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ABSTRACT

Projection from silicon technology is that while transistor budget will continue to blossom
according to Moore's law, latency from global wires will severely limit the ability to scale
centralized structures at high frequencies. A tiled processor architecture (TPA) eliminates
long wires from its design by distributing its resources over a pipelined interconnect. By
exposing the spatial distribution of these resources to the compiler, a TPA allows the compiler
to optimize for locality, thus minimizing the distance that data needs to travel to reach the
consuming computation.

This thesis examines the compiler problem of exploiting instruction level parallelism (ILP)
on a TPA. It describes Rawcc, an ILP compiler for Raw, a fully distributed TPA. The thesis
examines the implication of the resource distribution on the exploitation of ILP for each of
the following resources: instructions, registers, control, data memory, and wires. It designs
novel solutions for each one, and it describes the solutions within the integrated framework
of a working compiler.

Performance is evaluated on a cycle-accurate Raw simulator as well as on a 16-tile Raw
chip. Results show that Rawcc can attain modest speedups for fine-grained applications, as
well speedups that scale up to 64 tiles for applications with such parallelism.

Thesis Advisors: A. Agarwal, Professor, Computer Science & Engineering
S. Amarasinghe, Associate Professor, Computer Science & Engineering
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Chapter 1

Introduction

Modern computer architecture is driven by two forces. On the one hand, the emergence of

multimedia applications have helped fuel the demand for processors with more computational

power. On the other hand, exponential increase in transistor budget is projected to hold

for the near future, with billion-transistors chips in view within the next five years. On the

surface, these two forces seem to combine nicely to map out a simple course of action for

computer architects: the market has a demand for more compute power, and the technology

supplies the transistors that can be used to implement such power.

Unfortunately, modern architectures are ill suited to convert the copious silicon resources

into copious compute resources. Consider the Intel processor family. It first sported a

multi-ALU processor in 1993 when it incorporated superscalar technology into the Pentium.

During the past decade, the transistor count of the family processor has increased 70 times,

from 3.2M in the Pentium to 221M in the Itanium 2. Yet today, the widest issue processor

produced by Intel, the Itanium 2, still only has six ALUs. Furthermore, as shown in Figure 1-

1, those six ALUs only occupy 3% of the die area.

The fundamental problem with scaling modern architectures is that most resources in these

architectures are centralized. To add more functional units to an architecture, one needs to

make a corresponding increase in the support structures and resources in virtually every part

17



Figure 1-1. A die photo of the Itanium 2. The Itanium sports 221M transistors and a 441 mm 2

die, yet it only has 6 ALUs that occupy 3% of the die area.

of the architecture, such as the bypass network, the register file, the issue unit, or numerous

hardware structures employed by superscalars to coordinate instruction level parallelism at

run-time. Many of these structures scale worse than linearly in both area and speed with

the number of functional units. For example, the bypass network is a crossbar between N

ALUs that grows quadratically with the number of functional units. On the Itanium 2, this

network services six ALUs, yet it is already consuming 50% of the cycle time [32]. For the

register file, supporting an additional functional unit involves a corresponding increase in

three resources: the number of read ports, the number of write ports, as well as the number

of registers. Asymptotically, given N functional units, this implies that a register file scales in

the order of N3 [43]. In practice, although circuit tricks can reduce this cubic order of growth,

they are not sufficient to prevent the register file from becoming a source of bottleneck in

a processor's design. One commercial example is the Alpha 21264. Although it only has

four ALUs, its register file has trouble meeting the timing goals of the processor [14]. Other

scaling issues can be found throughout the design of a centralized processor.

Wire delay Centralized structures also lead to designs with long wires, whose latency does

18
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not scale with technology. It wasn't long ago that wires had the abstraction of occupying zero

space and propagating at instantaneous speed. This abstraction is far from reality today.

Figure 1-2 shows the composition of the total delay in a typical design as technology scales,

as estimated by Cadence [8]. As transistors become smaller, gate delay decreases, but wire

delay decreases more slowly than gate delay and eventually even increases. For aluminum

wires, overall wire delay surpasses gate delay at .18 micron process. For copper wires, the

crosspoint is at .13 micron. In today's 90nm process, wire delay accounts for more than 75%

of the overall delay in a design.

The increasing fraction of overall delay due to wire delay can be attributed to the perva-

siveness of global wires in designs. As technology scales, wires in a design can be roughly

divided into two types. Global wires are wires that travel over a fixed distance, while local

wires are wires that travel over a fixed number of gates. It is these global wires whose latency

does not scale with technology [15]. For a high frequency processor design, the implication is

that as technology scales, the portion of chip area that a signal can travel in one clock cycle

is getting smaller and smaller. Figure 1-3 shows the projected number of cycles it takes for

a signal for travel across the chip as feature size shrinks.
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1.1 Multimedia extensions: a short term solution

One sign that the demand for compute resources cannot be met by the ability of existing

architectures to take on more ALUs is the existence of multimedia SIMD extensions such as

SSE or AltiVec. In these extensions, an instruction specifies multiple instances of the same

operation that are to be executed in parallel. To use an SSE instruction, the source operands

feeding it must be packed in software into registers, and the destination operands must also

be unpacked in software. The cost of packing and unpacking can be amortized if the output

of one SSE instruction feeds into the input of another SSE instruction.

Multimedia extensions provide a modest increase in compute power to existing architec-

tures while bypassing some of aforementioned scalability issues. By encoding the parallelism

within a single instruction, they lessen the strain on resources such as fetch bandwidth, regis-

ter ports, and registers. By explicitly specifying the parallelism in the instruction encoding,

they avoid the strain on superscalar resources normally used to detect parallelism.

On the other hand, multimedia extensions are only a short term solution to adding com-

pute resources to an architecture. They can only provide a small number of extra functional

units. In addition, they can only specify SIMD parallelism, a restrictive form of parallelism.

20



Furthermore, they incur overhead from register packing and unpacking. As a result, multi-

media extensions are difficult to compile to, and in practice are usually confined to assembly

coding of libraries or intrinsic functions [37].

1.2 An evolutionary path toward scalability

In order to be able to leverage Moore's law into delivering a high frequency microprocessor

that can scale to thousands of functional units, ideally one needs an architecture where there

is no single centralized structure that grows worse than linearly with functional units, and

where every wire is a local wire. Seven years ago, I sketched out one possible evolutionary

path that leads from an existing architecture to such a scalable architecture [25]. This path

consists of the following two steps:

1. Decentralize through replication and distribution.

2. Incorporate a scalable scalar operand network.

Each step is elaborated below.

Decentralize through replication and distribution A common technique to address

hardware structures that scale poorly is decentralization through replication. Rather than

scaling a single monolithic structure, an architect replicates smaller instances of the same

structure to meet the demand for a particular resource. These smaller replicated structures

can then be distributed along with the functional units that they serve. For example, the Al-

pha 21264 was unable to incorporate a centralized register file that met timing and provided

enough register ports needed by its dual-ported cache and four functional units. Instead, as

shown in Figure 1-4, the Alpha replicated its register file. Each physical register file pro-

vided half the required ports. A cluster was formed by organizing two functional units and

a cache port around each register file. Communication within a cluster occurred at normal

speed, while communication across clusters took an additional cycle. Another example is the

21
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Figure 1-4. A block diagram of the Alpha 21264. To provide enough register ports while

meeting timing, the integer execution core is organized into two clusters, each consisting of

two ALUs, a cache port, and its own copy of the register file.

Multiflow Trace computer, a commercial clustered VLIW built in the 80s that can execute

up to 28 operations per cycle [28]. To meet cycle time, it employs a separate register file for

each ALU as well as each memory and branch unit.

By systemically replicating and distributing all microprocessor resources, an architecture

can avoid the scalability issues associated with centralized structures. We use the term tile

to describe the unit of replication.

Incorporate a scalable scalar operand network After the processor resources are or-

ganized as tiles and distributed across the chip, the next step is to make the interconnect

between the tiles scalable. A scalar operand network (SON) is the collection of communica-

tion mechanisms used to deliver scalar values between ALUs [?]. Initially, an architecture

may consist of very few tiles, so it may be able to use a crossbar or one or more busses for

a SON. Both of these interconnects, however, are not scalable because they require global

wires. As the number of tiles increases, a pipelined, point-to-point interconnect can be used

to keep the wires local while providing the required latency and bandwidth - a progression
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Figure 1-5. A tiled processor architecture consists of replicated tile, each with its own compute
element and switch. Each tile has its own program counter, compute pipeline, registers, ALUs,
data memory, and instruction memory. Tiles communicate with each other via a pipelined,
point-to-point, mesh scalar operand network (SON).

reminiscent of multiprocessor evolution.

1.3 Tiled processor architectures

A tiled processor architecture (TPA) lies at the end of the above evolutionary path. Fig-

ure 1-5 shows a picture of a TPA. It is defined as follows: A TPA is an ILP processor

whose resources are fully distributed across the chip in units called tiles. Tiles are con-

nected together via a point-to-point mesh scalar operand network. The spatial distribution

of resources is exposed to the compiler for locality management.

This definition includes four key concepts: ILP, tiles, scalar operand network, and spatial

exposure. Let us take a look at each of them in turn:

ILP A TPA is an ILP processor. This means that all of its resources can be brought to

bear on a single sequential program. Therefore, a chip multiprocessor is not a TPA because

its communication mechanism is not fast enough to exploit ILP across its processors.
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Tiles On a traditional architecture, adding functional units implies a major design effort to

support the corresponding scaling of other supporting resources. A TPA avoids this problem

by defining a replicable unit called a tile. Each tile consists of a set of functional units and a

complete set of support resources needed to operate those functional units. This includes the

processor pipeline, program counter, instruction caches, data caches, and the register file.

Given a transistor budget, a TPA fills that budget by replicating as many tiles as possible.

The exact composition of a tile may vary across different instances of a TPA, and may be a

simple RISC core, a VLIW, or a superscalar.

Scalar Operand Network A scalar operand network (SON) is the collection of commu-

nication mechanisms used to deliver scalar values between ALUs. To support ILP between

tiles, the SON of a TPA needs to satisfy the following three requirements:

Scalable It has to be able to scale to many tiles (from one to many hundreds).

Scalar It must support the delivery of scalar values.

Speed The end-to-end latency between functional units on neighboring tiles has to be low

(one to a few cycles).

To be scalable, a SON employs a mesh, point-to-point interconnect, rather than a bus or

a crossbar. To provide fast scalar transport, the interconnect is integrated into the processor

pipeline, and a functional unit has direct, register-level access to the interconnect.

Spatial Exposure The tiled, mesh organization of a TPA makes it easy to limit the

length of wires to no longer than the distance required to cross a tile. On a TPA with many

tiles, however, this organization alone is not sufficient to prevent the latency of wires from

degrading application performance. If an application is mapped onto a TPA such that tiles

on the opposite corners of the chip end up communicating a lot, it will incur much wire

latency and thus execute slowly.

A TPA addresses this issue by exposing the spatial distribution of resources to the com-

piler. This means that a compiler has some control over the where operations, operands,
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Fully Register-level Scalable Spatial
Architecture Distributed Communication Network Exposure

Industry Multicores yes no no yes
Clustered VLIWs no yes no yes

Partial TPAs no yes yes yes
TPAs yes yes yes yes

Table 1.1. Comparison of TPAs with other existing commercial and research architectures.

and memory data are placed. The compiler uses this interface to manage locality and thus

minimizes the distance between the operands/data and the operations that need them.

1.4 Status of TPA evolution

The concept of a TPA was proposed by my colleagues and I in the Raw architecture group

in 1997, in the special issue of IEEE Computer on billion transistor microprocessors [42].

Let's take a look at how that TPA vision relates to architectures today in 2005. Table 1.1 lists

several classes of commercial and research architectures, along with the essential features of

a TPA that the each architecture possesses. A more detailed discussion of each architecture

in relation to TPA is included below.

Industry Multicores A Multicore is a single chip microprocessor that integrates multi-

ple full processor cores onto the same die. Recently, there is a noticeable shift in focus in

the microprocessor industry from traditional, centralized unicore to multicores. There are

two high profile examples of this shift. First, Sun canceled the unicore Ultrasparc V and

is instead touting duo cores Olympus and Niagara for its server market [18]. Second, Intel

canceled Tejas, a superpipelined unicore that was supposed to replace the Pentium 4 [20].

Instead, Intel's technology roadmap is heavily focused on multicores, with upcoming duo

cores products in server (Montecito, duo Itanium 2) and even the mobile (Yonah, duo Pen-

tium M) market. Already existing in the market are duo-core processors such as the IBM

Power 5, the AMD Opteron, and the Intel Smithfield.

It is interesting to note that multicores are consistent with the first step of the evolutionary
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path described in Section 1.2. Their prevalence in industry suggests that the TPA evolution

may be becoming a commercial reality. So far, however, the communication mechanisms

between cores in existing Multicores are neither fast nor scalable yet as in a TPA. In Smith-

field, for example, communication between its two cores needs to travel through two level of

caches and the front side bus, with latency of tens of cycles.

Clustered VLIWs A clustered VLIW distributes its compute resources in units called

clusters. Each cluster has its own set of ALUs and portion of the register file. Like a TPA,

a clustered VLIW provides register-level communication between ALUs. Unlike a TPA,

however, processing resources including instruction fetch, control, and memory still remain

centralized, and most clustered VLIWs typically connect clusters to each other via busses or

crossbars.

Clustered VLIWs exist in both commercial and research community, and it is a popular

research topic. In fact, one active area of research is to make VLIW more scalable. One such

attempt at decentralizing both instruction and data memories results in an architecture that

looks very much like a TPA [30].

Partial TPAs We define a partial TPA to be an architecture that shares all the features

of a TPA, except that only a subset of its processor resources is distributed in a tile. Two

examples of partial TPAs that have been proposed in the research community are Trips [33]

and WaveScalar [40]. In Trips, a tile includes the ALUs and a portion of the registers to

store temporary state. However, the rest of the state, including the persistent portion of the

register file, remain centralized. WaveScalar distributes almost all its resources along with

its tile, including instruction memory, control flow, and register file. Only the load store

queues and data memory system remain centralized.

To summarize, many of the key concepts that make a TPA scalable can be found in current

industrial and research architectures. We anticipate that complexity and wire delay issues

will continue to drive architectures toward truly scalable designs, eventually causing future
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generations of the architectures above to evolve into full blown instances of TPAs with all

their defining features.

1.5 Changing application landscape

Given the technological constraints, TPA is a logical way to build processors. It brings

the exciting prospect of the ability to ride Moore's law so that every doubling of transistor

count translates directly into double the issue rate and double the functional units. But

architectures are only as useful as the applications find them to be. Therefore, it is important

to examine how a TPA benefits applications.

The traditional approach to evaluate the performance of a general purpose microprocessor

is to run SPEC benchmarks on it. SPEC consists of applications in two domains: desktop

integer and desktop scientific floating point. These domains correspond reasonably well to

what people used to use computers for 15 years ago. The application landscape today,

however, is far more varied. Application domains such as wireless, networking, graphics,

signal processing, or server are poorly represented the standard microprocessor evaluation

based on SPEC. A more updated and complete reflection of the range of microprocessor

applications is the Versabench benchmark suite [36]. In additional to desktop integer and

floating application domains, Versabench also includes applications for server, embedded

streaming, and embedded bit-level.

With a much larger pool of potential applications, there is increasing desire for an archi-

tecture to be versatile. Rather than being excellent in one or two applications domain but

mediocre at the remaining, an architecture is better off being good across a wide spectrum

of application domains.

One common trait in many applications in the newer application domains is that they

have a high demand for parallelism that do not require heroic compiler efforts to detect. For

example, in the server domain, there are many independent applications that can each be

run completely in parallel. Another common source of parallelism come from the emergence
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of applications that fall under the streaming model of computation. In streaming programs,

computation is applied to elements of potentially infinite input streams. The long input

stream gives rise to much potential for parallelism. Many audio/video encoding algorithms,

such as beamforming, GSM, or MPEG are streaming in nature.

Given the increasing demand for parallelism in many application domains, one drawback

that hurts the versatility of traditional microprocessor architectures is the lack of parallelism

in the hardware. While these architectures contain many centralized structures that are

pretty effective for boosting the performance of low-parallelism, desktop applications, the

centralized structures end up taking a lot of space - an opportunity cost for the space that

otherwise could have been used to add more functional units. This use of space helps low-

parallelism applications, but it hurts high-parallelism ones.

For TPAs, the hardware situation is the exact opposite: TPAs have lots of parallelism in

the hardware but no centralized structures. But how versatile is this type of architecture?

In the Versabench list of application domains, TPA is a clear winner for server applications.

One can compile and execute a different application on each tile. With little efforts, the

throughput of TPAs can scale linearly with Moore's law. But what about the single threaded

applications in the other domains? If these applications are mapped to one tile, they will

not speed up at all as TPA uses the increasing transistor budget to add more tiles. This

performance stagnation would give a TPA a very poor versatility.

1.6 Compiling ILP to TPAs

My thesis is on using the extra tiles to speed up single threaded applications. In particular,

it studies the compile-time problem of exploiting instruction level parallelism (ILP) across

the tiles of a TPA. I choose ILP because it is the most general form of parallelism. Other

types of parallelism such as loop level parallelism, vectorization, or pipeline parallelism can

often be converted to ILP, but the converse is not true. In addition, Amdahl's law states

that the performance improvement to be gained from using some faster mode of execution is
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limited by the fraction of the time the faster mode can be used. ILP is one of the few forms

of parallelism that can be detected and exploited for the entire length of the program.

This thesis examines the problem of how to build an ILP compiler on a TPAs. I examine

the issues related to the distribution of ALUs, registers, memory, control, and wires, and

I devise solutions for each one. I will describe the solutions both in the context of a uni-

fied framework, as well as clearly distinguish which part of the framework relates to which

resource. The intention is to make it easy for other TPAs or partial TPAs to identify the tech-

niques relevant to their architectures. Special attention is paid to the distribution of ALUs,

because they are distributed universally by all TPAs and because they are so important to

performance.

I have written an ILP compiler for the Raw architecture, a TPA consisting of simple RISC

cores as tiles, with a programmable SON whose routing decisions are performed at compile

time. It is the only TPA that has actually been built - a 16-tile prototype system has been

in operation since early 2003.

My thesis statement is the following: A compiler can profitably exploit instruction level

parallelism across the tiles of a TPA, with a scalable SON that has realistic latencies and

machine configurations of up to 64 tiles.

The thesis make the following contributions:

1. It describes the design and implementation of the first ILP compiler for TPAs.

2. It provides solutions for the compiler management of each distributed resource: ALUs,

registers, memories, control, wires.

3. Because instruction assignment is so important, it describes two assignment techniques.

One leverages research from task scheduling on MIMD machines. The other is a novel,

assignment/scheduling framework that is designed to be modular and easily adaptable

to architectures with special constraints.

4. It evaluates the compiler on a machine that has been implemented in silicon. The
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evaluation includes results for up to 16 tiles on the actual hardware, as well as results

for up to 64 tiles on a cycle-accurate simulator.

The remaining of the thesis is organized as follows. Chapter 2 overviews the problem of

compiling ILP to a TPA. Chapter 3 introduces the Raw architecture, overviews our com-

pilation problem and its solution. Chapters 4 and 5 describe Rawcc, the compiler that I

implemented to exploit ILP on Raw. Chapter 4 describes on Maps, the component of Rawcc

that manages memory, while Chapter 5 describes Spats, the "Spatial Assignment Temporal

Scheduling" component of Rawcc that manages all distributed resources except for memory.

Chapter 6 describes Convergent Scheduling, a flexible framework for performing assignment

and scheduling. Chapter 7 presents evaluation results. Chapter 8 presents related work.

Chapter 9 concludes.
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Chapter 2

Compiling ILP on TPAs

This chapter overviews the problem of compiling ILP on TPAs. It gives a flavor of the general

type of problems that needs to be solved to compile ILP for a general TPA. In Chapter 3, I

will consider a specific TPA and examine in depth all the relevant ILP issues.

