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Abstract
The mechanical properties of articular cartilage are associated with the extracellular
matrix network of type II collagen and the proteoglycan, aggrecan, which in com-
bination provide the tensile, shear, and compressive stiffness of the tissue. While
the collagen network mainly provides resistance to tensile and shear deformation,
aggrecan enmeshed within this network contributes significantly to the tissue's com-
pressive and shear properties under equilibrium as well as dynamic loading conditions.
Aggrecan has a "bottle-brush" structure that includes -100 negatively charged chon-
droitin sulfate glycosaminoglycan (CS-GAG) chains attached covalently to a core
protein. Electrostatic interactions between these GAGs contribute to the compres-
sive and shear stiffness of the tissue. Variations in the structure of aggrecan and its
GAG constituents are known to exist as a function of tissue age, disease, and species.

Using atomic force microscopy (AFM), we directly visualized the nanometer scale
structure of aggrecan deposited on a 2-D substrate, including the first high resolution
imaging of individual GAG chains along the core protein. We also visualized and
quantified the differences in structure between aggrecan obtained from fetal epiphy-
seal and mature nasal bovine cartilages. A combination of AFM, biochemical, and
polymer statistical methodologies was used to better understand the dependence of
aggrecan structure and stiffness on the properties of its constituent GAG chains. The
fetal epiphyseal aggrecan had a denser GAG brush region and longer GAG chains,
which correlated with a higher effective persistence length of fetal core protein com-
pared to that of mature nasal aggrecan. The effect of increasing the concentration of
aggrecan on the substrate resulted in a decrease in molecular extension, suggesting a
flexible protein core backbone, which allowed aggrecan to entangle and interact with
neighboring molecules. AFM imaging of the conformation of aggrecan that had been
deposited on substrates from solutions of varying ionic strength (IS), from DI water
to the physiological IS of 0.1 M NaCl, allowed for direct visualization of the collapse
of the molecule on the substrate at the highest IS, due to charge shielding of the
CS-GAGs by by Na+ counter-ions.

Lastly, the nanomechanical properties of cartilage cells (chondrocytes) and their
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aggrecan-collagen-rich pericellular matrix (PCM) were probed via AFM nanoindenta-
tion using both a sharp nano tip and a larger micro-colloidal tip to better understand
the deformation of cells in cartilage. The properties of cells freshly isolated from
cartilage tissue, devoid of PCM, were compared to that of cells isolated and then cul-
tured for selected times in 3-D alginate gel to obtain cells surrounded by their newly
developed PCM. Using Hertzian contact mechanics as well as finite element analyses,
material properties were estimated from the AFM force-indentation curves measured
with these cell preparations. We also studied the effects of culture conditions on the
resulting PCM properties, comparing 10% fetal bovine serum vs. medium contain-
ing a combination of insulin growth factor-i (IGF-1) + osteogenic protein-i (OP-1).
While both systems showed increases in matrix stiffness with time in culture between
days 7 to 28, the IGF-1 + OP-1 combination resulted in a higher effective modulus
for the cell-PCM composite. These AFM cell indentation studies were enabled by
the use of microfabricated chips containing wells designed to immobilize the spherical
chondrocytes during testing. Due to the nonconventional but known geometry of the
microfabricated wells, finite element analysis was used to include the effects of the
cell-well boundary conditions and tip geometries on the calculated cell-PCM mate-
rial properties. Taken together, these studies examining cartilage mechanics at the
molecular and cellular levels give insight into the intricate roles that proteoglycans
and collagen play in governing tissue-level mechanical properties.

Thesis Supervisor: Alan J. Grodzinsky
Title: Professor of Electrical, Mechanical, and Biological Engineering

Thesis Supervisor: Christine Ortiz
Title: Associate Professor of Materials Science and Engineering
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Chapter 1

Introduction

1.1 Motivation

Articular cartilage is the white connective tissue that covers the ends of articulating

bones. It acts to absorb loads and shocks as well as protect bones from rubbing

against each other. This tissue is unique in that it is avascular and aneural. Because

little blood supply is available, damaged cartilage is slow to heal if at all. Cartilage

mechanical properties come from the delicate balance between the tensile collagen

network as well as the compressive resistance of the proteoglycans (PGs). Any alter-

ation to this balance can lead to osteoarthritis (OA), the degeneration of cartilage.

Over 20 million in the US are affected with OA [96], and incidences will only increase

as the average lifespan is extended by new medical technologies. Little can be done

to reverse OA, and those with severe OA must undergo total joint replacement. Un-

(lerstanding the molecular origins responsible for tissue-level properties may help to

elucidate the role of each component to overall structural behavior, and may provide

clues into molecular changes that OA tissue may undergo.

1.2 Objectives

Aggrecan, the major PG in cartilage, is responsible for >50% of the compressive mod-

ulus [14]. The structure and dense packing of the negatively charged glycosamino-
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glycans (GAGs) along the core protein impart this molecule with the ability to resist

compression. Aggrecan structure has been deduced through a series of biochemical

analyses. However, the molecular details of individual molecules are lost in biochem-

ical assays which give measurements of ensembles of molecules. Larger aggregates of

aggrecan self-assembled along a hyaluronan backbone have been visualized via trans-

mission electron microscopy (TEM). However, the fine structure of the GAG chains

and their attachment to the core protein could not be not clearly resolved. With

the advent of atomic force microscopy (AFM), nano- and micro- scale measurements

could be obtained accurately of single molecules in their native state. Therefore, the

first goal of this thesis was to use AFM to directly visualize individual aggrecan from

two different populations with nanometer resolution and then relate its structure to

its resultant equilibrium conformation.

Collapse of end-grafted GAG chains [119] and end-grafted aggrecan [24] surfaces

have been measured through changes in height from ellipsometry measurements and

AFM imaging. With compression of cartilage during loading or changes in the local

environment, the interaction of aggrecan with neighboring molecules may be altered,

leading to mechanical changes to the tissue level. Extending upon the first goal to

look at aggrecan-aggrecan interactions, three surface densities were prepared to give

insight into the resultant conformation as the molecule density increased to a point

where aggrecan interacted with neighboring aggrecan. In addition, the dependence of

individual aggrecan conformation in varying ionic strengths from low to physiologic

conditions was visualized via AFM and its conformation quantified with changes in

contour length.

Third, the mechanical properties of newly synthesized of aggrecan and collagen

from chondrocytes were assessed via nanoindentation of developing pericellular ma-

trix (PCM). The mechanical properties of chondrons, adult chondrocytes with a fully

developed PCM, have been found to be an order of magnitude stiffer than the cell

itself. However, enzymatically isolated chondrocytes seeded into scaffolds developed

a PCM with a more diffuse appearance than native chondrons [73] and may have

significantly different mechanical properties, which may have implications in tissue
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engineering near-native cartilage constructs. Finite element analysis was employed

to extract a modulus from AFM indentation curves on individual cells plus PCM. To

obtain AFNM measurements on non-adherent spherical cells, a surface was microfab-

ricated to immobilize the cells during indentation.

1.3 Overview

This thesis starts with a general overview to give the reader a basic background on

the topics pertinent to the series of experiments and models used in this project. A

short description of AFM, cartilage components such as aggrecan and chondrocytes,

as well as culture conditions are described. In Chapter 2, molecular resolution of two

populations of individual aggrecan, fetal epiphyseal and mature nasal, was obtained

via AFMI. Structural differences in GAG length and density were correlated to confor-

mational differences. The effects of aggrecan density and ionic strength on aggrecan

conformation were further explored in Chapter 3. In Chapter 4, the combination of

aggrecan, collagen, and other matrix molecules that were newly synthesized into the

pericellular matrix were probed with a nano-size AFM tip and a micro-size colloidal

tip. A surface was microfabricated to immobilize individual cells during indenta-

tion. Finite element analysis was implemented to more precisely analyze the force vs.

indentation curves obtained via AFM.

1.4 Background

1.4.1 Atomic Force Microscopy

The design of atomic force microscopy was first described by Binnig et al. in 1986 [8].

As seen in Figure 1-1, a laser aligned at the tip of a low spring constant cantilever

is deflected into a photodetector. The spring constant must be matched with the

surface being probed. Biological samples in particular are generally delicate and

require a low spring constant (e.g. k - 0.06 N) to minimize damage to the surface.

As the stylus (Re < 50 nm) located at the tip of the cantilever traces the topology,
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the soft cantilever deflects causing movement of the laser across the quadrants of the

photodetector. This "error" signal is part of the feedback loop being sent to the

computer which then tells the piezo to correct for the error. The piezo sits below the

sample of interest and adjusts the sample height in order to minimize the amount of

force from the tip. Thus, there are two types of signals in the end. One signal (height

data) comes from the piezo tracking the features. The other signal (deflection data)

comes from the error recorded from the photodiode segment differences.

I. can

VI. 

Figure 1-1: Schematic of AFM details from deflection of a cantilever tracking the
topology of a sample to the recording of height and deflection data. Courtesy of C.
Ortiz.

AFM has the ability to resolve angstrom and nano-level forces and features of

molecules, proteins, or cells in their native state since no fixation or special coating is

required [120, 123]. Simultaneous mechanical testing of viscoelasticity, adhesion, and

friction measurements can be carried out on the same sample being imaged [52, 47].

Sample preparation is extremely important and varies depending on the sample type.

If nanometer-sized objects are being measured, special care must be taken to ensure

the cleanliness of the sample. At this length scale, small pieces of dust or oil from

fingerprints can be seen and introduce artifacts into the image or force measurement.

AFM can yield direct proof of biochemical findings and can inspire new directions for

biochemical investigation.
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1.4.2 Cartilage

Articular cartilage is the white connective wear resistant tissue that covers the ends of

articulating bones. It is designed to transmit and distribute loads during joint motion.

Healthy articular cartilage has a smooth, shiny appearance whereas osteoarthritic

cartilage has a rough, calcified appearance (Figure 1-2). The dense cartilage matrix

is composed mainly of a network of collagen fibrils and charged macromolecules known

as proteoglycans (Figure 1-3). Collagen is responsible for the tensile component [81]

while aggrecan, the main PG, is responsible for > 50% of the compressive modulus

of cartilage [14]. Normal hydrated cartilage weight is mostly water at 70-85%, with

10-20% collagen, and 5-10% proteoglycan [89].

(a) Healthy articular cartilage (from young bovine (b) End-stage osteoarthritic carti-
condyles) has a smooth, shiny white appearance. lage shows calcification and appears
Courtesy S. Chen. rough.

Figure 1-2: Comparison of healthy articular and end-stage osteoarthritic cartilage.

Variation of structure and composition of cartilage is seen with depth [81, 4, 46,

89]. The top r10-20%, known as the superficial layer, is characterized by the parallel

arrangement of collagen to the surface and the highest collagen content. The next

-40-60%, known as the middle layer, is characterized by the random arrangement of

collagen. The last 30%, the deep layer, is characterized by perpendicular arrange-

ment of collagen to the growth plate (Figure 1-4) [125]. PG content has been found

to increase with depth from superficial to deep cartilage [62]. Chondrocyte matrix
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Figure 1-3: Cartilage is composed mainly of collagen, responsible for the tensile
integrity, and aggrecan, responsible for the compressive resistance. Chondrocytes
occupy <10% volume but are responsible for the catabolism and anabolism of all
matrix molecules.

synthesis has also been found to vary in a zonal fashion [4].

I superficial zone

middle zone

deep zone

-- bone

Figure 1-4: Diagram of collagen structure in cartilage. In the superficial zone, collagen
is parallel to the surface whereas it is randomly oriented in the middle zone. In the
deep zone, collagen is perpendicularly oriented to the bone.

1.4.3 Aggrecan

Aggrecan, the main proteoglycan in cartilage, self assembles non-covalently, stabilized

by link protein [10], along a larger hyaluronan chain into a larger aggregate (Fig 1-

5(a)). Aggrecan is composed of a core protein of '-2300 amino acids [28, 55] with a
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dense brush region of 100 covalently attached GAG chains, giving it a molecular

weight of 2-3.106 Da (Figure 1-5(b)). The core protein has three globular domains

(G1, G2, and G3.) G1, at the N-terminus, interacts with link protein, through their

immunoglobulin folds [49]. G2 has a similar structure to G1 but does not participate

in binding. The GAG brush lies between G2 and G3. The function of G2 and G3,

the latter located at the C-terminus, is unknown.

· . v- ! !r, i~ r~r1 - ' I 1-"- I' ,-'- rl ,

(

Figure 1-5: (a) Transmission electron micrograph of aggrecan self-assembled along a
hyaluronan backbone, forming a large aggregate [13]. (b) Diagram of aggrecan with
-30 kDa GAGs attached every 2-3nm along the -250kDa core protein. (c) Disac-
charide repeats, D-glucuronic acid (GlcUA) and N-acetyl-D-galactosamine (GalNAc)
Ifated at C-6, that form GAG chains of chondroitin sulfate.

The GAGs are composed of linear chains of chondroitin sulfate (CS) that are made

of repeat disaccharides D-glucuronic acid (GlcA), containing a carboxyl group, and N-

acetyl-D-gal.actosamine (GalNAc), which can be sulfated at the C-4 or C-6 positions

(Figure 1-5(c)), giving each disaccharide 1-3 negative charges when fully ionized. CS-

GAGs are usually 20-30 disaccharides in length and the chains are attached at the

serine-glycine residues, every 2-4 nm along the core protein. Therefore, each aggrecan

can have as many as 3 charges/disaccharide x 30 disaccharides/chain x 100 chains

9000 negative charges. This high aggrecan charge density along with aggrecan
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concentration (20-80 mg/ml) is responsible for >50% of the compressive modulus of

articular cartilage [14]. With age, structural changes such as increase in keratan

sulfate content [7] and C-6 sulfation [26] occurs.

1.4.4 Chondrocytes and their Pericellular Matrix

While chondrocytes make up <10% of cartilage volume, they are responsible for the

anabolism, catabolism, and assembly of the extracellular matrix (ECM) molecules.

Studies at the cell and tissue level have helped to elucidate the composition of the peri-

cellular, territorial, and interterritorial matrix surrounding the cells. The pericellular

matrix (Figure 1-6), located immediately around the cell, differs from extracellular

matrix composition in that it contains a higher concentration of proteoglycans and

hyaluranon as well as collagen type VI, a key marker of the PCM [106, 104, 17].

Small amounts of fibronectin [39] and its colocalisation with col VI, and other smaller

molecules of decorin, col IX, and col XI have been visualized with immunohistochem-

istry [17]. Adult cartilage contains a well defined chondrocyte plus PCM, termed a

chondron. While the microstructure of the chondron is not well understood, scan-

ning electron microscopy has revealed collagen fibers organized to form a woven,

dense capsule around the PCM [106]. In immature tissue and enzymatically isolated

chondrocytes seeded and cultured in a 3D scaffold, there is no well-defined chondron

morphology. The newly developing PCM appears as a diffuse halo in immunohisto-

chemistry images [73].

The PCM pays an important role though biomechanical modulation of the stresses

and strains and by biochemical regulation of signals being sent to the cell. Static

compression has been shown to decrease biosynthesis [44] and transcription [133, 32].

However, dynamic compression of cartilage explants have been shown to increase

biosynthesis [65] and transcription levels [31, 33]. The hierarchical structure in artic-

ular cartilage has been shown to modulate the stresses and strains felt by chondro-

cytes during loading as shown in previous finite element models as the elastic modulus

varies by two orders of magnitude from bulk cartilage to the PCM to the cell [45].

The chondrocyte modulus ranges from 0.65 to 4 kPa [63, 74, 38] while the chondron
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Figure 1-6: Histology articular cartilage: A chondrocyte with surround pericellular
matrix (Prm) and the extracellular matrix (EC). Scale bar = 10/im. [103]

modulus is an order of magnitude higher at -40 kPa [2]. Cartilage tissue modulus is

yet another order of magnitude higher at -1 MPa. The biomechanical properties of

individual chondrocytes and adult chondrocytes plus their pericellular matrix (PCM)

have been studied by micropipette aspiration [43, 132, 1] and confocal microscopy [46,

67]. Enzymatically isolated chondrocytes attached to substrates have been measured

via cytoindentation [68, 74]. A decrease in PCM modulus of osteoarthritic cartilage

has been measured via micropipette aspiration [73, 1] and volume [63, 56].

1.4.5 Growth Factors as Culture Supplements

Fetal bovine serum (FBS) has been the traditional supplement used in cartilage ex-

plant and tissue culture systems to maintain chondrocytes and stimulate production

of proteoglycans [51, 66]. While FBS contains a number of proteins, growth factors,

amino acids, sugars, and lipids, it has been found that insulin-like growth factor-I

(IGF-1) is the main stimulating component in FBS [84, 79]. In an effort to further

enhance the metabolic and anabolic activities of chondrocytes in culture, the addi-

tion of other growth factors to culture medium has been investigated by a few groups.

The addition of of osteogenic protein-1 (OP-1), a bone morphogenetic protein that
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induces new bone formation, has been found to stimulate both proteoglycan and col-

lagen synthesis in cartilage explants and chondrocyte cultures [35, 97]. In an effort to

enhance growth over that of FBS, the combination of IGF-1 + OP-1 was used for cul-

ture supplement and found to induce proteoglycan synthesis over two times medium

supplemented with only IGF-1 and only OP-1 [77]. Therefore in our chondrocyte

studies, two culture conditions (FBS vs. IGF-1+OP-1) were tested for influence on

mechanical properties of PCM.

1.4.6 Alginate

Chondrocytes plated onto Petri dishes dedifferentiate into fibroblastic-like cells and

decrease aggrecan and col II synthesis [9, 75]. Therefore, chondrocytes require a

3D environment to retain their spherical phenotype. Alginate has been successfully

used as a scaffold to culture chondrocytes [53, 54, 19]. The novelty of this scaffold

over other scaffolds in that it can be depolymerized easily with a calcium chelator

such as sodium citrate, releasing the cells undamaged. The cells retain their cell-

associated matrix, thus making it possible to identify matrix molecules in the newly

developing pericellular matrix from molecules released into the inter-territorial space.

More recently, Masuda et al. [82], released day 7 chondrocytes plus their PCM from

alginate, reseeded them into a culture insert (polyethylene terephthalate membrane),

and produced a cartilaginous tissue a week later, much faster than enzymatically

isolated chondrocytes seeded into a scaffold, indicating that the newly developing

matrix aided in synthesis and retention of ECM molecules.

