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Abstract

Analogic is a class of analog statistical signal processing circuits that dynamically
solve an associated inference problem by locally propagating probabilities in a message-
passing algorithm [29] [15]. In this thesis, we study an exemplary embodiment of
analogic called Noise-Locked Loop(NLL) which is a pseudo-random code estimation
system. The previous work shows NLL can perform direct-sequence spread-spectrum
acquisition and tracking functionality and promises orders-of-magnitude win over dig-
ital implementations [29].
Most of the research [30] [2] [3] has been focused on the simulation and implemen-
tation of probability representation NLL derived from exact form message-passing
algorithms. We propose an approximate message-passing algorithm for NLL in log-
likelihood ratio(LLR) representation and have constructed its analogic implementa-
tion. The new approximate NLL gives shorter acquisition time comparing to the
exact form NLL. The approximate message-passing algorithm makes it possible to
construct analogic which is almost temperature independent. This is very useful in
the design of robust large-scale analogic networks.
Generalized belief propagation(GBP) has been proposed to improve the computa-
tional accuracy of Belief Propagation [31] [32] [33]. The application of GBP to NLL
promises significantly improvement of the synchronization performance. However,
there is no report on circuit implementation. In this thesis, we propose analogic cir-
cuits to implement the basic computations in GBP, which can be used to construct
general GBP systems.
Finally we propose a novel current-mode signal restoration circuit which will be im-
portant in scaling analogic to large networks.
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Chapter 1

Introduction

A mathematical optimization problem is to minimize an objective function under a

set of constraints. Inference problem is a special kind of mathematical optimization

problem with constraints including axioms of probability theory. How to construct

physical systems to solve the inference problem with very low power, and/or in ex-

tremely high speed, and/or with low cost, and/or with very limited physical resources

etc is still a open question. Message-passing algorithms [12] [16] [5] are a special

method of solving associated inference problem by locally passing messages on a fac-

tor graph. The messages can be mapped into physical degrees of freedom such as

voltages and currents. The local constraints on the factor graph are the computation

units implemented by a class of analog statistical signal processing circuit, which we

call analogic [29].

In this thesis, we study analogic in a special test case called Noise-Locked Loop(NLL)

[28] [6]. NLL is a pseudo-random code estimation system which can perform direct-

sequence spread-spectrum acquisition and tracking functionality and promises orders-

of-magnitude win over conventional digital implementation [29]. We now review the

previous work on NLL.



1.1 Review of Previous Work

The history of noise-locked loop can be traced back to a nonlinear dynamic system

called analog feedback shift register(AFSR) proposed in [6], which was an analog

generalization of digital linear feedback shift register(LFSR). The AFSR can entrain

to the pseudo-random sequence to achieve synchronization. [28] thoroughly studied

different nonlinear functions to find a simpler implementation of AFSR and better

performance. The most successful nonlinearity found was a quadratic function which

gave very predictable mean acquisition time and can be easily implemented in elec-

tronics. This is an important discovery which has interesting relation with the system

we built in this thesis.

As mentioned before, analogic is a class of analog statistical signal processing circuit

that propagates probabilities in a message-passing algorithm. As an exemplary em-

bodiment of the new approach, an LFSR synchronization system was derived using

the message-passing algorithm on a factor graph. This new system was called Noise-

Locked Loop(NLL). It is very interesting to notice that NLL can be also viewed as

running the noisy sequence through a soft or analog FSR [30]. This connects NLL

as a statistical estimator to the AFSR as a nonlinear dynamic system. The synchro-

nization performance of NLL and its comparison with maximum-likelihood estimator

were also studied in [29] and [30]. The real electronic implementation was reported

in [2] and [3]. In their message-passing algorithm, the messages were represented as

the probabilities of binary state variables(called probability representation). In their

implementation, each message represented as two probabilities was mapped into two

normalized currents in current-mode circuits called "soft-gates" [18].

Belief-propagation algorithms give exact marginalized probability when the associ-

ated factor graph has tree structure. However, when the factor graph involves loops,

they can only compute approximate marginalized probabilities. The work in [31] [32]

[33] has pointed out that belief-propagation achieves local minima of Bethe free en-

ergy in any graph. Kikuchi free energy approximation is an improvement to Bethe

free energy. By using Kikuchi free energy, a new message-passing algorithm called



Generalized Belief Propagation(GBP) was constructed. GBP is reported to be much

more accurate than BP. A novel way of using GBP to improve NLL was proposed

in [29] and later in [4]. Their simulation results showed better synchronization per-

formance of improved NLL. But we haven't seen any physical implementation of GBP.

1.2 Motivation

Much work has been done on NLL. But there are more interesting questions that

motivate of this thesis.

Firstly, most of the previous work including simulation and implementation of NLL

has been focused on studying the probability representation. In this representation,

message is probability. And probability is mapped into currents in the current-mode

analogic circuits. So each message on the graph needs two wires to carry two cur-

rents, which are complementary to each other and they must be normalized to a fixed

tail current Itail in each soft-gate. Also each message needs a pair of current-mirrors

to interface with soft-gates. It is natural to ask whether we can use other message

representation so that messages can be mapped into voltages. In this way we may be

able to save the power overhead on current-mirrors.

Secondly, most of the previous work including derivation of NLL from message-

passing algorithms and implementation has also focused on the exact form message-

passing computation, by which we mean the computation is exactly derived from

message-passing algorithms. The voltage mode soft-gates has been used in analog de-

coders [10]. However the voltage representation unavoidably suffers from temperature

variation in the system. It is interesting to ask whether we can do message-passing

with some approximate computation, what kind of approximation we can use, and if

we can overcome the problem described above. This question motivates our explo-

ration on approximate scalar NLL.



Thirdly, since the NLL is derived for pseudo-random code estimation, the previous

work has naturally focused on its pseudo-random code synchronization performance

and comparison with existing LFSR synchronization scheme in spread-spectrum sys-

tems. Actually in the front end of any direct-sequence spread-spectrum system, even

before signal reaches the synchronization device, there is usually some low pass filter

that serves to kill the wide-band noise and clean the signal. Higher noise rejection in

this filter will greatly improve the later circuit performance. NLL models both the

channel noise as additive white Gaussian noise and the dynamics of LFSR. We may

ask if we can use NLL to replace the linear filter that NLL gives better noise rejection.

Fourthly, the messages passed on "conventional" NLL are probabilities of one state

variable. We call this NLL scalar NLL in the following chapters. The improved NLL

with GBP passes messages that are probabilities of a pair of state variables. We call

this improved NLL vector NLL. How to implement vector NLL using analogic is a

very interesting problem, because the analogic circuits used in vector NLL may also

be used in other GBP systems.

Last but not least, the previous research and motivation in this thesis both point

to the direction of improving scalar NLL to vector NLL. The circuit structure are

inevitably becoming more complex in vector NLL. How to build large analog network

is a question that we must ask in next step. This motives another part of the work

in this thesis, which is analog signal restoration.

1.3 Contribution

Here we summarize our main results in the thesis.

1. We studied scalar NLL in the approximate log-likelihood ratio(LLR) represen-

tation. We call it approximate scalar NLL. The representation itself doesn't



require normalization in each soft-gate. We compared its synchronization per-

formance with the NLL using exact log-likelihood ratio representation in simu-

lation. The result shows approximate NLL outperforms the exact one in terms

of acquisition time at low SNR regime. We implemented the approximate scalar

NLL in discrete electronics. The measurement results confirmed the simulation.

The approximate soft-gate allows us to freely set the scaling factor for conver-

sion from LLR to voltage. In this way, the voltage representation is independent

of temperature. This solves the problem in the exact form LLR soft-gates. We

started to apply this approximate message-passing algorithm to bigger analog

network such as iterative analog decoder. The preliminary results indicate the

approximate algorithm work well. The temperature independent property of

the voltage representation in the approximate algorithm can be very desirable

for large analog network.

2. We investigated the possibility of replacing linear filter in the front end of

spread-spectrum system with approximate scalar NLL. Both simulation and

experiment suggest that NLL can improve the noise rejection performance in

terms of mean squared estimation error. However the improvement is not very

significant.

3. We proposed a translinear circuit structure for GBP, which to our best knowl-

edge is the first circuit implementation of GBP. In our circuit, messages are

represented as current. The proposed circuit accomplished current production

and quotient which can be used as the basic circuit primitive in general GBP

systems.

4. We proposed a novel current-mode feedback amplifier with controllable gain,

wide linear range, and saturation at both zero current and tail current. The

basic structure is winner-take-all(WTA) cell as a high gain current amplifier in

the feedforward path and current mirrors on the feedback path. The amplifier

can be used in analog signal restoration.



5. We proposed a new geometric approach for all-pole underdamped second-order

transfer functions, which will be useful in the design and analysis of filters in

NLL.

1.4 Thesis Outline

In chapter 2, we introduce the necessary background information and related top-

ics, including phase-locked loop, spread spectrum system, and message-passing algo-

rithm. The title is termed as "from PLL to NLL", since the NLL can be viewed as

a generalization of PLL from periodic signal synchronization to nonperiodic signal

synchronization.

Chapter 3 derives in detail the different kinds of NLL from message-passing algo-

rithm. From the simplest scalar NLL to first order Markov structured vector NLL

to full trellis processing vector NLL, the performance improves, while algorithm is

also more and more complex. For the scalar NLL, we proposed an approximate NLL,

which is even simpler than the exact form NLL. We also started to study the appli-

cation of approximate message-passing in a bigger analogic network.

Chapter 4 is on the circuit implementation of scalar NLL and circuit proposal for

vector NLL. We will describe the system design of the scalar NLL with detailed dis-

cussion on each components.

Chapter 5 is on current-mode signal restoration which is a very important topic for

building big robust analog circuits. We propose a novel current-mode feedback am-

plifier.

Chapter 6 is a diversion on second-order filter theory. We include it in this thesis

because it provides useful geometric techniques for the design and analysis of filters

in NLL.

Chapter 7 is summary of the work in the thesis and discussion of future research

direction.



Chapter 2

Background Information

In this chapter, we try to ask some basic questions that relate to the background of

the thesis. These questions include: what signal does noise-locked loop synchronize

to? What is the synchronization usually implemented? What knowledge do we need

in order to understand NLL?

The simple answer to the first question is that NLL locks unto certain noise-like

signal. This signal pattern is called pseudo-random signal or LFSR sequence or m-

sequence, which is one of the basic spreading codes used in spread spectrum systems.

More detailed review is given in first section. The second question requires us to briefly

review the basic synchronization and tracking techniques used in spread spectrum

systems. The third question touches the theme of the thesis which is formulating

LFSR synchronization problem as a code estimation problem on the factor graph and

use message-passing algorithm to obtain optimal or suboptimal solution. So in the

third section we introduce the message-passing algorithm.

Before we answer all these questions, we introduce the phase-locked loop which is well

known to be able to lock unto a periodic signal. After we understand PLL, it will be

easier for us to understand pseudo-random code synchronization in spread-spectrum

system.



2.1 Phase-Locked Loop

The PLL structure was first described by H. de Bellescize in a French journal L'Onde

Electrique [14] in 1932. The background was that British engineers developed an

alternative to the super heterodyne AM receiver, which was called homodyne or syn-

chrodyne system. PLL was used in the homodyne receiver to automatically keep

the phase of local oscillator locked unto that of the incoming carrier. In this way,

the demodulation produces the maximum output. After that, the PLL was used

in standard broadcast television, stereo FM radio, satellite communication systems.

However, phase-locked systems were too complex and costly for use in most consumer

applications. In 1970's integrated circuit process technology advanced enough to be

able to fabricate monolithic PLL's at very low cost. Since then the Phase-locked

loop has become universal in modern communication systems. It has been used in

frequency synthesis, frequency modulation and demodulation, and clock data recov-

ery(CDR),etc [14] [27].

The basic PLL is composed of phase detector, loop filter, and voltage-controlled os-

cillator(VCO). The PLL pull-in process is highly nonlinear in nature. After PLL

acquires locking, we can assume linear mode operation of the loop, where VCO has

the linear relationship between its output frequency F0ost(t) and input control voltage

v(t) as

Fout(t) = Kvv(t). (2.1)

The output phase can be written as integration of frequency:

(bout (t) = J 2,r, Fot (7 dr =J 2,7rKv(r)dr. (2.2)

This time-domain relationship can be Laplace-transformed to s-domain as:

K
<boIt(S) = -"v(s). (2.3)

The phase detector compares the phase of the sine or square wave generated by VCO

with the phase of the reference signal and produces the phase difference. For the sine

wave reference signal as

ref(t) = Ac cos(wot + #). (2.4)



linear range

Figure 2-1: Phase detector characteristics.

The VCO output is represented as

out(t) = - A, sin(wot + 0). (2.5)

If the phase detector is an ideal multiplier followed by a low pass filter to remove the

double-frequency component, the phase detector output is

e(@) = Kd sin(@). (2.6)

where 0 = - 0 and Kd is a constant. In linear mode operation, |@'I< 1, the phase

detector characteristics shown in Fig.2-1 is linear to a good approximation. The loop

filter exacts the average of the phase difference. When the VCO generated signal

locks onto the reference signal, the phase difference is confined within small range.