To ground the discussion, this chapter first examines the analogous problem of compiling

ILP on a traditional, centralized ILP processor. It identifies how the compiler maps program

constructs to hardware resources, and it identifies the hardware mechanisms that are used

to exploit ILP. The chapter then moves on to TPA and uses this framework to overview the

issues with compiling ILP on it. It concludes by explaining a simple performance metric

for the scalar operand network that can be used to determine how suitable a TPA is for

exploiting ILP.

2.1 ILP on centralized ILP processors

Consider how the compiler maps a program onto the hardware of a centralized ILP proces-

sor such as a superscalar or a VLIW. Figure 2-la shows a sample C program, and Figure 2-1b

shows the same program translated into three operand form, which makes the operations

and the program state explicit. As shown in the figure, an input program can be divided

four parts: computation, control, scalars, and data structures. Computation consists of in-
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Figure 2-1. Anatomy of a sample input program. (a) is the original program. (b) is the same
program rewritten so that the operations and program state are made explicit. A program
consists of computation, control, scalars, and data structures. (c) shows the assembly output
of the program after it compiled onto a hypothetical two-way VLIW. Each column represents
an issue slot in the machine.

Program constructs Hardware resources
Computation Functional units

Control Hardware branches
Scalars Registers

Data structures Caches/Memory

Table 2.1. A mapping from program constructs to the hardware of a centralized ILP processor.

structions that specify actual work. It includes arithmetic operations as well as accesses to

memory. Control are instructions that redirects the flow of a program. Scalars are program

states that communicate values between instructions. A scalar may be explicit, such as the

program variable i, or it may be implicit as part of an expression, such as the result of the

expression a[i] which gets fed into the address of the store. Data structures are aggregate

objects such as arrays, unions, or structs.

The compiler problem of mapping a program to an architecture is a resource management

problem. Table 2.1 shows the correspondence between the program constructs and the

hardware they are mapped to. Computation gets mapped to functional units; control gets

mapped to the branch unit; scalars get mapped into the register file; and data structures are
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mapped into the memory system.

Let's take a look at what the compiler has to do for each of these program construct/

hardware resources pairs:

Computation The most important compiler task is the mapping of computation to func-

tional units. This task is the one that corresponds directly to exploiting ILP. On a centralized

ILP processor, the task consists of scheduling the instructions onto the functional units. On

the VLIW, the compile-time schedule is used directly at run-time. On a superscalar, how-

ever, the hardware does its own scheduling at run-time, but the compile-time scheduling is

still useful because it can find parallelism across a larger window of instructions.

Because of the presence of dynamic control flow, it is not possible for the compiler to

schedule the entire program as a single unit. Instead, all instruction scheduling algorithms

have the concept of a scheduling region that defines the scope of scheduling. The compiler

divides the control flow graph of a program into multiple scheduling regions. Each region is

then scheduled independently for ILP. Though cyclic regions of the control flow graph are

possible, the scope of this thesis is restricted to scheduling of acyclic regions.

Control Since there is only one program counter on a centralized machine, the management

of control is very simple. A program control transfer instruction is mapped to a branch unit

that manipulates the single program counter in the machine.

Scalars Scalars correspond to registers in hardware. 1 To manage this resource, the com-

piler performs register allocation, which decides at each point in the program what scalars

are best placed in a limited number of hardware registers. For scalars that are not perma-

nently in registers, the compiler also inserts code at the appropriate point to spill and reload

the scalars from memory.

Data structures Data structures are mapped to memory in hardware. The compiler tries

to optimize the placement of data for reuse and minimize cache misses.

'Note that only scalars whose pointers are not taken are candidates to be mapped to registers.
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To summarize, mapping a program on a centralized processor consists of three tasks:

ILP scheduling, register allocation, and cache optimizations. Figure 2-1c shows result of

compiling our sample program onto a hypothetical 2-way VLIW. The figure includes the

result of instruction scheduling and register allocation, but no cache optimization is shown.

2.2 ILP on TPAs

Having reviewed ILP compilation on a centralized architecture in the last section, this sec-

tion now considers the same problem on a TPA. In comparing the two problems, we will find

that the distribution of resources leads to the following new themes. First, the management

of many resources now includes an additional spatial aspect. In a centralized architecture,

the compiler addresses questions such as: "when should instruction i be executed?"; or

"should this scalar value be should allocated to a register?" On a TPA, the compiler not

only addresses the when or the whether, but it also has to address the where. Locality

becomes a critical resource management criteria. Second, the distribution of resources on a

TPA forces us to create new decentralized mechanisms to handle what was taken for granted

in centralized hardware. For example, TPA does not have a global branch unit in hardware

that a branch in the program can directly be mapped onto. For these new mechanisms,

different TPAs may make different decisions as to how much hardware they should provide

versus how much responsibility they should offload to the software. Third, communication

between the ALUs is exposed through the pipelined scalar operand network and may be

managed by the compiler. In contrast, in a centralized superscalar, this communication is

hidden deep in the architecture within the scoreboarding mechanism, bypass network, and

register file - there is no opportunity for compiler to manage this communication.

Here, I highlight two specific resources that are the focus of my research: functional units

and branches; the remaining resources will be discussed in the next chapter.

Functional units Recall that on a centralized ILP processor, instruction management is

a resource management problem in time. All functional units can be treated identically;
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there is no reason to prefer one functional unit over another. In contrast, on a TPA, the

management of functional units is a problem in both time and space. Spatially, it takes

time to communicate between functional units on different tiles, and it takes more time for a

functional unit to communicate with distant tiles than neighboring tiles. Thus, a haphazard

assignment of instructions to tiles is likely to incur much communication and lead to poor

performance. We call this collective instruction management problem in both space and

time the space-time scheduling of instructions. The spatial component is called instruction

assignment, while the temporal component is called instruction scheduling.

To perform good instruction assignment, the compiler needs to strike the proper balance

between two conflicting issues. On the one hand, a tile only has a limited number of func-

tional units. Exploiting parallelism beyond that requires instructions to be distributed across

tiles. On the other, dependent instructions that have been distributed across tiles will incur

the cost of communication. Given a parallel but communicating block of computation, the

compiler has to analyze whether the parallelism is worthwhile to exploit across tiles in spite

of the communication cost.

Branches On a centralized ILP processor, a program branch corresponds directly to a

branch in hardware, which serves the role of transitioning the resources of the entire processor

from exploiting ILP in one computation block to another computation block. On a TPA,

however, there is no equivalent hardware to performs this transition. Instead, the only

hardware branches that are available are branches local to a tile, each of which controls the

local program counter and implements control flow that operates independently of the other

tiles.

We call the general problem of supporting program branches in an architecture control

orchestration. While control orchestration on a centralized ILP processor is trivial, control

orchestration on a TPA requires mechanisms beyond just the independent branches on each

tile, either in the form of software mechanisms or extra hardware.
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2.3 Evaluating a TPA for ILP

In order to exploit ILP across tiles on a TPA, operands need to travel across the SON.

Thus, a fast SON is essential to the ability of the TPA to exploit ILP. This section presents a

five-tuple performance metric [?] that can be used (1) to evaluate the suitability of an SON

for ILP, and (2) to compare different SON implementations.

The five-tuple captures the end-to-end cost of transporting an operand through the SON,

starting immediately after the cycle the operand is produced, and ending at the cycle the

operand is consumed. This five-tuple of costs <SO, SL, NHL, RL, RO> consists of the

following:

Send occupancy

Send latency

Network hop latency

Receive latency

Receive occupancy

average number of cycles that an ALU wastes in transmitting

an operand to dependent instructions at other ALUs.

average number of cycles incurred by the message at the

send side of the network without consuming ALU cycles.

average transport network hop latency, in cycles,

between ALUs on adjacent tiles.

average number of cycles between when the final input to a

consuming instruction arrives and when that instruction is

issued.

average number of cycles that an ALU wastes by using a

remote value.

For reference, these five components typically add up to tens to hundreds of cycles on a

multiprocessor [21), which makes it unsuitable for ILP. In contrast, all five components in

conventional superscalar bypass networks add up to zero cycle. The architectural challenge

of a TPA is to explore the design space of efficient scalar operand networks that also scale.
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Chapter 3

Compiling ILP on Raw

This chapter overviews the compilation of ILP on Raw. It begins by introducing the Raw

microprocessor. The rest of the chapter overviews Rawcc, the ILP compiler for Raw. First, it

describes the compilation framework, which includes an execution model as well as descrip-

tions of how register and data are mapped onto tiles. Next, it overviews the list of resource

management problems faced Rawcc in this framework. Finally, it overviews the solution for

each problem.

3.1 Raw microprocessor

The Raw microprocessor is designed and built by the Raw architecture group with two

primary research objectives. The first objective is to come up with a scalable microproces-

sor architecture that properly addresses wire delay issues as well as other VLSI scalability

issues. This objective is accomplished by obeying the set of design principles articulated in

Chapter 1, which collectively define a new class of architectures known as tiled processor

architectures. The second objective is to research opportunities to implement architectural

mechanisms in software. In addition to ILP orchestration, our research group has explored

primarily software solutions to data caching, instruction caching, as well as memory depen-

dence speculation.
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Figure 3-1. A Raw microprocessor is a fully distributed TPA. It consists of a mesh of tiles. Each
tile has its on instruction memory, program counter, compute pipeline, data cache, and switch.
The data caches are backed by off-chip DRAMs. The switch is programmable and contains its
program counter and own instruction memory. It is register mapped and integrated directly
into the processor pipeline.

The architecture Figure 3-1 shows a diagram of the Raw microprocessor [42] [41]. Raw is

a tiled processor architecture. Each Raw tile has its own processing element, cache memory,

and network switch. The processor element is a full, eight-stage in-order single-issue MIPS-

derived pipeline, which includes its own instruction cache, fetch unit, program counter,

register file, local bypass path, and data cache. The cache memories are backed by off-chip

DRAMs.

A point-to-point SON is directly integrated into the processor pipeline to provide fast

transport of scalar operands between tiles. It is register mapped - an instruction sends or

receives a value on the SON simply by reading or writing a reserved register. The SON is

programmable and directly under compiler control - this means that all routing decisions

are made statically at compile time. Latency on the SON is very fast: three cycles between

neighboring tiles and one extra cycle for each extra unit of manhattan distance. The 5-tuple

performance metric for this SON is <0, 0,1 1, 1, 0>.

The SON has blocking semantics that provides near-neighbor flow control - a processor or

switch stalls if it is executing an instruction that attempts to access an empty input port or

a full output port. This specification ensures correctness in the presence of timing variations
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Figure 3-2. Photos of the Raw chip and Raw prototype motherboard respectively.

introduced by dynamic events such as cache misses and I/O operations, and it obviates

the lock-step synchronization of program counters required by many statically scheduled

machines.

In addition, Raw also provides two worm-hole dynamically-routed networks called the

memory dynamic network (MDN) and the general direct network (GDN). Like the static

SON, they are directly integrated into the processor pipeline to provide easy access by

functional units. The MDN is primarily used for data cache transactions, while the GDN

supports message passing programming model as found in traditional multiprocessors. For

this research, the GDN is used as part of the compiler managed memory system.

Raw chip We have built a prototype chip and motherboard of the Raw architecture. The

Raw chip is a 16-tile prototype implemented in IBM's 180 nm 1.8V 6-layer CMOS 7SF SA-

27E copper process. Although the Raw array is only 16 mm x 16 mm, we used an 18.2 mm

x 18.2 mm die to allow us to use the high pin-count package. The 1657 pin ceramic column

grid array package (CCGA) provides us with 1080 high speed transceiver logic (HSTL)

I/O pins. Our measurements indicate that the chip core averages 18.2 watts at 425MHz.

We quiesce unused functional units and memories and tri-state unused data I/O pins. We
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targeted a 225 MHz worst-case frequency in our design, which is competitive with other

180 nm lithography ASIC processors, like VIRAM, Imagine, and Tensilica's Xtensa series.

The nominal running frequency is typically higher - the Raw chip core, running at room

temperature, reaches 425MHz at 1.8V, and 500 MHz at 2.2V. This compares favorably to

IBM-implemented microprocessors in the same process; the PowerPC 405GP runs at 266-400

MHz, while the follow-on PowerPC 440GP reaches 400-500 MHz.

With our collaborators at ISI-East, we have designed a prototype motherboard (shown

in Figure 3-2) around the Raw chip that we use to explore a number of applications with

extreme computation and I/O requirements. A larger system, consisting of four Raw chips,

connected to form a virtual 64 tile Raw processor, has also being fabricated in conjunction

with ISI-East and is being tested.

ILP features To exploit ILP on Raw, the compiler maps the existing parallelism of com-

putation across the tiles and orchestrates any necessary communication between the compu-

tation using the on-chip networks. The following architectural features are key to exploiting

ILP on Raw.

Effective scalar operand communication One of the more interesting architectural in-

novations that Raw demonstrated for ILP on TPA is its scalar operand network. Raw's

combined hardware-software solution is rather elegant and quite unique. A scalar

operand network must have the following three non-trivial functionalities. First, it

has to efficiently match the operands coming off the network with the corresponding

operations. Second, it has to be free of deadlocks. Third, it has to be able to tolerate

dynamic timing variations due to cache misses. The Raw SON is able to implement

these functionalities using two simple ideas. At compile-time, the software statically

orders the processing of messages at each switch. Then at run-time, this order is en-

forced by the near neighbor flow control available in the network. The Raw SON also

neatly integrates the receive mechanisms into the processor pipeline. This integration

gives two benefits. First, it provides a fast path where an operand can come directly
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off the network and be consumed directly by the operation that needs it. Second, for

incoming operands that are not immediately consumed, the Raw SON can use the

register file to store them. This obviates the need for extra hardware to store these

operands.

In addition, the Raw SON has several features that makes it very efficient at transmit-

ting scalar operands. It allows single-word register-level transfer without the overhead

of composing and routing a message header, and without the quadratic complexity

of superscalar scoreboarding. Its use of compile-time routing provides the compiler

with the mechanism for the precise orchestration of communication. This means the

compiler can use its full knowledge of the network status to minimize congestion and

route data around hot spots.

Control decoupling Control decoupling refers to the ability of each tile to follow a flow

of control that is independent of the other tiles. The feature has proven to be a key

mechanism that serves many useful purposes. First, it significantly enhances the po-

tential amount of parallelism a machine can exploit [23] by allowing the machine to

follow multiple flows of control. Second, it enables asynchronous global branching as

described in Section 5.3, a means of implementing global branching on Raw's dis-

tributed interconnect. Third it enables control localization, a technique introduced in

Section 5.3 to allow ILP to be scheduled across branches. Finally, it gives Raw better

tolerance of long latency events compared to lock-step execution machines such as a

VLIW, as shown in Section 7.

A compiler interface for locality management Consistent with one of the main moti-

vations for TPAs, Raw fully exposes its hardware to the compiler by exporting a simple

cost model for communication and computation. The compiler, in turn, is responsible

for the assignment of instructions, registers, and data to Raw tiles. These assignments

are better performed at compile time because they critically affect both the parallelism
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Figure 3-3. Phases of (a) an ILP compiler for a

and (c) Spats.

and locality of the application, and the

be afforded at run-time.

traditional centralized architecture, (b) Rawcc,

computational complexity is greater than can

Simple, scalable means of expanding the register space Each Raw tile contains a por-

tion of the register space. Because the register set is distributed along with the func-

tional units and memory ports, the number of registers and register ports scales linearly

with total machine size. Each tile's individual register set, however, has only a rela-

tively small number of registers and register ports, so the complexity of the register

file will not become an impediment to increasing the clock rate. Additionally, because

all physical registers are architecturally visible, the compiler can use all of them to

minimize the number of register spills.

3.2 Compilation Framework

Rawcc is the ILP compiler that maps the ILP of sequential C or Fortran programs onto

multiple Raw tiles. Figure 3-3 depicts the structure of Rawcc. For comparison, it also shows
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the structure of an ILP compiler for a traditional, centralized architecture.

To manage the compiler complexity, Rawcc's ILP-related functionality is divided into two

main components: Maps ans Spats. Maps is the component that manages the distribution

of program data such as arrays and structures across the tiles. Spats, an acronym for Spatial

Assignment and Temporal Scheduling, is the component that manages all other aspects of

mapping a sequential program onto Raw.

The underlying hardware of Raw is a decentralized set of resources scattered across the

chip, connected via a scalar operand network. There is no single way to map a sequential

program onto this substrate. Even if the target is narrowed down to exploiting ILP, the

Raw hardware still affords a compiler writer much flexibility and opportunities. This section

describes the specific framework that Rawcc uses to map a sequential program onto Raw.

The framework answers two questions:

1. How do the independent instruction streams on the individual processors and switches

coordinate to exploit the ILP of the input program?

2. How are the program entities (computation, branches, and data) distributed across the

tiles?

The compilation framework consists of three parts: an execution model, a scalar frame-

work, and a data object (arrays and structures) framework.

3.2.1 Execution Model

Figure 3-4 depicts the execution model. The basic unit of compiler orchestration and

execution is an extended basic block, a connected subgraph of the control flow graph with

a single entry point, and whose internal edges are all forward edges. At compile time,

Rawcc partitions the input program into a series of extended basic blocks. Each extended

basic block is then orchestrated separately by the compiler. For each extended basic block,

the compiler emits a collection of instruction sequences, one for the processor and one for
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Figure 3-4. Raw execution model. At compile time, Rawcc divides the input program into
extended basic blocks (EO, El, E2, E3). For each block, it orchestrates the parallelism within
it, producing corresponding code sequence that executes on each processor (PO, P1) and switch
(SO, Si). For each processor and switch, the code sequences for each extended basic block
are stitched back together, with control flow between blocks mirroring that of the original
program.

At run-time, Raw collectively executes one extended basic block at a time, but in a loosely
coordinated fashion. While Raw is performing the computation in an extended basic block in
parallel, processors communicate with each other through the SON.

the switch of each tile, that encodes the computation and the necessary communication

to execute that block. Each of these code sequences is assigned to a specific processor or

switch at compile time. We call this collection of instruction sequences corresponding to one

extended basic block an execution unit. For a given processor or switch, its code image for

the entire program then consists of the collection of instruction sequences that have been

assigned to it, with one such sequence from each execution unit.

When the Raw processor executes a program, all the tile resources - the processors, the

switches, the registers, and the memories - are pooled to execute one execution unit at a time.

In this execution model, there are two types of control flows, those internal to an execution
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unit and those between execution units. Within a single execution unit, the processor on a

tile may take branches independently of the other tiles to exploit parallelism that originates

from different basic blocks, similar to how predicated execution exploits such parallelism

in other architectures. After completing the work in one execution unit, tiles proceed to

the next execution unit in a loosely coordinated branching mechanism called asynchronous

global branching. Somewhere within the execution unit, the branch condition for the global

branching is generated on one tile and broadcasted to the processors and switches of all

the other tiles through the static network. When a processor or switch finishes its work on

that execution unit and has received the branch condition, it can branch to the local target

corresponding to the next execution unit without any additional synchronization. Due to

this lack of explicit synchronization, it is possible for some tiles to begin executing the next

execution unit before all tiles have completed the previous execution unit.

3.2.2 Scalars

Scalars are program variables with no aliasing that can be register allocated by the com-

piler. In the compiler back end, they correspond to virtual registers. Rawcc distinguishes

between two types of scalars. Transient scalars are those that are only used within a sin-

gle extended basic block. Persistent scalars are those that are live across more than one

extended basic blocks.

Scalars are distributed as follows. Transient scalars are implicitly distributed as Rawcc

distributes the instructions that define and use them. A transient scalar is created and

resides on the tile on which the defining instruction resides, and it is directly forwarded to

any tiles with instructions that use the scalar. A persistent scalar, however, requires special

compiler attention. Between extended basic blocks, the compiler needs to know the which

tile to look for a persistent scalar. This issue is resolved by specifying a home tile for each

persistent scalar. In each extended basic block where a persistent scalar is defined, Rawcc

forwards the value of its last definition to corresponding home tile. In each extended basic
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block where a persistent scalar is used, Rawcc forwards the value stored at the home tile to

any tiles that use it.