1.5 Overall Goals

We hope to understand the complexities of molecular interaction that result in tissue

level properties by studying structure and mechanics at the molecular and cellu-

lar levels. The overall hypothesis is that structure at the nanoscale is important for

tissue-level mechanical properties. The first goal was to investigate the effect of nanos-

tructure of aggrecan on its molecular conformation through visualization with AFM.
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The second goal was to quantify the effect of aggrecan density and ionic strength on

aggrecan conformation. Lastly, the mechanical properties of and the effect of growth

factors on single chondrocytes and their newly synthesized matrix, which is rich in

aggrecan, were studied on the nano- and micro-length scales via AFM.
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Chapter 2

Individual Cartilage Aggrecan and

Their Constituent

Glycosaminoglycans Visualized via

Atomic Force Microscopy

This chapter was published as a paper in Journal of Structural Biology in 2003 [95].

Authors: Laurel J. Ng, Alan J. Grodzinsky, Parth Patwari, John Sandy, Anna

Plaas, Christine Ortiz

2.1 Introduction

Aggrecan, the major load-bearing proteoglycan in the extracellular matrix of all car-

tilaginous tissues, is composed of a 300kDa core protein substituted with -100

chondroitin sulfate (CS) and, in some species, keratan sulfate (KS) glycosaminogly-

can (GAG) chains (Figure 2-1). Aggrecan is a member of the hyaluronan (HA)-

binding proteoglycan family (which also includes brevican, neurocan and versican)

and associates noncovalently with HA and the 45kDa link glycoprotein to form

high molecular weight aggregates (> 200 MDa). In cartilage, these aggregates form

a densely packed, hydrated gel that is enmeshed within a network of reinforcing col-
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lagen fibrils. Electrostatic repulsion forces between the highly negatively charged

GAGs of aggrecan are known to provide > 50% of the equilibrium compressive mod-

ulus of cartilage [14, 81]. Structural variations are known to exist as a function of

age, disease, and species, including differences in GAG chain length, sulfate ester sub-

stitution, and KS and CS substitution [101, 102]. It is also known that progressive

C-terminal truncation of the core protein by proteolytic enzymes takes place with

increasing maturation [10, 13, 29, 34, 98, 118].

CS

IC

Figure 2-1: Structure of aggrecan. N=amine-terminal; Gi, G2, G3=globular do-
mains; IGD=interglobular domain between G1 and G2; cp=core protein; KS=keratan
sulfate region; CS=chondroitin sulfate brush region; GAG=glycosaminoglycan chains;
C=carboxyl-terminal.

Aggrecan, HA, and CS have been studied in solution by biophysical techniques

such as small angle neutron scattering (SANS), quasielastic light scattering (QELS),

X-ray Diffraction (XRD), nuclear magnetic resonance (NMR), sedimentation, and vis-

cosity [20, 21, 50, 83, 99], as well as biochemical techniques such as electrophoresis and

chromatography. This extensive body of literature is largely based on polydisperse

populations of molecules, so the fine details of molecular heterogeneity, conformation,

and structure at the level of the individual aggrecan molecule have not yet been ob-

tained. Such molecular-level information is often crucial for theoretical models that

are used to predict molecular interactions and macroscopic tissue behavior [25, 119].

Electron microscopy (EM) imaging has been used successfully to visualize fixed, dried,

and metal-coated samples of cartilage proteoglycan aggregates as well as individual

aggrecan monomers and reveal the presence of a thick CS-brush region and a thinner
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segment attached to HA [11, 87, 113]. While individual CS-GAG chains were occa-

sionally resolved, they often appeared as collapsed bundles, making determination of

their number, spacing, dimensions, and conformation difficult.

With the advent of high resolution atomic force microscopy (AFM), chemically

and positionally sensitive force spectroscopy, nanoindentation, and the direct visu-

alization and probing of numerous biological macromolecules (including DNA, pro-

teins, and polysaccharides) in fluid and ambient conditions, nm-scale resolution has

been achieved. Measurements have been made of the dimensions and conforma-

tion (e.g. persistence length and entanglements), supramolecular association, and

nanomechanical properties of individual macromolecular chains in physiological and

near-physiological conditions [111, 120, 121, 138]. Researchers have recently begun

to use these new nanotechnological tools in the study of cartilage and its constituent

extracellular matrix (ECM) macromolecules. Fluid AFM and nanoindentation of ar-

ticular cartilage sections, both native and after partial enzymatic digestion of the

ECM proteoglycans, allowed for visualization and nanomechanical probing of the col-

lagen fibril network [23, 59, 64]. Individual bovine articular cartilage aggrecan forms

'were observed by AFM [92, 93], and reconstruction techniques that take into account

the finite size and shape of the probe tip were employed to infer further structural in-

formation [1.30]. Recently, we reported the distinct resolution of the non-GAGylated

N-terminal region from the CS/KS-substituted "brush" region, as well as visualization

of the individual CS-GAG chains of bovine cartilage aggrecan via AFM [94]. Here,

we expand these initial studies and give a detailed quantitative comparison between

bovine fetal epiphyseal and mature nasal cartilage aggrecan using a combination of

biochemical. AFM, and polymer statistical methodologies. Our long term goal is

to use these sample preparation, imaging, and data analysis techniques in conjunc-

tion with nanomechanical testing to gain insights into the function of cartilage ECM

constituents.
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2.2 Materials and Methods

2.2.1 Purification of Cartilage Aggrecan

Mature nasal cartilage from 18 month old bovines was removed, washed in ice-cold

50 mM sodium acetate, pH 7.0, containing a mixture of protease inhibitors, and stored

on ice until further processing. The tissue was cut into 3x3 mm2 pieces and extracted

in 4 M guanidium hydrochloride, 100 mM sodium acetate, pH 7.0, with protease in-

hibitors for 48 hours. Unextracted tissue residues were separated by centrifugation,

and the clarified supernatant dialyzed against two changes of 100 volumes of 0.1 M

sodium acetate, pH 7.0, with protease inhibitors [11, 50]. Fetal bovine cartilage was

obtained from the epiphyseal growth plate region, processed, and stored as described

above. Purified aggrecan fractions (AlAlDiD1) were dialyzed consecutively against

500 volumes of 1 M NaCl and deionized water to remove excess salts. Aggrecan yield

was determined by the dimethyl methylene blue (DMMB) dye binding assay [30].

2.2.2 Biochemical Characterization of Aggrecan and GAGs

Aggrecan preparations were analyzed for core protein heterogeneities by SDS-Page

and Western Blot analyses. Briefly, about 200 ug of fetal and 200 ug of mature ag-

grecan were digested at 370C in Chase buffer containing 30 mU chondroitinase ABC

(ChABC), 0.5mU keratanase II, and 0.5mU endobetagalactosidase. For Western

analysis, 10% of each sample was lyophilized and then resuspended in a sample buffer

of DTT (dithiothreitol), urea, and Tris-Gly SDS 2x sample buffer (BioRad Laemmli

#161-0737). The sample was heat inactivated, loaded onto a 4-12% Tris-Gly gel, and

the gel was run at 200 V for 40 min. in an ice bath. Transfer to the blotting membrane

was run at 100 V for 1 hr, and the membrane was blocked with TBS-T (Tris-buffered

saline with Tween 20) with 1% dry nonfat milk for 10 minutes. The blots were probed

with affinity-purified antibodies [118] to either the aggrecan G1 domain (JSCATEG)

or to the G3 domain (JSCTYK).

To determine the hydrodynamic radius of the CS-GAG chains, aggrecan prepa-
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rations (200 ug as sulfated (S)-GAG) were first digested with 1.5 units/ml of papain

in 0.1 M sodium acetate, pH 6.5. Desalting and separation of the CS from KS chains

were clone on a G50 sizing column. CS chains were liberated from the core protein by

b-elimination in 100 mM sodium borohydride and 100 1 M NaOH [26]. Excess borohy-

dride was reduced by addition of 50% acetic acid and samples rinsed with methanol.

The dried samples were suspended in 0.5 M ammonium acetate, pH 7.3, assayed for

CS content using DMMB, and eluted on Superose 6 FPLC column (Amersham Phar-

macia Biotech) chromatography. Fractions (0.5 ml) were collected at 0.5 ml/min and

assayed for S-GAG contents by DMMB, and the average chain lengths of CS (number

average disaccharides per chain) were computed from the Kav of the peak elution [26].

GAG compositional analyses were performed by fluorophore assisted carbohydrate gel

electrophoresis (FACE) using methods described in detail previously [15, 101].

2.2.3 Sample Preparation for AFM

Muscovite mica surfaces (SPI Supplies, West Chester, PA, #1804 V-5) were treated

with 0.01% 3-aminopropyltriethoxysilane (APTES; Sigma Aldrich Co., St. Louis,

MO) v/v MilliQ water (18 MQ-cm resistivity, Purelab Plus UV/UF, US Filter, Low-

ell, MA). 60 ll of APTES solution was deposited onto freshly cleaved mica, incubated

for 20-30minutes at room temperature in a humidity controlled environment, rinsed

gently with MilliQ water, and air dried. The silanol groups on the muscovite mica

[KA12[A1Si3]Olo(OH) 2] were covalently bound to APTES via aminosilane chemistry

to leave an amine group exposed on the mica surface (Figure 2-2). The rms roughness

of the APTES-mica was measured to be 9.9 A by tapping mode AFM in air. X-Ray

Photoelectron Spectroscopy (XPS) was used to verify the amine-functionalization of

the surface by comparison of the fluorine-to-nitrogen ratio after the surface amines

were reacted with trifluoroacetic acid anhydride (Figure 2-3). The aggrecan sur-

face monolayer density was controlled via the solution concentration and incubation

time. Dense monolayers were obtained by placing -30 Il aliquots of aggrecan so-

lution containing of 500 g/ml GAG (measured from DMMB) on the surface for

30-40 minutes, while sparse monolayers of well-separated aggrecan monomers were
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agFigure 2-2: AFM sample preparation. Silanol greoups on the mican surface were

Figure 2-2: AFM sample preparation. Silanol groups on the mica surface were
functionalized with 3-aminopropyltriethoxysilane (APTES) producing surface amine
groups (pKa=10.5) which were protonated in the neutral buffered solution used for
adsorption. This positively-charged AP-mica surface facilitated electrostatic binding
with the negatively-charged COO- and SO3- groups on the GAG chains to hold the
aggrecan noncovalently on the surface.

obtain using 60 ul aliquots of 250 g/ml GAG incubated for only 20-30minutes.

After incubation, the samples were gently rinsed in a stream of MilliQ water and

air dried. Electrostatic interaction between the APTES-mica and the aggrecan GAG

chains enabled retention of a population of aggrecan despite rinsing. Samples were

imaged within a day of preparation.

2.2.4 AFM Imaging

The Nanoscope IIIa Multimode AFM (Digital Instruments (DI), Santa Barbara, CA)

was used to image all samples via the EV or JV scanners. Tapping mode (TMAFM)

was employed in ambient temperature and humidity using Olympus AC240TS-2 rect-

angular Si cantilevers (k = 2N/m). Scanning electron microscopy (SEM, JOEL

6320FV) was employed to characterize the probe tip (Figure 2-4) and typical end-radii

were found to be <10 nm. The cantilever was driven just below resonance frequency,

wO, and a slow scan rate of 1-3Hz was used to minimize sample disturbances giv-
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Figure 2-3: Characterization of AP-mica. XPS data of the AP-mica surface show the
presence of fluorine and nitrogen. The inset is a higher magnification of the nitrogen
and fluorine peaks, which shows a 3:1 ratio of N:F confirming the presence of amine
groups on the mica surface.

ing a scan rate that was much slower (<25,000x) than the tap rate. The maximum

sample size of 512 x 512 pixels was used. The system was allowed to pre-equilibrate

for at least 30 minutes prior to imaging to minimize drift. The drive amplitude and

amplitude set-point were maximized to get the fullest peak upon tuning. Gains were

chosen to maximize either the height image (gains -0.65) or the amplitude image

(gains 0.1). The RMS amplitude (-27 nm) of the cantilever oscillation at resonance

frequency was determined by increasing the Z scan start and plotting the amplitude

vs. z-position on the force calibration plot in tapping mode. At these z-amplitudes,

attractive forces due to any water meniscus capillarity are overcome [128]. The x-

and y- scan directions were calibrated with a 10x10ltm2 grid. The z-direction was

calibrated with 5 nm diameter beads on a cleaved mica surface. The scans were tested

for typical AFM imaging artifacts by varying scan direction, scan size, and rotating

the sample.
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Figure 2-4: SEM of tapping mode probe tip for AFM imaging
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2.2.5 Calculation of Trace, End-to-End, and Effective Per-

sistence Lengths from AFM Images

Using SigmaScan Pro image analysis software (SPSS Science, Chicago, IL), the core

protein and GAG contour lines in the AFM images were digitized into pixels yielding

the spatial coordinates of each position along the polymer chain. The trace lengths,

Lc, and end-to-end lengths, Ree, were measured directly from these images. An

effective persistence length, L, a parameter related to the local chain stiffness of

the core protein as well as the individual GAGs, was also calculated assuming the

validity of the Kratky-Porod Worm-Like Chain (WLC) model [70]) which describes

a polymer chain that is intermediate between a rigid-rod and a flexible coil and takes

into account both local stiffness as well as long-range flexibility. The WLC model

represents an isolated polymer chain as an isotropic, homogeneous elastic rod whose

trajectory varies continuously and smoothly through space. The chain consists of

n rotating unit vectors (statistical segments) of length I joined in succession, where

each vector is oriented at an angle 0 with respect to the previous vector (shown below

in Results). For 2D conformations obtained after surface equilibration (as opposed

to "kinetic trapping") [112], the probability density P ((1)) of the bend angle 0(1)

is theoretically expected to be normally distributed with mean zero and variance,

(02 (1)), as shown below:

( (I))2D L eL2(1) (2.1)

(02 (1)) > (2.2)

To verify that the observed values of 0 (1) were consistent with the behavior pre-

dicted by the WLC model and that the 2D images were equilibrated on the surface

(i.e. representative of the 3D conformation), the normality of 0 was assessed at differ-

ent levels of I by examination of the distribution of 0 on histograms and by calculation
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of kurtosis.

kurtosis = ( ()) 3 (2.3)
(02 (1))2

Kurtosis, defined by Equation 2.3, is an indication of the peakedness of the dis-

tribution (i.e. whether the shape of the distribution is more or less peaked compared

to the normal distribution), and equals zero for a normally distributed variable. It

has previously been interpreted as an assessment of the observed 2D conformations

[112, 116].

To obtain 0 as a function of from the images, a series of equal length vectors was

iteratively projected onto the digitized trace of the core protein and GAG contours

from 51 (1-1.2nm) to ni (n=35, nl-42nm) in increments of 1. The angle 0 between

consecutive vectors was calculated over the length of the molecule. The linear rela-

tionship of the variance of 0 as a function of was then used to estimate an effective

persistence length Lp for aggrecan molecules and for GAG chains. For each image of

a molecule, the variance of 0 was estimated at multiple values of 1. These resulting

estimates of variance are thus not independent but correlated with the molecule image

from which they were obtained. A linear mixed-effects analysis [27] was performed

(SPlus, MathSoft Inc.; now Insightful Corp., Seattle WA). Molecule-to-molecule vari-

ation was included as a random effect in the model and was included as a fixed effect.

In addition, an indicator variable, z, was used to identify whether the aggrecan was

from mature (z=l) or fetal (z=O) cartilage. To test for differences between Lp from

mature and fetal aggrecan, the statistical significance of the interaction term between

z and I was assessed, since this term represents the difference in the slopes of the lines

relating the variance of 0 to 1. The full model for the fixed effects was thus:

s2 (0) = 3O0 + /1 I + 2 -[z- +/3 lz (2.4)

where s2 = sample variance, and i = estimated coefficients. L was calculated

as the inverse of 31, since this coefficient is equal to 1/Lp for the WLC, as described
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# P9 OS 6S 4S % %
disacch sulfation sulfation sulfation monoS diS

Fetal CS 50 13.1 10.5 38.3 51.2 - -

KS - 0.33 - - - 38 62

Mature CS 42 12.1 5.5 65.6 28.9 -

KS - 0.95 - - - 42 58

Table 2.1: Results from biochemical analysis of GAG chains

above. An equivalent model was used to estimate Lp for GAG chains and to test for

differences between Lp of fetal and mature GAG.

2.3 Results

2.3.1 Biochemical Characterization of Aggrecan and GAGs

Western analysis with antibody JSCATEG specific to the G1 domain (Figure 2-5)

suggested that the majority of aggrecan core protein species (>90%) in these samples

were high molecular weight (-350 kDa) full-length molecules for both the fetal and

mature preparations. Identification of the single major band in each preparation

as the full-length species was confirmed by showing immunoreactivity of this band

with antibody JSCTYK which reacts with an epitope at the extreme C-terminus

of the G3 domain (data not shown). While the predominant aggrecan core species

detected (>90%) was full length, there was evidence of C-terminally truncated species

of very low abundance (Figure 2-5). The average chain length of GAGs from fetal

epiphyseal aggrecan was calculated from Superose 6 chromatograms (Figure 2-6(a)) to

be -50 disaccharides (corresponding to -- 48 nm), while that from nasal aggrecan was

-42 disaccharides (corresponding to --40 nm). FACE gel analyses of aggrecan GAG

chains (Figure 2-6(b)) revealed that the fetal epiphyseal GAG had a CS:KS ratio

three times higher than that of the mature nasal GAG. The chondroitin-4-sulfate

disaccharide (C4S) amount was higher than the chondroitin-6-sulfate (C6S) for the

mature aggrecan, whereas the C4S and C6S contents were essentially equal in the

fetal aggrecan (Figure 2-6(b) Table 2.1).
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Figure 2-5: Western Blot analysis with anti-G1 peptide (JSCATEG) shows a high
majority (>90%) of full-length core protein (arrow) with some evidence of a very
small amount of C-terminally truncated core species (*) in the mature sample
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(b) FACE gel of the fetal epiphyseal and mature nasal car-
tilage aggrecan GAG chains.

