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Abstract
The computer graphics front-end of the MIT Holographic Video Interactive Ren-
derer (Holo-video) is improved and advanced through the implementation of rendering
techniques and new lighting models. Specifically, software developed for this thesis
provides for image overlap (or occlusion), multiple object rendering, and specular
reflections. The algorithm for image occlusion from a finite number of viewing zone
regions is presented with an example using five discrete viewing vectors, a number
that provides sufficiently realistic overlap cues for the narrow (16-degree) viewing zone
of Holo-video. The rendering of multiple object scenes is discussed, with emphasis on
the implementation of occlusion. Two models for specular (mirror-like) lighting are
discussed, and their implementation within the Holo-video system are described. Fi-
nally, a holographic video "game" is used to illustrate the operation and importance
of the added features. The goal was to provide the additional elements of realism
while still maintaining computation times that are sufficiently short to allow for user
interaction.
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Chapter 1

Introduction

The Holographic Video Display System (Holo-video) at MIT allows its user to ma-

nipulate the holographic image in real time. Given a 3-dimensional description of an

object, a supercomputer computes its holographic fringe pattern. A beam of light

then illuminates this fringe pattern to produce an image. The user adjusts buttons

and dials interfaced to the computer to manipulate the image to produce a new image

in a few seconds. The size, rotational orientation, position, and other factors can all

be controlled interactively by the user. These images are currently a few centimeters

in size. Six megabytes of data are required for each full-color image. Work is being

done to increase both the view angle range and the image size [1].

Holo-video research involves many areas: setting up the optical hardware to illu-

minate the fringe patterns, coding for the actual computation of the fringe patterns,

and coding for the computer graphics techniques that are applied to the image. This

thesis focuses on the computer graphics side of Holo-video. It describes the code

recently added to Holo-video to improve the realism of the image. This software is

referred to hereafter as "Holo-realizer." Included are algorithms for occluding along

a range of view angles, rendering multiple objects, and shading with a specular com-

ponent. Also discussed is a video game that makes use of the occlusion and multiple

object algorithms.

Chapter 2 describes the occluded function as used in the rendering of one object.

This function allows for occlusion from five different view angles. Chapter 3 describes

8
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Figure 1-1: Holo-realizer's coordinate system [4, p. 21.

the rendering of two objects and summarizes the rendering of one object. It also

describes the rendering of multiple objects. Chapter 4 describes specular reflection.

Also discussed in this chapter is the implementation of specular shading. Chapter

5 describes the video game and the functions used to implement it. In Chapter 6,

possible future expansions to the code are suggested.

The algorithms in this thesis are based on the coordinate system in Fig. 1-1, with

the viewer located very close to the positive z-axis.

1.1 The Interactive Holographic Video Display

System

1.1.1 Background

Computer-generated holograms have been discussed among holographers for the last

three decades. However, the research has been limited by the display technology

available. Frere and Leseberg have studied the computation of large pixel arrays for

writing onto film. This process, however, takes many hours and therefore does not

allow for images that can be manipulated by the user. To the best of our knowledge,

the MIT holographic video system is the first to display holograms as quickly as several

times per second. To achieve this, the amount of data and computation was reduced

9
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Figure 1-2: A Volkswagen as displayed on the MIT holographic video system [3, p.
90].

as much as possible without compromising image quality [1, p. 2]. An example of the

image Holo-video provides is in Fig. 1-2.

1.1.2 Description

Much information can be found on the MIT holographic video display. To understand

this thesis, only a basic knowledge of Holo-video is required. Holo-video is based on

a wide-window 3-channel acousto-optical modulator and a spinning polygonal mirror

scanner to sweep out laser-illuminated lines that are 32 kilopixels across. A vertical

deflection galvanometer then positions these to trace out 64 RGB horizontal lines.

The entire sweep is completed 40 times per second, in synchronism with the output

of a modified high-resolution frame buffer (2 megasamples in each of three layers,

each feeding one view of about 16 degrees, and intended to be viewed at about 600

rum.) [1, p. 17].