Once scalar values have been assigned to tiles, Spats can decide which scalar values to

allocate to registers by applying a traditional register allocator to the code for each individual

tile.

Note that because Spats performs renaming early on, many persistent scalars in the orig-

inal program are each converted to multiple transient scalars. This conversion limits the

adverse effects that home tiles of persistent scalars may have on locality.

3.2.3 Data objects

A data object refers to either an array, a structure, or an aliased program variable that

cannot be register allocated. Maps is responsible for handling the distribution of these

objects onto Raw's memory system hardware, which consists of a data cache on each tile

backed by off-chip DRAMs.

Maps manages the Raw caches by implementing the following caching policy. The address

space is statically partitioned across the caches, so that each address can only be cached on

one tile: there is no data sharing between caches. By partitioning data this way, Maps avoids

the complications and overheads associated with maintaining coherent caches. Instead, any

data that is needed on multiple tiles is stored in one cache, communicated through one of

the on-chip networks, and shared at the register level. The low latency of the networks,

particularly that of the SON, makes this scheme practical.

Once the data is in a cache, Maps provides two ways for remote tiles to access the data, one

for static references and one for dynamic references. A reference is called a static reference

if every invocation of it can be determined at compile-time to refer to data on a specific,

known tile. We call this property the static residence property. Such a reference is handled

by placing it on the corresponding tile at compile time, so that every run-time instance of

the memory reference occurs on that tile. A non-static or dynamic reference is a reference
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that cannot be determined to refer to data on a known tile at compile-time. These references

are handled by disambiguating the address at run-time in software, using a combination of

the SON and the GDN to handle any necessary communication. To ensure proper ordering

of dynamic memory references, Maps implements a mechanism called turnstiles, which can

be likened to logically centralized but physically distributed load-store queues.

Maps does not guarantee that a single object ends up on a single tile. In practice, as I will

explain in Section 4, Maps interleaves many arrays across tiles so that their elements can be

accessed in parallel.

3.3 Problem Summary

Given the framework for compiling ILP on Raw in Section 3.2, what set of problems

does the compiler need to address? In general, all architectural compilers can be considered

compiler that specializes in resource management. Compared to an ILP compiler on a tra-

ditional centralized architecture, the resource management problem facing an ILP compiler

for a TPA like Raw is more complex in two ways. First, there are many more resources to

manage. For a superscalar or a VLIW, the compiler only needs to manage two resources:

instructions (functional units) and registers. For Raw, the compiler needs to manage instruc-

tions, registers, as well as three additional resources: memories, branches, and wires (e.g.,

the SON). Second, the tiled organization of the resources gives resource management an

additional spatial aspect. For the register resource, this means register allocation consists of

both a global component (assigning a value to a tile) as well as a local component (assigning

the value to a specific register). For functional units, it means managing instructions is both

a tile assignment and a scheduling problem.

Here is the list of resource management issues, organized by resources. Each issue is

italicized for emphasis.

Instructions Instructions need to be assigned to tiles and scheduled.
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Resource Tasks
Instructions Tile Assignment
Caches Tile Assignment Scheduling
Registers Tile Assignment Register Allocation
Branches (Predicate) Selection Tile Assignment Scheduling
Branches (Global) Selection Scheduling
Wires Route Assignment Scheduling

Table 3.1. A summary of resource management tasks faced by Rawcc.

Caches Data objects need to be distributed across the caches on the tiles.

Registers Scalars need to be assigned to tiles and then register allocated on the local tiles.

Specifically, tile assignment applies to persistent scalars, which needs to be assigned to

a home tile.

Branches Program branches need to be converted to architectural branches. This process

takes multiple steps.

First, for each program branch the compiler needs to select the type of branch it has to

become. A program branch may either become a predicate branch or a global branch.

Predicate branch then needs to be assigned to tiles and scheduled. A predicate branch

may become multiple architecture branches. A global branch is by definition assigned

to an architectural branch on each tile, so it only needs to be scheduled.

Wires Communication of remote operands need to be routed and scheduled on the wires

(e.g., the SON).

Table 3.1 summarizes the list of resource management problems.

3.4 Solution Overview

This section overviews the techniques Rawcc employ to manage each of the distributed

resources.
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3.4.1 Caches

Maps attempts to distribute objects such that it can identify as many static references as

possible. Static references are attractive for the following reasons. First, because Maps uses a

general dynamic network to implement dynamic references, the software overhead of dynamic

accesses is high.1 Second, static references can proceed without any dynamic disambiguation

and synchronization overhead. Third, static references can better take advantage of the

aggregate cache bandwidth across multiple tiles. Finally, static accesses give the compiler

the opportunity to place computation close to the data that it accesses.

Maps creates and identifies static references through intelligent data mapping and code

transformation. It employs different techniques for arrays and non-array objects. Arrays

are distributed element-wise across the tiles. For array references that are affine functions

of loop indices, Maps employs two techniques that use loop transformations to satisfy the

static residence property: modulo unrolling and congruence transformations. For references

to non-array objects, Maps employs equivalence class unification (ECU). In ECU, objects

that may be aliased through pointers are mapped onto the same tile. This approach trades off

memory parallelism for the ability to identify static accesses. In practice, Maps is successful

at making almost all memory references static using these two techniques.

3.4.2 Instructions

Of the resources managed by Spats, the one most critical to performance is the manage-

ment of instructions. Instruction management consists of two tasks: assigning instructions

to tiles and scheduling. During instruction assignment, Spats has to account for constraints

imposed be preplaced instructions, which are static memory references that must be mapped

to specific tiles.

Spats performs assignment in three steps: clustering, merging, and placement. Clustering

groups together instructions into clusters, such that instructions within a cluster have no

'This software overhead is not fundamental and can largely be eliminated with some hardware support.
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parallelism that is profitable to exploit given the cost of communication. Merging combines

clusters together so that the number of clusters reduces to the number of tiles. Placement

performs a bijective mapping from the merged clusters to the processing units, taking into

account the topology of the interconnect. Scheduling of instructions is then performed

simultaneously across all the tiles with a list scheduler.

3.4.3 Registers

Like instruction assignment, Spats divides the task of scalar home assignment into scalar

partitioning and scalar placement. First, persistent scalars that tend to be accessed together

are partitioned into sets. Each of these sets is then mapped onto a different tile. Spats then

attempts to map scalars onto the same tile as the instructions that access them.

After scalar values have been assigned to tiles, Spats decides which scalar values to allocate

to registers by applying a traditional register allocator to the code for each individual tile.

3.4.4 Branches

Spats handles branches as follows:

* For branch selection, Spats selects as many program branches to be predicated branches

as possible. All forward branches in the control flow graph can become predicated

branches.

" A predicated branch may have many instructions that are control dependent on it.

Tile assignment of that branch is guided by the tile assignment of those instructions.

Spats allows those instructions the freedom to be assigned to whichever tiles it deems

best. One or more copies of the predicate branch are then made on each tile where the

instructions have been mapped. During scheduling, Spats tries to amortize the cost of

a predicate branch over as many instructions as possible.

* Spats translates a global branch into a broadcast of the branch condition followed by
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Resource Management Task
Front End -

Maps Cache Tile Assignment

Code Generation
Dataflow Optimizations

Renaming
Region Identification Branch Selection

S Instruction Partition Instruction Tile Assignment
Predicate Branch Tile Assignment

P Scalar Partition Scalar Tile Assignment
Scalar & Instruction Scalar Tile Assignment

A Assignment Instruction Tile Assignment
Predicate Branch Tile Assignment

T Route Assignment Wire Route Assignment
Instruction Scheduling

S Scheduling Branch Scheduling
Wire Scheduling

Register Allocation Register Allocation

Table 3.2. Correspondence between resource management task and compiler phases.

a local branch on each tile. After translation, individual pieces of the global branch is

scheduled just like any other instructions and communication, with no special treat-

ment.

3.4.5 Wires

A remote operand is routed on the SON by choosing the path of switches along which the

operand will move. Since congestion has been observed to be low, Spat simply selects the

switches in dimension ordered. To ensure that the computation is in sync with communica-

tion, the scheduling of routes on the switch is performed by the list scheduler at the same

time as the scheduling of computation instructions.

3.4.6 Summary by Phases

Table 3.2 lists the correspondence between resource management task and compiler phases

given in Figure 3-3. Note that some phases handle multiple tasks, while some tasks require

the coordinated efforts of multiple phases.
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Chapter 4

Compiler managed distributed

memory

This section gives a summary of Maps, the part of Rawcc that manages the cache memory

resources on Raw. A more extensive description of this system can be found in [6].

4.1 Overview

4.1.1 Motivation

Like all other resources on Raw, the on-chip caches are distributed on chip. Much of the

motivation for distributing any resource on Raw applies to cache memories as well. Compared

to a centralized cache found in a conventional architecture, Raw's distributed caches offer

the following advantages. First, distribution makes it easy to scale the physical resources

to match demand of the increasing number of functional units. Such resources include the

number of cache ports as well as the cache itself. Second, the Raw system provides a means

for controlling impact of on-chip wire delay on performance. On a traditional memory

system, the average distance between a processing element and the SRAM cells containing

the data it needs will grow in proportion to the dimensions of the cache. This increasing

distance translates to increasing wire delay incurred. On Raw, however, the cache is spatially
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loadrequest(x) y=wait__forjload()

loadhandler oad-replhandler)

Figure 4-1. Anatomy of a dynamic load. A dynamic load is implemented with a request and a

reply dynamic message. Note that the request for a load needs not be on the same tile as the

use of the load.

distributed so that each tile has both a processing element and a portion of the on-chip cache.

As more tiles (and thus more caches) are added to the architecture, an intelligent compiler

can still map computation and the data it needs onto the same tile, thus keeping constant

the communication cost incurred from wire delay.

4.1.2 Memory mechanisms

The Raw hardware provides three ways of accessing the data memory on chip: local access,

remote static access, and dynamic access, in increasing order of cost. A memory reference can

be a local access or a remote static access if it satisfies the static residence property - that

is, (a) every dynamic instance of the reference must refer to memory on the same tile, and

(b) the tile has to be known at compile time. The access is local if the Raw compiler places

the subsequent use of the data on the same tile as its memory location; otherwise, it is a

remote static access. A remote static access communicates through the static scalar operand

network (SON) and works as follows. The processor on the tile with the data performs the

load, and it places the load value onto the output port of its static switch. Then, the pre-

compiled instruction streams of the static network route the load value through the network

to the processor needing the data. Finally, the destination processor accesses its static input

port to get the value.

If a memory reference fails to satisfy the static residence property, it is implemented as a
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Distance | 0| 1| 21 3| 4|
Dynamic store 17 20 21 22 23
Static store 1 4 5 6 7
Dynamic load [28 34 36 38 40
Static load 3 6 7 8 9

Table 4.1. Cost of memory operations.

request net. memory et use

dynam. store

static store

dynam. load

static load

cycles I | I I
0 10 20 30 40

Figure 4-2. Breakdown of the cost of memory operations between tiles two units apart. High-

lighted portions represent processor occupancy, while unlifted portions represents network

latency.

dynamic access. A load access, for example, turns into a split-phase transaction requiring

two dynamic messages: a load-request message followed by a load-reply message. Figure 4-

1 shows the components of a dynamic load. The requesting tile extracts the resident tile

and the local address from the global address of the dynamic load. It sends a load-request

message containing the local address to the resident tile. When a resident tile receives such a

message, it is interrupted, performs the load of the requested address, and sends a load-reply

with the requested data. The tile needing the data eventually receives and processes the

load-reply through an interrupt, which stores the received value in a predetermined register

and sets a flag. When the resident tile needs the value, it checks the flag and fetches the

value when the flag is set. Note that the request for a load needs not be on the same tile as

the use of the load.

Table 4.1 lists the end-to-end costs of memory operations as a function of the tile distance.
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The costs include both the processing costs and the network latencies. Figure 4-2 breaks

down these costs for a tile distance of two. The measurements show that a dynamic memory

operation is significantly more expensive than a corresponding static memory operation. Part

of the overhead comes from the protocol overhead of using a general dynamic network that is

not customized for this specific task, but much of the overhead is fundamental to the nature

of a dynamic access. A dynamic load requires sending a load request to the proper memory

tile, while a static load can optimize away such a request because the memory tile is known

at compile time. The need for flow control and message atomicity to avoid deadlocks further

contributes to the cost of dynamic messages. Moreover, the inherent unpredictability in the

arrival order and timing of messages requires expensive reception mechanisms such as polling

or interrupts. In the SON, its blocking semantics combine with the compile-time ordering

and scheduling of static messages to obviate the need for expensive reception mechanisms.

Finally, only static accesses provides the compiler with the ability to manage the locality

of a memory reference. When the tile location of a memory access is known, the compiler

can map the computation that needs the access onto the same tile. This knowledge is only

available for a static access but not a dynamic access.

4.1.3 Objectives

The goal of Maps is to provide efficient use of hardware memory mechanisms while ensuring

correct execution. This goal hinges on three issues, identification of static accesses, support

for memory parallelism, and efficient enforcement of memory dependences. The primary

goal of Maps is to identify static accesses. As shown in Table 4.1, static accesses are much

faster than dynamic accesses. In addition, Maps attempts to provide memory parallelism by

distributing data across tiles. Not only does it distribute different objects to different tiles,

it also divides up aggregate objects such as arrays and structs and distributes them across

the tiles. This distribution is important as it enables parallel accesses to different parts of

the aggregate objects.
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Maps actively converts memory references into static references in a process called static

promotion. Static promotion employs two techniques: equivalence class unification, which

promotes references through intelligent placement of data objects guided by traditional

pointer analysis; and modulo unrolling/congruence transformations, which promotes ref-

erences through loop transformations and intelligent placement of arrays. Maps provide

memory parallelism by mapping data to different tiles whenever doing so does not interfere

with static promotion.

For correctness, Maps must ensure that the memory accesses occurring on different tiles

obey the dependences implied by the original serial program. Three types of memory depen-

dences need to be considered: those between static accesses, those between dynamic accesses,

and those between a static and a dynamic access. Dependences between static accesses are

easily enforced. References mapped to different tiles are necessarily non-conflicting, so the

compiler only needs to avoid reordering potentially dependent memory accesses on each tile.

The real difficulty comes from dependences involving dynamic accesses, because accesses

made by different tiles may potentially be aliased and require serialization. Maps uses a

combination of explicit synchronization and a technique called software serial ordering to

enforce these dependences. By addressing these central issues, Maps enables fast accesses

in the common case, while allowing efficient and parallel accesses for both the static and

dynamic mechanisms.

4.2 Static promotion

Static promotion is the act of making a reference satisfy the static residence property.

Without analysis, Maps is faced with two unsatisfactory choices: map all the data to a single

tile, which makes all memory accesses trivially static at a cost of no memory parallelism;

or distribute all data, which enables memory parallelism but requires expensive dynamic

accesses. This section describes three compiler techniques for static promotion that preserve

some memory parallelism. Section 4.2.1 describes equivalence class unification, a general
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Istruct foo {I
int x,y,z;

void f(int cond) {
struct foo f; /assign: 1,2,3
int ctr; /assign: 4

I struct foo *pf, *p;
int *q, *r;

pf = (struct foo *)
malloc(sizeof(struct foo));

I/assign: 5,6,7
fy = 2; // ref- 2
p = cond ? &f: pf;
p->x //ref 1,5
q = cond ? &f.y: & f.z;

r = cond ? &f.x &ctr;
*r = 4; /ref: 1,4

(a)

- ------- -------

2:y

3:z p->x=

4:ctr *q= 3
4 

~ctr

5:x
*r4

n 6:y

7:z equivalence classes

I [1,4,5},[2,3},[6},17]
malloc

(b)

struct foo I struct foo {
int x,padding; int y,z;

void f(int cond) { void f(int cond) {
struct foo f; struct foo f;
int ctr; int *q;
struct foo *pf, *p; // padding for
int *r; I/ stack alignment

pf = (struct foo *) f.y = 2;
global-malloc(8); q = cond ? &f.y: &f.z;

p = cond ? &f : pf; *q = 3;
p->x = 1;}
r = cond ? &f.x : &ctr;
*r = 4;

//equivalence classes: I/equivalence classes:
//11,4,51 //12,3},16},17}

Tile 0 Tile 1

(C)

Figure 4-3. A sample program processed through pointer analysis and ECU. (a) shows the
program annotated with the information provided by pointer analysis. The arrows represent
memory dependences derived from pointer analysis. (b) shows its bipartite graph and its
equivalence classes. (c) shows the program after it is distributed through ECU and space-time
scheduling.

promotion technique based on the use of pointer analysis to guide the placement of data.

Section 4.2.2 describes modulo unrolling, a code transformation technique applicable to most

array references in the loops of scientific applications. Section 4.2.3 describes congruence

transformations, which increases the applicability of modulo unrolling.

4.2.1 Equivalence class unification

Equivalence class unification (ECU) is a static promotion technique that uses pointer

analysis to help guide the placement of data. This section first describes what information

pointer analysis provides. Then it describes how ECU uses that information.

Figure 4-3(a) shows pointer analysis applied to a sample program. For each memory

access, pointer analysis identifies its points to set, which is the list of abstract objects it

may point to during the dynamic execution of the program. The point to set is conservative

- some objects on the list may not be pointed to, but no objects not on the list will be

pointed to. An abstract object is either a static program object, or it is a group of dynamic
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objects created by the same memory allocation call in the static program. An entire array is

considered a single object, but each field in a struct is considered a separate object. In the

figure, each abstract object is identified by a location set number. To avoid clutter, location

set numbers have only been listed for non-pointer objects; in actuality pointers are assigned

location set numbers as well.

Maps defines the concept of alias equivalence classes from the program's points to sets.

Alias equivalence classes form the finest partition of the point to sets such that each memory

access refers to location set numbers in only one class. Maps derives the equivalence classes

as follows. First, it constructs a bipartite graph. A node is constructed for each abstract

object and each memory reference. Edges are constructed from each memory reference to

the abstract objects corresponding to the reference's location set list. Then, Maps finds the

connected components of this graph. The location set numbers in each connected component

then form a single alias equivalence class. Note that references in the same alias class can

potentially alias to the same object, while references in different classes can never refer to

the same object. Figure 4-3(b) shows the bipartite graph and the equivalence classes in oir

sample program.

ECU can promote all memory references in a single alias equivalence class by placing

all objects corresponding to that class on the same tile. By mapping objects for every

alias equivalence class in such a manner, all memory references can be statically promoted.

By mapping different alias equivalence classes to different tiles, memory parallelism can be

attained.

Elements in aggregate objects such as arrays and structs are often accessed close together in

the same program. Distribution and static promotion of arrays are addressed in Section 4.2.2.

For structs, pointer analysis differentiates between accesses to different fields, so that fields

of a struct can be in different alias equivalence classes and distributed across the tiles.

Figure 4-3(c) shows how equivalence class unification is applied to our sample program.
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Modulo
for i = Oto99do Unrolling for i = Oto 99step4do

A[ i ] .. A[ i + 0] = ....

endfor OA[ i+ 1]
A[ i +2]=..

------~~----~-------- - --- A 3

A[0] A[1] A[2] A[3] endfor

A[4] A[5] A[6] A[7] -- - - - - -- - - ------ - - -- - - -

A[8] A[9] A[10] A[11]

Tile 0 Tile 1 Tile 2 Tile 3

(a) (b) (c)

Figure 4-4. Example of modulo unrolling. (a) shows the original code; (b) shows the distri-
bution of array A on a 4-tile Raw; (c) shows the code after unrolling. After unrolling, each
access refers to memory on only one tile.

4.2.2 Modulo unrolling

The major limitation of equivalence class unification is that an array is treated as a

single object belonging to a single equivalence class. Mapping an entire array to a single

tile sequentializes accesses to that array and destroys the parallelism found in many loops.

