.63)

=δ2(q1 − q2) exp(iω0(t1 − t2))�
dω1

2π
|ν(q1, ω0 + ω1)|2 exp(iω1(t1 − t2))

(2.64)

= exp

(
i

(
ω0 − c

∆kyq
2
y + ∆kzq

2
z

∆k′

)
(t1 − t2)

)

δ2(q1 − q2)
c|K|2L
|∆k′| max

(
0, 1 − c|t1 − t2|

|∆k′|L

) (2.65)

= exp

(
i

(
ω0 − c

∆kyq
2
y + ∆kzq

2
z

∆k′

)
(t1 − t2)

)

δ2(q1 − q2)K
(n)
SS (tS − tI).

(2.66)

The normal ordered correlation above is thus a “triangle-shaped” function that de-

pends only on t1 − t2, and is nonzero for |t1 − t2| less than |∆k′|L/c. The analogous

function for the idler is the same since it is even in q. The phase sensitive correlation
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function is

〈â+
S (q1, tS; 0)â+

I (q2, tI ; 0)〉 =

�
dω1dω2

2π
exp(−i(ω0 + ω1)tS − i(ω0 − ω2)tI)

exp(iκS(q1, ω0 + ω1)L − iκS(−q2, ω0 + ω2)L)
〈
µ(q1, ω0 + ω1)â

+
S (q1, ω0 + ω1;−L) (2.67)

ν(−q2, ω0 + ω2)â
+
S
†(−q2, ω0 + ω2;−L)

〉

=δ2(q1 + q2) exp(−iω0(tS + tI))�
dω1

2π
exp(−iω1(tS − tI))µ(q1, ω0 + ω1)ν(q1, ω0 + ω1) (2.68)

=exp

(
−iω0(tS + tI) + ic

∆kyq
2
x + ∆kyq

2
y

∆k′ (tS − tI)

)

δ2(q1 + q2)
icK
|∆k′|





1, (tS − tI) ∈ [0, −∆k′L
c

]

0, otherwise.
(2.69)

=exp

(
−iω0(tS + tI) + ic

∆kyq
2
x + ∆kyq

2
y

∆k′ (tS − tI)

)

δ2(q1 + q2)K
(p)
SI (tS − tI) (2.70)

This is also equal to 〈â+
I (q2, tI ; 0)â+

S (q1, tS; 0)〉 since they commute. Since ∆k′ < 0

this means that the function is non-zero for 0 ≤ (tS − tI) ≤ −∆k′L/c. For 10 mm

of KTP this delay is ∼3.5 ps. The other distinct correlation functions 〈â+
mâ+

m〉 and

〈â+
S
†â+

I 〉 are zero using the non-perturbative operators at x = −L without needing

the low power limit. The rest of the permutations are conjugates of those presented

above.

The q dependent phase shifts can be observed. Taking q to be in radians per µm,

the values of c∆ky,z/∆k′ for KTP are -150.5 and -161.4 radians per picosecond. The

calculation can be done in general instead of the forward plane-wave limit, in which

case the factor

c
∆kyq

2
x + ∆kyq

2
y

∆k′ (tS − tI) (2.71)
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is replaced by an expansion of ∆k using the values for KTP at 795 nm with the pump

along x:

−
(
0.5649dT + 17.22dp +

(
2.863 cos(φ)2 + 3.071 sin(φ)2

)
dθ2
)
(tS − tI), (2.72)

where tS − tI is in picoseconds and the rest are as defined previously: φ and dθ in

degrees, dT in ◦C, and dp in THz. For the circular approximation set φ to π/4 and

obtain an average value of 2.967dθ2 for the phase shift. This extra phase shift comes

from the center of the signal and idler bandwidths moving away from degeneracy in

response to the other terms. This lack of exact degeneracy creates distinguishability

which will reduce the observable polarization entanglement.

2.3.4 Timing compensation

The birefringence inherent in the type-II downconversion means that after the pair of

signal and idler photons are created at a single moment and position they will then

travel at different speeds on their way out of the crystal. For simplicity of discussion,

consider only forward output. The idler photon, having the smaller index ny, will

always exit ahead of the signal photon. The actual delay depends on not just the

indices but also their first-order dependence on frequency (i.e. the dispersion).

Thus the signal and idler can be delayed by any time between the whole delay

from being born at the input face of the crystal to the zero delay from being born

at the output face of the crystal. This range of uniformly probable delays can be

derived from the wave function as done in Ref. [18]. Let tS and tI be the times when

the photons are detected upon leaving the crystal. Then the rate involves calcula-

tion 〈Ê+
S
†(tS)Ê+

S (tS)Ê+
I
†(tI)Ê

+
I (tI)〉 which simplifies at low power to a function of

|K(p)
SI (tS − tI)|2. This gives the time window for detecting pair coincidences coming

out of the crystal.

For conciseness let T ≡ −∆k′L/(2c) > 0. The first photon to leave the crystal



42

and be detected is always the idler, thus 0 ≤ tS − tI ≤ 2T . This condition creates

distinguishability between signal and idler and prevents polarization entanglement.

The timing distinguishing information can be erased by adding an opposite delay

of T , half the maximum delay. This could be added by separating, delaying, and

recombining the signal and idler or be added by inserting a birefringent compensating

crystal: usually a rotated piece of KTP which is half the length of the PPKTP crystal.

After the compensation, the signal or idler may arrive first, thus −T ≤ tS − tI ≤
T . Knowing the time delay between clicks, the absolute value |ts − tI |, no longer

distinguishes which click was the idler. Thus the distinguishing information has been

erased.

2.4 Interference dip

The polarization-entanglement can be demonstrated by a means which resembles a

Hong-Ou-Mandel dip [1]. This measurement is similar to measuring the center of the

dip, for which the coincidence rate of polarization-entangled photons is ideally zero.

For unentangled photons the rate is ideally half the pair generation rate. Thus the

degree of polarization-entanglement can be measured.

The forward output is measured in a 45◦ polarization basis that separates the

(|H〉+ |V 〉)/
√

2 transmitted and (|H〉− |V 〉)/
√

2 reflected states. Let the idler (|H〉)
modes be timing compensated by a variable delayed of T ′ seconds. To simplify the

calculation further, assume a filter of some kind is used to pass only a single spatial

mode to the transmitted and reflected detectors. These modes are defined by function
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fT,R(q) as:

â+
S,I(t; x; T, R) =

�
d2q fT,R(q)â+

S,I(q, t; x) (2.73)

1 =

�
d2q |fT,R(q)|2 (2.74)

fR(q) = fT (−q)∗ (2.75)

|fT (q)|2 → δ2(q0 − q) (2.76)
[
â+

m(t1; x; n), â+
m′

†(t2; x; n)
]

= δmm′δ(t1 − t2) (2.77)

The limit of |f |2 to a delta function will be taken at the end.

Coincidences are measured between detectors for these separated beams. The

detectors now count for time TM the superposed modes |H〉 + |V 〉 and |H〉 − |V 〉
given by the âT and âR, respectively:

âT (t1) ≡ (â+
S (t1; 0; T ) + â+

I (t1 − T ′; 0; T ))/
√

2 (2.78)

âR(t2) ≡ (â+
S (t2; 0; R) − â+

I (t2 − T ′; 0; R))/
√

2 (2.79)

N̂T ≡
� TM

0

dtT â†
T (tT )âT (tT ) (2.80)

N̂R ≡
� TM

0

dtR â†
R(tR)âR(tR) (2.81)

The coincidences detected are then N :

N = 〈Ψ|N̂T N̂R|Ψ〉 (2.82)

N =

�
dtT dtR 〈Ψ|â†

T (tT )â†
R(tR)âT (tT )âR(tR)|Ψ〉 (2.83)

There will be a change of time variable to the average time t0 ≡ (tT + tR)/2 and

difference δt ≡ tS − tI . Ignoring accidental coincidences in the low power limit, N
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simplifies to

N =

�
dtT dtR |〈0|âT (tT )âR(tR)|Ψ〉|2 (2.84)

N =

�
dt0dδt

∣∣∣∣
1

2

�
dω exp(−iωT ′)µ(q0, ω)ν(q0, ω)

(
exp(iωδt) − exp(−iωδt)

)∣∣∣∣
2

.

(2.85)

The time scales for T are picoseconds compared to TM of microseconds, so that details

of the range of integration of δt at the limits of t0 will be ignored. Use the low power

limit of µ and ν. The expansion of ∆k from Eq. (2.72) will be used to compute Q(q).

Q(q) ≡ c

∆k′
(
∆kyq

2
y + ∆kzq

2
z + ∆kdpdp + ∆kdT dT

)
(2.86)

T ≡ −∆k′L/(2c), so that (T > 0) (2.87)

box(τ) ≡






1, −T < τ < T

0, otherwise.
(2.88)

N =
TM |KL|2

(4T )2

�
dδt
∣∣∣ exp(iQ(q0)δt) box(δt + (T − T ′))−

exp(−iQ(q0)δt) box(δt − (T − T ′))
∣∣∣
2

(2.89)

N =
TM |KL|2

4T





1 − T ′

T
sinc(2Q(q0)T

′), 0 ≤ T ′ ≤ T

1 − 2T−T ′

T
sinc(2Q(q0)(2T − T ′)), T ≤ T ′ ≤ 2T

1, otherwise.

(2.90)

And for the optimal phase matching Q is zero and the famous triangular dip is

obtained. At T ′ = T , the 1−sinc() term can be up to 1.217, exceeding the background

level of 1. With T ′ = T and the forward direction phase matched, Q(0) = 0, the

value of N is zero and rises to 0.001 at θ = 0.086◦ and 0.01 of the standard value at

θ = 0.153◦. This sets the scale of how much of the forward output can be collected
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to get an entangled beam. For temperature tuning the 0.001 and 0.01 values for dT

are respectively 0.069◦C and 0.217◦C.

A more detailed calculation would need to consider the rate of accidental coin-

cidences, which scales as |KL|4 from the |ν|4 dependence. Most experiments also

employ frequency filtering, which has the general effect of rounding off the triangular

dip and make it wider [18].

2.5 Entanglement inequality

A standard way to verify polarization entanglement is to test one of Bell’s inequalities.

The “CHSH” test, as originally presented in Ref. [24], is testable with photon pairs and

the standard (not number-resolving) photon counters. The formulation is essentially

the same as presented in Ref [25], and involves measuring 16 coincidence rates.

The timing-compensated forward bi-photon state when degenerate can be de-

scribed by the polarization state:

|Ψ; t〉 = |H ; t〉 ⊗ |V ; t〉 . (2.91)

The output is sent through a 50-50 beam splitter and after the beam splitter the state

is

|Ψsplit; t〉 =
(
|H ; t〉T ⊗ |V ; t〉R + |H ; t〉R ⊗ |V ; t〉T

− |H ; t〉T ⊗ |V ; t〉T − |H ; t〉R ⊗ |V ; t〉R
)
/2. (2.92)

The TT and RR events are ignored, as they do not cause coincidences, and only the

TR and RT events are post-selected. This post-selected state is a triplet state

|Ψtriplet; t〉 =
(
|H ; t〉T ⊗ |V ; t〉R + |H ; t〉R ⊗ |V ; t〉T

)
/
√

2 ⊗ |Other〉 (2.93)
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The transmitted photon is analyzed in a rotated linear polarization basis (θT ) using

two detectors (called TT and TR) and likewise for the reflected photon (θR basis with

detectors RT and RR). The four coincidence rates between one transmitted and one

reflected detector are measured. Define

E(θT , θR) ≡ CTT,RT (θT , θR) + CTR,RR(θT , θR) − CTR,RT (θT , θR) − CTT,RR(θT , θR))

CTT,RT (θT , θR) + CTR,RR(θT , θR) + CTR,RT (θT , θR) + CTT,RR(θT , θR))

(2.94)

−1 ≤ E(θT , θR) ≤ +1 (2.95)

using the four coincidence rates for a given pair of analysis angles. Four combinations

of measurements are taken by choosing a pair of bases in the transmitted path and

a different pair in the reflected path. Then the inequality can be expressed using the

sum of three E functions minus the fourth:

S(θT , θ′T , θR, θ′R) ≡ E(θT , θR) + E(θ′T , θR) + E(θT , θ′R) − E(θ′T , θ′R) (2.96)

|S(θT , θ′T , θR, θ′R)| ≤ 2 local, classical (2.97)

|S(θT , θ′T , θR, θ′R)| ≤ 2
√

2 non-local, quantum (2.98)

For a polarization-entangled beam there will be some set of four angles which will

exhibit a violation of the |S| ≤ 2 condition. The choice of analysis angles is {0, π/4}
for {θT , θ′T}, and {π/8, 3π/8} for {θR, θ′R}. In practice the measured rates will have

statistical noise and the value of S will have some error range, and so S will be above

2 to some degree of confidence, e.g. some multiple of the standard deviation. In

a given measurement time there is a fundamental trade off: tighter filtering of the

output state improves the purity of polarization entanglement but reduces the count

rate and increases the error range of the final value. And tighter filtering cannot be

compensated with increasing the power of the pump beam beyond the point where

either the detectors saturate or the low power limit breaks down and multiple-pair
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downconversion spoils the measurement.
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Chapter 3

Single Pass Experiments

I prepared excitedly for my departure, as if this journey had a myste-

rious significance. I had decided to change my mode of life. “’til now,” I

told myself, “you have only seen the shadow and been well content with

it; now, I am going to lead you into the substance.”

Nikos Kazantzakis, Zorba the Greek

Before building the novel cavity source, the nonlinear PPKTP was tested in a

simpler configuration. The crystal was pumped and the downconverted pairs were

collected via free-space optics onto the single-photon detectors. This allowed us to

learn the parameters to achieve quasi-phase matching with our individual crystal. The

collinear pump and output along the x-axis allowed us to use a longer crystal than

angle-phase matching, noncollinear techniques which are limited by walk off. This

PPKTP source thus obtained was a high-flux source of excellent quality polarization

entanglement [26].