In this small range, the phase detector looks like a linear gain element. When the

reference signal phase starts to shift away from the VCO output phase, the loop filter

feeds an averaged non-zero phase difference as the control voltage to VCO. If the

reference signal phase leads the VCO phase, control voltage increases to drive VCO

produce higher frequency output to catch up. If VCO leads, control voltage decreases

to produce lower frequency output in order to wait for reference signal. In this way,

when the phase of these two signals are locked, their frequencies also become identical.

The block diagram of the basic PLL structure with its linear model is shown in the

Fig.2-2.



ref(t)

Phase Detector

Figure 2-2: Basic PLL structure composed of phase detector, loop filter, and voltage-

controlled oscillator. Once acquisition is achieved, the PLL is modelled as a linear

feedback system.

2.2 Spread Spectrum Systems

In this section, we briefly review the spread spectrum(SS) system with emphasizing

on pseudorandom sequence generation and code synchronization techniques.

Pseudorandom Sequences

The general circuits that are used to generate linear feedback shift-register codes

are shift registers with feedback and/or feedforward connections. Consider the logic

circuit illustrated in Fig.2-3. The boxes with letter 'D' represent unit delay ele-

ments,implemented as shift registers. Circles containing a "+" sign is a modulo-2

adder also called XOR gates. The coefficients besides the lines pointing to the XOR

gates are either 1 if there is connection or 0 if no connection. The generating poly-

nomial is defined as:

g(D) = go + giD + ... + gm-iDm- + gmD m  (2.7)

Notice this generator might generate many different sequences starting from different

initial states. The longest possible sequence has the period of 2' - 1, which is called

maximum-length sequence or m-sequence. It has been widely used in spread spectrum



systems. Other spreading code can be derived from maximal-length sequence. Two

Figure 2-3: Linear feedback shift-register generator.

conditions must be satisfied to achieving the maximal-length sequence: the generating

polynomial is primitive and the LFSR registers are initialized in non-zero state. The

power spectrum of m-sequence with chip duration T, and period T = NTc has the

form
00

Sc(f) = E PnJ(f - nfo) (2.8)
2%=-oo

where Pn = [(N+1)/N 2 ]sinc2(n/N) and fo = 1/NTc. So the power spectrum consists

of discrete spectral lines at all harmonics of 1/NTc. The envelope of the amplitude of

these spectral lines is a sinc function, except the DC value is 1/N 2. In most spread-

spectrum systems the power spectrum of modulated data is continuous, because the

carrier is randomly modulated by data and spread code.

In our further study of NLL, we take a simple case of the m-sequence generated by

LFSR with polynomial g(D) = 1+ D + D4. The m-sequence generator and its output

of one period are shown in Fig.2-4.

Synchronization of PN Sequence

The spread spectrum receiver despreads the received signal with a special PN code

sequence, which must be synchronized with the transmitter's spreading waveform.

D D D D

out(t)
out(t)= 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

Figure 2-4: An LFSR generates m-sequence with length of 15.
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Figure 2-5: Serial-search synchronization system evaluating the phase and frequency

of a spreading waveform[22].

As little as one chip offset will produce insufficient signal energy for the reliable data

demodulation. There are two parts of synchronization process. One is initial code

acquisition. The other is code tracking. There are several ways for the initial code

acquisition. One is to use correlators to correlate the received signal with local gener-

ated LFSR sequence, and stepped serial-search the phase and frequency uncertainty

cells until correct cell is found. The single-dwell search system always integrates

over fixed interval or correlation to decide whether the acquisition is achieved or

not. Multiple-dwell search system integrates over short correlation window first, if

acquisition looks promising increase the window size until acquisition achieves or not.

Circuit complexity is increased but acquisition time is reduced. Serial search is by

far the most commonly used spread-spectrum synchronization technique. Fig.2-5 is

a system block diagram.

Another PN acquisition approach is to use matched filter, which is matched to a

segment of the direct sequence spread waveform. In contrast to evaluating each rela-

tive code phase as serial search scheme does, matched filter synchronizer freezes the

phase of the reference spreading code until a particular waveform comes(identified by

the matched-filter impulse response). Once the matched waveform is received, the

filter produces a pulse to start the local code generator at the correct phase. In this

way, the synchronization time is improved by orders of magnitude. The principal

issue limiting the use of matched-filter synchronizers is the performance degradation

due to the carrier frequency error and limited coherent integration time[22]. Fig.2-6
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Figure 2-6: Direct-sequence spread spectrum receiver using matched-filter code

acquisition [22].

is a block diagram of a direct-sequence spread spectrum receiver using match-filter

synchronizer.

The third acquisition scheme is recursion aided sequential estimation(RASE) and

its extensions. The m-sequence generator described in Section2.2 contains m symbols

of the code sequence. If these m symbols can be estimated with sufficient accuracy,

then they can be loaded into the identical shift register generator in the receiver to

synchronize the system. This approach outperforms all the serial search techniques

at medium to high received SNR. For very low SNR and no priori information of the

received code phase, RASE has approximately the same mean acquisition time with

serial search. If a priori information about received code phase is available, the serial

search performs better[22]. The block diagram of RASE synchronizer is shown in

Fig.2-7.

The initial code acquisition systems position the phase of the receiver generated

spreading waveform within a fraction of a chip of the received spreading waveform

phase. Tracking loop takes over the synchronization process at this point and pulls the

receiver spreading waveform to the precise phase. The code tracking is accomplished

using phase-locked loop very similar to those used for carrier tracking discussed in



Received

Figure 2-7: RASE synchronization system.

Sec.2.1. The principal difference is in the implementation of phase detector. The

carrier tracking PLL often uses simple multiplier as phase detector, whereas code

tracking loops usually employ several multipliers and filters and envelope detector[22].

A typical code tracking loop called Delay-Locked Loop(DLL) is shown in Fig.2-8,

where the PN sequence is correlated with advanced and delayed signals which goes

through loop filter to VCO that drives the speading waveform generator. A similar

system to DLL is Tau Dither Loop(DTL), which alternate between doing correlation

with advanced or retarded signal. The output of the correlator goes to the filter which

is envelope detected. If it came from retarded signal, it will be inverted before it goes

into VCO. The advantage of DTL is that there is no need to match two loop filters

and correlators perfectly.

2.3 Message-Passing Algorithms

In this section, we introduce message-passing algorithms, which are a key tool used in

deriving scalar NLL and vector NLL in the following chapters. Message-passing algo-

rithms marginalize given joint probability distribution P(u, s, x, y) to certain marginal

conditional probability distribution such as P(uly).

An example is channel coding, where a vector of information bits u is mapped to

a vector of codeword signals x by adding in redundancy. The encoder state is rep-

resented as variable s. After signal x is transmitted across the noisy channel, the
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Figure 2-8: Conceptual block diagram of a baseband delay-lock tracking loop.

receiver receives a noise-corrupted version y and makes estimation on the informa-

tion as u.

From a probabilistic point of view, we can first specify a probability distribution for

the information symbols as P(u). The encoder state is determined from the informa-

tion symbols using distribution P(slu). The codeword is generated according to the

internal state of encoder and information symbols by P(xIs, u). Finally the received

signal y is related to the transmitted codeword by P(ylx). The joint probability

distribution is factored as:

P(u, s, x, y) = P(u)P(slu)P(Xlu, s)P(yIX).

The significant point here is the joint probability distribution over information symbol

u, encoder state s, transmitted codeword x, and received signal y has been decom-

posed into a factorization form according to the probabilistic structure of the model.

By taking advantages of such structure, algorithms more efficient than brute-force

Bayes' rule can be designed.

The probabilistic structure can be intuitively presented on graphs. Several kinds of

graphical model have been extensively researched, such as Bayesian network, Markov

random field, and factor graph[19] [13] [16].



For our channel coding example, the factorized join probability distribution can

be drawn in Bayesian network as:

Figure 2-9: Bayesian Network for Channel Coding

In the following we will use a normal factor graph, because factor graph gives

an easier way to show the constraint relations between variables. It also provides

a straightforward way to present the process of marginalization, which is known as

message-passing algorithm. The essence of message-passing on a tree is illustrated in

Fig.2-10. The boxes represent the functions or constraints. The edges represent the

variables. For example, box fi connected with edge x1 means the fi is the function of

variable x1 . The messages are passed between boxes and edges. For example, message

pf4-.24 is passed from function node f4 to variable X4. The message represents some

marginalized probability distribution. The calculation of the marginal probability for

certain variable from the global joint probability distribution of all the variables is

obtained by successive local message-passing. The example shown in Fig.2-10 is on

calculating marginal probability p(x 4). The process is as following.

First, obtain message pf 3 1X4 as

pf3_.24 = E E E f3(, x 2, 3, 4)fl(l)f 2( 2). (2.9)
X1 X2 X3

Second, obtain message pf 6 _2,, as

prf-+X6 = fX( , , x 8)x)f7 (x7 ). (2.10)
X7 X8

Third, we can get message ph'X 4 from message tf6 -X6 as

Pf4-24 = ZE f4(x4, X 5, X6 )f 5(x5). (2.11)
X5 X6

Finally the two messages passing from opposite directions are combined to get the

marginal probability p(X4) as

p(z4) = p .X4 - pr -4 (2.12)
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Figure 2-10: Message-passing process illustrated on the tree-like factor graph. Mes-

sage p1 in the figure represents message pf3 , in the above derivation. Message pL2

represents If 4-*X4. p13 represents pr-+X6 [121.

The general sum-product algorithm operates according to this simple rule[12]:
Sum-Product Update Rule:

The message sent from a node v on an edge e is the product of the local function at

v(or the unit function if is a variable node) with all messages received at v on edges

other than e, summarized for the variable associated with e.





Chapter 3

LFSR Synchronization: From

Scalar NLL to Vector NLL

In the previous chapter, we reviewed the basic phase-lock technique, basic concepts

of spread spectrum, and message-passing algorithms. These provide the background

knowledge for this chapter.

As reviewed in Chapter 1, the previous work in [29] and [4] studied scalar NLL and

proposed vector NLL. In this chapter, as a good exercise to solidify the ability of com-

munication in the language of message-passing algorithms, we rework out by ourselves

the math of scalar NLL and vector NLLs. We connect them together by emphasiz-

ing performance improvement from simple suboptimal estimation(scalar NLL) using

belief-propagation algorithm to intermediate complexity estimator (vector NLL) us-

ing generalized belief-propagation.

The previous work has been mainly focused on exact form message-passing algo-

rithm. By "exact form message-passing", we mean that the basic computations of

messages use their exact mathematical form. For example, the parity-check node in

log-likelihood ratio representation involves hyperbolic and inverse hyperbolic func-

tions(see Section.??). An interesting question to ask is how robust the message-

passing algorithm is when the basic computation is not accurate. More precisely,

what is the algorithm performance if the basic computation has been changed to an



Figure 3-1: Approximate scalar NLL.

multiplier
+ Delay X (nonlinearity)

Figure 3-2: Continuous state, continuous time, AFSR[28].

approximate form. The reason to ask this question mainly comes from the considera-

tions on practical implementation of message-passing algorithm in physical systems,

especially large-scale systems. But we do not tend to maintain the exact form com-

putation by merely battling with the nonidealities in the circuit through some circuit

techniques, which has been studied in [18]. Rather we consider the problem at a

higher algorithmic level. We intend to construct some mathematically approximate

computation to replace the exact computation in message-passing algorithms. This

makes it possible to construct temperature independent or very weakly temperature

dependent analogic circuit in a principled way.

It is interesting to point out that the approximate scalar NLL in Fig.3-1 has

a similar structure with AFSR in Fig.3-2, which was proposed at the end of Ben-

jamin Vigoda's master thesis [28]. Vigoda originally came up with this configuration

in Fig.3-2 from the perspective of nonlinear dynamic system. And he discovered

A VAOOWO*A



it mainly by numerical experimenting. Here we study the approximate scalar NLL

as a suboptimal estimator derived from message-passing algorithms. The simulation

shows the approximate scalar NLL has better synchronization performance than exact

form scalar NLL. It is hard to explain by message-passing algorithms. The nonlinear

dynamics approach taken in Vigoda's master thesis might provide some hints on the

explanation.

Both vector NLL and scalar NLL are non-iterative estimation. We proposed an iter-

ative LFSR synchronization algorithm at the end of this chapter. Then we compare

scalar and vector NLL in terms of computational complexity and synchronization

performance.

3.1 LFSR Synchronization as Maximum Likelihood

Estimation

Consider a sequence of symbols x={xk} generated as an m-sequence and transmitted

over an additive white Gaussian noise channel(AWGN) with output

Yk = Xk + Wk. (3.1)

We are interested in the a posteriori joint probability mass function for x={xk} given

the fixed observation y={yk}:

(x) = p(xjy) oc p(x)f(yjx), (3.2)

where f(ylx) is the priori probability distribution. If the a priori distribution p(x)

for the transmitted vectors is uniform, then

4'(x) oc f(y x). (3.3)

The marginal conditional distribution has the form

-{Xk}



which marginalizes for each xk by summing over all variables except Xk. The receiver

selects the value of Xk that maximizes each marginal function in order to minimize

the probability of error over each symbol. The acquisition of m-sequence is, therefore,

through maximum-likelihood(ML) or maximum a posteriori(MAP) detection.