Therefore, Maps provides an alternate strategy to handle the static promotion of array

accesses. In this approach, arrays are laid out in memory through low-order interleaving,

which means that consecutive elements of an array are interleaved in a round-robin manner

across the caches on the Raw tiles. Maps then applies transformations that statically promote

array accesses in loops.

Modulo unrolling is a framework for determining the unroll factor needed to statically pro-

mote all array references inside a loop. This technique is illustrated in Figure 4-4. Consider

the source code in Figure 4-4(a). Using low-order interleaving, the data layout for array

A on a four-tile Raw is shown in Figure 4-4(b). The A[i] access in Figure 4-4(a) refers to

memories on all four tiles. Thus it is not a static access.

Intelligent unrolling, however, can enable static promotion. Figure 4-4(c) shows the result

of unrolling the code in Figure 4-4(a) by a factor of four. Each access in the resultant loop
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then refers to elements on only one tile - the act of unrolling has statically promoted these

accesses.

It can be shown that this technique is always applicable for loops with array accesses

having indices which are affine functions of enclosing loop induction variables. These accesses

are often found in dense matrix applications and multimedia applications. For a detailed

explanation and the symbolic derivation of the unrolling factor, see [7].

4.2.3 Congruence transformations

Maps also employs congruence transformations to statically promote array accesses. The

congruence of an access is characterized by a stride a and an offset b [24]. An access is said

to have stride a and offset b if all the addresses it targets has the form an + b, where n > 0.

For arrays that have been low-order interleaved, the congruence of an access can be used

to determine whether it is a static access. An access to a low-order interleaved array with

element size e is static if and only if its stride a and offset b satisfy the following:

a mod (N * e) =0 (41)

b mod e = 0 (4.2)

For example, given an array of four-byte elements distributed across 4 tiles, an access to it

with congruence 16n + b is static and resides on tile b/4 mod 4, provided that b is a multiple

of 4.

Congruence transformations are code transformations that increase the stride of accesses.

Maps employs a suite of such transformations developed by Larsen [24]. The transformations

aim to increase the run-time count of the number of accesses whose strides satisfy equation

3.1.

The primary transformation deals with loops with array accesses whose initial congruence

relations are unknown, as is possible with pointers into arrays. Modulo unrolling requires
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that the initial congruence relations of accesses be known. For this type of loops, a pre-

loop is inserted before the main loop. Each iteration of the pre-loop executes one iteration

of the original loop, and it keeps executing until each array access in the loop satisfies

a predetermined stride and offset. This way, when execution enters the main loop, the

congruence relations of the accesses become known, and modulo unrolling can be applied.

The exit condition is selected by the compiler using profiling data. When a loop has

multiple array accesses, a careful selection of the exit condition is needed to ensure that the

exit condition is satisfiable.

4.3 Dynamic accesses

This section describes Maps's support for dynamic accesses. First, it explains the lim-

itations of static promotion and motivates the need for a dynamic fall-back mechanism.

Then, it describes how Maps enforce dependences involving dynamic accesses, using static

synchronization and software serial ordering.

4.3.1 Uses for dynamic references

A compiler can statically promote all accesses through equivalence-class unification alone,

and modulo unrolling/congruence transformations help improve memory parallelism during

promotion. There are several reasons, however, why it may be undesirable to promote all

references. First, modulo unrolling sometimes requires unrolling of more than one dimension

of multi-dimensional loops. This unrolling can lead to excessive code expansion. To reduce

the unrolling requirement, some accesses in these loops can be made dynamic. In addition,

static promotion may sometimes be performed at the expense of memory parallelism. For

example, indirect array accesses of the form A[B[i]] cannot be promoted unless the array A[]

is placed entirely on a single tile. This placement, however, yields no memory parallelism for

A[]. Instead, Maps can choose to forgo static promotion and distribute the array. Indirect

accesses to these arrays would be implemented dynamically, which yields better parallelism
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at the cost of higher access latency. Moreover, dynamic accesses can improve performance

by not destroying static memory parallelism in critical parts of the program. Without it,

arrays with mostly affine accesses but a few irregular accesses would have to be mapped to

one tile, thus losing all potential memory parallelism to the arrays. Finally, dynamic accesses

can increase the resolution of equivalence class unification. A few isolated "bad references"

may cause pointer analysis to yield very few equivalence classes. By selectively removing

these references from promotion consideration, more equivalence classes can be discovered,

enabling better data distribution and improving memory parallelism. The misbehaving

references can then be implemented as dynamic accesses.

For these reasons, it is important to have a good fall-back mechanism for dynamic refer-

ences. More importantly, such mechanism must integrate well with the static mechanism.

The next section explains how these goals are accommodated.

For a given memory access, the choice of whether to use a static or a dynamic access

is not always obvious. Because of the significantly lower overhead of static accesses, the

current Maps system makes most accesses static by default, with one exception. Arrays

with any affine accesses are always distributed, and two types of accesses to those arrays

are implemented as dynamic accesses: non-affine accesses, and affine accesses that require

excessive unroll factors for static promotion.

4.3.2 Enforcing dynamic dependences

Maps handles dependences involving dynamic accesses with two separate mechanisms, one

for the type of dependences between a static access and a dynamic access, and one for the type

of dependences between two dynamic accesses. A static-dynamic dependence can be enforced

through explicit synchronization between the static reference and either the initiation or the

completion of the dynamic reference. When a dynamic store is followed by a dependent static

load, this synchronization requires an extra dynamic store acknowledgment message at the

completion of the store. Because the source and destination tiles of the synchronization
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message are known at compile-time, the message can be routed on the static network.

Enforcing dependences between dynamic references is a little more difficult. To illustrate

this difficulty, consider the dependence which orders a dynamic store before a potentially

conflicting dynamic load. Because of the dependence, it would not be correct to issue their

requests in parallel from different tiles. Furthermore, it would not suffice to synchronize

the issues of the requests on different tiles. This is because there are no timing guarantees

on the dynamic network: even if the memory operations are issued in correct order, they

may still be delivered in incorrect order. One obvious solution is complete serialization as

shown in Figure 4-5(a), where the later memory reference cannot initiate until the earlier

reference is known to complete. This solution, however, is expensive because it serializes the

slow round-trip latencies of the dynamic requests, and it requires store completions to be

acknowledged with a dynamic message.

Software serial ordering (SSO) is a technique that efficiently enforces such dependences.

Figure 4-5(b) illustrates this technique. Software serial ordering leverages the in-order de-

livery of messages on the dynamic network between any source-destination pair of tiles. It

works as follows. Each equivalence class is assigned a turnstile node. The role of the turnstile

is to serialize the request portions of the memory references in the corresponding equivalence

class. Once memory references go through the turnstile in the right order, correct behavior is

ensured from three facts. First, requests destined for different tiles must necessarily refer to

different memory locations, so there is no memory dependence which needs to be enforced.

Second, requests destined for the same tile are delivered in order by the dynamic network,

as required by the network's in-order delivery guarantee. Finally, a memory tile handles

requests in the order they are delivered.

Note that in order to guarantee correct ordering of processing of memory requests, se-

rialization is inevitable. SSO keeps this serialization low, and it allows the exploitation

of parallelism available in address computations, latency of memory requests and replies,

and processing time of memory requests to different tiles. For efficiency, SSO employs the
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P1 P2
store load

Ml M2

(a)

P1 P2
store load

T

Ml M2

(b)

Figure 4-5. Two methods for enforcing dependences between dynamic accesses. P1 and P2

are processing nodes initiating two potentially conflicting dynamic requests; both diagrams

illustrate an instance when the two requests don't conflict. M1 and M2 are the destinations

of the memory requests. The light arrows are static messages, the dark arrows are dynamic

messages, and the dashed arrows indicate serialization. The dependence to be enforced is that

the store on P1 must precede the load on P2. In (a), dependence is enforced through complete

serialization. In (b), dependence is enforced through software serial ordering. T is the turnstile

node. The only serialization point is the launches of the dynamic memory requests at T. Note

that Raw tiles are not specialized; any tile can serve in any or all of the following roles, as

processing node, memory node, or turnstile node.
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static network to handle synchronization and data transfer whenever possible. Furthermore,

different equivalence classes can employ different turnstiles and issue requests in parallel.

Interestingly, though the system enforces dependences correctly while allowing potentially

dependent dynamic accesses to be processed in parallel, it does not employ a single explicit

check of run-time addresses.
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Chapter 5

Space-time scheduling

This Chapter describes Spats, the part of Rawcc that manages the instruction, register,

branch, and wire resources of Raw. Spats is more easily explained by considering the con-

trol related functionality separately. We term the collective management of instructions,

registers, and wires ILP orchestration, whose details are given in Section 5.1. Section 5.2

proofs the static ordering property, a key property that allows Rawcc to generate a valid pro-

gram with statically ordered communication, even in the presence of dynamic events such as

cache misses. Section 5.3 then explains control orchestration. Section 5.4 reviews the design

decisions.

5.1 ILP orchestration

Figure 5-1 repeats the compiler flow of Spats, which was also shown in Figure 3-3. Spats

begins by performing SSA renaming on a procedure body. Renaming exposes available par-

allelism by removing anti and output dependences. Then, Spats partitions a procedure body

into scheduling regions, which becomes the unit of compilation within which the compiler

orchestrates parallelism. The next four phases focus on spatial aspect of the orchestration, as

it assigns instructions, scalars, communication routes to tiles. After assignment, Spats per-

forms a single coordinated scheduling pass that schedules both computation on each of the
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Renaming

Region
Identification

Instruction Cutrn
Partition

Scalar Merging
Partition

Scalar & Instruction
Assignment

Route
Assignment

Scheduling

Local Register
Allocation

Figure 5-1. Phases of Spats.

tiles as well as communication

a traditional register allocator

on the switches. After scheduling, Spats finishes by applying

to the code on each tile.

The components of Spats operate at one of two levels. Renaming, region identification,

and the scalar partitioning/assignment phases operate on an entire procedure at a time.

The rest of the phases, which deal primarily with management of instructions, operate on a

region at a time. Logically, each of these phases iterate through all the regions in a procedure

before proceeding to the next phase.

Each of the phases is described in more details below. To facilitate the explanation,

Figure 5-3 shows the transformations performed by Spats on a sample piece of code.

Renaming Spats begins by converting the procedure representation to single static assign-

ment (SSA) form [10]. SSA form was developed as intermediate format for dataflow analysis;

it is used here because it is a good representation of parallelism. Figure 5-2 shows a sample

program being converted to SSA form. In SSA form, every variable is defined exactly once.

A program is converted to SSA form by renaming multiple-defined variables so that each

definition gets a unique variable name. The renaming removes anti and output dependences
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a=1 aO=1 aO= 1 al=1
al--aO

a1=phi(aO,a4) a3=al a3=a1

a2 =al +I a3=al-,+I
a=a §1 a2=a +1 a3=a2

1 ~ ~ a3=phi(al,a2) A = a3+1I al1= a3+ 1
a4 =a3+I al=a4

(a) (b) (c) (d)

Figure 5-2. An example of SSA renaming. (a) shows the initial code in its control flow graph.
(b) shows the renamed SSA form. (c) shows the result after phi nodes have been converted to
copy statements. (d) shows the final code after the copy statements have been coalesced.

and exposes all the natural ILP that is contained in the program.

At join points in the control flow graph, a variable in pre-SSA form may have multiple

reaching definitions. SSA form represents this situation by the use of phi nodes. A phi node

is a like a select operator, where the output variable takes on the value of one of the input

variables. Here, the output variable is a fresh renamed variable, while each input variable

corresponds to a reaching definition at that program point.

Phi nodes are not constructs that can be executed in hardware. Spats actually converts

them into copy statements. A phi node is spit into multiple copy statements, one per input

variable. Each copy statement is then placed below the corresponding reaching definition.

When possible, a copy statement is merged with its reaching definition.

Region identification The region identification phase partitions each procedure into

distinct scheduling regions. Each scheduling region is a single-entry, single-exit portion of

the control flow graph containing only forward control flow edges, such as those generated

by if-then-else constructs. Within each scheduling region, if-conversion [29] is applied to

convert the code to predicated form. Most subsequent phases of Spats are then applied to

each scheduling region separately.

To prepare for the communication of persistent scalars between regions, two types of

dummy instructions are inserted. Read instructions are inserted at the beginning of the
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x = Bi] I add addr,Bi
y = x*i+2 2 Id x, (addr)
i = i+1 '3 mul tmp1,x,i
z = x*i+4 4 add y,tmpl,2

5 add i2,i,1

6 mul tmp2,x,i2
7 add z, tmp2, 4

(a)

1
a read i read B

1 add addr,B,i 5 add i2,i,1

> 2 id x, O(addr) e write i,i2

3 mul tmpl,x,i 6 mul tmp2,xi2

4 add y tmpl,2 7 add z tmp2,4

C write y write z

(b)

a
b

2
3

4

5

6

7

C
d

e

read i
read B
add addr,B,i

ld x, O(addr)
mul tmp1,x,i
add y,tmpl,2

add i2,i,1

mul tmp2,x,i2

add z,tmp2,4
write y

write z

write i,i2

a read i

1 add addr,B,i

2 ld x, O(addr)

3 mul tmpl,x,i

4 add y,tmpl,2

C write y

e write i, i2

Tile 0

read B

5 add i2,i,1

6 mul tmp2,x,i2

7 add z, tmp2, 4

d write z

Tile ,

almove $cstoi

ladd addr,$csti,i

2 1d1 x, 0(addr)

3 mul tmpi, x, i

4 add y, t1,2

cmov y,y

emov i,$csti

Tile 0

almove $csto, i

1add addr,$csti,il

211d ! x, 0 (addr)

3 mul 1,x, i

4 add , 1, 2
emov i,$csti

Tile 0

route $csto>$cEo

route $cEi>$csti

route $csto>$cEo

route $cEi>$csti

Switch 0

N

A

route $csto>$cW

route $cWi>$csti

o route $csto>$cW

iroute $cWi>$csti

Switch 1

(d)

route $csto>$cEo route $csto>$cW

route $cEi>$csti route $cWi>$csti |

route $csto>$cEo route $csto>$cWo|

route $cEi>$csti route $cWi>$csti

Switch 0 Switch 1

(e)

(c)

bmove $csto, B

add! i2,$csti,1

6mul tmp2,$Cati,i

7 add z, 2,4

d mov z,z

Tile 1

bmove $csto,B

5Sadd j,$csti,1

6|mul tmp2,$cstij

7[add z, 2,4

Tile 1

Figure 5-3. An example of the program transformations performed by Spats on a single region.
(a) shows the initial program undergoing transformations made by renaming and region iden-
tification; (b) shows the data dependence graph corresponding to the final code sequence in
(a); (c) shows the result after instruction partition, scalar partition, and scalar and instruction
assignment, (d) shows the result of route assignment; (e) shows the result after scheduling.
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code sequence for any persistent scalars that are accessed. Write instructions are inserted at

the end of the code sequence for any persistent scalars that are written. These instructions

simplify the eventual representation of stitch code, the communication needed to transfer

values between scheduling regions. This representation in turn allows the event scheduler to

overlap the stitch code with other work in the scheduling region. Dummy instructions that

are not involved in inter-tile communication are eliminated later in the compiler.

Figure 5-3a shows the transformations performed by renaming. Figure 5-3b shows the

same output code sequence in (a), but in the form of a data dependence graph. In the

graph, a node represents an instruction, and an edge represents a true data dependence

between two instructions. Each node is labeled with the execution time of the instruction.

We will continue to use this graph representation for the rest of the example.

Region identification also helps manage the control resource on Raw by performing control

selection. See Section 5.3 for more details.

Instruction partition The instruction partitioner partitions the original list of instructions

into multiple lists of instructions, one for each tile. It does not bind the resultant instruction

lists to specific tiles - that function is performed by the instruction placer. The partitioner

attempts to balance the benefits of parallelism against the overheads of communication.

Certain instructions have constraints on how they can be partitioned and where they can

be placed. Read and write instructions to the same scalar variable must be mapped to the tile

on which the data resides (see scalar partition and scalar and instruction assignment below).

Similarly, preplaced instructions (static loads and stores) must be mapped to specific tiles.

The instruction partitioner performs its duty without considering these constraints. They

are taken into account during the scalar partition and the scalar and instruction placement

phases.

Partitioning consists of two sub-phases, clustering and merging. Each is described in turn

below.

Clustering Clustering attempts to partition instructions to minimize run-time, assuming
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non-zero communication cost but infinite processing resources. The cost of communication

is modeled to be three cycles, the latency of adjacent tile communication on Raw. The sub-

phase groups together instructions that either have no parallelism, or whose parallelism is

too fine-grained to be exploited given the communication cost. Subsequent phases guarantee

that instructions in the same cluster will be mapped to the same tile.

Clustering is a two step process. In the first step, Spats employs a greedy technique

based on the estimation of completion time called Dominant Sequent Clustering (DSC) [45].

Initially, each instruction node belongs to a unit cluster. Communication between clusters is

assigned a uniform cost. The algorithm visits instruction nodes in topological order. At each

step, it selects from the list of candidates the instruction on the longest execution path. It

then checks whether the selected instruction can merge into the cluster of any of its parent

instructions to reduce the estimated completion time of the program. Estimation of the

completion time is dynamically updated to take into account the clustering decisions already

made, and it reflects the cost of both computation and communication. The algorithm

completes when all nodes have been visited exactly once.

In the second step, Spats post-processes the output clusters from DSC to ensure that

at most one preplaced instruction is in any one cluster. Each DSC cluster with multiple

preplaced instruction is split further into multiple clusters, with one preplaced instruction

in each resultant cluster. During the splitting, each node is assigned to the new cluster

containing the preplaced instruction that is closest to it.

Merging Merging combines clusters to reduce the number of clusters down to the number

of tiles. Spats uses a temporal-aware load balancing technique. Each tile is represented by

a partition holding the clusters assigned to it. Initially, this partition is empty. As clusters

are assigned to partition, the algorithm dynamically keeps of the amount of computation

assigned to the partition at each depth of the data dependence graph. The depth of a node

in the data dependence graph is defined to be length of the longest path from any root of

the graph to that node.
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Merging visits each cluster in decreasing order of size. As it visits each cluster, it selects a

partition to assign to the cluster. Partition assignment is performed as follows. If a cluster

contains a preplaced instruction, it is assigned to the partition corresponding to the tile of the

preplaced instruction. Otherwise, the algorithm selects the partition with the lightest load

during the range of depth spanned by the cluster. Note that this load metric ensures that

the clusters distributed across the tiles can likely be executed in parallel. It is superior to a

simple load balancing criteria without temporal-awareness, because a temporal-unaware load

balancing technique may end up distributing dependent clusters that cannot be executed in

parallel.

Here are more details on the algorithm. The input to merging phase is the following:

T = number of tiles

N = set of nodes the dependence graph

E = set of edges in dependence graph

C = set of existing unmerged clusters

The output is a mapping from unmerged clusters to new merged clusters.

Nodes, edges, and clusters have predefined attributes. Figure 5-4 shows those attributes

and the functions to access the attributes. It is worth pointing out the how the occupancy

of a node and latency of an edge relate to the latency of executing an instruction. Suppose

a node represents an instruction that has a latency of 4, and the functional unit it executes

on is not pipelined. This node has an occupancy of 4, and its outgoing true dependence

edges have latencies of 0. If the functional unit is pipelined, however, the node occupancy

becomes 1, and the outgoing true dependence edges have latencies of 4 - 1 = 3.

Figure 5-5 shows the main function of the merging algorithm, which returns a mapping

'from original clusters to T merged clusters. First, the function initializes some load in-

formation for each cluster. Then it initializes T empty merged clusters. Using the load

information, it iterates through the clusters and merge each cluster into the most suitable
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succ: Node n -+ EdgeSet
return { e I e c E; head(e) =n }

occupancy: Node n - int
return number of cycles a node takes to execute

clusterof: Node n -+ Cluster
return cluster n is mapped to

tile: Node n - int
return tile requirement of n. -1 means no requirement.

head: Edge e - Node
return head node of e

tail: Edge e - Node
return tail node of e

latency: Edge e -* Int
return latency of e

tile: Cluster c -+ Int
return tile requirement of c. -1 means no requirement.