3.1 Path of Illumination

The pump light for the down-converter was derived from a continuous-wave (cw)

external-cavity UV-diode laser, made by Toptica. The frequency was adjusted by tilt-

49
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ing the stabilizing feedback grating. The operating wavelength range was 397.25 nm

to 397.5 nm (in vacuum). The laser output power was approximately 10 mW and

the pump was weakly focused to a large ∼200-µm beam waist with the focus in the

down-conversion crystal, which corresponds to a 31-cm Rayleigh range (half the b-

parameter of the Gaussian beam [27]). The crystal used was a ∼10-mm long (x-axis)

periodically-poled flux-grown potassium titanyl phosphate (PPKTP) crystal. The

period of the grating was 8.84 µm, so that the horizontally polarized pump produced

frequency-degenerate type-II quasi-phase-matched collinear (forward) output when

operating near room temperature (15◦C to 21◦C). The exact temperature of the PP-

KTP could be controlled by a thermo-electric cooler and monitored by a thermistor

in order to achieve degenerate operation at the desired pump wavelength1. The in-

put and output PPKTP crystal faces have an anti-reflection (AR) coating at 795 nm

and are 4.5-mm wide (y-axis) 1-mm high (z-axis); large enough to ignore diffraction

effects.

Removing the pump from the collinear SPDC output was accomplished using

three dichroic mirrors which reflected the UV and had high transmission in the IR.

They were placed right after the PPKTP so that the UV would not reach any other

elements, because most of the optics fluoresce when exposed to UV, and some of

that emission is in the same frequency bandwidth as the collected down-converted

photons. These mirrors were set at a slight angle so as to dump the pump beam

outside of the main optical axis of the system, adjusting one dichroic mirror to dump

left and the others right so that the net beam displacement was negligible.

The next optical element was the timing compensation crystal (KTPcc). This had

3 mm by 3 mm faces and was 5 mm long, with the same AR coating as the PPKTP

crystal. It was rotated 90◦ so that its z-axis and y-axis were interchanged with

respect to the PPKTP crystal thus swapping the indices of refraction and reversing

1On some occasions the pump wavelength was so short that the required temperature for degen-
eracy was below the dew point and condensation on the crystal prevented operation until the laser
wavelength and temperature were raised.
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the relative propagation delay. Pairs produced at the center of the PPKTP crystal

travel through 5 mm of PPKTP and 5 mm of reversed KTP and so have nearly

zero birefringent delay. Pairs that travel through more PPKTP will have the idler

(horizontal polarization) photons ahead of the signal, and pairs that travel through

less PPKTP will have the signal (vertical polarization) photons ahead of the idler.

The amount of delay between the signal and idler photons ranges from -1.77 ps to

1.77 ps. The amount of birefringent delay does not vary significantly over the range

of output frequencies produced by SPDC.

An iris was installed in the collinear output path to limit the collection to near

forward direction. The center of the iris could be easily aligned by maximizing the

coincidence detection rate. It could be opened and closed to optimize the trade off

between a higher rate of pairs and the rejection of off-axis emission.

The output was then sent through an interference filter (IF) to remove unwanted

off-degeneracy signal and idler photons, as well as block stray pump and fluorescence

photons. For data collection the 1-nm bandwidth and 80% transmission IF was used,

while the 3-nm bandwidth IF was used during setup and alignment. The IF could be

tuned by tilting it from normal incidence, which moved the center of the passband to

shorter wavelengths. It could be tuned to the degenerate wavelength by maximizing

the coincidence detection rate. Considering the exactly phase-matched output of Eq.

(2.58), the 1-nm IF selects output within 14 mrad of the x-axis (or 0.8 .

3.2 Degenerate Cone

When the interference filter is rotated away from degeneracy to a higher angle of inci-

dence the IF passes higher frequency light. These higher frequencies are produced off-

axis in the vertically-polarized signal light. Thus, the brightest transmission through

the IF will be in the shape of a cone around the forward direction. This was used to

illuminate a ring on a Princeton Instruments camera (which used a back-thinned sili-
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Figure 3-1: POVRay rendering of data from CCD image of the vertically polarized
light, showing a ring formed by incoming cone of photons. Height and false color
indicate intensity at each pixel.
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UV pump

PPKTP

DM IF

Iris θKTPcc

HWP PBS

T

R

Figure 3-2: Layout for the interference dip experiment using a dichroic mirror (DM),
interference filter (IF), half-wave plate (HWP), polarizing beam splitter (PBS), and
two single-photon detectors (T and R). Not shown are prisms between the PBS and
the two detectors.

con CCD to get ∼80% quantum efficiency near 800 nm). The UV pump was diverted

with a prism. The image was processed and rendered in 3D in Fig. 3-1.

As described in section 2.3.2, it is possible to produce such a cone of nearly any

size and to be degenerate. Then the entangled output pairs will be traveling along

opposite edges of the cone, so a 50-50 beam splitter with its 50% loss will not be

needed to separate the pair. This has been observed by Marco Fiorentino in [23].

3.3 Interference Dip

To perform the interference measurement modeled in section 2.4, the setup in Fig. 3-2

was used. A half-wave plate (HWP) at 795 nm and a polarizing beam splitter (PBS)

were used to separate the output into transmitted and reflected paths. Commercial

EG&G single-photon silicon avalanche detectors were used to collect the transmitted

and reflected light, labeled A and B respectively.

With the HWP angle at 0◦, its fast and slow axes were aligned to the signal

and idler polarizations and did no polarization rotation. The π radian phase delay

from the fast and slow axes was inconsequential compared to the birefringent delay.

With this setting each photon pair was separated at the PBS and the maximum

coincidence rate (pair generation rate) was measured. When the HWP angle was set
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at 22.5◦ it rotated the signal and idler polarization from vertical and horizontal to

±45◦. Without entanglement, these polarizations would independently separate at

the PBS with 50-50 probability and reducing the coincidence rate by half.

The single-photon detectors have an approximately 50% quantum efficiency at

795 nm. The active area of the detectors was about 150 µm, so the collected light was

focused down with 50 mm focal length AR-coated doublet lenses (30 mm diameter,

not shown on figure). They produce TTL-level logical pulses about 35 ns long with

350 picosecond jitter, and have a total dead time of roughly 50 ns. The mean time

between events was typically longer than 5 µs and so the dead time effects were

ignored. The intrinsic dark rate of events was about 100 Hz.

3.3.1 Coincidence Measurements

The coincidence event pulses were created by combining the output of two detectors

with fast AND logic using an ORTEC model CO4020 logic unit. The detector events

pulses and the coincidence event pulses were recorded by a computer using a National

Instruments PCI-6602 counter/timer board. These rates are be denoted by NT , NR,

and NC for transmitted singles, reflected singles, and coincidences. This equipment

defines a coincidences count event as at least one event in each channel within the

time window of the pulse overlap. Given a pulse on one detector this time window on

the other detector for coincidence identification is about 70 ns long and is called the

bin time (tB). This leads to an “accidental” contribution to the raw, uncorrected NC

rate. This can be corrected under assumptions that dead time can be ignored and

that the events follow a Poisson distribution of arrival times. Define the corrected

rate of “true” coincidences NC0 as

NC0 ≡ NT + NR +
log(NCtB + exp(−NT tB) + exp(−NRtB) − 1)

tB
, (3.1)
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and also use this to propagate errors to NC0. For short bin times, NT,R,C ≪ 1/tB,

this can be expanded to obtain

NC0 ≡ NC − (NT NR)tB + (NT + NR − NC/2)NCtB + ..., (3.2)

which is seen to be the raw coincidence rate minus the accidental coincidence rate

plus a correction to account for events where a true and an accidental coincidence

occur together. The theoretical calculations of the coincidence rate usually use the

simpler form 〈NT NR〉 which takes the product of the number of coincidences in each

channel within the time window. This theoretical model differs from Eq. (3.2) in

that it is exactly

ÑC0 ≡ ÑC − (ÑT ÑR)tB, (3.3)

with no other corrections or higher order terms. So it is a good approximation when

the last term in Eq. (3.2) is small compared to NC0. Looking at the experimental

results reported in Table 3.1, this term is a 3-4% correction when the iris is open and

0.3-0.4% correction when the iris is small. This is large enough to be significant, so

the full expression in Eq. (3.1) is used. The dead-time correction, which is 0.1% for

the small iris count rate of 20,000 Hz, is ignored. This methodology of correction was

tested by using a high time-resolution start-stop histogram obtained with a Picoquant

TimeHarp 200 (which in described in more detail in chapter 5).

The coincidence rate in the 0◦ basis was continuously measured as the iris size

was varied, as shown in Fig. 3-3. A second measurement in the 45◦ basis as the iris

was varied allowed the visibility versus average singles rate to be computed. This

is also shown in Fig. 3-3. At high visibility the interference dip results in very low

coincidence rates with a high relative Poisson shot noise, so the spread of visibility is

wider at the high visibility end of the data.

With the iris open and the HWP at 0◦, the conditional coincidence rate of 19.2%
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Figure 3-3: Plot showing the visibility as the collection iris is opened. The average
of the single-photon detection rate is along the horizontal axis. For 0◦ basis analysis
the coincidence rate (line, right axis scale) increases with the singles rate as the iris
is opened. The visibility of the 45◦ basis versus the 0◦ basis decreases as the iris is
opened (dots, left axis scale).

iris 2θ NT NR NC NC0 cond%
open 0◦ 268,767 ± 67 214,023 ± 60 48,520 ± 28 46,094 ± 29 19.2%
open 45◦ 239,244 ± 63 206,352 ± 59 14,766 ± 16 11,811 ± 16 5.3%
open 90◦ 241,127 ± 63 236,631 ± 63 48,248 ± 28 45,829 ± 29 19.2%
small 0◦ 20,651 ± 19 17,784 ± 17 2,540 ± 7 2,522 ± 7 13.2%
small 45◦ 18,909 ± 18 16,645 ± 17 66.7 ± 1.1 45.5 ± 1.1 0.26%
small 90◦ 20,049 ± 18 18,077 ± 17 2,539 ± 7 2,521 ± 7 13.2%

Table 3.1: Each row is from a single measurement interval of 60 seconds. All
data was taken using a 1 nm IF. Rates are all in hertz, with errors computed using√

rate/60 to estimate the Poisson noise. The duration of the coincidence window,
tB, was calibrated to be 67.92 ns. 2θ is the rotation of the linear-polarization done
by the half-wave plate. The rates of counts at the transmitted and reflected detectors
are given in columns NT and NR, respectively. The rate of uncorrected coincidences
is given the column labeled NC , with the corrected rate in column NC0. The mean
conditional probability of detection is computed with NC0/

√
NT NR. The main feature

of note is the ratio of the NC0 at 45◦ to either the 0◦ or 90◦ rate.
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in Table 3.1 implies a generation rate in the crystal of over a million pairs per second.

This assumes NT and NR come only from pairs, but there was also a small contribution

from IR fluorescence caused by the UV laser passing through optics and coatings,

estimated at ∼1000 Hz/mW of pump, and dark count rate of 100 to 200 Hz. The

visibility v is calculated from the NC0 of the 0◦ (max) and 45◦ (min) measurements:

v ≡ max − min

max + min
. (3.4)

With the iris open the corrected coincidence rate dipped from 48,000 to 12,000, which

was significantly lower than an unentangled dip of 48,000 to 24,000. The visibility

with the iris open was 60.8% and with the iris closed to a small aperture the visibility

was 96.4% (the visibility of an unentangled source is 33.3%). This variation can be

understood from the model in section 2.4. Opening the iris collected more output

so the singles’ rates went up as did the number of collected pairs (the line in Fig.

3-3. But these additional collected pairs had a larger transverse q parameter (i.e.

larger dθ). This made the signal and idler spectrum shift so they were increasingly

distinguishable (Eq. (2.58)). Thus the larger aperture collected additional pairs which

were less polarization-entangled and exhibit less of a dip (Eq. (2.90)). The visibility

of the observed dip was the average over all the collected pairs, and this fell as the

amount of collect pairs was increased (points in Fig. 3-3).

If one were to describe the best visibility with a model that consisted of a mixture

of perfectly-entangled and unentangled pairs then (max−2min)/max = 96.3% of the

pairs would be fully entangled and 2min/max = 3.7% would be unentangled. Using

an even smaller 200-µm-diameter aperture, which collected angles up to ∼1 mrad off

axis, the visibility improved to 97.7%.
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Figure 3-4: Layout for the CHSH experiment using a dichroic mirror (DM), 50-
50 beam splitter, interference filter (IF), half-wave plates (HWP), polarizing beam
splitters (PBS), and four single-photon detectors (TR,TR,RT,RT).

3.4 Entanglement

The above dip result is highly indicative of polarization entanglement, but it is possi-

ble to make a stronger set of observations. The most common measure is the violation

of the “CHSH” form of Bell’s inequality [24]. The ideal, loophole-free form of such

an experiment would demonstrate quantum entanglement and rule out the combi-

nation of light-speed causality and local hidden variables. The detection efficiency

required for a loophole-free observation is higher than the detectors in use here, so

this experiment assumes quantum mechanics instead of trying to prove it.

The setup that was used is shown in Fig. 3-4, where the 50-50 beam splitter

is located after the iris and before the HWP and PBS analyzers. The detectors

are labeled TT ,TR,RT , and RR as in Sec. 2.5. The four singles rates and three

coincidence rates were measured. (The 8th channel of the counter/times board was

used to generate the internal clock signal). The coincidence rate between the TT and

TR detectors was monitored, much like the NC rate used to measure the interference

dip in the previous section. The other two coincidence rates that were measured
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Figure 3-5: Data (solid circles) and fits for the entanglement experiment’s corrected
coincidences. The 16 markers on the fits (4 each of 4 kinds) are the values used to
compute the CHSH inequality.

were CTT,RT and CTR,RR. One half-wave plate, HWPT , was set to either θT = 0◦ or

θT = 22.5◦. The second half-wave plate, HWPR was set to a series of 32 angles spaced

roughly 11.25◦ apart for each setting of θT . The CTT,RT and CTR,RR coincidence rates

for these two series of angles were measured for 10 seconds per setting. The resulting

data was fit to sinusoidal functions as shown in Fig. 3-5.

Since only 2 of the four coincidence rates between the two analyzers were measured,

the others (CTT,RR and CTR,RT ) were derived from the fits with θR set forward by

45◦:

CTT,RR(θT , φR) = CTT,RT (θT , φR + 45◦) (3.5)

CTR,RT (θT , φR) = CTR,RR(θT , φR + 45◦) (3.6)
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marker θT φR E(θT , φR)
diamond 0◦ 11.25◦ -0.6978
circle 0◦ 33.75◦ 0.6978
asterisk 22.5◦ 11.25◦ 0.6579
square 22.5◦ 33.75◦ 0.6579

Table 3.2: The four E values used in the CHSH inequality (see Eq. (2.94)) and the
marker symbols in Fig. 3-5 used to compute each value. Combining the four E value
gives S = 2.711 ± 0.010.