Holo-realizer's rendering process is summed up in Fig. 1-3.
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Partially Occluded
or Not Occluded

Figure 1-3: Flowchart of Holo-realizer's rendering process.
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1.2 The Holo-Graphics Side

This thesis focuses on the graphical computing aspect of Holo-video. Because of this,

it does not include fringe calculations or optical hardware descriptions.

Holo-graphics differs from computer graphics due to the 3-dimensionality of Holo-

video. Computer graphics deals with the rendering of 3-dimensional models to a 2-

dimensional display, whereas Holo-graphics deals with the rendering of 3-dimensional

models to a 3-dimensional display. The main result of this difference is that Holo-video

has continuously varying multiple view positions. Also, Holo-video fills a polygon with

points on a 3-dimensional grid, instead of a 2-dimensional pixel array.

Additionally, the programs implemented are not intended to be perfect in the

physical sense. The small size of the Holo-video image enables us to make many

approximations while still maintaining image quality. Therefore, this thesis usually

describes the theoretically-correct way to implement an algorithm and then describes

the data-reduced quicker way, as it was implemented on Holo-video.

12



Chapter 2

Occlusion

Occlusion or overlap is the process by which nearer objects hide (occlude) farther

objects. Due to Holo-video's angle of look-around, an occlusion algorithm must pro-

vide accurate occlusion throughout a range of view angles. Because overlap is a very

powerful depth cue, the addition of occlusion to Holo-realizer makes the image more

realistic.

Holo-realizer renders an object on a polygon-by-polygon basis. For each hololine

(y value of the hologram), the x's from Xmin (minimum x value) to xma (maximum

x value) are processed. For occlusion, the program ultimately must decide which

(x, y, z) points to ignore (for example, if another point with a greater z value already

resides at that (,y) location) and which points to send to the framebuffer (if that

(x, y) point has the greatest z value of all the points with the same (x, y) coordinates).

This process of selective rendering will produce occlusion. In reality, occlusion is

everywhere as we do not see an object which is behind another (opaque) object.

2.1 Preliminary Steps

Before passing the points of each polygon to the occluded function, steps are taken

to make the actual occlusion process easier. Before an object is rendered, we have

a polygon list containing the numbers of the polygons in the object. Our goal is to

reduce the number of polygons and to put the polygons in some sort of helpful order.

13



point

Invisible.

Normal vector

Visible

Figure 2-1: Backface culling: two visible polygons and one invisible polygon [4, p.
371.

This reduces both the number of polygons to be processed and the number of steps

needed to process a polygon.

2.1.1 A Better Cull

One way to reduce the size of the polygon list to elimate ("cull") polygons that are

completely occluded because their normals point toward the back, away from the

viewer. Polygons face away from the viewer when the z-components of their normal

vectors are negative. See Fig. 2-1.

However, due to the look-around that Holo-video provides, this culling process

sometimes eliminates polygons that are occasionally needed (they should be visible

when viewed at an angle other than straight-on). A modified backface cull was

implemented to account for this.

The modified backface cull takes into account Holo-video's range of view angles.

With this cull, a polygon that should be hidden in the straight-on case but visible

in the side-view case is not culled out. The part that should be hidden is dealt with

later in the occluded function.

After the cull, we deal with only those polygons which were not culled out.

14
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2.1.2 Sorting the Polygons

Before rendering the object, a list containing the polygons that were not culled out

is put into order from those closest (highest z value) to the viewer to those farthest

(lowest z values) from the viewer. To do this, the average z value of each polygon was

computed by averaging the z values of the vertices of that polygon. Using the average

z values, the polygons are sorted in decreasing order using the Heapsort algorithm.

The Heapsort algorithm was chosen for its minimum storage and high speed when

dealing with sorts of this size (usually between 50 and 5000 polygons) [2, p. 242].

When the program runs, it uses this updated polygon list to process the polygons in

order from closest to farthest. This sort is vital to the occlusion algorithm because if

a point already exists at a particular (x,y) location, it probably should occlude any

following points at that (, y) location because its polygon is in front of any of the

following polygons. Also, because our range of view angles is small (16 degrees), we

are able to use one sort for all five view zones.

