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Abstract

The application of multiscale and stochastic techniques to the solution of a lin-
earized inverse scattering problem is presented. This approach allows for the explicit
and easy handling of many difficulties associated with problems of this type. Reg-
ularization is accomplished via the use of a multiscale prior stochastic model which
offers considerable flexibility for the incorporation of prior knowledge and constraints.
We use the relative error covariance matrix (RECM), introduced in [20], as a tool for
quantitatively evaluating the manner in which data contributes to the structure of a
reconstruction. Given a set of scattering experiments, the RECM is used for under-
standing and analyzing the process of data fusion and allows us to define the space-
varying optimal scale for reconstruction as a function of the nature (resolution, quality,
and distribution of observation points) of the available measurement sets. Examples
of our multiscale inversion algorithm are presented using the Born approximation of
an inverse electrical conductivity problem formulated so as to illustrate many of the
features associated with inverse scattering problems arising in fields such as geophysical
prospecting and medical imaging.

*This work was supported in part by the Office of Naval Research under Grant N00014-91-J-1004 and the
Air Force Office of Scientific Research under Grant AFOSR-92-J-0002, and the Advanced Research Project
Agency under Air Force Grant F49620-93-1-0604

tThe work of this author was also supported in part by a US Air Force Laboratory Graduate Fellowship
and summer work performed at Schlumberger-Doll Research

1



Submitted to IEEE Trans. Geoscience and Remote Sensing 2

1 Introduction

A common objective of many applied inverse problems is the desire to recover characteristics

of a medium based upon observations arising from the interaction of transmitted energy

with the unknown environment. As discussed extensively in [1], such problems are found

in fields as diverse as medical imaging, nondestructive testing, oceanography, remote sens-

ing, ultrasonic imaging, electrical impedance tomography, and geophysical prospecting. The

model problem considered in this work is a two-dimensional inverse electrical conductivity

problem illustrated in Figure 1. Here, electromagnetic sources (indicated by the black cir-

cles) emit time-harmonic waves into a lossy medium. These primary fields are scattered by

conductivity inhomogeneities located in the darkly shaded rectangle and the secondary fields

are observed at one or both receiver arrays located on either vertical edge of region under

investigation. Based upon these observations, the objective of the inverse problem is the

reconstruction of the conductivity perturbation.

Inverse problems in general, and in particular problems of the type illustrated in Figure

1, present a number of significant and well-recognized challenges. The objective of this

paper is to present and demonstrate a methodology for the use of multiresolution methods

and concepts in dealing with these issues. In particular, to provide some perspective and

motivation for our work, we begin with a brief look at several of these challenges.

A first major issue that must be confronted in solving inverse problems is computa-

tional complexity. Indeed, while nonlinearities in the relationship between observables and

unknowns present a considerable computational challenge [3,24], the solution of linearized

inverse problems - arising either in the iterative solution of the nonlinear problem or from
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a linearized approximation to the true physics of the problem - also represents a compu-

tationally intensive task. In particular, the so-called first Born linearization [14, 23] of the

inverse conductivity problems considered in this paper leads to large, dense sets of linear

equations due to the nonlocal nature of the relationship between conductivity and mea-

surements. While the task of solving such systems of equations certainly is less intensive

than obtaining a solution to the nonlinear problem, it can still be prohibitively expensive

especially for problems involving large amounts of data and a very fine discretization of the

conductivity profile. Additionally, the complexity of these equations not only makes them a

challenge to solve efficiently, but it also places a major impediment in the way of other and

equally important calculations. For example, the calculation of error statistics associated

with the solution to these inverse problems is a considerably more complex problem than

calculating the estimates themselves.

As we will see, the use of the wavelet transform to produce multiresolution representations

for the unknown conductivity field, the measurements, and the relationship between these

two quantities simplifies the analysis considerably, making complex calculations simpler and

prohibitively complex ones possible. Roughly speaking, the wavelet transform provides a

decomposition in scale so that a nonlocal integral measurement of conductivity more-or-less

becomes a local measurement of a coarse feature of the underlying conductivity distribution.

As a result, the dense equations relating conductivity to the observed data become sparse in

the transform domain leading to efficient inversion algorithms [19,21].

Moreover, the use of this multiscale representation facilitates the solution of the problem

of multisensor fusion and in particular, the combined inversion of data from measurement

sets with different resolutions and spatial coverages. In many inverse scattering problems, a
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large quantity of data from a collection of scattering experiments may be used to generate

the reconstruction; however, the information conveyed by each measurement process may be

far from complete. Referring to Figure 1, in the case of the conductivity problem considered

in this paper, the measurements from a single experiment consist of the data obtained over

one receiver array in response to one of the three sensors operating at a particular frequency.

Given the measurements from many such experiments, there is a need for understanding

precisely how the different data vectors contribute unique information to a reconstruction

and the manner in which measurements from different sources are merged by the inversion

routine. For example, the resolution and coverage provided by measurements from the left

array in Figure 1 (with sources on the left) are considerably different from those obtained from

the right hand array. By using multiresolution representations, the information provided by

these data sets are explicitly related to the corresponding scales in the representation of

conductivity making fusion simpler to perform and transparent to understand.

A last major challenge concerning inverse problems is that they are frequently ill-posed.

For example, the problem illustrated in Figure 1 is ill-posed to the extent that the restriction

of collected data to the boundaries of the medium combined with the physics governing

the propagation of energy through a lossy medium make exact inversion a mathematical

impossibility or, at best, an unacceptably sensitive procedure in which slight measurement

errors are greatly magnified by the inversion process. Traditionally, this difficulty is overcome

via the use of a regularization procedure which serves to stabilize the original inverse problem

so that a unique, physically plausible solution may be computed [10]. Indeed, even if the

problem is not ill-conditioned, a regularizer may be incorporated as a means of constraining

the reconstruction to reflect prior knowledge concerning the behavior of this function [18].
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For example, it is common practice to regularize a problem so as to enforce a degree of

smoothness in the reconstruction [10, 18]. As discussed in [20], and in the next subsection,

regularization techniques involving such differential penalties have direct interpretations as

specifying prior statistical models on the phenomenon to be imaged. In principle, this

provides a basis for the calculations of error variances and for considering questions such

as the tradeoff between the resolution of reconstruction and the accuracy of the generated

image, the value of additional measurement sets, etc. However, as discussed in Section 2.3,

performing such analysis using traditional regularization formulations is a formidable and

often prohibitive task.

By using a wavelet-based multiresolution framework, we are directly led to an alternative

method for statistical regularization in the wavelet transform domain that has a number of

attractive properties. First, the class of multiresolution models available to us is extremely

rich, allowing us to capture a wide range of characteristics and constraints in our prior

models. In this paper, we consider a very special and at the same time highly useful class

of multiscale prior models, the so-called fractal priors model for the conductivity field. As

shown in [18], this model is related to the traditional smoothness-based statistical regularizers

and, with appropriately chosen parameters, produces estimates with similar characteristics.