There is a small offset determined by the fit between the angle θR of the scale of the

holder for HWPR and the angle φR of the half-wave plate’s axes. The two values

φR and φ′
R for optimal violation of the CHSH inequality are 11.25◦ and 33.75◦. The

four coincidence rates that are combined to form a single normalized E(θT , φR) value

(defined in Eq. (2.94)) are given the same kind of marker on Fig. 3-5, and the four

E values and their markers are listed in table 3.2. The ideal E magnitude would

be
√

2/2 = 0.707107, leading to S = 2
√

2 = 2.82843. In this experiment S was

2.711 ± 0.010. This violates the classical limit of S less than 2 by over 70 times

the standard deviation. Measuring CTT,RT and CTR,RR for only the 8 settings of the

half-wave plates needed would take 80 seconds of acquisition time.



Chapter 4

Cavity Theory

The only things known to go faster than ordinary light is monarchy,

according to the philosopher Ly Tin Weedle. He reasoned like this: you

can’t have more than one king, and tradition demands that there is no

gap between kings, so when a king dies the succession must therefore pass

to the heir instantaneously. Presumably, he said, there must be some

elementary particles – kingons, or possibly queons – that do this job,

but of course succession sometimes fails if, in mid-flight, they strike an

anti-particle, or republicon. His ambitious plans to use his discovery to

send messages, involving the careful torturing of a small king in order to

modulate the signal, were never fully expanded because, at that point,

the bar closed.

Terry Pratchett, Mort

4.1 Introduction

The downconversion process is strongly influenced by the presence of cavity mirrors

that reflect the output wavelengths [28]. This modifies the input field for the internal

crystal from a vacuum state to one that includes feedback. In the models discussed

61
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HR OCPPKTPCC CC

F/2 L F/2

L/2L/2

UV pump

Figure 4-1: Layout for the model of the single-ended cavity. The pump is trans-
mitted by all the components. Distances are defined in terms of the PPKTP length
L and the total free space length F . The KTP compensating crystals (CC) are half
the length of the PPKTP crystal.

the pump will always be taken as transmitted perfectly by the cavity mirrors, and

therefore considered single-pass. Presented first is the simplest approximation to the

cavity derivation: considering only a single mode for the signal and for the idler. This

will provide an analytical solution which can be easily pictured in the time domain.

Also, a modified form that includes a quarter-wave plate will be presented which

has some interesting properties. These generalize and extend previous work by J.H.

Shapiro (Refs. [7, 29]). Next, there will be a new and more complicated derivation

based on Laguerre-Gaussian modes for the pump, signal, and idler. This will ul-

timately require numerical integration, but will provide more complete predictions.

The previous derivations were only for the specific limit of forward single-mode plane

waves, with the cavity at double-resonance, with the signal and idler at degeneracy,

and for equal signal and idler free-spectral ranges in the cavity. These restrictions are

relaxed or removed in the new derivations presented here.

4.2 Simple Model

This derivation includes only a single mode for the signal and single mode for the

idler. This will turn out to be a reasonable approximation for resonant cavity modes.

The optical layout is shown in Fig. 4-1. The field operators of Eq. (A.27) are used

to describe the fields at the input and output of each optical element. Ultimately

the cavity output signal and idler are solved for in terms of the signal and idler
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HR PPKTPCC CC OC

â+

S,I(out)

â−S,I(in)

â+

S,I(−L) â+

S,I(0)

â−S,I(HR)

â+

S,I(HR) â+

S,I(OC)

â−S,I(OC)
UV pump

Figure 4-2: Identical to Fig. 4-1, but annotated to show the locations and directions
for which the field operators are defined.

cavity inputs, which are taken to be vacuum. This is a single ended cavity where the

signal and idler can enter and exit only through the output coupler. The frequency

difference between successive resonances is the free spectral range (FSR) which for an

empty linear cavity of length ℓ is 2ℓ/c.1 The finesse is defined by the ratio of the FSR

and the full width at half maximum (relative to minimum) (FWHM) of the resonant

peaks:

finesse ≡ FSR

FWHM
=

π

arccos
(
2
√

R1R2

1+R1R2

) ≈ π 4
√

R

1 −
√

R
, (4.1)

where the arccos form is given for a two-ended linear cavity with power-reflection

coefficients R1 and R2. The approximate form is for a single-ended linear cavity

where R1 = R and R2 = 1. This is an excellent approximation (less than 1% error)

for R greater than 65%. The low R limit requiring the arccos form comes up in

practice since the pump is slightly reflected by the two cavity mirrors by enough to

create a ripple in the pump transmission. We note that internal losses can be easily

lumped in an effective R or R2.

Fields that travel to the right in Fig. 4-1 are the â+
S,I(ω, x) operators and to the left

are the â−
S,I(ω, x) operators, where ω is the (angular) frequency of the field above the

degenerate frequency ω0 with x as the position label. The pump travels to the right

in a single pass. Outside the cavity, to the right of the output coupler (OC), are the

1This effective ℓ is slightly modified by the Gouy phase of the Gaussian beam, on the order
of a wavelength of the light. This shift will usually be ignored, except when comparing different
higher-order Gaussian modes.
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cavity input fields â−
S (ω; in) and â−

I (−ω; in) and cavity output fields â+
S (ω; out) and

â+
I (−ω; out). The fields inside the cavity, on the left side of the OC, are â+

S (ω; OC),

â−
S (ω; OS), â+

I (−ω; OC), and â−
I (−ω; OC). The fields at the high reflector (HR) are

â+
S (ω; HR), â−

S (ω; HR), â+
I (−ω; HR), and â−

I (−ω; HR). There are three crystals in

the model cavity: a length L PPKTP crystal with a length L/2 KTP compensating

crystal on each side. This arrangement means the pair will be timing compensated

when it leaves the cavity. The field state entering the PPKTP is â+
S (ω;−L) and

â+
I (−ω;−L). The field state leaving the PPKTP is â+

S (ω; 0) and â+
I (−ω; 0). There

is length F/2 free space between each mirror and the crystals. The output coupler

has transmission and reflection parameters TS,I and RS,I = 1 − TS,I . Therefore, the

model equations are given by the external output coupler boundary condition:

â+
S (ω; out) = i

√
TS â+

S (ω; OC)−
√

RS â−
S (ω; in) (4.2a)

â+
I (−ω; out) = i

√
TI â

+
I (−ω; OC) −

√
RI â

−
I (−ω; in) (4.2b)
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and the internal equations

â−
S (ω; OC) = −

√
RS â+

S (ω; OC) + i
√

TS â−
S (ω; in) (4.2c)

â−
I (−ω; OC) = −

√
RI â

+
I (−ω; OC) + i

√
TI â

−
I (−ω; in) (4.2d)

â−
S (ω; HR) = â−

S (ω; OC) exp(i(ω0 + ω)(F + LnS(ω) + LnI(ω))/c) (4.2e)

â−
I (−ω; HR) = â−

I (−ω; OC) exp(i(ω0 − ω)(F + LnS(−ω) + LnI(−ω))/c) (4.2f)

â+
S (ω; HR) = −â−

S (ω; HR) (4.2g)

â+
I (−ω; HR) = −â−

I (−ω; HR) (4.2h)

â+
S (ω;−L) = â+

S (ω; HR) exp(i(ω0 + ω)(F/2 + LnI(ω)/2)/c) (4.2i)

â+
I (−ω;−L) = â+

I (−ω; HR) exp(i(ω0 − ω)(F/2 + LnS(−ω)/2)/c) (4.2j)

â+
S (ω; 0) =

(
â+

S (ω;−L)µ(ω) exp(i(ω0 + ω)LnS(ω)/c)
)
+

(
â+

I
†(−ω;−L)ν(ω) exp(−i(ω0 − ω)LnI(−ω)/c)

)
(4.2k)

â+
I (−ω; 0) =

(
â+

I (−ω;−L)µ(ω) exp(i(ω0 − ω)LnI(−ω)/c)
)
+

(
â+

S
†(ω;−L)ν(ω) exp(−i(ω0 + ω)LnS(ω)/c)

)
(4.2l)

â+
S (ω; OC) = â+

S (ω; 0) exp(i(ω0 + ω)(F/2 + LnI(ω)/2)/c) (4.2m)

â+
I (−ω; OC) = â+

I (−ω; 0) exp(i(ω0 + ω)(F/2 + LnS(−ω)/2)/c) (4.2n)

where the conjugated forms of the internal equations are also included. The PPKTP

is placed from −L to 0 so that the previous result in Eq. (2.52) can be used, but the

coordinates are arbitrary. The nonlinear coefficients µ and ν themselves are almost

those of Eq. (2.49a), except for K. The amplitude of K in ν is not as large in the

single-pass case since this cavity process ignores all the other spatial modes of the

output. Calculating the reduced K will be undertaken in section 4.4.

The solution depends on two slightly different times: since the cavity is not empty

there are two ways to define the round-trip time. The free spectral range for a given

wavelength, e.g. 795 nm, depends on the phase velocity and determines the FSR
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related time L:

L = 2(F + L(nS(0) + nI(0)))/c = 808.25 ps. (4.3)

(4.4)

However, just as with the single-pass case, the group velocity determines the propa-

gation delay of the signal and idler photons. Define the group velocity dependent B,

to first order, as:

b = 2L(n′
S(0) + n′

I(0))ω0/c = 7.82 ps (4.5)

B = L + b = 816.07 ps. (4.6)

In the above, L is taken to be 10 mm, and F is 85.1 mm. The dispersive shift b

is then a few times the correlation box width of 3.5 ps. It is the B time, not the

L, that will determine the arrival time delay on the histogram. The solution below

shows that if the signal photon stays in the cavity for n round-trips more than the

idler photon, then the difference in arrival times tS − tI for this pair will be increased

by nB.

To model a singly-resonant cavity, set one of the RI or RS to zero. For the

doubly-resonant cavity the RS,I and TS,I are set to be identical and equal to R, with

T ≡ 1−R. The solution for the doubly-resonant cavity output in terms of the cavity
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input is then:

1 = |µ|2 − |ν|2. (4.7a)

d(ω) = 1 −
√

Rei(Lω0+Bω)µ(ω) −
√

Re−i(Lω0−Bω)µ∗(ω) + Re2iBω (4.7b)

α(ω) = µ(ω)ei(Lω0+Bω) −
√

R −
√

Re2iBω + Rµ∗(ω)e−i(Lω0−Bω) (4.7c)

β(ω) = −ei(Bω−φ)Tν(ω) (4.7d)

φ =

((
L

2
+

L

2c
(nS(0) + nI(0))

)
ω0

)
(4.7e)

â+
S (ω; out) =

α(ω)

d(ω)
â−

S (ω; in) +
β(ω)

d(ω)
â−

I
†(−ω; in) (4.7f)

â+
I (−ω; out) =

α(−ω)

d∗(ω)
â−

I (−ω; in) +
β(−ω)

d∗(ω)
â−

S
†(ω; in). (4.7g)

The d(ω), α(ω), β(ω), and φ expressions are shorthand. The downconversion am-

plitude factor ν(ω) is part of β(ω), where it is multiplied by a phase and by the

transmission amplitude
√

T for both the signal and idler. The phase shift of φ is

frequency independent and does not affect any of the measurements. The α(ω)/d(ω)

is very close to unity amplitude and, while important for preserving commutation

brackets, does not tell us much. The denominator d(ω) will be interesting, since its

amplitude creates the periodic resonance structure.

The effect of the cavity can be removed by taking the limit of R → 0 and T → 1;

this limit makes d(ω) → 1,α(ω) → µ(ω) exp(i...), and β(ω) → ν(ω) exp(i...). This

reduces the solution to the single pass case, up to phases which come from the now

odd choice of input field location and presence of the high reflector.

In the low-power limit µ(ω) is approximately one and the expressions for d(ω) and
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α(ω) can be factored. This allows the solution to be simplified to:

d(ω) =
(
1 −

√
Rei(Lω0+Bω)

)(
1 −

√
Re−i(Lω0−Bω)

)
, (4.8a)

α(ω) =
(
1 −

√
Re−i(Lω0+Bω)

)(
1 −

√
Re−i(Lω0−Bω)

)
ei(Lω0+Bω), (4.8b)

β(ω) = −iKLTei(Bω−φ) sinc

(
∆k′ωL

2c

)
. (4.8c)

In this low-power limit the α(ω)/d(ω) term is of unit magnitude. The form of β(ω)

is, up to a phase, just T times the single-pass result. The doubly-resonant cavity

effects come from the denominator d(ω) which is the product of two factors: a signal

frequency and an idler frequency factor. A singly-resonant cavity would have only

one of these factors in d(ω).

When the pump frequency, 2ω0, and the cavity round-trip phase, L, are at a

double resonance the output simplifies further:

ω0 →
2πm

L
, where m ∈ N (4.9)

d(ω) =
(
1 −

√
ReiBω

)2

(4.10)

α(ω) =
(
1 −

√
Re−iBω

)(
1 −

√
ReiBω

)
eiBω (4.11)

β(ω) = −iKLTei(Bω−φ) sinc

(
∆k′ωL

2c

)
. (4.12)

∣∣∣∣
1

d(ω))

∣∣∣∣ =
1

1 + R − 2
√

R cos(Bω)
(4.13)

This double resonance occurs when ω0 is a multiple of the FSR 1.237 GHz, which

is half the FSR at degeneracy. When (Bω) is 0 mod (2π) the β(ω)/d(ω) output

amplitude has a resonant peak, which occurs when ω is a multiple of 1.225 GHz.

Hence the output spectra for signal and idler have a peak roughly every FSR (modified

by the group velocity, not phase).

Therefore, one would expect a doubly-resonant degenerate peak where ω = 0

once every FSR of the cavity, i.e. one such peak should occur if the OC is moved
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λ0/2 = 397.5 nm. However, it is observed that two such peaks occur at half this

spacing. This is because there is a second “odd” resonance condition in between the

degenerate resonances:

ω0 →
πm

L
, where m is odd (4.14)

d(ω) =
(
1 +

√
ReiBω

)2

(4.15)

α(ω) = −
(
1 +

√
Re−iBω

)(
1 +

√
ReiBω

)
eiBω (4.16)

β(ω) = −iKLTei(Bω−φ) sinc

(
∆k′ωL

2c

)
. (4.17)

∣∣∣∣
1

d(ω))

∣∣∣∣ =
1

1 + R + 2
√

R cos(Bω)
(4.18)

The output spectrum now has a peak when (Bω) is π mod (2π). Hence there is

almost no output at the degenerate wavelength, but otherwise the downconversion

rate experiences a double resonant enhancement. The output rate when neither of

these resonant conditions is close to being satisfied is suppressed.