Figure 5-4. Node, edge, and cluster attributes.
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DoMerge: int T x NodeSet N x EdgeSet E x ClusterSet C -* ClusterMap
InitClusterLoad(N, E)
ClusterSet MC +- CreateEmptyClusters(T)
ClusterMap M <- nullmap
foreach Cluster c E { c I c E C; tile(c) / -1 }

Cluster mc +- mc E MC I tile(mc) = tile(c)
Update(mc, c)
M(c) <- mc

foreach Cluster c E { c c E C; tile(c) = -1 } sorted in decreasing size(c)
Cluster mc +- LeastLoadedCluster(MC, timeBegin(c), timeEnd(c))
Update(mc, c)
M(c) +- mc

return M

Figure 5-5. Main function of merging algorithm

merged cluster. There are two criteria for merging. Clusters with the same tile requirements

are merged into the same merged cluster. Otherwise, a cluster is merged into the merged

cluster that has the least load during the range of depth when the cluster has work.

InitClusterLoad( initializes a set of functions that summarize the loads of the original

clusters. Figure 5-6 shows the set of load functions, as well as InitClusterLoadO itself. The

functions use depth of a node to approximate time. The computation of depth is given in

Figure 5-7.

Figure 5-8 shows the remaining helper functions for the merging algorithm, which creates,

selects, and updates the merged clusters.

Scalar partition The purpose of the scalar partitioner is to group persistent scalars into

sets, each of which is to be mapped to the same home tile. To minimize communication,

scalars that tend to be accessed by the same merged cluster of instructions should be grouped

together.

The scalar partitioner operates across all the scheduling regions of a procedure body after

instruction partitioning. It tries to find a partition of scalars and instruction clusters across

virtual tiles that minimizes the amount of cross-tile communication. The algorithm is as
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load: Cluster c x int t - int
return load of c at time t

timeBegin: Cluster c - int
return min { t load(c, t) #0 }

timeEnd: Cluster c -+ int
return max { t l Ioad(c, t) #0 }

computeLoad: Cluster c x int ti x int t2 -- int
return EZ1<t< 2 load(c)

InitClusterLoad: NodeSet N x EdgeSet E
NodeIntMap depth <- computeDepth(N, E)
foreach Node n E N

Cluster c +- clusterof(n)
foreach int t E [depth (n), depth (n) + occupancy(n) - 1]

load(c, t) += 1
timeBegin(c) = min(timeBegin (c), depth(n))
timeEnd(c) = max(timeEnd(c), depth(n) + occupancy(n))

Figure 5-6. Load initialization functions for merging algorithm.
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computeDepth: NodeSet N x EdgeSet E -+ NodelntMap
NodeList S <- topoOrder(N, E)
NodelntMap depth <-- nullmap
while S 7 0

Node n <- pop(S)
foreach Edge e C succ(n)

Node n' <- tail(e)
depth(n') +- max(depth(n'), depth(n) + occupancy(n) + latency(e))

return depth

topoOrder: NodeSet N x EdgeSet E -- NodeList
NodeIntMap p +- nullmap
foreach Node n E N

p(n) <- I{ edge e E E I tail(e) = }
NodeSet R +- { node n E N I p(n) = 0 }
NodeList L +- {}
while R 7 0

Node n <- pop(R)
L <- L + n
foreach Edge e C succ(n)

Node n' <- tail(e)
p(n') +- p(n') - 1
if p(n') = 0 then R +- R U {nI'}

return L

Figure 5-7. Depth computation.
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CreateEmptyClusters: int T -+ ClusterSet
ClusterSet C <- 0
foreach int i E [0, T - 1]

C <- C U { Cluster(Tile=i) }
return C

LeastLoadedCluster: ClusterSet C x int tl x int t2 -> Cluster

Cluster c +- c E C I V Cluster c' E C, computeLoad(c, t1, t2) < computeLoad(c', t1, t2)
return c

Update: Cluster mc x Cluster c

foreach int t c [TimeBegin(c), TimeEnd(c) - 1]
load(rrc, t) += load (c, t)

timeBegin (mc) = min(timeBegin (mc), timeBegin(c))
timeEnd (mc) = max(timeEnd(mc), timeEnd (c))

Figure 5-8. Helper functions related to merged clusters for merging algorithm.

follows. Initially, both scalars and instruction clusters are arbitrarily assigned to these virtual

tiles, with the constrain that in each scheduling region, exactly one instruction cluster is

mapped to each virtual tile. In addition, static accesses to memory are also partitioned across

virtual tiles in accordance with their known tile locations. The algorithm then incrementally

improves on the mapping to reduce the number of remote data accesses between instruction

clusters and data. First, it remaps instruction clusters to virtual tiles given a fixed mapping

of the scalars. Then, it remaps scalars to virtualized tiles given the fixed mappings of

instruction clusters. The remapping is performed by making randomly swaps that reduce

overall communication. Static memory accesses are kept fixed and not remapped. This

remapping repeats until no incremental improvement in locality can be found. The final

mapping of scalars to virtual tiles form the desired partition.

Scalar and instruction assignment The scalar and instruction assignment phase assigns

sets of persistent scalars and instruction clusters to physical tiles. Figure 5-3c shows a

sample output of this phase. The assignment phase removes the assumption of the idealized
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interconnect and takes into account the non-uniform network latency. Assignment of each

scalar set is currently driven by the preference of static memory accesses: if a scalar set ends

up on the same virtual tile as a static memory access, that set is mapped to the same tile as

the memory access. In addition to mapping scalar sets to tiles, the scalar assignment phase

also locks the dummy read and write instructions to the home tiles of the corresponding

persistent scalars.

Scalar assignment is performed before instruction assignment to allow cost estimation

during instruction assignment to account for the location of those scalars. For instruction

assignment, Spats uses a swap-based greedy algorithm to minimize the communication band-

width. It initially assigns clusters to arbitrary tiles, and it looks for pairs of mappings that

can be swapped to reduce the total number of communication hops.

Route assignment The route assignment phase translates each non-local edge (an edge

whose source and destination nodes are mapped to different tiles) in the dependence graph

into a set of communicating instructions that route the necessary data value from the source

tile to the destination tile. Figure 5-3d shows an example of such transformation. Com-

munication instructions include send and receive operations on the processors as well as

route instructions on the switches. New nodes are inserted into the graph to represent the

communication instructions, and the edges of the source and destination nodes are updated

to reflect the new dependence relations arising from insertion of the communication nodes.

These dependence relations are later enforced during scheduling to ensure a correct ordering

of communication events. Note that the Raw ISA allows send and receive operations to be

merged with existing ALU operations, as shown by instructions 2 and 6 in Figure 5-3d (the

! after the ld is an implicit send). To minimize the volume of communication, edges with the

same source are serviced jointly by a single multicast operation, though this optimization is

not illustrated in the example.

Currently, route assignment is performed via dimension-ordered routing. Network con-
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tention has generally been low, so there has been no need to use a more intelligent method.

Scheduling The scheduler schedules the computation and communication events within

a scheduling region with the goal of producing the minimal estimated run-time. Because

routing on Raw is itself specified with explicit switch instructions, all events to be scheduled

are instructions. Therefore, the scheduling problem is a generalization of the traditional

instruction scheduling problem.

The job of scheduling communication instructions carries with it the responsibility of en-

suring the absence of deadlocks in the network. If individual communication instructions are

scheduled separately, Spats would need to explicitly manage the buffering resources on each

communication port to ensure the absence of deadlock. Instead, Spats avoids the need for

such management by treating a single-source, multiple-destination communication path as

a single scheduling unit. When a communication path is scheduled, contiguous time slots

are reserved for instructions in the path so that the path incurs no delay in the static sched-

ule. By reserving the appropriate time slot at the node of each communication instruction,

Spats automatically reserves the corresponding channel resources needed to ensure that the

instruction can eventually make progress.

Though scheduling is a static problem, the schedule generated must remain deadlock-free

and correct even in the presence of dynamic events such as cache misses. The Raw system

uses the static ordering property, implemented through near-neighbor flow control, to ensure

this behavior. The static ordering property states that if a schedule does not deadlock, then

any schedule with the same order of communication events will not deadlock. A proof of

this property is presented in Section5.2. Because dynamic events like cache misses only add

extra latency but do not change the order of communication events, they do not affect the

correctness of the schedule.

The static ordering property also allows the schedule to be stored as compact instruction

streams. Timing information needs not be preserved in the instruction stream to ensure
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correctness, thus obviating the need to insert no-op instructions. Figure 5-3e shows a sample

output of the event scheduler. Note that the dummy read and write instructions only turn

into explicit instructions if they are involved in communication. Also, on the switches, the

route instructions that correspond to different paths are freely interleaved.

The scheduling algorithm is as follows. Before scheduling, Spats applies reverse if-conversion

to the code on each tile to convert the predicated code back to branch code (See Section 5.3).

Then, Spats uses a single greedy list scheduler to schedule both computation and communi-

cation instructions. The algorithm keeps track of a ready list of events. An event is either a

computation instruction or a communication path. As long as the list is not empty, it selects

and schedules the task on the ready list with the highest priority. The priority scheme is

based on the following observation. The priority of a task should be directly proportional

to the impact it has on the completion time of the program. This impact, in turn, is lower-

bounded by two properties of the task: its level, defined to be its critical path length to an

exit node; and its average fertility, defined to be the number of descendant nodes divided

by the number of tiles. Therefore, we define the priority of a task to be a weighted sum of

these two properties.

Local register allocation The final phase of Spats is register allocation. Spats treats this

problem as multiple independent instantiations of the analogous problem on a traditional

RISC machine. It simply applies a traditional, graph-coloring based register allocator to the

code of each tile.

5.2 The Static ordering property

Dynamic events such as cache misses prevent one from statically analyzing the precise

timing of a schedule. Rawcc relies on the static ordering property of the Raw architecture

to generate correct code in the presence these dynamic events. The static ordering property

states that the result produced by a static schedule is independent of the specific timing of
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the execution. Moreover, it states that whether a schedule deadlocks is a timing independent

property as well. Either the schedule always deadlocks, or it never does.

To generate a correct instruction schedule, Rawcc orders the instructions in a way that

obeys the instruction dependencies of the program. In addition, it ensures that the schedule

is deadlock free assuming one set of instruction timings. Static ordering property then

ensures that the schedule is deadlock free and correct for any execution of the schedule.

This section provides an informal proof of the static ordering property. The section re-

stricts the static ordering property to the practical case: given a schedule that is deadlock

free for one set of instruction timings, then for any set of instruction timings,

1. it is deadlock free.

2. it generates the same results.

First, we show (1). A deadlock occurs when at least one instruction stream on either

the processor or the switch has unexecuted instructions, but no instruction stream can

make progress. A non-empty instruction stream, in turn, can fail to make progress if it is

attempting to execute a blocked communication instruction. A communication instruction

blocks when either its input port is empty, or its output port is full. Computation instructions

do not use communication ports; they cannot cause deadlocks and are only relevant in this

discussion for the timing information they represent.

Consider the generic scenario in Figure 5-9. In the figure, each large long rectangle rep-

resents an execution node (which are all switches in the figure, but a node may also be a

processor), and each wide rectangle represents a communication instruction. There are three

switches: S1, S2, and S3. Port A connects Switch S1 to Switch S2, while Port B connects

Switch S2 to Switch S3. The focus of this setup is Instruction IY, which represents a generic

communication instruction that executes on Switch S2 and sends a value from Port A to

Port B.

Let's derive the conditions under which Instruction I can execute. The necessary con-
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Figure 5-9. Dependent instructions of a communication instruction. Each long rect-

angle represents an execution node, and each wide rectangle represents a communication

instruction. Spaces between execution nodes are ports. Edges represent flow of data. A com-

munication instruction is of the form Route X - > Y, where X is the source port and Y
is the destination port. Since we only care about Port A and Port B in this example, other
ports are labeled with "?". The focal instruction is the thick rounded rectangle labeled Iy. Its

dependent instructions are in thick regular rectangles.

83



ditions for its ability to execute are the following: its input value must have been sent, its

switch S2 must be ready to execute it, and the destination of its value (Port B) must be

available.1 These conditions can also be represented by execution of a set of instructions.

Note that ports are dedicated connections between two fixed nodes, so that each port has

exactly one reader node and one writer node. Let ly be the xth instruction that reads from

port A, the yth instruction that executes on its node N, and the z'h instruction that writes

to port B. Then before I, can execute, the following instructions must have executed:

1. the xth instruction that writes port A.

2. the y - lVa instruction that executes on switch S2.

3. the z - 1 th instruction that reads (and flushes) port B.

Next, we argue that these conditions are also sufficient for I to execute. The key ob-

servation is that once a resource becomes available for instruction Iy, it will forever remain

available until the instruction has executed. The value on the input port cannot disappear;

the execution node cannot skip over I, to run other instructions; the output port cannot be

full after the previous value has been flushed. The reservation of the resources is based on

three properties: the single-reader/single-writer property of the ports, the blocking semantics

of the communication instructions, and the in-order execution of instructions.

Therefore, a communication instruction can execute whenever its dependent instructions,

defined by the enumeration above, have executed.

Now, consider the schedule that is deadlock-free for one known set of timings. Plot the

execution trace for this set of timings in a two dimensional grid, with node-id on the x-axis

and time on the y-axis. Each slot in the execution trace contains the instruction (if any) that

is executed for the specified node at the specified time. The plot is similar to Figure 5-9,

except that real execution times, rather than the static schedule orders, are used to place

the instructions temporally.

1In general, the three resources need not all be applicable. A send by a processor only requires an output
port and the execution node, while a receive by a processor only requires the input value and the node.
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Finally, consider a different set of timings for the same schedule. Let tew be a point in

time for the new timings when the schedule has not been completed, and let Enew(tnew) be

the set of instructions that have executed before time tnew. We use the above deadlock-free

execution trace to find a runnable instruction at time tnew. Find the smallest time t in

the deadlock-free execution trace that contains an instruction not in Enew(tnew). Call the

instruction c. The dependent instructions of c must necessarily be contained in Enew (tnew).2

Therefore, c must be be runnable at time tn,, for the new set of timings.

Having found a runnable instruction for any point in time when the schedule is not com-

pleted, the schedule must always make progress, and it will not deadlock.

The second correctness condition, that a deadlock-free schedule generates the same results

under two different sets of timings, is relatively easy to demonstrate. Changes in timings

do not affect the order in which instructions are executed on the same node, nor do they

change the order in which values are injected or consumed at individual ports. The blocking

semantics of communication instructions ensures that no instruction dependence can be

violated due to a timing skew between the sender and the receiver. Therefore, the values

produced by two different timings must be the same.

5.3 Control orchestration

Spats provides a two-tiered support for branches in a program: global branches and local

branches. A global branch is a branch that requires a global transfer of control across all

the tiles. A local branch is a branch that is executed independently on only one or a few

tiles. Spats's employs this two-tiered support in order to provide both generality and perfor-

mance. Branches between scheduling regions require the generality of global coordination,

but branches within a scheduling region only need to be executed independently on one or

2 This statement derives from two facts:
1. All dependent instructions of c must execute before c in the deadlock-free execution trace.
2. Since c executes at time t and all instructions executed before time t are in Enew(tnew), all

instructions executed before c in the deadlock-free execution trace are in Enew(tnew).
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Figure 5-10. A mapping of Spats phases to the control functions they help implement.

a few tiles. Furthermore, local branches allow Spats to operate on scheduling regions that

encompass multiple basic blocks, which in turn increases the scope within which Spats can

schedule parallelism.

This section describes control orchestration in Spats, which consists of three parts. Con-

trol selection decides whether each branch in the program is a local branch or a global

branch. Asynchronous global branching is the software mechanism for global branches. Con-

trol localization is the collection of software techniques to support efficient execution of local

branches.

Figure 5-10 shows the phases of Spats involved in supporting control orchestration.

Control selection Control selection decides whether each branch in the program is a

local branch or a global branch. It is the indirect byproduct of region identification. During

region identification, a procedure is divided into multiple scheduling regions. This process

also divides branches into two types: internal branches and external branches. An internal

branch is a forward branch whose target is in the same scheduling region. These branches

are temporarily replaced by predicated code, and they eventually become local branches.
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An external branch is either a backward branch, or a forward branch whose target is in a

different scheduling region. This type of branches becomes global branches.

Asynchronous global branching Spats implements global branching asynchronously

in software by using the SON and local branches. First, the branch value is broadcast to

all the tiles through the SON. This communication is exported and scheduled explicitly

by the compiler just like any other communication. Therefore, it can overlap with other

computation in the basic block. Then, each tile and switch individually performs a branch

without synchronization at the end of the execution of a scheduling region. Correct execution

is ensured despite the introduction of this asynchrony because of the static ordering property.

As shown in Figure 5-10, the synthesis and scheduling of the branch's communication are

performed by the route assignment and scheduling phases of Spats.

The overhead of asynchronous global branching is explicit in the broadcasting of the branch

condition. This overhead contrasts with the implicit overhead of global wiring incurred by

global branching in VLIWs and superscalars. Making the overhead explicit has the following

advantages. First, the compiler can hide the overhead by overlapping it with useful work.

Second, this branching model does not require dedicated wires used only for branching.

Third, the approach allows the global coordination to be performed without any global

wires, which is consistent with the decentralized design methodology of a TPA and helps

enable a faster clock.

Control localization Control localization is the application of a collection of software

techniques to support efficient execution of local branches. The current implemented set of

techniques are designed to achieve two goals. The first goal is flexibility during instruction

assignment. During instruction assignment, Spats uses a predicated code representation and

treats each instruction as an individual unit, so that instructions with the same control

dependence can freely be mapped onto different tiles. This representation has two advan-

tages. First, it allows the compiler to exploit the parallelism available among predicated
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instructions. Second, it naturally supports multiple loads/stores that have the same control

dependence but are static memory references on different tiles. The actual assignment of

branches to tiles mirrors that of instruction management, and it is supported by the same

partitioning and assignment phases as shown in Figure 5-10.

The second goal of control localization is to minimize the number of local branches that

have to execute once individual predicated instructions have been assigned to tiles. Spats

achieves this goal by converting post-assignment predicated code on each tile back to branch

code, in a process called reverse if-conversion [3]. Then during scheduling, code control

dependent on the same branch is treated as a single unit. This conversion reduces the

number of local branches in two ways. First, instructions that share the same predicate can

amortize the cost of executing the local branch. Second, instructions with complementary

predicates can also share the same local branch.

5.4 Design decisions

This section discusses the design decisions made in two key areas of Spats: instruction

management and control localization. They are two areas that we have observed empirically

to have a high impact on performance.

Instruction management Spats decomposes instruction management into multiple phases

and sub-phases: clustering, merging, placement, and scheduling. There are two reasons for

this decomposition strategy. First, given a machine with a non-uniform network, empiri-

cal results have shown that separating assignment from scheduling yields superior perfor-

mance [44]. Furthermore, given a graph with fine-grained parallelism, having a clustering

phase has been shown to improve performance [12].

In addition, the instruction management problem, as well as each of its sub-problems, is NP

complete [38]. Decomposing the problem into a set of greedy heuristics enables us to develop

an algorithm that is computationally tractable. The success of this approach, of course,
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depends heavily on carefully choosing the problem decomposition. The decomposition should

be such that decisions made by an earlier phase should not inhibit subsequent phases from

making good decisions.

We believe that separating the clustering and scheduling phases was a good decomposition

decision. The benefits of dividing merging and placement have been less clear. Combining

them so that merging is sensitive to the resource topology may be preferable, especially if

the target TPA has preplaced memory instructions like Raw does.