2.2 Occlusion

Occlusion from five different view zones is implemented using an array for each view

zone. Each array represents the areas that are already filled with points. These

areas are represented as lines. Each line is recorded using its minimum step value,

maximum step value, and hololine value (where hololine = y). Except in the case

of straight-on viewing, the step value represents the absolute value of the z-intercept

of that particular view vector at that point. If the view vector never intersects the

z-axis, the step value is equal to the x value (as in the case of the straight-on view).

The distance between consecutive step values is the stepspace.

The minimum step values are always indexed by even indices, while the maximum

step values are always indexed by odd indices. This is important in determining

whether two consecutive indices represent a line (the lower index even, the upper

index odd) or a space between lines (the lower index odd, the upper index even).

And, for each row of lines, the lines read from smaller to larger step values. The

15



arrays are initialized to 2000, so any unfilled entries in an array have that value. The

value 2000 was chosen because it is larger than the biggest stepspace and would thus

be consistent with the ordering of higher to lower values in the arrays.

To determine the size of the space between steps (stepspace) is not easy. Except in

the straight-on case (where the stepspace = 1), the calculation for stepspace is subject

to round-off error. Due to this, the stepspace was determined experimentally. It was

found that each view (other than the straight-on view) had two stepspace's, differing

only by 1. Therefore, the occluded function gets passed the smaller stepspace, then

the function itself deals with the inconsistencies of a particular view zone's stepspace.

2.2.1 Explanation of an Array

For example, in the case of the straight-on view (so that step = x), if we have

2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Array= 1 5 7 8 2000 2000 2000 2000 2000 2000

0 0 2 2 4 4 6 6 8 8

this would mean:

1. At the Oth linerow there is nothing in the framebuffer.

2. At the 1 t linerow there is something in the framebuffer from x = 1 to x = 5,

and from x = 7 to x = 8.

3. At the 2 nd linerow there is something in the framebuffer from x = 0 to x = 0,

from x = 2 to x = 2, from x = 4 to x = 4, from x = 6 to x = 6, and from x = 8

to x = 8. Note that these lines are actually points.

16



2.3 The Occluded Function

The occluded function starts by checking the specified linerow of a point to see if

it is empty. A linerow is empty if Array[linerow][O] = 2000. Since the entries are in

increasing order, 2000 must represent the minimum entry value. But, the arrays are

initialized to 2000, so this linerow has not been touched since that time (it is empty).

If so, this point is deemed not occluded.

Next, occluded checks if step comes before or is equal to the first entry in the ar-

ray. If step < Array[linerow][0], it either forms its own line or it becomes an extension

of the other line. Either way, this point is not occluded. If step = Array [linerow] [O],

the point is occluded.

If step > Array[linerow][O], the program cycles through the array to determine

which two entries the point falls between. (These two entries are the reference entries,

the lower reference index re fl and the upper reference index ref2.) Once this is done,

whether or not the point falls in a line is determined by testing whether re fl is even

or odd. If it does fall in a line, it is occluded. If not, the next four cases are tested.

The function checks for the cases of the point: coming before the existing lines

(not occluded), being at the end or start of a line (occluded), filling the gap between

two lines to form a new line (not occluded), extending an existing line (not occluded),

and making its own line (not occluded). These cases are described as follows:

1. Ends or starts a line: step comes at the end or start of a line if step =

Array[linerow][refl] or step = Array[linerow][ref2]. If so, the array remains

the same and the point is occluded.

2. Fills the gap between two lines: step fills the gap between two lines if

Array[linerow][refl] + stepspace = step = Array[linerow][ref2] - stepspace.

If so, the array must change to account for the new bigger line-old minimum

and maximum step values must be written over with new ones. The point is

not occluded.

3. Extends an existing line: step extends an existing line if

17



step = Array[linerow][refl] + stepspace or

step = Array[linerow[ref2] - stepspace. If so, the appropriate reference entry

must change to account for the new minimum or maximum. The point is not

occluded.

4. Makes its own line: step makes its own line if it satisfies none of the above

conditions. If so, part of the array must be be shifted to the right by two to

make room for the new minimum and maximum (both of which are equal to

step). The point is not occluded.