4.2.1 Ultrabright peaks

The difference between the “even” degenerate and “odd” non-degenerate resonance

and the off-resonant condition is depicted in Figures 4-3, 4-4, and 4-5.

In the singly-resonant case, in which only one polarization is reflected by the

cavity, the denominator d has only the factor for the resonated polarization, and the

T in β is
√

T . This d(ω) reshapes the phase-matched output spectrum into a series of

peaks keeping the integrated total output rate unchanged (This is similar to the flat

regime of Fig. 4-12) . The spectral reshaping increases the brightness near the peak

frequencies by a factor proportional to the finesse. The brightness per unit hertz near

a resonant peak in the frequency spectrum is proportional to the finesse of the cavity.

In the doubly-resonant case above, the two terms in the denominator narrow the

the output slightly more and increase the integrated total output by a factor of the
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Figure 4-3: Spectral condition for degenerate double resonance. Each curve is
for probing the cavity near degeneracy (0 GHz) with the signal or idler polarization
(they have equal FSR). The arrows connect signal/idler pairs, showing that the signal
resonances are matched with the idler resonances. The downconversion is proportional
to the product of the signal and idler amplitudes.
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Figure 4-4: Similar to Fig. 4-3, but a different cavity length has offset the degenerate
(0 GHz) point. This shows the non-degenerate double resonance. Each signal and
idler peak is paired with a peak on the other spectrum as shown by the arrows.
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Figure 4-5: Similar to Fig. 4-3 and Fig. 4-4, but with a cavity length between those
two conditions. Thus this shows a non-resonant condition where the signal and idler
peaks are not paired with each other. This suppresses the downconversion rate.
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Figure 4-6: Spectral conditions for unequal signal and idler FSR but with the cavity
length at double resonance. The signal and idler peaks are matched as shown by the
arrows, but the signal peaks and idler peaks do not line up at the same frequencies.
This allows the polarization to be deduced from the frequency.
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finesse divided by π. As the finesse increases, the rate of downconversion increases

and the bandwidth decreases so that the brightness per unit hertz near the peak

frequencies increase as the square of the finesse. Away from the peaks the doubly-

resonant cavity suppresses the output by as much as (1 +
√

R)4/T 2 which is two to

three orders of magnitude.

4.2.2 Histogram

The ideal start-stop histogram is determined from the phase-sensitive correlation

function, which is the Fourier transform:

K
(p)
SI (tS − tI) =

�
dω

2π
exp(−iω(tS − tI))

(
α(ω)β(−ω)

d(ω)d∗(ω)

)
(4.19)

Now the (1 −
√

R exp(...)) factors in α cancel factors in dd∗ leaving

1

1 −
√

R exp(iBω)

1

1 −
√

R exp(−iBω)
=

∞∑

jS=0

(√
R exp(iBω)

)jS

∞∑

jI=0

(√
R exp(−iBω)

)jI

. (4.20)

The denominator is seen to be a sum of the contribution from jS round trips inside

the cavity for the signal and the jI round trips for the idler. Each term in the

expanded sums is reduced in amplitude and phase shifted. Therefore, the Fourier

integral transforms the phase shift into a translation in δt = ts − tI . Thus the 3.5 ps

wide box function is translated by the number of round-trip delays that the signal

and idler photons take in the cavity, with the idler contributing the opposite sign.

As the photons may exit after a different number of round trips, the ideal start-stop

histogram will resemble Fig. 4-7. In a perfectly resonant system, each of the spikes

in the figure is a 3.5 ps wide box which is the accumulation of a different number of

co-round trips.
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Figure 4-7: Model output histogram for R of 85% and round-trip time of 0.8 ns.
The difference in the number of round trips taken by the signal and idler make the
distinct peaks. The height for each spike is normalized so they sum to one.
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Figure 4-8: This is a zoomed view of Fig. 4-7 near δt = 0. This is for a model
without any compensating crystals in the cavity (only one outside the OC). The
reflectivity of the OC is 85% and round-trip time is 0.8 ns. Only contributions from
signal and idler that take the same number of round trips are visible. Height is
normalized to fraction of total output contained in each box.
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Figure 4-9: Like Fig. 4-8 but the compensating crystal is 95% of the length of the
PPKTP (50% near OC, 45% near HR). The co-round-trip shift of 0.353 ps moves the
box by 10% of its width. How the boxes interfere depends on the cavity length.
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Figure 4-10: This is the same as Fig. 4-9 at a cavity length giving resonance with
constructive interference of the boxes.
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Figure 4-11: This is the same as Fig. 4-9 at a cavity length giving maximum
destructive interference of the boxes.
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Figure 4-12: This is a plot of the downconversion rate versus the round-trip bire-
fringent shift. Upper curve is for contructive resonant cavity length; lower curve is for
most destructive cavity length. Vertical lines at 3.5/1,2,3,4,5 are provided to indicate
where additional boxes (Fig. 4-9) overlap. These transitions make the maximum
effectively piecewise linear. Past 3.5 ps the system acts similarly to a singly-resonant
cavity and the output rate is independent of cavity length.
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4.2.3 Slightly Unequal FSR

Experimentally, arranging the birefringence in the cavity to cancel to zero to give

equal FSR is a special case, and the more generic situation must also be modeled.

The constructive and destructive overlap of “box” terms will be described in the

time domain by reference to the correlation function 〈â+
S (q1, tS; 0)â+

I (q2, tI ; 0)〉 which

determines the ideal start-stop histogram of photon detection times. The imbalance

in FSR is modeled by the compensating crystal near HR being short by σ, but keeping

the same free space length F . This crystal length error will cause the boxes to slowly

shift in δt as the number of co-round trips increases as sketched in Fig. 4-9. Getting

the phase of each of those boxes requires solving the modified model. The phase

difference between the boxes comes from the more complex d(ω) denominator. Define

an average round-trip phase L0 and individual round-trip phases LS and LI , and the

new group velocity dependent BS and BI which have average B0:

d ≡ (nS(0) − nI(0))/c (4.21)

L0 = 2
(
F + L

(
1 − σ

2L

)
(nS(0) + nI(0))

)
(4.22)

LS = L0 + dσ (4.23)

LI = L0 − dσ (4.24)

B0 = L0 + b

(
1 − σ

2L

)
(4.25)

BS = B0 −
(

∆k′

c

)
σ (4.26)

BI = B0 +

(
∆k′

c

)
σ (4.27)

d(ω) ≡
(
1 −

√
R exp(i(LSω0 + BSω)

)(
1 −

√
R exp(−i(LIω0 − BIω))

)
(4.28)

The d term is shorthand for the birefringence at degeneracy and σ is the length by

which the KTP CC near the HR is shorter than L/2.

In terms of round-trip counts jS and jI , the α/(dd∗) factor now produces the
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correlation function:

K
(p)
SI (tS − tI) =

�
dω

2π
exp
(
−iω(tS − tI)

)
β(−ω)×

∞∑

jS=0

∞∑

jI=0

(
√

R)jS+jI exp
(
i(jS + jI)L0ω0

)
exp
(
i(jS − jI)dσω0

)

exp
(
−i(jS + jI)∆k′σω/c

)
exp
(
i(jS − jI)B0ω

)
(4.29)

This is the key equation for understanding the output state of the cavity. The Fourier

transform of β(−ω) alone is the transform of sinc to box as seen in Eq. (2.69). The

double sum can be seen as a sum over the possible histories of the signal and idler

photons inside the cavity. The amplitude
√

R factor damps the amplitude so only a

finite number of terms need to be used for computations. This finite truncation means

each round-trip peak in Fig. 4-7 can be computed separately for our experiment.

The sum can be transformed into the number of round trips the signal and idler take

together, u = min(jS, jI), and the difference in round trips, v = js − jI :

∞∑

v=−∞

∞∑

u=0

(
√

R)2u+|v| exp
(
i(2u + |v|)L0ω0

)
exp
(
i(v)dσω0

)

exp
(
−i(2u + |v|)∆k′σω/c

)
exp
(
i(v)B0ω

)
(4.30)

There are four exp(...) factors in the sum:

• The first factor is similar to the resonance term for the equal FSR case, and

has both even and odd resonances where exp(−iL0ω0) equals ±1, respectively.

The sum over overlapping boxes,
∑

u, has a factor of 2 so the (±1)2u is always

1. The peaks for different v will alternate in sign for the odd resonances, (−1)v,

or all be the same phase for even resonances.

• The second factor, which contains dσ, contributes to each box a phase pro-

portional to (jS − jI), the difference in number of round-trips. This is also
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special when exp(idσω0) is ±1, as this is when the signal and idler cavity res-

onance peaks are at (nearly) the same positions. This phase is irrelevant if

the histogram is taken between the signal and idler in the 0◦ basis. But other

measurements in Chapter 5 are sensitive to this phase.

• The third factor creates a small translation of the boxes for small σ. This delay

from the 2u part of this factor is what shifts the boxes as illustrated in Fig. 4-9.

This may be ignored as long as the delay is small compared to 3.5 ps, which

means that σ ≪ L/2. (This means the system is operating near the peak shown

in Fig. 4-12.) In the case where σ = L/2 this delay is 3.5 ps, the width of the

boxes, so that they no longer overlap.

• The fourth factor produces the big ∼816 ps translation for each additional round

trip, creating the peak spacing seen in Fig. 4-7.

If there are no compensating crystals (σ = L) then each co-round trip will shift

the histogram by twice the delay from the PPKTP, as seen in the zoomed view

in Fig. 4-8. If the compensating crystals are almost the correct length then these

boxes will overlap, as seen in Fig. 4-9. Once overlapping, the amplitudes must be

combined before taking the square of the absolute value, which allows for interference

effects. Constructive interference of many of these boxes is what gives the significant

brightness enhancement at double resonance.

This constructive interference condition can also be seen in the alignment of the

signal and idler cavity spectra. The double-resonance conditions for the pump, 2ω0,

and cavity round-trip phase, L0, is the same as for the equal FSR case and still

produces two resonances per FSR. However, with unequal FSR the spectra for signal

and idler no longer have to produce degenerate output at either of the two resonances.

Instead they will resemble Fig. 4-6, where the cavity resonances for the signal and idler

polarizations near degeneracy are no longer at the same frequencies. Nevertheless,

when the cavity length is such that the ω = 0 degenerate frequency is midway between
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signal and idler peaks, as shown by the arrows in the figure, there is a double-resonant

enhancement of downconversion. This corresponds to the aforementioned exp(iL0ω0)

being ±1, so this also has even and odd conditions. The offset between the signal and

idler resonance peaks is controlled by the value of dσω0. When σ is zero the equal

FSR case is recovered. When exp(idσω0) factor is ±1 the signal and idler resonance

spectra are lined up again, almost like the equal FSR case. This occurs when σ is

a multiple of 4.5 µm Ṫhe re-aligned spectra have unequal FSR, but the signal and

idler FSRs will differ by 4 kHz times σ/(4.5 µm) which is extremely small compared

to their magnitude of 1.24 GHz.

The opposite case is destructive interference. The worst-case cavity length for the

output, as shown in Fig. 4-11, is at or sometimes slightly displaced from being exactly

between the constructive peaks. The maximum and minimum downconversion rates

versus cavity delay are shown in Fig. 4-12. For delays equivalent to removing one

of the two compensating crystals or longer it is a non-resonant flat line that extends

out the right side of the plot. The function for the maximum output is piecewise

linear with each section representing a different number of overlapping boxes. This

description is true insofar as the small co-round-trip birefringent delay does not ac-

cumulate to equal the round-trip time. But in our case the amplitude is damped by

hundreds of cavity lifetimes long before accumulating enough delay so we can ignore

this possibility.

4.2.4 Interference dips and entanglement

The rate of coincidences measured after PBS in a 0◦ basis of horizontal and vertical

polarization is proportional to: �
dt
∣∣∣K(p)

SI (δt)
∣∣∣
2

. (4.31)
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The rate of coincidences measured by a PBS in a ±45 olarization basis is proportional

to: �
dt
∣∣∣K(p)

SI (δt) − K
(p)
SI (−δt)

∣∣∣
2

/4. (4.32)

Thus if the boxes in the K(p) function are even in δt = tS − tI , then the 45◦ basis

will measure zero coincidences. This is the same condition as in the single-pass case,

and it indicates polarization entanglement although it does not prove it as the CHSH

measurement does.

The exp(i(v)dσω0) factor affects the early and late boxes with opposite phase

shifts. This affects the interference dip because that depends on whether v is positive

or negative, which can make K(p)(δt) no longer an even function.

The center group, where jS = jI so v = 0, always cancels to zero exactly; however,

the other boxes away from the center will not be fully entangled and will not cancel to

zero. They will revive, however, when the phase shift dσω0 is a multiple of π, which

can be achieved in this setup if σ is a multiple of 4.50 µm. This condition is when

the boxes will come back into phase with their partners with opposite δt and the

interference dip will return. The amplitude of the odd differential round-trip peaks

may be negative, but this makes no difference to the probability. The revival is not

exactly perfect since the co-round trips now shift the boxes slightly, but σ = 4.50 µm

creates a 3.2 fs shift of the co-round-trip boxes which is much less than their 3.5 ps

width and thus can be ignored.

The phase shifting by mπ to (m + 1)π can be observed in the frequency domain.

Consider the cavity transmission of the probe laser at ω0 in both polarizations (e.g.

at +45◦). As the length of the cavity is changed by moving the OC on a piezo-electric

stack, the transmitted light goes through a free spectral range and a peak is seen. For

ideal double-resonance both polarizations have the same free spectral range and their

peaks occur at the same position in the sweep of the piezo voltage. As the length
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error σ in one of the compensating crystals is simulated by altering its temperature,

the positions of the signal and idler transmission peaks move dramatically and at

different rates due to the birefringence. Initially overlapping peaks will separate and

after changing the effective crystal length by ∼4.5 µm, one peak will have lapped

the other and they will again appear to resonate at the same piezo voltage. This

corresponds to squeezing an extra half-wavelength more of one polarization into the

cavity. The signal and idler FSRs will have changed by ∼30 kHz, and the difference

of the two FSRs will be altered by ∼4 kHz.