Spats integrates its additional responsibilities relatively seamlessly into this basic frame-

work. By inserting dummy instructions to represent home tiles, inter-region communication

can be represented the same way as intra-region communication. Communication for global

branching is also represented similarly. The need for explicit communication is identified

through edges between instructions mapped to different tiles, and communication code gen-

eration is performed by replacing these edges with a chain of communication instructions.

The resultant graph is then presented to a vanilla greedy list scheduler, modified to treat each

communication path as a single scheduling unit. This list scheduler is then able to generate

a correct and greedily optimized schedule for both computation and communication.

Control localization Our approach to control localization went through three iterations.

Initially, we try to group all instructions under the same local branch into a single atomic

block of instructions [25]. This block, called a macroinstruction, then becomes an atomic

unit on which the compiler performs assignment and scheduling. Thus, the entire macroin-

struction gets assigned to a single tile, and its instructions get scheduled in contiguous time

slots. When there are multiple preplaced instructions under the same branch, we break the

instructions into the minimum number of macroinstructions needed to satisfy the preplace-

ment constraints. This scheme minimizes the number of local branches, but the disadvantage

is that the parallelism available under local branches cannot be exploited across tiles.

To address the parallelism issue, we next use a fully predicated representation of the
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program. Each predicated instruction is then independently assigned and scheduled. During

scheduling, we augment the priority function with a factor that accounts for the cost of extra

branches. For example, when the previously scheduled instruction had a predicate p, each

instruction in the ready list with the same predicate p gets a bump in its priority.

After experimenting with this approach, we find that while the flexibility provided by the

predicate form is useful during assignment, it is rarely useful during scheduling. Note that

during scheduling, no parallelism can be gained by spitting up two instructions with the same

predicate. The cost of the local branches on Raw is sufficiently high that it the scheduler

almost always does better by having as few of them as possible. Thus, for simplicity we settle

on a control localization strategy where reverse if-conversion is applied to the predicate code

on each tile before scheduling begins.

90



Chapter 6

Convergent scheduling

This chapter presents convergent scheduling, a general framework for resource management

that makes it easy to specify arbitrary constraints and scheduling heuristics.

6.1 Introduction

Convergent scheduling is motivated by two early observations from instruction assignment

by Spats on Raw. First, different assignment heuristics work well for different types of graphs.

Figure 6-1 depicts representative data dependence graphs from two ends of a spectrum.

In the graphs, nodes represent instructions and edges represent data dependences between

instructions. Graph (a) is typical of graphs seen in non-numeric programs, while graph (b) is

representative of graphs coming from applying loop unrolling to numeric programs. Consider

the problem of mapping these graphs onto a TPA. Long, narrow graphs are dominated by

a few critical paths. For these graphs, critical-path based heuristics are likely to work well.

Fat, parallel graphs have coarse grained parallelism available and many critical paths. For

these graphs it is more important to minimize communication and exploit the coarse-grain

parallelism. To perform well for arbitrary graphs, the assignment algorithm may require

multiple heuristics in its arsenal.

Second, preplaced instructions have a significant impact on assignment, especially for
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Figure 6-1. Different data dependence graphs have different characteristics. Some are thin and
dominated by a few critical paths (a), while others are fat and parallel (b).

dense matrix codes. In Spats, instructions are assigned are partitioned into threads and

then placed onto tiles. Though the placement process accounts for the preference of the

preplaced instructions, the decisions made by earlier by the instruction partitioner limits the

flexibility of that latter phase.

In general, it is typical for resource allocation problems to be faced with many conflicting

constraints. In addition the issues above, proper assignment needs to understand the tradeoff

between parallelism and locality. To preserve good locality, related computation should be

mapped to the same tile. On the other hand, to exploit parallelism within computation, the

computation needs to be distributed across tiles.

Traditional resource allocation frameworks handle conflicting constraints and heuristics in

an ad hoc manner. One approach is to direct all efforts toward the most serious problem. For

example, on a hypothetical clustered VLIW with many clusters connected by a single-cycle

bus, a compiler would focus on keeping as many of the clusters busy and not be as concerned

about locality. Another approach is to address the constraints one at a time in a sequence
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of phases. This approach, however, introduces phase ordering problems, as decisions made

by the early phases are based on partial information and can adversely affect the quality

of decisions made by subsequent phases. A third approach is to attempt to address all

the constraints together. This makes it difficult to handle additional constraints existing

algorithms.

Convergent scheduling is a general resource allocation framework that makes it easy to

specify arbitrary constraints and heuristics. Figure 6-2 illustrates this framework. A con-

vergent scheduler is composed of independent passes. Each pass implements a heuristic

that addresses a particular problem such as parallelism or locality. Multiple heuristics may

address the same problem.

All passes in the convergent scheduler share a common interface. The input or output to

each pass is a collection of spatial and temporal preferences of instructions. A pass operates

by analyzing the current preferences and modifying them. As the scheduler applies the passes

in succession, the preference distribution converges to a final schedule that incorporates the

preferences of all the constraints and heuristics. Logically, preferences are specified as a

three-input function that maps an instruction, space, and time triple to a weight.

Convergent scheduling has the following features:
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1. Its scheduling decisions are made cooperatively rather than exclusively.

2. The interface allows a pass to express confidence about its decisions. A pass needs not

make a poor and unrecoverable decision just because it has to make a decision. On

the other side, any pass can strongly affect the final choice if needed.

3. Convergent scheduling can naturally recover from a temporary wrong decision by one

pass.

4. Most compilers allow only very limited exchange of information among passes. In

contrast, the weight-based interface to convergent scheduling is very expressive.

5. The framework allows a heuristic to be applied multiple times, either independently

or as part of an iterative process. This feature is useful to provide feedback between

passes and to avoid phase ordering problems.

6. The simple interface (preference maps) between passes makes it easy for the compiler

writer to handle new constraints or design new heuristics. Passes for different heuris-

tics are written independently, and the expressive, common interface reduces design

complexity. This offers an easy way to retarget a compiler and to address peculiari-

ties of the underlying architecture. If, for example, an architecture is able to exploit

auto-increment on memory-access with a specific instruction, one pass could try to

keep together memory-accesses and increments, so that the scheduler will find them

together and will be able to exploit the advanced instructions.

Convergent scheduling has been used to perform both assignment and scheduling on clus-

tered VLIWs [26]. For my research, I use it to better handle instruction assignment on Raw.

Because of the ease of adding and removing heuristics, I use it as an experimental testbed for

new heuristics. The final resulting algorithm is described in Sections 6.3 and 6.4. I also look

for insights from heuristics that work well in convergent scheduling and incorporate those
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ideas into the version of Spats described Chapter 5. In particular, the handling of preplaced

instructions in Spats is motivated by the convergent scheduling framework.

The remaining sections are organized as follows. Section 6.2 describes the convergent

scheduling interface between passes, while Section 6.3 describes the collection of passes I have

implemented for Raw. Section 6.4 shows how a quality instruction assignment algorithm is

composed from these passes.

6.2 Convergent interface

At the heart of the convergent scheduler is the expressive interface between passes. This

interface is a collection of preference maps, one per instruction. The spatial and temporal

preferences of each instruction are represented as weights in its preference map; a pass

influences the assignment and scheduling of an instruction by changing these weights.

Initially, an instruction has no preference for any specific tile or time slot, so all the

weights in its preference map is equal. A pass examines the dependence graph and the

weight matrix to determine the characteristics of the preferred schedule so far. Then, it

expresses its preferences by manipulating the preference maps. A Pass is not required to

perform changes that affect the preferred schedule. If it is indifferent to one or more choices,

it can keep the weights the same.

When convergent scheduling completes, the slot in the map with the highest weight is

designated as the preferred slot, which includes both a preferred tile and a preferred time.

The instruction is assigned to the preferred tile; the preferred time is used as the instruction

priority for list scheduling.

Formally, the preference maps are represented by a three dimensional matrix W, where

i spans over all instructions in the scheduling unit, c spans over the tiles, and t spans over

time. The scheduler allocates as many time slots as the critical-path length (CPL).

Let i spans over instructions, c over tiles, t over time-slots. The following invariants are
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maintained:

Vi, t,c: 0 < Wit,,c < 1

Vi : Witc 1
t,C

Given an instruction i, we define the following: 1

preferred-time(i)

preferred tile(i)

runnerup-tile(i)

confidence(i)

= argmax t: Witc

= argmax c : Wi,t,c

= arg max{
c # preferred-tile(i)

= Et Wi,t,preferred-tile(i)

Et Wit,runnerup-tile(i)

Preferred values are those that maximize the sum of the preferences over time and tiles.

The confidence of an instruction measures how confident the convergent scheduler is about

its current spatial assignment. It is computed as the ratio of the weights of the top two tiles.

The following basic operations are available on the weights:

* Any weight Wi,t,c can be increased or decreased by a constant, or multiplied by a factor.

" The matrices of two or more instructions can be combined linearly to produce a matrix

of another instruction. Given input instructions il, i 2 , ... , i, an output instruction

j, and weights for the input instructions wi, ..., wswhere EkE[1,n] Wk = 1, the linear

combination is as follows:

for each (c, t), W,t,c <- Wk * Wik,,C

kE[1,n]

'The function arg max returns the value of the variable that maximizes the expression for a given set of
values (while max return the value of the expression). For instance max{0 < x < 2 : 10 - x} is 10, and
argmax{0 < x < 2: 10 - x} is 0.
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My implementation uses a simpler form of this operation, with n = 2 and il = j:

for each (c, t), Wet,c f- wiWV ,t,c + (1 - )Witc

The convergent scheduler never performs this full operation because it is expensive.

Instead, the scheduler only does the operation on part of the matrices, e.g., only along

the space dimension, or only within a small range along the time dimension.

" The system incrementally keeps track of the sums of the weights over both space and

time, so that they can be determined in 0(1) time. It also memoizes the preferredtime

and preferred-tile of each instruction.

* The preferences can be normalized to guarantee our invariants; the normalization sim-

ply performs:

for each (i, c, t), Wi,tc W-
Zt' t,c

6.3 Collection of Heuristics

This section presents a collection of heuristics I have implemented for convergent schedul-

ing. Each heuristic attempts to address a single constraint and only communicates with other

heuristics via the weight matrix. There are no restrictions on the order or the number of

times each heuristic is applied. For the Raw convergent scheduler, the following parameters

are selected by trial-and-error: the set of heuristics we use, the weights used in the heuristics,

and the order in which the heuristics are run. It is possible to use machine learning to tune

these parameters [35].

Whenever necessary, the map values are normalized at the end of a pass to enforce the

invariants given in Section 6.2. For brevity, this step is not included in the description below.

A pass similar to this one can address the fact that some instructions cannot be scheduled

in all tiles in some architectures, simply by squashing the weights for the unfeasible tiles.
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Preplacement (PLACE) This pass increases the weight for preplaced instructions to be

placed in their home tile. Since this condition is required for correctness, the weight increase

is large. Given preplaced instruction i, let cp(i) be its preplaced tile. Then,

for each (2 C PREPLACED, t),

Wi,,c,(0) <-- 100Wi,t,cp(i)

Critical path strengthening (PATH) This pass tries to keep all the instructions on a

critical path (CP) in the same tile. If instructions in the paths have bias for a particular

tile, the path is moved to that tile. Otherwise the least loaded tile is selected. If different

portions of the paths have strong bias toward different tiles (e.g., when there are two or

more preplaced instructions on the path), the critical path is broken in two or more pieces

and kept locally close to the relevant home tiles. Let cc(i) be the chosen tile for the CP.

for each (i e CP, t, c), Wit,cc(i) <- 3W,t,cc(i)

Communication minimization (COMM) This pass reduces communication load by

increasing the weight for an instruction to be in the same tiles where most of neighbors

(successors and predecessors in the dependence graph) are. This is done by summing the

weights of all the neighbors in a specific tile, and using that to skew weights in the correct

direction.

for each (i, t, c), Wi,t,c <- Wi,t,c Wt,c

nEneighbors of i

We have also implemented a variant of this that considers grand-parents and grand-

children, and we usually run it together with COMM.

for each (i), Wi,ti,ci <- 2Wi,t,c,
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Load balance (LOAD) This pass performs load balancing across tiles. Each weight on a

tile is divided by the total load on that tile:

for each (i, t, c), Wi,t,, <- W,t,c/load(c)

Level distribute (LEVEL) This pass distributes instructions at the same level across

tiles. Given instruction i, we define level(i) to be its distance from the furthest root. Level

distribution has two goals. The primary goal is to distribute parallelism across tiles. The

second goal is to minimize potential communication. To this end, the pass tries to distribute

instructions that are far apart, while keeping together instructions that are near each other.

To perform the dual goals of instruction distribution without excessive communication,

instructions on a level are partitioned into bins. Initially, the bin B, for each tile c contains

instructions whose preferred tile is c, and whose confidence is greater than a threshold (2.0).

Then, we perform the following:

LevelDistribute: int 1, int g

Ii = Instruction i I level(i) = 1

foreach Tile c

I1 = I1 - Be

I = {i IE I ; distance(i, find-closest-bin(i)) > g}

while I 5 #

B = round-robin-next-bin()

tclosest = arg max{i E Ig : distance(i, B)}

B = B U iclosest

11 Ii - iclosest

Update I

The parameter g controls the minimum distance granularity at which we distribute instruc-

tions across bins. The distance between an instruction i and a bin B is the minimum distance
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between i and any instruction in B.

LEVEL can be applied multiple times to different levels. Currently we apply it every four

levels on Raw. The four levels correspond approximately to the minimum granularity of

parallelism that Raw can profitably exploit given its communication cost.

Path propagation (PATHPROP) This pass selects high confidence instructions and

propagates their convergent matrices along a path. The confidence threshold t is an input

parameter. Let 'h be the selected confident instruction. The following propagates ih along a

downward path:

find i I i E successor(ih); confidence(i) < confidence(ih)

while (i nil)

for each (c, t), Wi,t,c - 0.5Wi,t,c + 0. 5 Wih,t,c

find in | in E successor(i); confidence(in) < confidence(ih)

i <- in

A similar function that visits predecessors propagates ih along an upward path.

Emphasize critical path distance (EMPHCP) This pass attempts to help the conver-

gence of the time information by emphasizing the level of each instruction. The level of an

instruction is a good time approximation because it is when the instruction can be scheduled

if a machine has infinite resources.

for each (i, c), Wi,level(i),c < 1.2 Wi,level(i),c

6.4 Raw convergent scheduler

Figure 6-3 shows the passes that make up the Raw convergent scheduler, which performs

instruction assignment. Passes are listed in the order they are executed. Two kinds of

passes make up the convergent scheduler. One kind of passes biases a selective subset of
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PLACE
PATHPROP

LOAD
PATH

PATHPROP
LEVEL

PATHPROP
Comm

PATHPROP
EMPHCP

Figure 6-3. Sequence of heuristics used by the convergent scheduler for Raw.

nodes toward a particular tile. For example, LEVEL looks for nodes at the same depth

in the dependence graph and spreads them across tiles, while PATH biases a critical path

toward a tile. The other kind of passes propagates the preferences of nodes with high

confidence toward neighboring nodes with low confidence. This propagation helps reduce

communication and improve locality. COMM and PATHPROP fall into this category.

Figures 6-4 to 6-7 show the scheduler in action as it performs tile assignment of a data

dependence graph onto four tiles. The figures show the state of the preference map after

selected passes, encoded by the colors of the nodes. Each color represents a different tile,

and the amount of color in a node represents the level of preference the node has for the

corresponding tile. Thus, a node with a strong preference for a particular tile will be displayed

as a big, solid-color node. A node with a weak preference is either a small node or a node

with rainbow colors. The final assignment is shown in Figure 6-8.
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(a)PLACE

(b)PATHPROP

Figure 6-4. A convergent scheduling example; passes a-b.
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(c)PATH

(d)PATHPROP

Figure 6-5. A convergent scheduling example; passes c-d.
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(e)LEVEL

(f)PATHPROP

Figure 6-6. A convergent scheduling example; passes e-f.
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(g)COMM

4

(h)PATHPROP

Figure 6-7. A convergent scheduling example; passes g-h.
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Figure 6-8. A convergent scheduling example: final assignment.
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Chapter 7

Evaluation

This section presents some evaluation of Rawcc, which implements all the ILP techniques

described in this paper. Unless noted otherwise, the results are from the version of Spats

described in Section 5. The section begins by describing the methodology. Data is gathered

on the validated, cycle-accurate Raw simulator. The section presents data showing that the

simulator produces results that are on average within 8% of the 16-tile hardware prototype,

despite the fact that the two systems have different the instruction memory systems.

The section includes the following evaluation results. First, it presents the performance of

Rawcc on Raw machine as the number of tiles is scaled from one to 64 tiles. The results show

that Rawcc is able to attain modest speedup for fine-grained applications, as well speedups

that scale up to 64 tiles for applications with such parallelism. Then, the section shows how

performance scales with problem sizes, and it demonstrates that unlike traditional coarse-

grained parallelization techniques used for multiprocessors, Rawcc is able to attain speedup

for small as well as large problem sizes. Next, the section compares three versions of Spats

that use different algorithms for instruction assignment. To help understand the degree of

locality exhibited by the parallelized applications, the section then presents statistics on

operand usage, measuring the fraction of operands consumed that are locally generated

versus those that are remotely generated. The section concludes by examining the effects
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Type Benchmark Source Lines Primary Sequential
of Code Array Size Run-time

sha Perl Oasis 626 - 1.58M
Irregular aes 102 - 1.16M

fpppp-kernel Spec95 735 - 1.14M

Sparse Matrix moldyn Chaos 815 64x3 133M
unstructured Chaos 1030 3136x3 21M

btrix Nasa7:Spec92 236 256x1x2x5 17.2M
cholesky Nasa7:Spec92 126 1024 34M
vpenta Nasa7:Spec92 157 512x16 23M

Dense Matrix mxm Nasa7:Spec92 64 32x1024 23M
tomcatv Spec95 254 64x64 18.9M
swim Spec95 618 512x32 137M
life Rawbench 118 32x1024 42M
jacobi Rawbench 59 512x512 40M

Table 7.1. Benchmark characteristics.

of long latency dynamic events on performance. It finds that control decoupling gives the

architecture a much higher tolerance for these events, especially in machines with many tiles

or high memory latency.

A more comprehensive list of result figures and tables can be found in Appendix A.

7.1 Methodology

Experiments are conducted by compiling a set of benchmarks with Rawcc and running

them on Beetle, a Raw simulator. Table 7.1 gives some basic characteristics of the bench-

marks, which include irregular, sparse matrix, and dense matrix codes. Fpppp-kernel is the

kernel basic block that accounts for 50% of the run-time in fpppp of Spec95. Since Raw cur-

rently does not support double-precision floating point, all floating point operations in the

original benchmarks are converted to single precision. In some cases the size of the datasets

and the iteration counts have been modified to reduce simulation time.

Latencies of the basic instructions on Raw are as follows: 1-cycle integer add or subtract,

2-cycle integer multiply, 36-cycle integer divide, 2-cycle load, 1-cycle store, 66-cycle average

cache miss latency, 4-cycle floating add or subtract, 4-cycle floating multiply, and 10-cycle

floating divide. All operations except for divides are pipelined.
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Figure 7-1. Performance of Rawcc parallelized applications on the hardware and on the sim-

ulator, with the targeted number tiles varying from one to 16. Each datapoint is normalized

against the single-tile execution time of the corresponding benchmark on the hardware.

The Beetle simulator has been verified against a gate-level RTL netlist of a 16-tile Raw

prototype chip and found to have exactly the same timing and data values for all 200,000 lines

of our hand-written assembly test suite. With the above benchmarks, we further validate the

simulator against a prototype Raw motherboard that consists of a single Raw chip, SDRAM

chips, I/O interfaces and interface FPGAs. This prototype only differs from the simulation

environment in one respect: the instruction memory system. The prototype contains 32 KB

of instruction memory per tile, and it relies on a fully software system to perform instruction

caching [31]. The simulator, on the other hand, can simulate up to 128 KB instruction

memory per tile, enough to fit the code for any of the benchmarks in our experiments.