Moreover, Wornell [26] has demonstrated that this model is useful for representing, self-

similar stochastic processes possessing 1/f-type power spectra of the type that is commonly

used to describe natural phenomena [7, 25]. Such a model is especially appropriate for

inverse conductivity problems particularly in contexts such as geophysical exploration where

fractal models are frequently used [9, 25]. Indeed, the fractal priors are exceptionally easy

to implement [26], and lead to scale-space algorithms which are orders of magnitude more
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efficient than those estimation schemes operating in real-space using a regularizer based upon

some differential operator [18].

The direct scale-space form of these models facilitates the explicit analysis of the tradeoff

between the incorporation of fine scale detail in a reconstruction and the accuracy in the

resulting estimate. In particular, the relative error covariance matrix (RECM) introduced

in [20] provides a rational basis for dealing with resolution/accuracy tradeoffs and identi-

fying the optimal scale to which the conductivity may be reconstructed as a function of

spatial position, the physics of the problem, the prior model, and the spatial coverage and

measurement quality of the data provided to the inversion algorithm. Moreover, the RECM

provides an explicit description of the information provided by the various data sources both

individually and collectively at each point in space and scale. Thus, we can determine those

points at which active fusion takes place, i.e. those points where the information provided

by several data sets together significantly exceeds that provided by any one set individually.

Conversely, we can map the scale space regions in which inversion is dominated by a single

data set. Finally, we can use the RECM to assess the incremental value of additional sources

of information

In the next section, we provide an overview and notation for the specific inverse problem

of interest. Section 3 is devoted to the development of the physical model relating the

observables to the conductivity field. In Section 4.1, we present the details behind our

wavelet-transform domain representation of the inverse problem. Section 4.2 contains the

description of the fractal multiresolution statistical regularization formulation and the tools

for RECM-based analysis. A set of examples based upon the inverse conductivity problem

and which are illustrative of the different facets of our approach are presented in Section 5.



Submitted to IEEE Trans. Geoscience and Remote Sensing 7

Finally, conclusions and directions for further investigation are given in Section 6.

2 Problem Overview

2.1 An Inverse Electrical Conductivity Problem

We use a two-dimensional inverse electrical conductivity problem similar in structure to that

considered in [13,24] as the primary vehicle for illustrating the multiscale, statistically-based

inversion algorithms developed in this paper. The form of the problem is illustrated in Figure

1. Here, we have a set of three electromagnetic line-sources oriented perpendicularly to the

page emitting time-harmonic, cylindrical waves into a medium. The electrical properties of

this environment are assumed to be decomposed into the sum of two parts: (1) an infinite,

known, and constant background and (2) a conductivity anomaly, g, which varies as a

function only of the two variable x and z and which is known to lie in a closed and bounded

area of the plane, denoted as A and indicated by the darkly shaded region in Figure 1. Upon

interaction with the medium, the electromagnetic energy is scattered and the resulting field is

measured by one of two arrays of receivers located on either vertical edge of the conductivity

perturbation. Each array is composed of a set of line receivers all of which extend infinitely

in the direction perpendicular to the page.

We consider inversions based upon the data obtained from a number of scattering exper-

iments. Each such experiment produces a vector of measurements comprised of the observed

scattered field obtained over a single receiver array due to energy put into the medium from

one of the three sources operating at a particular frequency. Of interest in Section 5 are
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inverse problems corresponding to different subsets of the nine experiments defined in Table

1. Here each source is capable of operating at a high, middle and low frequency labeled fHI,

fMID and fLO respectively. In any of these problems we use K to denote the number of

experimental data sets used, and we index these sets as i = 1, ... , K.

As is described in Section 3, the use of the first Born approximation yields a linear

relationship between the vector of observation associated with the i th scattering experiment,

yi, and a discrete representation of the conductivity anomaly, g. Thus, the observation model

used here is of the form

yi = Tig+ni (1)

where Ti is a matrix encompassing the (linearized) physics and ni is an additive, zero-mean,

uncorrelated, random vector representing the noise in the data. That is, the ith noise is

modeled as ni - (0, ril) where I is an appropriately sized identity matrix1 . It is often useful

to work with the "stacked" system of data

y=-Tg+n (2)

where y contains the information from all sensors, i = 1, 2, ... , K. Thus, we have y =

[yT y2T .yT]T, with T and n defined accordingly.

2.2 Regularized Inversion and Its Probabilistic Interpretation

A commonly used technique [10,15,17] for solving linear inverse problems of the form in (2)

is to choose the estimate of g according to

= argmin Ily - Tg l-1 + JlLg112
9

= argmin Ily - Tg R- 1 + lg2lLTL (3)

'The notation x (m, P) indicates that the random vector x has mean m and covariance matrix P.
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where Ixjll -- xTMx. The first term in (3) enforces fidelity to the data where the weighting

R -1 reflects the relative quality of each of the measurement sets as measured by the inverse

of the noise covariance while the second term can alternatively be viewed as a regularization

term (in case (2) is ill-conditioned or underdetermined) or as a prior statistical model for

g. In particular, as discussed in [18], this penalty term is equivalent to a prior model of the

form2

Lg = w w , (O, I). (4)

Thus, the nature of the regularization or the prior knowledge is captured in the structure

of the matrix L. Frequently in regularization problems, this matrix is chosen so that some

degree of smoothness is present in g in which case L = ALo where Lo is a discrete form of an

appropriate differential operator [18]. The scalar factor A is then used to provide a tradeoff

between the influence each of the two terms in (3) exerts on the reconstruction.

The optimization problem given by (3) admits a solution which defines g in terms of the

normal equations

(TTR-1T + LT L ): = TT7-1y. (5)

As discussed in [18], this solution, 0 can also be interpreted as the linear least squares

estimate (LLSE) or minimum variance estimate of g given the noisy measurements in (2)

with n - (0, RZ) and given the prior statistics for g implied by (4), i.e. g is zero mean and has

LTL as the inverse of its covariance. Furthermore, the estimation error covariance matrix,

that is, the covariance of g - 0 is given by

E [(g- _)(g g_ )T] =(TTR- l T + LTL) - 1 . (6)

2 Note that we assume zero-mean in the prior model for g only for notational simplicity. There is no
complexity added if we incorporate a prior mean, e.g. in a penalty term of the form IIL(g - go)112
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2.3 A Multiscale Representation of the Problem

For the inverse problems of interest here, the Ti in (1) represent discretized integral operators

corresponding to different scattering experiments. Furthermore if L is a discrete version of

a differential operator, then obtaining g from (5) requires the solution of an elliptic partial

integro-differential equation, or in discretized form, a dense set of linear equations. More-

over, computing the error-covariance matrix in (5) corresponds to the explicit calculation of

the inverse of the large, dense (integro-differential) matrix TTR7-1T + LTL, an even more

formidable task. Among the objectives in introducing wavelets and wavelet-based prior mod-

els are to make the computations in both (5) and (6) far simpler to perform and to facilitate

a deeper look at data fusion, reconstruction accuracy, and resolution.