In practice the length of the crystal is not tunable. Instead, the temperature

is used to control the birefringence of the compensating crystals. Changing the L-

length compensating crystal temperature by ∼4.5◦C is equivalent to changing σ by

4.5 µm. Thus the temperature must be stabilized to better than (4.5◦C/finesse) to

keep the signal and idler peaks overlapped and maintain polarization entanglement.

This provides one practical limit on how large a finesse can be selected.

The width of these dips relative to their revival period is the cavity finesse divided

by two. In between the dips the ratio is close to the classical 50% value. All of these

measurements are equivalent to measuring the center of a HOM dip, since the relative

timing is not being varied. The presence of the dip indicates that the signal and idler

are partially or totally indistinguishable, which requires the signal and idler spectrum

peaks to be at the same frequencies as discussed in the previous section. Technically

only the equal-FSR case has a perfect dip; the recurring dips have slightly offset the

co-round-trip boxes so the overhang is not an even function and this prevents perfect

cancellation. This misalignment is very small, however, because the shift caused by

σ = 4.5 µm is small relative to the box width; only after ∼1100 revivals will the dip

have disappeared.

The interference dip does not depend on double resonance. In particular the

exp(i(2u + |v|)L0ω0) factor does not break the even symmetry required for K
(p)
SI (δt)

to produce entanglement. The constructive or destructive overlap is not related to
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producing polarization entanglement, but only to the rate at which pairs are produced.

This separation of doubly-resonant operation and polarization-entangled operation

means that the cavity length does not affect entanglement quality. Conversely, tuning

the length (or temperature) of the compensating crystals does not affect the quality

of either the even or odd double resonance.

However, the ratio of total coincidence rates is found by integrating over all pos-

sible measurement intervals. If a fine-resolution histogram of arrival time differences

is measured, then a more complex model is needed. Let v be jS − jI to number each

round-trip box. Now consider just the boxes at ±v. The 0◦ and 45◦ rate contributed

by these boxes, ignoring the slight position shift, is proportional to

rate(v, 0) = |exp(i(v)dσω0)|2 + |exp(i(−v)dσω0)|2 (4.33)

rate(v, 0) = 2 (4.34)

rate(v, 45)

rate(v, 0)
= |exp(i(−v)dσω0) − exp(i(v)dσω0)|2 /8

+ |exp(i(v)dσω0) − exp(i(−v)dσω0)|2 /8 (4.35)

= sin(vdσω0)
2 (4.36)

The ratio is thus a sin2 function that is zero at the aforementioned recurrences when

dσω0 is a multiple of π. In particular, the ratio will oscillate |v| times between these

uniform revivals. The v = 0 box is always 0 as mentioned above. Also note that the

sin2 ratio has a maximum of 1, so there is no dip for such a round-trip box (singlet

behavior). This behavior is unique to a type-II system in the cavity, since a type-I

pair will always have equal FSR.

The total over all the v-boxes for unequal FSR will average to give the appearance

of the classical dip of 50%. This total dip, showing a revival after 4.5◦C, is shown in

Fig. 4-13.

The K(p)(δt) function as a sum of boxes made this straightforward to calculate,

but what does the bi-photon state look like? For a given |v| 6= 0, label the early
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Figure 4-13: This is a plot of the interference dip, the ratio of coincidences measured
at 45◦ to 0◦, as the temperature is detuned from equal FSR to the first revival. The
cavity mirror’s reflection R is set to 90%.

photon as time slot 1 and the late photon as time slot 2. The ±45◦ polarization

states will be labeled F and D, with |H〉 = (|F 〉+ |D〉)/
√

2. Then the un-normalized

state for bi-photons with |jS − jI | = |v| is:

φ = |v|dσω0, (4.37)

|Ψ〉 = eiφ |H〉1 ⊗ |V 〉2 + e−iφ |V 〉1 ⊗ |H〉2 , (4.38)

= (|F 〉1 ⊗ |F 〉2 − |D〉1 ⊗ |D〉2) cos(φ) − i (|F 〉1 ⊗ |D〉2 − |D〉1 ⊗ |F 〉2) sin(φ).

(4.39)

The coincidences after the PBS in the 45◦ basis come from the second term which is

proportional to sin(vdσω0)
2 as predicted by Eq. (4.35). The v = 0 state is always the

|H, V 〉 = |F, F 〉 − |D, D〉 triplet state as in the single-pass model. For the maximal

anti-dip when φ is π/2, the state is a singlet in the 0◦ and 45◦ bases, and indeed for

any polarization basis. (This is ignoring the 1.6 fs shift of the co-round-trip boxes for

φ = π/2 compared to the 3.5 ps box width). If the |v| = 1 boxes are in a singlet state
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then so are all the odd v boxes, while the even |v| boxes (including the center) are in

the triplet state. This whole output state is not in a mixed state since the different

|v| states can be measured separately by the start-stop histogram.

4.3 Aside on using a QWP

One trick to reduce the difficulty of tuning the compensating crystals is to create

a different cavity arrangement. Consider a quarter-wave plate inserted at 45◦ next

to the high reflector. The photons will swap from signal to idler polarization when

they encounter the QWP and HR. So a particular photon reflecting from the OC

sees the crystals once as horizontally and once as vertically polarized before returning

to the OC. This removes birefringence from additional cavity round trips. The l/2-

length compensating crystal near the HR can be removed since it does not affect the

birefringence. The l/2 compensating crystal near the OC does correct the timing as

in the single pass case; in some arrangement it can be placed outside the cavity’s OC

instead of inside. The number of tuning parameters is reduced to two: making the

PPKTP temperature match the pump frequency and setting the cavity length with

the piezo.

The QWP-cavity has an analytical solution that is much richer than the normal

cavity. It has the general form

â+
S (ω; out) = αâ−

S (ω; in) + βâ−
I
†(−ω; in) + α′â−

I (ω; in) + β ′â−
S
†(−ω; in), (4.40)

â+
I (−ω; out) = α̃â−

I (−ω; in) + β̃â−
S
†(ω; in) + α̃′â−

S (−ω; in) + β̃ ′â−
I
†(ω; in), (4.41)

where the output operators are nonlinear mixtures of four instead of two input oper-

ators.

If one photon stays an extra odd number of round trips inside the cavity it will

exit with the same polarization that its partner did. This will happen close to half

the time, creating correlations in the arrival times of identically polarized photons
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that were not there in the original cavity. Thus several correlation functions that

were zero before are now non-zero. This could be alleviated by placing a QWP on

each side of the output coupler at ±45◦. Then the photon would always leave the

cavity+QPWs with its original polarization, and the output operator would be more

like the original cavity’s mixture of two input operators.

4.4 Laguerre-Gaussian Basis

The previous derivation noted that the nonlinear coefficients µ and ν depend on the

spatial mode effects. By computing these effects an optimal arrangement can be found

to maximize the downconversion rate. The cavity mode is largely determined by the

given mirrors and a desire for a long round-trip time, which both makes the resonant

peaks’ bandwidth narrower and increases the round-trip delay on a histogram. For

collection into a fiber, the desired output mode is a Gaussian, as is the UV pump

mode. The remaining question is the waist size that the pump should have given

the cavity-determined waist for the output modes. This is very similar to computing

the amount the signal-pass output could be coupled through an empty-cavity filter

or into a single-mode collection fiber.

Previously, the single-pass pump waist was large enough to ignore the difference

between it and a plane wave. For the cavity, the optimal pump Gaussian is focused

tighter than the range of validity for this approximation. With the plane-wave pump

if an output photon is detected as some plane-wave f(q, ω), it can be deduced that

the partner photon is in the mode f(−q,−ω). With a realistic Gaussian pump there

is a range around −q in which the partner photon momentum can be. This mixing

appears in the operator in the general form:

â+
S (q, ω; out) = α(ω)â−

S (q, ω; in) +

�
d2q′β(q′, ω)â−

I (q′ − q,−ω; in), (4.42)

where many idler terms contribute to one signal (and vice versa), with β having the
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pump beam’s width in q.

The continuous plane-wave momentum basis is less convenient once the pump is

no longer a single plane wave, and the cavity itself creates a natural basis of resonant

output modes.

The most useful basis is the discrete Laguerre-Gaussian (L-G) basis (which limits

the model to the paraxial approximation). The waist position, direction, and size

must be specified. The signal and idler modes are the same and will have the cavity

axis and focal parameters. The classical pump has the same parameters except for

waist size. The field operators in the Hamiltonian and the progression generator Ĝ

are expanded in this basis.

Each L-G mode is indexed by a radial parameter p which is a non-negative integer,

and an orbital angular-momentum parameter ℓ which can be any integer. Cylindrical

coordinates around the longitudinal x-axis are used, with the explicit formula for the

normalized L-G modes[27]:

k ≡ ω

n(0, ω)c
, total momentum in material (4.43)

xR ≡ k
w2

0

2
, Rayleigh range or (b-parameter/2) (4.44)

w(x) ≡ w0

√

1 +

(
x

xR

)2

, waist, (1/e) amplitude radius (4.45)

rc(x) ≡ x

(
1 +

(
xR

x

)2
)

, radius of curvature (expanding if rc > 0) (4.46)

LGℓ
p(x, r, θ) ≡

√
2(p!)

πw2(p + |ℓ|)!

(
r
√

2

w

)|ℓ|

L|ℓ|
P

(
2r2

w2

)

exp

(
iℓθ − r2

w2
+ i

kr2

2rc
− i(2p + |ℓ| + 1) arctan

(
x

xR

)
+ ikx

)
(4.47)

LG0
0(x, r, θ) =

√
2

πw2
exp

(
− r2

w2
+ i

kr2

2rc
− i arctan

(
x

xR

)
+ ikx

)
. (4.48)

The arctan term provides the Gouy phase factor, which will be important for the
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non-Gaussian modes in the cavity. For reference:

exp(−ib arctan(a)) ≡
(

1 − ia√
1 − a2

)b

≡
(√

1 − a2

1 + ia

)b

. (4.49)

4.4.1 Perturbative Calculation

Expanding the pump, signal, and idler fields (c.f. Eqs. (A.29),(2.3)), with the foci at

x = 0 but different waists wP,S,I , yields:

E+
P (r; t) = i

√
~ωP

2ǫ0nP (0, ωP )c
AP LG0

0(wP ; r)
exp(−iωP t)√

2π
(4.50)

Ê+
S (r; t) =

∞∑

pS=0

∞∑

ℓS=−∞

�
dωS i

√
~ωS

2ǫ0nS(0, ωS)c
â+

S (wS; pS, ℓS; ωS)LGℓS

pS
(r)

exp(−iωSt)√
2π

(4.51)

Ê+
I (r; t) =

∞∑

pI=0

∞∑

ℓI=−∞

�
dωI i

√
~ωI

2ǫ0nI(0, ωI)c
â+

I (wI ; pI , ℓI ; ωI)LGℓI

pI
(r)

exp(−iωIt)√
2π

(4.52)

Expanding Ê and d24 in Hint results in a sum of terms, in which only the quasi-phase

matched are kept. The spatial integral of Eq. (2.2) that determines the perturbation

calculation of the bi-photon has become a sum of spatially different bi-photon states.

The axial indices determine the orbital angular momentum exp(iℓθ) and by conser-

vation the signal and idler must have ℓI = −ℓS. This reduces the remaining sum to

be over pS, pI , and ℓS, where the sign of ℓS does not affect the result and it will thus

be abbreviated ℓ. An output signal mode with pS and ℓ is coupled to idler modes

with ℓI = −ℓ and all values of pI . Hence the output naturally separates into indepen-

dent ℓ groups within which all the pS and pI are coupled. With the Gaussian pump

the integral has cylindrical symmetry, such that the θ integral within the crystal is

trivially 2π.
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The interaction perturbation (c.f. Eq. (2.9)) is now a triple sum:

|Ψbi〉 =
∑

pS

∑

pI

∑

ℓ

C
�

dω

(� L/2

−L/2

dx

� ∞

0

dr f(ωP , pS, pI , ℓ; x, r, ω)

)

â+
S
†(wS; pS, ℓ; ωP/2 + ω)â+

I
†(wS; pS, ℓ; ωP/2 − ω) |0〉 ,

(4.53)

where f is

f(pS, pI , ℓ; x, r, ω) = (2πr)LG0
0(wP ; x, r)LGℓ

pS

∗(wS; x, r)LG−ℓ
pI

∗(wI ; x, r). (4.54)

At a given longitudinal position x the radial integral over dr of f can be performed

analytically. The remaining integral along x is too complex to be analytic but is fast to

perform numerically. Mathematica™was used to compute and store the 125 r-integrals

for all combinations of pS,pI , and ℓ from 0 to 4. These integrals, denoted F (pS, pI , ℓ),

took a couple of days to evaluate2, but leveraged the machine’s patience. The integral

over x and r of f(...) is a function F(pS, pI , ℓ) of the waists and ω. The integral over

ω of |F(pS, pI , ℓ)|2 is the unnormalized rate R(pS, pI , ℓ) of downconversion into the

(pS, pI , ℓ) bi-photon mode.

The effect of the Gouy phase on quasi-phase matching can be understood with

an approximation. If the crystal were moved far from the foci of the modes then

the arctan functions would be constant phase shifts and could be factored out of the

integrals and ignored. If the crystal is at the focus and is small compared to xR then

arctan(x/xR) ≈ (x/xR). This creates new contributions to ∆k in Eq. (2.58) of the

form ±(2pS,I + 2|ℓ| + 2)/xR. For example: if the pS = pI = ℓ = 0 term is phase

matched for a cavity with wS = wI = 49.5 µm then signal’s 1/xR is 0.05595 per

mm. which causes a df detuning of 26.20 GHz. This causes F(1, 0, 0) to be peaked

near ω of 52.40 GHz instead of at degeneracy. Similarly, the idler’s 1/xR is 0.05876

per mm causing a phase shift of 26.47 GHz. These shifts should be compared to the

251 GHz FWHM from table 2.1. Thus the higher order L-G mode bi-photons will be

2This was partially because Mathematica™would occasionally crash, perhaps from a memory
leak. Work was saved at each step so the computation could be resumed where it left off.
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Figure 4-14: Scaled rate of downconversion R(0, pI , 0) into the pS = ℓ = 0 bi-
photons versus pump waist, assuming signal and idler waists of 49.5 µm. Normalized
to have maximum 1, which occurs for pump waist of ∼35 µm.

significantly displaced from degeneracy and be much less polarization-entangled.