The a posteriori probability distribution can be represented by a cycle-free trellis

through a hidden Markov model. At any given time k, define state variable Sk, the

output from transmitter Xk, and the channel observation Yk. The Markov model is

hidden because Sk is not observable; only noisy version yA is observable.

p(x,sly) oc p(x,s)f(ylx,s), (3.5)

= p(x)p(slx)f(ylx), (3.6)

c p(sjx)f(yjx), (3.7)
N-1

= I(x,s,y) 11 f(yklxk), (3.8)
k=0

N-1 N-1

= II Ik(SkXkSk+1) 11 f(YklX), (3.9)
k=O k=o

where assume the a priori distribution p(x) is uniform, N is the length of observation,

and Ik(Sk, Xk, Sk+1) is the indication function that constrains the valid configuration

of each individual state and transmitted symbol. The normal factor graph for this

trellis is in Fig.3-4.

x, jx jx2 X3
fo f f2 f3|

YO I V1 IY2 Y31

Figure 3-3: A Cycle-free normal factor graph for the joint conditional probability

distribution p(x,sly).



For each transmitted symbol Xk, the detection gives the a posteriori probability as

/k(Xk) - p(XkIy) c p(x,sly). (3.10)

Next we explicitly write down the messages and the message-passing procedure.

1. Message initialization:

(a) messages from y to fA: pYk-5k - 6 (yk, Yk).

(b) message at the beginning of observation: ps 0-Io = 1.

(c) message at the end of observation: p3NN 1.

2. Forward message passing through sk:

IIk-1Sk = S S ISk,XklSk-1)/lfk-1xk-/1Ik-2-sk-l (311)
Sk-1 Xk-1

3. Backward message passing through sk:

1 1k-Sk = S E I(sk, X(,sk+1)1k2xk)Ik.1-Sk.1-
Sk+1 Xk

4. Messages passing through xk:

pXk -Ik = 53(yk, y)f(xkIyk) = f(xklyI), (3.13)
Yk

Ik-xk Ik-1*Sk0Ik+1 Sk+1' (3.14)
Sk Sk+1

5. A posteriori probability of Xk:

P(kY= Pxk'Ik ' MIk-+xk. (3.15)

If we are only interested in the ML detection of current state rather than ML detec-

tion of the old states by updating the whole history, which is the case for our code

acquisition, then the a posteriori probability of current symbol XN+1 can be easily

calculated by the knowledge of formal state P(XNjy). Forward-backward message-

passing is simplified to "forward-only" passing. Note that "forward-only" here means

we don't need to calculate the backward messages Alk -Sk. Calculation of P(XN+1 y)

must always do P(XN+1Iy = IxN+1-IN+1 [LIN+ 1 -XN+l, which is still locally forward-

backward message-passing.



3.2 Exact Form Scalar NLL

The trellis processing guarantees the maximum likelihood detection. However, the

computation complexity is exponential with r the number of LFSR stages, because

the branches at each trellis section is 2' - 1. It is desirable to find low-complexity

suboptimal algorithm. The hint comes from the fact that there are usually several

factor graphs representing one probabilistic structure. For our m-sequence acquisi-

tion problem, an alternative factor graph is constructed by considering the generating

polynomial of m-sequence. Because there is no need for receiver to update the esti-

mation of all history at each time step, the forward-only message passing is used to

achieve the current state estimation. This low-complexity estimator with forward-

only message-passing algorithms is called scalar NLL.

o Y, Y2 Y 4 Y' Y6 Y Ye

Figure 3-4: A cycle normal factor graph for the joint conditional probability distri-

bution p(xsly).



There are several representations of messages in NLL. Each results different com-

putations [30]. Now we derive the two representations: probability representation

and log-likelihood ratio representation. These two are closely related to the devel-

opment of scalar NLL in following sections. The message computations of soft-Xor

and soft-equal in these two representation derived below both use the exact form

computation.

3.2.1 Probability Representation

The previous work on scalar NLL has been focused on this representation. Both

simulation and implementation [2] [3] has been published. y(t) is the observation of

the channel. x(t) is transmitted signal. f(y(t) Ix) is the priori probability distribution

of two.

1. Mathematical derivation:

Conversion block:

1
f (y(t)jx = 1) = exp(-(y(t) - 1)2/202), (3.16)

v27ro. 2

1
f (y(t)Ix = -1) = exp(-(y(t) + 1)2 /20 2 ), (3.17)

27ro.2

f (y (t)|z = 1)
p(x = 1|y(t)) = f(y(t)Iz = 1) + f (y(t)|z = -1)' (3.18)

px = -1|y(t)) = f (y(t)| 1) f =y(t)x (3.19)

Soft-Xor gate:

Pxor(1) = Pxi(0) -px4(0) + Pxl(1) - p4(1), (3.20)

Pxor (0) = poi (0) -A p(1) + pxli(1) -A p(0). (3.21)

Soft-equal gate:

pxor (1) -p(x = I|y(t))
peqi(1) = Pxor(l) -p(X = 1|y(t)) +Pxor(O) -p(X = -1|y(t))' (3.22)

SPxor (0) -p(x = -1|y(t))peq(0) = Pxor(l) -p(x = 1|y(t)) + Pxor(O) -p(x = -1y(t)). (3.23)



3.2.2 Log-Likelihood Ratio(LLR) Representation

The LLR representation of NLL has been proposed in [30]. The exact form LLR soft-

Xor involves hyperbolic tangent function and inverse hyperbolic tangent function as

shown in Eq.3.25, which will be approximated in the approximate scalar NLL.

1. Mathematical derivation:

Conversion block:

p (t) = 2y(t) (3.24)

Soft-Xor gate:

pxor = 2 tanh-1(tanh( ) - tanh( )). (3.25)
2 2

Soft-equal gate:

1 eqI = pxor + py. (3.26)

3.3 Approximate Scalar NLL in Log-Likelihood Ra-

tio(LLR) Representation

The exact form LLR soft-Xor in Eq.(3.25) has been implemented with Gilbert cell

and inverse hyperbolic function circuits stacked at output of Gilbert cell [10]. The

circuit realized the following function:

V1  V2Vot = 2VT tanh-1 (tanh( ) tanh( )). (3.27)
2VT 2VT

The log-likelihood ratio was represented as V/VT. Although the circuit faithfully

realized the exact mathematical functions, the thermal voltage VT = kT/q in the

scaling factor makes LLR unavoidably subject to temperature variation. This concern

has also been pointed out by Lustenberger in his Ph.D. thesis [18]. The conclusion

there was negative on voltage-mode log-likelihood ratio implementation. However, if

we gave up the insistence on exact form soft-gates, we will have a new view. Here, we

put the inverse hyperbolic function circuit in the input instead at output of Gilbert

cell, to recompense the hyperbolic function in Gilbert cell, we will have a complete



four-quadrant analog multiplier as

Vout = a - (3.28)
a a

where LLR is represented by the ratio V, and a is an arbitrary voltage that we can

set.

Three questions we need to answer are how good this approximation comparing with

exact form, how good this approximate NLL performs comparing with exact NLL,

and whether this approximation method can be extended in other message-passing

circuits, especially the large analog network. The following three sections try to

answer these questions.

3.3.1 Multiplier Approximation

The multiplier approximation is written here again:

2tanh 1 (tanh(x/2) tanh(y/2)) - Axy, (3.29)

where coefficient A is a free parameter that we choose to obtain better performance

of NLL.

First we look at hyperbolic function tanh(x) and its inverse function tanh-1 (x). The

Taylor series expansions are

1 2 17
tanh(x) = x - -- + ... for Ix < -, (3.30)

3 15 315 2
13 15 17

tanh-1 (z) =x + + ± o+ z + ... for lxi < 1, (3.31)

which tells us they can be approximate by the first term x in Taylor expansion, for

at least IxI < 1. So roughly we have 2tanh-1 (tanh(x/2) tanh(y/2)) x zy/2, with

A = 0.5, lxi < 2, l|< 2.

To more accurately determine the coefficient A, we cannot rely on the first or-

der Taylor expansion. We need to do linear fitting of the whole compound function.

Numerical calculation in Matlab gives the following values of A in Eq.(3.29) corre-

sponding to {, y} E [-2, 2]2.



z=2atanh(tanh(x/2)tanh(y/2) and z=0.3489*xy
5

5 - -

-1.5

-1.5 -1 -0.5 0.5 1 1.5 2

Figure 3-5: Dotted lines are function 2 tanh-(tanh(x/2) tanh(y/2)) plotted with

x E [-2, 2],y E {±2, +1.5, 1, +0.5, 0}. Solid lines are function 0.348 * xy.

z=2atanh(tanh(x/2)tanh(y/2)-0.3489*xy

Figure 3-6: 2tanh-1 (tanh(x/2) tanh(y/2)) - 0.348 * xy, plotted for x E [-2, 2],y E

{+2, 1.5, i1, +0.5, 0}.

5-1. -21



y A

±2 0.3489

i 1.6 0.3713

i 1.2 0.3907

± 0.8 0.4059

± 0.4 0.4155

± 0.2 0.4180

Table 3.1: Table of A and y. It shows the variation of A according to y.

From the above table we can see the real coefficient A is smaller than 0.5 and it

decreases slowly from 0.42 to 0.35 when Iy| increases a decade from 0.2 to 2.

This result has a few implications. First it explains why we usually need attenuation

after multipliers in the numerical experiments on approximate NLL and approximate

analog decoder. Bigger ly| corresponds bigger log-likelihood ratio values. When the

estimator is more certain about its decision, it gives higher LLR value, which requires

more attenuation in multipliers. This also partly explains our approximate analog

decoder needs even bigger attenuation.

Second, the slow variation of A ensures us that it is reasonable to use a fixed attenu-

ation multiplier in the real implementation. This is what we did in our experiments.

3.3.2 Simulation of Exact Form and Approximate Scalar NLLs

In this section, we will examine the performance of exact form and approximate

scalar NLLs by simulation. We first simulate them as pseudo-continuous time sys-

tems by over-sampling each chip. The soft-gates are simulated as their mathemati-

cal forms. The delay elements are simulated as ideal time delay as assumed in the

message-passing algorithm. This simulates the algorithm performance. Then we

model the delay element by 8th order Bessel filter and simulate the whole system in

CppSim[20][21]. This simulation also models the input output voltage clamping of



Transmitted Sequence with g(D)=1 +D+[& and Output of NLL(red)
3
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Decision Error ca=0.8

Figure 3-7: Exact form LLR NLL with input o- = 0.8. The top plot shows the NLL

locks unto LFSR sequence after about 50 chips. The error decreases to zero in bottom

plot.

the actual multiplier and adder. So it is more close to the actual circuit performance.

The detailed discussion of filter design is given in Chapter 4.

Simulation as Pseudo-Continuous Time System

We over-sample each chip by 20 samples in the pseudo-continuous time simulation.

The simulation results in Fig.3-7 and Fig.3-8 show the acquisition process of the loops,

when the input noise has o = 0.8.

We measure the performance of the loop by probability of synchronization, which

is defined as the probability that NLL has obtained synchronization after k time

steps. 600 bits sequence are simulated 1000 times for each noise power level to get

this probability.



Transmitted Sequence with g(D)=1+D+df and Output of NLL(red)
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time

Decision Error, a=0.8
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Figure 3-8: Approximate scalar NLL with A = 0.33 input a =

scalar NLL locks unto LFSR sequence at about the same time
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Figure 3-9: The probability of

NLL with noise a = 0.4.
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Figure 3-10: The probability of synchronization for both exact form and approximate

NLL with noise a = 0.6.

The Fig.3-9 and Fig.3-10 show the probability of synchronization of both exact

form and approximate NLL with two different noise power a = 0.4 and a = 0.6.

We can see the exact form and approximate NLL almost have the same performance.

However, exact form NLL stops synchronizing when a is greater than 1. Approximate

NLL works until a gets to 1.4 as shown in Fig.3-11.

Simulation as Continuous Time System

In continuous time simulation, we model the delay elements as linear phase low pass

filters. The 8th order filter is decomposed into four second-order filter sections cas-

caded. In this way, numerical precision is maintained, because high order filter simula-

tion is very numerically sensitive. The LFSR signal generator is constructed by using

identical analog filters in receiver, multiplier and threshold device. Block diagram in

Fig.3-12 is the transmitter structure. Each filter is composed by four second-order

filter sections. The generated sequence has typical PN sequence characteristics: sinc

envelop with lobes notched at harmonics of chip rate and pulses at harmonics of pe-
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Figure 3-11: The probability of synchronization for approximate scalar NLL with

noise o- = 1.0 and 1.4.

riod frequency as shown in Fig.3-13. The overall system is shown in Fig.3-14. The

approximate NLL and exact form NLL are the two loops in the picture. The linear

filter is implemented with the same filter in the NLLs.

Simulation time step sets to 0.2ps, which gives 50MHz bandwidth. This bandwidth

is wide enough for our system operating at 128.8KHz. Actually we can look at the

power spectrum density(PSD) of the signals inside the NLLs. Fig.3-15 shows the

PSD of the signal after the delay line. The filters pass the main lobe of LFSR se-

quence and cuts off the rest spectrum. This indicates the noise bandwidth is 130kHz,

which determines the real SNR. We simulated input noise power spectrum density

from 0.1 x 10~6V 2 /Hz to 6.7 x 10- 6 V 2/Hz, which corresponds to effective SNR from

15.3dB to -2.99dB. We calculated the performance as mean square error(MSE) de-

fined as E((x(t) - w(t))2 ), where E(-) takes average, x(t) is clean signal in LFSR

transmitter, ,i(t) is the output from NLL or linear filter. Fig.3-16 shows the MSE

performance over effective SNR. At low SNR, both NLLs and linear filter tend to

make more errors, though NLL is still little better than linear filter. At high SNR,



Figure 3-12: LFSR transmitter constructed with analog filters and multipliers. It

gives m-sequence with length of 15 .
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Power Spectrum Density of LFSR Sequence Generated by Analog LFSR Generator

10-

10

10-10

-6 -4 -2 0 2 4 6
Frequency(Hz) x 10,

Figure 3-13: LFSR sequence generated by our analog transmitter with chip duration

of 7.7ps. The lobes are notched at harmonics of the frequency 128.8KHz. The spectral

lines are at harmonics of period frequency 8.59KHz.