In Section 4.1 we define orthonormal, discrete wavelet transform operators Wi and Wg

which transform the measurements, yi and the discretized conductivity field, g, into their

respective wavelet decompositions

ni = -/ViYi

a = wlg.

In our analysis of (1), we use Wi and Wg to move from physical to scale space in the following

manner

7i = WiVi - (WiTiWV*)(W gg) + Wini

- E)iy + vi (7)

where WgWg = I follows from the orthonormality of the wavelet transformation.

Finally, analogously to the physical space case, we define the stacked systems

= e3y + V (8)

with K - f/rT .. .. T ]T and e and v are defined accordingly.
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In analogy to the discussion in Section 2.2, we can now define a corresponding regularized

inverse problem, or equivalently, a linear-least-squares estimation problem, in the wavelet

transform domain. Specifically, we wish to reconstruct 7y based on a prior model for y,

namely y - (0, Po), together with the noisy measurements (8). That is, the LLSE, §, is

defined as

a= rgmin 1177 - EO71R-1 + Ipo-1 (9)

so that I' satisfies normal equations of the form

(eTRE10 + P-)1> -= OTR-17 (10)

and the corresponding error-covariance matrix is given by

P = E[(, - f)l'(, - V)]

= (eTR-10i + Pol)-l. (11)

Comparing (3), (5), and (6) to eqs. (9), (10), and (11), we see that the wavelet transfor-

mation has left us with a formulation of exactly the same structure as we had originally. The

advantages of this transformation come from two important facts. First, the measurements

operator O in the wavelet domain is far more sparse than the operator T. Secondly, as we

will see in Section 4.2, the inverse of the prior covariance Po1- can be taken to be diago-

nal. In particular, as we discuss in Section 4.2, a specific diagonal choice for Po-l implies

a smoothness penalty (or equivalently a fractal prior model) analogous to that captured by

LTL in (3), (5), and (6) when L is a differential operator while other choices for the diagonal

matrix Po1 allow us additional flexibility to capture a rich variety of other regularization

objectives or prior models. As a consequence of the sparsity of O and the diagonal nature of

PoC-, not only can (10) be solved efficiently, but also the the matrix to be inverted in (11) is

sparse with diagonal regularization provided by Po1 thereby facilitating the computation of
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the inverse and in particular the diagonal elements of P corresponding to the error variances

in each of the wavelet coefficients in out multiscale representation of g.

3 Formulation of the inverse conductivity problem

In general, problems of the type illustrated in Figure 1 are characterized by a nonlinear

relationship between the data and the conductivity perturbation [24]. As a first step in

exploring the utility of multiscale and statistical methods for the solution of inverse problems,

we consider in this paper a linearized form of the problem obtained using the so-called first

Born approximation to Maxwell's equations [14]. In general, the Born approximation is

valid only for conductivity perturbations which are "small" both in spatial extent as well

as magnitude relative to the background [14]. For the issues of interest in this paper, such

assumptions are not restrictive and in Section 6 we discuss the manner in which our approach

can be extended easily to other linearizations as well as to the consideration of the full,

nonlinear inverse problem.

Under the geometric configuration shown in Figure 1 and discussed in Section 2, all

field quantities and material parameters are functions only of the two space coordinates,

r = (x, z). As discussed in [12], for the ith data set, the model linking the data to to the

conductivity under the Born approximation takes the form of a first-kind Fredholm integral

equation

yi(rj) = / Ti(rj,r')g(r')dr' +rni(rj) (12)

where yi(rj) is the observation at the jth point in the receiver array associated with the

ith experiment, Ti(r,r') is derived from the constant-background Green's function for this



Submitted to IEEE Trans. Geoscience and Remote Sensing 13

problem and is dependent upon the value of the background conductivity as well as the

source/receiver geometry for this scattering experiments, g(r) is the conductivity perturba-

tion, C is the region over which g is nonzero, and ni(rj) represents the noise corrupting the

data.

Reduction of the integral equation (12) to matrix-vector relationships require represen-

tation of g in terms a a finite number of parameters. Here, we use a method-of-moments

approach [16] in which we first pixelate C, and then assume g to be constant over each of

the Ng subregions. Thus we have:
Ng

g(r) = E g(k)Xc k (r) (13)
k=l

with Xck(r) the characteristic function of the set Ck, C = UkNlCk, and g(k) the value of g

over Ck3. Substitution of (13) into (12) yields
Ng

yi(rj) = E Ti(rj, k)g(k) + ni(rj)
k=1

with

Ti(rj', k) = Ti(rj, r/)ddr'
Ck

Denoting yi(rj) as simply yi(j) with analogous notation for ni(rj) and Ti(rj, i) yields the

discrete form of (12)
Ng

Yi(i) = Z Ti(j, k)g(k) + ni(j) (14)
k=1

which we shall write simply as the matrix-vector product in (1).

3 Note that for 1D problems (see Section 5.1) the Ck will represent intervals of the real line while for in
two-dimensions (Section 5.2), Ck will be rectangular regions in the plane.
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4 A Multiscale Formulation of the Inverse Problem

4.1 A Wavelet Representation of g and y

The fundamental idea behind the discrete wavelet transform (DWT) is to decompose signal,

here represented as a vector, into a sequence of increasingly "coarser" representations while

at the same time retaining the information lost in moving from a fine to a coarse scale.

In our case, we will be concerned both with one and two dimensional signals where for

simplicity, we first describe the wavelet representation and notation for a ID signal vector,

a. Following the wavelet literature, the elements of this vector are termed the finest scale

scaling coefficients associate with a, and the vector a is denoted by a(Ma) indicating that

these scaling coefficients represent a at scale Ma. The scale number reflects the number of

elements in a. Typically, we consider vectors of length 2 m for which the scale number is the

integer m.

Beginning with a(Ma), a coarser representation (that is, a coarser set of scaling coef-

ficients), a(Ma - 1), is obtained by first passing a(Ma) through a low pass, finite impulse

response (FIR) filter, 1, and then decimating the filtered output by a factor of two. Thus,

a(Ma -1) is "coarser" than a(Ma) in that the filtering/downsampling procedure has removed

the high frequency structure from the original signal, and a(Ma - 1) is half as long as a(Ma).

The detail lost in moving from a(Ma) to a(Ma - 1) is extracted separately by first high pass

filtering a(Ma) with the FIR filter h and then downsampling by two. This detail vector is

denoted a(Ma - 1). The filtering and decimation procedure is successively applied to the

coarsened versions of a resulting in a sequence of scaling coefficient vectors, a(m), and a

sequence of detail vectors, ca(m), for m = Ma - 1,... , La where La is the coarsest scale at
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which a is represented. Thus, at scale m, we have

a(m) = L(m)a(m + 1) (15)

a(m) = H(m)a(m + 1) (16)

where L(m) and H(m) are operators (i.e. matrices) representing the filtering and decimation

operations with the filters 1 and h respectively.