Figure 7-1 shows the performance comparison between the simulator and the hardware

system as the targeted number of tiles is varied from one to 16.1 Magnified versions of these

graphs can be found in the appendix. In the graph, each datapoint is normalized against the

single-tile run-time of the corresponding benchmark on the hardware. Despite the difference

in the instruction memory systems, the run-times on the simulator are very close to that

'Currently unstructured cannot be run on the hardware because it uses specialized I/O for initialization.

109

25



Benchmark N=1 N=2 I N=4 N=8 N=16 N=32 N=64
sha 1.00 1.50 1.81 2.17 2.52 1.93 1.86
aes 1.00 1.45 2.46 3.49 4.66 4.36 4.22
fpppp-kernel 1.00 1.09 2.13 3.89 6.07 7.92 10.03
unstructured 1.00 1.65 2.97 3.32 3.57 3.44 3.32
moldyn 1.00 0.98 1.52 2.01 2.31 2.28 2.43
btrix 1.00 1.32 4.06 9.57 20.30 40.34 89.51
cholesky 1.00 1.63 3.93 7.29 10.28 10.14 9.80
vpenta 1.00 0.97 2.86 8.56 18.40 37.19 73.03
mxm 1.00 0.70 4.36 7.37 9.91 11.06 12.35
tomcatv 1.00 0.95 2.55 4.01 6.92 8.21 10.24
swim 1.00 0.86 2.62 5.16 9.67 18.68 28.58
jacobi 1.00 1.42 3.10 6.70 9.54 22.86 21.99
life 1.00 1.16 2.64 6.82 14.78 27.78 55.67

Table 7.2. Benchmark speedup versus performance on a single-tile.

on the hardware. The differences vary between 1% and 20% of the execution time on the

hardware, with an average difference of 8.3%. On 16 tiles, the average difference is 7.8%

with a worst case difference of 15%.

Having performed this simulation validation, the rest of the experiments will be conducted

on the simulator. The simulator gives us the flexibility to collect results for up to 64 tiles,

collect detailed operand statistics, as well as evaluate control decoupling in the presence of

long latency dynamic events.

7.2 Performance

I measure the speedup attained by Rawcc as we vary the number of tiles from one to

64. Table 7.2 shows these results. The results show that the Rawcc is able to exploit ILP

profitably across the Raw tiles for all the benchmarks. The average speedup on 64 tiles is

23.6.

The sparse matrix and irregular applications have parallelism that stresses the local-

ity/parallelism tradeoff capabilities of Rawcc. For these applications, the results show that

Rawcc is able to profitably exploit a modest amount of parallelism on four to eight tiles

despite the communication latencies.
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Figure 7-2. Rawcc speedup on 64 tiles for varying problem sizes.

As expected, the dense matrix applications perform particularly well because arbitrarily

large amount of parallelism can be exposed by loop unrolling. In some cases the speedup is

superlinear because cache capacity increases with the number of tiles, which in turn leads

to fewer cache misses. Currently, Rawcc unrolls loops by the minimum amount required to

guarantee the static residence property referred to in Section 3.2.3, which in most of these

cases expose as many copies of the inner loop for scheduling of ILP as there are tiles.

The dense matrix benchmarks have been parallelized on multiprocessors by recognizing

do-all parallelism and distributing such parallelism across the processors. Rawcc detects

the same parallelism by partially unrolling a loop and distributing individual instructions

across tiles. The Rawcc approach is more flexible, however, because it can schedule do-across

parallelism contained in loops with loop carried dependences. For example, several loops in

tomcatv contain reduction operations, which are loop carried dependences. In multiproces-

sors, the compiler needs to recognize a reduction and handle it as a special case. The Raw

compiler handles the dependence naturally, the same way it handles any other arbitrary loop

carried dependences.

Another advantage of Rawcc's ILP approach is that it has lower overhead than multipro-

cessor parallelization, which often requires large datasets before it can amortize away the
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overhead and attain speedups [2]. Figure 7-2 plots the speedup attained by Rawcc for a

selected subset of dense matrix applications as the problem size is varied. In the figure, the

problem size is the size of the primary array along its largest dimension. The figure shows

that Rawcc is able to attain decent speedups for both large and small datasets. Speedup

decreases gracefully as problem size decreases, and Rawcc is able to attain speedup even for

problem sizes as small as 16 data elements.

7.3 Comparison of instruction assignment algorithms

A focus of this thesis is instruction assignment, as it has been empirically observed to

have a high impact on performance. This section presents comparison of results for three

assignment algorithms: pSpats, Spats, and convergent scheduling. pSpats is an early version

of Spats originally described in [25]. Its assignment algorithm differs from Spats in two ways.

First, the clustering phase simply employs the clusters output from DSC. It does not per-

form the cluster refinement step, which enforces the constraint that at most one preplaced

instruction is in a single cluster. Second, the merging phase uses a communication minimiz-

ing, load-balancing algorithm that does not directly focus of parallelism distribution. Spats

is the algorithm described in Section 5. Convergent scheduling is the algorithm described in

Section 6.

Figures 7-3 and 7-4 show the results of these comparisons. The data can also be found in

tabular form in Tables A.1, A.2, and A.3 in the Appendix. The comparison between pSpats

and Spats are as follows. Spats perform much better on the dense matrix applications. On

16 tiles the improvement is 52%, while on 64 tiles the improvement is 82%. For non-dense

matrix applications, Spats performs a little worse, with a performance loss of about 11%

on 64 tiles. However, the performance of these applications peeks at 16 tiles as they do

not have enough parallelism to sustain 64 tiles. If we compare the performance at optimal

configuration of 16 tiles, the performance loss is only 2.4%.
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Overall, I find the the algorithmic improvements from Spats to be worthwhile, with an

overall improvement of 46% over pSpats on 64 tiles.

As Spats draws some of its algorithmic improvement for convergent scheduling, it is not

surprising that the performance of the two algorithms are very similar. For dense matrix

codes, convergent scheduling outperforms Spats by 10%, with a sigificant portion of the ad-

vantage coming from the single application vpenta. For non-dense matrix codes, it performs

5% worse. Overall, convergent scheduling performs 4.5% better than Spats.

7.4 Analysis of operands and communication

To help understand the degree of locality exhibited by the parallelized applications, the

section presents statistics on operand usage, measuring the fraction of operands consumed

that are locally generated versus those that are remotely generated.

7.4.1 Analysis of Operand Origins

Figure 7-5a analyzes the origins of operands on the tiles they are used. Fresh operands are

computed locally and make use of either the 0-cycle local bypassing or the local register file;

remote operands arrive over the inter-tile transport network; and reload operands originate

from a previous spill to the local data cache. The figure presents these results for each

benchmark, varying the number of tiles from 2 to 64. An operand is counted only once per

generating event (calculation by a functional unit, arrival via transport network, or reload

from cache) regardless of how many times it is used.

For the dense matrix applications, a large fraction of the operands, between 75% to 90%,

is local across all tile configurations. This fraction stays relatively constant as the number of

tiles increases. For these applications, this analysis suggests that the applications have much

inherent locality that Rawcc is able to exploit. In contract, the sparse matrix and irregular

applications have a much larger fraction of remote operands, and the fraction increases with
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the number of tiles. On 64 tiles, this fraction ranges from 20% (aes) to 60% (moldyn). For

these applications, the analysis suggests that Rawcc had to sacrifice a significant amount of

locality to exploit parallelism.

7.4.2 Analysis of Remote Operand Usage Pattern

I further analyze the remote operands from Figure 7-5a by their usage pattern. The data

measures the ability of the compiler to schedule sender and receiver instruction sequences so

as to allow values to be delivered just-in-time.

The remote operands at the receiver node are classified as follows. Hot-uses are directly

consumed off the network and incur no extra instruction cost. One-uses and Multi-uses are

first moved into the register file and then used - One-uses are subsequently used only once,

while Multi-uses are used multiple times. The study also considers whether the operand

arrives in the same order in which a tile uses them. A remote operand is in-order (1O) if all

its uses precede the arrival of the next remote operand; otherwise it is out-of-order (000).

Figure 7-5b shows the relative percentages of each operand class.2 Interestingly, a large

fraction of remote operands is single-use. Even for the few benchmarks that have a large

fraction of multi-use operands, that fraction rapidly decreases as the number of tiles increases.

This trend is consistent with the expectation that as Rawcc parallelizes across more tiles, a

multi-use operand on a machine with few tiles will likely become multiple single-use operands

on multiple tiles on a machine with more tiles.

7.5 Benefit of control decoupling

Rawcc attempts to statically orchestrate all aspects of program execution. Not all events,

however, are statically predictable. Dynamic events include cache misses, I/O operations,

and dynamic memory operations with unknown tile locations. This section measures the

2Due to how the compiler handles predicated code, a few of the benchmarks have remote operands that
are not consumed at all, which explains why a few of the frequency bars sum up to less than 100%.
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Figure 7-6. Speedup ratio of control-decoupled machine (Raw) over a lock-step machine in the

presence of cache misses, for the seven affected applications.

benefit of control decoupling on performance in the presence of these long-latency dynamic

events.

The study compare the effects of these events on two machine models. One is a faithful

representation of the Raw machine, which has control decoupling. The other machine is

identical to the Raw machine except that control on each tile executes in lock-step, mirroring

the execution style of a traditional VLIW machine. On the control decoupled machine, a

dynamic event only directly affects the tile on which the event occurs. Other tiles can

proceed independently until they need to communicate with the blocked tile. On the lock-

step machine, however, a dynamic event stalls the entire machine immediately. 3

Figure 7-6 plots the speedup ratio of a control-decoupled machine over that of a lock-

step machine. The figure only plots the seven applications whose differences in performance

between the two machine model are significant. For the remaining applications, the frequency

of cache misses is low and the performance ratio is less than 5% for any number of tiles.

If cache misses were randomly distributed events, one would expect the lock-step execu-

3Many VLIWs support non-blocking stores, as well as loads that block on use instead of blocking on miss.
These features reduce but do not eliminate the adverse effects of stalling the entire machine, and they come
with a potential penalty in clock speed.
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Figure 7-7. Speedup of a control decoupled machine over a lock-step machine, with insertion

of artificial cache misses with 5% probability and 100 cycles delay.

tion to perform worse progressively with increasing number of tiles. However, none of the

applications exhibits this behavior. For jacobi, the performance ratio saturates at 16 tiles.

This saturation effect occurs because for dense matrix applications, the instruction schedule

on each tile tend to be similar, so cache misses tend to occur at around the same time even

on control decoupled machines. Therefore, the performance ratio stops increasing after the

machine reaches a certain size.

The behavior for the other six applications all experiences a peak ratio for an intermediate

sized configuration and negligible performance difference at 64 tiles. This is because on

64 tiles, those applications have datasets that can fit in memory; thus they do not incur

any cache misses. On smaller number of tiles, however, cache misses do occur and their

performance on a lock-step machine experiences the expected degradation.

To get a feel for how much performance degrades on a lock-step machine for applications

with larger data sets and thus more cache misses, additional artificial dynamic disturbances

are inserted into the simulation. The disturbances are modeled as random events that happen

on loads and stores, with a 5% chance of occurrence and an average stall time of 100 cycles.

Figure 7-7 shows the speedup ratio of a control-decoupled machine over that of a lock-step
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machine in the presence of these disturbances. It shows the modest miss rate of 5% has

severe effects on lock-step performance. On 16 tiles, the average performance ratio is 2. Ix.

On 64 tiles, the average performance ratio worsens to 2.6x.

An expected trend is that memory latency will continue to increase in terms of clock

cycles. Therefore, I vary the memory latency and measure the speedup of a control decoupled

machine over a lock-step machine for 64 tiles. Figure 7-8 plots the results. The trend is that

the gap in performance between decoupled machine and lock-step machine increases with

increasing memory latency. The average performance ratio is 2.6x at 100 cycles and 3.Ox at

300 cycles.
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Chapter 8

Related work

This section presents related work. First, it discusses the applicability of Spats to partial

TPAs. It then discusses related work on ILP orchestration and control orchestration.

8.1 Partial TPAs

Though Spats is developed for a full TPA, its techniques may be applicable to partial

TPAs as well. For a partial TPA with a specific set of distributed resources, Table 3.2 can

be used to look up the phases that are relevant to those resources. In particular, instruction

management is the most performance critical part of Spats, and all partial TPAs distribute

their functional units. Therefore, the instruction partition and assignment algorithms of

Spats are applicable to partial TPAs.

Recent partial TPAs include Trips [33], and WaveScalar [40]. Table 8.1 summarizes the

level of distribution of these architectures as well as of Raw.

8.2 ILP orchestration

Raw shares much similarities with clustered VLIWs, which also statically schedule ILP

across distributed clusters of registers and functional units. In fact, Raw resembles the result
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11 Instructions [ Registers Control Dcache
Raw yes yes yes yes
Trips yes hierarchical no no
WaveScalar yes yes yes no

Table 8.1. A comparison of the level of resource distribution between Raw, Trips, and
WaveScalar. Each box answers whether a resource is distributed on an architecture.

of one effort to make clustered VLIW architectures more scalable via distributed instruction

and data caches and allowing decoupled execution between the clusters [30]. Therefore, it is

not surprising that much prior work in ILP orchestration can be found in VLIW research.

Of all prior work on ILP compilers, the Bulldog compiler [13] faces a problem that most

resembles that of Rawcc. Bulldog targets a VLIW machine that distributes not only func-

tional units and register files but memory as well, all connected together via a partial crossbar.

Therefore, it too has to handle preplaced instructions. Unlike Rawcc, however, Bulldog does

not have to handle distributed control or schedule communication.

Bulldog adopts a two-step approach, with an assignment phase followed by a scheduling

phase. Assignment is performed by an algorithm called Bottom-Up Greedy (BUG), a critical-

path based mapping algorithm that uses fixed memory and data nodes to guide the placement

of other nodes. Like the approach adopted by the clustering algorithm in Rawcc, BUG visits

the instructions topologically, and it greedily attempts to assign each instruction to the

processor that is locally the best choice. Scheduling is then performed by greedy list sched-

uling.

There are two key differences between the Bulldog approach and the Rawcc approach.

First, BUG performs assignment in a single step that simultaneously addresses critical path,

data affinity, and processor preference issues. Rawcc, on the other hand, divides assignment

into clustering, merging, and placement. Second, the assignment phase in BUG is driven

by a greedy depth-first traversal that maps all instructions in a connected subgraph with

a common root before processing the next subgraph. As observed in [28], such a greedy
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algorithm is often inappropriate for parallel computations such as those obtained by unrolling

parallel loops.

Most other prior work in ILP orchestration is on the management of instructions, the

most performance critical resources, on clustered VLIW architectures. Much of this research

focuses specifically on instruction assignment and relies on a traditional list scheduler to

perform scheduling. These algorithms do not account for preplaced instructions, and they

assume a uniform crossbar interconnect and thus do not perform placement like Rawcc does.

The following three algorithms fall under this category. The Multiflow compiler [28] uses a

variant of BUG described above. PCC [11] is an iterative assignment algorithm targeting

graphs with a large degree of symmetry. It bears some semblance to the Raw partitioning

approach, with a clustering-like phase and a merging-like phase. The clustering phase has a

threshold parameter that limits the size of the clusters. This parameter is adjusted iteratively

to look for the value that yields assignment with the best execution times. Because of

this iterative process that requires repeated assignment and scheduling, the algorithm is

time consuming. RHOP [9] is a hierarchical, multi-level assignment scheme. It consists of

two stages: coarsening and refinement. Coarsening attempts to group instructions on the

critical path, while offloading non-critical instructions to other clusters. During coarsening,

the algorithm forms a hierarchical grouping of instructions. At the lowest level, pairs of

dependent instructions are grouped together. Each subsequent level pairs up dependent

instruction groupings from the previous level. This grouping continues recursively until the

number of instruction groups is equal to the number of VLIW clusters. Refinen*ient takes the

result of coarsening and tries to improve its load balance by repeatedly moving instruction

groups from one cluster to another.

Other instruction management algorithms combine instruction assignment with other

tasks. UAS [34] performs assignment and scheduling of instructions in a single step, using a

greedy, list-scheduling-like algorithm. CARS [17] uses an even more unifying approach that
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performs assignment, scheduling, and register allocation in one step. This goal is achieved

by integrating both assignment and register allocation into a mostly cycle-driven list sched-

uler. Convergent Scheduler [26] constructs a compiler from many simple passes that may be

applied repeatedly. Each pass either addresses a specific issue (e.g., distributing parallelism)

or applies a specific heuristic (e.g., critical path first). Leupers [27] describes an iterative

approach based on simulated annealing that performs both scheduling and assignment on a

VLIW DSP.

The MIMD task scheduling problem is similar to Raw's ILP orchestration problem, with

tasks at the granularity of instructions. Rawcc draws its decomposed view of the problem

from this source. Sarkar [38], for example, employs a three step approach: clustering, com-

bined merging/placement, and temporal scheduling. Similarly, Yang and Gerasoulis [44]

use clustering, merging, and temporal scheduling, without the need for placement because

they target a machine with a symmetric network. Overall, the body of work on MIMD task

scheduling is enormous; readers are referred to [1] for a survey of some representative algo-

rithms. One major distinction between the problems on MIMD and on Raw is the presence

of preplaced instructions on Raw.

The structure of Rawcc is also similar to that of the Virtual Wires compiler [4] for map-

ping circuits to FPGAs, with phases for partitioning, placement, and scheduling. The two

compilation problems, however, are fundamentally different from each other because a Raw

machine multiplexes its computational resources (the processors) while an FPGA system

does not.

Many ILP-enhancing techniques have been developed to increase the amount of paral-

lelism available within a basic block. These techniques include control speculation [19], data

speculation [39], superblock scheduling [16], and predicated execution [3]. These techniques

can be used to increase the size of the scheduling regions in Spats.
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8.3 Control orchestration

Raw's techniques for handling control flow are related to several research ideas. Asyn-

chronous global branching, first described in [25], is similar to autonomous branching, a

branching technique for a clustered VLIW with an independent instruction cache on each

cluster [5]. Both techniques eliminate the need to broadcast branch targets by keeping a

branch on each tile or cluster.

It is useful to compare the result of control localization with predicated execution [29].

Control localization enables the Raw machine to perform predicated execution without ex-

tra hardware or ISA support, but at the cost of executing local branches. The cost of the

local branches, however, can be amortized across instructions with the same predicates. In

addition, control localization utilizes its fetch bandwidth more efficiently than predicated ex-

ecution. For IF-THEN-ELSE constructs, the technique fetches only the path that is executed,

unlike predicated execution which has to fetch both paths.

Control localization shares some techniques with hyperblock scheduling [3]. They both

employ if-conversion so that parallelism can be scheduled across branches. They also both

employ reverse if-conversion, but for different reasons. Control localization uses it to amortize

the cost of local branches across multiple instructions, while hyperblock scheduling uses it

to avoid an excessive amount of predicated code, which ties up compute resources and is

potentially of no value.

The idea of localizing the effects of branches to a subset of compute nodes can be found in

other research. Hierarchical reduction [22] collapses control constructs into a single abstract

node in software, so that the compiler can software-pipeline loops with internal control flow

on a VLIW. The idea can also be found in Multiscalar's execution model [39], where tasks

with independent flows of control are assigned to execute on separate processors.
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Chapter 9

Conclusion

This thesis describes techniques to compile ILP onto a TPA. It individually studies the

implication of resource distribution on ILP, for each the following resources: instructions,

registers, control, data memory, and wires. It designs novel solutions for each one, and it

describes the solutions within the integrated framework of a working compiler. The tech-

niques are implemented in the Rawcc compiler to target the Raw microprocessor, but they

are also applicable to other full or partial TPAs.

Rawcc manages all the distributed resources, including ALUs, register files, cache memo-

ries, branches (control), and wires. Because the resources are distributed, the spatial man-

agement or resources is critical. Of particular importance is the spatial assignment of in-

structions to tiles, and the compiler handles this task by combining borrowed techniques

from MIMD task scheduling with novel techniques that account for the non-uniform spatial

distribution of resources and the presence of preplaced instructions. Rawcc also explicitly

orchestrates the communication required for both operand transfer and control coordination.