Figure 3-14: Overall system simulated in CppSim. For performance comparison,

approximate NLL, exact form NLL and linear filter are constructed. Two loops in

the graph are approximate NLL and exact form NLL. Linear filter is implemented

with the same filter in NLL to set up same comparison condition.
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Power Spectrum Density of Signal after Delay Line in
NLL

10-2

10,
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Frequency(Hz) X 10

Figure 3-15: The spectrum is truncated by the filter bandwidth. This indicates our

noise calculation should only consider in-band noise.

linear filter is sufficient to clean the noise. At SNR range 5dB to 0.5dB, NLL wins

over linear filter more. To further evaluate the noise rejection performance of scalar

NLL and linear filter, we may calculate their output signal-to-noise ratios and noise

figures. In next section, we will discuss vector NLL which promises a significant

improvement of scalar NLL.

As shown in the previous simulation, in low SNR regime the approximate scalar

NLL performs even better than the NLL with exact form message-passing algorithms.

It is interesting to ask if the approximate message-passing algorithm is also useful for

bigger analogic systems. Our preliminary study on a memory one, tail-biting analog

decoder with 32 soft-gates showed the basic functionality of approximate message-

passing algorithm on this network. Our result will be presented in other document.

3.4 First-Order Markov Structured Vector NLL

In last section we derived the vector NLL using full trellis processing, which demands

the computation exponentially proportional to the scale of the LFSR sequence. The

messages in the factor graph are the joint probability mass function of random vari-



Performance comparison of approximated NLL, exact NLL and linear filter

E ct NLL SNR=-3dB

Linear filter

_1 Approximated NLL
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SNR=8.2dB
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Figure 3-16: The simulation result for mean square error performance for approximate

scalar NLL, exact form scalar NLL, and linear filter. At very low noise(SNR> 8dB)

regime, the three perform very close. At very high noise(SNR< -3dB) regime, all of

them suffer big MSE. In between, the approximate scalar NLL outperforms the other

two, especially when SNR is around 5dB to 0.5dB.
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Figure 3-17: Factor Graph of a g(D) = 1 + D + D4 LFSR sequence

ables (Xk, Xk_1, ... , Xk-4). It is desirable to design a less complex algorithm which

will give reasonable performance. The light shines in when we approximate the joint

probability mass function by imposing more probabilistic structure on the random

variables [4]. We will derive the detailed message-passing algorithm according to the

factor graph in Fig.3-17.

(Xk, Xk_1, ... , Xk_4) are the estimated state of LFSR sequence. (yk, Yk+1) are the

noisy input to the receiver. (pt_1, p ,it) are the messages passing on the graph which

correspond to the probability mass functions of the estimated state of LFSR sequence.

The subscripts denote the time step. pt(Xk, Xk_, ... , Xk-3) is a prediction from the

message [t_1 (Xk_1, ... , Xk_4) and is updated by the likelihood of received information

P(ykIXk) to generate the message for next step, which is [tt(Xk, ... , Xk-3). As shown

in the Fig.3-17, the estimated variables are grouped in pair to imply the first order

Markov structure. The joint probability mass function at time step t - 1 can be

written as:

pt(Xk, Xk-1, ... , Xk-3) - pLt(Xk) t(Xk-1|Xk)pt(Xk-2|xk-3), (3.32)
pt(Xk, Xkl)Pt(Xkl, Xk-2)pt(Xk-2, Xk-3). (3.33)

pt(k 1 t(X-2)

Now we first derive the prediction message pL from p1t_1:



t4 (zk-i, Xk-i_1) = D( Xk_1 e Xk4)pt_(Xk_, ... , k_4), (3.34)
-{Xki,Xki1 }

-(XkExk-1exk-4) pt-1(Xk-1, Xk-2)pt-1(Xk-2, Xk-3)pt-1(Xk-3, Xk-4) 1 0

-{Xki,Xki1 I/itlI(Xk-2)t1(Xk-3) 012

(3.35)

Each message has four probability values corresponding to the two random variables

taking 00, 01, 10, 11. We give a detailed formula of p1U(Xk = 0, Xk_1 = 0). Here we use

the short notation p1-I(k - 2, k - 3)n1 for pt-1(Xk-2 = 1, zh-3 = 1).

S= 0, XkI p 0) t- 1 (k - 1, k - 2)oopt_1(k - 2, k - 3)oopt- 1 (k - 3, k - 4)oo
tt_1(k - 2)opt_1 (k - 3)o

pt- 1 (k - 1, k - 2)oopt_1(k - 2, k - 3)oist_1 (k - 3, k - 4)1o

yt-1(k - 2)opt_1(k - 3)1

+ pt-i(k - 1, k - 2)oist_1(k - 2, k - 3)ot-,1 (k - 3, k - 4)oo

pt-1(k - 2)1pt_1(k - 3)o

pt-k - 1, k - 2)oist_1(k - 2, k - 3)1 1 ut_1(k - 3, k - 4) 10

pt-1(k - 2)1pt_1(k - 3)1

The other three probability values of pt(Xk, Xk_1) can be derived similarly by fulfilling

the parity-check constraint.

For the remaining prediction messages, we have

pt (k1, zh-2) = pt-1(zk_1, zh-2), (3.37)

ptz-2, Xk-3) = pt-1(Xk-2, -Xk 3). (3.38)

The second step is to obtain pt by updating prediction message y4 through the

incoming likelihood message P(ykixk).

The equality constraint in the factor graph imposes the following relationship:

pt(Xk, Xk_1, ..., Xk-3) = P(ykIXk) t (Xk, Xk_1, .. , Xk-3). (3.39)

By marginalization and applying first order Markov property, the messages for three

pairs {Xk, Xk_1}, {Xk-1, Xk-2}, {Xk-2, Xk-3} can be obtained as



At(xk, Xk-1) P(Yk xk) 1(xk, Xk-1, ---, Xk-3),
~{Xk,Xk-1}

= P(yklXk)[ti(Xk, Xk-l)-

/It(xk-1, Xk-2) = P(yklxk)t4(xk, Xk-, -- , Xk-3),
~{Xk-1,Xk-2}

-t(xk, Xk-1)t(Xk-1, Xk-2)l(Xk-2, Xk-3)

{XkI1,Xk-2} t Xk-1)[4(Xk2)

p4 (xk1, Xk2)
= E P(ykxk)l (Xk, Xk-1)( E 1(Xk-2, Xk-3)) At(-1, Xk-2)

k Xk-3

k (k1) Xk

-k-1, Xk2) E Pt(Xk, Xk_1),

(Xk-1) Xk

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

A /Exk-1 At(Xk, Xk-1)

t(Xk-i Xk22,_~k1 Pt(Xk, Xk_1) )

Here we can see the new message yt(xk, Xk_1) is proportional to the corresponding

intermediate message pt(Xk, Xk_1) scaled by a ratio of updated probability of variable

Xk_1 to that of the old probability.

The new message ytt(Xk-2, Xk-3) for the pair {Xk-2, Xk-3} can be obtained in the same

way, we neglect the derivation here.

itt(Xk-2, Xk-3) = tX(Xk-2, Xk- 3 )( ,k Pt(Xkl, Xk2) (3.48)
ZXk_1 Pt(xk-1, xk-2)

For clarity and further reference, the intermediate messages and updated new

messages are summarized as below:

Intermediate messages:

Itxk, Xk-1) S J(XkEXk-1Xk-4) 1xk- It1k- 2) At-1( xk2 -3)t-1(k-3, iXk-4)

-{Xk,Xk-1} Ik-1 - - - k-2 - -3)

(3.49)

hNNSOM..4, I - M- 11 AN 0



Figure 3-18: A Cyclic factor graph for the joint conditional probability distribution

p(x,sly).

(Xk-1,xk-2) = t-1(Xk-1, Xk-2),

t(Xk-2, Xk-3) = At-1(Xk-2, Xk-3)-

(3.50)

(3.51)

New messages:

It(Xk, Xk-1) = P(YklXk) t (Xk, Xk-1),

t (Xk-1, iXk-2) = AtXk-1, iXk-2)( Xk It(Xk, Xk1),)
xk [t(Xkx k-1)

Att(Xk-2, Xk-3) = At(k-2, Xk-3),( Xk2)
XXk( [t (Xk-1, Xk-2)

(3.52)

(3.53)

(3.54)

3.5 LFSR Synchronization by Iterative Detection

The loopy factor graph for 16 states m-sequence is shown in Figure 3-18.

We can derive the iterative message-passing schedule as following:



" Initialization:

LLR(pi) = log 1] (3.55)
Pr[vi = 01

" Bit-to-check messages:

LLR (k)(qji) = LLR(k-1)(rji) + LLR(pi). (3.56)
j'EM(i)\{j}

* Check-to-bit messages:

LLR (k) = min (|LLR (k)(qj,) |). (3.57)
i'EL(j)\{i}

" Iterate until detection: if k < Ni, k = k + 1, go back to step 1; otherwise,

compute the posteriori information:

LLR (k)(qi) = ( LLR (k)(rjr) + LLR(pi). (3.58)
j'EM(i)

Make decision: f$) - 1, if LLR(k)(qi) < 0, and k) = 0 otherwise.

3.6 Comparison of Different Estimation Algorithms

The full trellis is the optimal maximum-likelihood estimation by passing the full

joint probability distribution on the graph. The computation complexity thus is

exponentially proportional the LFSR scale as 2"(m is the number of delay elements

in the LFSR). Scalar NLL assumes the messages are independent. So it only passes

the factorized joint probability distribution. The first order Markov structure is the

intermediate stage between the two extremes. It considers the Markov chain relation

of messages. Some simulation results of first-order Markov chain structure and full

trellis structure are published in [4]and [30]. For a fixed synchronization probability,

maximum-likelihood estimation generally wins scalar NLL by 4dB SNR. The first-

order Markov chain sits in the middle winning scalar NLL by 2dB SNR. This is an

incentive for us to consider the circuit implementation of vector NLL.





Chapter 4

Analogic Implementation of NLLs

In Chapter 3, we approached the LFSR synchronization problem with the tool of

message-passing algorithm. We first treated this problem as a statistical estimation

problem. In the language of message-passing, we pointed out there is a hierarchi-

cal structure of NLLs with different complexity level and performance, ranging from

simple scalar NLL to intermediate complex first order Markov NLL to full trellis

processing. We took it as an exercise to derive the mathematical expressions for mes-

sage computation for three different estimators. We discussed the exact form scalar

NLL in three different representations. Then we raised the question of approximate

message-passing with the motivation from practical implementation. Parity-check

constraint(e.g. soft-Xor) and Equality constraint(e.g. soft-equal) are two fundamen-

tal computations in any message-passing algorithm including NLL and other analog

decoder or receivers. Our approximate soft-Xor computation makes the scaling factor

of LLR almost independent of temperature in analogic implementation.

4.1 Fundamental Circuit

In order to understand how analogic circuit works, we review the translinear principle

and well-know Gilbert four-quadrant multiplier, which is fundamental building block

of analogic circuits.



Vdd

'in out

V V2

Figure 4-1: Current mirror as a simple current mode translinear circuit with negative

feedback creating inverse function.

4.1.1 Static Translinear Principle

The static translinear principle rests on two key results [24]. One is mathematics of

logarithms and the other is physics of transistor. The rules for adding and subtracting

logarithms are as simple as following:

log(ab) = log(a) + log(b), (4.1)

log(a) = log(a) - log(b). (4.2)

The physics of transistor provides cheap implementation of nearly-ideal exponential

function as following:

I = AIsenv/+', (4.3)

where A represents scaling in I, due to transistor geometry scaling. 'q is a process-

dependent constant. For MOS transistor in subthreshold region, 'q is about 0.7. For

bipolar transistor, q is about 1.

We are accustomed to voltage-mode circuit, where we take voltage as the input signal

and the exponential properties of the transistor produce current output. Alternative



way is to design current-mode circuit where current is the input signal and we use

negative feedback to create the inverse function of exponential - the logarithm. A

simple and familiar circuit is shown in in Fig.4-1. Negative feedback creates the

logarithm function as: Vi = 0 In[j] and V2 = ln[j]. The arrow points out the

translinear loop, along which the base-emitter voltage drops sum to zero: V1 - V2 = 0.

If the two transistors are matched both in temperature and process, the current

density will hold the equality constraint:

Iin Iout

A1  A2

This constraint on current densities can be generalized when we connect more base-

emitter diodes in the translinear loop. Here instead of common textbook style def-

inition of the translinear principle, we copy a paragraph from the first paper of the

famous 1968 JSSC twin-paper by Barrie Gilbert [7]. In this seminal paper, Barrie de-

veloped a new wide-band amplifier by marrying the differential amplifier and current

mirror, which further bears the fruit of current product-quotient configuration, four

quadrature multiplier, and multiple-input matrix multiplication.