As described extensively in [4], the filters I and h are constructed so that H(m) and L(m)

satisfy the so-called perfect-reconstruction properties

L(m)L*(m) = I H(m)H*(m) - I

L*(m)L(m) + H*(m)H(m) = I (17)

where H*(m) is the adjoint of H(m). Using (15), (16) and (17), we see that a(m + 1) is

obtained from its coarse scale representation and the detail at scale m via

a(m + 1) = L*(m)a(m) + H*(m)a(m). (18)

Clearly, iterating (18) provides the mechanism for obtaining the scaling coefficients of a at

scale m for La < m < Ma using the coarsest scale scaling coefficients a(La) and intervening

detail coefficients ca(n) for La < n < m - 1. In particular, we may construct an operator, 4

)/Va from H(m) and L(m) which relates the finest scale scaling coefficients, a - a(Ma), to

the coarsest scaling coefficients, a(La), and the full set of detail coefficients a(m) for scales

m = La, La + 1, ... , Ma. That is, we may write

a! = Waa (19)

where a = [(Ma - 1 )T ... ac(La)T a(La)T]T and Wa satisfies WaWa = I. We call the vector

Ol the wavelet transform of a. The n th element of a(m) is denoted c(m, n) and is referred to

as the nth shift of ac at scale m. Similarly, a(m, n) represents the nth element of the vector

4 We choose to subscript the wavelet transform operator here as WVa to make explicit that this is the
transform for a. We may (and in fact will) use different wavelet transforms for the different variables.
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of scaling coefficients at scale m.

Given this implementation of the DWT, the relationships among the scale space compo-

nent in the decomposition of a are graphically represented in the form of a lattice as shown

in Figure 3 for the case of a wavelet decomposition with l(n) and h(n) of length 4 (such as

the so-called "D4" or Daubechies 4-tap wavelet decomposition described in [4].) The coeffi-

cients at any scale all lie on a common horizontal line with the finest scale coefficients at the

bottom of the lattice and the coarsest at the top. At the finest scale, the nodes represent

the finest set of scaling coefficients. Each node at all other scales contains one wavelet co-

efficient except for the top scale where the nodes contain the coarsest wavelet and coarsest

scaling coefficients. Finally, two nodes are connected by an arc if and only if there is a linear

relationship between the contents of these nodes as dictated by the structure of the wavelet

transform matrix )Va.

For future reference we define some terminology related to the lattice structure in Figure

3. In particular, a coarse scale node is said to impact a finer scale if there exists a strictly

downward path on the lattice from the former to the latter. Thus, we define the downward

impact set, Z(m, n) associated with node (m, n), as the set of finest scale nodes which (m, n)

impacts. Thus in Figure 3, D)(O) is comprised of all nodes marked with the symbol ",,.

The wavelet decomposition of the scaling coefficients of a two dimension function is

obtained by considering a as a matrix and applying one wavelet transform, Wa,z, to the

columns and a second wavelet transform, W/Va,x, to the rows. In general, Wa,,, and Wa,

may each use different I and h filters and associated with each transform are a finest and

a coarsest scale of interest which we denote MaI,n and La,p for A E {x, z}. We use Wa to
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represent the composition of the operators Wa,x and Wa,z and write

- Waa = Wa,zaWa,x.

Furthermore, we note

(W)/Vwa)a - w)z(/(Wa,zaWax)Wa,. = (I)a(I) = a

so that WaWa = I. As in the ID case, we denote a particular element of a by c(m, rn).

Here, we understand m and n to be two-vectors indexing the scales and shifts in the x and

z directions, i.e. m = [mx mz]T and n = [n, nz]T respectively. Also, we use the notation

az(m) to indicate the collection of wavelet coefficients at all shifts and at scale m = [mx mz]T.

Unlike the ID case, the two-dimensional wavelet transform induces a four dimensional lattice

structure in scale space with two dimensions for scale and two for shift. Nonetheless, we

define downward impact sets in the same manner as was the case in ID. That is, D(m, n) is

the set of nodes in a which are impacted by oa(m, n).

The operators )WV, and Wi introduced in Section 2.3 are then constructed using the

procedures just described. In general, these operators may differ from one another. For

example, in the problems considered here, all of the yi are ID signals, while g may either be

a one or a two dimensional function. Furthermore, in principle, we can use different wavelets

for different data sets and can use a different number of scales in the wavelet decomposition

of each quantity (see the particular choices used in Section 5).

4.2 Multiscale Prior Models

As discussed in Sections 1 and 2, a key component in our formulation of the inverse problem

is the use of a multiscale stochastic model for g to regularize the inversion and to capture

prior information. To motivate the particular choice of prior model used here, consider the
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case of a one dimensional function whose covariance matrix is (LTL) - 1 with L representing

first order differentiation. This implies that g is a Brownian motion satisfying Lg = w

with w (0, I). As discussed in [18], work by Wornell and others [8,22] has demonstrated

that Brownian motions and other related fractal processes can be closely approximated via

a statistical model in which the wavelet coefficients of g are independent and distributed

according to

(y(m, n) (0, K22-2m). (20)

Here, K2 controls the overall magnitude of the process and the parameter Ag determines the

fractal structure of sample paths. The case / = 0, corresponds to g being white noise while

as /t increases, the sample paths of g show greater long range correlation and smoothness.

In addition to defining the scale-varying probabilistic structure of the wavelet coefficients

of g, we also must provide a statistical model for the coarsest scale scaling coefficients.

Roughly speaking, these coarse scale coefficients describe the DC and low spatial frequency

structure of g. In the applications we consider here, we assume that we have little a priori

knowledge concerning the large-scale average value of g. Consequently, we take g(Lg) 

(0,PLgI) where PL9 is some sufficiently large number. By choosing PLg in this manner, we

avoid any bias in the estimator of the low frequency structure of g. Finally, we note that for

these models, the resulting matrix Po in (10) is diagonal with nonzero entries corresponding

to the variances associated with each component of the 7y.

For the case where g is a two dimensional function, we consider the separable represen-

tation with

-y(m, n) - (0, xK;2-(l m±zmz))

for Lg,x < m < Mg,x -I and Lg,z < m < Mg,z -1. For m = Lg,x we take y(m, n)
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(0, PLg, 2K22 - (Izm)) with analogous results holding when n = Lg,z.

Clearly, other choices of statistics for the components of -y may be appropriate in specific

applications, and our methodology can readily accommodate these. The specific choice

we have made, leading to a 1/f-like fractal model, is useful both in its ability to model

natural phenomena and because the successively decreasing variances of the fine scale wavelet

coefficients control the incorporation of high frequency information into the reconstruction.