Figure 2-6: Biochemical characterization of GAG chains
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2.3.2 Visualization of Dense and Sparse Aggrecan Monolay-

ers

Tapping mode AFM images of dense monolayers of fetal epiphyseal aggrecan showed

that individual aggrecan monomers (Figure 2-7(a)) and their constituent GAG chains

(Figure 2-7(b)) are clearly resolved. The monomers exhibited varying degrees of ex-

tension and did not appear to be aligned in any preferred direction. Rather, they

conformed to each other to create a dense packing on the 2D surface suggesting that

the core protein backbone had some degree of flexibility. At higher magnification (Fig-

ure 2-7(b)-boxed regions), interdigitation between GAG chains of adjacent aggrecan

molecules could sometimes be observed. More structural details of individual aggre-

can molecules became apparent on lower density monolayers (representative images,

Figure 2-8) where the thicker GAG brush region can be clearly distinguished from the

thinner N-terminal region. As observed in dense monolayers, the monomers in sparse

monolayers exhibited varying degrees of extension and, again, were not aligned in any

preferred direction. The heights of the aggrecan monomers were found to be approx-

imately equal to the diameter of one GAG chain (l nm, [129]) suggesting that the

aggrecan molecules appeared fully flattened on the surface, possibly due to surface

attractive interactions and/or compression by the tip during imaging. "Thinner" ag-

grecan monomers (marked ** in Figure 2-8(a)) were occasionally apparent and were

found to have heights of -2 GAG chains; hence, the GAG chains of such monomers

were likely collapsed or folded over, and were not necessarily shorter than those of

the much more numerous fully flattened aggrecan. The widths of the CS-GAG brush

region, a reflection of GAG extension, were found to exhibit a continuous distribu-

tion with 57±11 nm for the fetal and 47±12 nm for the mature. Compared to fetal

aggrecan (Figure 2-8(a)), the size and structure of mature aggrecan (Figure 2-8(b))

appeared more dimensionally heterogeneous, as manifest in the distributions of the

aggrecan and GAG contour and end-to-end lengths (quantified below).

A side-by-side comparison of higher resolution images of individual (fully flat-

tened) fetal epiphyseal versus mature nasal aggrecan (Figure 2-9(a)) revealed the
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300 nm

(a) A dense monolayer.

100 nm

(b) Center region of Figure 2-7(a) magnified.

Figure 2-7: Amplitude AFM images of fetal epiphyseal aggrecan monomers. Boxed
regions indicate interdigitation of GAG chains.

-_ 200 nm

(a) fetal epiphyseal aggrecan

-~ 200 nm

(b) mature nasal aggrecan

Figure 2-8: Amplitude AFM images of lower density monolayers. The height scale is
read with the darkest color as the base line to white as the maximum height. N- and
C- terminal regions of the aggrecan are denoted on the images. GAG chains take on
an extended (*) form, or occasionally a collapsed (**) form.
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detailed nanoscale differences between these two populations with marked clarity.

Close examination of the N-terminal region showed no distinct GAG attachment in

this part of the core protein (Figure 2-9(b)). The globular domains, G1 and G2,

could not be easily resolved as these domains may have collapsed since the 135 amino

acid sequence joining them forms a flexible chain [55]. The contour length of the

core protein components of the two aggrecan molecules of Figure 2-9(a), measured

from the trace of each molecule, were 470nm (fetal) and 396nm (mature), and the

widths of the brush-like GAG region were 96 nm (fetal) and 65 nm (mature). In ad-

dition, the GAG chains on the fetal monomer appeared longer and more extended.

It was more difficult to distinguish individual CS-GAG chains in the brush region

of mature aggrecan (e.g. Figure 2-9(c)). This may be attributed to the higher den-

sity of keratan sulfate relative to chondroitin sulfate chains along the core protein

of mature aggrecan and/or other structural differences. To measure the distance be-

tween GAG chains in the brush region, cross-sections of the images were taken near

the point of GAG attachment to the core protein (Figure 2-10). The distribution of

GAG spacing for the fetal and mature monomers of Figure 2-10(a) is shown in the

frequency histograms of Figure 2-10(c) and the mean distance between GAG chains

was found to be 3.2±0.8nm for the fetal aggrecan and 4.4±1.2nm for the mature

aggrecan monomers.

2.3.3 Statistical Analysis of Trace and End-to-End Lengths

of Core Protein and CS-GAG Chains

The trace of the core protein of individual aggrecan monomers from multiple images

was digitized into pixels yielding the spatial coordinates of each position along the

polymer chain. The trace lengths, L, and end-to-end lengths, Ree, shown in Figure 2-

11(a), were measured directly from these images and the probability distribution

histograms calculated (Figures 2-11(b) and 2-11(c), Table 2.2). L was found to be

;398±57 nm for fetal compared to 352±88 nm for mature, and Ree was 257±87 nm for

fetal compared to 226±81 nm for mature aggrecan. The average extension of the core
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fetal epiphyseal

0.6 nm
(a)

0 nm

50 nm

(b)
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25 nm

25 nm

Figure 2-9: Higher resolution comparison of AFM height images of an individual
isolated (a) fetal epiphyseal and mature nasal bovine aggrecan monomer. (b) Core
protein visible in the N-terminal region on both monomers. (c) GAG chains, clearly
visible in the CS brush region, on both the mature and fetal monomers appear shorter
on the mature nasal vs. fetal epiphyseal.
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(a) Higher resolution comparison of AFMI height images of the fetal epiphyseal (left) and the
mature nasal (right) aggrecan CS-brush region.
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(b) Cross-sectional profiles of the GAG spacing along one side of the core
protein, corresponding to the white dotted lines of Figure 2-10(a).
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(c) Histograms of GAG spacing between chains of fetal epiphyseal ( =
3.2 ± 0.8 nm: n = 102) and mature nasal (p = 4.4 ± 1.2,nm; n = 40)

Figure 2-10: Measurements of GAG brush region from AFM images.
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(a) AFM height image in air of an individual isolated fetal epiphyseal aggrecan monomer (left)
and a mature nasal aggrecan monomer (right). A trace of the aggrecan contour core protein is
indicated by Lc and the end-to-end distance measurement is indicated by Ree.
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(b) The histogram of aggrecan Lc shows that (c) The histogram of R,, for mature nasal ag-
mature nasal aggrecan (M) (L = 352 88 nm; grecan (Ree, = 226 ± 81 nm) and fetal epiphy-
n = 141) is slightly shorter and has a broader seal aggrecan (Ree = 257±87) follow the same
distribution than the fetal epiphyseal aggrecan trend.
(F) (Lc = 398 ± 57 nm; n = 113).

Figure 2-11: Measurements of aggrecan core protein from AFM images.

protein, defined as (Ree/Lc), was 65% and 64% for fetal and mature, respectively.

More than 75% of the extension distribution was clustered between 50% and 95% for

nasal and 50% and 90% for epiphyseal (data not shown).

L, and R,e for the GAG chains (Figure 2-12) were found to be 32±5 nm and

27±7 nm for the mature nasal versus 41±7 nm and 32±8 nm for the fetal epiphyseal,

yielding an average GAG chain extension of 80'%o and 78% for mature nasal and fetal

epiphyseal, respectively. More than 75% of the extension distribution was clustered

between 70% and 95% for both mature nasal and fetal epiphyseal GAGs, respectively

(data not shown). For the molecules in which the CS-brush region was well defined
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Lc,total
(nm)

Ree
(nm)

GAG
Spacing

(nm)

I

mature nasal 353±88 226±81
aggrecan (n=141) (n=141)

fetal epiphyseal 398±57 257±87
aggrecan (n=113) (n=113)

mature nasal 32±5 26±7 4.4±1.2
GAG (n=49) (n=49) (n=40)

fetal epiphyseal 41±7 32±8 3.2±0.8
GAG (n=102) (n=102) (n=102)

Table 2.2: Summary of measured dimensions from
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n

[c,bare core protein
(nm)

81±t17
(n=29)

93± 14
(n=29)

Lc,CS-brush
(nm)

268±73
(n=29)

327±43
(n=29)

AFM images of aggrecan

I 1 i1 t
20 24 28 32 36 40 44 48 52 56 60 64

trace length (nm)

(a) Histog-ram of contour trace length, Lc

8 12 16 20 24 28 32 36 40 44 50
end-to-end length (nm)

(b) Histogram of end to end length, Ree

Figure 2-12: Histograms show that the contour trace length LC (a) of mature nasal
GAG (M) ( - 32 ± 5 nm; n = 49) was shorter than LC of fetal epiphyseal GAG (F)
(L = 41 ± 7nm; n = 102). The Ree (b) of mature nasal GAG (,u = 26 ± 7nm) was
shorter than that of fetal epiphyseal GAG (- = 32 ± 8 nm).

and distinguishable from the N-terminal bare core protein region, the contour length

of each of these regions was measured separately. L of the bare N-terminal region

was found to be 93±14nm and 81±t17nm for fetal and mature aggrecan, respec-

tively. A greater difference in Lc was found for the CS-brush region, 327±43 nm and

268±73 nm, for the fetal and mature, respectively (Table 2.2).
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mature fetal mature fetal
nasal epiphyseal nasal epiphyseal

aggrecan aggrecan GAG GAG
Lp (nm), 82 110 14 21

mean
95% confidence 73-94 102-120 10-21 17-25
interval (nm)

Table 2.3: Persistence length calculated from the mixed-effects model

2.3.4 Persistence Length Measurements of Core Protein and

GAG Chain

In the calculation of the aggrecan core protein persistence length, the values for the

vector segment lengths 1 were limited on the lower bound by pixelation of the trace

and limited on the upper bound at I < L (Figure 2-13(a)). Statistical analysis of

the linear relationship between (02) and 1 resulted in an effective mean core protein

Lp of 110 nm for whole fetal epiphyseal aggrecan and 82 nm for whole mature nasal

aggrecan (Figure 2-13(b), Table 2.3). This difference was found to be statistically

significant based on the confidence intervals. The mean effective Lp values for fetal

epiphyseal and mature nasal GAG were 21 nm and 14 nm, respectively, but were not

significantly different. The degree to which the observed 2D angles reflected the

behavior predicted by the WLC model was assessed by calculation of the kurtosis

of 0 vs. 1 (Figure 2-13(c)). At larger values of 1, the kurtosis was nearly zero for

both aggrecan and GAG chains, as predicted for a normally distributed variable. A

distribution plot of 0 showed deviation from the Gaussian distribution at 0 = and

2 for the lower values of 1, suggesting that this deviation is probably due in part to

the effects of pixelation.

2.4 Discussion

In this study, we first presented methodologies for the direct high resolution visual-

ization of individual aggrecan monomers using the technique of tapping mode AFM.

We then quantitatively assessed the contour, end-to-end, and persistence lengths of
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(a) Trace for a single fetal epiphyseal aggrecan
monomer (see Figure 2-11(a)) from an AFM im-
age. Vectors of length, 1, were projected onto the
trace. An angle was calculated from consecutive
vectors and used in the calculation of persistence
length.
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15) aggrecan. monomers measured from AFM im-
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Gaussian distribution of angles was main-
tained from the 3D to the 2D state.

Figure 2-13: Calculation of persistence length.
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fetal epiphyseal aggrecan monomers and contrasted these parameters with those of

mature nasal monomers.

2.4.1 General Methodology for High Resolution AFM Imag-

ing of Aggrecan

High purity aggrecan (AlAlD1D1) was used to minimize nonspecific adsorption of

other biomolecules onto the APTES-mica surface which could obscure the resolution

of the target macromolecule (aggrecan) during imaging. Minimal sample preparation

was employed (no fixation, coating, or other chemical treatments). The negatively

charged GAGs facilitated electrostatic binding of aggrecan to the APTES-mica amine

groups (pKa-10.5). Since a thin layer of water (2-10Athick) exists on the mica sur-

face [123] even in ambient conditions, electrostatic binding interactions are maintained

and minimize lateral displacements of the aggrecan during imaging. This adsorbed

water layer partially binds to and hydrates the hydrophilic aggrecan and its GAGs,

helping to preserve near physiological conditions. Tapping mode in air was found to

produce the highest resolution using relatively soft cantilevers and low set points to

minimize sample deformation, damage, and displacement due to the forces exerted by

the probe tip during imaging. Even though the probe tip end-radii were up to 10 nm

or greater, resolutions down to or below 1 nm were achieved presumably due to an

individual asperity or smaller region of the probe tip forming the actual contact dur-

ing imaging [120]. In many cases, however, "tip broadening" artifacts are frequently

reported in the literature [130] where the biomolecular dimensions at high resolutions

are overestimated due to the finite size and shape of the probe tip.
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2.4.2 Comparison of Aggrecan Core Protein Dimensions and

Conformation Assessed by AFM, EM, and Biochemical

Methods

One major result of these AFM studies was the fact that the mature nasal aggrecan

showed a slightly broader distribution of LC shifted to lower values compared to the

fetal epiphyseal aggrecan. Previous EM studies [113, 11, 12, 13] on bovine mature

nasal and fetal epiphyseal aggrecan and their self-assembled aggregates (aggrecan

non-covalently bound to HA) have reported dimensions such as trace length L of

core protein, GAG chains, and HA, as well as the number of attached aggrecan to

HA. While the differences in EM versus AFM sample preparation techniques make it

difficult to compare absolute values of Lc obtained by these two techniques, the same

trend of relative reduction in Lc of the core protein with age was observed by EM,

though higher values of Lc were found by AFM (by as as much as 10-40%). The LC

of the Gi-IGD-G2 core protein regions measured by AFM was slightly shorter than

EM measurements.

Western analysis (Figure 2-5) suggested that the large majority of the high buoy-

ant density preparations from both fetal and mature cartilages used in this study

were fiull-length aggrecan, and since C-terminal truncation of the core protein by pro-

teases appears to occur in distinct regions to generate discrete products of defined size

ranges [118], it is unlikely that there is an abundance of such high molecular weight

truncated species present in these samples. If the distribution of surface adsorbed

aggrecan measured by AFM is similar to the distribution of aggrecan in the starting

solution (i.e. containing predominantly full-length core protein), then the distribution

of core protein trace lengths measured by AFM (Figure 2-11(b)) can be interpreted

as that associated with full-length core protein extended to various degrees. Con-

formational and secondary structure variations of the core protein in the CS-brush

region will most likely be affected by repulsive intra- and intermolecular GAG-GAG

electrostatic double layer interactions, the range of which is determined by the GAG

length, spacing, and heterogeneity. The observed reduction in the trace length for the
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mature sample compared to the fetal could arise from a number of different sources

including: 1) entropic collapse to a more random coil like configuration, 2) forma-

tion of additional intramolecular noncovalent bonds (e.g. "protein folding"), or 3)

enthalpic changes due to a reduction in the individual amino acid bond angles. This

interpretation is consistent with EM studies [88] which reported aggrecan core protein

trace lengths that were significantly shorter in the deglycosylated form (263±27 nm)

compared to the glycosylated form (405±37 nm).

It should be noted that the distribution of surface adsorbed aggrecan does not

necessarily have to be equivalent to the distribution of aggrecan in the starting so-

lution and, hence, there does exist the possibility that the shorter length monomers

observed by AFM could in part be C-terminally truncated aggrecan monomers [118]

that preferentially adsorbed to the surface. However, in the absence of transport lim-

itations, preferential adsorption of smaller molecules is unlikely since larger molecules

have a greater number of attractive contacts holding them down as well as a greater

attractive interaction force on approach to the surface.

Even though statistically significant differences in the trace contour lengths and

end-to-end lengths were observed for the two aggrecan populations, it is interesting

to note that the average larger length scale extension ratios (Ree/Lc) (Figure 2-11)

were essentially the same. If the molecules have conformations that have equilibrated

in 2D on the surface, the fact that (Figure 2-11) for both the mature and fetal

aggrecan populations were found to be essentially the same suggests that the molecu-

lar origin of these parameters, presumably GAG-GAG electrostatic double repulsion,

is the same. Ree clearly represents straightening or bending of the whole aggrecan

molecule as directly visualized by the AFM images and we have suggested that the

trace length, L, reflects the extension or compression along the main core protein

backbone. Both of these parameters reflect an equilibrium balance between repulsive

(e.g. electrostatic double layer forces imparted by CS-GAGs and determined by CS-

GAG length, spacing, etc.) and attractive (e.g. entropic, noncovalent bonding) intra-

and intermolecular interactions.
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2.4.3 Comparison of CS-GAG Dimensions and Conformation

Assessed by AFM and Biochemical Methods

Another major result of this AFM study was the fact that for the first time, un-

modified, individual GAG chains attached to the aggrecan core protein were clearly

visualized. Physical evidence of two different densities of the CS-GAG brush regions

was observed for the fetal epiphyseal and mature nasal aggrecan (Figure 2-10). GAG

spacing along the mature aggrecan of Figure 2-10 was 72% greater than that of the

fetal epiphyseal monomer. The measured spacing of 3.2 nm and 4.4 nm for fetal epi-

physeal and mature nasal, respectively, correlates well with the predicted attachment

of GAGs at the Ser-Gly residues based on the amino acid sequence of the core protein

[55]. The difference may be attributed to the number increase in shorter KS chains in

the CS-GAG brush-region in the mature aggrecan compared to the fetal aggrecan as

demonstrated by the FACE compositional analyses (Figure 2-6). KS content has been

shown to increase with age [7]. The distinguishing of individual CS chains (-25 kDa)

from the shorter KS chains (-5-15 kDa) in this region was not possible due to simi-

larity in size and location of the chains. However, the substitution of KS for CS may

help to explain the decreased GAG spacing as measured from AFM images. Analysis

of GAG composition and sulfation was done to differentiate the aggrecan populations,

and to obtain biochemical structural information that could not be obtained through

AFM.

The trace length measurements of the CS-GAG chains showed that L, of fetal

aggrecan was longer than that of mature aggrecan, and those values compared well

with the hydrodynamic radius determined via chromatography. The resolution of

the Superose 6 column is 0.4 Kav (5 disaccharidesm6 nm), and the resolution of the

AFM at this level is less than a few nm. The difference between chromatography

and AFM measurements may reflect inherent differences in the parameters being

measured by those two techniques, as well as the slightly collapsed state of the GAG

chains when moved from a fluid to an ambient 2D environment. Small sub-nm bend

angles at the disaccharide level cannot be resolved in the AFM images. However, Lc
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as well as the extension and conformation of the GAG chains could be extracted from

the AFM images. The average extension of the CS-GAG chains was -78% for both

fetal and mature populations (as compared to -65% for the core protein), indicating

that typically, monomers and GAG chains preferred an extended arrangement.