To reduce the amount of cycling required for each point, a tracker variable is kept

for each view zone which tells the occluded function at which index to start cycling.

This tracker variable is set to its correct value in the occluded function and is set

to 0 for each new linerow.

Thus, the program finds in what view zones a point is occluded and then makes

its amplitude of light 0 in those directions to account for the occlusion.

2.3.1 Example

For the straight-on view (so that step = x), we have the point (10,1, 20) and we have

2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Array = 1 5 7 8 2000 2000 2000 2000 2000 2000 .
0 0 2 2 4 4 6 6 8 8

The program first checks if the linerow is empty. Since Array[linerow][O] 2000,

it is not. Next, the program checks if the step < Array[linerow][O]. In this case,

since 10 1, it continues.

The cycling begins. If this were not the first time we are dealing with this polygon's

linerow, we would have our tracker variable set to within a cycle or two of where we

would want to be. This, however, is not the case. Since this is the first time we

18



are dealing with this linerow, tracker will be set to 0. Starting with the 0 th and 1st

entries, we keep cycling until we find two entries our step comes between. This does

not happen until we reach the 3 rd and 4 th entries. We now have the indices for our

reference entries: refl = 3 and ref2 = 4.

The program checks if we are already in a line by determining if the refl is even

or odd. Since 3 is odd, we are not in a line. The program continues by checking the

next three cases.

1. Ends or starts a line: not true because 10 # 8 or 10 # 2000.

2. Fills the gap between two lines: not true because 10 + stepspace 4 2000 and

10 - stepspace 8.

3. Extends an already existing line: not true because 10 + stepspace # 2000 or

10 - stepspace 8.

Finally, we must default to our last case-the point makes its own line. The

tracker variable is set to 5 to reduce the amount of cycling needed for the next point

on the linerow. The function returns a 0 (not occluded), and adjusts the array to

accommodate for the new line. The new array is as follows:

2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

Array= 1 5 7 8 10 10 2000 2000 2000 2000

0 0 2 2 4 4 6 6 8 8

Notice we did not consider the point's z value in the occluded function since we

know the polygons are processed greatest z's first.

19



Chapter 3

Multiple Objects

Before any work on the video game was to be done, the task of displaying more than

one object at a time had to be addressed. This raised a lot of problems. How will

occlusion work with multiple objects? Will the objects be physically separate? If so,

how will we deal with the objects staying out of the other objects' space?

To better understand how multiple objects are rendered, we must understand the

basics of how one object is rendered.

3.1 Rendering One Object

One object is rendered using a single input-the object file. The object file contains the

number of polygons, the number of vertices in the object, and the (z, y, z) coordinates

for each vertex of each polygon in the object.

The program reads in Numverts (the number of vertices in the entire object) and

Numpolyg (the number of polygons in the entire object). It then puts the coordinates

of the vertices of each polygon into one of three arrays-Vtz for the x-component, Vty

for the y-component, and Vtz for the z-component.

The program continues on a polygon-by-polygon basis. The polygons are sorted

closest ones first. Then the polygon are processed one by one closest ones first. To

process, the program runs through all the x's of all the y's of a particular polygon

until it is done. For every (, y, z) point what is written to the framebuffer depends

20



Figure 3-1: Occlusion and backface culling as seen on two objects [4, p. 36].

on the results of the five different calls to the occluded function. See Chapter 2 for

more information on the occluded function.

3.2 Rendering Two Objects

Fortunately, because the occluded function operates on polygon lists and not object

files, the rendering of two objects is very similar to the rendering of one object. Both

the modifed backface cull and the occluded function is used. See Fig. 3-1.

The program will now expect two inputs instead of one-the files for both the

objects. The files contain the number of polygons, the number of vertices in the

whole object, and the (z,y,z) coordinates for each vertex of each polygon in the

object.

The program reads in Numvertsl, Numpolygl, Numverts2, and Numpolyg2. It

then sets up a new variable Numpolyg3 = Numpolygl + Numpolyg2. For objectl,

it puts the coordinates of the vertices of each polygon into one of three arrays-Vtxl

for the x-component, Vtyl for the y-component, and Vtzl for the z-component.