As will be,seen in Section 5, this is precisely the type of regularization required for the inverse

conductivity problem. Thus, the fractal model provides us with one physically meaningful

way in which to specify the tradeoff which in turn determines the way in which the resulting

estimation algorithm makes effective use of the data only over those scales where useful

information is present.

4.3 The Relative Error Covariance Matrix

A key advantage of the use of statistical estimation techniques is the ability to produce

not only the estimate of y but also an indication as to the quality of this reconstruction

in the form of the error-covariance matrix P defined in (11) for the problem of interest in

this paper. While the information contained in P is certainly important for evaluating the

absolute level of uncertainty associated with the estimator, in many cases, it is more useful

to understand how data serves to reduce uncertainty relative to some reference level. That

is, we have some prior level of confidence in our knowledge of -y and we seek to comprehend

how the inclusion of additional data in our estimate of y alters our uncertainty relative to

this already established level. In this section we define the relative error covariance matrix
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(RECM) and demonstrate its utility as a tool for capturing such changes in uncertainty. The

analysis of the RECM in the wavelet domain is especially interesting because it allows for a

localized characterization of the manner in which data impacts a reconstruction. Hence, we

show how the RECM provides a natural means of evaluating the appropriate level of detail

as a function of position which can be supported in a reconstruction based upon a given set

of data and also leads directly to a quantitative, multiscale theory of sensor fusion.

The definition of the relative covariance matrix is motivated by the definition of the

relative difference between two scalars a and b given by

1 --. (21)
a

The matrix analog to (21) to be considered in this paper is as follows. Let {1, ... , K} denote

the index set for the observations sets yi. For any subset A of {1, ... , K} let PA denote

the estimation error covariance as in (11) resulting from the estimation of -y based upon the

data sets corresponding to A (i.e. {yi I i E A} where for A = 0, the empty set, P{0) = P0,

the prior covariance. The RECM provides a measure of the relative quality of the estimate

based upon data in two sets A and B and is given by

vI(A, B) = I - pT/ 2 pBp1p/ 2 (22)

The definition of TI(A, B) in (22) possesses many useful properties. First, like an error

covariance matrix, it is symmetric. Also if IJ(A, B) represents the relative error covariance

matrix for the estimation of g, i.e. the physical-space representation of the conductivity,

then this is directly computable from Il(A, B) using the wavelet transform

II(A, B) = WTn(A, B)W.

Moreover, it is not difficult to show that I(A, B) is normalized to the extent that for A C B,

O < H(A,B) < I.
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We note that in this case I7(A, B) = 0 iff PB = PA which indicates no additional reduction

in uncertainty results from augmenting A with the data sets in in B - A. Also, HI(A, B) = I

if and only if PB = 0 i.e. only when all uncertainty in -y has been removed when we use the

additional information in B relative to A.

In the event PA is diagonal, the diagonal components of II(A, B) are particularly easy to

interpret. Let o?(A) be the error-variance of the ith component of ay arising from an estimate

based upon data from set A. Then, the ith component of the diagonal of If(A, B) is just

1 -c 2(B)/72(A) (23)

which is nothing more than the relative size difference of the error-variance in the i th com-

ponent of y based upon data from sets A and B. Note that the diagonal condition of PA is

met in this paper when PA = PO, since the wavelet and scaling coefficients are uncorrelated

for the fractal 1/f priors used here as well as for many other physically meaningful prior

models. Thus, the diagonal elements of If({0}, B) represent the decrease in uncertainty due

to the data from set B relative to the prior model. Finally, as I7({0}, B) will be of interest

frequently in the remainder of this work, we shall abuse notation and write II({0}, B) as

I1(B) in cases when there will be be no confusion.

The quantity rI(A, B) represents a useful tool for quantitatively analyzing the relationship

between the characteristics of the data (as defined by O and R) and the structure of the

estimate '. Consider, for example, the case in which we wish to assess the overall value of a

collection of observation vectors. Let rIn(B) denote the diagonal element of the matrix HI(B)

corresponding to the wavelet coefficient at scale/shift (m, n)5 . Because PO is diagonal, (23)

5 At scale m = Lg, we are interested in both the wavelet and scaling coefficients of g. To avoid ambiguity,

we use the notation IIL9 to refer to the RECM information for the coarsest scaling coefficient of g at shift n.
In the case of a two dimensional g, where there is confusion, we shall explicitly write m = (m, mz) placing
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indicates that Il (B) represents the relative decrease in the error variance associated with

the component in the wavelet transform of g at scale/shift (m, n). Thus, HI (B) provide us

with a natural way in which to define m*(j), the appropriate level of detail which should

be included in a reconstruction of g(Mg) at shift j. Specifically, for each location j, we

can examine the quality of the information present at this point and at all coarser scale

"ancestors" of j. Using the terminology introduced in Section 4.1, we say that the data

supports a reconstruction of g(Mg, j) at scale m if there exists some node in the wavelet

lattice of g at scale m which (1) impacts g(Mg, j) (i.e. for some shift n, g(Mg, j) E D(m, n))

so that (m, n) is an ancestor of (Mg, j) and (2) for which the data provides a sufficiently large

quantity of information regarding the structure of g at node (m, n) (i.e. rII(B) is in some

sense large). Clearly, m*(j) is the finest scale for which a node (m, n) may be found that

satisfies the above two criteria. The precise quantification of "sufficiently large" will depend

upon the particular application and on the structure of the particular inverse problems under

investigation.

For the problems considered here, the diagonal structure of Po imply that 0 IIH (B) <

1 so that determining whether UII(B) is sufficiently large is accomplished by comparing

this quantity to some threshold, 7, between zero and one. The procedure described in the

preceding paragraph for determining the optimal scale of reconstruction suggests that the

only elements of y which need be estimated are those for which Hn(B) > T. Hence, we are

a bar over that scale index (those scale indices) associated with coarsest scaling coefficient.
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led to define A, a truncated version of ', as follows:

o H IoT (B) < T

[Ak](m,n) = (24)

[] (m,n) otherwise

where [1](m,n) is the component in the vector ' at scale m and shift n. Defining %, in this

way ensures that 0r = W)/VT 3 T is in fact the reconstruction of g which at each shift n contains

detail information at scales no finer than m*(n).

In addition to its use in assessing the scale of reconstruction supported by the information

from a set of measurements, if we consider the case in which neither A nor B is empty, we

find that there are several ways in which Il(A, B) may be of use in assessing the value of

fusing information from multiple data sets and in identifying how this fusion takes place.

For example, if A c B, then roughly speaking, if FI(A, B) is significantly larger than 0,

there is a benefit in the additional information provided by the observations in B - A.