"...in a closed loop containing an even number of perfect exponential diode volt-

ages(not necessarily two-terminal devices) arranged in cancelling pairs, the currents

are such that the product of the currents in diodes whose voltage polarities are posi-

tive with respect to a node in the loop is exactly proportional to the product of the

currents in diodes whose voltages are negative respect to that node, the constant of

proportionality being the ratio of the product of the saturation currents of the former

set of diodes to that of the latter set."

Saturation currents mentioned here are proportional to area which is contained in

parameter An in the following formula:

1l1 L -I fi IM~ (4.4)
nECW n mECCW Xm

In the following sections we will see that the current product-quotient configura-

tion mentioned in the same paper [7] by Barrie Gilbert is crucial for implementing

AWM I WOM IN@



the first order Markov vector NLL.

4.1.2 Gilbert Multiplier Core Circuit

YIE

Figure 4-2: Gilbert multiplier core circuit.

In the sister paper[8] in 1968 JSSC, Barrie Gilbert introduced a high-accuracy

high-speed two signal four-quadrant multiplier. Fig.4-2 shows a less familiar way to

draw Gilbert cell given by Barrie himself. Transistors Q1, Q4, Q5, Q6 and Q1, Q2, Q3, Q4

are connected as two wide-band amplifiers described in his first paper[7]. These two

amplifiers are then collector-coupled through Q2, Q3 and Q5, Q6 to form a translinear

loop. The translinear principle gives us:

IQ2
= XYIE,

'Q3 = (1 - X)yIE,

IQ5 = X(1 - y)IE,

IQ6 = (1-X)(1-y)IE-

(4.5)

(4.6)

(4.7)

(4.8)

The differential output is

Iout = IQ2+ IQ6-IQ3-IQ5,

NOR -- - - - -- - -- -a

(4.9)



- IE(2x - 1)(2y - 1),

- IEXY.

(4.10)

(4.11)

where X = 2x - 1,Y = 2y - 1. The voltage-mode version of Gilbert Cell looks more

Figure 4-3: Gilbert multiplier core circuit in a more familiar form.

modern in Fig.4-3. Current-mirror connection at input is replaced by voltage input.

Differential pair has tanh-like I-V characteristics. The differential output current

finally has the form:

V1  V2
IVt = IEE tanh( V) tanh( ).

2 VT 2 VT
(4.12)

As we have already derived in earlier chapter, the log-likelihood ratio representation

of soft-Xor gate has similar form as 4.12. Actually some implementation of analog

decoders uses V/V as log-likelihood ratio[10]. The drawback is V/V is temperature

dependent. Our approximate scalar NLL uses direct multiplication of two voltages,

which needs an inverse hyperbolic tangent function to compensate tanh function. The

simple circuit in Fig.4-4 accomplishes this task[9]. Assume 1, 12 can be decomposed

into common-mode current and differential current like 1 = Io+ K1 V1, 12 = Io - K 1 V1.



Figure 4-4: Two diodes realize inverse hyperbolic tangent function.

Let V = I/K 1 . Then

Io +K1 V1  Io -K 1 V1V. = VTln( ) - VTln( ), (4.13)
Is I

1
= 2VTtanh-( V). (4.14)

V

Connect inverse tanh block to the input of Gilbert multiplier in Fig.4-3 which can

give wide input range multiplier Iout = IEE(-V )(V). Another important feature is

now the scaling from LLR to voltage is temperature independent in this equation.

The transconductance circuit hidden in the block in Fig.4-4 has transconductance

of K in Eq.4.13. In above threshold MOS circuit, temperature dependent term in

transconductance involves the carrier mobility. However the mobility has a very weak

temperature dependence comparing with kT/q. It is also possible to use some can-

cellation technique to further make transconductance circuit even more temperature

independent. In conclusion, the approximate soft-Xor computation can yield analogic

circuit which is more robust than the conventional soft-Xor used in [10].

4.1.3 Analog Linear Phase Filter

In high speed integrated circuit system, people usually use passive delay line[1] or dig-

ital feedback structure like DLL to achieve tight timing requirement. In low frequency

system such as the scalar NLL running at a few 100K chip/s, passive delay line might

require excessive component values, which is usually a hard problem for integrated
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circuits. It may be also problematic for discrete components where mismatch might

cause severe sensitivity issues especially for high order filters. We choose an inte-

grated switched capacitor delay filter in our implementation, because SC filter gives

wider tunable frequency response compared with RC op amp filter. Also because it

gives more selections on group delays.

Some earlier work on NLL such as [11][29] proposed to use same but arbitrary

continuous time filters in both transmitter and receiver. The transmitted sequence is

an arbitrary sequence. In our work, we want to synchronize with LFSR sequence. So

NLL needs proper analog delay to set up the same dynamics as the LFSR counter-

part. In the work[29], fifth order Chebyshev filter has been used for analog delay. We

choose eighth order Bessel filter in our implementation. The reason will be clear after

we discuss the characteristics of Bessel filter and comparison with other types of filters.

General Bessel filter has the transfer function as

B (0)
Tn(s) = B(s), (4.15)

where Bn(s) is n-th order Bessel polynomial. Storch was the first one who related

the Bessel polynomial to this type of filter through his derivation[26]. His approach

[17]published 50 years ago is perhaps the most direct way to see what makes Bessel

filter special to be a delay element.

Remember the transfer function for an ideal time delay element with normalized delay

T=1 is:

T(s) = e- e. (4.16)

and substitute the hyperbolic function identity es = cosh(s) + sinh(s) into above

equation:

1 1/ sinh(s)
T(s) ./snhs (4.17)

sinh(s) + cosh(s)) 1 + coth(s)

If we can write coth(s) in the form of A(s)/B(s), then the transfer function becomes:

B(s)/ sinh(s)
T(s) = .s sn s (4.18)

A(s) + B(s)
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Since we know the Taylor expansion of sinh(s) is

S3 S5 S7

sinh(s) =s + -+ - +.... (4.19)
3! 5! 7!

the key step is to obtain the infinite continued fraction expansion of cosh(s), which

by repeating division of sinh(s) and cosh(s) can be obtained as:

1 1
coth(s) = - + 3 i . (4.20)

Here we almost get the filter transfer function. Only thing left is to truncate the

continued fraction of coth by n and add the numerator and denominator together for

the n-th order filter. For example, for n = 3,

coths) = +15 (4.21)
s3 + 15s

Adding numerator and denominator gives 3rd order Bessel filter, which was first

discovered by Storch in this situation:

B3 = S3 + 6s 2 + 15s + 15. (4.22)

He also proved that the above process gives maximally flat delay at w = 0. The

maximally flat delay requires the delay D,(w) = -dO/dw to have:

dD(w) I = 0 and Dn(0) = 1. (4.23)
dw

The Butterworth response is derived from the requirement that magnitude function

be maximally flat at small w. This give less linear phase and peaking in delay values

at higher order. This is mainly due to the higher pole Q factors. The Chebyshev

filter is derived from the requirement of equal-ripple attenuation in the passband

which also gives considerable amount of delay peaking at the cut-off frequency. The

elliptical filter gives worse delay because of even higher Q factors. Bessel filter has

the maximally flat delay response through the passband. For time domain response,

Bessel filter has almost no overshoot for step response, however slower rise time.

For our application, maximally flat delay response is most desired. Little overshoot

in time domain is also useful. Rising time is not a problem especially when the

transmitter and receiver are both implemented with the same filters.



4.2 Implementation of Approximate Scalar NLL

The approximate scalar NLL has been implemented in discrete components with com-

mercial integrated circuits. The soft-XOR gate is approximate as analog multiplier.

The soft-equal gate is an adder in log-likelihood ratio representation. These two gates

are implemented by Analog Device IC AD835 four-quadrant analog multiplier. Delay

elements are implemented by Linear Technology LTC1064-3 8th order linear phase

low pass filter. The log-likelihood ratio conversion circuit is actually a variable gain

amplifier, which could be implemented by any op amp in a non-invertible gain con-

figuration. The decision is finally made by a threshold device implemented by LM139

comparator. The whole system is modelled and simulated in CppSim as discussed in

Chapter 3. Now we discuss each component in detail.

4.2.1 Log-likelihood Ratio Conversion Circuit

We should be clear about how to represent mathematical quantity log-likelihood ratio

by a physical quantity voltage in our circuit. As pointed out in the discussion in

approximation of soft-xor computation, LLR p(t) is encoded as a voltage signal V(t)

scaled by a voltage called Vcae.

p(t) = V(t/Vcale. (4.24)

In some analog decoder design, the Vcale is set by the circuit topology as thermal

voltage kT/q. By using analog multiplier approximation, we can set Vscale to an

arbitrary voltage. We choose Vcale = 1V in our circuit. This means when V(t) = 5V,

the LLR is 5, Prob(1)/Prob(O)=e 5=148. The conversion from noisy signal to log-

likelihood ratio in Eq.(3.24) becomes

P(t) = V(t)/Vscale = 2Ay(t) (4.25)

therefore,
2Vscale A

V(t) = 2 y(t), (4.26)

A is the magnitude of transmitted signal in V. a 2 is noise power in V 2 . So the

coefficient 2VscaleA/a 2 is a unitless quantity, which can be implemented as the gain of



a non-inverting amplifier with op-amp. It is helpful to group this gain into two parts

gain = 2( A)( ) (4.27)

The first part is the ratio of the signal magnitude set in the receiver over that of the

transmitter. Usually the transmitted power is known by receiver. So this value is

fixed. The next part is the signal-to-noise power ratio, which can be varying all the

time. When noise is small, it is a gain. When noise is big, it becomes attenuation.

The possible way seems to feedback the estimation error to control the gain, which

needs another loop. In our circuit, we fix the gain to 1-directly pass the signal.

This is assumed the receiver has no information of the channel noise level, which is a

reasonable assumption. Also for practical implementation, especially the high speed

data link, the variable gain amplifier must have very low noise figure which is an

overhead for power and system complexity.

4.2.2 Soft-Equal Gate and Approximate Soft-Xor Gate

Analog Device provides some nice analog multiplier with summing port. This feature

is highly suitable to implement functional block soft-Xor and soft-equal gates. It

is interesting to see that each AD835 gives all the fundamental computation that

message-passing needs. The Fig.4-5 is the functional block diagram of AD835. AD835

z A AD835

XY: XY+Z
+1 W

Y

Figure 4-5: Functional block diagram of AD835.
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generates the linear product of X and Y voltage inputs with a -3dB output bandwidth

of 250MHz. We can assume the gain of the multiplier is flat for our 130kHz circuit. Its

differential multiplication inputs(X,Y) and summing input Z are at high impedance.

The low impedance output voltage(W) can provide up to ±2.5V with t5V power

supply. Input differential voltage clips at ±1.4V.

4.2.3 Analog Delay Line

From the above discussion of analog delay line, we are clear about the choice of ana-

log Bessel filter. We select LTC1064-3 SC 8th order linear phase filter from Linear

Technology Inc. Because almost all the high order filters are cascaded from lower

order sections like second-order filters. LC Ladders are the best possible filter real-

ization because of their low passband sensitivities to component tolerances. And SC

realization of LC ladder structure needs only summing SC integrators. Therefore we

guess this LTC1064-3 filter is implemented with SC ladder four second-order filter

cascaded structure. We used the filter cutoff frequency of f-3dB = 66.67KHz and

clock frequency of 5MHz. However from the data sheet, we cannot get the exact delay

time. We shall find it out in order to set right LFSR sequence chip rate. The 8th

order Bessel filter transfer function is following:

2027025
s8 + 36s 7 + 630s 6 + 6930s 5 + 51975s 4 + 270270s 3 + 945945s2 + 2027025s + 2027025'

(4.28)

where the normalized frequency fd = 1 is called delay normalized frequency. However

the confusion part of Bessel filter is 1/fd is not equal to the group delay Tg. Neither

does cutoff frequency tell us the group delay. The general relation is:

1 (( 2 n)1/"ff (4.29)
rd 2n!

For 8th order Bessel filter, the coefficient is 6.14267288. The relation between fd and

f--sB for 8th order Bessel filter is:

f-3dB = 3.179617 2 3 7 5fd. (4.30)



So f-3dB = 66.67kHz sets fd = 20.97KHz and group delay of our filter is 7.761 s.

Therefore LFSR sequence chip rate 128.8kHz/chip. Fig.4-6 gives the filter frequency

response. The plot is linear in frequency axis.

Bode Diagram
0

-5

-10-

-15,

-90-

-180 --

-270 -

1 2 3 4 5 6 7 8 9 10

Frequency (Hz) X 10

Figure 4-6: LTC1064-3 8th order Bessel filter frequency response with cutoff frequency

of 66.67kHz. From the phase plot, we can calculate the group delay to be 7.7ps, which

sets the LFSR chip rate of 128.8K chips/s. The magnitude rolls off to about -13dB

around 128.8KHz. This cuts off the side lobes of the spectrum of LFSR sequence.

In circuit implementation, the concern about the SC filter is its clock feedthrough

and output DC offset. The data sheet specifies the clock feedbthrough is 2 0 0 pVRMs.