Similarly, for object2, it puts the coordinates the vertices of each polygon into one of

three arrays-Vtz2 for the z-component, Vty2 for the y-component, and Vtz2 for the

21



z-component.

The program continues on a polygon-by-polygon basis. The polygons of both

objects are concatenated into one polygon list of size NumPolyg3. To determine the

coordinates of vertices of a polygon the polygon number (polyn) must be checked. If

polyn <= Numpolygl (it belongs to the first object), the program maintains polyn

and looks in objectl's arrays for information. If polyn > Numpolygl (it belongs to

the second object), a new polyn is used where polyn = polyn - Numpolygl. The

program will also look in object2's arrays to determine the coordinates of the vertices

of polyn. The program continues in the same way as in the one object case.

For every new cycle, it is checked if the user (or program if not in interactive

mode) indicates to move the first object or second object. Any object that is moved

will have its list of vertices operated on. Then, the rendering of polygons continues

as usual.

Since the occluded function operates on a list of polygons and not actual object

files, no special precautions must be taken to have occlusion with two objects.

When the two objects occupy the same space, neither wins out. If the program

were written to do so, much time and effort would be wasted by keeping track of

the boundaries of the objects at all times so that they do not intrude on the other's

space. Instead, if both objects occupy the same space, the two objects appear to

be merged into one object. The inconsistencies regarding lighting parameters will be

ignored. The only way to determine what object the a particular point will draw its

characteristics from is (1) the average z value of its polygon's vertices and (2) whether

it comes from object 1 or object2. Higher average z values take precedence over lower

ones, and if the average z values are equal, objectl will take precedence over object2.

3.3 Rendering Multiple Objects

There are two ways to extend the preceding ideas to rendering independent multiple

objects, which one is better depends on the number of objects desired. To render N

objects when N is small (< 5), the ideas in the two object case are followed, except

22



that now there are N times as many parameters as before. When N is large, a better

strategy is to use linked lists. This way the program (instead of the programmer) will

deal with the declaring of N times as many parameters.

23



Chapter 4

Specular Reflection

In reality, an illuminated object has three components of reflected light-diffuse, am-

bient, and specular. To make Holo-video more realistic, these different types of light

must be added to the images. Diffuse and ambient light were already implemented.

Specular light is view-angle dependent and requires a special function which allows a

point to have a different brightness value for each of the five view zones.

4.1 Definition and Description

Because real-life objects do not perfectly diffuse light, they usually have some degree

of glossiness (a mirror has infinite glossiness). Glossy surfaces differ from dull ones

in many ways. First, light reflects off a glossy surface predominantly at an angle

-8, where +6 is the angle between the incident beam and the surface normal. This

is shown in Fig. 4-1. As a result, the amount of specular reflection is view-angle

dependent. For example, a mirror upon which a single point source of light is shone

will reflect all of the light along only one direction. It will only be seen when viewed

along this direction. For all other view directions, that part of the surface will be

dark. In real life, however, specular reflection is not so perfect. The viewer is able to

see the light not only from the single direction, but also along other directions close

to that direction. The area over which the light is seen is referred to as the highlight

or glint. The color of the specular light is usually the color of the light source [4, pp.
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Figure 4-1: Vectors and angles used in the Phong shading model [4, p. 51].

50-511.

4.2 The Phong Shading Model

For a point on the surface of our object, we use two additional vectors to model

specular reflection. This is shown in Fig. 4-1. The normal vector to the polygon's

surface is N and the vector in the direction from the light source to the particular

point in question is L. The two additional vectors-R and V-represent the direction

reflection vector for specular light (R) and the direction vector for view (V). All

vectors are normalized [4, p. 51].

Using this model, the intensity (I.) of the specular light can be calculated using

Equation (4.1).

I. = Iik.(R. V)n/(r + k) (4.1)

where we have approximated Iik./(r + k) to be 1 [4, p. 52].