The preceding L-G mode calculation does not depend on the presence of a cavity,

and can be equally well applied to the single-pass case of chapter 2. Therefore the

R(0, 0, 0) can be understood as the collection rate into single mode fibers which

collect a certain Gaussian waist in the crystal. However, the Gouy phase interacts

with the cavity since it also changes the effective cavity length. For a given pump

frequency the mirror location has to be moved some fraction of the FSR to resonate the

higher-order L-G mode bi-photons. This spatial-mode selectivity is another feature

of cavity-enhanced downconversion that can be advantageous.

The downconversion into Gaussian signal and idler modes with the cavity waist

of 49.5 µm is shown in the upper curve of Fig. 4-14. The maximum rate R is

found for a pump waist of approximately 35 µm, which is 49.5/
√

2. This optimal

pump waist is approximately 49.5µm/
√

2, which agrees with the second-harmonic-
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into lossless single-mode fibers.

generation optimum in Ref. [12]. This maximizes the number of Gaussian pairs

collected into fibers, but not the conditional probability. The R(0, pI > 0, 0) and

R(pS > 0, 0, 0) types of pairs will have one photon that can be collected but not

both. These rates R(0, pI , 0) are also shown in Fig. 4-14; the conditional probability

will be worse for pump waists smaller than 35 µm and better for larger waists. Note

that R is nearly symmetric with respect to the p’s: R(p, q, ℓ) R(q, p, ℓ) differing by

at most 2%, so their plots would appear identical on the scale of Fig. 4-14.

For the optimal pump waist, the phase shift df from forward-degenerate plane

waves is 0.0257 THz. This can be compensated for by reducing the PPKTP temper-

ature by .286◦ C, according to tuning coefficients in Eq. (2.58). The higher order

modes will then be detuned from degeneracy by a multiple of ∼50 GHz as noted

above. This detuning is the location of the peak output frequency of the sinc phase-

mathching function. These high order modes will be in resonance at cavity positions

shifted by the Gouy phase.
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For the optimal pump waist of 35 µm and totaling pS, pI from 0 to 4 and ℓ of -4 to

4, the rate R(0, 0, 0) is 10% of the output. Considering only the ℓ = 0 output, the rate

R(0, 0, 0) is 31% of the output. Considering the pS = 0 and ℓ = 0 output, the rate

R(0, 0, 0) is 75% of the output. This last figure of 75% is the conditional probability

expected for otherwise lossless collection into single mode fibers from a single-pass

downconverter, and can be approximated by 1 − R(0, 1, 0)/R(0, 0, 0) for any pump

waist. This has been plotted in Fig. 4-15. But since the rate is also affected by

the doubly-resonant cavity this 75% only applies to having no cavity or to an average

from sweeping over the cavity FSR. The other contributions are suppressed at a cavity

mirror position where R(0, 0, 0) is resonant.

4.4.2 Non-Perturbative Calculation

Instead of expanding the Hamiltonian, one can expand the generator of progression

Ĝ(x). The transverse spatial integral of Eq. (2.37) is the integral over θ and r that

can be performed analytically to get F (...). Now GNL(x) is a sum over pS, pI , ℓS, and

ℓI and instead of the perturbative numerical integration along x to get F(...), there

are the derivatives

∂â+
S,I(pS,I , ℓS,I , ωS,I ; x)

∂x
=

i

~

[
â+

S,I(pS,I , ℓS,I , ωS,I; x), Ĝ0(x) + ĜNL(x)
]
, (4.55)

which result in infinite sums:

∂â+
S (pS, ℓS, ωS; x)

∂x
= ikS â+

S (pS, ℓS, ωS; x)+

iK
∞∑

pI=0

â+
I
†(pI ,−ℓS, ωP − ωS; x)F (ps, pI , ℓS, ωS − ωP/2; x). (4.56)
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∂â+
I (pI , ℓI , ωS; x)

∂x
= ikI â

+
I (pI , ℓI , ωI ; x)+

iK
∞∑

pS=0

â+
S
†(pS,−ℓI , ωP − ωI ; x)F (ps, pI ,−ℓI , ωP /2 − ωI ; x). (4.57)

Altogether, this is an infinite system of first-order linear differential equations for each

ℓ value. For reasonable experimental arrangements the system can be truncated and

numerically solved. The result will express the field operator â+
S after the crystal as

a linear combination of all the â+
I
† and all the â+

S before the crystal with comparable

ℓ, not just a single a+
S and a+

I
†. In the low power limit, only the single corresponding

a+
S should survive with a unit amplitude coefficient and the a+

I
† coefficients should

agree with the perturbative calculation of F(...).

The non-perturbative system of differential equations needs to be solved only when

the system is not in the low-power limit, or when the cavity input is not in a vacuum

state. For the experimental regime explored here the low-power limit suffices, and

the perturbative calculation can be used. Thus in Eq. (4.2) the µ(ω) can be replaced

by 1 and ν(ω) by the F(pS, pI , ℓ, ω) functions.



Chapter 5

Cavity Experiment

‘Many things I can command the Mirror to reveal,’ she answered, ‘and to

some I can show what they desire to see. But the Mirror will also show

things unbidden, and those are often stranger and more profitable than

things which we wish to behold. What you will see, if you leave the Mirror

free to work, I cannot tell. For it shows things that were, and things that

are, and things that yet may be. But which it is that he sees, even the

wisest cannot always tell. Do you wish to look?’

J.R.R. Tolkien, The Fellowship of the Ring

5.1 Early designs

Several attempts were required before the final cavity downconversion experiment

was made. The first cavity system that was explored, even before the single-pass

PPKTP work, was based on a pre-existing OPO [26]. This was a single-angle phase-

matched type-II KTP downconverter in a single-ended cavity. The OPA was used

for degenerate conversion of the 532 nm pump to 1064 nm signal and idler. The

silicon single-photon detectors had very low (1-2%) quantum efficiency at 1064 nm.

The pair detection rate was very poor, about 10 Hz or lower, and heavily masked

95
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by unpaired single photon detection events, which were frequent enough to create

accidental coincidences within the cavity lifetime. The real coincidence rate could be

estimated only by fitting the timestamped events at the two detectors. The pump

was cw but the time-stamped acquisition could only run at 10% duty cycle due to

hardware bandwidth. Since there was no birefringence compensation, the resonant

output was not entangled, though it clearly affected the signal and idler detection

rates. It was the non-resonant output which provided an interference signal in the

coincidences when the type-II output was measured at 45◦.

The next experiments performed were to characterize the PPKTP with a single-

pass pump and are described in chapter 3. The first cavity design called for using a

PBS inside the cavity to have the signal and idler travel to separate high reflectors [30].

This spatial separation could be used instead of a compensating crystal to adjust the

FSR of the two polarizations to be equal. The cavity required a high quality brewster-

angle plate PBS with very low (< 0.2%) losses for both polarizations, and the actual

optics that were delivered did not meet the stringent specifications. After a second

round of optics could not fix the problem the cavity had to be redesigned, leading to

the KTP CC + PPKTP + KTP CC layout modeled in the previous chapter.

The existing OPO’s monolithic mount was reused to house the PPKTP and two

KTP compensating crystals. However, fitting the three temperature-controlled crys-

tals in the cavity and aligning them with the mostly fixed mirrors was too inflexible.

The mirrors and crystals were transferred to separate and adjustable mounts. At this

time an experiment was performed using a quarter-wave-plate (QWP). The peaks

with an odd number of different round trips for signal and idler vanish when ana-

lyzed in the 0◦ basis since the signal and idler have left the cavity with the same

polarization. This could not be as useful for teleportation, but was a good test of the

cavity resonance and the histogram collection since the detected coincidence peaks

had spacings of twice the round-trip time. In the 45◦ basis the even and odd peaks are

equally detectable. The QWP was not anti-reflection coated and the losses resulted
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in poor cavity finesse and quick fall-off of peak amplitude with each round trip.

The next attempt was to assemble the KTP+PPKTP+KTP cavity. Using a probe

beam to simultaneously align the signal and idler polarization modes in this cavity

revealed a flaw: the PPKTP crystal’s input and output faces were not sufficiently

parallel. The probe light at 45◦ polarization was a single beam entering the output

coupler, but after the PPKTP the horizontal and vertical polarizations were traveling

along slightly separate paths. This was mainly a vertical (z) deflection of the vertical-

polarization with respect to the horizontal. This made aligning the high reflector to

reflect both beams at normal incidence at the same time a difficult task. Nevertheless,

there was a geometry that could do so and after careful alignment the experiment

was run, but the result did not exhibit any noticable polarization entanglement.

The worry was that the separated signal and idler paths in the cavity created some

residual distinguishability. In addition to the other difficulties, the PPKTP was at

least 0.1 mm shorter than the total of the two KTP compensating crystals, thus

creating an imbalance in the signal and idler round-trip times.

Rather than continuing to struggle with the defects, the PPKTP was sent to be re-

polished so that the input and ouptut faces were parallel, followed by the replacement

of the anti-reflection coating. At the same time a new KTP compensating crystal was

purchased which was polished and coated alongside the PPKTP so their lengths would

be well matched. A tunable Ti:S laser was used to make separate measurement of the

birefringence of the PPKTP and KTP crystal over 40 nm of bandwidth. By fitting

each data set to the Sellmeier equations, the length of each crystal could be inferred

to be 9714±1 µm and 9713±1 µm, respectively. The difference is less than the 4.5 µm

distance between successive double-resonant conditions as computed in section 4.2.3.

Fine tuning with the temperature is still necessary, but the residual FSR difference

will be very slight.
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Figure 5-1: Layout for the pump section. The diode is grating-stabilized, reshaped
by the anamorphic prism pair, isolated, and coupled into 1 meter of single mode fiber.

5.2 Setup

A schematic of the experimental setup is shown in Fig. 5-2, with the pump section

shown in Fig. 5-1. The pump laser itself was the same as in the single-pass experiment

(see section 3.1). The UV fiber was single mode and was from Stocker Yale, model

NUV-320-K1, and a 20%-25% coupling efficiency was achieved. After the cavity OC

there was a lens to collimate the signal and idler output. Three dichrioc mirrors (DM)

were used to remove the pump beam. The first of these mirrors diverted the pump

to a photodiode so the weak cavity resonance of the pump could be monitored. The

other two mirrors were tilted in reverse so the total displacement of the transmitted

beam was minimized. There were then two steering mirrors (not shown). Next was

a 5 mm long KTP compensating crystal, followed by the aspheric lens that collected

the signal and idler into the single-mode fiber. The 2 m long fiber was wound around

three polarization control paddles. The fiber output passed through a collimator and

then a lens so that the beam focused and expanded before being focused tightly onto

a detector. After that lens there was the interference filter, which was tilted to admit

the degenerate wavelength. Next, the 50-50 beam splitter separated the photons into

two arms. The reflected photons were analyzed with a HWP and PBS and collected
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Figure 5-2: Schematic of experimental setup for cavity-enhanced downconversion.
The KTP CC inside the cavity is the same length L as the PPKTP crystal. The
KTP CC outside the cavity is 5 mm long. The pump is transmitted by the HR and
OC, and reflected by the dicroic mirror (DM). The four detectors are labeled TT ,
TR, RT , and RR.
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onto the RT and RR detectors. The transmitted photons were analyzed with their

own HWP and PBS and collected onto the TT and TR detectors.

5.3 Cavity Parameters and Tuning

The cavity mirrors had 50 mm radii of curvature, and were located 104.9 mm apart.

The crystals were 9.713 mm long and reduced the optical path to an effective sepa-

ration of 96.1 mm for calculating the cavity focus (w0) of 49.5 µm. The pump focus

(wP ) was close to the optimal value of 35 µm. The crystals expanded the cavity to

an effective phase separation of 120.3 mm of free space, which produced a FSR of

1.246 GHz and a round trip time of 802 ns. The largest stable separation of the

mirrors corresponded to a 1.207 GHz FSR and a 829 ns delay, so the system is close

to the maximum time separation and minimum bandwidth. The cavity finesse was

measured to be ∼55, which implied an 11% cavity loss per round trip, consistent with

the 92% reflection of output coupler and ∼0.3% loss per surface (including reflections)

per round trip.

The PPKTP crystal temperature was adjusted for frequency-degenerate operation

and for efficient collection of the frequency-degenerate signal and idler outputs. This

was much like the single-pass case, but the collection was into the cavity Gaussian

modes instead of free space through a fixed iris. The KTP compensating crystal

(CC) in the cavity was temperature tuned so that probe light at nearly twice the

pump wavelength had simultaneous transmission peaks for the two polarizations.

The residual round-trip birefringence in the cavity was then an integer number of

wavelengths. Each extra wavelength shifted the FSR difference by an otherwise im-

measurable 4.1 kHz, but had a cummulative effect on the obtainable double resonance

and polarization entanglement. The crystal length implied a single-pass correlation

time between signal and idler of L∆k′/c = 3.43 ps, and each extra wavelength of

birefringence shifted the timing by 2.65 fs per round trip, which was a fractional
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shift of about 1/1294. The crystal lengths and temperature were well matched and

were likely to have no more than a 4-wavelength birefringent shift. The simultaneous

double-resonance from tuning the CC temperature was observed to recur every ∼4.5◦

C as the birefringent shift gained or lost a wavelength.

The UV pump was operated at 397.343 nm (vacuum) with ∼1 mW of power deliv-

ered to the cavity. The collection fiber was aligned to the cavity, and the internal KTP

compensating crystal was temperature tuned, by bringing IR laser light backwards as

a probe and examining the light transmitted through the cavity onto a photo-diode.

Aligning the forward UV-pump light was accomplished by overlapping it with the

backward IR probe laser, assisted by auxillary irises in and out of the cavity, and

by maximizing the pump laser’s cavity resonance amplitude. The IR probe was also

used to measure the cavity finesse of ∼55 and calibrate the mirror’s piezo-voltage for

an FSR sweep.

5.4 Interference Dip

The interference dip experiment was performed, similiar to the single-pass version

in section 3.3, to detect the polarization-entanglement of the output pairs. The

coincidence rate between the RT and RR detectors was measured in the 0◦ basis.

Simultaneously, the coincidence rate between the TT and TR detectors was measured

in the 45◦ basis (or the 0◦ basis for calibration). When recording data, the cavity piezo

voltage was driven by a triangular voltage waveform. This swept the cavity mirror

by a FSR for the degenerate 795 nm output (i.e. the mirror translation distance was

397.5nm). The sweep period was 40 seconds.

Some of the resulting data is shown in Fig. 5-3 where a 3 nm IF was used, and in

Fig. 5-4 where a 1 nm IF was used. There are several features of note in the data.