2.4.4 Aggrecan and GAG Persistence Length

Persistence length calculations from AFM images have been performed on linear

biological polysaccharides such as mucins [116], succinoglycan [5], and xanthan [16].

Complications arise in comparing the use of a WLC model for a simple polymer

chain to that of the complex structure of aggrecan. Due to the close proximity of the

charged GAG chains in a physiologic fluid environment, the GAGs as well as the core

protein will take on a brush-like conformation. Charge repulsion and excluded volume

play a role in creating this shape. However, a slight collapse of the structure may

have occurred when moving from a fluid environment to an ambient environment.

As described previously [112], the number of macromolecular conformations may be

dramatically reduced by the constraining transition from three to two dimensions

after physisorption from solution onto a surface. For weak intermolecular-surface

interactions the macromolecules can rearrange and equilibrate on the surface as they

would in a 2D solution, while for stronger interactions, the molecules are quickly fixed

to the surface in a conformation that is close to a 2D mathematical projection of the

3D solution conformation onto the surface. For the first case (weak binding), the

lowest energy conformation of the macromolecules existing in a 2D space are achieved

and thus, meaningful structural information can be extracted from the 2D images

[1121. For the second case (strong binding), "kinetic trapping" of the molecules on the

surface takes place and conformations are determined by the details of the approach

to the surface (e.g. diffusion processes) and the nature of the intermolecular surface

forces (e.g. adsorption and solvent evaporation). In addition, the 2D conformation can

be modified and biased by the lateral force exerted by the probe tip during imaging,

which for tapping mode in air with capillary forces can be up to 9 nN for a tip radius

of 10nm [120].
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The non-zero kurtosis for lower values of 1 suggest that the assumptions inher-

ent to the WLC approach may not apply as well in this range of 1 for complex

glycosylated molecules like aggrecan, whose contour trace length is not an order of

magnitude longer than Lp. Nevertheless, the distributions of 0 for aggrecan and

GAGs were reasonably consistent with the distribution of 0 predicted by the WLC

model for larger 1 (Figure 2-13(c)). We therefore, used the WLC model to calculate

an effective persistence length Lp and found that the fetal aggrecan was significantly

stiffer (Lp ::= ] 10 nm) than the mature aggrecan (Lp = 82 nm). The shorter persis-

tence length of the mature aggrecan is consistent with several other nanostructural

measurements obtained from these images, since the increased CS-GAG spacing and

shorter chain lengths of the mature aggrecan would be expected to result in reduced

stiffness, which is reflected in both the shorter persistence length and the shorter end-

to-end length. CS-GAGs may individually satisfy the assumptions of the WLC model;

however, the influence of inter- and intramolecular repulsion of chains through poly-

electrolyte effects due to intramolecular electrostatic double layer repulsion, as well

as excluded volume, which is amplified by close proximity of the chains is manifested

in an increased effective Lp to an extended rigid-rod type conformation. Although we

observed a higher mean stiffness for the fetal GAG, the difference in effective Lp was

not statistically significant. It is important to note that conformation into a 2D state

brings the CS-GAG chains closer in proximity to each other compared to a 3D state in

which the CS chains are allowed to extend without constriction in a certain direction.

This and excluded volume may lead to a slightly increased calculated Lp for both

whole aggrecan as well as single CS chains. Further study is needed to verify that

assumptions in the WLC model are valid for these molecules under the conditions of

our experiments.
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2.4.5 Comments on the Relation of AFM Experiments to

Native Physiological Conditions

From the appearance of the aggrecan monolayer in Figure 2-7, we can estimate a

corresponding 3D aggrecan density and compare with the known concentration of

aggrecan in native cartilage (20-80 mg/ml). When modeled as 2D and flat, the thick-

ness of aggrecan would be on the order of 1-10 nm based on GAG dimensions; thus, a

compacted monolayer thickness of 1-10nm would give an aggrecan concentration of

15-150 mg/ml, which brackets the physiological range. This calculation suggests that

the GAG density pictured in Figure 2-7 is likely to be on the order of that found in

fully hydrated (3D) native cartilage. Alternatively, if we fix the positions of the core

protein in Figure 2-7 and assume that the fully hydrated thickness of each aggrecan

would be approximately twice the length of the CS-GAG chain (i.e. - 100nm), the

aggrecan density pictured in Figure 2-7 would correspond to -1.5 mg/ml, about 40

times less than physiological concentration. This suggests that the aggrecan core

density pictured in Figure 2-7 is likely to be far less than that in tissue when extrap-

olated to 3D. Even on this experimentally generated dense surface, flexibility and

interdigitation are seen between the aggrecan molecules and in the CS-GAG region.

It is expected that by scaling up the density 40x greater than this compact space

will certainly lead to a significant amount of interdigitation and repulsive interaction

between the aggrecan GAG chains. Moreover, with this high density of aggrecan at

the tissue level, these nm-sized differences in aggrecan structure multiply quickly and

can be translated into major differences in the compressive moduli of cartilage.

2.4.6 Conclusions

The fetal aggrecan was obtained from epiphyseal cartilage, which comes from the load

bearing region of an articulating joint. The mature aggrecan was obtained from nasal

cartilage, which provides a static shape but is not subjected to repeated mechanical

loading. While the basic structure of aggrecan from these two cartilaginous tissues

is similar, there are clear differences which may be associated with tissue mechanical
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function. In confined compression, the equilibrium modulus of human articular car-

tilage was -6()0 kPa [131] and that of human nasal cartilage was 233 kPa [114]. This

data correlates nicely with the findings reported here that aggrecan from the load

bearing epiphyseal cartilage has a denser CS-GAG brush region, longer CS chains,

and a greater calculated stiffness which might be expected when compared to the

non-load bearing nasal cartilage. Visualization of dense monolayers of these two ag-

grecan types gives important clues as to how neighboring aggrecan molecules may

deform to accommodate each other under the highly compressed situations found in

native cartilage.

Measurements on individual aggrecan molecules and constituent GAG chains were

correlated to bulk measurements determined from standard biochemical techniques.

In addition, the ability to measure single molecules in their near native state provides

additional information on structure and conformation. Distinct differences between

two aggrecan populations (e.g. mature nasal versus fetal epiphyseal) have been clearly

observed and hence, it is clear that AFM studies of molecular constituents as a

function of age, disease, and injury have great promise to yield new insights into for

example, proteolytic degradation, and the molecular origins of cartilage dysfunction.

Given the biochemical data confirming the presence of full-length aggrecan for both

fetal and mature in conjunction with the measured dimensions of an overall shorter

and a broader distribution of contour length of mature aggrecan core protein, it

can be speculated that the increase in spacing between GAGs and decrease in GAG

length results in a diminished repulsion between GAG chains, allowing the amino acid

sequence of the protein core backbone to take on a lower energy state (i.e. from a

strained linear shape to a relaxed coiled shape), thereby resulting in a shorter overall

contour length. Decreased persistence length (i.e. stiffness) of the mature aggrecan

may be a direct result of the reduced electrostatic repulsion in the CS-brush region.

AFM also has the potential to directly study the interaction between aggrecan and

hyaluronan and the self-assembly process of the proteoglycan aggregate. Surfaces like

this will allow for the measurement of intermolecular forces between a biomimetic

surface such as a CS-coated tip or an aggrecan-coated tip versus an aggrecan coated
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surface. Such nanoscale information is critical to the understanding and prediction

of cartilage intermolecular forces (e.g. electrostatic double layer, steric, etc.) and

unique nanoscale deformation mechanisms (e.g. interdigitation versus compression)

responsible for macroscopic biomechanical function [25].
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Chapter 3

Effect of Aggrecan Density and

Bath Ionic Strength on Aggrecan

Conformation

3.1 Introduction

Aggrecan, a brush-like macromolecule, is responsible for more than 50% of the com-

pressive modulus in articular cartilage [14]. Glycosaminoglycans are spaced along

the core protein at a very high density giving the molecule an overall extended con-

formation in a dilute, low salt solution. Individual aggrecan dimensions have been

measured directly from atomic force microscopy (AFM) images [95]. Aggrecan and

its aggregate structure have been studied by a number of techniques in an effort to

elucidate the structure-function relationship [48, 11, 10].

In tissue, aggrecan is found at gel-like concentrations at 20-80mg/ml and forms

a dense mesh-like porous network [81]. The collagen fibers act to hold the matrix

molecules in a small compact region, thus creating a very compressed matrix of pro-

teoglycans, specifically of aggrecan. The carboxyl and sulfate groups on the disaccha-

rides that make up the GAG chains are easily ionized at physiologic pH, and therefore

cause electrostatic repulsion between GAG chains. This electrostatic repulsion is re-
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sponsible for the compressive modulus. However, the interaction between aggregan

or their GAG chains on neighboring molecules is still unknown. Compression of na-

tive cartilage can cause an increase in local aggrecan concentration leading to an

anisotropic permeability [107, 108], whereas degradation of the collagen network can

cause a decrease in local aggrecan concentration. For both cases, conformation may

be altered leading to a change in molecular interaction.

In addition to local aggrecan density, conformation of the brush-like molecules may

be dependent on a number of factors such as side chain length [90, 136, 123, 135], side

chain spacing [36, 71], and side chain charge density [124, 115, 6]. Conformation of

aggrecan may also be altered by counter-ions present in the bath solution which will

act to decrease the Debye length, thereby reducing electrostatic repulsion leading to

a conformational change [6].

Here we use the technique of AFM to elucidate the conformational changes of

aggrecan, a highly charged brush-like macromolecule, in two types of environments.

In the first condition, aggrecan conformation is studied as the local aggrecan density

varies from a very sparse, dilute environment to a more concentrated environment.

In the second condition, aggrecan conformation is studied in four low ionic bath

conditions ranging from deionized water to physiologic ionic strength, 0.1 M.

3.2 Materials and Methods

3.2.1 Purification of Aggrecan

Thin slices of fetal bovine cartilage was obtained from the epiphyseal growth plate.

The tissue was digested in 4M guanidium hydrochloride, 100mM sodium acetate,

pH7.0, with protease inhibitors for 48 hours. Undigested tissue was then removed

through centrifugation. The supernatant containing digested tissue was dialyzed

against two changes of 100 volumes of 0.1 M sodium acetate, pH 7.0, with protease

inhibitors [50, 11]. Highly purified AlAlDID1 fetal epiphyseal bovine aggrecan was

extracted through a series of cesium gradient centrifugations. Biochemical charac-
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terization was described previously [95]. SDS-PAGE and Western blot analyses were

used to confirm that the aggrecan core protein was predominantly full-length. Super-

ose 6 FPLC (Amersham-Pharmacia Biotech) column chromatography in combination

with 1,9-dirnethylmethylene blue (DMMB) was used to determine the number of dis-

accharides (51) per GAG chain.

3.2.2 AFM Sample Preparation and Imaging

Muscovite mica surfaces (SPI Supplies, West Chester, PA) were chemically modified

with 3-aminopropyltriethoxysilane (APTES; Pierce Chemical) to create a positively-

charged surface. Amine groups were exposed on the mica surface after covalent linkage

of the exposed silanol groups on freshly cleaved mica with the APTES molecule.

Immediately after cleaving squares of mica (xl cm2), forty microliters of 0.01% (v/v)

APTES solution was deposited on the surface, given 20 minutes for the aminosilane

reaction to occur, then rinsed thoroughly. One edge was blotted to remove excess

moisture and then allowed to air dry for 5 minutes. Purified aggrecan was diluted with

deionized water or varying salt solutions (0.001 M to 0.1 M NaCl) to a concentration

of 500 [tg/nll. 501A was deposited on the mica surface, allowed 20-30minutes to

equilibrate, rinsed gently, and blotted on one edge. Incubation time of the aggrecan

solution on the surface was used to vary the 2-D surface density of aggrecan. The

samples were allowed to air dry for at least 2 hours prior to imaging. Each sample was

imaged the (lay of preparation. Tapping mode AFM (TMAFM) on the Nanoscope IIIa

Multimode (Digital Instruments, Santa Barbara, CA) was employed for imaging of

samples in ambient conditions using Olympus AC240TS-2 rectangular Si cantilevers

(k = 2 N/m) with a typical tip radius <10 nm. The cantilever was driven just below

resonant frequency ( -70 kHz) and at a low scan rate of 1-3 Hz to minimize noise and

sample perturbation. Data was collected on the maximum sample size of 512 x 512

pixels.
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3.2.3 Analysis of AFM Images

AFM image files were flattened first order and converted to .jpeg, and analyzed using

SigmaScan Pro image analysis software (SPSS Science, Chicago, IL). The core protein

of each aggrecan was digitized into pixels yielding spatial coordinates of each position

along the polymer chain. The trace length, L, and end-to-end length, Ree, were

measured directly from these images. An extension value,

ReeExt = 100, (3.1)
L,

for each molecule was calculated. Systat Software Inc. (Richmond, CA) was used to

perform a one-way ANOVA to determine the significance of density or ionic strength

on aggrecan conformation on a 2-D surface. If significance (p<0.001) was found, a

Tukey post-hoc multiple comparisons test was performed to identify the significance

between groups.

3.3 Results

3.3.1 Visualization of Varying Aggrecan Surface Densities

The brush-like chondroitin sulfate GAG region was clearly resolved, and the molec-

ular details of the individual GAG on the fetal epiphyseal aggrecan monomers could

be directly visualized via tapping mode AFM in ambient conditions. Three concen-

trations were achieved on the 2D modified-mica surface: 0.5, 1.4, and 2.3mg/ml.

The concentration was calculated by calculating a sphere of volume occupied by the

average radius of gyration for an aggrecan monomer. Given the radius of gyration,

the packing number of aggrecan per 1 m3 box was calculated. The volumes of the

aggrecan spheres were converted to a weight using the molecular weight of full-length

fetal aggrecan, 3106 Da/aggrecan. Dividing this number by the 1 m3 box gave the

concentration. This calculation assumes no interpenetration of neighboring aggrecan.

At the lowest concentration, 0.5 mg/ml, aggrecan were at a spacing greater than

an aggrecan width apart and had room for movement without interaction with neigh-
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boring molecules (Figure 3-1(a)). A thinner bare core protein in the N-terminal region

was distinct from the brush-like GAG region. More structural details are described

previously 95].

(a.) 0.5 mg/ml height image (b) 1.4 mg/ml amplitude image

(c) 2.3 mg/ml height image.

Figure 3-1: Representative images taken with tapping mode AFM in air of fetal
epiphyseal bovine aggrecan at three densities. The scale bars are 200 nm long.

At 1.4mg/ml, aggrecan were -1/2 an aggrecan width apart, 23.7±1.3nm, and

more restricted in motion on the 2D surface although most had an extended confor-

mation (Figure 3-1(b)). At 2.3mg/ml, aggrecan were only nanometers apart from

each other and thus conformed to surrounding molecules to fit into the given amount
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space, and thus more collapsed in conformation (Figure 3-1(c)).

3.3.2 Statistical Analysis of End-to-End Length and Exten-

sion of Varying Aggrecan Surface Densities

Conformation was quantified through measurement of the end-to-end distance (Ta-

ble 3.1), Ree, of the aggrecan monomers. Re, decreased with increasing concentration

giving 267±9nm (mean±SE), 253±10nm, 185±5nm, for lowest to highest concen-

tration, respectively. The trend seen in Figure 3-2(a) showed a significant decrease

between the 2.3 mg/ml aggrecan surface and the 0.5 mg/ml and 1.4 mg/ml surfaces

confirmed by ANOVA (p<0.001) followed by a Tukey test. Extension of the molecule

(Equation 3.1) was also found to decrease on the 2.3mg/ml aggrecan concentration

surface compared to the two lower concentration surfaces from 471 nm, 64±3 nm,

to 60±3 nm, highest to lowest concentration, respectively. The histogram (Figure 3-

2(b)) showed a peak in the distribution of extension between 75-90% for the two

lower density surfaces, while the extension for the 2.3 mg/ml aggrecan surface shows

a broader distribution between 30-75% extension.

Density (mg/ml) L SE Ree ± SE Ext ± SE
0.5 442±9 267±9 60±2
1.4 395±10 253+10 64±3
2.3 389±5 183±5 47±1

Table 3.1: Summary of measurements from AFM images of aggrecan samples at
various densities.

3.3.3 Statistical Analysis of End-to-End Length and Exten-

sion of Aggrecan in Varying Ionic Baths

Contact and tapping AFM images of aggrecan in varying ionic bath solutions on

a mica surface were obtained but had poor resolution of the GAG chains due to

thermal motion. For the higher ionic strengths, the electrostatic interaction between

the negatively-charged GAG chains and positively-charged mica diminished, and the
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Figure 3-2: Measurements of aggrecan conformation at three densities.

force applied by the tip tended to move the aggrecan off of the surface. Therefore,

tapping mode AFM in ambient conditions (i.e. dry conditions) were used for imaging.

For all ionic strengths below 0.1 M, aggrecan overall had an extended conformation

(Figure 3-3). At 0.1 M, aggrecan had a collapsed ball-like appearance (Figure 3-4(d)).

The collapsed structure made it difficult to obtain a trace length of the core protein,

so a trace along the center of curvature of the molecule was measured. As described

before, the end-to-end measurement was taken by measuring the distance between

the ends of the molecule. Ionic strength was found to have significant affect on whole

aggrecan conformation Ree, L, and Ext (ANOVA, p<0.001) (Table 3.2). A Tukey

post-hoc test showed the 0.1 M L, and Ree were significantly different (p<0.001) from

the other ionic strengths. A decrease in L (Figure 3-3(a)) of the core protein of

the aggrecan sample prepared in DI water, 0.001 M, 0.01 M, and 0.1 M was measured

at 441±9 nm, 451±9 nm, 367±13 nm, and 197±6 nm, respectively. A decrease in Ree

length (Figure 3-3(b)) of the core protein, L, of the aggrecan monomers was measured

at 267±9nm, 283±10nm, 273±t12nm, and 116±12nm for DI water, 0.001, 0.01, and

0.1 M, respectively. The extension varied with increasing ionic strength at 61±2 nm,

632 nm, 76:±3nm, and 596 nm for DI water, 0.001, 0.01, and 0.1M, respectively.