The angle between the R and V vectors is . (In the case of infinite glossiness,

this angle must be 0 to see any specular light.) The angle between the L and N

vectors is 0, and is equal in magnitude to the angle between the N and R vectors. As
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Figure 4-2: The effects of n-large n [4, p. 52].

N\c /

Figure 4-3: The effects of n-small n [4, p. 52].

stated previously, extends over a range which is dependent upon the glossiness of

the object. The glossiness of the object depends on the exponent n. The higher the

n the glossier the surface will appear. See Figs. 4-2 and 4-3. A mirror, for example,

would have n = oo since it is a perfectly glossy surface. The glossier the surface, the

smaller the area of the highlight. As the surface gets duller, the highlight grows in

area but decreases in intensity [4, pp. 51-52].

Our model for specular reflection is only a local model. It does not consider light

that comes from other specular reflections [4, pp. 52-53].
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4.2.1 Summary

The Phong model can be summarized by the following:

* Ambient light is constant.

* The color of the highlight is that of the light source.

* The glossiness of an object is modelled empirically.

* Diffuse and specular components are modelled locally.

* Light sources are modelled as point sources.

[4, pp. 55

4.3 Geometric Considerations

Because of the time spent in calculating R, it is better to use another related vector,

H, to calculate the magnitude of the specular light. H is the normalized unit vector

of a hypothetical surface situated in a direction halfway between L and V [4, p. 53].

See Fig. 4-4.

The vector H is desirable because:

* H is easy to calculate (H = (L + V)/2).

* (R V)" is not exact, and n is empirical, so (N H)" is a good substitute.

Using this model, the intensity (I.) of the specular light can be calculated using

Equation (4.2).

I, = Iik,(N H)n/(r + k) (4.2)

where we have approximated Iik,/(r + k) to be 1 [4, p. 54].

The differences between using R. V and N. H can be seen in Figs. 4-.5 and 4-6.

Notice how the use of N H spreads the highlight out over a greater area. Adjusting

n will compensate for the difference in the angle between R and V and the angle

between N and H [4, p. 54].
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Figure 4-4: The H vector [4, p. 53].

Figure 4-5: Using the R. V model [4 , p. 54].
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Figure 4-6: Using the N H model [4, p. 54].

4.4 Implementation

To implement specular reflection, the V vectors must be specified and the H vectors

must be calculated. The angle between consecutive view vectors is found by dividing

the total angle of view into five equally spaced view zones.

The H vectors are calculated by adding the vectors L and V and dividing by 2

for each view zone. The other terms (except n) in equation are approximated as 1.

Depending on how shiny we want the object to look, n varies from 1 to 5.

If done correctly, for every view zone of each point, the diffuse, ambient, and

specular terms of light would be calculated and added together. Each point would

have five of these sums which would then be passed to the function that would render

the point with the five different brightnesses in the correct view zones (assuming there

is no occlusion).

However, we did not calculate the specular light for each point. Because our image

is small, we are able to calculate our specular light on a polygon-by-polygon basis

(rather than a point-by-point basis ) without losing any significant image quality in

most cases. For a single polygon, N and L are calculated. Then, V's and H's are
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calculated for this particular polygon. The resulting light intensity is then used for

every point on this particular polygon. Of course, this works better if the number of

polygons is large, and the individual polygons are physically small.
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Chapter 5

Holographic Video Game

To exploit the interactive nature of Holo-realizer, some sort of procedure which per-

suades the user to interact had to be implemented. Since most people are familiar

with video games, this seemed the optimal medium to use. If the users of Holo-realizer

were playing a game instead of moving the objects when they chose to, they would

be more motivated to interact with the system. Using the algorithms described in

Chapters 2 and 3, a video game for Holo-realizer was developed.

The video game is a basic action game, requiring some hand-eye coordination,

but little strategy. The user (the "player") fights to survive despite the existence of

the enemies (the "attackers"); namely, the player tries to avoid colliding with the

attackers in order to earn points and avoid death.