Rawcc has been evaluated on both a simulator and the actual hardware. Results show

that Rawcc is able to attain modest speedup for fine-grained applications, as well speedups

that scale up to 64 tiles for applications with such parallelism. In addition, because Raw

supports control decoupling, it is relatively tolerant to variations in latency that the compiler
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is unable to predict.

TPAs are a solution to an increasingly important architectural problem: how to satisfy

the increasing demand for resources without relying on large centralized resources or global

wires that would lead to a slower clock. I envision that they will become more popular

with existing technological trends. By showing that the compiler can orchestrate ILP on

TPAs, this thesis helps make the case that TPAs are good candidates for general purpose

computing.
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Appendix A

Result tables and figures
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Figure A-1. Performance of Rawcc parallelized applications on the hardware and on the simu-

lator, part I. This is a magnification of Figure 7-1.
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Figure A-2. Performance of Rawcc parallelized applications on the hardware and on the simu-
lator, part II. This is a magnification of Figure 7-1.
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Benchmark N=1 [N=2 N=4 1 N=8 N=16 I N=32 N=64
sha 1.00 1.38 1.14 1.63 2.16 1.89 1.97
aes 1.00 1.48 2.05 3.52 4.23 3.73 3.74

fpppp 1.00 0.95 1.96 3.46 7.09 7.50 11.75
unstruct 1.00 1.67 3.11 2.97 3.43 3.98 4.01
moldyn 1.00 0.97 1.54 1.74 3.19 3.46 3.50
btrix 1.00 1.34 3.21 9.79 22.01 34.60 45.13
cholesky 1.00 1.31 2.99 5.29 8.03 10.21 10.87
vpenta 1.00 0.84 3.10 8.51 17.15 26.53 35.90
mxm 1.00 0.86 2.85 3.85 6.71 8.10 8.84
tomcatv 1.00 0.89 1.96 3.75 5.33 6.13 6.89
swim 1.00 0.92 1.69 3.22 5.22 11.44 16.19
jacobi 1.00 1.12 1.98 3.65 5.11 10.67 10.89
life 1.00 0.66 1.43 3.05 6.12 10.78 18.41

Table A.1. Benchmark speedup versus performance on a single-tile: pSpats.

Benchmark N=1 N=2 I N=4 N=8 N=16 N=32 [ N=64
sha 1.00 1.50 1.81 2.17 2.52 1.93 1.86
aes 1.00 1.45 2.46 3.49 4.66 4.36 4.22

fpppp 1.00 1.09 2.13 3.89 6.07 7.92 10.03
unstruct 1.00 1.65 2.97 3.32 3.57 3.44 3.32
moldyn 1.00 0.98 1.52 2.01 2.31 2.28 2.43
btrix 1.00 1.32 4.06 9.57 20.30 40.34 89.51
cholesky 1.00 1.63 3.93 7.29 10.28 10.14 9.80
vpenta 1.00 0.97 2.86 8.56 18.40 37.19 73.03
mxm 1.00 0.70 4.36 7.37 9.91 11.06 12.35
tomcatv 1.00 0.95 2.55 4.01 6.92 8.21 10.24
swim 1.00 0.86 2.62 5.16 9.67 18.68 28.58
jacobi 1.00 1.42 3.10 6.70 9.54 22.86 21.99
life 1.00 1.16 2.64 6.82 14.78 27.78 55.67

Table A.2. Benchmark speedup versus performance on a single-tile: Spats.

Benchmark N=1 N=2 N=4 N=8 N=16 N=32 [ N=64
sha 1.00 1.38 1.14 1.63 2.16 1.89 1.97
aes 1.00 1.48 2.05 3.52 4.23 3.73 3.74

fpppp 1.00 0.95 1.96 3.46 7.09 7.50 11.75
unstruct 1.00 1.85 3.18 3.60 3.23 2.86 3.00
moldyn 1.00 1.26 1.88 1.78 1.57 0.93 0.81
btrix 1.00 1.72 5.55 15.67 34.65 67.60 0.00
cholesky 1.00 1.82 4.75 8.97 10.50 10.45 9.92
vpenta 1.00 1.21 5.16 13.69 30.93 61.92 123.06
mxm 1.00 1.16 4.54 7.39 9.32 10.70 11.59
tomcatv 1.00 1.29 2.92 5.20 7.95 9.56 10.41
swim 1.00 1.19 2.59 4.83 9.57 19.64 31.20
jacobi 1.00 1.66 3.24 7.32 9.08 22.62 22.96
life 1.00 0.95 2.36 5.87 12.75 22.26 49.49

Table A.3. Benchmark speedup versus performance on a single-tile: Convergent.
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Benchmark N=1 J N=2 N=4 N=8 N=16
sha 1.00 1.51 1.86 2.24 2.58
aes 1.00 1.43 2.50 3.54 4.79
fpppp 1.00 1.06 2.05 3.73 5.81
moldyn 1.00 1.29 1.47 1.97 2.21
btrix 1.00 1.54 4.83 10.82 22.55
cholesky 1.00 2.03 4.61 8.13 11.36
vpenta 1.00 1.15 3.48 9.93 21.86
mxm 1.00 1.40 5.50 9.43 12.31
tomcatv 1.00 1.03 2.80 4.38 7.45
swim 1.00 0.89 2.64 5.02 8.72
jacobi 1.00 1.44 3.37 6.25 8.88
life 1.00 1.17 2.68 6.75 15.50

Table A.4. Benchmark speedup versus performance on a single-tile: Spats on chip
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Benchmark Ntiles 1Hotuse Oneuse OneuseOOO Muse MuseOOO

sha 02 21.09% 40.24% 84.14% 38.65% 72.47%
sha 04 25.55% 55.75% 73.55% 18.68% 70.27%
sha 08 34.34% 51.16% 71.84% 14.49% 68.21%
sha 16 39.94% 50.10% 71.05% 9.94% 56.49%
sha 32 46.16% 46.39% 67.20% 7.43% 42.04%
sha 64 48.63% 45.65% 63.87% 5.70% 48.51%
aes 02 37.22% 44.99% 82.71% 17.77% 56.25%
aes 04 47.98% 45.78% 92.51% 6.23% 54.99%
aes 08 43.53% 50.50% 88.20% 5.95% 39.12%
aes 16 56.56% 42.51% 84.85% 0.91% 0.00%
aes 32 56.79% 42.76% 82.12% 0.43% 0.00%
aes 64 56.46% 43.53% 83.85% 0.00% 0.00%
fpppp 02 78.15% 14.84% 88.38% 6.99% 87.67%
fpppp 04 58.53% 29.00% 85.20% 12.46% 92.21%
fpppp 08 55.56% 32.26% 75.26% 12.16% 86.11%
fpppp 16 43.95% 45.71% 74.72% 10.33% 76.70%
fpppp 32 39.32% 53.75% 71.63% 6.92% 71.94%
fpppp 64 25.49% 71.70% 73.28% 2.80% 63.40%
unstruct 02 37.15% 24.14% 75.06% 38.69% 82.78%
unstruct 04 18.50% 45.46% 77.70% 36.03% 80.05%
unstruct 08 21.67% 51.04% 74.58% 27.28% 87.00%
unstruct 16 23.23% 52.67% 78.65% 24.08% 89.90%
unstruct 32 30.29% 50.54% 76.17% 19.16% 89.39%
unstruct 64 43.07% 41.09% 77.18% 15.82% 88.02%
moldyn 02 13.00% 47.43% 57.22% 28.15% 89.28%
moldyn 04 13.38% 49.36% 71.62% 24.09% 88.06%
moldyn 08 16.66% 50.23% 69.67% 20.98% 88.96%
moldyn 16 23.37% 47.82% 68.28% 17.63% 95.30%
moldyn 32 23.03% 51.40% 70.80% 13.76% 95.54%
moldyn 64 23.99% 54.38% 71.79% 10.04% 93.37%
btrix 02 7.71% 91.88% 68.04% 0.39% 75.85%
btrix 04 21.68% 77.04% 61.78% 1.27% 75.36%
btrix 08 28.96% 68.80% 39.34% 2.22% 68.07%
btrix 16 49.75% 47.17% 40.02% 3.06% 63.05%
btrix 32 70.67% 26.87% 54.90% 2.44% 51.58%
btrix 64 77.91% 20.09% 73.89% 1.98% 62.57%
cholesky 02 26.54% 70.06% 50.76% 3.37% 34.57%
cholesky 04 36.06% 55.74% 46.56% 8.18% 74.31%
cholesky 08 40.38% 59.22% 44.56% 0.37% 65.69%
cholesky 16 58.45% 41.22% 34.54% 0.31% 49.48%
cholesky 32 67.33% 32.39% 44.90% 0.26% 47.76%
cholesky 64 77.38% 21.74% 46.63% 0.86% 86.39%

Table A.5. Operand analysis data, part I, as shown in Figure 7-5.
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Benchmark Ntiles Hotuse Oneuse OneuseOOO 11 Muse MuseOOO
vpenta 02 15.45% 83.79% 70.68% 0.75% 76.55%
vpenta 04 26.01% 69.59% 66.83% 4.39% 83.78%
vpenta 08 30.83% 61.15% 67.06% 8.00% 72.07%
vpenta 16 43.97% 53.00% 52.11% 3.01% 66.02%
vpenta 32 53.80% 43.18% 59.68% 3.01% 81.34%
vpenta 64 71.39% 26.31% 53.18% 2.28% 57.35%
mxm 02 12.13% 87.18% 86.62% 0.54% 83.07%
mxm 04 39.00% 58.99% 80.55% 1.63% 33.33%
mxm 08 52.17% 46.39% 78.21% 1.11% 1.32%
mxm 16 72.46% 26.05% 90.36% 1.47% 40.18%
mxm 32 86.53% 12.22% 92.54% 1.01% 0.00%
mxm 64 95.14% 4.11% 90.01% 0.74% 22.14%
tomcatv 02 12.57% 80.40% 72.54% 3.22% 98.12%
tomcatv 04 22.94% 66.34% 61.85% 4.81% 90.94%
tomcatv 08 20.53% 68.29% 65.25% 4.01% 85.52%
tomcatv 16 29.21% 59.04% 65.72% 3.94% 71.92%
tomcatv 32 48.47% 41.42% 66.81% 3.26% 70.26%
tomcatv 64 51.19% 41.43% 77.72% 2.52% 79.04%
swim 02 19.41% 78.57% 75.26% 2.00% 36.89%
swim 04 54.09% 40.02% 68.32% 5.80% 80.26%
swim 08 53.61% 39.28% 67.55% 6.96% 95.43%
swim 16 64.68% 31.67% 66.27% 3.50% 89.90%
swim 32 70.60% 23.53% 67.05% 5.73% 93.52%
swim 64 78.78% 19.66% 56.30% 1.44% 80.65%
jacobi 02 49.77% 49.93% 60.13% 0.29% 86.66%
jacobi 04 66.68% 32.95% 87.56% 0.35% 9.09%
jacobi 08 87.17% 12.45% 52.22% 0.36% 25.00%
jacobi 16 86.39% 13.30% 85.23% 0.29% 20.00%
jacobi 32 91.77% 7.91% 87.90% 0.30% 18.18%
jacobi 64 95.05% 4.67% 90.32% 0.27% 18.18%
life 02 99.82% 0.09% 92.30% 0.07% 40.00%
life 04 72.59% 27.26% 99.94% 0.14% 50.00%
life 08 54.72% 45.15% 98.00% 0.12% 16.66%
life 16 53.05% 46.78% 99.04% 0.15% 21.73%
life 32 52.03% 47.81% 99.98% 0.15% 26.08%
life 64 64.76% 35.10% 99.99% 0.13% 9.09%

Table A.6. Operand analysis data, part II, as shown in Figure 7-5.

134



Bibliography

[1] Ishfap Ahmad, Yu Kwong Kwok, and Min You Wu. Analysis, Evaluation, and Compar-
ison of Algorithms for Scheduling Task Graphs on Parallel Processors. In Proceedings
of the Second International Symposium on Parallel Architectures, Algorithms, and Net-
works, pages 207-213, June 1996.

[2] S. Amarasinghe, J. Anderson, C. Wilson, S. Liao, B. Murphy, R. French, and M. Lam.
Multiprocessors from a Software Perspective. IEEE Micro, pages 52-61, June 1996.

[3] David August, Wen mei Hwu, and Scott Mahlke. A Framework for Balancing Control
Flow and Predication. In 1997 MICRO, December 1997.

[4] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and A. Agarwal. Logic emulation
with virtual wires. IEEE Transactions on Computer Aided Design, 16(6):609-626, June
1997.

[5] Sanjeev Banerjia. Instruction Scheduling and Fetch Mechanism for Clustered VLIW
Processors. PhD thesis, North Carolina State University, 1998.

[6] Rajeev Barua. Maps: A Compiler-Managed Memory System for Software-Exposed Ar-
chitectures. PhD thesis, M.I.T., Department of Electrical Engineering and Computer
Science, January 2000.

[7] Rajeev Barua, Walter Lee, Saman Amarasinghe, and Anant Agarwal. Memory Bank
Disambiguation using Modulo Unrolling for Raw Machines. In 1998 HiPC, December
1998.

[8] Ping Chao and Lavi Lev. Down to the Wire - Requirements for Nanometer Design
Implementation. http://www.eet.com/news/design/features/showArticle.jhtml?article
Id=16505500&kc=4235.

[9] Michael Chu, Kevin Fan, and Scott Mahlke. Region-based Hierarchical Operation Par-
titioning for Multicluster Processors. In 2003 PLDI, pages 300-311, 2003.

[10] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently Computing Static Single Assignment Form and the Control Depen-
dence Graph. ACM Transactions on Programming Languages and Systems, 13(4):451-
490, October 1991.

135



[11] Giuseppe Desoli. Instruction Assignment for Clustered VLIW DSP Compilers: a New
Approach. Technical Report HPL-98-13, Hewlett Packard Laboratories, 1998.

[12] Marios Dikaiakos, Anne Rogers, and Kenneth Steiglitz. A Comparison of Techniques
Used for Mapping Parallel Algorithms to Message-Passing Multiprocessors. In Pro-
ceedings of the 6th IEEE Symposium on Parallel and Distributed Processing, October
1994.

[13] John R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, 1986.

[14] Linley Gwennap. Digital 21264 Sets New Standard. Microprocessor Report, October
1996.

[15] Ron Ho, Ken Mai, and Mark Horowitz. Managing wire scaling: A circuit perspective.
In IEEE Interconnect Technology Conference, June 2003.

[16] Wen-mei Hwu, Scott Mahlke, William Chen, Pohua Chang, Nancy Warter, Roger Bring-
mann, Roland Ouellette, Richard Hank, Tokuzo Kiyohara, Grant Haab, John Holm,
and Daniel Lavery. The Superblock: An Effective Technique for VLIW and Superscalar
Compilation. Journal of Supercomputing, 7(1):229-248, January 1993.

[17] Krishnan Kailas, Kemal Ebcioglu, and Ashok K. Agrawala. CARS: A New Code Gen-
eration Framework for Clustered ILP Processors. In 2001 HPCA, pages 133-143, 2001.

[18] Michael Kanellos. Sun kills UltraSparc V, Gemini chips, April 2004.
http://news.com.com/2100-1006_3-5189458.html?tag=nefd.top.

[19] Vinod Kathail, Michael Schlansker, and B. Ramakrishna Rau. HPL PlayDoh Architec-
ture Specification: Version 1.0. Technical report, HP HPL-93-80, February 1994.

[20] Kevin Krewell. 2004 in Review, December 2004. http://www.mdronline.com/
mpr-public/editorials/editl1852.html.

[21] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife Multipro-
cessor. In 1993 ICS, pages 195-206, 1993.

[22] M. S. Lam. Software Pipelining: An Effective Scheduling Technique for VLIW Machines.
In 1988 PLDI, pages 318-328, June 1988.

[23] M. S. Lam and R. P. Wilson. Limits of Control Flow on Parallelism. In 1992 ISCA,
pages 46-57, May 1992.

[24] Sam Larsen and Saman Amarasinghe. Increasing and Detecting Memory Address Con-
gruence. In 2002 PA CT, pages 18-29, 2002.

[25] Walter Lee, Rajeev Barua, Matthew Frank, Devabhatuni Srikrishna, Jonathan Babb,
Vivek Sarkar, and Saman Amarasinghe. Space-Time Scheduling of Instruction-Level
Parallelism on a Raw Machine. In 1998 ASPL OS, pages 46-57, 1998.

136



[26] Walter Lee, Diego Puppin, Shane Swenson, and Saman Amarasinghe. Convergent
Scheduling. In 2002 MICRO, 2002.

[27] Rainer Leupers. Instruction Scheduling for Clustered VLIW DSPs. In 2000 PACT,
pages 291-300, 2000.

[28] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, R. Nix, J. O'Donnell, and
J. Ruttenberg. The Multiflow Trace Scheduling Compiler. Journal of Supercomputing,
7(1):51-142, January 1993.

[29] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective
Compiler Support for Predicated Execution Using the Hyperblock. In 1992 MICRO,
pages 45-54, 1992.

[30] Scott Mahlke. Distributed VLIW. http://cccp.eecs.umich.edu/research/dvliw.php.

[31] Jason E Miller. Software based instruction caching for the raw architecture. Master's
thesis, Massachusetts Institute of Technology, May 1999.

[32] Samuel D. Naffziger and Gary Hammond. The implementation of the next-generation
64b Itanium microprocessor. In 2002 ISSCC, pages 344-345,472, February 2002.

[33] R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler. A Design Space Evaluation
of Grid Processor Architectures. In 2001 MICRO, pages 40-51, 2001.

[34] Emre Ozer, Sanjeev Banerjia, and Thomas M. Conte. Unified Assign and Schedule: A
New Approach to Scheduling for Clustered Register File Microarchitectures. In 1998
MICRO, pages 308-315, 1998.

[35] Diego Puppin, Mark Stephenson, Saman Amarasinghe, Una-May O'Reilly, and Mar-
tin C. Martin. Adapting Convergent Scheduling Using Machine Learning. In 16th In-
ternational Workshop on Languanges and Compilers for Parallel Computing, October
2003.

[36] Rodric Rabbah, Ian Bratt, Krste Asanovic, and Anant Agarwal. Versatility and
VersaBench: A New Metric and a Benchmark Suite for Flexible Architectures. Technical
Memo TM-646, MIT LCS, June 2004.

[37] Gang Ren, Peng Wu, and David Padua. A preliminary study on the vectorization of
multimedia applications for multimedia extensions. In 16th International Workshop of
Languages and Compilers for Parallel Computing, October 2003.

[38] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. Pit-
man, London and The MIT Press, Cambridge, Massachusetts, 1989. In the series,
Research Monographs in Parallel and Distributed Computing.

[39] G.S. Sohi, S. Breach, and T.N. Vijaykumar. Multiscalar Processors. In 1995 ISCA,
1995.

137



[40] Steve Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. WaveScalar. In
2003 MICRO, pages 291-302, 2003.

[41] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben
Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf,
Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant
Agarwal. Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Architecture
for ILP and Streams. In 2004 ISCA, pages 2-13, 2004.

[42] Elliot Waingold, Micheal Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee,
Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb,
Saman Amarasinghe, and Anant Agarwal. Baring It All to Software: Raw Machines.
Computer, pages 86-93, September 1997.

[43] Neil Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. Addison-
Wesley, Reading, MA, 1993.

[44] T. Yang and A. Gerasoulis. List Scheduling With and Without Communication. Parallel
Computing Journal, 19:1321-1344, 1993.

[45] T. Yang and A. Gerasoulis. DSC: Scheduling Parallel Tasks on an Unbounded Number
of Processors. IEEE Transactions on Parallel and Distributed Systems, 5(9):951-967,
1994.

138