At 0.01 M, the extension varied significantly from the other ionic conditions (Tukey,

p<0.001).
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(d) Dean et al. [24] saw similar trends on AFM height measurements of patterned end-grafted
aggrecan surfaces. A significant decrease in aggrecan height was not measured until 0.1 M NaC1.

Figure 3-3: Measurements (mean±SD) from AFM images of aggrecan deposited in
low ionic strength bath conditions.

Ionic Strength (mM)
DI
1

10

100

L, ± SE Ree t SE
441±9 267±9
451±9 283±t10

367±13 273±12
197±6 116±12

Table 3.2: Summary of measurements from AFM images of various aggrecan concen-
trations
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(a) deionized water

(c) 0.01 M NaCl (d) 0.1 M NaC1

Figure 3-4: Representative tapping mode AFM images of aggrecan prepared in differ-
ent conditions. While the individual GAGs are difficult to distinguish, the molecules
retain a mostly extended rod-like shape in 0.01M NaCl as seen in (a)-(c). (d) At
0.1 M NaCl, aggrecan collapses into a more ball-like structure. The scale bars equal
200 nnm.

3.4 Discussion

3.4.1 Aggrecan Sample Preparation and Imaging

Highly purified aggrecan samples were used for preparation of all AFM samples,

and salt solutions were filtered through a 0.200 pm filter to minimize contaminants.

Aggrecan was allowed to equilibrate on the surface to ensure a relaxed conformation,

which was confirmed by calculation of the kurtosis, the Gaussian distribution of angles

formed by vectors projected along the aggrecan core protein (data not shown). A

thin angstrom level of water exists on the mica surface even in ambient conditions

[123], allowing ionization of the charged groups and thus ensuring the electrostatic
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interaction between the negatively-charged GAG chains and the positively-charged

APTES mica, which helps to minimize displacement of aggrecan during imaging.

3.4.2 Comparison of Aggrecan AFM Measurements on Vary-

ing Surface Densities With Conformation Measurements

Assessed by Other Techniques

AFM offers additional information of direct visualization of individual molecules

over usual molecular measurement techniques, which gives results on an ensemble

of molecules. Light scattering has been used to measure radius of gyration of an

ensemble of brush-like molecules, but conformation is difficult to measure in concen-

trated solutions. Arrangement of aggrecan may have a significant effect on the bulk

properties of cartilage. GAG orientation, modeled as cylinders, in cartilage defor-

mation resulted in different hydraulic permeability values, which were dependent on

orientation [107]. We have been able to achieve and image effective concentrations as

high as 2.3 mg/ml aggrecan. At this density, the molecules conformed and interacted

with neighboring molecules more than the lower density surfaces, and a significant

decrease in extension was observed. Interestingly, concentrations of aggrecan above

2 mg/ml, its overlap domain, have been found to reduce its self-diffusion coefficient,

as measured by fluorescence recovery after photobleaching [41]. Eliminating the elec-

trostatic component of aggrecan in a 4 M guanidium hydrochloride solution, Harper

and Preston (1987) [117] were able to demonstrated shrinkage of aggrecan in the

presence of increasing concentrations of dextran, a linear polymer, due to excluded

volume effects. Changes in molecular interaction were measured in rheology experi-

ments of aggrecan aggregate solutions. Above the overlap concentration, -5 mg/ml,

the aggregate solution exhibited physical changes from a viscoelastic liquid to a gel-

like material [85, 86]. Due to limits of resolution and sample preparation, aggrecan

concentrations much higher than 2.3 mg/ml were difficult to achieve for AFM imag-

ing. The limitation of the 2D surface preparation reduces the mobility, number of

interactions, and configurations that aggrecan may undergo in a 3D environment
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[122, 80]. Simulation and modeling may be needed for characterization of aggrecan

conformation at much higher concentrations.

3.4.3 Comparison of Aggrecan AFM Measurements in Vary-

ing Ionic Baths With Conformation Measurements As-

sessed by Other Techniques

The GAG structure and density along the aggrecan core protein dictates the overall

conformation and stiffness of the macromolecule. Previous AFM studies on individual

fetal epiphyseal and mature nasal bovine aggrecan have shown that a higher GAG

packing density along with longer GAG chains can be correlated to a larger persistence

length [95]. This study looks at the changes in conformation of the highly charged

molecules as the ionic strength of the bath environment is varied from DI water

to 0.1M N aCl. As ionic strength is increased, charge shielding from the counter-

ions reduces the Debye length to -l nm at 0.1M NaC1. Aggrecan deposited from

all conditions except for the highest ionic strength, 0.1 M NaCl, remained mostly

extended. The Debye length, -3 nm at 0.01 M, is larger than the GAG spacing along

the core protein, which may explain the extended conformation at and below 0.01 M

NaCl. At 0.1 M, the Debye length drops below the average GAG spacing, allowing

slight collapse of the molecule exhibited in the reduction of L, from 441 nm (DI water)

to 197 nm. A significant height decrease of dense end-grafted aggrecan (Figure 3-3(d))

surfaces measured via AFM has also been seen at the bath ionic strengths 0.1 M NaCl

and 1.0M [24]. It is interesting to note the large change in conformation occurred

at 0.1 M NaCl, physiologic ionic strength. Molecular simulations of an aggrecan

segment with 40 short side chains (16 disaccharides long) showed a dramatic decrease

in persistence length from 180 nm at 0.01 M NaCl to 40 nm at 0.1 M NaCl [91]. Light

scattering of dilute aggrecan solutions showed a dependence of persistence length, Lp,

to ionic bath strength where Lp (ionic strength)-0 5 [76].

'We have directly visualized for the first time the collapse of a highly charged

macrornolecule in physiologic conditions. At this condition, we are likely seeing a
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diminished ability to resist compression. The physical information obtained with di-

rect visualization of individual aggrecan at physiologic ionic strength provides more

information about possible conformation of aggrecan in articular cartilage. Its in-

teraction area and increased complexity in conformation may alter the diffusion of

molecules through cartilage matrix for interaction with other extracellular molecules.

Cartilage presents a very complex environment for molecular diffusion compared to

other tissues or molecules that may flow through blood, which has little material or

matrix to interact with before producing its intended effects.

3.5 Conclusion

These studies offer insight into the conformational changes that may occur as an in-

creasing number of aggrecan molecules are packed into a given amount of space. With

increasing aggrecan concentration, the molecules may tend to collapse or entangle to

make use of all available volume. Direct visualization of the collapse of aggrecan at

higher densities and at physiologic ionic strength shed light into possible conforma-

tion of aggrecan in articular cartilage. In DI water and low ionic baths < 0.1 M, the

Debye length is greater than the GAG spacing along the core protein, causing the

aggrecan to adopt a mostly extended conformation allowing for visualization of indi-

vidual GAG chains. However, we obtain a more physiologic relevant view of aggrecan

conformation at 0.1 M. At this ionic strength, the Debye length reduces to about the

distance between GAG chains and the aggrecan molecules appear more collapsed.

Given the conformational change that occurs at physiologic condition with the addi-

tional information gathered from the density experiments, one may hypothesize that

aggrecan is found in a much more compact conformation, and thereby has a reduced

availability of interaction with other molecules such as collagen or enzymes.
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Chapter 4

Nanomechanical Properties of

Individual Chondrocytes and Their

Developing Growth

Factor-Stimulated Pericellular

Matrix

4.1 Introduction

Chondrocytes occupy only 3-5% of the volume of adult articular cartilage, and hence,

do not contribute significantly to the bulk mechanical properties of the tissue [126].

However, they are entirely responsible for the synthesis, maintenance, and turnover

of the tissue's extracellular matrix (ECM). Mechanical loads and deformations ap-

plied to cartilage in vivo and in vitro are known to regulate chondrocyte synthesis

and catabolic degradation of ECM macromolecules [44, 65, 133, 32]. The mechano-

regulation of chondrocyte metabolism in gel scaffolds for tissue engineering depends

in part on the cell's microenvironment and the stage of development of the newly

synthesized, cell-associated pericellular matrix (PCM) that surrounds each cell [14].
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The mechanisms underlying mechanotransduction are not completely understood.

The 2-4 m-thick PCM contains a high percentage of type VI collagen and proteo-

glycans [105, 104] and is critically important to cell function from a biochemical and

biomechanical perspective [100]. The PCM modulates and transfers loads from the

ECM to the cell and its intracellular organelles and cytoskeleton during physiologi-

cal compression. The mechanical properties of chondrocytes with and without their

PCM have been measured using micropipette aspiration [42], cytoindentation [68],

and in unconfined compression [74]. While Young's moduli for isolated chondrocytes

have been reported in the range 0.6-4kPa [63, 38], the PCM in adult cartilage has

a higher elastic modulus (60-70 kPa), measured via micropipette aspiration [44, 1],

compression of chondrons in agarose [67], and AFM indentation [3]. The ECM has

a much higher equilibrium modulus ( 0.5 MPa) than the cell or PCM. Even newly

developed PCM can alter cell deformation, as chondrocytes seeded in a 3% agarose

gel deformed more and had a slower viscoelastic recovery compared to the same cells

surrounded by synthesized matrix after 6 days in FBS supplemented culture [72].

The PCM may also act as a regulator of cell signaling. Scaffolds seeded with

enzymatically extracted chondrons accumulated proteoglycans and type II collagen

more quickly than parallel cultures of enzymatically isolated chondrocytes, which are

no longer surrounded by PCM [40]. Growth factors such as insulin-like growth factor

(IGF-1) and osteogenic protein 1 (OP-1) have been shown to increase PCM accumu-

lation of cultured chondrocytes compared to chondrocytes maintained in fetal bovine

serum (FBS) [84, 35, 134, 97, 77]. Chondrons in adult cartilage have a fully developed

PCM architecture and morphology that is absent from the PCM of chondrocytes in

young immature tissue [73]. For example, immunohistochemistry revealed a compact

structure containing type VI collagen in adult chondrons but not in immature tissue

in which staining for for type VI collagen is more diffuse [73]. Efforts to create tis-

sue engineered cartilage for tissue repair thus require detailed understanding of the

chondrocyte's microenvironment.

This study examines the mechanical properties of chondrocytes and their newly

developing pericellular matrix using atomic force microscope (AFM)-based indenta-
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tion at two length scales by probing with a nano-sized tip and a micron-sized tip. Our

first objective was to characterize the mechanical properties of chondrocytes freshly

isolated from immature bovine cartilage using AFM indentation with both probe tips

while keeping the cells viable. To deal with the phenotypically round chondrocytes,

we developed a surface to immobilize the cells in their native state, thereby extend-

ing the capabilities of AFM to measurements on non-adherent cells. The second

objective was to quantify the mechanical properties of chondrocytes released from

3D alginate gel after selected periods of culture to determine the effects of the newly

developing PCM on the measured cell-PCM stiffness with time in culture. Cells were

maintained in medium supplemented with either FBS or the combination of IGF-1

plus OP-1 to compare the effects of these anabolic stimulants on PCM development

and the resulting link between PCM structure and biochemical composition with the

resulting biomechanical properties of the cell-PCM. Using Hertzian contact mechan-

ics and finite element analyses, material properties were estimated from the AFM

force-indentation curves measured with these cell preparations.

4.2 Materials and Methods

4.2.1 Cell Isolation and Culturing

Chondrocytes were isolated from femoral condyle cartilage of 2-3 week old bovine

calves using sequential 0.2% pronase (Sigma) and 0.025% collagenase (Boehringer

Mannheim) digestions as described [110]. Cell viability after isolation, assessed by

Trypan Blue (Sigma) exclusion, was (>95%). Cells were seeded at 20-106 cells/ml

in 2% w/v alginate (Kelco LVCR) in 0.9% NaCl. Beads, -3mm diameter, were

formed through polymerization of droplets of alginate dispensed from a 22-gauge

needle into 102 mM CaC12 solution. At selected times in culture, cells were released

from the alginate beads by depolymerization in 55 mM NaCitrate (Fisher Scientific)

as described [82]. Cell viability after release was >90% as assessed using fluorescein

diacetate (FDA) (0.2 mg/ml) and ethidium bromide (EtBr) (10/ g/inl) (Sigma).
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In one series of experiments, cell-seeded beads were maintained in 10% FBS hi-

glucose DMEM with 20 pg/ml L-ascorbic acid (Sigma) plus 1% antibiotic-antimycotic

(Sigma). In a second series, cells were cultured in 100 ng/ml recombinant human IGF-

1 (PreproTech, Inc.) plus 100 ng/ml recombinant human OP-1 in hi-glucose DMEM

with 1%o antibiotic-antimycotic and mini-ITS (5 nM insulin (Sigma) to minimize stim-

ulation of the IGF-1 receptor, 2 pg/ml transferrin (Sigma), 2 ng/ml selenous acid

(Sigma), 420/2.1 pg/ml linoleic acid-albumin from bovine serum albumin (Sigma),

and 55 pug/ml L-ascorbic acid) (Benya and Padilla 1993). Seven alginate beads were

cultured in 3ml medium per well (12 well plate); medium was changed every other

day.

4.2.2 Microfabrication of Silicon Wells

Chips were microfabricated on silicon wafers, each chip containing a matrix of wells

made to entrap a single cell in each well (Figure 4-5). The wells were etched with a

20% KOH solution using a silicon oxide hard mask of circles with diameters of 15, 18,

20, and 22 pm. The production of inverted square pyramids from circular or square

mask openings (or V-shaped trenches for rectangular mask openings) is a consequence

of the etch's anisotropy. (100) and (110) crystal planes are etched much more quickly

than (111) planes, so self-terminating features bound by (111) planes are produced,

forming planes 55 degrees from the vertical [69].

The masking oxide was thermally grown on 100 mm diameter single crystal silicon

wafers and patterned with a Buffered Oxide Etch (BOE) using a photoresist mask.

The photoresist was then stripped and the wafers placed in a 800 C bath of 20% KOH

for approximately 15minutes until the etch self-terminated. The oxide mask was

stripped with a second bath in BOE and the wafer was singulated with a die-saw.

Microfabrication was performed at MIT's Microsystems Technology Laboratory.
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4.2.3 Histology & Immunohistochemistry of Type Col VI La-

beling

See Appendix E. Groups of cells released from alginate were resuspended in cul-

ture medium (1-106 cells/ml) and fixed in 2% v/v glutaraldehyde (Polyscience, Inc.)

buffered with 0.05 M sodium cacodylate (Sigma), and containing 0.7% w/v ruthe-

nium hexammine trichloride RHT (Polyscience, Inc.) to minimize loss of PGs during

fixation [60j. Fixed cells were mounted onto glass slides using a Cytospin (1400 rpm

for 10min.), air dried, and stained for sulfated PGs (Toluidine Blue O (Sigma)) and

collagen (phosphomolybdic acid (Rowley Biochemical Inc.) followed by aniline blue

(Rowley Biochemical Inc.)) [78]. Images were taken with a standard Nikon optical

microscope. In addition, groups of cells from culture day 39 were released, mounted

onto glass slides, dried for 3hours, treated with 2mg/ml hyaluronidase (Sigma) in

0.1 MTris-HCI, pH5.8, for 2.5hours at 370C to expose type VI collagen epitopes,

then blocked with 5% donkey serum in PBS, pH 7.1, for 4hours. The antibody for

col VI (Chemicon) was incubated on the slides overnight (1:10 in 1% donkey serum

in PBS), then incubated with a secondary-conjugated antibody (1:50 dilution in 1%

donkey serum in PBS) for 4 hours. Slides were rinsed with PBS after each step, and

the fluorescent labelled cells were viewed using a Nikon TE300 microscope.

4.2.4 Cell Appearance Pericellular Biochemical Composition

Dimethyl methylene blue dye binding (DMMB) [30] and hydroxyproline [137] assays

were used as measures of sulfated GAG and collagen content, respectively. Optical

micrographs of cells released at each time point were obtained to measure the diameter

of the cell and to aid in estimating PCM thickness.

4.2.5 Atomic Force Microscope Imaging

Dilute solutions of chondrocytes were deposited onto freshly cleaved muscovite mica

(SPI Supplies, West Chester, PA), allowed to incubate on the surface at room tem-

perature for 5 minutes, and then rinsed gently with DI water. One edge was used to
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blot dry the sample before air drying at room temperature overnight. Tapping mode

AFM (TMAFM) on the Nanoscope IIIa Multimode (Digital Instruments, Santa Bar-

bara, CA) was employed for imaging of samples in ambient conditions using Olympus

AC240TS-2 rectangular Si cantilevers (k = 2 N/m) with a typical rc <10 nm. The can-

tilever was driven just below resonant frequency (70 kHz) and at a low scan rate

of 1-3Hz to minimize noise and sample perturbation. Data was collected on the

maximum sample size of 512 x 512 pixels.

4.2.6 Atomic Force Microscope Indentation

The silicon substrates were cleaned in piranha solution (3:1 concentrated H2S04 /H202

(30%)) to remove all organics, then rinsed with acetone and water. The substrates

were submersed in DI water for 2 days to remove all traces of piranha solution. Just

before use in the AFM, culture medium was allowed to coat the silicon surface for

5minutes. 100/ 1 of cell suspension was then dropped onto the surface. Using an

AFM probe tip, the cells were gently pushed into the silicon wells. The wells contain-

ing cells were mapped so indentation could be repeated using a second type of probe

tip. The Picoforce AFM (Veeco Instruments) was used to obtain indentation data.

The ramp was varied between 3 and 6 m to obtain full loading and unloading curves.

Indentation rates of 200 nm/s, 500 nm/s, 1 m/s, 3 m/s, 5 m/s, and 10 m/s were

used. Two different sized tips were used for the indentation experiments. A stan-

dard silicon nitride AFM square pyramidal tip (50 nm nominal radius, kj0.06 N/m,

Veeco) and a colloidal probe tip (2.5 /m radius, k -0.06 N/m) were used. The colloidal

probe tip was prepared using the AFM to attach 2.5 um radius silica beads (Bang

Labs, #SS06N) onto tipless cantilevers (Veeco, k-0.06 N/m) with low viscosity epoxy

(SPI, MBond 610) using AFM.