However this is measured by buffering the output of filter with a third-order active

low-pass filter. In our experiment, we use a simple RC filter as the post filter. R=100Q

and C=10.18nF, which gives cut-off frequency at 156KHz. This cutoff frequence is

sufficiently low for filtering out most of the clock feedthrough at 5MHz and also won't

effect our system performance. First it is because this is only a first order low pass

filter, the roll off is slow comparing to the fast roll-off of 8th order Bessel filter after

twice of its cutoff frequency. Also consider the four cascaded filters basically cut off

the frequency component of the signal beyond 130kHz. 100 is big enough, because
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the filter output impedance is only 2Q.

The output DC offset for each filter is typically 40mV-6OmV. Cascading four filters

accumulates the DC offset to about 200mV-25OmV. This might affect the multiplier

function when the input LFSR signal magnitude is as small as 300mV. A solution

is to use AC coupling between the filters. Because the log-likelihood ratio signal is

always ground centered, AC coupling won't cause any loss of LLR information. The

filter has 22KQ input impedance, so we selected small resistor value of 1KQ, for

the resistor divider. The pole position of the high pass filter in the AC coupling is

17.9kHz, which is proved to be low enough for the filter. Because the high pass filter

is only first order, the roll-off at low frequency is very slow. The measured waveform

of filters output didn't show DC component loss. A delay filter section is shown in

Fig.4-7.

Vdd

IN post-filter AC-coupling
LTC1064 OUT

-3
CLK

-Vdd

Figure 4-7: Each LTC1064-3 filter connects to a post filter to further kill the clock

feedthrough. The AC coupling makes the system insensitive to the filter offset.

4.2.4 Measurement Results

In order to set up same condition for comparison between linear filter and NLL, the

linear filter is implemented with the identical LTC1064-3 filter having the same cutoff

frequency at 130kHz. We used Agilent E3209 function generators to generate LFSR

sequence and white Gaussian noise. The summing of white Gaussian noise and gen-

erator LFSR sequence was performed by an AD746 BiFET op amp configured as a

summer. The unit gain bandwidth of the AD746 is 13MHz, which is high enough for

our system. The spectrum of the white Gaussian noise is flat up to 50MHz, which



is checked by a spectrum analyzer. The data streams were taken by Tektronics TDS

2024 oscilloscope and interfaced to computer through GPIB.

Before we discuss the measurement result, we should be careful about read-

ing the output of the Gaussian noise generator. For example, if the input LFSR

has 600mVPP magnitude and noise generator reads 1V noise, naively saying input

SNR=20 log(0.3/1) = -10.45dB. This is a very low SNR. And we found NLL still

works in this SNR. However we shouldn't be too quick to celebrate. 1V noise actually

means the noise power density is 1V 2/50MHz = 0.02pV2 /Hz. Since bandwidth of

the NLL is limited by the Bessel filter bandwidth, the real noise seen by NLL should

be calculated as the in-band noise. For LFSR sequence with chip rate 130k chip/s,

most of the signal power dwells in the first lobe notched at 130kHz. f-3dB Bessel

filter basically cuts off all the power above 130KHz. Thus 1V2 total noise power only

accounts as 1V2 x l30kHz/5OMHz = 2.6 x 10-3V 2 . The real SNR is 15.56dB.

We compared the noise rejection performance of NLL and linear filter. Fig.4-8 to

Fig.4-10 show the measured results at three different noise power levels. When signal-

to-noise ratio is 1.4dB, both linear filter and NLL successfully recover the data after

thresholding. By observing the oscilloscope for long data stream, we didn't count any

bit error for both outputs at this SNR level. When signal-to-noise ratio is reduced to

-2.1dB, both NLL and linear filter start to make decision errors as shown in Fig.4-9.

The thresholded output of NLL has less glitches than the thresholded output of linear

filter, which may be due to that more higher frequency noise has been filtered out in

NLL. This can be observed from the output of NLL and linear filter in the first two

plots in Fig.4-9. By observing the data stream on the oscilloscope, the bit error rate

is about 2% for both NLL and linear filter. Thresholded output of linear filter has

more glitches which we didn't count as bit error. When the signal-to-noise ratio drops

to -4.6dB, we still can observe the NLL kills more high frequency noise. However,

both have about 10% bit error rate. In conclusion, the bit errors in the thresholded

output of NLL and linear filter drop from hardly observable(through data stream on

oscilloscope) to 10% of total transmitted bits when SNR drops from 1.4dB to -4.6dB.
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Figure 4-8: Input SNR=1.4dB. The top two plots are output waveform of NLL and

linear filter. The bottom two are the thresholded output of NLL and linear filter. We

can see both of NLL and linear filter successfully recover the data.

The bit error rate of NLL and linear filter at three different SNR 1.4dB, -2.1dB, and

-4.6dB are very close in our manual observation. The NLL output before threshold-

ing(as plotted in the first two subplots in Fig.4-8,Fig.4-9, and Fig.4-10) has less high

frequency noise.

4.3 Analogic for First Order Markov Vector NLL

Both simulation and experiment show scalar NLL improve the performance of noise

reject over a linear filter. However the improvement is still limited. As discussed in

Chapter 3, we should go up to general belief propagation to improve the performance

more. The fundamental computation units in GBP are no longer Gilbert multipliers

as in scalar LLR NLL. Now we will discuss how to implement this system in circuit.
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Figure 4-9: Input SNR=-2.1dB.The top two plots are output waveform of NLL and

linear filter. The bottom two are the thresholded output of NLL and linear filter.

Linear filter output has been more severely disturbed by noise. The thresholded

output of linear filter contains glitches which come from the high frequency noise in

the filter output.
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Figure 4-10: Input SNR=-4.6dB. The top two plots are output waveform of NLL and

linear filter. The bottom two are the thresholded output of NLL and linear filter.

We zoom in to see the bit errors. By manual observation on the oscilloscope, the bit

error rates of NLL and linear filter are about 10%.
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4.3.1 Circuits for Intermediate Message Computation

First we look at the intermediate message in Eq.(4.31). For clarity, we copy the

equation here again.

(Xk, Xk-1) = E (XkeXk Xks4) t-1 (Xk1, Xk-2)Pt-1 (Xk-2, Xk-3)t-1 (Xk-3, Xk-4)

{Xk,Xk1 EXk_1 Pt-1(Xk-1, Xk-2) EXk_2 Pt-1(Xk-2, Xk-3)

(4.31)

Its first value is further expanded in Eq.(4.32). We also reproduce the equation here

for clarity. pt-_1(xk-2 = 1, Xk-3 = 1).

A(Xk =0,Xk = 0) pt- 1 (k - 1, k - 2)oopt_ 1 (k - 2, k - 3)oopt_1(k - 3, k - 4)oo

pt-1(k - 2)opt,1 (k - 3)o

+ Pt-1(k - 1, k - 2)oopt-1(k - 2, k - 3)oitt_(k - 3, k - 4)10
yt-1(k - 2)opt_1(k - 3)1

p Pt- 1 (k - 1, k - 2)oist_1(k - 2, k - 3)1opt_1(k - 3, k - 4)oo

pt-1(k - 2)1pLt-1(k - 3)o

pt-,1 (k - 1, k - 2)o1pt_1(k - 2, k - 3)nyt_1(k - 3, k - 4)1o

pt1(k - 2) 1pt-,1 (k - 3)1

The basic computation here is multiplication of three variables and division by

the result of multiplication of the other two variables. These desperate awkward-

looking computation block actually can be solved with little effort by static translinear

circuits. Consider all the messages are presented as currents. The translinear circuit

in Fig.4-11 is the building block for computing intermediate messages, which has only

six transistors. The marginalization operation required to obtain the single variable

messages such as pt_1 (k - 2)o can be easily done by current summing with a junction

of wires.

The two equations Eq.(4.33) and Eq.(4.34) for computing updated messages are

listed here again.

, EXk pt(xk, xk_1)t(Xk1, Xk-2) = pt(Xk-1, Xk-2)( , ) (4.33)

EXk pt(Xk-1,k-2)
pt(Xk-2, Xk-3) = Pt(Xk-2, Xk-3)( E ,1 Xk1 Xk2). (4.34)

EXk_1 Pt(Xk_1, Xk-2)

In the light of translinear principle, these computations can be realized in an even

simpler circuit in Fig.4-12 with four transistors. Again the marginalization of two
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Figure 4-11: Translinear block for intermediate message computation.

variable messages such as Ex, p-1t(Xk, Xk1) can be implemented as directly connecting

two currents using KCL.

4.3.2 Analogic Computational Blocks

The computational block for the intermediate message is composed by the circuit

block of Fig.4-11 and current adders which are simply junctions of wires. One com-

putation block is shown in Fig.4-13 which has 12 input messages(actually 10 of them

are used) and computes the message pt(k, k - 1)oo. The T1 blocks are the translinear

circuit shown in Fig.4-11. In the same principle, only by re-arranging the connection

between input currents to the translinear circuit blocks, the other three computation

blocks for messages [4(k, k - 1)oo,oi,1, can be easily built. Therefore, we demon-

strated the principle to construct basic computation blocks for generalized belief

propagation.



out 1 2/3

Figure 4-12: Translinear block for updated message computation.



Figure 4-13: Computational block for message u(k, k - 1)oo. The blocks marked

with "TI" are the tranlinear circuit in Fig.4-11, which computes the multiplication of

three messages and divide by the fourth message. The blocks marked with "+" are

current summation, which actually are simply junctions of wires. The top four inputs

are messages ptt_(k - 1, k - 2)oo,oi,i. The left four inputs are messages pt_1(k -

2, k - 3)oo,o1,1o,11. The bottom four inputs are messages lt_(k - 2, k - 3)oo,oi,1o,n1.

Only two of them are used.





Chapter 5

Scaling to Large Complex System

and Current-Mode Signal

Restoration

In this chapter, we seemingly discuss an irrelevant topic - current-mode signal

restoration. But actually it is on the way of further development of the ideas in

the earlier chapters: from scalar NLL to vector NLL.

5.1 Scaling to Complex Systems

Until now, we discussed LFSR synchronization as an estimation problem solved by

message-passing algorithm. We discussed the implementation of the simple scalar

NLL as analogic circuits and the circuit structure proposed for vector NLL, which is

a bigger analogic network. We see the goal is not only scalar NLL but more powerful

analogic circuits which naturally raise the question of how to scale to systems of large

complexity. A thorough and deep study of this problem has been published in [25],

where authors outlined a hybrid analog-digital scheme with three important features

that enable it to scale to large systems: collectively computation by moderate preci-

sion analog units, discrete signal restoration and state machine.



In the light of the hybrid computation, we can look at scalar NLL from a new

point of view. We have already seen scalar NLL is composed of two kinds of circuits.

One is analog computation blocks(soft gates and approximate soft gates) which do

the computation for estimation. The other kind of circuit is the switch-capacitor

filter circuits which actually determine the dimensions and dynamics of this nonlinear

system. Although the switch-capacitor filters are driven by clock, the clock is not an

intrinsic part of the system. It is the filters as delay elements that drive the NLL

to evolve through a sequence of states. And time in the algorithm is the delay time

as a physical time. We can even implement the analog filters array by digital delay

line through A/D and D/A converters to interact with analog processing part. It

may be too complex to do this for simple scalar NLL. However, it might be beneficial

for vector NLL because digital circuits can precisely control the state transition. In

addition, A/D and D/A converters restores the analog signals periodically.

5.2 Current-Mode Signal Restoration

As discussed above, frequent discrete signal restoration is crucial for large-scale com-

plex computation system. Here we present a novel current-mode signal restoration

circuit using negative current mode feedback to achieve very good linearity and purely

current input and output capability. The basic building block for both circuits is

winner-take-all circuit. So we first walk through the mechanism of winner-take-all

circuit. Then we introduce the controllable gain current mode amplifier with nega-

tive feedback linearization.

5.2.1 Winner-take-all Circuit

Winner-take-all(WTA) circuit is a very interesting circuit that cleverly utilizes col-

lective feedback to parallel compute the max function of arbitrary number of input

variables. We take a two-input WTA as example to analyze how it works. For more

detailed analysis, please refer to [24].

First, when I'mi = Iin2, the drain voltages of M1 and M 2 are equal. Thus M3 and M4
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Figure 5-1: Winner-take-all cell.

have the same gate-to-source voltage. The differential pair splits the tail bias current

equally. Now suppose Iji increases by Ai. The drain voltage of M1 increases which

causes more current flow into node V. This current is divided between gmb of M 3 and

the effective impedance of cascaded pair M 2 and M4. The Fig.5.2.1 shows the local

negative feedback loop in the pair M 2 and M4 , which boosts the original conductance

of M 2 up to Z = (1 + K9m 2 ro 2 )(gm 4 + gmb4), where , = 1/(1 + gm/gmb).

Fig.5-3 shows the small signal analysis and overall block diagram. The transfer

function can be easily written out as:

i= gm3roi. (5.1)

The analysis above also applies to the WTA which has N(N > 2) legs. The current

gain is accordingly:

i0o N-1 52
i N gm3roi. (5.2)
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Figure 5-2: Local negative feedback increases conductance
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Figure 5-3: Block diagram of small signal analysis of WTA.



5.2.2 Controllable Gain Current-Mode Amplifier

The analysis of WTA shows that WTA has very high current gain gmr0 . In order to

implement a controllable gain current-mode amplifier, the first idea in our mind is

to reduce this high current gain in a controllable way. The first circuit we designed

according to this idea is to use controllable resistor in parallel to Mi that ro is shunted.