Moreover, HII(A, B) can be used to pinpoint the scales and locations at which this fusion

has significant benefit6 i.e., those scales and shifts at which active sensor fusion is taking

place. Furthermore, by varying the sets A and B, we can identify not only the optimal

scale for reconstruction at each point but can also identify which data sets are actively

used to obtain that estimate. That is, for each (m, n), we can in principal find the set

A c {1, ... , K} so that -I(A, {1, ... , K}) is small (indicating that sensors not in A

provide little additional information to the reconstruction of wavelet coefficient (m, n)) and

so that for any C C A, II'(C, A) is of significant size (so that all of the sensors actively

contribute to the reconstruction at this scale and shift.)

6In this case, because PA is not in general diagonal, the diagonal elements of II(A, B) do not have the
exact interpretation as the relative size difference of the error variance of 3y based upon data from A and B;
however the size of these diagonal components of II(A, B) still provides useful insight as to the scales and
shifts where the observations from set B provide information not found in the data from set A.
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5 Examples

5.1 A One Dimensional, Radial Profiling Problem

We begin by considering a radial profiling problem similar to that analyzed by Habashy at.

al in [11, 13]. Here, g is assumed to vary only in the horizontal direction in Figure 1 with

the specific true conductivity profile g to be used in this example shown as the solid line in

Figure 5. The numerical values specifying the prior model and the parameters describing

the background medium are given in Table 2. In this work, the signal to noise ratio of the

vector hi = Oi-y + vi with vi (0, r4I) and 7 r (0, PO) is defined as

C NR2 - Power per pixel iniTy _ tr(OiPoET )

Power per pixel in vi Ngr?

where Ng is the length of the vector ?y and tr is the trace operation.

The objective of this example is to illustrate the utility of the RECM in analyzing the

various ways in which the data available to a reconstruction impacts the estimate. Specifi-

cally, we explore inversions using data from the following three different combinations of the

high and middle frequency scattering experiments described in Table 1:

DHI Data collected at the left receiver array in response to all three sources operating at

the the highest frequency (i.e. information from experiments 1-3 in Table 1).

DMID Data collected at the left receiver array in response to the three sources operating at

the middle frequency (i.e. information from experiments 4-6 in Table 1).

DHI,MID Data from DHI U DMID.

The information regarding the structure of g supplied by DHI and DMID is illustrated in
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Figure 4. Recall from (1) that the jth observation point of the ith data set,
Ng

Yi(j) =E T i(j, k)g(k) + ni(j). (25)
k=l

so that the jth row of Ti represents the map which takes conductivity, g, into the jth element

of the ith observation vector. In Figure 4(a) (resp. 4(b)), a single row from kernels associated

with high (resp. middle) frequency scattering experiments are shown. Specifically, we plot

the maps associated with the observation point in the middle of the left receiver array for

experiments whose source is the middle of the three line sources. From these illustrations,

we see that the high frequency observations are most sensitive to variations in g close to

x = 0 but provide essentially no information regarding the structure of g far from the origin.

The data corresponding to middle-frequency sources better reflect the behavior of g away

from x = 0 but still are comparatively insensitive to the conductivity far from the point of

observation. Thus, in general we expect to obtain a relatively accurate reconstruction of g

near x = 0 with decreasing fidelity as a function of radial position.

In Figure 5(a), the estimate obtained using data sets 1-12, B(DHI,MID), is compared with

the true function. Clearly, we are able to resolve the left edge and to a lesser extent the mag-

nitude of the conductivity anomaly located closest to the origin. However, the information

provided by DHI,MID is insufficient to obtain an accurate estimate of the right edge of this

structure or any but the coarsest information regarding the rightmost block. As a means of

understanding how both DHI and DMID contribute information to this estimate, in Figures

5(b)-(c), J(DHI,MID) is graphed against g(DHI) and g(DMID) respectively. Again, we see

that individually, the data from the high and middle frequency sources provide information

about g close to x = 0. Further from the origin, .(DHI,MID) follows neither g(DHI) nor

g(DMID) so that some level of data fusion must be taking place to the extent that the pres-
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ence of both data sets together yields an estimate of g over this region which is substantially

different from that obtained from either set alone.

A more accurate assessment of the manner in which this information is merged is obtained

by analysis of the diagonal elements of the relative error covariance matrices, i1(B) for

B E {DHI, DMID, DHI,MID}. In Figure 6 these quantities are plotted for scales 3, 4,

and 6. In each of these graphs, IrI(DHI) is marked with a o, rfI(DMID) with a x, and

II (DHI,MID) with a +. As there is strictly more information in DHI,MID, than in either

DHI or DMID alone, it is the case that all +'s must lie above the other two symbols. In

those cases where HIn(DHI,MID) is significantly larger than both Ion(DHI) and fIm(DMID),

we say that active sensor fusion is taking place. Indeed, in Figure 6(a), this is the case for

the estimates of elements 5 - 8 of g(Lg). Moreover, examination of Figures 6(b)-(d) shows

that active sensor fusion is occurring with respect to the estimates of the wavelet coefficients

of g near the origin at scales 3, 4, and 6. We have omitted the RECM plot at scale 5 as

no such fusion occurs at that scale in this example. Finally, Figure 6 is instructive to the

extent that it demonstrates where the data do not support a reconstruction. The fact that

nJI is close to zero at all scales and for all wavelet coefficients corresponding to shifts far

from x = 0 indicates that the information in DHI and DMID either alone or in combination

is insufficient to reconstruct any detail in g over this domain.

This notion can be made more precise by considering the space-varying optimal scale

of reconstruction, m*(j), defined in Section 4.3. In Figure 7(a) and (b), the optimal scale

as a function of position is plotted for Tr = 0.05 and r = 0.5 respectively using data from

DHI,MID. For the smaller value of 7, we see that as the x grows large, the optimal scale

drops from 6 to 3 in a manner quite consistent with the intuition developed by examination
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of the estimates. That is, for a rather narrow region near the origin, the RECM information

dictates that a fine scale reconstruction of g should be possible. As x increases, the scale

of detail to be included in .(DHI,MID) decreases. For T = 0.50, Figure 7(b) shows similar

characteristics to the T = 0.05 case; however, the more stringent threshold results in a more

rapid decrease in scale as a function of distance. Finally, in Figures 7(c)-(d) the truncated

estimates, OTr(DHI,MID), defined by (24), are compared against P(DHI,MID) for T = 0.05 and

T = 0.50 respectively showing that there is little difference between the optimal estimate

and its truncated versions.

The relative error covariance matrix also represents a useful tool for analyzing the in-

cremental benefits associated with the addition of data to an already-formed estimate. In

Figure 8, the diagonal elements of HI(DHI, DHI,MID) are displayed for the coarsest scaling co-

efficients and the finest wavelet coefficients. These plots illustrate that the middle-frequency

data sets contribute new information to an estimate based upon the high-frequency obser-

vations at the coarsest scale away from the origin and at the finest scale, closest to the

origin. For all other scales and shifts, HIU(DHI, DHI,MID) is essentially zero. We note that

the RECM information is in accord with the plots of the estimates in Figure 5 where we saw

little difference in the actual estimates based upon the different data sets near the origin

while farther from x = 0, the estimate generate from both DHI and DMID differed signifi-

cantly in a very coarse scale manner from those obtained using either the high or the middle

frequency data.