4.2.7 Finite Element Analysis and Tip Reconstruction

Finite element analysis (FEA) of cell indentation with a nanosized AFM pyramidal

tip and micron-sized colloidal probe tips were performed using ABAQUS (ABAQUS,
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Inc., Providence, RI). Because the nanosized AFM probe tip is not perfectly sharp,

the blunted tip geometry was verified by two methods. Scanning electron microscopy

was used to assess the overall tip geometry and end radius. To obtain a more precise

estimate of the tip geometry, AFM nanoindentation on a 1% agarose slab (2.7mm

thick) was performed and simulated by FEA using the tip radius as the free fitting

parameter. The bulk unconfined modulus of the 1% agarose used in the FEA model

was measured by uniaxial, unconfined compression [37] to be 3.74±0.55kPa. Four

displacement controlled compression ramps of 7.5%, 10%, 12%, and 15% were ap-

plied with 200 seconds of compression followed by 600 seconds of holding to allow for

complete stress relaxation.

In the FEA simulations, one quarter of the tip and cell were modelled. The well

remained fixed in all directions, the cell walls were fixed to its normal direction, and

the displacement of the tip occurred only in the z-direction (direction perpendicular

to the cell) to ensure symmetry. The geometry of the experiment was duplicated in

the FEA: a rigid inverted square pyramidal well forming walls 350 from the vertical,

a spherical homogenous elastic material for the cell using the diameter measured in

optical micrographs, and a rigid tip constructed as described above. Three steps

occurred in the analysis: (1) gravity acted on the cell to pull it into the well, allowing

the cell to deform under its own weight, (2) the tip approached and indented the cell,

and (3) the tip retracted out of the cell.

4.3 Results

4.3.1 Confirmation and Characterization of Pericellular Ma-

trix Growth

Tapping mode AFM in air was used to visualize enzymatically isolated cells and cells

with associated matrix extracted from a 10% FBS culture. Newly isolated cells such

ias the one in Figure 4-1(a) did not have any visible signs of matrix. By day 6 a sheer

halo of matrix extended a few microns away from the cell surface. Significant buildup
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of a fuller matrix was seen on day 11 (Figure 4-1(b)), but individual features in

higher resolution images did not reveal many details of matrix components. However

by day 18 (Figure 4-1(c,d)), collagen fibrils in the matrix could easily be identified

with characteristics of type II collagen having a diameter of 59±-9 nm and a banding

pattern of 22±2 nm (n=10).

(a)

(C)

(d)

4 m

Figure 4-1: Tapping mode AFM images in air of calf chondrocytes adsorbed on mica
substrates (a) enzymatically isolated (day 0), (b) chondrocyte released from alginate
culture at day 11 where the PCM is clearly distinguishable from the cell body, (c)
chondrocyte released from alginate culture at day 18 where a dense network of collagen
fibrils is visible from a similar region on the cell in (b). (d) a higher resolution image
of the selected area shown as the square in part (c) with fibrils which exhibit banding
patterns and fibril diameter characteristic of type II collagen fibrils. All images are
height images except (d) which is an amplitude image.

Histology images (Figure 4-2) show freshly isolated cells with no visible accumu-

lation of proteoglycan or collagen. By day 7, proteoglycan was stained around the

entire cell membrane, but collagen was not present. By day 14, the proteoglycan

stain increased in size and intensity. Both cultures showed a constant but diffuse

blue halo indicative of the presence of collagen. By the third and fourth weeks in

culture, no significant changes in the dark PG staining were observed but collagen

stain appeared to increase slightly. Small changes in shape may occur due to fixa-
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tion or shrinkage from drying, so cell diameter was assessed via optical microscopy

images of viable cells. A comparison of an enzymatically isolated cell (Figure 4-2)

to a day 14 cell cultured with IGF-1+OP-1 showed an increase in cell size due to

accumulation of cell associated matrix. Measurement of cell diameter showed a large

increase from enzymatically isolated cells (7.65±0.85 rm, mean±SD) to cells released

from cultures supplemented with FBS or IGF-1+OP-1. There did not appear to be

an increase in the diameter of the cell with its associated matrix from day 7 to day 28

for both FBS (day 7: 13.71±2.29,um and day 28: 14.95±2.53/pm) and IGF-1+OP-1

(day7: 13.84±2.47/pm and day 28: 13.40±1.57/pm). Hence, the PCM thickness, cal-

culated by subtracting the total diameter measured at the time points from diameter

measured fi:om freshly isolated cells, also did not increase significantly (Fig. 3a). In-

stances of dividing cells sharing matrix were observed (Fig. 3b) but were not used

for cell indentation analysis.

In addition, type VI collagen was visible for both types of cultured cells (Figure 4-

3(c)). Cell viability remained above 80%, and chondrocytes retained their spherical

phenotype but cell division was more prevalent in the IGF-1+OP-1 cultured cells

(Figure 4-3(d)). GAG and collagen content increased between day 0 to day 14 in

both FBS and IGF-1+OP-1 supplemented cultures (Figure 4-4). For later time points,

collagen accumulation did not appear to increase in either culture. GAG continued

to increase but; have a lower concentration for FBS cultured cells compared to IGF-

1+OP-1 cultured cells up to day 28.

4.3.2 Indentation of Freshly Isolated Cells

Indentation on chondrocytes was attempted on mica but the flat surface was not

suitable as the cells tended to roll away from the tip. Because chondrocytes have a

spherical morphology, a surface was created to hold the cells in place during indenta-

tion. The silicon surface was designed to be reusable and could be sterilized. A KOH

etch produced inverted square pyramidal wells with diameters ranging in size from 15

l;o 22 pm to accommodate cells with an increasing pericellular matrix (Figure 4-5). A

small drop of cell suspension was pipetted onto the surface and given a few minutes
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(a) PCM thickness (mean±SD) measured from optical microscope images. Cell PCM thickness
was measured by subtracting the average day 0 cell diameter (n=17) from the average diameters
of live cells in culture medium at days 7 (n=26), 14 (n=28), 22 (n=18), and 28 (n=18). An
increase in PCM thickness is observed from day 0 (enzymatically isolated cells) up to day 7 for
cultured cells after which time the PCM thickness plateaus with no significant increase (ANOVA,
p>0.1) from day 7 to day 28 in culture.

(b) Optical microscope image
of cell division. Scale bar =
10 m.

(c) Collagen VI (immuno-
histochemistry) was present
around both FBS (shown)
and IGF-1+OP-1 fed cells on
day 39 cultured cells. Scale
bar = 20 Mm.

(d) Live cells shown in green (FDA dye) and dead cells in red
(EtBr dye) indicate >80% viability. More cell division was
seen in the IGF-1+OP-1 fed cells (right) compared to FBS
fed cells.

Figure 4-3: Characterization of the PCM of calf chondrocytes cultured in alginate
using either FBS or IGF-1+OP-1 supplemented medium.
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Figure 4-4: Biochemical characterization of the PCM of calf chondrocytes released
from alginate beads at designated time points corresponding to days that nanoinden-
tation experiments were conducted. An increase in both GAG and collagen content is
observed until day 14 for both the FBS and IGF-1+OP-1 supplemented cell cultures
except for the FBS fed cells which shows increasing GAG accumulation up to day 28.

to allow the cells to settle onto the surface. The cantilever AFM probe tip was used

to gently slide individual cells laterally into a selected well (Figure 4-6).

1. Deposit and pattern
photoresist

photoresist
silicon oxide
silicon wafer

2. Buffered oxide etch

3. Strip photoresist

4. KOH etch and
oxide strip

V
Figure 4-5: Fabrication of micron-sized square pyramidal wells in a silicon substrate
for cell immobilization and nanomechanical measurements. Wells with 15, 18, 20,
and 22 m diameters were designed to hold enzymatically isolated cells and cells with
associated pericellular matrix.

The indentation range was adjusted to obtain loading and unloading curves with

normal displacements up to 6 /um. A series of indentation rates (200 nm/s, 500 nm/s,

1 jim/s, 3 m/s, 5 m/s, and 10 pm/s) were used to investigate hysteretic properties

of the cells. No significant change in hysteresis was measured up to 1 m/s. Above
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Figure 4-6: Ability to control placement of individual cells into square pyramidal Si
wells using an AFM cantilever probe tip. (Above) A 10x optical microscope image of
a single chondrocyte and 0.06 N/m Si3 N4 cantilever used to maneuver an individual
cell into a 1.5 ,m diameter well.

1 m/s, hysteresis increased in a logarithmic fashion. To limit the contribution of

viscous/viscoelastic effects to the measurements, the approach curves obtained at

1 um/s are the focus of this paper.

AFM indentation curves of enzymatically isolated cells show a nonlinear increase

in repulsive force with indentation depth. For indentation of a single cell, five to six

curves were averaged at one location at an indentation rate of 1 mrn/s. The curves

were repeatable with a relatively small standard deviation (Figure 4-7) indicating

recovery and reversibility of the deformation before the start of each indentation.

The micron-sized probe tip produced higher forces than the nano-sized probe tip at

the same indentation distance (Figure 4-8(a)). With the nano-sized probe tip, the

average maximum force obtained at 780 nm indenation was 0.76±0.27nN. With the

micron-sized probe tip, the average maximum force obtained at 780nm indentation

was 1.53±0.77 nN.

To estimate an elastic modulus from the measured force vs. distance curves from

the nano-sized tip, the modified Hertz model of a rigid conical probe tip in contact

with an elastic material was used [109]:
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Figure 4-7: A typical AFM indentation curve (mean ± SD) on a single enzymatically
isolated (day 0) calf chondrocyte immobilized in a silicon well at a z-piezo displace-
ment rate of 1 m/s with a nanosized square pyramidal Si3N4 tip (rc,-40 nm). Hys-
teresis was observed at all displacement rates tested (200 nm/s to 10 pm/s), but there
was no change up to 1 pm/s. Therefore, the loading curves obtained at an indentation
rate of 1 pm/s are used for analysis in this study.

F E
.... F 2 *tan a (4.1)
2 1-v2

where F = force (nN), = indentation distance (m), E = Young's modulus (kPa),

v = Poisson's ratio = 0.4 [38], and a = 35° for a KOH-etched Si3N4 tip. This model

gave an average modulus of 0.7kPa (Figure 4-8(b)). Matching the Hertz model to

the upper and lower limits of the standard deviation gave a modulus range between

0.35 kPa to 1.25 kPa.

For the micron-sized tip, the Hertz model of two contacting spheres was used

assuming a rigid colloidal tip and an elastic cell [61]:

4 E 3 1

3 1- 2 + (4.2)

where R1 = radius of micron-sized tip (pm) and R 2 = radius of cell (m). The

Hertz model matched the experimental data with a modulus of 1 kPa (Figure 4-8(c)).
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(a) Average indentation curves on loading (mean SD)
taken with both the nano-sized (n=25 cells) and micron-sized
(n=17cells) probe tips. The force is higher for the same in-
dentation distance using the micron-sized tip compared to
the nano-sized tip.
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(b) Comparison with experimental data up to
300nm indentation distance to the modified
Hertz model for a conical tip.
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(c) Comparison with experimental data up to
300 nm indentation distance to the Hertz model
for a colloidal tip and spherical cell body.
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(d) Stress-strain curve. A nano-sized tip gives
E=0.92kPa up to an indentation of -r,,
40 nm.

0 0.01 0.02
Strain

(e) Stress-strain curve. A micron-sized tip
gives E=1.46kPa up to an indentation of
200 nm.

Figure 4-8: Data on enzymatically isolated calf chondrocytes (day 0).
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The upper and lower limits fit the standard deviation with moduli of 1.55 kPa and

0.45 kPa, respectively.

Moduli of 1.37 kPa and 1.46 kPa were calculated from the nano-sized and micron-

sized probe tips, respectively, from the linear slope of stress-strain (a-e) graphs (Fig-

ures 4-8(d) and 4-8(e)). Over the first 40 nm and 200 nm for the nano and micron-sized

tips, respectively, the a-e curve was linear. The stress was calculated by the surface

integration method, i.e. dividing force by an increasing contact area with indentation

depth.

F
A -- (4.3)A

-= (4.4)
2R 2

A = 2rR,1 (4.5)

Using the Hertz model and a stress-strain curve, length scales at the nano and

micro level gave approximately the same material properties for an enzymatically

isolated chondrocyte as demonstrated by the moduli obtained from both the nano

and micron-sized tips.

Given the increased complexity of the system with the cell confinement in a pyra-

midal well, finite element analysis was used to determine the modulus of the cell from

the force vs. indentation distance curves. The system was first tested with frictionless

and no-slip boundary conditions on the cell-well wall contact region. The no-slip

boundary condition resulted in a 25% increase in the cell modulus. The moduli re-

ported here use the frictionless boundary condition. For the nano-sized tip, the FEA

predicted the cell modulus to be 0.7 kPa, as also predicted by the Hertz model (Fig-

ure 4-9(a)). For the micron-sized tip, the FEA required a slightly higher cell modulus

at 3 kPa to duplicate the force vs. indentation distance curves (Figure 4-9(b)).
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(a) With a modulus of 0.6 kPa the nano-sized (b) For the micron-sized tip (rc'2.5 /tm), the
probe tip (rCr,40nm) resulted in a force vs. FEA curve matched with the experimental
indentation distance curve best representing data when a cell modulus of 3 kPa was used.
the experimental data.

Figure 4-9: Elastic finite element analysis predictions of indentation on loading of
enzymatically isolated calf chondrocytes (day 0) with rigid nano-sized and micron-
sized tips.

4.3.3 Indentation of Cells with Newly Developing Pericellu-

lar Matrix

Chondrocytes released from alginate were mechanically tested in the same fashion as

the enzymatically isolated cells. For the 10% FBS fed cells, the force vs. indentation

distance curves measured with the nano-sized and micron-sized probe tips showed a

slight stiffening with each week in culture (Figures 4-10(a) and 4-10(c)). As shown by

the small standard deviation bars, the measurements were repeatable over the cells

tested. The force curves generally showed a very slow increase in force over the first

700 nm with the nano-sized probe tip, but the increase was less pronounced with the

micron-sized tip. While there was stiffening with each week from clay 7 to day 28,

all measurements of cells in culture after day 0 were less stiff than the enzymatically

isolated cells (Figure 4-10(b)). Comparison of the nano-sized probe tip compared to

the micron-sized tip (Figure 4-10(d)) showed similar forces for the initial indentation

up to 900 nnm, which indicates stiffer measurements with the nano-sized tip compared

to the micron-sized tip given the decreased contact area with the nano-sized tip.

Cells cultured with IGF-1 + OP-1 showed a large increase in stiffness over time

with both the nano-sized tip and micron-sized tip compared to FBS cultured cells. A

small increase in stiffness from day 21 to day 28 cultured cells with IGF-i+OP-1 was
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Figure 4-10: Average AFM indentation curves (mean SD) on loading of individual
calf chondrocytes plus cell associated matrix released from alginate at different time
points from culture in 10% FBS.
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seen with the nano-sized tip (Figures 4-11(a)). With the micron-sized tip, the increase

in stiffness was more dramatic from day 21 to day 28 cultured cells (Figures 4-11(b)).

Compared to freshly isolated cells, the day 21 cells exhibited a similar stiffness as seen

in the force vs. indentation curves (Figures 4-11(c)). However by day 28, the cells

appeared stiffer with a greater amount of force of 2.55 nN at an indentation distance

of 670 nm compared to enzymatically isolated cells at a force of 1.97 nN.

A simple FEA model of a cell with an elastic shell of newly developed PCM

was designed to better calculate a modulus of the more complex cell+matrix. The

nano-sized tip FEA had trouble converging due to its small radius of curvature in

comparison to the indentation depth so it could not be used to compare with exper-

imental data. For the micron-sized tip FEA, the cell was modelled with a modulus

of 3.0 kPa, as calculated in the FEA for the enzymatically isolated cell, and the shell

modulus, with a thickness of 3.67 /m, was varied until the model output matched the

experimental data. For the day 28 FBS cultured cells, the shell modulus was 0.1 kPa

(Figure 4-1'2(a)). For the day 28 IGF-1+OP-1 cultured cells, the shell modulus was

1.5 times stiffer at 4.15 kPa (Figure 4-12(b)).

4.4 Discussion

4.4.1 Quantification of Pericellular Matrix Growth

Chondrocytes in culture were gently released from alginate to retain and minimize

damage to the surrounding newly developed PCM. Developing PCM was confirmed

with three methods: visualization via AFM imaging, biochemical assays of collagen

and GAG content, and histology (labelling of collagen and proteoglycans with dyes

and immunofluorescent antibody labelling of type IV collagen.)

The dense collagen network of the extracellular cartilage matrix has been visual-

ized via TEM [64] and AFM [127] after enzymatic removal of proteoglycans. In this

study, a dense, newly synthesized collagen network is directly seen in AFM images

(Figure 4-1(d)) and is reflective of AFM images of cartilage ECM [64, 127]. The
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Figure 4-11: Average indentation curves (mean ± SD) on loading of individual calf
chondrocytes plus cell associated matrix released from alginate beads at different time
points from culture in IGF-1+OP-1 supplemented medium.
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Figure 4-12: Finite element analysis predictions (solid lines in plots) of indentation
of individual calf chondrocytes and their cell associated matrix with the micron-sized
probe tip on loading.

collagen fib:ril diameter and banding pattern correspond to that of type II collagen,

characteristic of articular cartilage collagen. AFM images of cells released over time

points (Figure 4-1) gave a secondary confirmation that PCM was growing and being

retained by the cells. It is important to note that the images were taken with tapping

mode in ambient conditions so some features may have been slightly altered as the

cell was dried onto the mica surface.

Histology was also used to assess the accumulation of PCM with time in culture

(Figure 4-2). Enzymatically isolated cells showed no proteoglycans or collagen. For

later time points, both the FBS and IGF-1+OP-1 supplemented cells exhibited dark

staining of proteoglycans and collagen as early as day 7. The stained region became

larger on day :14 for both cultures but did not appear to increase in size with time

in culture, which reflects biochemical data. GAG and collagen content levelled off at

day 14 for the IGF-1+OP-1 supplemented cells. FBS showed a similar trend for the

collagen but, the GAG levels seemed to increase up to day 28. Optical microscopy of

live cells revealed an increase in diameter from day 0 to 7 but does not increase sig-

nificantly at later time points up to day 28 (Figures 4-2 and 4-3(a)). Previous studies

by Loeser et al. [77] confirm the trend of GAG content being higher in IGF-1+OP-1

supplemented cells over cells maintained in either FBS, IGF-1, or OP-1 alone, indicat-
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ing that the combination of IGF-1+OP-1 increased the production of proteoglycans.