This is an open-loop control. A better way is do feedback control. Instead of fighting

with WTA's high gain as what we did in the transistor shunting circuit, the high

current gain of WTA actually provides the good feedback performance similar to the

convential operational amplifier provides versatile feedback configurations. So here

we will first discuss the second circuit, then compare performance with the first one

at the last of this chapter. Instead of fighting with the WTA's high gain as in the

shunting resistor circuit, we can rather take WTA as a current-mode amplifier with

more than 20dB gain. From this perspective, feedback is a natural way to control

the gain. The general current mode circuit feedback diagram is drawn in Figure 5-4.

We use WTA as the current-mode amplifier with gain derived in (5.1). The current

lin -High Gain
"i Current-Mode

Op-amp

Feedback
Gain

K

Figure 5-4: Feedback block diagram-1.

feedback is cheaply done by current-mirrors as in Figure 5-5. Use Black formula to

get the closed-loop gain:

Iot gmRo/2 1 (5.3)
'in 1 + KgmRo/2 K

There are several ways to control the gain. The geometry of the current mirror sets

the DC gain. The well-terminal of PMOS in the current mirror can also control the



gain=k

Figure 5-5: WTA in feedforward path and current mirror in feedback path.

current gain. More flexible way is to use simple digital-to-analog converter to switch

the aspect ratio of current mirror. In our chip, we used the D/A converter approach.

Now consider the WTA cell again. There are two current inputs and two current

outputs. The combinations of these terminals in feedback diagram Fig.5-5 will give

us two types, three possible negative feedback configurations. The first type uses sin-

gle feedback path, which has two configurations: feedback positive output negatively

to input using PMOS and NMOS current-mirrors(we call it N-feedback); feedback

negative output positively to input only using PMOS current-mirror(we call it P-

feedback). The second type is dual feedback of both N-feedback and P-feedback.

Now we discuss them one by one.

Controllable Gain Current-Mode Amplifier with N-Feedback

Fig.5-6 shows the circuit structure of the N-feedback amplifier. WTA block in the

circuit is the same as in Fig.5-1. The DC analysis in SPICE shows that the amplifier

output Intl saturates at two rail currents: OnA and Ib, set by tail current in WTA.

In between, when input I'mi increases bigger than Iin2, output IoTa starts to linearly

ramp up, until it hits the upper rail when Ihni = Ibas/K + Iin2, where K is current
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Figure 5-6: N-feedback configuration.

gain. As mentioned before, the current gain can be controlled by well-voltage of

current-mirror. The following simulation(Fig.5-8) changes the well-voltage from 4.6V

to 5V. The current gain changes from 25 to 2.17. The disadvantage of this is the gain

changes exponentially. Also the balance point(the value of input current when two

outputs are equal) changes exponentially with gain.

Controllable Gain Current-Mode Amplifier with P-Feedback

The P-feedback configuration also gives good linear range from rail to rail. When Ij"i

is greater than Iin2, output of Ioutl is at rail bias. When Iim decreases below Iin2,

Ioutl starts to linearly ramp down until it hits the bottom rail. So the upper bound of

linear range of 'imi is set by Iin2 Compare with N-feedback, where the lower bound

of linear range is set by 'in2. In Fig.5-10 we plotted output current Ioutl as solid curve

and input current Ini in dotted line. We can clearly see that during the linear range,

the input current due to the high current gain of WTA barely changes. Feedback sets

the closed-loop gain.



Figure 5-7: Iatl of N-feedback when sweeping Iji at different in22.

Controllable Gain Current-Mode Amplifier with Dual Feedback

The linear range is set by Iin2 and current gain in N and P-feedback configurations.

However, the balance point of the linear range(where Isat = It2) is determined by

both Iin2 and current gain in both N and P-feedback as shown in Fig.5-8. What we

desire is when Iii = Iin2, the output Iti is equal to Iot2, no matter what Iin2 and

the current gain are. This property is very useful when the amplifier is used as a fully

differential amplifier. The dual feedback configuration achieves this property.

The stability of the feedback circuit is investigated by root-locus approach. The

result shows the system is stable with the feedback gain from 0 to 105.

In conclusion, we proposed a novel current-mode feedback signal restoration circuit.

It has a wide linear range and uses purely current input and output. It is a very

interesting direction to apply this circuit in time-domain spike computation.



Figure 5-8: Control current gain by changing the well voltage of PMOS current-

mirror. Middle point also moves.

Vdd Vdd

Vdd

in1

Vdd

Iin2 WTA * out2

Figure 5-9: P-feedback configuration.



Figure 5-10: Iatl of P-feedback when sweeping Ii, at different In2.

Figure 5-11: Dual feedback configuration.



Figure 5-12: Dual feedback. Balance point is set only by Iin2.
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Chapter 6

A New Geometric Approach for

All-Pole Underdamped

Second-Order Transfer Functions

This chapter is on a new geometric approach for all-pole underdamped second-order

transfer functions, which provides useful geometric techniques for future research on

cascaded filters in noise-locked loop.

The common s-plane geometry of second-order all-pole transfer functions interprets

the gain as the product of two lengths and phase as the sum of two angles. This ap-

proach makes the overall frequency response less intuitive to understand. Using the

geometric transformation proposed in a geometry called "one-pole" geometry [23],

gain depends on one length, and the phase corresponds to one angle. This makes

many important quantities such as the gain peaking and the corner frequency ob-

vious. Other quantities like group delay and bandwidth also have simple geometric

interpretations. In our new approach, gain as well as phase is represented as one

angle which is directly constructed from the original two-pole plot without any geo-

metric transformation. Comparing with the "one-pole" geometry, the new geometry

is simpler. Yet how to represent group delay in the new geometry is still an open

question. We first briefly review the usual geometry and "one-pole" geometry. Then

we introduce our new geometric approach.



6.1 Usual Geometry

The transfer function of second-order system with two poles is[23]

1
H(s) =2 (6.1)

1+ LS + T22

where H is the transfer function, s is the s-plane variable, r is the time constant, Q
is the quality factor. This transfer function form is normalized to have unit gain at

DC. We only discuss the underdamped(Q > 0.5) second-order system which has two

complex poles given as
1 1

P1,2 =Q 1 -( )2. (6.2)2Q 2Q

The magnitude of the transfer function with s = jw has the form

1
IH(jw)I = jWT -P1I JWT -P21 (6.3)

1
(6.4)

(1 - w2T2 )2 + (262.2

The phase of the transfer function has the form

WT/Q
Arg H(jw) = -arctan( 1  2). (6.5)1 - w272)

The Eq.6.3 gives the standard geometric interpretation of gain of the transfer function

shown in Fig.6-1. The phase can be obtained by algebraic sum of two angles 01 and

02.

6.2 "One-Pole" Geometry

Eq.6.4 gives the hint on the x-space geometry proposed in [23]. First we define two

new variables as

X W 2 T 2  (6.6)

0 = arcsin(1 - 1 (6.7)
2Q2)
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Figure 6-1: The usual geometry of the underdamped second-order transfer function.

Assuming di = IP1FI and d2 = IP2FI, the gain at the frequency point F is 1/did 2.

The phase at F is 61 + 62. Note 02 is always positive(F takes positive frequency), 61

can be negative as the case drawn in the figure.

Eq.6.3-Eq.6.5 can be simplified as

IH(x)| = (6.8)
(x - sin 6)2 + cos 2 6

Arg H(x) = - arctan( ). (6.9)
1 - x

Consider the fact that the position of one pole determines the position of the other

pole. We should be able to "compress" two poles as in usual geometry Fig.6-1 to

a one "pole" geometry without losing any information on the system frequency re-

sponse. Two new variables in Eq.6.6 and Eq.6.7 actually define the geometric trans-

formation from normal frequency space to x-space: frequency point F is transformed

from (0, jwr) to (x, 0), two poles are represented by one point (sin 0, cos 6) called

Q-point[23]. The gain in the new geometry is the reciprocal of the distance d from

point x to Q-point. The phase needs more manipulations. Draw an arc of radius d

centered at point (x, 0) to intersect with line x = 1 at point (1, vx/j) called phase

point. The phase vector is the vector from (x, 0) to the phase point. The angle @
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Figure 6-2: The new geometry proposed in [23]. Frequency point is transformed to

(xo, 0). Poles are "compressed" to one Q-point. Gain is 1/d. The length L = Vxfo/Q.

Phase is arctan(L/(1 - zo)).

between x axis and phase vector is the negative of the phase of the transfer function.

A pictorial representation of the new geometry is shown in Fig.6-2. The discussion

on group delay and an alternative construction of phase can be found in [23].

6.3 A New Geometry

The x-space geometry compresses the "redundant" pole information by geometric

transformation. The important quantities in frequency response such as peaking fre-

quency, peaking gain, -90' frequency and gain, etc. can be directly read out from

Fig.6-2[23]. An interesting question to ask is if we can achieve similar amount of

geometric intuition without any geometric transformation. The answer to this ques-

tion leads to the simpler geometry where one- "pole" is uncompressed back to original

two poles for calculating gain, and mirrored to four- "pole" for phase. In this way,

phase and gain are represented by two angles in the usual pole plot like Fig.6-1. And

important quantities listed above can be obtained geometrically.
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The Geometry of Phase

The frequency point F can be either within the circle or outside the circle. We

first discuss the case when F is inside the circle as shown in Fig.6-3. From the

usual geometry discussed in the first section, the phase of the transfer function is the

negative of the sum of two angles 01 + 02, equivalently, |il - 02, since 01 < 0. Mirror

the original two poles P1 and P2 to the right half plane to get Pim and P2m. m in the

subscript denotes "mirror". Recognize the angle relation:

02 = ZFGP 2 +$0, (6.10)

LFGP2 = 01. (6.11)

Therefore, the negative of the phase of the transfer function at frequency point F

is angle 4. The supplement angle @ is easier to use. So we represent the phase at

frequency point F by one angle 0'- 7r. This relation holds for the case when frequency

point F is outside the circle as shown in Fig.6-4. The difference is 01 > 0, so the

negative of the phase of the transfer function is 01 + 02. It is readily to see

phase = -01 - 02 = @ - 7r. (6.12)

In conclusion, the phase of the transfer function, regardless of the position of frequency

point, is LP2FPim - 7r. We now see some special frequency points and their phases.

" At DC(w = 0), ZP2 FPim = 7r. Therefore, the phase is 0.

" At frequency point E in Fig.6-3,LP2FPim = 7r/2. This is because the segment

|P2Piml is the diameter of the circle, passing the center of the circle. Point E

is the -90' frequency point of the transfer function.

" At very high frequency, LP2FPim approaches 0. Therefore, high frequency

phase shift is -180'.
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The Geometry of Gain

The first key observation to new geometry of gain is that the area of triangle P1 FP 2

is invariant of the frequency point as shown in Fig.6-5. This can be easily seen as

1
Area of APFP2 = -IP1HI - PP 21, (6.13)

2
1 1

2Q 2Q

The second key observation is the area of AP 1 FP 2 can be also written as

1
Area of AP 1 FP 2 = -did 2 sin 0, (6.15)

2
S sin (6.16)
2 gain

where di = |P1FI, d2 = IP2FI. Therefore the gain at frequency point F has the form

sin 0
gain = , sn ' (6.17)

1 - ( )2'

oc sin 0. (6.18)

We finally use one angle and the Q value to represent the gain at any frequency point.

Now we check some important frequency points.

* DC(w = 0) gain is 1. This can be seen as cos 0/2 = 1/2Q,sin 0/2 = - )2

and triangular equality sin 0 = 2 sin 0/2 cos 6/2. The numerator is cancelled by

the denominator in Eq.6.17.

" Peaking appears at frequency point F2 shown in Fig.6-6. This happens when the

circle with diameter P1 P2 can intersect with jw axis. This requires Q > 0.707,

which is the critical Q value for peaking. Another observation available is

peaking frequency is always lower than -90' frequency.

" At very high frequency, angle Ogoes to 0. Therefore, gain goes to 0.
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Figure 6-3: The phase of the transfer function is 101 - 62, which has already been

pointed out in section on usual geometry. By mirroring the two poles to right half

plane, the phase can be represented by one angle.
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Figure 6-4: When the frequency point is outside the circle, the phase written in two

angles is -01 - 02. It can be also represented as one angle.
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Figure 6-5: The key observation is that the area of triangle AP 1 FP 2 only depends on

quality factor Q of the second-order system, invariant under frequency change.
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Figure 6-6: The gain peaking happens at the point F2, where semi-circle with diameter

P1 P2 intersects with the jw axis. Only 02 achieves 90'. So there is only one peaking

frequency.
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Chapter 7

Conclusion

7.1 Summary of the Works

Modelling, simulation, and implementation of approximate scalar NLL in

discrete electronics

We first formed the LFSR synchronization problem as a least square estimation prob-

lem with goal and constraints. Then we used message-passing algorithms running

on the factor graph to solve the estimation problem, which resulted the estimator

called noise-locked loop(NLL). We focused on the approximate scalar NLL. Pseudo-

continuous time simulation has done in Matlab. Continuous-time modelling and

simulation of the circuit has been done in CppSim. The circuit of approximate scalar

NLL was implemented in discrete electronics.

Simulation and comparison of the performance of scalar NLL and linear

filter

In any spread spectrum receiver, right after the signal is collected by antenna, a linear

filter is used to select the frequency-spread signal and pass it to CDR(clock and data

recovery) circuit. We explored the possibility of using NLL to replace this linear

filter in hope of getting better noise rejection and providing cleaner signal to CDR.