The RR singles rate was anomalously high, due to a light-leak in the shielding of the

detectors, and can be ignored. The output double resonance occured every FSR/2,
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Figure 5-3: Plot of singles and coincidence rates during a cavity sweep, using a 3 nm
IF. The cavity length sweeps across a FSR and back over 40 s, with a 24 Hz count
rate. There is a resonance peak every FSR/2. The 45◦ basis coincidence rate is less
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twice in each half of the sweep. This agrees with the resonance periodicity in Eqs.

(4.9) and (4.14). One of these peaks is the “even” degenerate peak and the other is

the “odd” peak with no output at degeneracy, but which is which cannot be discerned

from the data. In addition to the double-resonance peaks, there were nearby side

peaks in the single rates. These side peaks did not correspond to any features in

the coincidence rate, and were due to resonant production of pairs with Gaussian

signal and non-Gaussian idler photons, and vice versa. Only the Gaussian half of

these pairs was detected, since both members of these pairs could not propagate in

the single-mode fiber. Their resonant position in the cavity sweep was displaced from

the primary peak due to the Gouy phase shift. The most important feature in the

figures is that the reduction in the amplitude of the coincidence peaks in the 45◦ basis

compared to the 0◦ basis was more than 50%. This reduction was consistent as the

cavity length was swept through resonance, which emphasizes that the production

of polarization-entangled output is distinct from the production of doubly-resonant

output. The conditional probability of coincidences in the 0◦ basis was ∼8%, which

compares favorably to the rate seen in single-pass free-space collection of ∼24% (which

did not have the 50% reduction from the beamsplitter) . The background rate of

single-count events is likely due to fluorescence driven by the pump, with some off-

resonant pair production in addition. Summing the coincidence rates across several

sweeps of the cavity, the maximum visibility achieved was 73%.

The interference dip weakened and disappeared when the internal KTP compen-

sating crystal temperature was varied by a few times the ∼0.1◦ C resolution of the

stabilized temperature stage. To improve the visibility the PPKTP crystal may need

to be temperature tuned, with an accompanying change in the CC temperature.

The output from the TT and RT detectors was also used to collect a start-stop

arrival time histogram with the Picoquant Timeharp 200. Histograms for the 0◦ and

45◦ bases using a 1 nm IF, each collected over 16 minutes while the cavity was being

swept, are shown in Fig. 5-5. The resolution of the discrete peaks was limited by the
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timing jitter of the detector pulses, which was about 350 ps. The peak separation

interval was extracted from a fit to the peaks and found to be 826 ps; the vertical

lines show the separation of the data into different round-trip intervals. The histogram

resolution of 38.3 ps allowed for 21.57 bins per round-trip interval. The data within

each interval was binned and the result is shown in Fig. 5-6 on a log scale (in base

2). There is a vertical grid line every 5 round trips.

The counts in each peak should decline from the center with the ratio of the output

coupler (OC) reflectivity R reduced by intra-cavity loss. This exponential decline is

evident from the linear decline on the log-scale plot, and fitting this results in an R

of 89%. This is consistent with the nominal 92% value for the OC and 0.3% loss per

surface during a cavity round trip, and is also identical to the effective R deduced

from the measured finesse. The 45◦ histogram was well below the classical prediction

of half the 0◦ rate (shown on the figure to allow comparison).

The ratio of the 45◦ to the 0◦ data for each round trip is shown in Fig. 5-7. The

dip was clearly better in the center of the histogram, with a slow increase as the

number of extra round trips increases to either side. This is to be expected if the

birefringence is not perfectly corrected. However, the central region of ±20 round

trips accounts for 90% of the pairs. The average 45◦ to 0◦ ratio in this central region

was 0.131, or a visibility of 76.8%. The central peak’s ratio was 0.106, or a visibility

of 80.8%. The variation of the interference dip can be attributed to a slight average

temperature offset of 0.004◦C from the equal FSR operating point.

5.5 Brightness

The brightness of the output was measured using the coincidence peaks in data like

that shown in Fig. 5-4. The doubly-resonant peaks had a detected coincidence rate

of 2000 pairs/s per mW of pump, after the single-mode fiber, 1 nm IF, and 50-50

beam splitter. However, that measurement was between the TT and TR detectors,
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which see only one quarter of the pairs after the beam splitter. Between the T and

R sides of the beam splitter there were twice that many pairs, so a rate of 4000

pairs/s per mW of pump was inferred. This can be compared to several different free-

space collection results that are also based on ∼1 cm of PPKTP generating ∼795 nm

degenerate output. The cavity result is much higher than the 300 pairs/s per mW

from the single pass source [31], which used an iris, 1 nm IF, and beam splitter. It is

also higher than the 820 pairs/s per mW from the overlapping cone source [23] which

used two irises, a 1 nm IF, and did not have a beam splitter. The very broadband

double-pumped source [32] produced 12,000 pairs/s per mW with a very large iris

and a wider 3 nm IF, and did not have a beam splitter.

It should be emphasized that the cavity output was measured after having been

collected into one single-mode fiber. The coupling efficiency into the single-mode fiber

could be partly inferred from the conditional coincidence rate of ∼8%. Comparing

this to the single-pass rates without a cavity indicates that the fiber coupling was

pessimistically 33% and likely near 50%. The inferred production rate from the

conditional probability is 6.25 × 105 pairs/s/mW, which is comparable to estimates

from our other PPKTP sources.

With the FSR of 1.23 GHz, finesse of 50, and phase-matching FWHM of 251 GHz,

the central degenerate output peak should be 25 MHz FWHM and account for

1/225th of the total output. This gives a spectral brightness of 2000 ∗ 2/225/25 ≈
0.7 pairs/s per mW of pump per MHz of bandwidth at degeneracy. The single-

pass and overlapping-cone sources had a similar phase-matching FWHM but no

cavity, so their brightness were, respectively, 0.001 and 0.003 pairs/s/mW/MHz.

The double pump source was very broadband, but using a generous 3:1 ratio es-

timated from the 3 nm IF, the brightness was 0.014 pairs/s/mW/MHz. The cavity

experiment reported in [11] used KbNO3 crystals and type-I SPDC instead of type-

II PPKTP, and its cavity-enhanced brightness (at the degenerate frequency) was

0.12 pairs/s/mW/MHz (this generously uses their calibrated rate which was higher
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Set CC (V) TCC (◦C) |22.361◦C − TCC | δTfit (◦C) period v0

a 1.3349 22.3514 0.0096 0.0203 216.3
b 1.3375 22.2577 0.1033 0.1040 42.37
c 1.3394 22.1891 0.1719 0.1694 25.97
d 1.3413 22.1206 0.2404 0.2509 17.54
e 1.3434 22.0449 0.3161 0.3192 13.78
f 1.3451 21.9836 0.3774 0.3793 11.60
g 1.3470 21.9152 0.4458 0.4544 9.68
h 1.3494 21.8287 0.5323 0.4942 8.90
i 1.3975 20.0984 2.2626 2.1773 2.021
j 1.2750 24.5210 2.1600 2.1666 2.031

Table 5.1: For the 10 data sets ’a’ through ’j’, the data for the measured KTP
CC temperature and the temperature inferred from the fit of the interference dip are
shown. The KTP CC thermistor voltage is translated to a temperature, and this is
subtracted from 22.361. The last column is the v0 fit of sin(πv/v0)

2 to the interference
dip, the next to the last column is 4.4◦C/v0 which is the inferred temperature from
the fit. The 22.361◦C is the estimated ideal FSR temperature.

than their actual detected rate). This shows that the current cavity source is 50 to

700 times as bright as non-cavity sources, and at least 5 times brighter than the other

reported polarization-entangled cavity source. From the 0.08 conditional probabil-

ity and 0.7 pairs/s/mW/MHz, the inferred production rate from the cavity in the

degenerate output peak in the Gaussian spatial mode was 110 pairs/s/mW/MHz.

From the mode-matching calculations, the fraction of the spontaneous output cou-

pled into the Gaussian signal and idler spatial modes is 10% (section 4.4.1). Another

way of looking at this is to consider that 90% of the potential output will be sup-

pressed by the cavity, while the remaining 10% will experience the double-resonant

enhancement. A system redesigned from scratch could improve this coupling and

increase the brightness of the system, essentially by harnessing a greater fraction of

the pump light.
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Figure 5-8: Raw histograms for set ’a’
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Figure 5-9: Normalized ratio for set ’a’
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Figure 5-10: Raw histograms for set ’b’
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Figure 5-11: Normalized ratio for set ’b’
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Figure 5-12: Raw histograms for set ’c’
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Figure 5-13: Normalized ratio for set ’c’
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Figure 5-14: Raw histograms for set ’d’
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Figure 5-15: Normalized ratio for set ’d’
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Figure 5-16: Raw histograms for set ’e’
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Figure 5-17: Normalized ratio for set ’e’



116

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-12.8 -4.5 3.7 12.0 20.2

C
ou

n
ts

(H
z)

in
38

.3
p
s

b
in

Signal-Idler delay (ns)

0◦

45◦

Figure 5-18: Raw histograms for set ’f’
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Figure 5-19: Normalized ratio for set ’f’
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Figure 5-20: Raw histograms for set ’g’
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Figure 5-21: Normalized ratio for set ’g’
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Figure 5-22: Raw histograms for set ’h’
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Figure 5-23: Normalized ratio for set ’h’
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Figure 5-24: Raw histograms for set ’i’
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Figure 5-25: Normalized ratio for set ’i’
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Figure 5-26: Raw histograms for set ’j’
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Figure 5-27: Normalized ratio for set ’j’
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5.6 Unequal FSR

In order to observe the predicted sin2(ndσω0) behavior of the interference dip a series

of 45◦ and 0◦ histograms were taken at various temperatures. These ten sets of

data (names ’a’ through ’j’) are summarized in Table 5.1 and their histograms and

interference dips are shown in Figs. 5-8 to 5-27. The interference dip versus round-

trip index v varied with a period v0 which was obtained by fitting A+B sin2(πv/v0) to

the data. The temperature for recurrence of the full dip was found to be ∼4.4◦C from

previous data. Thus, the change in the KTP CC temperature can be inferred from the

v0 fit as dTfit = 4.4◦C/v0. The actual temperature of the KTP CC was controlled, and

the measured thermistor voltage can be translated into a temperature TCC . Thus the

relative temperature between data sets was both directly measured and also inferred

from the interference dip shape. These two measures of dT in columns 4 and 5 of

Table 5.1 agree remarkably well.

The first data set, ’a’, was very near the equal FSR condition for a full dip. The

next seven sets, ’b’ through ’h’, were taken with a small increment of ∼2 mV of

thermistor voltage to lower the temperature. The change from the nearly flat, equal

FSR, case to the sin2 behavior is clear, with set ’h’ having 10 full periods of the

oscillation across the histogram. The last two sets were attempts to move to half the

change from the equal FSR temperature of ’a’ to the next lower and higher equal

FSR temperatures. Thus the last two sets should have triplet even-v states with a

deep dip and singlet odd-v states with only a slight dip, so the 45◦ histogram should

have alternating high and low peaks. This can be clearly seen, but the detector jitter

causes the round-trip peak width to be not quite separable on the histogram. This

made the tall odd v peaks bleed into the bins for the adjacent low peaks, raising the

even v low peaks. The central peak had a dip ratio of 0.13 to 0.16 for ’a’ through

’h’, confirming that the central box always cancels regardless of whether the FSR is

equal or unequal. The largest amplitude A + B from the A + B sin2(πv/v0) fits was

A + B = 0.12 + 0.75 = 0.87 for data set ’c’. This 0.87 is much higher than the 0.5
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classical prediction.

All the ’a’ through ’j’ 45◦ and 0◦ histograms (between the TT and TR detectors)

were acquired sequentially, each taking 16 minutes. The pump power from the fiber

was mostly stable (to a few percent), but on occasion drifted by as much as 20%

between some of the acquisitions, changing the level of the raw histograms. During

each histogram acquisition time the rate of coincidences in a 0◦ basis was also being

measured between the RT and RR detectors. This simultaneous reference measure-

ment made it possible to normalize the ratio of 45◦ to 0◦ histograms, and it is the

normalized ratios that are shown in the figures and used for fitting (note that the sin2

period v0 is independent of the correction).

5.7 Imperfect Visibility

The interference ratio, sin(πv(T/4.5◦C))2, should vary between zero and one for a

polarization-entangled state. The observed variation is roughly from 0.15 to 0.85,

with some data having a dip down to .106 (as seen above in Sec. 5.4). This can

be explained if there was a mixture of polarization-entangled and unentangled out-

put. The unentangled part would dip to 50%, preventing the total rate from going

to zero or remaining at one. Some unentangled pairs can be generated when there

is pump light traveling backwards through the crystal. Since the CC in the cavity

is not in two symmetric pieces of half the PPKTP length, any pairs generated going

backwards are timing shifted in the wrong direction by the external KTP CC and

remain timing-distinguishable. Their contribution can be measured by inserting a

HWP to swap signal and idler polarization after the cavity and before the exter-

nal KTP CC. Then the backwards-generated pairs should be polarization-entangled

and not the usual forward-generated pairs. This measurement was performed, and

produced a dip of 0.429, which indicates that at least 14.2% of the output was gen-

erated going backwards. This is consistent with the observed variation of the pump
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light transmitted through the cavity, and the reflectivity of the output coupler at the

pump wavelength. In total this accounts for 78.8% of the outputs that are forward-

generated and entangled, and 14.2% of the outputs that are backwards-generated

and entangled, which total 93.0%. Taking into account the 3% error in the length

of the external KTP CC indicates that 95.8% of the output is forward or backward

generated and entangled, but that only one or the other can be timing-corrected and

thus polarization-entangled. The sources of the remaining imperfection are unknown.
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Chapter 6

Conclusion

“Using today’s technology,” Avi shot back, “that is true. But what

about quantum computers? And what if new mathematical techniques

are developed that can simplify the factoring of large prime numbers?”

“How long do you want these messages to remain secret?” Randy

asked, in his last message before leaving San Francisco. “Five years? Ten

years? Twenty-five years?”

After he got to the hotel this afternoon, Randy decrypted and read

Avi’s answer. It is still hanging in front of his eyes, like the afterimage of

a strobe:

I want them to remain secret for as long as men are capable

of evil.