In addition, OP-1 has been found to help chondrocytes retain their developing PCM

after release from alginate [97]. While the developing PCM appears to accumulate

quickly in culture, the molecular structure and collagen architecture within the PCM

may not resemble that of fully developed adult chondrons. Immunofluorescence of

labelled col VI (Figure 4-3(c)), a collagen characteristic only of the PCM, showed a

diffuse halo around the cell as also seen by Lee and Loeser [73], while PCM of fully

developed chondrons appears compact and more uniform [103]. While these mea-

surements quantify the composition of the PCM, it does not provide micro-structural

detail such as collagen organization or cross-linking that may be occurring with time

in culture.

4.4.2 Mechanical Properties of Enzymatically Isolated Cells

The repeatability of force vs. distance curves at 1 um/s with both the nano-sized and

micron-sized tip for a cell in one spot indicates recovery of the cellular properties be-

tween indents (Figure 4-7). Hysteresis was seen at all indentation rates from 200 nm/s

up to 10 tm/s and no significant change was seen below 1 lm/s (see Appendix B).

With other types of cells, a similar phenomenon was observed where hysteresis did not

decrease below 500nm/s [22]. A previous study involving cytoindentation of single

adult bovine chondrocytes found a time relaxation constant of 1.32 s [68]. However

in this study, an increase in hysteresis was not seen between 200 nm/s to 1 m/s in-

dentation rates indicating a pseudo steady state was obtained, giving an estimated

relaxation time constant of -1 s. We therefore, used 1 m/s indentation rates for

data collection. Hysteresis was minimized in order to minimize viscous contributions

and allow the elastic behavior to dominate in the measurements [52].

The micron-sized tip with a radius >60 times larger than the nano-sized tip re-

sulted in a larger force for the same indentation distance (Figure 4-8(a)). To extract

a modulus from the force vs. indentation distance curves, a number of methods were

implemented. The modified Hertz model for a conical tip was used to approximate

a modulus of 0.7kPa for the nano-sized tip (Figure 4-8(b)) while the Hertz model
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for a colloidal tip approximated a modulus of 1 kPa (Figure 4-8(c)). The two values

fall within error of each other and indicate that the length scale of the nano-sized

tip at a 4nmin radius of curvature measures the same material properties as the

micron-sized tip with a radius of 2.5 im. Without assuming a model, the modulus

from the v-e curves found the nano-sized tip and micron-sized tip measured a similar

modulus (0.92 and 1.46 kPa, respectively), confirming the results of the Hertz model.

This data matches nicely with previous measurements of chondrocytes giving moduli

ranging from 0.65 to 2.47 kPa for tensile micropipette aspiration [63] and unconfined

compression [74], respectively.

The above calculations do not take into account the geometry of the system, so

a more precise calculation was performed using finite element analysis. The exact

geometry of the well, pyramidal tip with a 40nm radius of curvature, and average

measured cell diameter (day 0) were used. FEA predicted the same modulus as the

Hertz model for the nano-sized tip. However, FEA predicted a modulus more than

three times higher than the Hertz model for the cell when probed with the micron-

sized tip. ()ne reason may be that the cell appears as a semi-infinite plane to the

nano-sized tip at small indentations despite the curvature of the cell while the large

micron-sizedl tip radius is more than half radius of the cell so the curvature of the cell

plays an increasingly important role in the amount of force measured. In addition

for the nano-sized tip, the decreased contact area and amount of force placed on

the cell reduce the displacement of the cell into the well where as the micron-sized

tip induces a substantial displacement into the well. The nano-sized tip may also be

probing individual structures such as the cytoskeleton filaments or organelles whereas

the micron-sized tip may be giving a bulk-type of measurement.

4.4.3 Mechanical Properties of Cells with Developing Peri-

cellular Matrix

Cell cultures supplemented with FBS or IGF-1+OP-1 produced cells with a devel-

oping PCM that increased in stiffness with each week in culture after day 7 until
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day 28 in culture. With time in culture, the thickness of the PCM did not change,

but GAG and collagen levels increased from day 7 to day 14, indicating accumu-

lation of both and therefore increased concentration of ECM molecules, which may

explain the increase in stiffness measured from day 7 to day 14. After day 14, the

PG content continued to rise for the FBS cultured cells while the PCM thickness

remained unchanged, indicating a higher PG concentration in the PCM, which may

cause stiffening of the cell. PGs have been found to be the main component in re-

sisting compression of cartilage [14]. However, IGF-I+OP-1 cultured cells showed

increases in stiffness despite a leveling of PGs and collagen. One explanation may be

that the PCM is undergoing molecular organization of the small PGs and collagen as

well as collagen cross-liking.

For the FBS fed cells, it was surprising to see that the stiffness even after 28 days

in culture was less than the stiffness measured from enzymatically isolated cells. The

newly forming matrix composed of GAG, collagen, and other smaller quantities of

ECM molecules may form a soft "sponge" like material where everything is loosely

organized around the cell membrane. As seen previously by Lee and Loeser [73],

newly developing matrix has a diffuse appearance. The rather amorphous structure,

when probed via indentation, may have a softer modulus than the cell itself. Contrary

to the enzymatically isolated cells, a lower stiffness is obtained with the micron-sized

tip compared to the nano-sized tip. One hypothesis is that the sharpness of the nano-

sized tip penetrates the developing PCM layer and may come in closer contact with

the cell membrane, and thus see substrate effects from the stiffer cell, whereas the

micron-sized tip with the large surface area cannot easily penetrate the PCM.

In comparison, the IGF-1+OP-1 cultured cells released on day 28 showed a sig-

nificant increase in stiffness over enzymatically isolated cells (Figure 4-11(c)). IGF-1

alone has been shown to increase proteoglycan content in newly developing PCM

[134]. OP-1 has also been shown to increase proteoglycan [97] as well as collagen

[35] synthesis and accumulation in newly developing PCM. The combination of IGF-

1+OP-1 has been shown to increase cell division as well as promote proteoglycan

content in the newly developing PCM [77]. While levels of proteoglycan and collagen
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from the IGF-1+OP-1 fed cells did not differ much from the FBS fed cells, there may

be a difference in the microstructure such as collagen cross-linking that may be caus-

ing the measured increased stiffness. OP-1 has also been shown to increase collagen II

and collage:n X, a marker of chondrocyte hypertrophy in developing bones [18], which

may potentially increase the stiffness of the PCM. Increase in stiffness was seen with

both the sharp nano-sized tip and the larger micron-sized tip.

Because the FEA had difficulty converging at depths greater than 200 nm for the

nano-sized tip due to the sharpness of the tip, we focus on FEA analysis with the

micron-size1 tip. The micron-sized tip converged more easily but did not yield a

modulus that fit all of the experimental data for the FBS fed cells released on day

28. For the! first 900nm, the shell model fit the experimental data well and gave a

PCM modulus of 0.1 kPa, which is much softer than enzymatically isolated cells. The

simple shell FEA modeled the full range of experimental data for the IGF-1+OP-1

supplemented cells giving the PCM a modulus of 4.15 kPa, a slightly higher modulus

than the enzymatically isolated cell of 3 kPa.

4.5 Conclusion

In this study, we developed a methodology to extend AFM capabilities to measure

the mechanical properties of spherical, non-adherent cells. With the FEA model, a

modulus over three times lower (0.6 kPa vs. 3 kPa) was obtained from the indentation

of freshly isolated chondrocytes with a nano-sized tip (r, - 40nm) compared to a

micron-sized. tip (r = 2.5/nm), indicating that the underlying cytoskeletal structure

may be playing a role in measuring material properties with the nano-sized tip. How-

ever, the geometry of the well used for immobilization of the cell and the curvature

of the cell played less of a role in the measurement of the mechanical properties when

using the nano-sized probe tip since qualitative agreement of the modulus was seen

with the Hertz model and FEA. In contrast, FEA revealed a modulus three times

larger than predicted by the Hertz model for indentation with the micron-sized tip.

The influence of surface geometry is most likely the main source causing the difference
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in predicted modulus. For the first time, we have measured the mechanical properties

of newly developing PCM. It was interesting to see that a cell with newly developing

PCM had a lower modulus than an enzymatically isolated chondrocyte even at day

28 for FBS fed cells but was 1.5 times higher for the IGF-1+OP-1 fed cells. An un-

developed PCM with a loose arrangement of proteoglycans and collagen may be the

reason for the lower modulus. However the stiffness from day 7 to day 28 increased

in both types of culture, which may be explained by increase in PG and collagen

content as well as maturation of the PCM into a more organized structure.
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Chapter 5

Concluding Remarks

The integrity of cartilage is dependent on the balance between collagen tensile forces

and compressive resistance of aggrecan. Because more than 50% of the compressive

modulus of cartilage is attributed to aggrecan, this thesis focuses on the molecular

structure and properties of both single aggrecan molecules and of the aggrecan-rich

pericellular matrix.

Nanometer resolution achieved via AFM of individual GAG chains attached along

the core protein was seen for the first time. Direct measurement of greater GAG and

core protein length as well as decreased GAG spacing along the core was correlated

to an increasedc persistence length for the fetal epiphyseal compared to mature nasal

bovine aggrecan. Two reasons may exist for the structural differences. With age,

aggrecan structure has been known to vary. In addition, epiphyseal cartilage is load-

bearing and thus would benefit from aggrecan with a fuller GAG brush region to resist

compression whereas nasal cartilage does not need to support and is not subjected to

large loads. It would be interesting to further explore other sources of aggrecan such

as osteoarthritic aggrecan or aggrecan that has undergone enzymatic degradation by

aggrecanase.. It may reveal information as to where and how degradation occurs.

Related to this, it may be interesting to image in real-time via AFM the degradation

of aggrecan via recombinant aggrecanase.

As aggrecan concentration was increased from a sparse density where molecules

were free to equilibrate on the surface to higher densities where aggrecan could in-
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teract with neighboring aggrecan, the molecules changed conformation from an ex-

tended to a more contracted configuration. At the highest density achieved, aggrecan

tended to bend around its neighbors making use of its available space while the GAG

chains remained extended. In cartilage, aggrecan is found at gel-like concentrations

at 20-80 mg/ml. The highest density achieved in this study was 2.3 mg/ml, but the

flexibility of the molecule was becoming evident. It may be interesting to look at

higher concentrations, but a modification of the sample preparation would be nec-

essary such as use of a Langmuir-Blodgett trough. It is important to note that 2D

conformation may not be representative of 3D conformation. Due to this limitation

of AFM, computer simulations may be required to get an accurate picture of 3D in-

teraction. A more dramatic collapse of aggrecan was also seen with increasing ionic

strength. Not until 0.1 M NaCl did aggrecan dramatically collapse from a mostly ex-

tended structure to a ball-like arrangement. At this ionic strength, the Debye length

is reduced to the distance of GAG spacing along the core protein.

Finally, the newly synthesized aggrecan-rich matrix surrounding the chondrocyte

was probed via AFM nanoidentation at different point in culture. An initial decrease

in stiffness occurred between an enzymatically isolated cell with a well-defined mem-

brane boundary to a cell released at a later time point in culture that is surrounded

by a loose arrangement of collagen and proteoglycans. However, from day 7 to day 28

a slow increase in stiffness was measured. Cells cultured in medium containing 100

ng/ml each of IGF-1 and OP-1 had a significantly stiffer matrix compared to cells

cultured in medium containing 10% FBS. More perplexing is that the GAG and col-

lagen content did not differ greatly between the two cultures. One hypothesis is that

the microstructure of the PCM may be more developed (e.g. greater collagen cross-

linking) for the cells cultured with IGF-1 and OP-1. Mechanical loading has been

shown to alter biosynthesis of chondrocytes, which in turn may alter PCM structure

and composition. The techniques developed in this thesis could be used to study cells

seeded into alginate, mechanically stimulated, and then released for nanoindentation

studies.

The micro-structure of cartilage has long been studied, but little is known about
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the interplay between the molecular components that lead to tissue level properties.

Understanding the basic mechanisms involved in forming complex cartilage matrix

properties may lead to a treatment for damaged cartilage or improve the properties

of tissue engineered cartilage. There is a lot of room for amazing discoveries at the

pico- and nano-levels. This thesis has only just begun finding and started assembling

a, few pieces of a much larger puzzle.
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Appendix A

Glossary

AFM atomic force microscopy

APTES 3-aminopropyltriethoxysilane

CS chondroitin sulfate

DMMB dimethyl methylene blue

EM electron microscopy

FACE fluorophore assisted carbohydrate gel electrophoresis

GAG glycosaminoglycan

HA hyaluronic acid

HRFS high resolution force spectroscopy

IGD interglobular domain

KS keratan sulfate

NMR nuclear magnetic resonance

QELS quasielastic light scattering

SANS small angle neutron scattering

SDSPAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis

S-GAG sulfated glycosaminoglycan

TEM transmission electron microscopy

TMAFM tapping mode atomic force microscopy

WLC worn-like chain
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XPS X-ray photoelectron spectroscopy

XRD X-ray diffraction
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Appendix B

More details relevant for the cell
indentation measurements (See
Chapter 4)

B.1 AFM Tip Reconstruction for Finite Element
Analysis

An AFM probe tip does not form perfectly sharp corners but instead has a finite
blunted tip radius. Tip geometry can have a significant effect on the shape of force
vs. indentation curves, so to accurately compare experimental AFM results to FEA,
the precise ip geometry must be determined.

B. 1.1 Methods

'The following steps were taken to determine the tip geometry:

1. A high resolution image of the tip with the scanning electron microscope (SEM)
was taken to get the overall geometry of the tip. A higher resolution image was
used to obtain a rough estimate for the tip radius (Figure B-1(b)).

2. Using the same tip that was used for the cell indentation, AFM indentation was
performed on a 1xlcm 2 agarose slab (1% w/v PBS). Six force vs. indentation
curves/spot at 7 different spots were recorded. You want a minimum of 5 curves
as there may be variation from location to location. The curves were plotted
and averaged.

3. The unconfined equilibrium modulus of the agarose slab was measured by uni-
axial, unconfined compression of 2.7mm thick, 3mm diameter agarose disks.
(See Chapter 4 Methods Section for more details.)

4. A finite element model of the agarose slab indentation was created in ABAQUS
(ABAQUS Inc., Providence, RI). The model used the modulus obtained from
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the unconfined compression test and a Poisson's ratio of 0.45 for the agarose
slab. The rigid pyramidal tip was constructed with walls 550 from the horizon-
tal. The radius of the tip was modified until a good fit to the AFM data was
obtained.

A

(a) SEM image of Si3N4 nano
tip used for the indentation ex-
periments. Measurements of
whole tip agree with nominal
measurements of a symmetric
350 tip opening.

(b) Higher resolution gives a ra-
dius of curvature of 60nm. The
scale bar equals 200 nm.

Figure B-1: Tip calibration.

B.1.2 Results
1. Measurements from the SEM confirmed the walls of the AFM (nano) tip were

etched 550 from the horizontal (Figure B-1(a)). The higher resolution image
showed a blunted tip radius to be -60 nm (Figure B-1(b)).

2. The AFM indentation curves with the nano tip were repeatable (Figure B-2(a)).

3. The unconfined compression tests gave a modulus of 3.74 ± 0.55kPa for the
1% agarose slabs.

4. To create the tip, 1/4 of the tip was created by cutting a block of material
to obtain the walls with the correct geometry. Tips with varying radii were
created by revolving a cut of a semi-circle with a radius extending to the far-
thest corner from the axis. A tip with a radius -40 nm matched best with the
experimental AFM indentation data (Figure B-2(b)). This tip was used for the
cell indentation FEA. (See Chapter 4)

B.2 More FEA Snapshots Comparing the Effects
of Tip Geometry and PCM Properties

The graphs can be located in Chapter 4, Figures 4-9 and 4-12. These snapshots give
you a physical idea about the deformation the cell is undergoing due to the nano and
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Figure 13-2: AFM tip calibration using indentation on 1% agarose and FEA.

micro tips as well as varying PCM properties. A shell model was created to model
the newly synthesized PCM surrounding the cell.

B.2.1 Results
Figures B-3(a) and B-3(b) are also in Chapter 4 as Figures 4-9(a) and 4-9(b). The
FEA with a 40nm nano tip radius of curvature fit the experimental data well.
Figures 3b,d are snapshots of the indentation simulation with the von Mises stresses
plotted; red indicating the largest stress and blue indicating very low stress. Greater
stresses and more deformation are seen in the cell when indented with the micro tip
compared to the nano tip.

Figures B-4(c) and B-4(d) are also in Chapter 4 as Figures 4-12(a) and 4-12(b).
The cell, 7.6 pm diameter, was modeled with a modulus of 3 kPa. The PCM was mod-
eled as being 3.55 pm thick with a modulus of 0.1 kPa for the day 28 cells cultured in
FBS (Fig. 4a). Because the IGF-1+OP-1 (Figure B-4(b)) produced much stiffer cells
for day 28, a PCM modulus of 4.15 kPa was used to match the experimental data. At
an indentation distance of 860 nm, the cell was more deformed (0.155 Pm vs. 0.014 pm)
when surrounded by the stiffer PCM. The softer PCM absorbed the indentation force
and did not transmit the load as readily as the stiffer PCM to the underlying cell.
Interestingly, the deformation of the PCM by the tip was approximately the same for
both the 0.1 kPa and 4.15 kPa PCM stiffness (0.63 pm vs. 0.59 pm, respectively.)

B.3 Effect of Mesh Density and Boundary Condi-
tions

The choice of mesh density can have a significant effect on the accuracy of FEA results.
To verify that the mesh was dense enough to obtain accurate results, two different
densities of meshes were implemented. Boundary conditions may also influence the
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(a) Comparison of experimental data with
FEA for the nano-tip

(c) FEA corresponding to Figure B-3(a)
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Figure B-3: Nano vs. micro-tips in the FEA model. Note that deformation and
resulting stresses (pictured) were much larger for the micro tip compared to the nano
tip.
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(a) The she ll model with a modulus of 0.1 kPa
for the PCMI fit the experimental data well for
day 28 FBS cultured cells. Note that the color
scale of (a) and (b) are not the same.