5.1 Preliminary Considerations

Because a video game must be fast to hold the player's interest, the normal rendering

of images that Holo-video uses is modified to allow for more speed in the processing

of polygons. Also, since a video game does not necessarily have to be realistic, the

lighting is modified.
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5.1.1 Modified Lighting

For the video game, the only lighting consideration is that the objects be bright and

viewable. In order to speed up the processing of polygons, only ambient light is used.

Neither the diffuse nor the specular terms are calculated.

5.1.2 Other Modifications

Because a video game is more fun with many simple objects on the screen than with a

few complicated objects, care was taken in choosing what objects to use. No objects

with greater than 2000 polygons were used.

5.2 Functions Needed for the Game

Before writing the overall control system for the game, a series of functions had to

be created which would be needed for the game, but not used normally in interaction

with Holo-video. Functions were needed to move an object in six different directions,

to detect if the game was over, and to actually end the game.

5.2.1 Control Functions

To allow the player to move in a certain direction, the program simply shifts the ap-

propriate origin coordinate of the object the correct amount. For example, the func-

tion moveup increments the z-coordinate of the origin of the player's object. Sim-

ilar functions created were: move-down (decrements the y-coordinate), movexight

(increments the x-coordinate), moveleft (decrements the x-coordinate), movein

(decrements the z-coordinate), and moveout (increments the z-coordinate).

5.2.2 Game-Over Functions

Two additional functions were needed to implement the video game-one to detect

when the game was over, and one to actually implement the game-over protocol.
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The overyet function checks after the rendering of each object whether the game

is over. It determines the game is over when it finds that the origin of the player is

close to the origin of an attacker. If overyet deems the game to be over, overyet

makes use of the game-over function described below. If not, the game continues as

usual.

The gameover function is called only after it is determined that the game is

over. First, it sounds a beeper three times to indicate to the player impending doom.

Second, it clears the screen and fills it with a truly spectacular display. And, lastly,

it exits out of the program.

5.3 The Video Game Algorithm

Initially, the game takes as input two files-the player's file and the attackers' file.

The player's file contains information about the player's object (which is the only

object that can be interacted with). The attackers' file contains information about

the objects of the attackers'. These objects are moved only as specified in the game

program. The many objects in the attackers' file are treated as one object throughout

the game.

The game runs by continually moving the attackers' objects and moving the

player's object only when the player hits a certain button. After each object has

been processed, overyet is used to check if the game is over. If so, the actions car-

ried out by gameover are started. If not, the buttons are checked to see if the player

wishes to move. If so, the appropriate shifting is performed on the player's array of

vertices. Whether the player moves or not, the attackers' array of vertices is changed

so it will move. Then the program proceeds with the rendering, using the two object

format described in Chapter 2.
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Chapter 6

Conclusion

The purpose of this thesis was to add many features to Holo-video to improve the real-

ism of the displayed image. We have shown that it is possible to add the realism cues

of occlusion and specular reflection to an image while maintaining the interactivity of

the system. This was accomplished by making substantial theoretical compromises

which produced only small compromises in the quality of the image.

With the development of the video game for Holo-realizer, Holo-realizer has been

brought into a more practical light. Users are now more inclined to interact with the

system.

6.1 Future Work

6.1.1 Suggestions for Future Work

Holo-realizer can be developed further in two ways-either by making the existing

programs more complex and theoretically correct (for example, making occlusion for

a greater number of views), or by adding more data-reduced features to the system.

Some examples of these features are:

* The addition of multiple user-controlled light sources.

* Light sources not at oo.
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* The animation of objects.

* The mutation of objects.

* Non-constant shading.

* Transparency.

However, as future versions of the display come to involve larger images, the

accuracy of the models will become more important, and previous assumptions must

be discarded. Some notable changes to the algorithms in this thesis would be:

A modified backface cull that accounts for the larger view angle.

* Multiple sorts for the polygons.

* Dividing each degree of the view angle into a greater number of view zones.

* Calculating the specular light more than once for a given polygon.

Considering the pros and cons of each path, it would be better to expand Holo-

realizer in the traditional sense-that is, using shortcuts for speed and not concentrat-

ing on theoretical correctness. In the future, the incorporation of additional features

to Holo-realizer will provide important gains in realism.
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