Neal Stephenson, Cryptonomicon

6.1 Novel Source

To enable future experiments, new sources of entanglement are needed. One of the

best sources of entangled qubits is photon pair production via SPDC, but non-photon

entanglement is required for the joint Bell-state measurements needed to do quantum
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teleportation. Thus the quantum correlation must be transferred to other systems

such as the proposed atomic quantum memories[33]. The 104 bandwidth mismatch

between SPDC and the proposed Rubidium atom memory required a novel source that

could be much brighter within a narrow bandwidth. To this end a more complete

theory of low-power downconversion in a cavity was derived. The dependence on

spatial mode matching, frequency degeneracy, and birefringence mismatch were all

included in the new derivation. Experiments were then successfully performed and

compared to the predictions of the model.

Initially, single-pass downconversion experiments were performed. These measure-

ments verified the operating conditions for which polarization-entangled pairs could

be produced from the PPKTP. The apparatus produced 300 pairs per second per mW

of pump with high visibility.

The use of PPKTP allowed for collinear pump, signal, and idler both inside and

outside the crystal. This enabled the use of a doubly-resonant linear cavity for the sig-

nal and idler. The effect of circulating the pair inside the cavity was to constructively

enhance the downconversion rate at a comb of resonant frequencies. This resulted

in a higher rate of downconversion than from a single-pass SPDC source. Tuning

the temperature of the KTP CC inside the cavity allowed for degenerate operation

with equal FSR and resulted in polarization-entangled output. Measurement of the

coincidence rate indicated that the source had a measured spectral brightness of 0.7

polarization-entangled pairs per second per mW of pump per MHz of output band-

width at degeneracy (in a single spatial mode), with 110 pairs/s/mW/MHz inferred

generation rate from the 8% conditional probability. This spectral brightness easily

exceeds the other reported source of narrowband polarization-entangled pairs [11],

and has the highest spectral brightness of any source of polarization-entangled pho-

tons on earth. The earlier experiments by Ou and Lu in Refs. [8, 9, 10] used only a

single type-I process and did not produce polarization-entanglement.

In addition to creating the doubly-resonant source that can be operated at equal
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FSR to produce degenerate pairs, the unequal-FSR case was also investigated. The

coincidence rate ratio of sin2(πv(T/4.5◦C)) was derived for photons in the pair having

a different number of cavity round trips. This allowed a state which ranged from

triplet to singlet behavior, with alternating behavior being the extreme case. The

other cavity-enhanced polarization-entangled experiment in Ref. [11] used two type-I

processes and needed to have the signal and idler cavity spectra aligned (the equal

FSR condition) to produce both |HH〉 and |V V 〉. Therefore, that experiment cannot

resonantly create the unequal-FSR states with sin2(πv(T/4.5◦C) behavior. These new

states are only produced using a type-II process and a cavity.

6.2 Future Work

The current cavity could be used to further verify that the output is polarization-

entangled by performing a CHSH inequality measurement. In particular, the unequal-

FSR output states could be further studied. All of these measurements would benefit

from a slightly improved cavity. The current cavity was built using flexible mounts,

using a total of eleven adjustable optic positioning knobs. Now that a working crystal

and cavity configuration has been demonstrated, it can be rebuilt with more stable

mounts to allow for easier locking at the output resonances. This would allow for

much greater data collection rates. Exploring the output state using the histogram

would be best done with a slightly longer cavity which will allow clean separation of

the different round-trip peaks.

More radically new and improved cavity designs might be explored. Building

off the bi-directional pump, single-pass experiments by Marco Fiorentino, [32], a bi-

directionally pumped ring cavity with a single type-I downconverter might be a more

robust source of degenerate narrowband polarization entanglement. This would have

the advantage that the cavity birefringence is no longer a problem, since the forward

and backward pairs share the same polarization, but also would lose the ability to



128

create the unequal-FSR states. A ring cavity using a type-II process to produce

polarization-entangled should be possible to build, with or without bi-directional

pumping. An advantage to a bi-directionally pumped type-II process is that the

signal and idler pairs need not have degenerate frequencies.

While not emphasized in this work, the cavity can be used to resonantly produce

pairs in other combinations of spatial modes. By using a pump with a different focal

size, the coupling into higher order Laguerre-Gaussian modes could be increased.

Then by adjusting the cavity length these modes could be produced, including states

with non-zero orbital angular momentum. This selective production of higher-order

modes might find its own uses in the future.

Part of the original quantum-teleportation proposal was a scheme to create the

pairs of polarization-entangled photons at ∼1.5 µm and transmit them down single-

mode fibers. These would then be combined with active polarization correction and

an upconversion apparatus to translate them to 795 nm before being used to couple

into the atomic memory. Marius Albota is currently finishing such an upconversion

apparatus and there is the strong possibility that a future cavity, operating at 1.5 µm

instead of 795 nm, could be combined with it.

Eventually, a cavity source could be built as part of an experiment involving atomic

systems. By locking the pump lasers and tuning the cavity, the polarization-entangled

pair could be absorbed. The atomic systems, which may be single atoms or ensembles,

would then be entangled and allow for further measurements and manipulations,

especially the possibility of quantum teleportation.



Appendix A

Field Operators

Never let the future disturb you. You will meet it, if you have to, with

the same weapons of reason which today arm you against the present.

Marcus Aurelius

There are several related variations of electromagnetic field operators â used in

this work. This appendix defines the notation and interpretation of them. The fields

are in the MKSA system of units, in which the classical Maxwell’s equations are

ǫ0∇ · E = ρ D ≡ ǫ0E + P

∇ · B = 0 H ≡ B

µ0
− M

∇× E = −∂B

∂t
∇ · D = ρfree

∇× B = µ0J + µ0ǫ0
∂E

∂t
∇× H = Jfree +

∂D

∂t

E = −∂A

∂t
−∇V B = ∇× A

Pi = χ
(1)
ij Ej + χ

(2)
ijkEjEk + ... c =

1√
µ0ǫ0

.

Instead of using a finite quantization volume V and discrete sums, this work takes the

limit of infinite volume and uses continuous integrals. The discrete and continuum

129



130

vacuum plane-wave operators, where i and j are the polarization indices, obey the

commutation relations

[
âi,k, â†

j,k′

]
= δijδ

3
k,k′, (A.1)

[
âi (k) , â†

j (k′)
]

= δijδ
3 (k − k′) , (A.2)

where the â are in units of length to the (3/2) power. Discrete operators âk and sums

are converted as follows:

√
V

(2π)3
âj,k → âj (k) , (A.3)

∑

k

(2π)3

V
→
�

d3k. (A.4)

The discrete vector potential is replaced by a continuous one [34]:

Â(r, t) =
∑

j,k

εj,k

√
~

2ǫ0V ωj,k
(âj,k exp (ik · r − iωj,kt) + H.c.) (A.5)

Â(r, t) =
∑

j

�
d3k εj(k)

√
~

2ǫ0ωj(k)

(
âj(k)

exp (ik · r − iωj(k)t)

(2π)3/2
+ H.c.

)
(A.6)

In the above definitions εj,k is the polarization unit vector and H.c. stands for the

Hermitian conjugate of the preceding terms. The electric field Ê(r, t) is equal to

−∂Â/∂t in all cases.

Since several fields will be present, attention must be paid to the phases in (A.6).

By construction of Â, the âj(k) terms create plane-wave fields that all have the same

zero phase at the (r, t) = (0, 0).

A canonical quantum description of macroscopic electromagnetism in non-uniform

dispersive anisotropic nonlinear materials is more complex [35] than needed for a

model of downconversion in the experimental regime. Only the vacuum operators
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and simplified material operators will be required.

Reformulating the evolving fields at a certain time as propagating fields at a

certain position x as done in Refs. [36, 22] allows for a more natural treatment of

quantum optics and derivation of downconversion. This is accompanied by a change of

variables from kx to ω. The choice of x, instead of the more common z, agrees with the

experiment’s propagation along the x-axis of the nonlinear material. This replacement

of the longitudinal kx with ω has serendipitous consequences: the refraction of the k

vectors on entering and leaving the material is polarization dependent and needlessly

add to the complexity, but with material interfaces normal to x all three parameters

ω, ky, and kz are unchanged. The (y, z) part of r will be denoted as s and the (ky, kz)

part of k will be denoted q.

The change of variables affects the integral and commutator:

kx,j(q, ω) = ±

√(
ω

c

)2

− |q|2 = ±
(

ω

c2

)
g(q, ω), where (A.7)

g(q, ω) ≡ c

√

1 −
(|q|c

ω

)2

, (A.8)

dkx,j →
dkx,j(q, ω)

dω
dω = ± dω

g(q, ω)
, (A.9)�

kx>0

d3k →
�

d2q

� ∞

c|q|
dω

1

g(q, ω)
, (A.10)�

kx<0

d3k →
�

d2q

� ∞

c|q|
dω

1

g(q, ω)
, (A.11)

[
â+

i (kx,i(q, ω), q) , â+
j
† (kx,j(q

′, ω), q′)
]

= δ2 (q − q′) δ(kx,i(q, ω) − kx,j(q
′, ω′))δij

(A.12)

= g(q, ω)δ2 (q − q′) δ(ω − ω′)δij . (A.13)

The separation of kx > 0 and kx < 0 will be useful, in particular with propagation

inside a cavity. The gj function in the commutator is bothersome but will now be
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absorbed by the reformulated photon-flux operators â±
j (q, ω) via

âj (kx,j(q, ω), q) → â±
j (q, ω)

√
g(q, ω), (A.14)

where the + superscripts denotes kx > 0 and the − denotes kx < 0. The commutation

relations are

[
â±

i (q, ω), â±
j
†(q′, ω′)

]
= δ(q − q′)δ(ω − ω′)δij (A.15a)

[
â±

i (q, ω), â∓
j
†(q′, ω′)

]
= 0 (A.15b)

[
â±

i (q, ω), â±
j (q′, ω′)

]
=
[
â±

i (q, ω), â∓
j (q′, ω′)

]
= 0. (A.15c)

The vector potential splits into forward and backward propagating pieces

Â(r, t) = Â+(r, t) + Â−(r, t) + H.c., (A.16)

Â+(r, t) = Â+(x, s, t) =
∑

j

�
d2qdω√
g(q, ω)

εj(q, ω)

√
~

2ǫ0ω

â+
j (q, ω)

exp (ikx,j(q, ω)x + iq · s − iωt)

(2π)3/2
, (A.17)

where the explicit limits on dω are dropped for simplicity. The energy in the system,

dropping the infinite component, is as expected

Ĥ =

�
d2qdω ~ω

(
â+†(q, ω)a+(q, ω) + a−†(q, ω)a−(q, ω)

)
. (A.18)

An expression for Ê in a material will be needed, but only in the paraxial and

quasi-monochromatic limit. The variable transformation from kx to ω in the material
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will use the κm(q, ω) functions

κS,I,P (q, ω) =

√(
nS,I,P (q, ω)ω

c

)2

− |q|2, (A.19)

where the subscript m = S, I, P indicates both polarization and central frequency

for signal, idler, or pump beams. The κ are analytical, if a bit messy, with this

parameterization. In the paraxial limit the group velocity is approximately

vG(m, q, ω) ≈
(

∂κm(q, ω)

∂ω

)−1

, (A.20)

and the integration transforms as�
kx>0

d3k →
�

d2q

� ∞

|q|c/n∗
dω

1

vG(m, q, ω)
, (A.21)

where n∗ depends on q and m, and is the value of nm(q, ω) when κm(q, ω) is equal to

zero for small ω. This integral has a lower limit than the one in free space with the

“extra” modes being those past the critical angle and only exist inside the material.

The explicit limits will be dropped for simplicity.

Inside a dispersive material, the index of refraction cannot be everywhere real as

a consequence of causality. However, here the fields are confined to several quasi-

monochromatic frequencies where the index is approximately real and the imaginary

component, and thus absorption, will be neglected.

From [34] the equivalent of (A.6) inside a material is:

Â(r, t) =
∑

m

�
d3k εm

√
~vG(m, k)

2ǫ0ωm(k)nmc

(
âm(k)

exp (ik · r − iωm(k)t)

(2π)3/2
+ H.c.

)
.

(A.22)
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Using âm(k) →
√

vG(m, q, ω)âm(q, ω) produces Â± in the material:

Â±(r, t) =
∑

m

�
d2qdω εm

√
~

2ǫ0ωnmc
â±

m(q, ω)
exp (±iκm(q, ω)x + iq · s − iωt)

(2π)3/2
.

(A.23)

Taking the negative time derivative of Â produces Ê:

Ê(r, t) = Ê+(r, t) + Ê−(r, t) + H.c., (A.24)

Ê±(r, t) = Ê±
S (r)εS + Ê±

I (r)εI + Ê±
P (r)εP , (A.25)

Ê±
m(r, t) =

�
d2qdω i

√
~ω

2ǫ0nm(q, ω)c
â±

m(q, ω)
exp (±iκm(q, ω)x + iq · s − iωt)

(2π)3/2
.

(A.26)

The vacuum equations and material equations both assume the world is homogeneous:

that there is only one kind of uniform medium. This is fixed by the exp() functions

which only refer to a single uniform dispersion relation.

Quantum optics treating multiple materials needs a slightly more complicated

formulation. If the material boundaries are all perpendicular to the paraxial axis

(x) then it is straightforward to move the complexity of the space into the opera-

tors. The field operators can be transformed into a form that obeys the equal-space

commutation relation

[
â±

i (q, ω; x), â±
j
†(q′, ω′; x)

]
= δ(q − q′)δ(ω − ω′)δij, (A.27)

where the x coordinate dependence has been added to the notation. This x depen-
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dence subsumes that of operators built from it, so that

Â±
m(s, t; x) =

�
d2qdω

√
~

2ǫ0ωnm(q, ω; x)c

exp(i(q · s − ωt))

(2π)3/2
â±

m(q, ω; x) (A.28)

Ê±
m(s, t; x) =

�
d2qdω i

√
~ω

2ǫ0nm(q, ω; x)c

exp(i(q · s − ωt))

(2π)3/2
â±

m(q, ω; x). (A.29)

The phase of the new â(; x) operators acts to record the progression of the plane

wave from the origin, where x is zero, through the different materials to the specified

x plane. Thus the Ê field operator “knows” the structure of the space, including

knowing the nonlinear interactions.

There is an analogous version â(k; t) that obeys an equal-time commutation re-

lation and subsumes the exp(−iωt) dependence of Â(r; t), but it will not be needed.

Other continuum formulations use variations on these â that differ by factors of 2π,

the system of units for the fields, or the definition of the fields as Re(A...) instead of

A + H.c., which can also introduce factors of 2.
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