(b) The shell model with a modulus of
4.15kPa for the PCM fit the experimental
data well for day 28 IGF-1 + OP-1 cultured
cells.
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micro tip on day 28 FBS cultured cells.
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Figure B-4: Comparison of shell models. The PCM for the FBS and IGF-1+OP-1
deformed by approximately the same amount at 630nm and 590nm, respectively.
However, the cell did not experience most of the loading when surrounded by the
softer PCM and deformed only 14 nm compared to 155 nm for the stiffer PCM.
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FEA results. The exact interaction between the cell and well wall are unknown, so
the two extremes of no-slip and frictionless boundary conditions were implemented.

B.3.1 Results
A FEA pictorial representation of the micro tip indentation of a chondrocyte im-
mobilized in a well is shown in Figure B-5(a). Agreement of the resultant force vs.
indentation curves for the two mesh sizes confirms the accuracy of the FEA model
results (Figure B-5(b))

(a) Taking advantage of the symmetry of the
system, one quarter of the experimental geom-
etry was duplicated for FEA to minimize com-
putational time. A snapshot of a well immobi-
lizing an elastic cell during indentation with a
rigid micro tip.

z 3-

w 2-

u. 1

0

o Coarser Mesh
- Finer Mesh 1.2

o 0.8

~--"~. . , .o1Iowa;; *,0 0
0 250 500 750 1000 0 250 500 750 1000

Indentation (nm) Indentation Distance (nm)

(b) The agreement of force vs. indenta- (c) A no-slip boundary condition between
tion FEA results using two different sized the cell and well wall resulted in a decreased
meshes verified that both meshes were cell modulus.
dense enough to obtain accurate results

Figure B-5: Validating the accuracy of FEA mesh and effect of cell-well boundary
condition.

Interestingly, a no-slip boundary condition between the cell and wall resulted in a
lower modulus compared to the frictionless boundary condition (Figure B-5(c)). This
implies that if the wall is frictionless, then the tip has to indent more of the cell to
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obtain an equally large resultant force to that of the no-slip wall, which may be due
to the cell 'slipping" more into the well.

B.4 Effect of Indentation Rate on AFM Measure-
ments

Chondrocytes exhibit viscoelastic and poroelastic behavior [68, 74]. In order to mini-
mize the viscous effects, a series of measurements at indentation rates of 0.2, 0.5, 1, 3,
5, and 10 mrn/s were recorded on enzymatically isolated chondrocytes. (See Chapter 4
for details.) The hysteresis was normalized to the hysteresis measured at 1 m/s.

B.4.1 Results
As seen in Figure B-6, there is little change in hysteresis between 0.2 - 1 m/s. This
indicates that the viscous effects are minimized and that the elastic properties dom-
inate. An indentation rate of 0.2 - 1 m/s with a maximum indentation depth of
1 im/s gives the cell a relaxation time between 1-5 seconds. This agrees with previ-
ous results in which the relaxation time constant for chondrocytes had been measured
at 1-3 seconds [74]. For these reasons, all indentations in the experiment were recorded
at 1 m/s.

U) 2-
e °W 2 

0 0.5-
0

I
I T

E~ ~A Pyramidal Tip

* Colloidal Tip
I I ._ I I - ."

0 2 4 6 8 10 12
Indentation Rate (um/s)

Figure B-6: Averaged hysteresis (mean sem) exhibited at 0.2, 0.5, 1, 3, 5, and
10/Am/s. Between 0.2-1ym/s, little change in hysteresis was seen, indicating that
the viscous effects were minimized and elastic properties dominating. Therefore, all
indentations in the experiment were recorded at 1 m/s.
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Appendix C

Cell Histology Staining Protocol

C.1 Fixing Cells
SafefixII Use a 1:1 ratio of cell suspension to fixative (SafefixII, Cat No. 042-600,

Fisher Scientific; note; this is much safer than paraformaldehyde). You can use
the fixed cells immediately. See Appendix D.

RHT See Appendix E. RHT has been shown to preserve proteoglycans for histolog-
ical staining. See Chapter 3 for results.

C.2 ilounting Cells onto a Slide
Cytospin (Cyto-Tek Miles, Diagnostic Division, Mishawaka, IN; Massachusetts Gen-
eral Hospital, contact: Han-Hwa Hung)

* Can use blotting paper for the insert gasket between the fluid chamber and the
slide

* 3ml of hetastarch 6% (in lactated electrolyte injection) + two drops of cell
solution (1.106 cells/ml)

* spin cells (14x100rpm) for 10 min.

* wipe away excess fluid around the cell mounted area

* air dry

C.3 Toluidine Blue

Tol Blue is used for staining negatively charged molecules and is typically used to
stain for proteoglycans.

0.1% Tol Blue Stain (g per 1000g DI water) [Sigma-Aldrich Toluidine Blue 0,
Cat No. 198161, FW 305.83] To make this solution, dissolve the Tol blue powder into
DI water. Filter through filter paper to remove larger particles.

117



Gently pipette - 100 /1 of Tol Blue onto the mounted cells on glass slide. Incubate
for 5 minutes. For RHT fixed samples, incubate for 2 minutes or less. The stain may
be very dark. Shake off excess dye. Gently dip the slide a few times (3-4) in DI water.
You don't want to rinse too well or the stain will wash away.

C.4 Aniline Blue

Aniline blue is typically used to stain for collagen. The phosphomolybdic acid is
taken up by connective tissue (e.g. collagen I and II). A substitution reaction occurs
for phosphomolybdic with aniline blue.

* Phosphomolybdic Acid (PMA), 1% ag [Rowley Biochemical Inc., Danver, MA;
CatNo. F-362-7]

* Aniline Blue Solution [Rowley Biochemical Inc., Danver, MA; CatNo. F-362-4]

Gently pipette 150ul of PMA onto the mounted cells on glass slide. Incubate
for 2 minutes. Shake off excess PMA. Pipette -150 p1 of Aniline Blue. Incubate 5-
8 minutes. Shake off excess dye. Gently dip the slide 2-3 times in DI water (can also
try 95% ethanol.) This dye rinses off easily, so do not dip the slide too many times.

C.5 Mounting Coverslips

Once the slides are dry, you can protect the samples with coverslips. Using a blunted
glass probe, drip one drop (You only need one! It will spread.) of Toluene [Permount,
Fischer Scientific, Cat No. UN1294] onto the cell area. Quickly place a coverslip over
the drop. Allow to dry in hood overnight. Use xylene to remove any toluene adhered
to the glass probe.

C.6 Taking Pictures
Division of Comparative Medicine (16-849) has a nice microscope that can capture
the images on a computer. Contact Arlin in Pathology (617-253-9442).
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Appendix D

Results from Fixation with SafeFix
II

Safefix II offers a safe alternative to the usual fixatives including gluteraldehyde, and
formalin. The main ingredient is glyoxal, which produces aldehyde-type fixation.

Cells, released from alginate beads at different points in culture, were suspended
at 1.106 cells/ml medium. For fixation, the cell suspension was mixed with a 1:1 ratio
of SafeFix II. The cells were mounted onto glass slides using a Cytospin (1400 rpm
for 10 minutes). The slides were allowed to air dry before staining.

Results: Unlike the RHT fixed cells, the proteoglycan stain is not as dark, pre-
sumably due to loss of PGs during fixation. However, the PCM could be clearly
identified apart from the cell. Freshly isolated cells showed no visible accumulation
of proteoglycan or collagen (Figure D.1) By day 7, a ring of proteoglycan was stained
and seen as a light purple dye ring around the cell membrane, but no collagen ring
was visible. However by day 14, the halo of proteoglycan remained constant but a
diffuse blue halo indicative of collagen was also present. By the third and fourth
weeks in culture, the cell membrane displayed a more prominent and darkly stained
halo of collagen and proteoglycan.
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Appendix E

RHT Fixation for Light
Microscopy

E.1 Introduction
Objective: Fix cartilage for histology using Ruthenium Hexammine Trichloride (RHT),
a cationic dye which binds to and precipitates negatively-charged GAG chains, and
gluteraldehyde as a protein crosslinker. This combination retains more GAG in the
tissue, allowing for a more-native GAG state for subsequent toluidine blue staining.

Background for this technique can be found in [60, 57, 58, 14].
Warning: Sodium cacodylate is a dangerous reagent, containing arsenic. Use

only in the hood, and dispose of as toxic waste.

E.2 Procedure
1. Make the following solutions (reagent information in Section D)

Solution A. 0.1 M sodium cacodylate stock, 40 mL

* 0.86 g sodium cacodylate (MW 214)
* Water
* Dissolve sodium cacodylate powder in 30 mL water. pH to 7.4 w/pH

paper. Bring volume to 40 mL.

Final concentration: 0.1 M sodium cacodylate.

Solution B. Prefix solution, 3 mL

* 1.5mL Solution A
* 1.26 mL water

* 240/L 25% gluteraldehyde

Mix these reagents in the fume hood.
Final concentrations: 0. 05 M sodium cacodylate, 2% gluteraldehyde

Solution C. Wash solution, 25 mL
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* 25 mL Solution A

* 95 mg NaCl (MW 59)

Add Solution A, NaCl. pH to 7.4
Final concentrations: 0.1 Msodium cacodylate, 65mM NaCi, osmolality
330 mOsm.

2. 10minutes before fixation, make Solution D by adding 21mg RHT to 3mL
Solution B. The solution will first turn yellow, then dark brown/black. Final
concentration of fixative: 0.05 M sodium cacodylate, 2% (v/v) gluteraldehyde,
0.7% (w/v) RHT.

3. Add an equal volume of RHT solution to the cell suspension.

4. Cytospin cells onto glass slides. Rinse the slides gently with Solution C.

E.3 Solution Storage
Solution A: Store indefinitely at room temperature

Solution B: Store at 4°C for up to one week. Parafilm cap of bottle to prevent
evaporation.

Solution C: Store indefinitely at room temperature

E.4 Reagent Information

Reagent
sodium cacodylate trihydrate, MW 214

25% gluteraldehyde

sodium chloride (NaCl, MW 58.4)

Cat number / Location
Sigma C-0250

chemical fridge. If none in 15mL con-
ical tube, open another ampule in the
hood

chemical cabinet

Ruthenium (III) hexamine trichloride chemical cabinet, in small cardboard
(RHT), MW 308.7 boxes

Table E.1: Reagent Information
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Appendix F

Casting Alginate Beads with Cells

F.1 Autoclave
* 50ml beaker

* Three 500 ml bottles (for solutions below)

* One spatula (to move beads)

F.2 Solutions
* 2% alginate in 0.9% NaCl

* 0.9% NaCI: 9 g in 1000 ml DI water

* 150mM NaCl (FW 58.44): 4.38g in 500 ml DI water

* 102mM CaC12 (FW 111) in 0.9% NaCl: 5.66g in 500ml of 150mM NaCl

* 55 mM Na Citrate (FW 294.10) in 150mM NaCI: 8.09g in 500ml of 150mM
NaCl

Filter all solutions through a 200/ m filter and into the sterile bottles.

F.3 Making the beads
1. Fill the sterile 50 ml beaker with 30 ml of 102 mM CaC12 solution.

2. Get a count of cells using the hemacytometer. Spin cells down (if needed).
1800 rpm, 10 minutes Suction off supernatant (being careful not to suck up any
cells). Gently tap bottom of vial to break up cells. May need to add a 1 ml
sterile PBS (no Mg++ and Ca++, pH 7) to help break up the cells.

3. Add appropriate amount of alginate. [conc: 20-106 cells/ml; can be 10-15.106 cells/mll
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4. Use a 16 G needle and 3 ml syringe to suction up the alginate-chondrocyte so-
lution. Remove as many air bubbles as possible from the syringe.

5. Remove 16 G needle and replace with 22 G needle. Hold the syringe at a 450
angle with the hole facing downward.

6. With steady pressure, drop even-sized droplets into the CaC12 solution. Halfway
through you may want to exchange the CaCl 2 solution with fresh solution so
the Ca++ does not get depleted.

7. After 10 minutes, suction off the CaC12 and rinse twice with 20 ml sterile PBS
(no Mg++ and Ca++). Let each rinse go for 1 minute.

8. Replace PBS with culture medium.

9. Fill a 12-well plate with 2ml culture medium in each well. Using a sterile
spatula, transfer 6-8 beads per well.

10. Do a cell viability assay on one of the beads.

11. Keep alginate-cell beads in an incubator.

F.4 Dissolving the beads
1. Put 4 beads into a 1.5ml Eppendorf tube. Add 1.2ml NaCitrate. Place in

a 370C water bath or incubator for 10minutes. Shake gently to mix. Do not
vortex.

2. Spin 3000-4000 rpm (1000 RCF) in Eppendorf centrifuge 5415C for 5 minutes.

3. Remove supernatant. Add 1 ml 0.9% NaCl. Centrifuge 3000-4000 rpm, 5 minutes.
Repeat.

4. Re-suspend final pellet in PBS (if doing a cell viability assay) or culture medium
at desired concentration (0.5 ml).

5. Do a cell viability assay.

OR

1. Put 15 beads into a 15 ml conical tube. Add 5 ml NaCitrate. Place in 37°C water
bath for 10 minutes. Shake gently to mix. Five more minutes with frequent
shaking if the beads are not dissolved. Do not vortex.

2. Spin <1000rpm (with CBE centrifuge) for 6minutes.

3. Remove supernatant. Add 3ml of 0.9% NaCl to rinse. Spin <1000rpm. Re-
suspend in medium.
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Appendix G

AFM Imaging of Chondrocytes
Cultured in Alginate

G.1 Dissolving the beads
1. Put four beads into a 1.5 ml Eppendorf tube. Add 1.3 ml of 55mM NaCitrate

(in 150 mM NaCI). Place in a 37°C water bath or incubator for 15 minutes. Mix
slightly with 200 1l pipette.

2. Spin 3000 rpm (735 RCF) in Eppendorf centrifuge 5415C for 5 minutes.

3. Remove supernatant. Add 1 ml PBS (no Mg+ 2, Ca+2). Centrifuge 3000-4000 rpm,
5 minutes. Repeat.

4. Re-suspend final pellet in PBS (if doing a cell viability assay) or culture medium
at desired concentration (-0.5 ml).

G.2 Preparing the AFM sample
1. Cut mica into x1 cm2 pieces.

2. Pipette 30 Al of cells suspension onto cleaved mica. Keep sample enclosed in a
Petri dish to minimize contamination.

3. Allow cells to attach for 30-60 minutes onto the mica at room temperature.

4. Rinse gently with a few drops of DI water. Blot edge dry with filter paper.
Mount using double sided adhesive to sample disc. Allow to air dry until all
signs of moisture are gone. Image the same day of prep.

G.3 AFM tapping mode imaging in air
1. Align laser and tune an Olympus 2 N/m Si cantilever (Veeco Inc.). (-70-80 kHz)
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2. Shift the drive frequency to slightly below the resonance peak.

3. Using the optical microscope, position the cantilever tip over the cell. Image
at a large scans (20-35 m) at a slow scan rate (1-1.5 Hz) to minimize the tip
velocity and increase resolution.
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Appendix H

Protocol for AFM Aggrecan
Sample

H.1 0.01% AP Mica v/v MilliQ
1. Make dilution in MilliQ water: 2 l of APTES (3-aminopropyltriethoxysilane)

with 20 ml MilliQ water. Shake by inverting the vial a few times.

2. Cleave mica with tape. Make sure the cleaved plane comes off cleanly in one
piece.

3. Incubate 60l (or enough to cover the entire surface but not spill off) of the
0.01% AP solution on the cleaved mica. Keep in a humidity controlled environ-
ment (i.e. a sealed box with water to minimize evaporation of the solution) at
room temperature. Incubate for 20 minutes.

4. Rinse gently in a stream of MilliQ water for -10 seconds. Blot one edge of the
mica to dry. (Nitrogen drying optional.)

5. Use prepared mica in the same day.

H.2 Diluted Aggrecan
1. Thaw frozen aggrecan from -80 0C freezer. The concentration is 2 mg/ml (GAG).

2. Use 0.25 ml of the concentrated aggrecan plus 0.75 ml water to obtain a final
amount of 500 ug per vial. A more dilute solution will result in a sparser aggre-
can surface if a dilution of 250/ g/ml (GAG) aggrecan is made.

H.3 Samples
1. Incubate 50 pl of aggrecan dilution onto the dry AP mica for times ranging

from 20-30 min. Keep the samples in a humidity controlled (i.e. in an air tight
container) environment at room temperature.
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2. Rinse gently in a stream of MilliQ water for -10 seconds. Blot one edge of the
mica to dry. Air dry.

3. Image the sample the same day or next day.
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Appendix I

List of Supplies for Chondrocyte
Indentation Experiments

1.1 Cell Isolation and Culture

Name
pronase
collagenase-Pl
DMEM
trypan blue
alginate
L-ascorbic acid
antibiotic-antimycotic
rIGF-1
insulin
transferrin
selenous acid
linoleic acid-albumin

Vendor
Sigma
Boehringer Mannheim
Invitrogen
Sigma
Kelco
Sigma
Sigma
PreproTech
Sigma
Sigma
Sigma
Sigma

Catalog Number
P-5147
12-49-002
11965-092
T-8154
LVCR
A-4544
A-5955
100-11
10516
T8158
S9133
L9530

Table I.1: Chemicals for Cell Isolation and Culture
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1.2 Histology

Name
SafefixII
RHT
sodium cacodylate
gluteraldehyde
toluidine blue o
phosphomolybdic acid
aniline Rowley
hyaluronidase
col VI antibody
2 rhodamine-conjugated AB
muscovite mica

Vendor
Fischer Scientific
Polysciences
Sigma
Polysciences
Sigma
Rowley Biochemical
Biochemical
Sigma
Chemicon
Jackson Immunoresearch
SPI Supplies

Catalog Number
23-011116
17253
C-0250
1909
198161
F-362-7
F-367-5
H-3506
AB782
705-225-003
1804 V-5

Table 1.2: Chemicals for Histology

1.3 AFM

Name
APTES (aminopropyltri-
ethoxysilane)
muscovite mica
silica beads
tipless cantilevers
tapping mode cantilevers
contact mode cantilevers

Vendor
Pierce Chemical

SPI Supplies
Bang Labs
Veeco
Asylum Research
Veeco

Catalog Number
80370

1804 V-5
SS06N
NP-020
AC240-TS
MLCT

Table 1.3: Chemicals for AFM sample preparation
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