From this example, we see that the relative error covariance matrix provides new and

useful insight into multisensor data fusion not obtainable by analysis of either the kernel

functions or the estimates. The use of the RECM is significant because it allows for the for-
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mulation of these conclusions before any data are obtained. For the radial profiling problem

considered here, one would conclude that the data from the high and middle frequency data

sets is useful for the recovery of the conductivity detail structure near the origin; however,

additional observations are required to recover all but the coarsest scale information far from

x = 0. Additionally, the RECM analysis suggests that the original parameterization of g

involving 128 degrees of freedom is clearly excessive. Rather, at a threshold of - = 0.50,

the data dictates that only 9 elements of y (the nonzero elements of %'o.50(DHI,MID)) can be

accurately recovered representing a 93% reduction in complexity of the inverse problem.

5.2 A Two-Dimensional, Cross-Well Tomography Problem

In this example we consider improving resolution near the right side of the conductivity

anomaly by using observations obtained from sources located at the left and receivers on the

right side of C. This observation configuration arises quite frequently in practice especially

in the fields of medical imaging and geophysical prospecting [5, 6, 24] and we term inverse

problems with this measurement geometry cross-well tomography problems as they model

the case where the lines x = 0 and x = 100 are taken to be oil boreholes [24]. Additionally,

we now assume a full 2D problem wherein g is varies both in the x and the z directions. The

true conductivity anomaly to be reconstructed in this example is displayed in Figure 10(a)

and the various parameter values needed for this experiment are given on Table 3.

From the radial profiling problem, to obtain information regarding the behavior of g far

from x = 0 it is necessary to probe the medium with low frequency energy. Hence, for this

problem, we augment DHI,MID with data sets 9-12 from Table 1. These data are generated
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by low frequency sources located near the left side of the region of interest and measured by

the receiver array located at right side. We denote this addition collection of observations

DLO. The structure of the kernels associated with this problem is seen in Figure 9. In

particular recalling the configuration of sources and receivers in Figure 1, the plots in Figure

9 correspond to the maps taking g into the observation at the mid-point of the left (in (a)

and (b)) or right (in (c)) receiver array in response to input energy from the middle source.

Also, as g is a 2D function, so too are these maps; hence, each pixel in Figures 9(a)-(c)

represents the weight placed on the corresponding element of g in the sum (25) with darker

colors indicating larger magnitudes. The high and middle frequency scattering experiments

are most sensitive to variations in g near the left side of the square. The structure of the low

frequency kernel with areas of sensitivity near both the left and right vertical edges suggests

that the addition of data from DLO will improve the estimate of g near x = 0 and allow for

the determination of at least some structure at the far side of the region.

In Figure 10, we see that the addition of the low-frequency, cross-well data does signif-

icantly improve the resolution on the right side of A. Figure 10(b) (resp. (c)) is a display

of .(DHI,MID) (resp. .(DHI,MID,LO)). Given only the high and medium frequency infor-

mation, the anomaly near x = 100 is almost completely undetected; however, the addition

of the low frequency data clearly improves the ability to resolve this second structure. We

do note that while both conductivity perturbations are reflected in the estimates of g, the

nature of the physics of the problem allows for only a comparatively coarse-scale or blurred

reconstruction near the right vertical edge of the anomaly. In general, for inverse scat-

tering problems of the type considered here, one requires data at more frequencies and/or

from many source/receiver combinations in order to obtain significantly higher resolution
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estimates of such anomalies.

As in the radial profiling problem, the relative error covariance matrix is a useful tool

in understanding this sensor fusion problem. In the cross-well case however we have the

additional ability to analyze the detail information in both the x and z directions. For this

experiment, we have dense observations on either vertical edge and a rather sparse horizontal

sampling. Thus, we anticipate that our ability to resolve detail in these two directions will

be significantly different and this difference should be captured via the RECM analysis. In

Figure 11, the finest scales supported in the reconstruction in both the x and z directions

are plotted as a function of position for T = 0.50 for the two cases where data from DHI,MID

and DHI,MID,LO respectively are available for the reconstruction. From Figure 11(a)-(b) we

see that given only high and middle frequency information, detail in the reconstruction is

limited to the region near x = 0 in both x and z which is consistent with the actual estimate

in Figure 10(a). Figure 11(c)-(d) shows that the addition of the low-frequency measurements

significantly raises the level of detail in the reconstruction over the right half of the region

of interest which is in accord with the intuition provided by the structure of the kernel

functions associated with these observations. Specifically, we note that the minimum level

of z oriented detail increases from 2 in Figure 11(a) to 3 in Figure 11(c). Moreover, the finest

scale of horizontal detail moves from 1 to 2 in the area near the right vertical edge.

Finally, gO.5(DHI,MID,LO), the truncated estimate of g defined in (24), is plotted in Figure

10(d). In this case gO.5(DHI,MID,LO), is composed of only 75 nonzero wavelet coefficients as

opposed to the 256 in the original corresponding to a 70% reduction in inversion complexity.

Visual comparison of this reconstruction with the full, untruncated estimate indicates that

all of the features captured in the optimal estimate are in fact present in the truncated
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version as well.

6 Conclusion and Future Work

In this paper, we have presented an approach to the solution of the inverse scattering problem

in the Born approximation based upon techniques drawn from the fields of multiscale mod-

eling, wavelet transforms, and statistical estimation. We begin with a system of noisy, linear

integral equations describing the relationship between the scattered fields and the function

to be estimated, g. After discretization, wavelet methods are used to transform the problem

from real-space to scale-space. A linear least squares estimator serves as the inversion algo-

rithm and produces a multiresolution estimate of g, i.e. an estimate of its wavelet transform

?y. Regularization is achieved via a statistical model of y which also provides a means of

capturing any available prior information regarding the structure of g. The structure of this

model allows us considerable flexibility in capturing the statistical structure of g, including

the incorporation of scale-varying statistics. To illustrate our methods, we have used one of

many possible statistical models, namely one that has the 1/f-like fractal structure that is

often posited as a meaningful model for natural phenomena.

Our approach makes extensive use of scale-space in the analysis of linear inverse prob-

lems. The relative error covariance matrix (RECM) represents a quantitative tool for under-

standing the various ways in which data from a multitude of sensors contribute to the final

reconstruction of g. We demonstrate a method for determining the optimal level of detail to

include in the estimate of g as a function of spatial location. The RECM explicitly provides

a means of capturing the way in which this level is affected by changing the information used
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in the inversion. For example, the incremental benefits associated with the addition of data

from another sensor is readily explored using the RECM. Finally, we have shown the use of

this quantity in describing the process of multisensor data fusion in a wavelet setting.