We compared their performance in terms of mean square error of filtered signal with
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transmitted signal. The result shows that scalar NLL improves the noise rejection

performance of a linear filter. However the amount of improvement is limited and its

effect to later CDR circuit needs to be explored more.

Approximate message-passing in big analog network

As best as we know, the previous work on circuit implementation of message-passing

algorithm, like analog decoders, has been focused on realizing exact message-passing

computation in circuits. However we approximate the LLR soft-xor by multiplication.

The circuit implementation becomes temperature independent. We discovered the

approximate scalar NLL has faster acquisition time and better noise rejection ability

than the exact form NLL in low SNR regime. And some preliminary result shows

the approximate analog decoder using soft-xor approximation has almost the same

performance as the conventional analog decoder using exact form computation. This

raises an interesting direction for further exploration.

Circuit primitives for vector NLL and general belief propagation

The scalar message-passing has two fundamental computation units: soft-Xor(parity-

check node) and soft-equal(equality node). They are actually implemented by one

fundamental circuit: Gilbert cell(thanks Barrie!). And they use only one fundamental

principle: translinear principle. All the analog decoders are built on these. Interest-

ingly enough, our proposed circuits for generalized belief propagation(GBP)[31] [29]

[4] are simply the current-mode translinear circuits. As far as we know, we are the

first to propose the circuit structure for generalized belief propagation. Thanks to

Barrie Gilbert again. The fundamental circuit structure we use for GBP has been

published in his 1968 JSSC papers almost forty years ago.

Current-mode signal restoration circuit for hybrid signal processing

Along the line from belief propagation to generalized belief propagation, and from

scalar NLL to vector NLL, building large robust analog network is the goal. Inspired

by the idea of hybrid state machine published in [25], we investigated the signal
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restoration circuit, which is very useful to keep the fidelity of analog signal in large

system. The circuit we came up with is a purely current-mode feedback structure

that has never been used before(to our best knowledge). It utilizes the high current-

gain of winner-take-all cell to generate linear range as wide as two rails. The current

gain is controllable by simple DAC. The circuit will be fabricated with MOSIS 0.5um

technology.

Another geometric approach for all-pole under-damped second order trans-

fer function

This is a geometric approach to understand the behavior of second order transfer

function. Mirror the two poles to right half plane, connect the frequency point to

one left half plane pole and to the mirrored image of the other pole. The angle

expanded by these two lines are the phase of the transfer function at this frequency.

The triangle composed of frequency point and two left half plane poles has invariant

area no matter when the frequency point is. Gain is the sin of the angle facing to two

poles. This geometric approach will be useful for design and analysis on the filters in

noise-locked loop.

7.2 Future Work and Outlook

While this thesis has accomplished the work mentioned above, its function is not to

terminate the research but rather to raise more interesting questions which direct the

future research.

Approximate message-passing in large analog networks

It is very interesting to investigate how message-passing algorithm can tolerate the

nonlinearity. The question is related to non-normalized probability theory and statis-

tical estimation which has much room to explore. In practice, it may greatly improve

the robustness of large analog network.
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Construct circuits to do generalized belief propagation

We recognized the current-mode quotient and product circuit as the exact circuit

we need for GBP. However due to time limit, we didn't fully simulate the circuits.

We relied on the fact that such a simple translinear circuit would certainly work.

Further study requires careful simulation of the larger system like vector NLL and

optimization of circuit structure and performance in terms of low power or high speed.

Also find other good applications of GBP will stimulate more interests on analogic

implementation.

Low power high speed NLL

To design low complexity, low power NLL will make it more useful for communication

systems. The scalar NLL now uses active filters which consumes a lot of power. If we

can implement analog delay as passive filter but also maintain performance, the power

will dramatically reduced. This is not hard for high speed circuit. The multiplier has

about ten transistors in core plus four for nonlinear compensation. Summing can also

be implemented by Gilbert cell plus inverse hyperbolic function, which needs about

eight transistors. So the soft-Xor and soft-equal computation core needs about 25-30

transistors. If we can use only few transistors mixer, even diode mixer for soft-Xor,

the circuit structure will be greatly simplified. This requires careful study of the

impact of all the mixer nonidealities to message-passing algorithm.
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Appendix A

Appendix

A.1 Continuous-Time Simulation Code in CppSim

A.1.1 Module Description Code

% White Gaussian Noise

module: noise

parameters: double var

inputs:

outputs: double out

static-variables:

classes: Rand randg("gauss") 10

code: out = sqrt(var/Ts)*randg.inp(;

% First Biquad Section of 8th Order Bessel Low Pass Filter

module: myBesselbiquad1
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parameters: double fp

inputs: double in

outputs: double out

classes: Filter filt("48.4320186525887"l,"48.4320186525887 20

+5.677967896/(2*pi*fp)*s

+1/(2*pi*fp)^2*s^2","fp,Ts" ,fp,Ts);

code:

filt.inp(in);

out=filt.out;

% Second Biquad Section of 8th Order Bessel Low Pass Filter

module: myBesselbiquad2 30

parameters: double fp

inputs: double in

outputs: double out

classes: Filter filt("38.56925327532649","38.56925327532649

+8.736578434/(2*pi*fp)*s

+1/(2*pi*fp)^2*s^2","fp,Ts" ,fp,Ts);

code:

filt.inp(in);

out=filt.out;

40

% Third Biquad Section of 8th Order Bessel Low Pass Filter

module: myBesselbiquad3

parameters: double fp

inputs: double in
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outputs: double out

classes: Filter filt("33.93474008457527" ,"33.93474008457527

+10.40968158/(2*pi*fp)*s

+1/(2*pi*fp) ^2*s^2", "fp,Ts ",fp,Ts); 50

code:

filt.inp(in);

out=filt.out;

% Fourth Biquad Section of 8th Order Bessel Low Pass Filter

module: myBesselbiquad4

parameters: double fp

inputs: double in 60

outputs: double out

classes: Filter filt("31.97722525877369"," 31.9772252587736

+11.17577209/(2*pi*fp)*s

+1/(2*pi*fp) 2*s^2" ,"fp,Ts" ,fp,Ts);

code:

filt.inp(in);

out=filt.out;

% Exact Form LLR Soft-Xor 70

module: mysoftXOR2

parameters:

inputs: double inx, double iny

outputs: double out

classes:
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code: out=2*atanh(tanh(inx/2) *tanh(iny/2));

% Approximate LLR Soft-Xor 80

module: multiplier

parameters:

inputs: double inl, double in2

outputs: double out

classes:

static-variables:

code: out = inl * in2;

% 90

% Exact Form LLR Soft-Equal

module: add2

parameters:

inputs: double inl double in2

outputs: double out

static-variables:

code: out = inl+in2;

100

% Clamp

module: clipper

parameters: double min, double max

inputs: double in

outputs: double out
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classes:

code:

if (in<=min)

out=min;

else

{if (in> =max)

out=max;

else

out=in;

}

A.1.2 Postprocessing Code in Matlab

% CppSim generates transcient analysis data in 'test.trO'

% Signals are loaded into Matlab by 'evalsig() 'command

cppsim;

x = loadsig('test.trO');

lssig(x);

t = evalsig(x,'TIME');

in = evalsig(x,'in');

xorout=evalsig(x, Ixorout');

xorout2=evalsig(x,' xorout2');

out=evalsig(x, 'I out );

out2=evalsig(x, 'out2');

outclean=evalsig(x,'outclean');

reev=evalsig(x, 'recv');

noise=evalsig(x,'noise');

dl=evalsig(x,' dl ');
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d2=evalsig(x,'d2');

d3=evalsig(x,' d3');

d4=evalsig(x,' d4'); 20

vl=evalsig(x,'vi');

v2=evalsig(x,'v2');

v3=evalsig(x,'v3');

v4=evalsig(x,'v4');

outcmp=evalsig(x,'out cmp');

cleansig=evalsig(x, ' cleansig');

out-edge=evalsig(x,'out-edge');

out2_edge=evalsig(x,' out2_edge ');

in-edge=evalsig(x, 'inedge');

linfilt=evalsig(x, 'linf ilt'); 30

% FFT

N=length(out2);

Fs= (5e6);

f= [-0.5*N:0.5*N-1] *Fs/N;

Out2=fftshift(fft(out2)/N);

Xorout2=fftshift (fft (xorout2) /N);

Xorout=fftshift (fft (xorout) /N); 40

Linfilt=fftshift(fft(linfilt)/N);

D1=fftshift (fft (d1) /N);

D2=fftshift (fft (d2) /N);

D3=fftshift (fft(d4) /N);

D4=fftshift (fft (d4)/IN);

Outcmp=fftshift(fft(outcmp)/N);

Cleansig=fftshift(fft(cleansig)/N);

118



Noise=fftshift (fft (noise) /N);

Recv=fftshift(fft(recv)/N);

In=fftshift(fft(in)/N); 50

% Calculation of Power from PSD

powerclean=O;

for i=length(Cleansig)/2: (length(Cleansig)/2+length(Cleansig) *1. 3e5/5e6)

powerclean=powerclean+(abs(Cleansig(i)))^ 2;

end

powerclean

60

powerrecv=O;

for i=length(Recv) /2: (length(Recv)/2+length(Recv) * 1.3e5/5e6)

powerrecv=powerrecv+(abs(Recv(i)))^2;

end

powerrecv

powerd4=0;

for i=length(D4)/2:(length(D4)/2+length(D4)*2.6e5/5e6)

powerd4=powerd4+(abs(D4(i)))^2;

end 70

powerd4

% Calculation of MSE

mse-approx = mean((in-d2/1.7).^2)

mse-exact = mean ((in-xorout/ 1.45).^ 2)
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%O 80

% Print PSD for Clean Signal and Signal After Delay Line

figure(1)

semilogy(f,abs(D4).^2);

figure(2)

semilogy(f,abs(Cleansig). ^2);

A.2 Pseudo-Continuous Time Simulation Code in

Matlab

% Pseudo-continuous time LLR NLL

bins=4; % g(D)=1+D+D4 LFSR generator

time 9000; % 9000 bits

smp 20; %sampling rate

timect = time*smp; %total sampling points

outputfromLFSR = zeros(1,time); 10

outputfromLFSR = LFSR(time, bins, 1, bins);

outputfromLFSRct = zeros(1,timect);

%mapper 1-> -1, 0->1

for i=1:time

if outputfromLFSR(i)==1

outputfromLFSR(i)=-1;
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else outputfromLFSR(i)=1;

end

outputfromLFSRct(smp*(i-i)+1:smp*i)=outputfromLFSR(i);

end 20

VDD=5; % modelling the power rail in real circuit

sigma=0.8; % noise standard deviation

input = outputfromLFSRct+sigma*randn(1,timect);

Ldelayl zeros(1,timect); % output of first delay filter

Ldelayn = zeros(1,timect); % output of the last delay filter

out = zeros(1,timect);

outbitslicer=zeros(1,timect);

out2 zeros(1,timect);

out3 = zeros(1,timect); 30

La = zeros(1,timect); % received signal

Lb = zeros(1,timect); % output of soft-xor

Lxx = zeros(1,timect); % output of soft-equal

for i=1:timect

La(i) = input(i);

if input(i)>=O

outbitslicer(i)=1;

else

outbitslicer(i)=-1;

end 40

% parity-check node in LLR

% four cases are simulated:

% approximate and exact NLL with clipping to model real multiplier;

% approximate and exact NLL without clipping.
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case is simulated separately in real simulation% each

%Case

Lb(i)

%Case

Lb(i)

%Case

Lb(i)

%Case

Lb(i)

% equality-node in LLR

% Case 1: soft-equal with clipping

Lxx(i) = max(min(La(i) + Lb(i),VDD),-1*VDD);

% Case 2: soft-equal without clipping

Lxx(i) = La(i) + Lb(i);

% dynamics of system

if (i>=smp)

if (Lxx(i-smp+1)>=1.4)

Ldelay1(i+1)=1.4;

% the clipping at input of multiplier
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1: approximate NLL with clipping of output

- max(min(Ldelayl(i)*Ldelayn(i)/3,VDD/2),-1*VDD/2);

2: exact NLL with clipping at output

= max(min(2*atanh(tanh(Ldelayl(i)/2)*\\

tanh(Ldelayn(i)/2)),VDD/2),-1*VDD/2);

3: exact NLL without clipping at output

= 2*atanh(tanh(Ldelayl(i)/2)*tanh(Ldelayn(i)/2));

4: approximate NLL without clipping

= Ldelay1(i)*Ldelayn(i)/3;



elseif (Lxx(i-smp+1)<=-1.4)

Ldelayl(i+1)=-1.4;

else

Ldelayl(i+1) = Lxx(i-smp+1); 80

end

end

if (i>=smp*bins)

if (Lxx(i-smp+1)>=1.4)

Ldelayn(i+1)=1.4;

elseif (Lxx(i-smp+1)<=-1.4)

Ldelayn(i+1)=-1.4;

else

Ldelayn(i+1) = 1*Lxx(i-smp*bins+1);

end 90

end

% A posteriori probability in LLR estimation of current state

out2(i) = Lxx(i);

% hard-decision rule: if log(p(O)p(1))>Q, then out=1

if Lxx(i) > 0

out(i)=1; 100

else

out (i)=-1;

end

end
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