The RECM analysis can be of great use in the design of inversion experiments. Be-

cause the RECM is not a function of the data, one can evaluate and therefore alter the

experimental configuration prior to actually collecting data. Moreover, having settled on the

characteristics of the data sources, the RECM can be used to understand precisely where in

a parameterization of g (i.e for which degrees of freedom) the data contributes useful and

significant information thereby leading to a substantial reduction in inversion complexity.

We note that the general methodologies presented here are not restricted to the case of

a Born linearization but in fact should prove to be useful in the analysis of other forms of

the inverse scattering problem as well. Because the mathematical description of the problem

in the less restrictive Rytov linearization is virtually identical to that obtained in the Born

limit [5,6], our multiscale technique should find application in a variety of applications where

the former approach is most appropriate. Additionally, in recent years, a variety of algorithms

for solving the full nonlinear inverse scattering problem have been proposed [13,24]. In [13],

it is necessary to expand the function g in an appropriate basis [13] which "is influenced by

the a priori information available on the unknown profile." The use of a wavelet basis and

fractal-type of regularizer would in this case be rather natural alternatives. Moreover, the

algorithms in [13,24] employ variants of Newton's method to execute the nonlinear inversion.

As discussed in [19], at each step of the algorithm one is faced with solving a linear systems

which essentially has the same form as the least squares problem considered in this paper.

Thus, by considering a multiscale form of the problem, a RECM analysis could be used to
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determine which coefficients in the wavelet expansion should be determined at each iteration.

Given that relatively few such elements were recoverable for the examples considered in this

paper, the use of a multiscale formalism in connection with these nonlinear problems could

provide significant computational savings.

Finally, although not considered extensively in this work, the multiscale, statistically

based inversion algorithms admit highly efficient implementations. As discussed by Beylkin

et. al in [2], wavelet transforms of many operator matrices, including those arising in the

problem studied here, contain very few significant elements so that zeroing the remainder

lead to sparse matrices Oi. The sparsity of Oi combined with the diagonal structure of Po

imply that highly efficient, iterative algorithms such as LSQR [21] can be used to solve the

normal equations. Indeed, in [19], we consider the development of a modified form of LSQR

designed for the efficient and stable computation of 'y as well as arbitrary elements in the

error covariance and relative error covariance matrices.
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7 Figures and Tables
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secondary fields are observed at one or both receiver arrays located on either vertical edge

problem is the reconstruction of the conductivity perturbation.
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Figure 2: Wavelet transform pyramid.
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Figure 3: A sample lattice structure corresponding to a D4 wavelet transform. The finest
scale is taken as Ma while the coarsest is La.
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Figure 4: Typical structure of kernel functions used in the reconstruction of g for the radial
profiling example.
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(a) g (solid line) versus P(DHI,MID) (b) I(DHI,MID) (solid line) versus
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Figure 5: Estimates of g using various combinations of high and middle frequency data. We
note that in all cases, the measurements provide sufficient information to reconstruct only
those features of g near x = 0. At points further from the origin, only the coarsest scale
characteristics of g are resolvable. Moreover, as 0(DHI,MID) is significantly different from
both .(DHI) and O(DMID) we conclude that some type of sensor fusion is occurring over the
region far from x = 0.
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Figure 6: Diagonal elements of relative error covariances for three radial profiling experi-
ments. In all cases, the symbol "+" corresponds to rI(DHI,MID), "o" to I7(DHI) and "x"
to H(DMID). From (a) we see a significant level of sensor fusion taking place with respect
to the estimates of the coarsest scale scaling coefficients far from the origin x = 0. From
(b)-(d), we conclude that accurate reconstruction of the detail components of g is limited
to shifts close to x = 0.
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Figure 7: Maps of the optimal scale of reconstruction and the associated estimates of g for
threshold values T E {0.05, 0.50}. These illustrations provide a quantitative verification of
the intuition that resolution in the inversion should drop as a function of distance from the
origin. In (c) and (d), the plots of ~ against g0.05 and .0.50 respectively show that little is

lost in reducing the complexity of the model by eliminating degrees of freedom about which
the data provides little or no information.
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Figure 8: The incremental reduction in uncertainty obtained by adding data from the middle
frequency observation to an estimate based upon the high frequency measurement sources.
In accordance with Figure 6(a) we see significant benefits associated with determination of
both the coarsest scale structure of g far from the origin as well as the finest scale structure
closest to x = 0.
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Figure 9: Typical structure of kernel functions used in the reconstruction of g for the cross-
well tomography example. Each image corresponds to map taking conductivity to the mea-
surement obtained at the center of the left (in (a) and (b)) or right (in (c)) receiver array in
response to excitation from the middle source with darker shades indicating larger values.
As in the radial profiling example, the high and low frequency kernels are most sensitive to
variations in g near the left edge of the square. The low frequency data should aid in the
reconstruction of g near the either vertical edge.
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Figure 10: In (b)-(d) the estimates of g in (a) are displayed using various combinations of
high, middle and low frequency data. From (b), the high and medium frequency information
provides insufficient information to reconstruct the anomaly near x = 100. As seen in (c),
the addition of the low frequency, cross-well data sets clearly improves the ability to resolve
this second structure. The truncated estimate .0.50(DHI,MID,LO). Note that there is little
difference between this function, composed of 75 non-zero elements in the wavelet transform
domain and the optimal estimate 0(DHI,MID,LO) in (c) which has 256 degrees of freedom.
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Figure 11: Maps of the optimal scale of reconstruction for the z and x components of detail
for the threshold value r- = 0.5. The maps verify of the intuition that the low-frequency,
cross-well data provides improved resolution especially in the vicinity of the right vertical
edge.
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Experiment Source Frequency Receiver
number Position of source (Hz) Array

1,2,3 T,M,B fHr = 398 Left
4,5,6 T,M,B fMID = 119 Left
7,8,9 T,M,B fLo = 6 Right

Table 1: Data set definitions for observation processes of interest in the paper. The abbrevi-
ations in the column labeled "Source Position" correspond to the Top, Middle, and Bottom
line sources in Figure 1
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Parameter Value
Wavelet Daubechies 6-tap

Mg 6
Lg 3

CA 1
a 2 1

PLg 0.5
SNR2 for DHI 200

SNR 2 for DMID 400
Background conductivity 1 S/m

Table 2: Parameters for radial profiling problem.
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Parameter Value Parameter Value
z Wavelet Daubechies 6-tap x Wavelet Daubechies 2-tap

M 9,z 4 M9 ,x 2
Lg,z 2 Lg,x 1

at 1 [t2 1
z 1

PLg,z V PLg,x X/_
SNR 2 for DHI 250 SNR2 for DMID 500
SNR2 for DLO 1000 Background conductivity 1 S/m

Table 3: Parameters for cross-well tomography problem


